GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / net / ethernet / neterion / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46  *                 Possible values '1' for enable , '0' for disable.
47  *                 Default is '2' - which means disable in promisc mode
48  *                 and enable in non-promiscuous mode.
49  * multiq: This parameter used to enable/disable MULTIQUEUE support.
50  *      Possible values '1' for enable and '0' for disable. Default is '0'
51  ************************************************************************/
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
77 #include <linux/io.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
81 #include <net/tcp.h>
82 #include <net/checksum.h>
83
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102         int ret;
103
104         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107         return ret;
108 }
109
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
116         (dev_type == XFRAME_I_DEVICE) ?                                 \
117         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
118           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130         "Register test\t(offline)",
131         "Eeprom test\t(offline)",
132         "Link test\t(online)",
133         "RLDRAM test\t(offline)",
134         "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138         {"tmac_frms"},
139         {"tmac_data_octets"},
140         {"tmac_drop_frms"},
141         {"tmac_mcst_frms"},
142         {"tmac_bcst_frms"},
143         {"tmac_pause_ctrl_frms"},
144         {"tmac_ttl_octets"},
145         {"tmac_ucst_frms"},
146         {"tmac_nucst_frms"},
147         {"tmac_any_err_frms"},
148         {"tmac_ttl_less_fb_octets"},
149         {"tmac_vld_ip_octets"},
150         {"tmac_vld_ip"},
151         {"tmac_drop_ip"},
152         {"tmac_icmp"},
153         {"tmac_rst_tcp"},
154         {"tmac_tcp"},
155         {"tmac_udp"},
156         {"rmac_vld_frms"},
157         {"rmac_data_octets"},
158         {"rmac_fcs_err_frms"},
159         {"rmac_drop_frms"},
160         {"rmac_vld_mcst_frms"},
161         {"rmac_vld_bcst_frms"},
162         {"rmac_in_rng_len_err_frms"},
163         {"rmac_out_rng_len_err_frms"},
164         {"rmac_long_frms"},
165         {"rmac_pause_ctrl_frms"},
166         {"rmac_unsup_ctrl_frms"},
167         {"rmac_ttl_octets"},
168         {"rmac_accepted_ucst_frms"},
169         {"rmac_accepted_nucst_frms"},
170         {"rmac_discarded_frms"},
171         {"rmac_drop_events"},
172         {"rmac_ttl_less_fb_octets"},
173         {"rmac_ttl_frms"},
174         {"rmac_usized_frms"},
175         {"rmac_osized_frms"},
176         {"rmac_frag_frms"},
177         {"rmac_jabber_frms"},
178         {"rmac_ttl_64_frms"},
179         {"rmac_ttl_65_127_frms"},
180         {"rmac_ttl_128_255_frms"},
181         {"rmac_ttl_256_511_frms"},
182         {"rmac_ttl_512_1023_frms"},
183         {"rmac_ttl_1024_1518_frms"},
184         {"rmac_ip"},
185         {"rmac_ip_octets"},
186         {"rmac_hdr_err_ip"},
187         {"rmac_drop_ip"},
188         {"rmac_icmp"},
189         {"rmac_tcp"},
190         {"rmac_udp"},
191         {"rmac_err_drp_udp"},
192         {"rmac_xgmii_err_sym"},
193         {"rmac_frms_q0"},
194         {"rmac_frms_q1"},
195         {"rmac_frms_q2"},
196         {"rmac_frms_q3"},
197         {"rmac_frms_q4"},
198         {"rmac_frms_q5"},
199         {"rmac_frms_q6"},
200         {"rmac_frms_q7"},
201         {"rmac_full_q0"},
202         {"rmac_full_q1"},
203         {"rmac_full_q2"},
204         {"rmac_full_q3"},
205         {"rmac_full_q4"},
206         {"rmac_full_q5"},
207         {"rmac_full_q6"},
208         {"rmac_full_q7"},
209         {"rmac_pause_cnt"},
210         {"rmac_xgmii_data_err_cnt"},
211         {"rmac_xgmii_ctrl_err_cnt"},
212         {"rmac_accepted_ip"},
213         {"rmac_err_tcp"},
214         {"rd_req_cnt"},
215         {"new_rd_req_cnt"},
216         {"new_rd_req_rtry_cnt"},
217         {"rd_rtry_cnt"},
218         {"wr_rtry_rd_ack_cnt"},
219         {"wr_req_cnt"},
220         {"new_wr_req_cnt"},
221         {"new_wr_req_rtry_cnt"},
222         {"wr_rtry_cnt"},
223         {"wr_disc_cnt"},
224         {"rd_rtry_wr_ack_cnt"},
225         {"txp_wr_cnt"},
226         {"txd_rd_cnt"},
227         {"txd_wr_cnt"},
228         {"rxd_rd_cnt"},
229         {"rxd_wr_cnt"},
230         {"txf_rd_cnt"},
231         {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235         {"rmac_ttl_1519_4095_frms"},
236         {"rmac_ttl_4096_8191_frms"},
237         {"rmac_ttl_8192_max_frms"},
238         {"rmac_ttl_gt_max_frms"},
239         {"rmac_osized_alt_frms"},
240         {"rmac_jabber_alt_frms"},
241         {"rmac_gt_max_alt_frms"},
242         {"rmac_vlan_frms"},
243         {"rmac_len_discard"},
244         {"rmac_fcs_discard"},
245         {"rmac_pf_discard"},
246         {"rmac_da_discard"},
247         {"rmac_red_discard"},
248         {"rmac_rts_discard"},
249         {"rmac_ingm_full_discard"},
250         {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254         {"\n DRIVER STATISTICS"},
255         {"single_bit_ecc_errs"},
256         {"double_bit_ecc_errs"},
257         {"parity_err_cnt"},
258         {"serious_err_cnt"},
259         {"soft_reset_cnt"},
260         {"fifo_full_cnt"},
261         {"ring_0_full_cnt"},
262         {"ring_1_full_cnt"},
263         {"ring_2_full_cnt"},
264         {"ring_3_full_cnt"},
265         {"ring_4_full_cnt"},
266         {"ring_5_full_cnt"},
267         {"ring_6_full_cnt"},
268         {"ring_7_full_cnt"},
269         {"alarm_transceiver_temp_high"},
270         {"alarm_transceiver_temp_low"},
271         {"alarm_laser_bias_current_high"},
272         {"alarm_laser_bias_current_low"},
273         {"alarm_laser_output_power_high"},
274         {"alarm_laser_output_power_low"},
275         {"warn_transceiver_temp_high"},
276         {"warn_transceiver_temp_low"},
277         {"warn_laser_bias_current_high"},
278         {"warn_laser_bias_current_low"},
279         {"warn_laser_output_power_high"},
280         {"warn_laser_output_power_low"},
281         {"lro_aggregated_pkts"},
282         {"lro_flush_both_count"},
283         {"lro_out_of_sequence_pkts"},
284         {"lro_flush_due_to_max_pkts"},
285         {"lro_avg_aggr_pkts"},
286         {"mem_alloc_fail_cnt"},
287         {"pci_map_fail_cnt"},
288         {"watchdog_timer_cnt"},
289         {"mem_allocated"},
290         {"mem_freed"},
291         {"link_up_cnt"},
292         {"link_down_cnt"},
293         {"link_up_time"},
294         {"link_down_time"},
295         {"tx_tcode_buf_abort_cnt"},
296         {"tx_tcode_desc_abort_cnt"},
297         {"tx_tcode_parity_err_cnt"},
298         {"tx_tcode_link_loss_cnt"},
299         {"tx_tcode_list_proc_err_cnt"},
300         {"rx_tcode_parity_err_cnt"},
301         {"rx_tcode_abort_cnt"},
302         {"rx_tcode_parity_abort_cnt"},
303         {"rx_tcode_rda_fail_cnt"},
304         {"rx_tcode_unkn_prot_cnt"},
305         {"rx_tcode_fcs_err_cnt"},
306         {"rx_tcode_buf_size_err_cnt"},
307         {"rx_tcode_rxd_corrupt_cnt"},
308         {"rx_tcode_unkn_err_cnt"},
309         {"tda_err_cnt"},
310         {"pfc_err_cnt"},
311         {"pcc_err_cnt"},
312         {"tti_err_cnt"},
313         {"tpa_err_cnt"},
314         {"sm_err_cnt"},
315         {"lso_err_cnt"},
316         {"mac_tmac_err_cnt"},
317         {"mac_rmac_err_cnt"},
318         {"xgxs_txgxs_err_cnt"},
319         {"xgxs_rxgxs_err_cnt"},
320         {"rc_err_cnt"},
321         {"prc_pcix_err_cnt"},
322         {"rpa_err_cnt"},
323         {"rda_err_cnt"},
324         {"rti_err_cnt"},
325         {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
343 {
344         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
345         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
346         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
347         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
348         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
349         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
350 }
351
352 /*
353  * Constants to be programmed into the Xena's registers, to configure
354  * the XAUI.
355  */
356
357 #define END_SIGN        0x0
358 static const u64 herc_act_dtx_cfg[] = {
359         /* Set address */
360         0x8000051536750000ULL, 0x80000515367500E0ULL,
361         /* Write data */
362         0x8000051536750004ULL, 0x80000515367500E4ULL,
363         /* Set address */
364         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
365         /* Write data */
366         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
367         /* Set address */
368         0x801205150D440000ULL, 0x801205150D4400E0ULL,
369         /* Write data */
370         0x801205150D440004ULL, 0x801205150D4400E4ULL,
371         /* Set address */
372         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
373         /* Write data */
374         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
375         /* Done */
376         END_SIGN
377 };
378
379 static const u64 xena_dtx_cfg[] = {
380         /* Set address */
381         0x8000051500000000ULL, 0x80000515000000E0ULL,
382         /* Write data */
383         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
384         /* Set address */
385         0x8001051500000000ULL, 0x80010515000000E0ULL,
386         /* Write data */
387         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
388         /* Set address */
389         0x8002051500000000ULL, 0x80020515000000E0ULL,
390         /* Write data */
391         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
392         END_SIGN
393 };
394
395 /*
396  * Constants for Fixing the MacAddress problem seen mostly on
397  * Alpha machines.
398  */
399 static const u64 fix_mac[] = {
400         0x0060000000000000ULL, 0x0060600000000000ULL,
401         0x0040600000000000ULL, 0x0000600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0060600000000000ULL,
404         0x0020600000000000ULL, 0x0060600000000000ULL,
405         0x0020600000000000ULL, 0x0060600000000000ULL,
406         0x0020600000000000ULL, 0x0060600000000000ULL,
407         0x0020600000000000ULL, 0x0060600000000000ULL,
408         0x0020600000000000ULL, 0x0060600000000000ULL,
409         0x0020600000000000ULL, 0x0060600000000000ULL,
410         0x0020600000000000ULL, 0x0060600000000000ULL,
411         0x0020600000000000ULL, 0x0060600000000000ULL,
412         0x0020600000000000ULL, 0x0000600000000000ULL,
413         0x0040600000000000ULL, 0x0060600000000000ULL,
414         END_SIGN
415 };
416
417 MODULE_DESCRIPTION("Neterion 10GbE driver");
418 MODULE_LICENSE("GPL");
419 MODULE_VERSION(DRV_VERSION);
420
421
422 /* Module Loadable parameters. */
423 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
424 S2IO_PARM_INT(rx_ring_num, 1);
425 S2IO_PARM_INT(multiq, 0);
426 S2IO_PARM_INT(rx_ring_mode, 1);
427 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
428 S2IO_PARM_INT(rmac_pause_time, 0x100);
429 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
430 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
431 S2IO_PARM_INT(shared_splits, 0);
432 S2IO_PARM_INT(tmac_util_period, 5);
433 S2IO_PARM_INT(rmac_util_period, 5);
434 S2IO_PARM_INT(l3l4hdr_size, 128);
435 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
436 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
437 /* Frequency of Rx desc syncs expressed as power of 2 */
438 S2IO_PARM_INT(rxsync_frequency, 3);
439 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
440 S2IO_PARM_INT(intr_type, 2);
441 /* Large receive offload feature */
442
443 /* Max pkts to be aggregated by LRO at one time. If not specified,
444  * aggregation happens until we hit max IP pkt size(64K)
445  */
446 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
447 S2IO_PARM_INT(indicate_max_pkts, 0);
448
449 S2IO_PARM_INT(napi, 1);
450 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
451
452 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
453 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
454 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
455 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
456 static unsigned int rts_frm_len[MAX_RX_RINGS] =
457 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
458
459 module_param_array(tx_fifo_len, uint, NULL, 0);
460 module_param_array(rx_ring_sz, uint, NULL, 0);
461 module_param_array(rts_frm_len, uint, NULL, 0);
462
463 /*
464  * S2IO device table.
465  * This table lists all the devices that this driver supports.
466  */
467 static const struct pci_device_id s2io_tbl[] = {
468         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
469          PCI_ANY_ID, PCI_ANY_ID},
470         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
471          PCI_ANY_ID, PCI_ANY_ID},
472         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
473          PCI_ANY_ID, PCI_ANY_ID},
474         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
475          PCI_ANY_ID, PCI_ANY_ID},
476         {0,}
477 };
478
479 MODULE_DEVICE_TABLE(pci, s2io_tbl);
480
481 static const struct pci_error_handlers s2io_err_handler = {
482         .error_detected = s2io_io_error_detected,
483         .slot_reset = s2io_io_slot_reset,
484         .resume = s2io_io_resume,
485 };
486
487 static struct pci_driver s2io_driver = {
488         .name = "S2IO",
489         .id_table = s2io_tbl,
490         .probe = s2io_init_nic,
491         .remove = s2io_rem_nic,
492         .err_handler = &s2io_err_handler,
493 };
494
495 /* A simplifier macro used both by init and free shared_mem Fns(). */
496 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
497
498 /* netqueue manipulation helper functions */
499 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
500 {
501         if (!sp->config.multiq) {
502                 int i;
503
504                 for (i = 0; i < sp->config.tx_fifo_num; i++)
505                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
506         }
507         netif_tx_stop_all_queues(sp->dev);
508 }
509
510 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
511 {
512         if (!sp->config.multiq)
513                 sp->mac_control.fifos[fifo_no].queue_state =
514                         FIFO_QUEUE_STOP;
515
516         netif_tx_stop_all_queues(sp->dev);
517 }
518
519 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
520 {
521         if (!sp->config.multiq) {
522                 int i;
523
524                 for (i = 0; i < sp->config.tx_fifo_num; i++)
525                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
526         }
527         netif_tx_start_all_queues(sp->dev);
528 }
529
530 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
531 {
532         if (!sp->config.multiq) {
533                 int i;
534
535                 for (i = 0; i < sp->config.tx_fifo_num; i++)
536                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
537         }
538         netif_tx_wake_all_queues(sp->dev);
539 }
540
541 static inline void s2io_wake_tx_queue(
542         struct fifo_info *fifo, int cnt, u8 multiq)
543 {
544
545         if (multiq) {
546                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
547                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
548         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
549                 if (netif_queue_stopped(fifo->dev)) {
550                         fifo->queue_state = FIFO_QUEUE_START;
551                         netif_wake_queue(fifo->dev);
552                 }
553         }
554 }
555
556 /**
557  * init_shared_mem - Allocation and Initialization of Memory
558  * @nic: Device private variable.
559  * Description: The function allocates all the memory areas shared
560  * between the NIC and the driver. This includes Tx descriptors,
561  * Rx descriptors and the statistics block.
562  */
563
564 static int init_shared_mem(struct s2io_nic *nic)
565 {
566         u32 size;
567         void *tmp_v_addr, *tmp_v_addr_next;
568         dma_addr_t tmp_p_addr, tmp_p_addr_next;
569         struct RxD_block *pre_rxd_blk = NULL;
570         int i, j, blk_cnt;
571         int lst_size, lst_per_page;
572         struct net_device *dev = nic->dev;
573         unsigned long tmp;
574         struct buffAdd *ba;
575         struct config_param *config = &nic->config;
576         struct mac_info *mac_control = &nic->mac_control;
577         unsigned long long mem_allocated = 0;
578
579         /* Allocation and initialization of TXDLs in FIFOs */
580         size = 0;
581         for (i = 0; i < config->tx_fifo_num; i++) {
582                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
583
584                 size += tx_cfg->fifo_len;
585         }
586         if (size > MAX_AVAILABLE_TXDS) {
587                 DBG_PRINT(ERR_DBG,
588                           "Too many TxDs requested: %d, max supported: %d\n",
589                           size, MAX_AVAILABLE_TXDS);
590                 return -EINVAL;
591         }
592
593         size = 0;
594         for (i = 0; i < config->tx_fifo_num; i++) {
595                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
596
597                 size = tx_cfg->fifo_len;
598                 /*
599                  * Legal values are from 2 to 8192
600                  */
601                 if (size < 2) {
602                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
603                                   "Valid lengths are 2 through 8192\n",
604                                   i, size);
605                         return -EINVAL;
606                 }
607         }
608
609         lst_size = (sizeof(struct TxD) * config->max_txds);
610         lst_per_page = PAGE_SIZE / lst_size;
611
612         for (i = 0; i < config->tx_fifo_num; i++) {
613                 struct fifo_info *fifo = &mac_control->fifos[i];
614                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
615                 int fifo_len = tx_cfg->fifo_len;
616                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
617
618                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
619                 if (!fifo->list_info) {
620                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
621                         return -ENOMEM;
622                 }
623                 mem_allocated += list_holder_size;
624         }
625         for (i = 0; i < config->tx_fifo_num; i++) {
626                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
627                                                 lst_per_page);
628                 struct fifo_info *fifo = &mac_control->fifos[i];
629                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630
631                 fifo->tx_curr_put_info.offset = 0;
632                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
633                 fifo->tx_curr_get_info.offset = 0;
634                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
635                 fifo->fifo_no = i;
636                 fifo->nic = nic;
637                 fifo->max_txds = MAX_SKB_FRAGS + 2;
638                 fifo->dev = dev;
639
640                 for (j = 0; j < page_num; j++) {
641                         int k = 0;
642                         dma_addr_t tmp_p;
643                         void *tmp_v;
644                         tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE,
645                                                    &tmp_p, GFP_KERNEL);
646                         if (!tmp_v) {
647                                 DBG_PRINT(INFO_DBG,
648                                           "dma_alloc_coherent failed for TxDL\n");
649                                 return -ENOMEM;
650                         }
651                         /* If we got a zero DMA address(can happen on
652                          * certain platforms like PPC), reallocate.
653                          * Store virtual address of page we don't want,
654                          * to be freed later.
655                          */
656                         if (!tmp_p) {
657                                 mac_control->zerodma_virt_addr = tmp_v;
658                                 DBG_PRINT(INIT_DBG,
659                                           "%s: Zero DMA address for TxDL. "
660                                           "Virtual address %p\n",
661                                           dev->name, tmp_v);
662                                 tmp_v = dma_alloc_coherent(&nic->pdev->dev,
663                                                            PAGE_SIZE, &tmp_p,
664                                                            GFP_KERNEL);
665                                 if (!tmp_v) {
666                                         DBG_PRINT(INFO_DBG,
667                                                   "dma_alloc_coherent failed for TxDL\n");
668                                         return -ENOMEM;
669                                 }
670                                 mem_allocated += PAGE_SIZE;
671                         }
672                         while (k < lst_per_page) {
673                                 int l = (j * lst_per_page) + k;
674                                 if (l == tx_cfg->fifo_len)
675                                         break;
676                                 fifo->list_info[l].list_virt_addr =
677                                         tmp_v + (k * lst_size);
678                                 fifo->list_info[l].list_phy_addr =
679                                         tmp_p + (k * lst_size);
680                                 k++;
681                         }
682                 }
683         }
684
685         for (i = 0; i < config->tx_fifo_num; i++) {
686                 struct fifo_info *fifo = &mac_control->fifos[i];
687                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
688
689                 size = tx_cfg->fifo_len;
690                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
691                 if (!fifo->ufo_in_band_v)
692                         return -ENOMEM;
693                 mem_allocated += (size * sizeof(u64));
694         }
695
696         /* Allocation and initialization of RXDs in Rings */
697         size = 0;
698         for (i = 0; i < config->rx_ring_num; i++) {
699                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
700                 struct ring_info *ring = &mac_control->rings[i];
701
702                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
703                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
704                                   "multiple of RxDs per Block\n",
705                                   dev->name, i);
706                         return FAILURE;
707                 }
708                 size += rx_cfg->num_rxd;
709                 ring->block_count = rx_cfg->num_rxd /
710                         (rxd_count[nic->rxd_mode] + 1);
711                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
712         }
713         if (nic->rxd_mode == RXD_MODE_1)
714                 size = (size * (sizeof(struct RxD1)));
715         else
716                 size = (size * (sizeof(struct RxD3)));
717
718         for (i = 0; i < config->rx_ring_num; i++) {
719                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
720                 struct ring_info *ring = &mac_control->rings[i];
721
722                 ring->rx_curr_get_info.block_index = 0;
723                 ring->rx_curr_get_info.offset = 0;
724                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
725                 ring->rx_curr_put_info.block_index = 0;
726                 ring->rx_curr_put_info.offset = 0;
727                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
728                 ring->nic = nic;
729                 ring->ring_no = i;
730
731                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
732                 /*  Allocating all the Rx blocks */
733                 for (j = 0; j < blk_cnt; j++) {
734                         struct rx_block_info *rx_blocks;
735                         int l;
736
737                         rx_blocks = &ring->rx_blocks[j];
738                         size = SIZE_OF_BLOCK;   /* size is always page size */
739                         tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size,
740                                                         &tmp_p_addr, GFP_KERNEL);
741                         if (tmp_v_addr == NULL) {
742                                 /*
743                                  * In case of failure, free_shared_mem()
744                                  * is called, which should free any
745                                  * memory that was alloced till the
746                                  * failure happened.
747                                  */
748                                 rx_blocks->block_virt_addr = tmp_v_addr;
749                                 return -ENOMEM;
750                         }
751                         mem_allocated += size;
752
753                         size = sizeof(struct rxd_info) *
754                                 rxd_count[nic->rxd_mode];
755                         rx_blocks->block_virt_addr = tmp_v_addr;
756                         rx_blocks->block_dma_addr = tmp_p_addr;
757                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
758                         if (!rx_blocks->rxds)
759                                 return -ENOMEM;
760                         mem_allocated += size;
761                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
762                                 rx_blocks->rxds[l].virt_addr =
763                                         rx_blocks->block_virt_addr +
764                                         (rxd_size[nic->rxd_mode] * l);
765                                 rx_blocks->rxds[l].dma_addr =
766                                         rx_blocks->block_dma_addr +
767                                         (rxd_size[nic->rxd_mode] * l);
768                         }
769                 }
770                 /* Interlinking all Rx Blocks */
771                 for (j = 0; j < blk_cnt; j++) {
772                         int next = (j + 1) % blk_cnt;
773                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
774                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
775                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
776                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
777
778                         pre_rxd_blk = tmp_v_addr;
779                         pre_rxd_blk->reserved_2_pNext_RxD_block =
780                                 (unsigned long)tmp_v_addr_next;
781                         pre_rxd_blk->pNext_RxD_Blk_physical =
782                                 (u64)tmp_p_addr_next;
783                 }
784         }
785         if (nic->rxd_mode == RXD_MODE_3B) {
786                 /*
787                  * Allocation of Storages for buffer addresses in 2BUFF mode
788                  * and the buffers as well.
789                  */
790                 for (i = 0; i < config->rx_ring_num; i++) {
791                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
792                         struct ring_info *ring = &mac_control->rings[i];
793
794                         blk_cnt = rx_cfg->num_rxd /
795                                 (rxd_count[nic->rxd_mode] + 1);
796                         size = sizeof(struct buffAdd *) * blk_cnt;
797                         ring->ba = kmalloc(size, GFP_KERNEL);
798                         if (!ring->ba)
799                                 return -ENOMEM;
800                         mem_allocated += size;
801                         for (j = 0; j < blk_cnt; j++) {
802                                 int k = 0;
803
804                                 size = sizeof(struct buffAdd) *
805                                         (rxd_count[nic->rxd_mode] + 1);
806                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
807                                 if (!ring->ba[j])
808                                         return -ENOMEM;
809                                 mem_allocated += size;
810                                 while (k != rxd_count[nic->rxd_mode]) {
811                                         ba = &ring->ba[j][k];
812                                         size = BUF0_LEN + ALIGN_SIZE;
813                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
814                                         if (!ba->ba_0_org)
815                                                 return -ENOMEM;
816                                         mem_allocated += size;
817                                         tmp = (unsigned long)ba->ba_0_org;
818                                         tmp += ALIGN_SIZE;
819                                         tmp &= ~((unsigned long)ALIGN_SIZE);
820                                         ba->ba_0 = (void *)tmp;
821
822                                         size = BUF1_LEN + ALIGN_SIZE;
823                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
824                                         if (!ba->ba_1_org)
825                                                 return -ENOMEM;
826                                         mem_allocated += size;
827                                         tmp = (unsigned long)ba->ba_1_org;
828                                         tmp += ALIGN_SIZE;
829                                         tmp &= ~((unsigned long)ALIGN_SIZE);
830                                         ba->ba_1 = (void *)tmp;
831                                         k++;
832                                 }
833                         }
834                 }
835         }
836
837         /* Allocation and initialization of Statistics block */
838         size = sizeof(struct stat_block);
839         mac_control->stats_mem =
840                 dma_alloc_coherent(&nic->pdev->dev, size,
841                                    &mac_control->stats_mem_phy, GFP_KERNEL);
842
843         if (!mac_control->stats_mem) {
844                 /*
845                  * In case of failure, free_shared_mem() is called, which
846                  * should free any memory that was alloced till the
847                  * failure happened.
848                  */
849                 return -ENOMEM;
850         }
851         mem_allocated += size;
852         mac_control->stats_mem_sz = size;
853
854         tmp_v_addr = mac_control->stats_mem;
855         mac_control->stats_info = tmp_v_addr;
856         memset(tmp_v_addr, 0, size);
857         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
858                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
859         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
860         return SUCCESS;
861 }
862
863 /**
864  * free_shared_mem - Free the allocated Memory
865  * @nic:  Device private variable.
866  * Description: This function is to free all memory locations allocated by
867  * the init_shared_mem() function and return it to the kernel.
868  */
869
870 static void free_shared_mem(struct s2io_nic *nic)
871 {
872         int i, j, blk_cnt, size;
873         void *tmp_v_addr;
874         dma_addr_t tmp_p_addr;
875         int lst_size, lst_per_page;
876         struct net_device *dev;
877         int page_num = 0;
878         struct config_param *config;
879         struct mac_info *mac_control;
880         struct stat_block *stats;
881         struct swStat *swstats;
882
883         if (!nic)
884                 return;
885
886         dev = nic->dev;
887
888         config = &nic->config;
889         mac_control = &nic->mac_control;
890         stats = mac_control->stats_info;
891         swstats = &stats->sw_stat;
892
893         lst_size = sizeof(struct TxD) * config->max_txds;
894         lst_per_page = PAGE_SIZE / lst_size;
895
896         for (i = 0; i < config->tx_fifo_num; i++) {
897                 struct fifo_info *fifo = &mac_control->fifos[i];
898                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
899
900                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
901                 for (j = 0; j < page_num; j++) {
902                         int mem_blks = (j * lst_per_page);
903                         struct list_info_hold *fli;
904
905                         if (!fifo->list_info)
906                                 return;
907
908                         fli = &fifo->list_info[mem_blks];
909                         if (!fli->list_virt_addr)
910                                 break;
911                         dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
912                                           fli->list_virt_addr,
913                                           fli->list_phy_addr);
914                         swstats->mem_freed += PAGE_SIZE;
915                 }
916                 /* If we got a zero DMA address during allocation,
917                  * free the page now
918                  */
919                 if (mac_control->zerodma_virt_addr) {
920                         dma_free_coherent(&nic->pdev->dev, PAGE_SIZE,
921                                           mac_control->zerodma_virt_addr,
922                                           (dma_addr_t)0);
923                         DBG_PRINT(INIT_DBG,
924                                   "%s: Freeing TxDL with zero DMA address. "
925                                   "Virtual address %p\n",
926                                   dev->name, mac_control->zerodma_virt_addr);
927                         swstats->mem_freed += PAGE_SIZE;
928                 }
929                 kfree(fifo->list_info);
930                 swstats->mem_freed += tx_cfg->fifo_len *
931                         sizeof(struct list_info_hold);
932         }
933
934         size = SIZE_OF_BLOCK;
935         for (i = 0; i < config->rx_ring_num; i++) {
936                 struct ring_info *ring = &mac_control->rings[i];
937
938                 blk_cnt = ring->block_count;
939                 for (j = 0; j < blk_cnt; j++) {
940                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
941                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
942                         if (tmp_v_addr == NULL)
943                                 break;
944                         dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr,
945                                           tmp_p_addr);
946                         swstats->mem_freed += size;
947                         kfree(ring->rx_blocks[j].rxds);
948                         swstats->mem_freed += sizeof(struct rxd_info) *
949                                 rxd_count[nic->rxd_mode];
950                 }
951         }
952
953         if (nic->rxd_mode == RXD_MODE_3B) {
954                 /* Freeing buffer storage addresses in 2BUFF mode. */
955                 for (i = 0; i < config->rx_ring_num; i++) {
956                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
957                         struct ring_info *ring = &mac_control->rings[i];
958
959                         blk_cnt = rx_cfg->num_rxd /
960                                 (rxd_count[nic->rxd_mode] + 1);
961                         for (j = 0; j < blk_cnt; j++) {
962                                 int k = 0;
963                                 if (!ring->ba[j])
964                                         continue;
965                                 while (k != rxd_count[nic->rxd_mode]) {
966                                         struct buffAdd *ba = &ring->ba[j][k];
967                                         kfree(ba->ba_0_org);
968                                         swstats->mem_freed +=
969                                                 BUF0_LEN + ALIGN_SIZE;
970                                         kfree(ba->ba_1_org);
971                                         swstats->mem_freed +=
972                                                 BUF1_LEN + ALIGN_SIZE;
973                                         k++;
974                                 }
975                                 kfree(ring->ba[j]);
976                                 swstats->mem_freed += sizeof(struct buffAdd) *
977                                         (rxd_count[nic->rxd_mode] + 1);
978                         }
979                         kfree(ring->ba);
980                         swstats->mem_freed += sizeof(struct buffAdd *) *
981                                 blk_cnt;
982                 }
983         }
984
985         for (i = 0; i < nic->config.tx_fifo_num; i++) {
986                 struct fifo_info *fifo = &mac_control->fifos[i];
987                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
988
989                 if (fifo->ufo_in_band_v) {
990                         swstats->mem_freed += tx_cfg->fifo_len *
991                                 sizeof(u64);
992                         kfree(fifo->ufo_in_band_v);
993                 }
994         }
995
996         if (mac_control->stats_mem) {
997                 swstats->mem_freed += mac_control->stats_mem_sz;
998                 dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz,
999                                   mac_control->stats_mem,
1000                                   mac_control->stats_mem_phy);
1001         }
1002 }
1003
1004 /*
1005  * s2io_verify_pci_mode -
1006  */
1007
1008 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1009 {
1010         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1011         register u64 val64 = 0;
1012         int     mode;
1013
1014         val64 = readq(&bar0->pci_mode);
1015         mode = (u8)GET_PCI_MODE(val64);
1016
1017         if (val64 & PCI_MODE_UNKNOWN_MODE)
1018                 return -1;      /* Unknown PCI mode */
1019         return mode;
1020 }
1021
1022 #define NEC_VENID   0x1033
1023 #define NEC_DEVID   0x0125
1024 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1025 {
1026         struct pci_dev *tdev = NULL;
1027         for_each_pci_dev(tdev) {
1028                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1029                         if (tdev->bus == s2io_pdev->bus->parent) {
1030                                 pci_dev_put(tdev);
1031                                 return 1;
1032                         }
1033                 }
1034         }
1035         return 0;
1036 }
1037
1038 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1039 /*
1040  * s2io_print_pci_mode -
1041  */
1042 static int s2io_print_pci_mode(struct s2io_nic *nic)
1043 {
1044         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1045         register u64 val64 = 0;
1046         int     mode;
1047         struct config_param *config = &nic->config;
1048         const char *pcimode;
1049
1050         val64 = readq(&bar0->pci_mode);
1051         mode = (u8)GET_PCI_MODE(val64);
1052
1053         if (val64 & PCI_MODE_UNKNOWN_MODE)
1054                 return -1;      /* Unknown PCI mode */
1055
1056         config->bus_speed = bus_speed[mode];
1057
1058         if (s2io_on_nec_bridge(nic->pdev)) {
1059                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1060                           nic->dev->name);
1061                 return mode;
1062         }
1063
1064         switch (mode) {
1065         case PCI_MODE_PCI_33:
1066                 pcimode = "33MHz PCI bus";
1067                 break;
1068         case PCI_MODE_PCI_66:
1069                 pcimode = "66MHz PCI bus";
1070                 break;
1071         case PCI_MODE_PCIX_M1_66:
1072                 pcimode = "66MHz PCIX(M1) bus";
1073                 break;
1074         case PCI_MODE_PCIX_M1_100:
1075                 pcimode = "100MHz PCIX(M1) bus";
1076                 break;
1077         case PCI_MODE_PCIX_M1_133:
1078                 pcimode = "133MHz PCIX(M1) bus";
1079                 break;
1080         case PCI_MODE_PCIX_M2_66:
1081                 pcimode = "133MHz PCIX(M2) bus";
1082                 break;
1083         case PCI_MODE_PCIX_M2_100:
1084                 pcimode = "200MHz PCIX(M2) bus";
1085                 break;
1086         case PCI_MODE_PCIX_M2_133:
1087                 pcimode = "266MHz PCIX(M2) bus";
1088                 break;
1089         default:
1090                 pcimode = "unsupported bus!";
1091                 mode = -1;
1092         }
1093
1094         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1095                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1096
1097         return mode;
1098 }
1099
1100 /**
1101  *  init_tti - Initialization transmit traffic interrupt scheme
1102  *  @nic: device private variable
1103  *  @link: link status (UP/DOWN) used to enable/disable continuous
1104  *  transmit interrupts
1105  *  @may_sleep: parameter indicates if sleeping when waiting for
1106  *  command complete
1107  *  Description: The function configures transmit traffic interrupts
1108  *  Return Value:  SUCCESS on success and
1109  *  '-1' on failure
1110  */
1111
1112 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep)
1113 {
1114         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115         register u64 val64 = 0;
1116         int i;
1117         struct config_param *config = &nic->config;
1118
1119         for (i = 0; i < config->tx_fifo_num; i++) {
1120                 /*
1121                  * TTI Initialization. Default Tx timer gets us about
1122                  * 250 interrupts per sec. Continuous interrupts are enabled
1123                  * by default.
1124                  */
1125                 if (nic->device_type == XFRAME_II_DEVICE) {
1126                         int count = (nic->config.bus_speed * 125)/2;
1127                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1128                 } else
1129                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1130
1131                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1132                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1133                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1134                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1135                 if (i == 0)
1136                         if (use_continuous_tx_intrs && (link == LINK_UP))
1137                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1138                 writeq(val64, &bar0->tti_data1_mem);
1139
1140                 if (nic->config.intr_type == MSI_X) {
1141                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1142                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1143                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1144                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1145                 } else {
1146                         if ((nic->config.tx_steering_type ==
1147                              TX_DEFAULT_STEERING) &&
1148                             (config->tx_fifo_num > 1) &&
1149                             (i >= nic->udp_fifo_idx) &&
1150                             (i < (nic->udp_fifo_idx +
1151                                   nic->total_udp_fifos)))
1152                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1153                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1154                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1155                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1156                         else
1157                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1158                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1159                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1160                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1161                 }
1162
1163                 writeq(val64, &bar0->tti_data2_mem);
1164
1165                 val64 = TTI_CMD_MEM_WE |
1166                         TTI_CMD_MEM_STROBE_NEW_CMD |
1167                         TTI_CMD_MEM_OFFSET(i);
1168                 writeq(val64, &bar0->tti_command_mem);
1169
1170                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1171                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1172                                           S2IO_BIT_RESET, may_sleep) != SUCCESS)
1173                         return FAILURE;
1174         }
1175
1176         return SUCCESS;
1177 }
1178
1179 /**
1180  *  init_nic - Initialization of hardware
1181  *  @nic: device private variable
1182  *  Description: The function sequentially configures every block
1183  *  of the H/W from their reset values.
1184  *  Return Value:  SUCCESS on success and
1185  *  '-1' on failure (endian settings incorrect).
1186  */
1187
1188 static int init_nic(struct s2io_nic *nic)
1189 {
1190         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1191         struct net_device *dev = nic->dev;
1192         register u64 val64 = 0;
1193         void __iomem *add;
1194         u32 time;
1195         int i, j;
1196         int dtx_cnt = 0;
1197         unsigned long long mem_share;
1198         int mem_size;
1199         struct config_param *config = &nic->config;
1200         struct mac_info *mac_control = &nic->mac_control;
1201
1202         /* to set the swapper controle on the card */
1203         if (s2io_set_swapper(nic)) {
1204                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1205                 return -EIO;
1206         }
1207
1208         /*
1209          * Herc requires EOI to be removed from reset before XGXS, so..
1210          */
1211         if (nic->device_type & XFRAME_II_DEVICE) {
1212                 val64 = 0xA500000000ULL;
1213                 writeq(val64, &bar0->sw_reset);
1214                 msleep(500);
1215                 val64 = readq(&bar0->sw_reset);
1216         }
1217
1218         /* Remove XGXS from reset state */
1219         val64 = 0;
1220         writeq(val64, &bar0->sw_reset);
1221         msleep(500);
1222         val64 = readq(&bar0->sw_reset);
1223
1224         /* Ensure that it's safe to access registers by checking
1225          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1226          */
1227         if (nic->device_type == XFRAME_II_DEVICE) {
1228                 for (i = 0; i < 50; i++) {
1229                         val64 = readq(&bar0->adapter_status);
1230                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1231                                 break;
1232                         msleep(10);
1233                 }
1234                 if (i == 50)
1235                         return -ENODEV;
1236         }
1237
1238         /*  Enable Receiving broadcasts */
1239         add = &bar0->mac_cfg;
1240         val64 = readq(&bar0->mac_cfg);
1241         val64 |= MAC_RMAC_BCAST_ENABLE;
1242         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1243         writel((u32)val64, add);
1244         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1245         writel((u32) (val64 >> 32), (add + 4));
1246
1247         /* Read registers in all blocks */
1248         val64 = readq(&bar0->mac_int_mask);
1249         val64 = readq(&bar0->mc_int_mask);
1250         val64 = readq(&bar0->xgxs_int_mask);
1251
1252         /*  Set MTU */
1253         val64 = dev->mtu;
1254         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1255
1256         if (nic->device_type & XFRAME_II_DEVICE) {
1257                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1258                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1259                                           &bar0->dtx_control, UF);
1260                         if (dtx_cnt & 0x1)
1261                                 msleep(1); /* Necessary!! */
1262                         dtx_cnt++;
1263                 }
1264         } else {
1265                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1266                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1267                                           &bar0->dtx_control, UF);
1268                         val64 = readq(&bar0->dtx_control);
1269                         dtx_cnt++;
1270                 }
1271         }
1272
1273         /*  Tx DMA Initialization */
1274         val64 = 0;
1275         writeq(val64, &bar0->tx_fifo_partition_0);
1276         writeq(val64, &bar0->tx_fifo_partition_1);
1277         writeq(val64, &bar0->tx_fifo_partition_2);
1278         writeq(val64, &bar0->tx_fifo_partition_3);
1279
1280         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1281                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1282
1283                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1284                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1285
1286                 if (i == (config->tx_fifo_num - 1)) {
1287                         if (i % 2 == 0)
1288                                 i++;
1289                 }
1290
1291                 switch (i) {
1292                 case 1:
1293                         writeq(val64, &bar0->tx_fifo_partition_0);
1294                         val64 = 0;
1295                         j = 0;
1296                         break;
1297                 case 3:
1298                         writeq(val64, &bar0->tx_fifo_partition_1);
1299                         val64 = 0;
1300                         j = 0;
1301                         break;
1302                 case 5:
1303                         writeq(val64, &bar0->tx_fifo_partition_2);
1304                         val64 = 0;
1305                         j = 0;
1306                         break;
1307                 case 7:
1308                         writeq(val64, &bar0->tx_fifo_partition_3);
1309                         val64 = 0;
1310                         j = 0;
1311                         break;
1312                 default:
1313                         j++;
1314                         break;
1315                 }
1316         }
1317
1318         /*
1319          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1320          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1321          */
1322         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1323                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1324
1325         val64 = readq(&bar0->tx_fifo_partition_0);
1326         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1327                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1328
1329         /*
1330          * Initialization of Tx_PA_CONFIG register to ignore packet
1331          * integrity checking.
1332          */
1333         val64 = readq(&bar0->tx_pa_cfg);
1334         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1335                 TX_PA_CFG_IGNORE_SNAP_OUI |
1336                 TX_PA_CFG_IGNORE_LLC_CTRL |
1337                 TX_PA_CFG_IGNORE_L2_ERR;
1338         writeq(val64, &bar0->tx_pa_cfg);
1339
1340         /* Rx DMA initialization. */
1341         val64 = 0;
1342         for (i = 0; i < config->rx_ring_num; i++) {
1343                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1344
1345                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1346         }
1347         writeq(val64, &bar0->rx_queue_priority);
1348
1349         /*
1350          * Allocating equal share of memory to all the
1351          * configured Rings.
1352          */
1353         val64 = 0;
1354         if (nic->device_type & XFRAME_II_DEVICE)
1355                 mem_size = 32;
1356         else
1357                 mem_size = 64;
1358
1359         for (i = 0; i < config->rx_ring_num; i++) {
1360                 switch (i) {
1361                 case 0:
1362                         mem_share = (mem_size / config->rx_ring_num +
1363                                      mem_size % config->rx_ring_num);
1364                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1365                         continue;
1366                 case 1:
1367                         mem_share = (mem_size / config->rx_ring_num);
1368                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1369                         continue;
1370                 case 2:
1371                         mem_share = (mem_size / config->rx_ring_num);
1372                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1373                         continue;
1374                 case 3:
1375                         mem_share = (mem_size / config->rx_ring_num);
1376                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1377                         continue;
1378                 case 4:
1379                         mem_share = (mem_size / config->rx_ring_num);
1380                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1381                         continue;
1382                 case 5:
1383                         mem_share = (mem_size / config->rx_ring_num);
1384                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1385                         continue;
1386                 case 6:
1387                         mem_share = (mem_size / config->rx_ring_num);
1388                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1389                         continue;
1390                 case 7:
1391                         mem_share = (mem_size / config->rx_ring_num);
1392                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1393                         continue;
1394                 }
1395         }
1396         writeq(val64, &bar0->rx_queue_cfg);
1397
1398         /*
1399          * Filling Tx round robin registers
1400          * as per the number of FIFOs for equal scheduling priority
1401          */
1402         switch (config->tx_fifo_num) {
1403         case 1:
1404                 val64 = 0x0;
1405                 writeq(val64, &bar0->tx_w_round_robin_0);
1406                 writeq(val64, &bar0->tx_w_round_robin_1);
1407                 writeq(val64, &bar0->tx_w_round_robin_2);
1408                 writeq(val64, &bar0->tx_w_round_robin_3);
1409                 writeq(val64, &bar0->tx_w_round_robin_4);
1410                 break;
1411         case 2:
1412                 val64 = 0x0001000100010001ULL;
1413                 writeq(val64, &bar0->tx_w_round_robin_0);
1414                 writeq(val64, &bar0->tx_w_round_robin_1);
1415                 writeq(val64, &bar0->tx_w_round_robin_2);
1416                 writeq(val64, &bar0->tx_w_round_robin_3);
1417                 val64 = 0x0001000100000000ULL;
1418                 writeq(val64, &bar0->tx_w_round_robin_4);
1419                 break;
1420         case 3:
1421                 val64 = 0x0001020001020001ULL;
1422                 writeq(val64, &bar0->tx_w_round_robin_0);
1423                 val64 = 0x0200010200010200ULL;
1424                 writeq(val64, &bar0->tx_w_round_robin_1);
1425                 val64 = 0x0102000102000102ULL;
1426                 writeq(val64, &bar0->tx_w_round_robin_2);
1427                 val64 = 0x0001020001020001ULL;
1428                 writeq(val64, &bar0->tx_w_round_robin_3);
1429                 val64 = 0x0200010200000000ULL;
1430                 writeq(val64, &bar0->tx_w_round_robin_4);
1431                 break;
1432         case 4:
1433                 val64 = 0x0001020300010203ULL;
1434                 writeq(val64, &bar0->tx_w_round_robin_0);
1435                 writeq(val64, &bar0->tx_w_round_robin_1);
1436                 writeq(val64, &bar0->tx_w_round_robin_2);
1437                 writeq(val64, &bar0->tx_w_round_robin_3);
1438                 val64 = 0x0001020300000000ULL;
1439                 writeq(val64, &bar0->tx_w_round_robin_4);
1440                 break;
1441         case 5:
1442                 val64 = 0x0001020304000102ULL;
1443                 writeq(val64, &bar0->tx_w_round_robin_0);
1444                 val64 = 0x0304000102030400ULL;
1445                 writeq(val64, &bar0->tx_w_round_robin_1);
1446                 val64 = 0x0102030400010203ULL;
1447                 writeq(val64, &bar0->tx_w_round_robin_2);
1448                 val64 = 0x0400010203040001ULL;
1449                 writeq(val64, &bar0->tx_w_round_robin_3);
1450                 val64 = 0x0203040000000000ULL;
1451                 writeq(val64, &bar0->tx_w_round_robin_4);
1452                 break;
1453         case 6:
1454                 val64 = 0x0001020304050001ULL;
1455                 writeq(val64, &bar0->tx_w_round_robin_0);
1456                 val64 = 0x0203040500010203ULL;
1457                 writeq(val64, &bar0->tx_w_round_robin_1);
1458                 val64 = 0x0405000102030405ULL;
1459                 writeq(val64, &bar0->tx_w_round_robin_2);
1460                 val64 = 0x0001020304050001ULL;
1461                 writeq(val64, &bar0->tx_w_round_robin_3);
1462                 val64 = 0x0203040500000000ULL;
1463                 writeq(val64, &bar0->tx_w_round_robin_4);
1464                 break;
1465         case 7:
1466                 val64 = 0x0001020304050600ULL;
1467                 writeq(val64, &bar0->tx_w_round_robin_0);
1468                 val64 = 0x0102030405060001ULL;
1469                 writeq(val64, &bar0->tx_w_round_robin_1);
1470                 val64 = 0x0203040506000102ULL;
1471                 writeq(val64, &bar0->tx_w_round_robin_2);
1472                 val64 = 0x0304050600010203ULL;
1473                 writeq(val64, &bar0->tx_w_round_robin_3);
1474                 val64 = 0x0405060000000000ULL;
1475                 writeq(val64, &bar0->tx_w_round_robin_4);
1476                 break;
1477         case 8:
1478                 val64 = 0x0001020304050607ULL;
1479                 writeq(val64, &bar0->tx_w_round_robin_0);
1480                 writeq(val64, &bar0->tx_w_round_robin_1);
1481                 writeq(val64, &bar0->tx_w_round_robin_2);
1482                 writeq(val64, &bar0->tx_w_round_robin_3);
1483                 val64 = 0x0001020300000000ULL;
1484                 writeq(val64, &bar0->tx_w_round_robin_4);
1485                 break;
1486         }
1487
1488         /* Enable all configured Tx FIFO partitions */
1489         val64 = readq(&bar0->tx_fifo_partition_0);
1490         val64 |= (TX_FIFO_PARTITION_EN);
1491         writeq(val64, &bar0->tx_fifo_partition_0);
1492
1493         /* Filling the Rx round robin registers as per the
1494          * number of Rings and steering based on QoS with
1495          * equal priority.
1496          */
1497         switch (config->rx_ring_num) {
1498         case 1:
1499                 val64 = 0x0;
1500                 writeq(val64, &bar0->rx_w_round_robin_0);
1501                 writeq(val64, &bar0->rx_w_round_robin_1);
1502                 writeq(val64, &bar0->rx_w_round_robin_2);
1503                 writeq(val64, &bar0->rx_w_round_robin_3);
1504                 writeq(val64, &bar0->rx_w_round_robin_4);
1505
1506                 val64 = 0x8080808080808080ULL;
1507                 writeq(val64, &bar0->rts_qos_steering);
1508                 break;
1509         case 2:
1510                 val64 = 0x0001000100010001ULL;
1511                 writeq(val64, &bar0->rx_w_round_robin_0);
1512                 writeq(val64, &bar0->rx_w_round_robin_1);
1513                 writeq(val64, &bar0->rx_w_round_robin_2);
1514                 writeq(val64, &bar0->rx_w_round_robin_3);
1515                 val64 = 0x0001000100000000ULL;
1516                 writeq(val64, &bar0->rx_w_round_robin_4);
1517
1518                 val64 = 0x8080808040404040ULL;
1519                 writeq(val64, &bar0->rts_qos_steering);
1520                 break;
1521         case 3:
1522                 val64 = 0x0001020001020001ULL;
1523                 writeq(val64, &bar0->rx_w_round_robin_0);
1524                 val64 = 0x0200010200010200ULL;
1525                 writeq(val64, &bar0->rx_w_round_robin_1);
1526                 val64 = 0x0102000102000102ULL;
1527                 writeq(val64, &bar0->rx_w_round_robin_2);
1528                 val64 = 0x0001020001020001ULL;
1529                 writeq(val64, &bar0->rx_w_round_robin_3);
1530                 val64 = 0x0200010200000000ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533                 val64 = 0x8080804040402020ULL;
1534                 writeq(val64, &bar0->rts_qos_steering);
1535                 break;
1536         case 4:
1537                 val64 = 0x0001020300010203ULL;
1538                 writeq(val64, &bar0->rx_w_round_robin_0);
1539                 writeq(val64, &bar0->rx_w_round_robin_1);
1540                 writeq(val64, &bar0->rx_w_round_robin_2);
1541                 writeq(val64, &bar0->rx_w_round_robin_3);
1542                 val64 = 0x0001020300000000ULL;
1543                 writeq(val64, &bar0->rx_w_round_robin_4);
1544
1545                 val64 = 0x8080404020201010ULL;
1546                 writeq(val64, &bar0->rts_qos_steering);
1547                 break;
1548         case 5:
1549                 val64 = 0x0001020304000102ULL;
1550                 writeq(val64, &bar0->rx_w_round_robin_0);
1551                 val64 = 0x0304000102030400ULL;
1552                 writeq(val64, &bar0->rx_w_round_robin_1);
1553                 val64 = 0x0102030400010203ULL;
1554                 writeq(val64, &bar0->rx_w_round_robin_2);
1555                 val64 = 0x0400010203040001ULL;
1556                 writeq(val64, &bar0->rx_w_round_robin_3);
1557                 val64 = 0x0203040000000000ULL;
1558                 writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560                 val64 = 0x8080404020201008ULL;
1561                 writeq(val64, &bar0->rts_qos_steering);
1562                 break;
1563         case 6:
1564                 val64 = 0x0001020304050001ULL;
1565                 writeq(val64, &bar0->rx_w_round_robin_0);
1566                 val64 = 0x0203040500010203ULL;
1567                 writeq(val64, &bar0->rx_w_round_robin_1);
1568                 val64 = 0x0405000102030405ULL;
1569                 writeq(val64, &bar0->rx_w_round_robin_2);
1570                 val64 = 0x0001020304050001ULL;
1571                 writeq(val64, &bar0->rx_w_round_robin_3);
1572                 val64 = 0x0203040500000000ULL;
1573                 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575                 val64 = 0x8080404020100804ULL;
1576                 writeq(val64, &bar0->rts_qos_steering);
1577                 break;
1578         case 7:
1579                 val64 = 0x0001020304050600ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_0);
1581                 val64 = 0x0102030405060001ULL;
1582                 writeq(val64, &bar0->rx_w_round_robin_1);
1583                 val64 = 0x0203040506000102ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_2);
1585                 val64 = 0x0304050600010203ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_3);
1587                 val64 = 0x0405060000000000ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590                 val64 = 0x8080402010080402ULL;
1591                 writeq(val64, &bar0->rts_qos_steering);
1592                 break;
1593         case 8:
1594                 val64 = 0x0001020304050607ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_0);
1596                 writeq(val64, &bar0->rx_w_round_robin_1);
1597                 writeq(val64, &bar0->rx_w_round_robin_2);
1598                 writeq(val64, &bar0->rx_w_round_robin_3);
1599                 val64 = 0x0001020300000000ULL;
1600                 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602                 val64 = 0x8040201008040201ULL;
1603                 writeq(val64, &bar0->rts_qos_steering);
1604                 break;
1605         }
1606
1607         /* UDP Fix */
1608         val64 = 0;
1609         for (i = 0; i < 8; i++)
1610                 writeq(val64, &bar0->rts_frm_len_n[i]);
1611
1612         /* Set the default rts frame length for the rings configured */
1613         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1614         for (i = 0 ; i < config->rx_ring_num ; i++)
1615                 writeq(val64, &bar0->rts_frm_len_n[i]);
1616
1617         /* Set the frame length for the configured rings
1618          * desired by the user
1619          */
1620         for (i = 0; i < config->rx_ring_num; i++) {
1621                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1622                  * specified frame length steering.
1623                  * If the user provides the frame length then program
1624                  * the rts_frm_len register for those values or else
1625                  * leave it as it is.
1626                  */
1627                 if (rts_frm_len[i] != 0) {
1628                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1629                                &bar0->rts_frm_len_n[i]);
1630                 }
1631         }
1632
1633         /* Disable differentiated services steering logic */
1634         for (i = 0; i < 64; i++) {
1635                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1636                         DBG_PRINT(ERR_DBG,
1637                                   "%s: rts_ds_steer failed on codepoint %d\n",
1638                                   dev->name, i);
1639                         return -ENODEV;
1640                 }
1641         }
1642
1643         /* Program statistics memory */
1644         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1645
1646         if (nic->device_type == XFRAME_II_DEVICE) {
1647                 val64 = STAT_BC(0x320);
1648                 writeq(val64, &bar0->stat_byte_cnt);
1649         }
1650
1651         /*
1652          * Initializing the sampling rate for the device to calculate the
1653          * bandwidth utilization.
1654          */
1655         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1656                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1657         writeq(val64, &bar0->mac_link_util);
1658
1659         /*
1660          * Initializing the Transmit and Receive Traffic Interrupt
1661          * Scheme.
1662          */
1663
1664         /* Initialize TTI */
1665         if (SUCCESS != init_tti(nic, nic->last_link_state, true))
1666                 return -ENODEV;
1667
1668         /* RTI Initialization */
1669         if (nic->device_type == XFRAME_II_DEVICE) {
1670                 /*
1671                  * Programmed to generate Apprx 500 Intrs per
1672                  * second
1673                  */
1674                 int count = (nic->config.bus_speed * 125)/4;
1675                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1676         } else
1677                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1678         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1679                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1680                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1681                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1682
1683         writeq(val64, &bar0->rti_data1_mem);
1684
1685         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1686                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1687         if (nic->config.intr_type == MSI_X)
1688                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1689                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1690         else
1691                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1692                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1693         writeq(val64, &bar0->rti_data2_mem);
1694
1695         for (i = 0; i < config->rx_ring_num; i++) {
1696                 val64 = RTI_CMD_MEM_WE |
1697                         RTI_CMD_MEM_STROBE_NEW_CMD |
1698                         RTI_CMD_MEM_OFFSET(i);
1699                 writeq(val64, &bar0->rti_command_mem);
1700
1701                 /*
1702                  * Once the operation completes, the Strobe bit of the
1703                  * command register will be reset. We poll for this
1704                  * particular condition. We wait for a maximum of 500ms
1705                  * for the operation to complete, if it's not complete
1706                  * by then we return error.
1707                  */
1708                 time = 0;
1709                 while (true) {
1710                         val64 = readq(&bar0->rti_command_mem);
1711                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1712                                 break;
1713
1714                         if (time > 10) {
1715                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1716                                           dev->name);
1717                                 return -ENODEV;
1718                         }
1719                         time++;
1720                         msleep(50);
1721                 }
1722         }
1723
1724         /*
1725          * Initializing proper values as Pause threshold into all
1726          * the 8 Queues on Rx side.
1727          */
1728         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1729         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1730
1731         /* Disable RMAC PAD STRIPPING */
1732         add = &bar0->mac_cfg;
1733         val64 = readq(&bar0->mac_cfg);
1734         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1735         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1736         writel((u32) (val64), add);
1737         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1738         writel((u32) (val64 >> 32), (add + 4));
1739         val64 = readq(&bar0->mac_cfg);
1740
1741         /* Enable FCS stripping by adapter */
1742         add = &bar0->mac_cfg;
1743         val64 = readq(&bar0->mac_cfg);
1744         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1745         if (nic->device_type == XFRAME_II_DEVICE)
1746                 writeq(val64, &bar0->mac_cfg);
1747         else {
1748                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1749                 writel((u32) (val64), add);
1750                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751                 writel((u32) (val64 >> 32), (add + 4));
1752         }
1753
1754         /*
1755          * Set the time value to be inserted in the pause frame
1756          * generated by xena.
1757          */
1758         val64 = readq(&bar0->rmac_pause_cfg);
1759         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1760         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1761         writeq(val64, &bar0->rmac_pause_cfg);
1762
1763         /*
1764          * Set the Threshold Limit for Generating the pause frame
1765          * If the amount of data in any Queue exceeds ratio of
1766          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1767          * pause frame is generated
1768          */
1769         val64 = 0;
1770         for (i = 0; i < 4; i++) {
1771                 val64 |= (((u64)0xFF00 |
1772                            nic->mac_control.mc_pause_threshold_q0q3)
1773                           << (i * 2 * 8));
1774         }
1775         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1776
1777         val64 = 0;
1778         for (i = 0; i < 4; i++) {
1779                 val64 |= (((u64)0xFF00 |
1780                            nic->mac_control.mc_pause_threshold_q4q7)
1781                           << (i * 2 * 8));
1782         }
1783         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1784
1785         /*
1786          * TxDMA will stop Read request if the number of read split has
1787          * exceeded the limit pointed by shared_splits
1788          */
1789         val64 = readq(&bar0->pic_control);
1790         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1791         writeq(val64, &bar0->pic_control);
1792
1793         if (nic->config.bus_speed == 266) {
1794                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1795                 writeq(0x0, &bar0->read_retry_delay);
1796                 writeq(0x0, &bar0->write_retry_delay);
1797         }
1798
1799         /*
1800          * Programming the Herc to split every write transaction
1801          * that does not start on an ADB to reduce disconnects.
1802          */
1803         if (nic->device_type == XFRAME_II_DEVICE) {
1804                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1805                         MISC_LINK_STABILITY_PRD(3);
1806                 writeq(val64, &bar0->misc_control);
1807                 val64 = readq(&bar0->pic_control2);
1808                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1809                 writeq(val64, &bar0->pic_control2);
1810         }
1811         if (strstr(nic->product_name, "CX4")) {
1812                 val64 = TMAC_AVG_IPG(0x17);
1813                 writeq(val64, &bar0->tmac_avg_ipg);
1814         }
1815
1816         return SUCCESS;
1817 }
1818 #define LINK_UP_DOWN_INTERRUPT          1
1819 #define MAC_RMAC_ERR_TIMER              2
1820
1821 static int s2io_link_fault_indication(struct s2io_nic *nic)
1822 {
1823         if (nic->device_type == XFRAME_II_DEVICE)
1824                 return LINK_UP_DOWN_INTERRUPT;
1825         else
1826                 return MAC_RMAC_ERR_TIMER;
1827 }
1828
1829 /**
1830  *  do_s2io_write_bits -  update alarm bits in alarm register
1831  *  @value: alarm bits
1832  *  @flag: interrupt status
1833  *  @addr: address value
1834  *  Description: update alarm bits in alarm register
1835  *  Return Value:
1836  *  NONE.
1837  */
1838 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1839 {
1840         u64 temp64;
1841
1842         temp64 = readq(addr);
1843
1844         if (flag == ENABLE_INTRS)
1845                 temp64 &= ~((u64)value);
1846         else
1847                 temp64 |= ((u64)value);
1848         writeq(temp64, addr);
1849 }
1850
1851 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1852 {
1853         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1854         register u64 gen_int_mask = 0;
1855         u64 interruptible;
1856
1857         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1858         if (mask & TX_DMA_INTR) {
1859                 gen_int_mask |= TXDMA_INT_M;
1860
1861                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1862                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1863                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1864                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1865
1866                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1867                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1868                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1869                                    &bar0->pfc_err_mask);
1870
1871                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1872                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1873                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1874
1875                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1876                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1877                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1878                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1879                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1880                                    PCC_TXB_ECC_SG_ERR,
1881                                    flag, &bar0->pcc_err_mask);
1882
1883                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1884                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1885
1886                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1887                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1888                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1889                                    flag, &bar0->lso_err_mask);
1890
1891                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1892                                    flag, &bar0->tpa_err_mask);
1893
1894                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1895         }
1896
1897         if (mask & TX_MAC_INTR) {
1898                 gen_int_mask |= TXMAC_INT_M;
1899                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1900                                    &bar0->mac_int_mask);
1901                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1902                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1903                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1904                                    flag, &bar0->mac_tmac_err_mask);
1905         }
1906
1907         if (mask & TX_XGXS_INTR) {
1908                 gen_int_mask |= TXXGXS_INT_M;
1909                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1910                                    &bar0->xgxs_int_mask);
1911                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1912                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1913                                    flag, &bar0->xgxs_txgxs_err_mask);
1914         }
1915
1916         if (mask & RX_DMA_INTR) {
1917                 gen_int_mask |= RXDMA_INT_M;
1918                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1919                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1920                                    flag, &bar0->rxdma_int_mask);
1921                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1922                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1923                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1924                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1925                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1926                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1927                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1928                                    &bar0->prc_pcix_err_mask);
1929                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1930                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1931                                    &bar0->rpa_err_mask);
1932                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1933                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1934                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1935                                    RDA_FRM_ECC_SG_ERR |
1936                                    RDA_MISC_ERR|RDA_PCIX_ERR,
1937                                    flag, &bar0->rda_err_mask);
1938                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1939                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1940                                    flag, &bar0->rti_err_mask);
1941         }
1942
1943         if (mask & RX_MAC_INTR) {
1944                 gen_int_mask |= RXMAC_INT_M;
1945                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1946                                    &bar0->mac_int_mask);
1947                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1948                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1949                                  RMAC_DOUBLE_ECC_ERR);
1950                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1951                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1952                 do_s2io_write_bits(interruptible,
1953                                    flag, &bar0->mac_rmac_err_mask);
1954         }
1955
1956         if (mask & RX_XGXS_INTR) {
1957                 gen_int_mask |= RXXGXS_INT_M;
1958                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1959                                    &bar0->xgxs_int_mask);
1960                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1961                                    &bar0->xgxs_rxgxs_err_mask);
1962         }
1963
1964         if (mask & MC_INTR) {
1965                 gen_int_mask |= MC_INT_M;
1966                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1967                                    flag, &bar0->mc_int_mask);
1968                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1969                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1970                                    &bar0->mc_err_mask);
1971         }
1972         nic->general_int_mask = gen_int_mask;
1973
1974         /* Remove this line when alarm interrupts are enabled */
1975         nic->general_int_mask = 0;
1976 }
1977
1978 /**
1979  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1980  *  @nic: device private variable,
1981  *  @mask: A mask indicating which Intr block must be modified and,
1982  *  @flag: A flag indicating whether to enable or disable the Intrs.
1983  *  Description: This function will either disable or enable the interrupts
1984  *  depending on the flag argument. The mask argument can be used to
1985  *  enable/disable any Intr block.
1986  *  Return Value: NONE.
1987  */
1988
1989 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1990 {
1991         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1992         register u64 temp64 = 0, intr_mask = 0;
1993
1994         intr_mask = nic->general_int_mask;
1995
1996         /*  Top level interrupt classification */
1997         /*  PIC Interrupts */
1998         if (mask & TX_PIC_INTR) {
1999                 /*  Enable PIC Intrs in the general intr mask register */
2000                 intr_mask |= TXPIC_INT_M;
2001                 if (flag == ENABLE_INTRS) {
2002                         /*
2003                          * If Hercules adapter enable GPIO otherwise
2004                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2005                          * interrupts for now.
2006                          * TODO
2007                          */
2008                         if (s2io_link_fault_indication(nic) ==
2009                             LINK_UP_DOWN_INTERRUPT) {
2010                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2011                                                    &bar0->pic_int_mask);
2012                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2013                                                    &bar0->gpio_int_mask);
2014                         } else
2015                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2016                 } else if (flag == DISABLE_INTRS) {
2017                         /*
2018                          * Disable PIC Intrs in the general
2019                          * intr mask register
2020                          */
2021                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022                 }
2023         }
2024
2025         /*  Tx traffic interrupts */
2026         if (mask & TX_TRAFFIC_INTR) {
2027                 intr_mask |= TXTRAFFIC_INT_M;
2028                 if (flag == ENABLE_INTRS) {
2029                         /*
2030                          * Enable all the Tx side interrupts
2031                          * writing 0 Enables all 64 TX interrupt levels
2032                          */
2033                         writeq(0x0, &bar0->tx_traffic_mask);
2034                 } else if (flag == DISABLE_INTRS) {
2035                         /*
2036                          * Disable Tx Traffic Intrs in the general intr mask
2037                          * register.
2038                          */
2039                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2040                 }
2041         }
2042
2043         /*  Rx traffic interrupts */
2044         if (mask & RX_TRAFFIC_INTR) {
2045                 intr_mask |= RXTRAFFIC_INT_M;
2046                 if (flag == ENABLE_INTRS) {
2047                         /* writing 0 Enables all 8 RX interrupt levels */
2048                         writeq(0x0, &bar0->rx_traffic_mask);
2049                 } else if (flag == DISABLE_INTRS) {
2050                         /*
2051                          * Disable Rx Traffic Intrs in the general intr mask
2052                          * register.
2053                          */
2054                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2055                 }
2056         }
2057
2058         temp64 = readq(&bar0->general_int_mask);
2059         if (flag == ENABLE_INTRS)
2060                 temp64 &= ~((u64)intr_mask);
2061         else
2062                 temp64 = DISABLE_ALL_INTRS;
2063         writeq(temp64, &bar0->general_int_mask);
2064
2065         nic->general_int_mask = readq(&bar0->general_int_mask);
2066 }
2067
2068 /**
2069  *  verify_pcc_quiescent- Checks for PCC quiescent state
2070  *  @sp : private member of the device structure, which is a pointer to the
2071  *  s2io_nic structure.
2072  *  @flag: boolean controlling function path
2073  *  Return: 1 If PCC is quiescence
2074  *          0 If PCC is not quiescence
2075  */
2076 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2077 {
2078         int ret = 0, herc;
2079         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2080         u64 val64 = readq(&bar0->adapter_status);
2081
2082         herc = (sp->device_type == XFRAME_II_DEVICE);
2083
2084         if (flag == false) {
2085                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2086                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2087                                 ret = 1;
2088                 } else {
2089                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2090                                 ret = 1;
2091                 }
2092         } else {
2093                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2094                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2095                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2096                                 ret = 1;
2097                 } else {
2098                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2099                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2100                                 ret = 1;
2101                 }
2102         }
2103
2104         return ret;
2105 }
2106 /**
2107  *  verify_xena_quiescence - Checks whether the H/W is ready
2108  *  @sp : private member of the device structure, which is a pointer to the
2109  *  s2io_nic structure.
2110  *  Description: Returns whether the H/W is ready to go or not. Depending
2111  *  on whether adapter enable bit was written or not the comparison
2112  *  differs and the calling function passes the input argument flag to
2113  *  indicate this.
2114  *  Return: 1 If xena is quiescence
2115  *          0 If Xena is not quiescence
2116  */
2117
2118 static int verify_xena_quiescence(struct s2io_nic *sp)
2119 {
2120         int  mode;
2121         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2122         u64 val64 = readq(&bar0->adapter_status);
2123         mode = s2io_verify_pci_mode(sp);
2124
2125         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2126                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2127                 return 0;
2128         }
2129         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2130                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2131                 return 0;
2132         }
2133         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2134                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2135                 return 0;
2136         }
2137         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2138                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2139                 return 0;
2140         }
2141         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2142                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2143                 return 0;
2144         }
2145         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2146                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2147                 return 0;
2148         }
2149         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2150                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2151                 return 0;
2152         }
2153         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2154                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2155                 return 0;
2156         }
2157
2158         /*
2159          * In PCI 33 mode, the P_PLL is not used, and therefore,
2160          * the P_PLL_LOCK bit in the adapter_status register will
2161          * not be asserted.
2162          */
2163         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2164             sp->device_type == XFRAME_II_DEVICE &&
2165             mode != PCI_MODE_PCI_33) {
2166                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2167                 return 0;
2168         }
2169         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2170               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2171                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2172                 return 0;
2173         }
2174         return 1;
2175 }
2176
2177 /**
2178  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2179  * @sp: Pointer to device specifc structure
2180  * Description :
2181  * New procedure to clear mac address reading  problems on Alpha platforms
2182  *
2183  */
2184
2185 static void fix_mac_address(struct s2io_nic *sp)
2186 {
2187         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2188         int i = 0;
2189
2190         while (fix_mac[i] != END_SIGN) {
2191                 writeq(fix_mac[i++], &bar0->gpio_control);
2192                 udelay(10);
2193                 (void) readq(&bar0->gpio_control);
2194         }
2195 }
2196
2197 /**
2198  *  start_nic - Turns the device on
2199  *  @nic : device private variable.
2200  *  Description:
2201  *  This function actually turns the device on. Before this  function is
2202  *  called,all Registers are configured from their reset states
2203  *  and shared memory is allocated but the NIC is still quiescent. On
2204  *  calling this function, the device interrupts are cleared and the NIC is
2205  *  literally switched on by writing into the adapter control register.
2206  *  Return Value:
2207  *  SUCCESS on success and -1 on failure.
2208  */
2209
2210 static int start_nic(struct s2io_nic *nic)
2211 {
2212         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2213         struct net_device *dev = nic->dev;
2214         register u64 val64 = 0;
2215         u16 subid, i;
2216         struct config_param *config = &nic->config;
2217         struct mac_info *mac_control = &nic->mac_control;
2218
2219         /*  PRC Initialization and configuration */
2220         for (i = 0; i < config->rx_ring_num; i++) {
2221                 struct ring_info *ring = &mac_control->rings[i];
2222
2223                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2224                        &bar0->prc_rxd0_n[i]);
2225
2226                 val64 = readq(&bar0->prc_ctrl_n[i]);
2227                 if (nic->rxd_mode == RXD_MODE_1)
2228                         val64 |= PRC_CTRL_RC_ENABLED;
2229                 else
2230                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2231                 if (nic->device_type == XFRAME_II_DEVICE)
2232                         val64 |= PRC_CTRL_GROUP_READS;
2233                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2234                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2235                 writeq(val64, &bar0->prc_ctrl_n[i]);
2236         }
2237
2238         if (nic->rxd_mode == RXD_MODE_3B) {
2239                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2240                 val64 = readq(&bar0->rx_pa_cfg);
2241                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2242                 writeq(val64, &bar0->rx_pa_cfg);
2243         }
2244
2245         if (vlan_tag_strip == 0) {
2246                 val64 = readq(&bar0->rx_pa_cfg);
2247                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2248                 writeq(val64, &bar0->rx_pa_cfg);
2249                 nic->vlan_strip_flag = 0;
2250         }
2251
2252         /*
2253          * Enabling MC-RLDRAM. After enabling the device, we timeout
2254          * for around 100ms, which is approximately the time required
2255          * for the device to be ready for operation.
2256          */
2257         val64 = readq(&bar0->mc_rldram_mrs);
2258         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2259         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2260         val64 = readq(&bar0->mc_rldram_mrs);
2261
2262         msleep(100);    /* Delay by around 100 ms. */
2263
2264         /* Enabling ECC Protection. */
2265         val64 = readq(&bar0->adapter_control);
2266         val64 &= ~ADAPTER_ECC_EN;
2267         writeq(val64, &bar0->adapter_control);
2268
2269         /*
2270          * Verify if the device is ready to be enabled, if so enable
2271          * it.
2272          */
2273         val64 = readq(&bar0->adapter_status);
2274         if (!verify_xena_quiescence(nic)) {
2275                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2276                           "Adapter status reads: 0x%llx\n",
2277                           dev->name, (unsigned long long)val64);
2278                 return FAILURE;
2279         }
2280
2281         /*
2282          * With some switches, link might be already up at this point.
2283          * Because of this weird behavior, when we enable laser,
2284          * we may not get link. We need to handle this. We cannot
2285          * figure out which switch is misbehaving. So we are forced to
2286          * make a global change.
2287          */
2288
2289         /* Enabling Laser. */
2290         val64 = readq(&bar0->adapter_control);
2291         val64 |= ADAPTER_EOI_TX_ON;
2292         writeq(val64, &bar0->adapter_control);
2293
2294         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2295                 /*
2296                  * Dont see link state interrupts initially on some switches,
2297                  * so directly scheduling the link state task here.
2298                  */
2299                 schedule_work(&nic->set_link_task);
2300         }
2301         /* SXE-002: Initialize link and activity LED */
2302         subid = nic->pdev->subsystem_device;
2303         if (((subid & 0xFF) >= 0x07) &&
2304             (nic->device_type == XFRAME_I_DEVICE)) {
2305                 val64 = readq(&bar0->gpio_control);
2306                 val64 |= 0x0000800000000000ULL;
2307                 writeq(val64, &bar0->gpio_control);
2308                 val64 = 0x0411040400000000ULL;
2309                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2310         }
2311
2312         return SUCCESS;
2313 }
2314 /**
2315  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2316  * @fifo_data: fifo data pointer
2317  * @txdlp: descriptor
2318  * @get_off: unused
2319  */
2320 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2321                                         struct TxD *txdlp, int get_off)
2322 {
2323         struct s2io_nic *nic = fifo_data->nic;
2324         struct sk_buff *skb;
2325         struct TxD *txds;
2326         u16 j, frg_cnt;
2327
2328         txds = txdlp;
2329         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2330                 dma_unmap_single(&nic->pdev->dev,
2331                                  (dma_addr_t)txds->Buffer_Pointer,
2332                                  sizeof(u64), DMA_TO_DEVICE);
2333                 txds++;
2334         }
2335
2336         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2337         if (!skb) {
2338                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2339                 return NULL;
2340         }
2341         dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer,
2342                          skb_headlen(skb), DMA_TO_DEVICE);
2343         frg_cnt = skb_shinfo(skb)->nr_frags;
2344         if (frg_cnt) {
2345                 txds++;
2346                 for (j = 0; j < frg_cnt; j++, txds++) {
2347                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2348                         if (!txds->Buffer_Pointer)
2349                                 break;
2350                         dma_unmap_page(&nic->pdev->dev,
2351                                        (dma_addr_t)txds->Buffer_Pointer,
2352                                        skb_frag_size(frag), DMA_TO_DEVICE);
2353                 }
2354         }
2355         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2356         return skb;
2357 }
2358
2359 /**
2360  *  free_tx_buffers - Free all queued Tx buffers
2361  *  @nic : device private variable.
2362  *  Description:
2363  *  Free all queued Tx buffers.
2364  *  Return Value: void
2365  */
2366
2367 static void free_tx_buffers(struct s2io_nic *nic)
2368 {
2369         struct net_device *dev = nic->dev;
2370         struct sk_buff *skb;
2371         struct TxD *txdp;
2372         int i, j;
2373         int cnt = 0;
2374         struct config_param *config = &nic->config;
2375         struct mac_info *mac_control = &nic->mac_control;
2376         struct stat_block *stats = mac_control->stats_info;
2377         struct swStat *swstats = &stats->sw_stat;
2378
2379         for (i = 0; i < config->tx_fifo_num; i++) {
2380                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2381                 struct fifo_info *fifo = &mac_control->fifos[i];
2382                 unsigned long flags;
2383
2384                 spin_lock_irqsave(&fifo->tx_lock, flags);
2385                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2386                         txdp = fifo->list_info[j].list_virt_addr;
2387                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2388                         if (skb) {
2389                                 swstats->mem_freed += skb->truesize;
2390                                 dev_kfree_skb_irq(skb);
2391                                 cnt++;
2392                         }
2393                 }
2394                 DBG_PRINT(INTR_DBG,
2395                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2396                           dev->name, cnt, i);
2397                 fifo->tx_curr_get_info.offset = 0;
2398                 fifo->tx_curr_put_info.offset = 0;
2399                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2400         }
2401 }
2402
2403 /**
2404  *   stop_nic -  To stop the nic
2405  *   @nic : device private variable.
2406  *   Description:
2407  *   This function does exactly the opposite of what the start_nic()
2408  *   function does. This function is called to stop the device.
2409  *   Return Value:
2410  *   void.
2411  */
2412
2413 static void stop_nic(struct s2io_nic *nic)
2414 {
2415         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2416         register u64 val64 = 0;
2417         u16 interruptible;
2418
2419         /*  Disable all interrupts */
2420         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2421         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2422         interruptible |= TX_PIC_INTR;
2423         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2424
2425         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2426         val64 = readq(&bar0->adapter_control);
2427         val64 &= ~(ADAPTER_CNTL_EN);
2428         writeq(val64, &bar0->adapter_control);
2429 }
2430
2431 /**
2432  *  fill_rx_buffers - Allocates the Rx side skbs
2433  *  @nic : device private variable.
2434  *  @ring: per ring structure
2435  *  @from_card_up: If this is true, we will map the buffer to get
2436  *     the dma address for buf0 and buf1 to give it to the card.
2437  *     Else we will sync the already mapped buffer to give it to the card.
2438  *  Description:
2439  *  The function allocates Rx side skbs and puts the physical
2440  *  address of these buffers into the RxD buffer pointers, so that the NIC
2441  *  can DMA the received frame into these locations.
2442  *  The NIC supports 3 receive modes, viz
2443  *  1. single buffer,
2444  *  2. three buffer and
2445  *  3. Five buffer modes.
2446  *  Each mode defines how many fragments the received frame will be split
2447  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2448  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2449  *  is split into 3 fragments. As of now only single buffer mode is
2450  *  supported.
2451  *   Return Value:
2452  *  SUCCESS on success or an appropriate -ve value on failure.
2453  */
2454 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2455                            int from_card_up)
2456 {
2457         struct sk_buff *skb;
2458         struct RxD_t *rxdp;
2459         int off, size, block_no, block_no1;
2460         u32 alloc_tab = 0;
2461         u32 alloc_cnt;
2462         u64 tmp;
2463         struct buffAdd *ba;
2464         struct RxD_t *first_rxdp = NULL;
2465         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2466         struct RxD1 *rxdp1;
2467         struct RxD3 *rxdp3;
2468         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2469
2470         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2471
2472         block_no1 = ring->rx_curr_get_info.block_index;
2473         while (alloc_tab < alloc_cnt) {
2474                 block_no = ring->rx_curr_put_info.block_index;
2475
2476                 off = ring->rx_curr_put_info.offset;
2477
2478                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2479
2480                 if ((block_no == block_no1) &&
2481                     (off == ring->rx_curr_get_info.offset) &&
2482                     (rxdp->Host_Control)) {
2483                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2484                                   ring->dev->name);
2485                         goto end;
2486                 }
2487                 if (off && (off == ring->rxd_count)) {
2488                         ring->rx_curr_put_info.block_index++;
2489                         if (ring->rx_curr_put_info.block_index ==
2490                             ring->block_count)
2491                                 ring->rx_curr_put_info.block_index = 0;
2492                         block_no = ring->rx_curr_put_info.block_index;
2493                         off = 0;
2494                         ring->rx_curr_put_info.offset = off;
2495                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2496                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2497                                   ring->dev->name, rxdp);
2498
2499                 }
2500
2501                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2502                     ((ring->rxd_mode == RXD_MODE_3B) &&
2503                      (rxdp->Control_2 & s2BIT(0)))) {
2504                         ring->rx_curr_put_info.offset = off;
2505                         goto end;
2506                 }
2507                 /* calculate size of skb based on ring mode */
2508                 size = ring->mtu +
2509                         HEADER_ETHERNET_II_802_3_SIZE +
2510                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2511                 if (ring->rxd_mode == RXD_MODE_1)
2512                         size += NET_IP_ALIGN;
2513                 else
2514                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2515
2516                 /* allocate skb */
2517                 skb = netdev_alloc_skb(nic->dev, size);
2518                 if (!skb) {
2519                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2520                                   ring->dev->name);
2521                         if (first_rxdp) {
2522                                 dma_wmb();
2523                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2524                         }
2525                         swstats->mem_alloc_fail_cnt++;
2526
2527                         return -ENOMEM ;
2528                 }
2529                 swstats->mem_allocated += skb->truesize;
2530
2531                 if (ring->rxd_mode == RXD_MODE_1) {
2532                         /* 1 buffer mode - normal operation mode */
2533                         rxdp1 = (struct RxD1 *)rxdp;
2534                         memset(rxdp, 0, sizeof(struct RxD1));
2535                         skb_reserve(skb, NET_IP_ALIGN);
2536                         rxdp1->Buffer0_ptr =
2537                                 dma_map_single(&ring->pdev->dev, skb->data,
2538                                                size - NET_IP_ALIGN,
2539                                                DMA_FROM_DEVICE);
2540                         if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr))
2541                                 goto pci_map_failed;
2542
2543                         rxdp->Control_2 =
2544                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2545                         rxdp->Host_Control = (unsigned long)skb;
2546                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2547                         /*
2548                          * 2 buffer mode -
2549                          * 2 buffer mode provides 128
2550                          * byte aligned receive buffers.
2551                          */
2552
2553                         rxdp3 = (struct RxD3 *)rxdp;
2554                         /* save buffer pointers to avoid frequent dma mapping */
2555                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2556                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2557                         memset(rxdp, 0, sizeof(struct RxD3));
2558                         /* restore the buffer pointers for dma sync*/
2559                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2560                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2561
2562                         ba = &ring->ba[block_no][off];
2563                         skb_reserve(skb, BUF0_LEN);
2564                         tmp = (u64)(unsigned long)skb->data;
2565                         tmp += ALIGN_SIZE;
2566                         tmp &= ~ALIGN_SIZE;
2567                         skb->data = (void *) (unsigned long)tmp;
2568                         skb_reset_tail_pointer(skb);
2569
2570                         if (from_card_up) {
2571                                 rxdp3->Buffer0_ptr =
2572                                         dma_map_single(&ring->pdev->dev,
2573                                                        ba->ba_0, BUF0_LEN,
2574                                                        DMA_FROM_DEVICE);
2575                                 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr))
2576                                         goto pci_map_failed;
2577                         } else
2578                                 dma_sync_single_for_device(&ring->pdev->dev,
2579                                                            (dma_addr_t)rxdp3->Buffer0_ptr,
2580                                                            BUF0_LEN,
2581                                                            DMA_FROM_DEVICE);
2582
2583                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2584                         if (ring->rxd_mode == RXD_MODE_3B) {
2585                                 /* Two buffer mode */
2586
2587                                 /*
2588                                  * Buffer2 will have L3/L4 header plus
2589                                  * L4 payload
2590                                  */
2591                                 rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev,
2592                                                                     skb->data,
2593                                                                     ring->mtu + 4,
2594                                                                     DMA_FROM_DEVICE);
2595
2596                                 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr))
2597                                         goto pci_map_failed;
2598
2599                                 if (from_card_up) {
2600                                         rxdp3->Buffer1_ptr =
2601                                                 dma_map_single(&ring->pdev->dev,
2602                                                                ba->ba_1,
2603                                                                BUF1_LEN,
2604                                                                DMA_FROM_DEVICE);
2605
2606                                         if (dma_mapping_error(&nic->pdev->dev,
2607                                                               rxdp3->Buffer1_ptr)) {
2608                                                 dma_unmap_single(&ring->pdev->dev,
2609                                                                  (dma_addr_t)(unsigned long)
2610                                                                  skb->data,
2611                                                                  ring->mtu + 4,
2612                                                                  DMA_FROM_DEVICE);
2613                                                 goto pci_map_failed;
2614                                         }
2615                                 }
2616                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2617                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2618                                         (ring->mtu + 4);
2619                         }
2620                         rxdp->Control_2 |= s2BIT(0);
2621                         rxdp->Host_Control = (unsigned long) (skb);
2622                 }
2623                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2624                         rxdp->Control_1 |= RXD_OWN_XENA;
2625                 off++;
2626                 if (off == (ring->rxd_count + 1))
2627                         off = 0;
2628                 ring->rx_curr_put_info.offset = off;
2629
2630                 rxdp->Control_2 |= SET_RXD_MARKER;
2631                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2632                         if (first_rxdp) {
2633                                 dma_wmb();
2634                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2635                         }
2636                         first_rxdp = rxdp;
2637                 }
2638                 ring->rx_bufs_left += 1;
2639                 alloc_tab++;
2640         }
2641
2642 end:
2643         /* Transfer ownership of first descriptor to adapter just before
2644          * exiting. Before that, use memory barrier so that ownership
2645          * and other fields are seen by adapter correctly.
2646          */
2647         if (first_rxdp) {
2648                 dma_wmb();
2649                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2650         }
2651
2652         return SUCCESS;
2653
2654 pci_map_failed:
2655         swstats->pci_map_fail_cnt++;
2656         swstats->mem_freed += skb->truesize;
2657         dev_kfree_skb_irq(skb);
2658         return -ENOMEM;
2659 }
2660
2661 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2662 {
2663         struct net_device *dev = sp->dev;
2664         int j;
2665         struct sk_buff *skb;
2666         struct RxD_t *rxdp;
2667         struct RxD1 *rxdp1;
2668         struct RxD3 *rxdp3;
2669         struct mac_info *mac_control = &sp->mac_control;
2670         struct stat_block *stats = mac_control->stats_info;
2671         struct swStat *swstats = &stats->sw_stat;
2672
2673         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2674                 rxdp = mac_control->rings[ring_no].
2675                         rx_blocks[blk].rxds[j].virt_addr;
2676                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2677                 if (!skb)
2678                         continue;
2679                 if (sp->rxd_mode == RXD_MODE_1) {
2680                         rxdp1 = (struct RxD1 *)rxdp;
2681                         dma_unmap_single(&sp->pdev->dev,
2682                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2683                                          dev->mtu +
2684                                          HEADER_ETHERNET_II_802_3_SIZE +
2685                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2686                                          DMA_FROM_DEVICE);
2687                         memset(rxdp, 0, sizeof(struct RxD1));
2688                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2689                         rxdp3 = (struct RxD3 *)rxdp;
2690                         dma_unmap_single(&sp->pdev->dev,
2691                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2692                                          BUF0_LEN, DMA_FROM_DEVICE);
2693                         dma_unmap_single(&sp->pdev->dev,
2694                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2695                                          BUF1_LEN, DMA_FROM_DEVICE);
2696                         dma_unmap_single(&sp->pdev->dev,
2697                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2698                                          dev->mtu + 4, DMA_FROM_DEVICE);
2699                         memset(rxdp, 0, sizeof(struct RxD3));
2700                 }
2701                 swstats->mem_freed += skb->truesize;
2702                 dev_kfree_skb(skb);
2703                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2704         }
2705 }
2706
2707 /**
2708  *  free_rx_buffers - Frees all Rx buffers
2709  *  @sp: device private variable.
2710  *  Description:
2711  *  This function will free all Rx buffers allocated by host.
2712  *  Return Value:
2713  *  NONE.
2714  */
2715
2716 static void free_rx_buffers(struct s2io_nic *sp)
2717 {
2718         struct net_device *dev = sp->dev;
2719         int i, blk = 0, buf_cnt = 0;
2720         struct config_param *config = &sp->config;
2721         struct mac_info *mac_control = &sp->mac_control;
2722
2723         for (i = 0; i < config->rx_ring_num; i++) {
2724                 struct ring_info *ring = &mac_control->rings[i];
2725
2726                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2727                         free_rxd_blk(sp, i, blk);
2728
2729                 ring->rx_curr_put_info.block_index = 0;
2730                 ring->rx_curr_get_info.block_index = 0;
2731                 ring->rx_curr_put_info.offset = 0;
2732                 ring->rx_curr_get_info.offset = 0;
2733                 ring->rx_bufs_left = 0;
2734                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2735                           dev->name, buf_cnt, i);
2736         }
2737 }
2738
2739 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2740 {
2741         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2742                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2743                           ring->dev->name);
2744         }
2745         return 0;
2746 }
2747
2748 /**
2749  * s2io_poll_msix - Rx interrupt handler for NAPI support
2750  * @napi : pointer to the napi structure.
2751  * @budget : The number of packets that were budgeted to be processed
2752  * during  one pass through the 'Poll" function.
2753  * Description:
2754  * Comes into picture only if NAPI support has been incorporated. It does
2755  * the same thing that rx_intr_handler does, but not in a interrupt context
2756  * also It will process only a given number of packets.
2757  * Return value:
2758  * 0 on success and 1 if there are No Rx packets to be processed.
2759  */
2760
2761 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2762 {
2763         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2764         struct net_device *dev = ring->dev;
2765         int pkts_processed = 0;
2766         u8 __iomem *addr = NULL;
2767         u8 val8 = 0;
2768         struct s2io_nic *nic = netdev_priv(dev);
2769         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2770         int budget_org = budget;
2771
2772         if (unlikely(!is_s2io_card_up(nic)))
2773                 return 0;
2774
2775         pkts_processed = rx_intr_handler(ring, budget);
2776         s2io_chk_rx_buffers(nic, ring);
2777
2778         if (pkts_processed < budget_org) {
2779                 napi_complete_done(napi, pkts_processed);
2780                 /*Re Enable MSI-Rx Vector*/
2781                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2782                 addr += 7 - ring->ring_no;
2783                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2784                 writeb(val8, addr);
2785                 val8 = readb(addr);
2786         }
2787         return pkts_processed;
2788 }
2789
2790 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2791 {
2792         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2793         int pkts_processed = 0;
2794         int ring_pkts_processed, i;
2795         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2796         int budget_org = budget;
2797         struct config_param *config = &nic->config;
2798         struct mac_info *mac_control = &nic->mac_control;
2799
2800         if (unlikely(!is_s2io_card_up(nic)))
2801                 return 0;
2802
2803         for (i = 0; i < config->rx_ring_num; i++) {
2804                 struct ring_info *ring = &mac_control->rings[i];
2805                 ring_pkts_processed = rx_intr_handler(ring, budget);
2806                 s2io_chk_rx_buffers(nic, ring);
2807                 pkts_processed += ring_pkts_processed;
2808                 budget -= ring_pkts_processed;
2809                 if (budget <= 0)
2810                         break;
2811         }
2812         if (pkts_processed < budget_org) {
2813                 napi_complete_done(napi, pkts_processed);
2814                 /* Re enable the Rx interrupts for the ring */
2815                 writeq(0, &bar0->rx_traffic_mask);
2816                 readl(&bar0->rx_traffic_mask);
2817         }
2818         return pkts_processed;
2819 }
2820
2821 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 /**
2823  * s2io_netpoll - netpoll event handler entry point
2824  * @dev : pointer to the device structure.
2825  * Description:
2826  *      This function will be called by upper layer to check for events on the
2827  * interface in situations where interrupts are disabled. It is used for
2828  * specific in-kernel networking tasks, such as remote consoles and kernel
2829  * debugging over the network (example netdump in RedHat).
2830  */
2831 static void s2io_netpoll(struct net_device *dev)
2832 {
2833         struct s2io_nic *nic = netdev_priv(dev);
2834         const int irq = nic->pdev->irq;
2835         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2836         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2837         int i;
2838         struct config_param *config = &nic->config;
2839         struct mac_info *mac_control = &nic->mac_control;
2840
2841         if (pci_channel_offline(nic->pdev))
2842                 return;
2843
2844         disable_irq(irq);
2845
2846         writeq(val64, &bar0->rx_traffic_int);
2847         writeq(val64, &bar0->tx_traffic_int);
2848
2849         /* we need to free up the transmitted skbufs or else netpoll will
2850          * run out of skbs and will fail and eventually netpoll application such
2851          * as netdump will fail.
2852          */
2853         for (i = 0; i < config->tx_fifo_num; i++)
2854                 tx_intr_handler(&mac_control->fifos[i]);
2855
2856         /* check for received packet and indicate up to network */
2857         for (i = 0; i < config->rx_ring_num; i++) {
2858                 struct ring_info *ring = &mac_control->rings[i];
2859
2860                 rx_intr_handler(ring, 0);
2861         }
2862
2863         for (i = 0; i < config->rx_ring_num; i++) {
2864                 struct ring_info *ring = &mac_control->rings[i];
2865
2866                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2867                         DBG_PRINT(INFO_DBG,
2868                                   "%s: Out of memory in Rx Netpoll!!\n",
2869                                   dev->name);
2870                         break;
2871                 }
2872         }
2873         enable_irq(irq);
2874 }
2875 #endif
2876
2877 /**
2878  *  rx_intr_handler - Rx interrupt handler
2879  *  @ring_data: per ring structure.
2880  *  @budget: budget for napi processing.
2881  *  Description:
2882  *  If the interrupt is because of a received frame or if the
2883  *  receive ring contains fresh as yet un-processed frames,this function is
2884  *  called. It picks out the RxD at which place the last Rx processing had
2885  *  stopped and sends the skb to the OSM's Rx handler and then increments
2886  *  the offset.
2887  *  Return Value:
2888  *  No. of napi packets processed.
2889  */
2890 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2891 {
2892         int get_block, put_block;
2893         struct rx_curr_get_info get_info, put_info;
2894         struct RxD_t *rxdp;
2895         struct sk_buff *skb;
2896         int pkt_cnt = 0, napi_pkts = 0;
2897         int i;
2898         struct RxD1 *rxdp1;
2899         struct RxD3 *rxdp3;
2900
2901         if (budget <= 0)
2902                 return napi_pkts;
2903
2904         get_info = ring_data->rx_curr_get_info;
2905         get_block = get_info.block_index;
2906         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2907         put_block = put_info.block_index;
2908         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2909
2910         while (RXD_IS_UP2DT(rxdp)) {
2911                 /*
2912                  * If your are next to put index then it's
2913                  * FIFO full condition
2914                  */
2915                 if ((get_block == put_block) &&
2916                     (get_info.offset + 1) == put_info.offset) {
2917                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2918                                   ring_data->dev->name);
2919                         break;
2920                 }
2921                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2922                 if (skb == NULL) {
2923                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2924                                   ring_data->dev->name);
2925                         return 0;
2926                 }
2927                 if (ring_data->rxd_mode == RXD_MODE_1) {
2928                         rxdp1 = (struct RxD1 *)rxdp;
2929                         dma_unmap_single(&ring_data->pdev->dev,
2930                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2931                                          ring_data->mtu +
2932                                          HEADER_ETHERNET_II_802_3_SIZE +
2933                                          HEADER_802_2_SIZE +
2934                                          HEADER_SNAP_SIZE,
2935                                          DMA_FROM_DEVICE);
2936                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2937                         rxdp3 = (struct RxD3 *)rxdp;
2938                         dma_sync_single_for_cpu(&ring_data->pdev->dev,
2939                                                 (dma_addr_t)rxdp3->Buffer0_ptr,
2940                                                 BUF0_LEN, DMA_FROM_DEVICE);
2941                         dma_unmap_single(&ring_data->pdev->dev,
2942                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2943                                          ring_data->mtu + 4, DMA_FROM_DEVICE);
2944                 }
2945                 prefetch(skb->data);
2946                 rx_osm_handler(ring_data, rxdp);
2947                 get_info.offset++;
2948                 ring_data->rx_curr_get_info.offset = get_info.offset;
2949                 rxdp = ring_data->rx_blocks[get_block].
2950                         rxds[get_info.offset].virt_addr;
2951                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2952                         get_info.offset = 0;
2953                         ring_data->rx_curr_get_info.offset = get_info.offset;
2954                         get_block++;
2955                         if (get_block == ring_data->block_count)
2956                                 get_block = 0;
2957                         ring_data->rx_curr_get_info.block_index = get_block;
2958                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2959                 }
2960
2961                 if (ring_data->nic->config.napi) {
2962                         budget--;
2963                         napi_pkts++;
2964                         if (!budget)
2965                                 break;
2966                 }
2967                 pkt_cnt++;
2968                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2969                         break;
2970         }
2971         if (ring_data->lro) {
2972                 /* Clear all LRO sessions before exiting */
2973                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2974                         struct lro *lro = &ring_data->lro0_n[i];
2975                         if (lro->in_use) {
2976                                 update_L3L4_header(ring_data->nic, lro);
2977                                 queue_rx_frame(lro->parent, lro->vlan_tag);
2978                                 clear_lro_session(lro);
2979                         }
2980                 }
2981         }
2982         return napi_pkts;
2983 }
2984
2985 /**
2986  *  tx_intr_handler - Transmit interrupt handler
2987  *  @fifo_data : fifo data pointer
2988  *  Description:
2989  *  If an interrupt was raised to indicate DMA complete of the
2990  *  Tx packet, this function is called. It identifies the last TxD
2991  *  whose buffer was freed and frees all skbs whose data have already
2992  *  DMA'ed into the NICs internal memory.
2993  *  Return Value:
2994  *  NONE
2995  */
2996
2997 static void tx_intr_handler(struct fifo_info *fifo_data)
2998 {
2999         struct s2io_nic *nic = fifo_data->nic;
3000         struct tx_curr_get_info get_info, put_info;
3001         struct sk_buff *skb = NULL;
3002         struct TxD *txdlp;
3003         int pkt_cnt = 0;
3004         unsigned long flags = 0;
3005         u8 err_mask;
3006         struct stat_block *stats = nic->mac_control.stats_info;
3007         struct swStat *swstats = &stats->sw_stat;
3008
3009         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3010                 return;
3011
3012         get_info = fifo_data->tx_curr_get_info;
3013         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3014         txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3015         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3016                (get_info.offset != put_info.offset) &&
3017                (txdlp->Host_Control)) {
3018                 /* Check for TxD errors */
3019                 if (txdlp->Control_1 & TXD_T_CODE) {
3020                         unsigned long long err;
3021                         err = txdlp->Control_1 & TXD_T_CODE;
3022                         if (err & 0x1) {
3023                                 swstats->parity_err_cnt++;
3024                         }
3025
3026                         /* update t_code statistics */
3027                         err_mask = err >> 48;
3028                         switch (err_mask) {
3029                         case 2:
3030                                 swstats->tx_buf_abort_cnt++;
3031                                 break;
3032
3033                         case 3:
3034                                 swstats->tx_desc_abort_cnt++;
3035                                 break;
3036
3037                         case 7:
3038                                 swstats->tx_parity_err_cnt++;
3039                                 break;
3040
3041                         case 10:
3042                                 swstats->tx_link_loss_cnt++;
3043                                 break;
3044
3045                         case 15:
3046                                 swstats->tx_list_proc_err_cnt++;
3047                                 break;
3048                         }
3049                 }
3050
3051                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3052                 if (skb == NULL) {
3053                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3054                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3055                                   __func__);
3056                         return;
3057                 }
3058                 pkt_cnt++;
3059
3060                 /* Updating the statistics block */
3061                 swstats->mem_freed += skb->truesize;
3062                 dev_consume_skb_irq(skb);
3063
3064                 get_info.offset++;
3065                 if (get_info.offset == get_info.fifo_len + 1)
3066                         get_info.offset = 0;
3067                 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3068                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3069         }
3070
3071         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3072
3073         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3074 }
3075
3076 /**
3077  *  s2io_mdio_write - Function to write in to MDIO registers
3078  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3079  *  @addr     : address value
3080  *  @value    : data value
3081  *  @dev      : pointer to net_device structure
3082  *  Description:
3083  *  This function is used to write values to the MDIO registers
3084  *  NONE
3085  */
3086 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3087                             struct net_device *dev)
3088 {
3089         u64 val64;
3090         struct s2io_nic *sp = netdev_priv(dev);
3091         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3092
3093         /* address transaction */
3094         val64 = MDIO_MMD_INDX_ADDR(addr) |
3095                 MDIO_MMD_DEV_ADDR(mmd_type) |
3096                 MDIO_MMS_PRT_ADDR(0x0);
3097         writeq(val64, &bar0->mdio_control);
3098         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3099         writeq(val64, &bar0->mdio_control);
3100         udelay(100);
3101
3102         /* Data transaction */
3103         val64 = MDIO_MMD_INDX_ADDR(addr) |
3104                 MDIO_MMD_DEV_ADDR(mmd_type) |
3105                 MDIO_MMS_PRT_ADDR(0x0) |
3106                 MDIO_MDIO_DATA(value) |
3107                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3108         writeq(val64, &bar0->mdio_control);
3109         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3110         writeq(val64, &bar0->mdio_control);
3111         udelay(100);
3112
3113         val64 = MDIO_MMD_INDX_ADDR(addr) |
3114                 MDIO_MMD_DEV_ADDR(mmd_type) |
3115                 MDIO_MMS_PRT_ADDR(0x0) |
3116                 MDIO_OP(MDIO_OP_READ_TRANS);
3117         writeq(val64, &bar0->mdio_control);
3118         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119         writeq(val64, &bar0->mdio_control);
3120         udelay(100);
3121 }
3122
3123 /**
3124  *  s2io_mdio_read - Function to write in to MDIO registers
3125  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3126  *  @addr     : address value
3127  *  @dev      : pointer to net_device structure
3128  *  Description:
3129  *  This function is used to read values to the MDIO registers
3130  *  NONE
3131  */
3132 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3133 {
3134         u64 val64 = 0x0;
3135         u64 rval64 = 0x0;
3136         struct s2io_nic *sp = netdev_priv(dev);
3137         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3138
3139         /* address transaction */
3140         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3141                          | MDIO_MMD_DEV_ADDR(mmd_type)
3142                          | MDIO_MMS_PRT_ADDR(0x0));
3143         writeq(val64, &bar0->mdio_control);
3144         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3145         writeq(val64, &bar0->mdio_control);
3146         udelay(100);
3147
3148         /* Data transaction */
3149         val64 = MDIO_MMD_INDX_ADDR(addr) |
3150                 MDIO_MMD_DEV_ADDR(mmd_type) |
3151                 MDIO_MMS_PRT_ADDR(0x0) |
3152                 MDIO_OP(MDIO_OP_READ_TRANS);
3153         writeq(val64, &bar0->mdio_control);
3154         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3155         writeq(val64, &bar0->mdio_control);
3156         udelay(100);
3157
3158         /* Read the value from regs */
3159         rval64 = readq(&bar0->mdio_control);
3160         rval64 = rval64 & 0xFFFF0000;
3161         rval64 = rval64 >> 16;
3162         return rval64;
3163 }
3164
3165 /**
3166  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3167  *  @counter      : counter value to be updated
3168  *  @regs_stat    : registers status
3169  *  @index        : index
3170  *  @flag         : flag to indicate the status
3171  *  @type         : counter type
3172  *  Description:
3173  *  This function is to check the status of the xpak counters value
3174  *  NONE
3175  */
3176
3177 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3178                                   u16 flag, u16 type)
3179 {
3180         u64 mask = 0x3;
3181         u64 val64;
3182         int i;
3183         for (i = 0; i < index; i++)
3184                 mask = mask << 0x2;
3185
3186         if (flag > 0) {
3187                 *counter = *counter + 1;
3188                 val64 = *regs_stat & mask;
3189                 val64 = val64 >> (index * 0x2);
3190                 val64 = val64 + 1;
3191                 if (val64 == 3) {
3192                         switch (type) {
3193                         case 1:
3194                                 DBG_PRINT(ERR_DBG,
3195                                           "Take Xframe NIC out of service.\n");
3196                                 DBG_PRINT(ERR_DBG,
3197 "Excessive temperatures may result in premature transceiver failure.\n");
3198                                 break;
3199                         case 2:
3200                                 DBG_PRINT(ERR_DBG,
3201                                           "Take Xframe NIC out of service.\n");
3202                                 DBG_PRINT(ERR_DBG,
3203 "Excessive bias currents may indicate imminent laser diode failure.\n");
3204                                 break;
3205                         case 3:
3206                                 DBG_PRINT(ERR_DBG,
3207                                           "Take Xframe NIC out of service.\n");
3208                                 DBG_PRINT(ERR_DBG,
3209 "Excessive laser output power may saturate far-end receiver.\n");
3210                                 break;
3211                         default:
3212                                 DBG_PRINT(ERR_DBG,
3213                                           "Incorrect XPAK Alarm type\n");
3214                         }
3215                         val64 = 0x0;
3216                 }
3217                 val64 = val64 << (index * 0x2);
3218                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3219
3220         } else {
3221                 *regs_stat = *regs_stat & (~mask);
3222         }
3223 }
3224
3225 /**
3226  *  s2io_updt_xpak_counter - Function to update the xpak counters
3227  *  @dev         : pointer to net_device struct
3228  *  Description:
3229  *  This function is to upate the status of the xpak counters value
3230  *  NONE
3231  */
3232 static void s2io_updt_xpak_counter(struct net_device *dev)
3233 {
3234         u16 flag  = 0x0;
3235         u16 type  = 0x0;
3236         u16 val16 = 0x0;
3237         u64 val64 = 0x0;
3238         u64 addr  = 0x0;
3239
3240         struct s2io_nic *sp = netdev_priv(dev);
3241         struct stat_block *stats = sp->mac_control.stats_info;
3242         struct xpakStat *xstats = &stats->xpak_stat;
3243
3244         /* Check the communication with the MDIO slave */
3245         addr = MDIO_CTRL1;
3246         val64 = 0x0;
3247         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3248         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3249                 DBG_PRINT(ERR_DBG,
3250                           "ERR: MDIO slave access failed - Returned %llx\n",
3251                           (unsigned long long)val64);
3252                 return;
3253         }
3254
3255         /* Check for the expected value of control reg 1 */
3256         if (val64 != MDIO_CTRL1_SPEED10G) {
3257                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3258                           "Returned: %llx- Expected: 0x%x\n",
3259                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3260                 return;
3261         }
3262
3263         /* Loading the DOM register to MDIO register */
3264         addr = 0xA100;
3265         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3266         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3267
3268         /* Reading the Alarm flags */
3269         addr = 0xA070;
3270         val64 = 0x0;
3271         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3272
3273         flag = CHECKBIT(val64, 0x7);
3274         type = 1;
3275         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3276                               &xstats->xpak_regs_stat,
3277                               0x0, flag, type);
3278
3279         if (CHECKBIT(val64, 0x6))
3280                 xstats->alarm_transceiver_temp_low++;
3281
3282         flag = CHECKBIT(val64, 0x3);
3283         type = 2;
3284         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3285                               &xstats->xpak_regs_stat,
3286                               0x2, flag, type);
3287
3288         if (CHECKBIT(val64, 0x2))
3289                 xstats->alarm_laser_bias_current_low++;
3290
3291         flag = CHECKBIT(val64, 0x1);
3292         type = 3;
3293         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3294                               &xstats->xpak_regs_stat,
3295                               0x4, flag, type);
3296
3297         if (CHECKBIT(val64, 0x0))
3298                 xstats->alarm_laser_output_power_low++;
3299
3300         /* Reading the Warning flags */
3301         addr = 0xA074;
3302         val64 = 0x0;
3303         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3304
3305         if (CHECKBIT(val64, 0x7))
3306                 xstats->warn_transceiver_temp_high++;
3307
3308         if (CHECKBIT(val64, 0x6))
3309                 xstats->warn_transceiver_temp_low++;
3310
3311         if (CHECKBIT(val64, 0x3))
3312                 xstats->warn_laser_bias_current_high++;
3313
3314         if (CHECKBIT(val64, 0x2))
3315                 xstats->warn_laser_bias_current_low++;
3316
3317         if (CHECKBIT(val64, 0x1))
3318                 xstats->warn_laser_output_power_high++;
3319
3320         if (CHECKBIT(val64, 0x0))
3321                 xstats->warn_laser_output_power_low++;
3322 }
3323
3324 /**
3325  *  wait_for_cmd_complete - waits for a command to complete.
3326  *  @addr: address
3327  *  @busy_bit: bit to check for busy
3328  *  @bit_state: state to check
3329  *  @may_sleep: parameter indicates if sleeping when waiting for
3330  *  command complete
3331  *  Description: Function that waits for a command to Write into RMAC
3332  *  ADDR DATA registers to be completed and returns either success or
3333  *  error depending on whether the command was complete or not.
3334  *  Return value:
3335  *   SUCCESS on success and FAILURE on failure.
3336  */
3337
3338 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3339                                  int bit_state, bool may_sleep)
3340 {
3341         int ret = FAILURE, cnt = 0, delay = 1;
3342         u64 val64;
3343
3344         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3345                 return FAILURE;
3346
3347         do {
3348                 val64 = readq(addr);
3349                 if (bit_state == S2IO_BIT_RESET) {
3350                         if (!(val64 & busy_bit)) {
3351                                 ret = SUCCESS;
3352                                 break;
3353                         }
3354                 } else {
3355                         if (val64 & busy_bit) {
3356                                 ret = SUCCESS;
3357                                 break;
3358                         }
3359                 }
3360
3361                 if (!may_sleep)
3362                         mdelay(delay);
3363                 else
3364                         msleep(delay);
3365
3366                 if (++cnt >= 10)
3367                         delay = 50;
3368         } while (cnt < 20);
3369         return ret;
3370 }
3371 /**
3372  * check_pci_device_id - Checks if the device id is supported
3373  * @id : device id
3374  * Description: Function to check if the pci device id is supported by driver.
3375  * Return value: Actual device id if supported else PCI_ANY_ID
3376  */
3377 static u16 check_pci_device_id(u16 id)
3378 {
3379         switch (id) {
3380         case PCI_DEVICE_ID_HERC_WIN:
3381         case PCI_DEVICE_ID_HERC_UNI:
3382                 return XFRAME_II_DEVICE;
3383         case PCI_DEVICE_ID_S2IO_UNI:
3384         case PCI_DEVICE_ID_S2IO_WIN:
3385                 return XFRAME_I_DEVICE;
3386         default:
3387                 return PCI_ANY_ID;
3388         }
3389 }
3390
3391 /**
3392  *  s2io_reset - Resets the card.
3393  *  @sp : private member of the device structure.
3394  *  Description: Function to Reset the card. This function then also
3395  *  restores the previously saved PCI configuration space registers as
3396  *  the card reset also resets the configuration space.
3397  *  Return value:
3398  *  void.
3399  */
3400
3401 static void s2io_reset(struct s2io_nic *sp)
3402 {
3403         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3404         u64 val64;
3405         u16 subid, pci_cmd;
3406         int i;
3407         u16 val16;
3408         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3409         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3410         struct stat_block *stats;
3411         struct swStat *swstats;
3412
3413         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3414                   __func__, pci_name(sp->pdev));
3415
3416         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3417         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3418
3419         val64 = SW_RESET_ALL;
3420         writeq(val64, &bar0->sw_reset);
3421         if (strstr(sp->product_name, "CX4"))
3422                 msleep(750);
3423         msleep(250);
3424         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3425
3426                 /* Restore the PCI state saved during initialization. */
3427                 pci_restore_state(sp->pdev);
3428                 pci_save_state(sp->pdev);
3429                 pci_read_config_word(sp->pdev, 0x2, &val16);
3430                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3431                         break;
3432                 msleep(200);
3433         }
3434
3435         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3436                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3437
3438         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3439
3440         s2io_init_pci(sp);
3441
3442         /* Set swapper to enable I/O register access */
3443         s2io_set_swapper(sp);
3444
3445         /* restore mac_addr entries */
3446         do_s2io_restore_unicast_mc(sp);
3447
3448         /* Restore the MSIX table entries from local variables */
3449         restore_xmsi_data(sp);
3450
3451         /* Clear certain PCI/PCI-X fields after reset */
3452         if (sp->device_type == XFRAME_II_DEVICE) {
3453                 /* Clear "detected parity error" bit */
3454                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3455
3456                 /* Clearing PCIX Ecc status register */
3457                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3458
3459                 /* Clearing PCI_STATUS error reflected here */
3460                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3461         }
3462
3463         /* Reset device statistics maintained by OS */
3464         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3465
3466         stats = sp->mac_control.stats_info;
3467         swstats = &stats->sw_stat;
3468
3469         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3470         up_cnt = swstats->link_up_cnt;
3471         down_cnt = swstats->link_down_cnt;
3472         up_time = swstats->link_up_time;
3473         down_time = swstats->link_down_time;
3474         reset_cnt = swstats->soft_reset_cnt;
3475         mem_alloc_cnt = swstats->mem_allocated;
3476         mem_free_cnt = swstats->mem_freed;
3477         watchdog_cnt = swstats->watchdog_timer_cnt;
3478
3479         memset(stats, 0, sizeof(struct stat_block));
3480
3481         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3482         swstats->link_up_cnt = up_cnt;
3483         swstats->link_down_cnt = down_cnt;
3484         swstats->link_up_time = up_time;
3485         swstats->link_down_time = down_time;
3486         swstats->soft_reset_cnt = reset_cnt;
3487         swstats->mem_allocated = mem_alloc_cnt;
3488         swstats->mem_freed = mem_free_cnt;
3489         swstats->watchdog_timer_cnt = watchdog_cnt;
3490
3491         /* SXE-002: Configure link and activity LED to turn it off */
3492         subid = sp->pdev->subsystem_device;
3493         if (((subid & 0xFF) >= 0x07) &&
3494             (sp->device_type == XFRAME_I_DEVICE)) {
3495                 val64 = readq(&bar0->gpio_control);
3496                 val64 |= 0x0000800000000000ULL;
3497                 writeq(val64, &bar0->gpio_control);
3498                 val64 = 0x0411040400000000ULL;
3499                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3500         }
3501
3502         /*
3503          * Clear spurious ECC interrupts that would have occurred on
3504          * XFRAME II cards after reset.
3505          */
3506         if (sp->device_type == XFRAME_II_DEVICE) {
3507                 val64 = readq(&bar0->pcc_err_reg);
3508                 writeq(val64, &bar0->pcc_err_reg);
3509         }
3510
3511         sp->device_enabled_once = false;
3512 }
3513
3514 /**
3515  *  s2io_set_swapper - to set the swapper controle on the card
3516  *  @sp : private member of the device structure,
3517  *  pointer to the s2io_nic structure.
3518  *  Description: Function to set the swapper control on the card
3519  *  correctly depending on the 'endianness' of the system.
3520  *  Return value:
3521  *  SUCCESS on success and FAILURE on failure.
3522  */
3523
3524 static int s2io_set_swapper(struct s2io_nic *sp)
3525 {
3526         struct net_device *dev = sp->dev;
3527         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3528         u64 val64, valt, valr;
3529
3530         /*
3531          * Set proper endian settings and verify the same by reading
3532          * the PIF Feed-back register.
3533          */
3534
3535         val64 = readq(&bar0->pif_rd_swapper_fb);
3536         if (val64 != 0x0123456789ABCDEFULL) {
3537                 int i = 0;
3538                 static const u64 value[] = {
3539                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3540                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3541                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3542                         0                       /* FE=0, SE=0 */
3543                 };
3544
3545                 while (i < 4) {
3546                         writeq(value[i], &bar0->swapper_ctrl);
3547                         val64 = readq(&bar0->pif_rd_swapper_fb);
3548                         if (val64 == 0x0123456789ABCDEFULL)
3549                                 break;
3550                         i++;
3551                 }
3552                 if (i == 4) {
3553                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3554                                   "feedback read %llx\n",
3555                                   dev->name, (unsigned long long)val64);
3556                         return FAILURE;
3557                 }
3558                 valr = value[i];
3559         } else {
3560                 valr = readq(&bar0->swapper_ctrl);
3561         }
3562
3563         valt = 0x0123456789ABCDEFULL;
3564         writeq(valt, &bar0->xmsi_address);
3565         val64 = readq(&bar0->xmsi_address);
3566
3567         if (val64 != valt) {
3568                 int i = 0;
3569                 static const u64 value[] = {
3570                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3571                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3572                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3573                         0                       /* FE=0, SE=0 */
3574                 };
3575
3576                 while (i < 4) {
3577                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3578                         writeq(valt, &bar0->xmsi_address);
3579                         val64 = readq(&bar0->xmsi_address);
3580                         if (val64 == valt)
3581                                 break;
3582                         i++;
3583                 }
3584                 if (i == 4) {
3585                         unsigned long long x = val64;
3586                         DBG_PRINT(ERR_DBG,
3587                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3588                         return FAILURE;
3589                 }
3590         }
3591         val64 = readq(&bar0->swapper_ctrl);
3592         val64 &= 0xFFFF000000000000ULL;
3593
3594 #ifdef __BIG_ENDIAN
3595         /*
3596          * The device by default set to a big endian format, so a
3597          * big endian driver need not set anything.
3598          */
3599         val64 |= (SWAPPER_CTRL_TXP_FE |
3600                   SWAPPER_CTRL_TXP_SE |
3601                   SWAPPER_CTRL_TXD_R_FE |
3602                   SWAPPER_CTRL_TXD_W_FE |
3603                   SWAPPER_CTRL_TXF_R_FE |
3604                   SWAPPER_CTRL_RXD_R_FE |
3605                   SWAPPER_CTRL_RXD_W_FE |
3606                   SWAPPER_CTRL_RXF_W_FE |
3607                   SWAPPER_CTRL_XMSI_FE |
3608                   SWAPPER_CTRL_STATS_FE |
3609                   SWAPPER_CTRL_STATS_SE);
3610         if (sp->config.intr_type == INTA)
3611                 val64 |= SWAPPER_CTRL_XMSI_SE;
3612         writeq(val64, &bar0->swapper_ctrl);
3613 #else
3614         /*
3615          * Initially we enable all bits to make it accessible by the
3616          * driver, then we selectively enable only those bits that
3617          * we want to set.
3618          */
3619         val64 |= (SWAPPER_CTRL_TXP_FE |
3620                   SWAPPER_CTRL_TXP_SE |
3621                   SWAPPER_CTRL_TXD_R_FE |
3622                   SWAPPER_CTRL_TXD_R_SE |
3623                   SWAPPER_CTRL_TXD_W_FE |
3624                   SWAPPER_CTRL_TXD_W_SE |
3625                   SWAPPER_CTRL_TXF_R_FE |
3626                   SWAPPER_CTRL_RXD_R_FE |
3627                   SWAPPER_CTRL_RXD_R_SE |
3628                   SWAPPER_CTRL_RXD_W_FE |
3629                   SWAPPER_CTRL_RXD_W_SE |
3630                   SWAPPER_CTRL_RXF_W_FE |
3631                   SWAPPER_CTRL_XMSI_FE |
3632                   SWAPPER_CTRL_STATS_FE |
3633                   SWAPPER_CTRL_STATS_SE);
3634         if (sp->config.intr_type == INTA)
3635                 val64 |= SWAPPER_CTRL_XMSI_SE;
3636         writeq(val64, &bar0->swapper_ctrl);
3637 #endif
3638         val64 = readq(&bar0->swapper_ctrl);
3639
3640         /*
3641          * Verifying if endian settings are accurate by reading a
3642          * feedback register.
3643          */
3644         val64 = readq(&bar0->pif_rd_swapper_fb);
3645         if (val64 != 0x0123456789ABCDEFULL) {
3646                 /* Endian settings are incorrect, calls for another dekko. */
3647                 DBG_PRINT(ERR_DBG,
3648                           "%s: Endian settings are wrong, feedback read %llx\n",
3649                           dev->name, (unsigned long long)val64);
3650                 return FAILURE;
3651         }
3652
3653         return SUCCESS;
3654 }
3655
3656 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3657 {
3658         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3659         u64 val64;
3660         int ret = 0, cnt = 0;
3661
3662         do {
3663                 val64 = readq(&bar0->xmsi_access);
3664                 if (!(val64 & s2BIT(15)))
3665                         break;
3666                 mdelay(1);
3667                 cnt++;
3668         } while (cnt < 5);
3669         if (cnt == 5) {
3670                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3671                 ret = 1;
3672         }
3673
3674         return ret;
3675 }
3676
3677 static void restore_xmsi_data(struct s2io_nic *nic)
3678 {
3679         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3680         u64 val64;
3681         int i, msix_index;
3682
3683         if (nic->device_type == XFRAME_I_DEVICE)
3684                 return;
3685
3686         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3687                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3688                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3689                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3690                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3691                 writeq(val64, &bar0->xmsi_access);
3692                 if (wait_for_msix_trans(nic, msix_index))
3693                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3694                                   __func__, msix_index);
3695         }
3696 }
3697
3698 static void store_xmsi_data(struct s2io_nic *nic)
3699 {
3700         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3701         u64 val64, addr, data;
3702         int i, msix_index;
3703
3704         if (nic->device_type == XFRAME_I_DEVICE)
3705                 return;
3706
3707         /* Store and display */
3708         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3709                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3710                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3711                 writeq(val64, &bar0->xmsi_access);
3712                 if (wait_for_msix_trans(nic, msix_index)) {
3713                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3714                                   __func__, msix_index);
3715                         continue;
3716                 }
3717                 addr = readq(&bar0->xmsi_address);
3718                 data = readq(&bar0->xmsi_data);
3719                 if (addr && data) {
3720                         nic->msix_info[i].addr = addr;
3721                         nic->msix_info[i].data = data;
3722                 }
3723         }
3724 }
3725
3726 static int s2io_enable_msi_x(struct s2io_nic *nic)
3727 {
3728         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3729         u64 rx_mat;
3730         u16 msi_control; /* Temp variable */
3731         int ret, i, j, msix_indx = 1;
3732         int size;
3733         struct stat_block *stats = nic->mac_control.stats_info;
3734         struct swStat *swstats = &stats->sw_stat;
3735
3736         size = nic->num_entries * sizeof(struct msix_entry);
3737         nic->entries = kzalloc(size, GFP_KERNEL);
3738         if (!nic->entries) {
3739                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3740                           __func__);
3741                 swstats->mem_alloc_fail_cnt++;
3742                 return -ENOMEM;
3743         }
3744         swstats->mem_allocated += size;
3745
3746         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3747         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3748         if (!nic->s2io_entries) {
3749                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3750                           __func__);
3751                 swstats->mem_alloc_fail_cnt++;
3752                 kfree(nic->entries);
3753                 swstats->mem_freed
3754                         += (nic->num_entries * sizeof(struct msix_entry));
3755                 return -ENOMEM;
3756         }
3757         swstats->mem_allocated += size;
3758
3759         nic->entries[0].entry = 0;
3760         nic->s2io_entries[0].entry = 0;
3761         nic->s2io_entries[0].in_use = MSIX_FLG;
3762         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3763         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3764
3765         for (i = 1; i < nic->num_entries; i++) {
3766                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3767                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3768                 nic->s2io_entries[i].arg = NULL;
3769                 nic->s2io_entries[i].in_use = 0;
3770         }
3771
3772         rx_mat = readq(&bar0->rx_mat);
3773         for (j = 0; j < nic->config.rx_ring_num; j++) {
3774                 rx_mat |= RX_MAT_SET(j, msix_indx);
3775                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3776                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3777                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3778                 msix_indx += 8;
3779         }
3780         writeq(rx_mat, &bar0->rx_mat);
3781         readq(&bar0->rx_mat);
3782
3783         ret = pci_enable_msix_range(nic->pdev, nic->entries,
3784                                     nic->num_entries, nic->num_entries);
3785         /* We fail init if error or we get less vectors than min required */
3786         if (ret < 0) {
3787                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3788                 kfree(nic->entries);
3789                 swstats->mem_freed += nic->num_entries *
3790                         sizeof(struct msix_entry);
3791                 kfree(nic->s2io_entries);
3792                 swstats->mem_freed += nic->num_entries *
3793                         sizeof(struct s2io_msix_entry);
3794                 nic->entries = NULL;
3795                 nic->s2io_entries = NULL;
3796                 return -ENOMEM;
3797         }
3798
3799         /*
3800          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3801          * in the herc NIC. (Temp change, needs to be removed later)
3802          */
3803         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3804         msi_control |= 0x1; /* Enable MSI */
3805         pci_write_config_word(nic->pdev, 0x42, msi_control);
3806
3807         return 0;
3808 }
3809
3810 /* Handle software interrupt used during MSI(X) test */
3811 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3812 {
3813         struct s2io_nic *sp = dev_id;
3814
3815         sp->msi_detected = 1;
3816         wake_up(&sp->msi_wait);
3817
3818         return IRQ_HANDLED;
3819 }
3820
3821 /* Test interrupt path by forcing a software IRQ */
3822 static int s2io_test_msi(struct s2io_nic *sp)
3823 {
3824         struct pci_dev *pdev = sp->pdev;
3825         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3826         int err;
3827         u64 val64, saved64;
3828
3829         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3830                           sp->name, sp);
3831         if (err) {
3832                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3833                           sp->dev->name, pci_name(pdev), pdev->irq);
3834                 return err;
3835         }
3836
3837         init_waitqueue_head(&sp->msi_wait);
3838         sp->msi_detected = 0;
3839
3840         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3841         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3842         val64 |= SCHED_INT_CTRL_TIMER_EN;
3843         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3844         writeq(val64, &bar0->scheduled_int_ctrl);
3845
3846         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3847
3848         if (!sp->msi_detected) {
3849                 /* MSI(X) test failed, go back to INTx mode */
3850                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3851                           "using MSI(X) during test\n",
3852                           sp->dev->name, pci_name(pdev));
3853
3854                 err = -EOPNOTSUPP;
3855         }
3856
3857         free_irq(sp->entries[1].vector, sp);
3858
3859         writeq(saved64, &bar0->scheduled_int_ctrl);
3860
3861         return err;
3862 }
3863
3864 static void remove_msix_isr(struct s2io_nic *sp)
3865 {
3866         int i;
3867         u16 msi_control;
3868
3869         for (i = 0; i < sp->num_entries; i++) {
3870                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3871                         int vector = sp->entries[i].vector;
3872                         void *arg = sp->s2io_entries[i].arg;
3873                         free_irq(vector, arg);
3874                 }
3875         }
3876
3877         kfree(sp->entries);
3878         kfree(sp->s2io_entries);
3879         sp->entries = NULL;
3880         sp->s2io_entries = NULL;
3881
3882         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3883         msi_control &= 0xFFFE; /* Disable MSI */
3884         pci_write_config_word(sp->pdev, 0x42, msi_control);
3885
3886         pci_disable_msix(sp->pdev);
3887 }
3888
3889 static void remove_inta_isr(struct s2io_nic *sp)
3890 {
3891         free_irq(sp->pdev->irq, sp->dev);
3892 }
3893
3894 /* ********************************************************* *
3895  * Functions defined below concern the OS part of the driver *
3896  * ********************************************************* */
3897
3898 /**
3899  *  s2io_open - open entry point of the driver
3900  *  @dev : pointer to the device structure.
3901  *  Description:
3902  *  This function is the open entry point of the driver. It mainly calls a
3903  *  function to allocate Rx buffers and inserts them into the buffer
3904  *  descriptors and then enables the Rx part of the NIC.
3905  *  Return value:
3906  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3907  *   file on failure.
3908  */
3909
3910 static int s2io_open(struct net_device *dev)
3911 {
3912         struct s2io_nic *sp = netdev_priv(dev);
3913         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3914         int err = 0;
3915
3916         /*
3917          * Make sure you have link off by default every time
3918          * Nic is initialized
3919          */
3920         netif_carrier_off(dev);
3921         sp->last_link_state = 0;
3922
3923         /* Initialize H/W and enable interrupts */
3924         err = s2io_card_up(sp);
3925         if (err) {
3926                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3927                           dev->name);
3928                 goto hw_init_failed;
3929         }
3930
3931         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3932                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3933                 s2io_card_down(sp);
3934                 err = -ENODEV;
3935                 goto hw_init_failed;
3936         }
3937         s2io_start_all_tx_queue(sp);
3938         return 0;
3939
3940 hw_init_failed:
3941         if (sp->config.intr_type == MSI_X) {
3942                 if (sp->entries) {
3943                         kfree(sp->entries);
3944                         swstats->mem_freed += sp->num_entries *
3945                                 sizeof(struct msix_entry);
3946                 }
3947                 if (sp->s2io_entries) {
3948                         kfree(sp->s2io_entries);
3949                         swstats->mem_freed += sp->num_entries *
3950                                 sizeof(struct s2io_msix_entry);
3951                 }
3952         }
3953         return err;
3954 }
3955
3956 /**
3957  *  s2io_close -close entry point of the driver
3958  *  @dev : device pointer.
3959  *  Description:
3960  *  This is the stop entry point of the driver. It needs to undo exactly
3961  *  whatever was done by the open entry point,thus it's usually referred to
3962  *  as the close function.Among other things this function mainly stops the
3963  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964  *  Return value:
3965  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3966  *  file on failure.
3967  */
3968
3969 static int s2io_close(struct net_device *dev)
3970 {
3971         struct s2io_nic *sp = netdev_priv(dev);
3972         struct config_param *config = &sp->config;
3973         u64 tmp64;
3974         int offset;
3975
3976         /* Return if the device is already closed               *
3977          *  Can happen when s2io_card_up failed in change_mtu    *
3978          */
3979         if (!is_s2io_card_up(sp))
3980                 return 0;
3981
3982         s2io_stop_all_tx_queue(sp);
3983         /* delete all populated mac entries */
3984         for (offset = 1; offset < config->max_mc_addr; offset++) {
3985                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3986                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3987                         do_s2io_delete_unicast_mc(sp, tmp64);
3988         }
3989
3990         s2io_card_down(sp);
3991
3992         return 0;
3993 }
3994
3995 /**
3996  *  s2io_xmit - Tx entry point of te driver
3997  *  @skb : the socket buffer containing the Tx data.
3998  *  @dev : device pointer.
3999  *  Description :
4000  *  This function is the Tx entry point of the driver. S2IO NIC supports
4001  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4002  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4003  *  not be upadted.
4004  *  Return value:
4005  *  0 on success & 1 on failure.
4006  */
4007
4008 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4009 {
4010         struct s2io_nic *sp = netdev_priv(dev);
4011         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4012         register u64 val64;
4013         struct TxD *txdp;
4014         struct TxFIFO_element __iomem *tx_fifo;
4015         unsigned long flags = 0;
4016         u16 vlan_tag = 0;
4017         struct fifo_info *fifo = NULL;
4018         int offload_type;
4019         int enable_per_list_interrupt = 0;
4020         struct config_param *config = &sp->config;
4021         struct mac_info *mac_control = &sp->mac_control;
4022         struct stat_block *stats = mac_control->stats_info;
4023         struct swStat *swstats = &stats->sw_stat;
4024
4025         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4026
4027         if (unlikely(skb->len <= 0)) {
4028                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4029                 dev_kfree_skb_any(skb);
4030                 return NETDEV_TX_OK;
4031         }
4032
4033         if (!is_s2io_card_up(sp)) {
4034                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4035                           dev->name);
4036                 dev_kfree_skb_any(skb);
4037                 return NETDEV_TX_OK;
4038         }
4039
4040         queue = 0;
4041         if (skb_vlan_tag_present(skb))
4042                 vlan_tag = skb_vlan_tag_get(skb);
4043         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4044                 if (skb->protocol == htons(ETH_P_IP)) {
4045                         struct iphdr *ip;
4046                         struct tcphdr *th;
4047                         ip = ip_hdr(skb);
4048
4049                         if (!ip_is_fragment(ip)) {
4050                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4051                                                        ip->ihl*4);
4052
4053                                 if (ip->protocol == IPPROTO_TCP) {
4054                                         queue_len = sp->total_tcp_fifos;
4055                                         queue = (ntohs(th->source) +
4056                                                  ntohs(th->dest)) &
4057                                                 sp->fifo_selector[queue_len - 1];
4058                                         if (queue >= queue_len)
4059                                                 queue = queue_len - 1;
4060                                 } else if (ip->protocol == IPPROTO_UDP) {
4061                                         queue_len = sp->total_udp_fifos;
4062                                         queue = (ntohs(th->source) +
4063                                                  ntohs(th->dest)) &
4064                                                 sp->fifo_selector[queue_len - 1];
4065                                         if (queue >= queue_len)
4066                                                 queue = queue_len - 1;
4067                                         queue += sp->udp_fifo_idx;
4068                                         if (skb->len > 1024)
4069                                                 enable_per_list_interrupt = 1;
4070                                 }
4071                         }
4072                 }
4073         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4074                 /* get fifo number based on skb->priority value */
4075                 queue = config->fifo_mapping
4076                         [skb->priority & (MAX_TX_FIFOS - 1)];
4077         fifo = &mac_control->fifos[queue];
4078
4079         spin_lock_irqsave(&fifo->tx_lock, flags);
4080
4081         if (sp->config.multiq) {
4082                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4083                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4084                         return NETDEV_TX_BUSY;
4085                 }
4086         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4087                 if (netif_queue_stopped(dev)) {
4088                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4089                         return NETDEV_TX_BUSY;
4090                 }
4091         }
4092
4093         put_off = (u16)fifo->tx_curr_put_info.offset;
4094         get_off = (u16)fifo->tx_curr_get_info.offset;
4095         txdp = fifo->list_info[put_off].list_virt_addr;
4096
4097         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4098         /* Avoid "put" pointer going beyond "get" pointer */
4099         if (txdp->Host_Control ||
4100             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4101                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4102                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4103                 dev_kfree_skb_any(skb);
4104                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4105                 return NETDEV_TX_OK;
4106         }
4107
4108         offload_type = s2io_offload_type(skb);
4109         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4110                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4111                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4112         }
4113         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4114                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4115                                     TXD_TX_CKO_TCP_EN |
4116                                     TXD_TX_CKO_UDP_EN);
4117         }
4118         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4119         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4120         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4121         if (enable_per_list_interrupt)
4122                 if (put_off & (queue_len >> 5))
4123                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4124         if (vlan_tag) {
4125                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4126                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4127         }
4128
4129         frg_len = skb_headlen(skb);
4130         txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data,
4131                                               frg_len, DMA_TO_DEVICE);
4132         if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer))
4133                 goto pci_map_failed;
4134
4135         txdp->Host_Control = (unsigned long)skb;
4136         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4137
4138         frg_cnt = skb_shinfo(skb)->nr_frags;
4139         /* For fragmented SKB. */
4140         for (i = 0; i < frg_cnt; i++) {
4141                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4142                 /* A '0' length fragment will be ignored */
4143                 if (!skb_frag_size(frag))
4144                         continue;
4145                 txdp++;
4146                 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4147                                                              frag, 0,
4148                                                              skb_frag_size(frag),
4149                                                              DMA_TO_DEVICE);
4150                 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4151         }
4152         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4153
4154         tx_fifo = mac_control->tx_FIFO_start[queue];
4155         val64 = fifo->list_info[put_off].list_phy_addr;
4156         writeq(val64, &tx_fifo->TxDL_Pointer);
4157
4158         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4159                  TX_FIFO_LAST_LIST);
4160         if (offload_type)
4161                 val64 |= TX_FIFO_SPECIAL_FUNC;
4162
4163         writeq(val64, &tx_fifo->List_Control);
4164
4165         put_off++;
4166         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4167                 put_off = 0;
4168         fifo->tx_curr_put_info.offset = put_off;
4169
4170         /* Avoid "put" pointer going beyond "get" pointer */
4171         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4172                 swstats->fifo_full_cnt++;
4173                 DBG_PRINT(TX_DBG,
4174                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4175                           put_off, get_off);
4176                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177         }
4178         swstats->mem_allocated += skb->truesize;
4179         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180
4181         if (sp->config.intr_type == MSI_X)
4182                 tx_intr_handler(fifo);
4183
4184         return NETDEV_TX_OK;
4185
4186 pci_map_failed:
4187         swstats->pci_map_fail_cnt++;
4188         s2io_stop_tx_queue(sp, fifo->fifo_no);
4189         swstats->mem_freed += skb->truesize;
4190         dev_kfree_skb_any(skb);
4191         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4192         return NETDEV_TX_OK;
4193 }
4194
4195 static void
4196 s2io_alarm_handle(struct timer_list *t)
4197 {
4198         struct s2io_nic *sp = from_timer(sp, t, alarm_timer);
4199         struct net_device *dev = sp->dev;
4200
4201         s2io_handle_errors(dev);
4202         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4203 }
4204
4205 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4206 {
4207         struct ring_info *ring = (struct ring_info *)dev_id;
4208         struct s2io_nic *sp = ring->nic;
4209         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4210
4211         if (unlikely(!is_s2io_card_up(sp)))
4212                 return IRQ_HANDLED;
4213
4214         if (sp->config.napi) {
4215                 u8 __iomem *addr = NULL;
4216                 u8 val8 = 0;
4217
4218                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4219                 addr += (7 - ring->ring_no);
4220                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4221                 writeb(val8, addr);
4222                 val8 = readb(addr);
4223                 napi_schedule(&ring->napi);
4224         } else {
4225                 rx_intr_handler(ring, 0);
4226                 s2io_chk_rx_buffers(sp, ring);
4227         }
4228
4229         return IRQ_HANDLED;
4230 }
4231
4232 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4233 {
4234         int i;
4235         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4236         struct s2io_nic *sp = fifos->nic;
4237         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4238         struct config_param *config  = &sp->config;
4239         u64 reason;
4240
4241         if (unlikely(!is_s2io_card_up(sp)))
4242                 return IRQ_NONE;
4243
4244         reason = readq(&bar0->general_int_status);
4245         if (unlikely(reason == S2IO_MINUS_ONE))
4246                 /* Nothing much can be done. Get out */
4247                 return IRQ_HANDLED;
4248
4249         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4250                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4251
4252                 if (reason & GEN_INTR_TXPIC)
4253                         s2io_txpic_intr_handle(sp);
4254
4255                 if (reason & GEN_INTR_TXTRAFFIC)
4256                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4257
4258                 for (i = 0; i < config->tx_fifo_num; i++)
4259                         tx_intr_handler(&fifos[i]);
4260
4261                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4262                 readl(&bar0->general_int_status);
4263                 return IRQ_HANDLED;
4264         }
4265         /* The interrupt was not raised by us */
4266         return IRQ_NONE;
4267 }
4268
4269 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4270 {
4271         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4272         u64 val64;
4273
4274         val64 = readq(&bar0->pic_int_status);
4275         if (val64 & PIC_INT_GPIO) {
4276                 val64 = readq(&bar0->gpio_int_reg);
4277                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4278                     (val64 & GPIO_INT_REG_LINK_UP)) {
4279                         /*
4280                          * This is unstable state so clear both up/down
4281                          * interrupt and adapter to re-evaluate the link state.
4282                          */
4283                         val64 |= GPIO_INT_REG_LINK_DOWN;
4284                         val64 |= GPIO_INT_REG_LINK_UP;
4285                         writeq(val64, &bar0->gpio_int_reg);
4286                         val64 = readq(&bar0->gpio_int_mask);
4287                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4288                                    GPIO_INT_MASK_LINK_DOWN);
4289                         writeq(val64, &bar0->gpio_int_mask);
4290                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4291                         val64 = readq(&bar0->adapter_status);
4292                         /* Enable Adapter */
4293                         val64 = readq(&bar0->adapter_control);
4294                         val64 |= ADAPTER_CNTL_EN;
4295                         writeq(val64, &bar0->adapter_control);
4296                         val64 |= ADAPTER_LED_ON;
4297                         writeq(val64, &bar0->adapter_control);
4298                         if (!sp->device_enabled_once)
4299                                 sp->device_enabled_once = 1;
4300
4301                         s2io_link(sp, LINK_UP);
4302                         /*
4303                          * unmask link down interrupt and mask link-up
4304                          * intr
4305                          */
4306                         val64 = readq(&bar0->gpio_int_mask);
4307                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4308                         val64 |= GPIO_INT_MASK_LINK_UP;
4309                         writeq(val64, &bar0->gpio_int_mask);
4310
4311                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4312                         val64 = readq(&bar0->adapter_status);
4313                         s2io_link(sp, LINK_DOWN);
4314                         /* Link is down so unmaks link up interrupt */
4315                         val64 = readq(&bar0->gpio_int_mask);
4316                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4317                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4318                         writeq(val64, &bar0->gpio_int_mask);
4319
4320                         /* turn off LED */
4321                         val64 = readq(&bar0->adapter_control);
4322                         val64 = val64 & (~ADAPTER_LED_ON);
4323                         writeq(val64, &bar0->adapter_control);
4324                 }
4325         }
4326         val64 = readq(&bar0->gpio_int_mask);
4327 }
4328
4329 /**
4330  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4331  *  @value: alarm bits
4332  *  @addr: address value
4333  *  @cnt: counter variable
4334  *  Description: Check for alarm and increment the counter
4335  *  Return Value:
4336  *  1 - if alarm bit set
4337  *  0 - if alarm bit is not set
4338  */
4339 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4340                                  unsigned long long *cnt)
4341 {
4342         u64 val64;
4343         val64 = readq(addr);
4344         if (val64 & value) {
4345                 writeq(val64, addr);
4346                 (*cnt)++;
4347                 return 1;
4348         }
4349         return 0;
4350
4351 }
4352
4353 /**
4354  *  s2io_handle_errors - Xframe error indication handler
4355  *  @dev_id: opaque handle to dev
4356  *  Description: Handle alarms such as loss of link, single or
4357  *  double ECC errors, critical and serious errors.
4358  *  Return Value:
4359  *  NONE
4360  */
4361 static void s2io_handle_errors(void *dev_id)
4362 {
4363         struct net_device *dev = (struct net_device *)dev_id;
4364         struct s2io_nic *sp = netdev_priv(dev);
4365         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4366         u64 temp64 = 0, val64 = 0;
4367         int i = 0;
4368
4369         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4370         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4371
4372         if (!is_s2io_card_up(sp))
4373                 return;
4374
4375         if (pci_channel_offline(sp->pdev))
4376                 return;
4377
4378         memset(&sw_stat->ring_full_cnt, 0,
4379                sizeof(sw_stat->ring_full_cnt));
4380
4381         /* Handling the XPAK counters update */
4382         if (stats->xpak_timer_count < 72000) {
4383                 /* waiting for an hour */
4384                 stats->xpak_timer_count++;
4385         } else {
4386                 s2io_updt_xpak_counter(dev);
4387                 /* reset the count to zero */
4388                 stats->xpak_timer_count = 0;
4389         }
4390
4391         /* Handling link status change error Intr */
4392         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4393                 val64 = readq(&bar0->mac_rmac_err_reg);
4394                 writeq(val64, &bar0->mac_rmac_err_reg);
4395                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4396                         schedule_work(&sp->set_link_task);
4397         }
4398
4399         /* In case of a serious error, the device will be Reset. */
4400         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4401                                   &sw_stat->serious_err_cnt))
4402                 goto reset;
4403
4404         /* Check for data parity error */
4405         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4406                                   &sw_stat->parity_err_cnt))
4407                 goto reset;
4408
4409         /* Check for ring full counter */
4410         if (sp->device_type == XFRAME_II_DEVICE) {
4411                 val64 = readq(&bar0->ring_bump_counter1);
4412                 for (i = 0; i < 4; i++) {
4413                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4414                         temp64 >>= 64 - ((i+1)*16);
4415                         sw_stat->ring_full_cnt[i] += temp64;
4416                 }
4417
4418                 val64 = readq(&bar0->ring_bump_counter2);
4419                 for (i = 0; i < 4; i++) {
4420                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4421                         temp64 >>= 64 - ((i+1)*16);
4422                         sw_stat->ring_full_cnt[i+4] += temp64;
4423                 }
4424         }
4425
4426         val64 = readq(&bar0->txdma_int_status);
4427         /*check for pfc_err*/
4428         if (val64 & TXDMA_PFC_INT) {
4429                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4430                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4431                                           PFC_PCIX_ERR,
4432                                           &bar0->pfc_err_reg,
4433                                           &sw_stat->pfc_err_cnt))
4434                         goto reset;
4435                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4436                                       &bar0->pfc_err_reg,
4437                                       &sw_stat->pfc_err_cnt);
4438         }
4439
4440         /*check for tda_err*/
4441         if (val64 & TXDMA_TDA_INT) {
4442                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4443                                           TDA_SM0_ERR_ALARM |
4444                                           TDA_SM1_ERR_ALARM,
4445                                           &bar0->tda_err_reg,
4446                                           &sw_stat->tda_err_cnt))
4447                         goto reset;
4448                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4449                                       &bar0->tda_err_reg,
4450                                       &sw_stat->tda_err_cnt);
4451         }
4452         /*check for pcc_err*/
4453         if (val64 & TXDMA_PCC_INT) {
4454                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4455                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4456                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4457                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4458                                           PCC_TXB_ECC_DB_ERR,
4459                                           &bar0->pcc_err_reg,
4460                                           &sw_stat->pcc_err_cnt))
4461                         goto reset;
4462                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4463                                       &bar0->pcc_err_reg,
4464                                       &sw_stat->pcc_err_cnt);
4465         }
4466
4467         /*check for tti_err*/
4468         if (val64 & TXDMA_TTI_INT) {
4469                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4470                                           &bar0->tti_err_reg,
4471                                           &sw_stat->tti_err_cnt))
4472                         goto reset;
4473                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4474                                       &bar0->tti_err_reg,
4475                                       &sw_stat->tti_err_cnt);
4476         }
4477
4478         /*check for lso_err*/
4479         if (val64 & TXDMA_LSO_INT) {
4480                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4481                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4482                                           &bar0->lso_err_reg,
4483                                           &sw_stat->lso_err_cnt))
4484                         goto reset;
4485                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4486                                       &bar0->lso_err_reg,
4487                                       &sw_stat->lso_err_cnt);
4488         }
4489
4490         /*check for tpa_err*/
4491         if (val64 & TXDMA_TPA_INT) {
4492                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4493                                           &bar0->tpa_err_reg,
4494                                           &sw_stat->tpa_err_cnt))
4495                         goto reset;
4496                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4497                                       &bar0->tpa_err_reg,
4498                                       &sw_stat->tpa_err_cnt);
4499         }
4500
4501         /*check for sm_err*/
4502         if (val64 & TXDMA_SM_INT) {
4503                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4504                                           &bar0->sm_err_reg,
4505                                           &sw_stat->sm_err_cnt))
4506                         goto reset;
4507         }
4508
4509         val64 = readq(&bar0->mac_int_status);
4510         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4511                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4512                                           &bar0->mac_tmac_err_reg,
4513                                           &sw_stat->mac_tmac_err_cnt))
4514                         goto reset;
4515                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4516                                       TMAC_DESC_ECC_SG_ERR |
4517                                       TMAC_DESC_ECC_DB_ERR,
4518                                       &bar0->mac_tmac_err_reg,
4519                                       &sw_stat->mac_tmac_err_cnt);
4520         }
4521
4522         val64 = readq(&bar0->xgxs_int_status);
4523         if (val64 & XGXS_INT_STATUS_TXGXS) {
4524                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4525                                           &bar0->xgxs_txgxs_err_reg,
4526                                           &sw_stat->xgxs_txgxs_err_cnt))
4527                         goto reset;
4528                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4529                                       &bar0->xgxs_txgxs_err_reg,
4530                                       &sw_stat->xgxs_txgxs_err_cnt);
4531         }
4532
4533         val64 = readq(&bar0->rxdma_int_status);
4534         if (val64 & RXDMA_INT_RC_INT_M) {
4535                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4536                                           RC_FTC_ECC_DB_ERR |
4537                                           RC_PRCn_SM_ERR_ALARM |
4538                                           RC_FTC_SM_ERR_ALARM,
4539                                           &bar0->rc_err_reg,
4540                                           &sw_stat->rc_err_cnt))
4541                         goto reset;
4542                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4543                                       RC_FTC_ECC_SG_ERR |
4544                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4545                                       &sw_stat->rc_err_cnt);
4546                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4547                                           PRC_PCI_AB_WR_Rn |
4548                                           PRC_PCI_AB_F_WR_Rn,
4549                                           &bar0->prc_pcix_err_reg,
4550                                           &sw_stat->prc_pcix_err_cnt))
4551                         goto reset;
4552                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4553                                       PRC_PCI_DP_WR_Rn |
4554                                       PRC_PCI_DP_F_WR_Rn,
4555                                       &bar0->prc_pcix_err_reg,
4556                                       &sw_stat->prc_pcix_err_cnt);
4557         }
4558
4559         if (val64 & RXDMA_INT_RPA_INT_M) {
4560                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4561                                           &bar0->rpa_err_reg,
4562                                           &sw_stat->rpa_err_cnt))
4563                         goto reset;
4564                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4565                                       &bar0->rpa_err_reg,
4566                                       &sw_stat->rpa_err_cnt);
4567         }
4568
4569         if (val64 & RXDMA_INT_RDA_INT_M) {
4570                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4571                                           RDA_FRM_ECC_DB_N_AERR |
4572                                           RDA_SM1_ERR_ALARM |
4573                                           RDA_SM0_ERR_ALARM |
4574                                           RDA_RXD_ECC_DB_SERR,
4575                                           &bar0->rda_err_reg,
4576                                           &sw_stat->rda_err_cnt))
4577                         goto reset;
4578                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4579                                       RDA_FRM_ECC_SG_ERR |
4580                                       RDA_MISC_ERR |
4581                                       RDA_PCIX_ERR,
4582                                       &bar0->rda_err_reg,
4583                                       &sw_stat->rda_err_cnt);
4584         }
4585
4586         if (val64 & RXDMA_INT_RTI_INT_M) {
4587                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4588                                           &bar0->rti_err_reg,
4589                                           &sw_stat->rti_err_cnt))
4590                         goto reset;
4591                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4592                                       &bar0->rti_err_reg,
4593                                       &sw_stat->rti_err_cnt);
4594         }
4595
4596         val64 = readq(&bar0->mac_int_status);
4597         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4598                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4599                                           &bar0->mac_rmac_err_reg,
4600                                           &sw_stat->mac_rmac_err_cnt))
4601                         goto reset;
4602                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4603                                       RMAC_SINGLE_ECC_ERR |
4604                                       RMAC_DOUBLE_ECC_ERR,
4605                                       &bar0->mac_rmac_err_reg,
4606                                       &sw_stat->mac_rmac_err_cnt);
4607         }
4608
4609         val64 = readq(&bar0->xgxs_int_status);
4610         if (val64 & XGXS_INT_STATUS_RXGXS) {
4611                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4612                                           &bar0->xgxs_rxgxs_err_reg,
4613                                           &sw_stat->xgxs_rxgxs_err_cnt))
4614                         goto reset;
4615         }
4616
4617         val64 = readq(&bar0->mc_int_status);
4618         if (val64 & MC_INT_STATUS_MC_INT) {
4619                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4620                                           &bar0->mc_err_reg,
4621                                           &sw_stat->mc_err_cnt))
4622                         goto reset;
4623
4624                 /* Handling Ecc errors */
4625                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4626                         writeq(val64, &bar0->mc_err_reg);
4627                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4628                                 sw_stat->double_ecc_errs++;
4629                                 if (sp->device_type != XFRAME_II_DEVICE) {
4630                                         /*
4631                                          * Reset XframeI only if critical error
4632                                          */
4633                                         if (val64 &
4634                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4635                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4636                                                 goto reset;
4637                                 }
4638                         } else
4639                                 sw_stat->single_ecc_errs++;
4640                 }
4641         }
4642         return;
4643
4644 reset:
4645         s2io_stop_all_tx_queue(sp);
4646         schedule_work(&sp->rst_timer_task);
4647         sw_stat->soft_reset_cnt++;
4648 }
4649
4650 /**
4651  *  s2io_isr - ISR handler of the device .
4652  *  @irq: the irq of the device.
4653  *  @dev_id: a void pointer to the dev structure of the NIC.
4654  *  Description:  This function is the ISR handler of the device. It
4655  *  identifies the reason for the interrupt and calls the relevant
4656  *  service routines. As a contongency measure, this ISR allocates the
4657  *  recv buffers, if their numbers are below the panic value which is
4658  *  presently set to 25% of the original number of rcv buffers allocated.
4659  *  Return value:
4660  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4661  *   IRQ_NONE: will be returned if interrupt is not from our device
4662  */
4663 static irqreturn_t s2io_isr(int irq, void *dev_id)
4664 {
4665         struct net_device *dev = (struct net_device *)dev_id;
4666         struct s2io_nic *sp = netdev_priv(dev);
4667         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4668         int i;
4669         u64 reason = 0;
4670         struct mac_info *mac_control;
4671         struct config_param *config;
4672
4673         /* Pretend we handled any irq's from a disconnected card */
4674         if (pci_channel_offline(sp->pdev))
4675                 return IRQ_NONE;
4676
4677         if (!is_s2io_card_up(sp))
4678                 return IRQ_NONE;
4679
4680         config = &sp->config;
4681         mac_control = &sp->mac_control;
4682
4683         /*
4684          * Identify the cause for interrupt and call the appropriate
4685          * interrupt handler. Causes for the interrupt could be;
4686          * 1. Rx of packet.
4687          * 2. Tx complete.
4688          * 3. Link down.
4689          */
4690         reason = readq(&bar0->general_int_status);
4691
4692         if (unlikely(reason == S2IO_MINUS_ONE))
4693                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4694
4695         if (reason &
4696             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4697                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4698
4699                 if (config->napi) {
4700                         if (reason & GEN_INTR_RXTRAFFIC) {
4701                                 napi_schedule(&sp->napi);
4702                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4703                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4704                                 readl(&bar0->rx_traffic_int);
4705                         }
4706                 } else {
4707                         /*
4708                          * rx_traffic_int reg is an R1 register, writing all 1's
4709                          * will ensure that the actual interrupt causing bit
4710                          * get's cleared and hence a read can be avoided.
4711                          */
4712                         if (reason & GEN_INTR_RXTRAFFIC)
4713                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4714
4715                         for (i = 0; i < config->rx_ring_num; i++) {
4716                                 struct ring_info *ring = &mac_control->rings[i];
4717
4718                                 rx_intr_handler(ring, 0);
4719                         }
4720                 }
4721
4722                 /*
4723                  * tx_traffic_int reg is an R1 register, writing all 1's
4724                  * will ensure that the actual interrupt causing bit get's
4725                  * cleared and hence a read can be avoided.
4726                  */
4727                 if (reason & GEN_INTR_TXTRAFFIC)
4728                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4729
4730                 for (i = 0; i < config->tx_fifo_num; i++)
4731                         tx_intr_handler(&mac_control->fifos[i]);
4732
4733                 if (reason & GEN_INTR_TXPIC)
4734                         s2io_txpic_intr_handle(sp);
4735
4736                 /*
4737                  * Reallocate the buffers from the interrupt handler itself.
4738                  */
4739                 if (!config->napi) {
4740                         for (i = 0; i < config->rx_ring_num; i++) {
4741                                 struct ring_info *ring = &mac_control->rings[i];
4742
4743                                 s2io_chk_rx_buffers(sp, ring);
4744                         }
4745                 }
4746                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4747                 readl(&bar0->general_int_status);
4748
4749                 return IRQ_HANDLED;
4750
4751         } else if (!reason) {
4752                 /* The interrupt was not raised by us */
4753                 return IRQ_NONE;
4754         }
4755
4756         return IRQ_HANDLED;
4757 }
4758
4759 /*
4760  * s2io_updt_stats -
4761  */
4762 static void s2io_updt_stats(struct s2io_nic *sp)
4763 {
4764         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4765         u64 val64;
4766         int cnt = 0;
4767
4768         if (is_s2io_card_up(sp)) {
4769                 /* Apprx 30us on a 133 MHz bus */
4770                 val64 = SET_UPDT_CLICKS(10) |
4771                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4772                 writeq(val64, &bar0->stat_cfg);
4773                 do {
4774                         udelay(100);
4775                         val64 = readq(&bar0->stat_cfg);
4776                         if (!(val64 & s2BIT(0)))
4777                                 break;
4778                         cnt++;
4779                         if (cnt == 5)
4780                                 break; /* Updt failed */
4781                 } while (1);
4782         }
4783 }
4784
4785 /**
4786  *  s2io_get_stats - Updates the device statistics structure.
4787  *  @dev : pointer to the device structure.
4788  *  Description:
4789  *  This function updates the device statistics structure in the s2io_nic
4790  *  structure and returns a pointer to the same.
4791  *  Return value:
4792  *  pointer to the updated net_device_stats structure.
4793  */
4794 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4795 {
4796         struct s2io_nic *sp = netdev_priv(dev);
4797         struct mac_info *mac_control = &sp->mac_control;
4798         struct stat_block *stats = mac_control->stats_info;
4799         u64 delta;
4800
4801         /* Configure Stats for immediate updt */
4802         s2io_updt_stats(sp);
4803
4804         /* A device reset will cause the on-adapter statistics to be zero'ed.
4805          * This can be done while running by changing the MTU.  To prevent the
4806          * system from having the stats zero'ed, the driver keeps a copy of the
4807          * last update to the system (which is also zero'ed on reset).  This
4808          * enables the driver to accurately know the delta between the last
4809          * update and the current update.
4810          */
4811         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4812                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4813         sp->stats.rx_packets += delta;
4814         dev->stats.rx_packets += delta;
4815
4816         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4817                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4818         sp->stats.tx_packets += delta;
4819         dev->stats.tx_packets += delta;
4820
4821         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4822                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4823         sp->stats.rx_bytes += delta;
4824         dev->stats.rx_bytes += delta;
4825
4826         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4827                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4828         sp->stats.tx_bytes += delta;
4829         dev->stats.tx_bytes += delta;
4830
4831         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4832         sp->stats.rx_errors += delta;
4833         dev->stats.rx_errors += delta;
4834
4835         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4836                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4837         sp->stats.tx_errors += delta;
4838         dev->stats.tx_errors += delta;
4839
4840         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4841         sp->stats.rx_dropped += delta;
4842         dev->stats.rx_dropped += delta;
4843
4844         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4845         sp->stats.tx_dropped += delta;
4846         dev->stats.tx_dropped += delta;
4847
4848         /* The adapter MAC interprets pause frames as multicast packets, but
4849          * does not pass them up.  This erroneously increases the multicast
4850          * packet count and needs to be deducted when the multicast frame count
4851          * is queried.
4852          */
4853         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4854                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4855         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4856         delta -= sp->stats.multicast;
4857         sp->stats.multicast += delta;
4858         dev->stats.multicast += delta;
4859
4860         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4861                 le32_to_cpu(stats->rmac_usized_frms)) +
4862                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4863         sp->stats.rx_length_errors += delta;
4864         dev->stats.rx_length_errors += delta;
4865
4866         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4867         sp->stats.rx_crc_errors += delta;
4868         dev->stats.rx_crc_errors += delta;
4869
4870         return &dev->stats;
4871 }
4872
4873 /**
4874  *  s2io_set_multicast - entry point for multicast address enable/disable.
4875  *  @dev : pointer to the device structure
4876  *  @may_sleep: parameter indicates if sleeping when waiting for command
4877  *  complete
4878  *  Description:
4879  *  This function is a driver entry point which gets called by the kernel
4880  *  whenever multicast addresses must be enabled/disabled. This also gets
4881  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4882  *  determine, if multicast address must be enabled or if promiscuous mode
4883  *  is to be disabled etc.
4884  *  Return value:
4885  *  void.
4886  */
4887 static void s2io_set_multicast(struct net_device *dev, bool may_sleep)
4888 {
4889         int i, j, prev_cnt;
4890         struct netdev_hw_addr *ha;
4891         struct s2io_nic *sp = netdev_priv(dev);
4892         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4893         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4894                 0xfeffffffffffULL;
4895         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4896         void __iomem *add;
4897         struct config_param *config = &sp->config;
4898
4899         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4900                 /*  Enable all Multicast addresses */
4901                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4902                        &bar0->rmac_addr_data0_mem);
4903                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4904                        &bar0->rmac_addr_data1_mem);
4905                 val64 = RMAC_ADDR_CMD_MEM_WE |
4906                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4907                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4908                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4909                 /* Wait till command completes */
4910                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4911                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4912                                       S2IO_BIT_RESET, may_sleep);
4913
4914                 sp->m_cast_flg = 1;
4915                 sp->all_multi_pos = config->max_mc_addr - 1;
4916         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4917                 /*  Disable all Multicast addresses */
4918                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4919                        &bar0->rmac_addr_data0_mem);
4920                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4921                        &bar0->rmac_addr_data1_mem);
4922                 val64 = RMAC_ADDR_CMD_MEM_WE |
4923                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4924                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4925                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4926                 /* Wait till command completes */
4927                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4928                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4929                                       S2IO_BIT_RESET, may_sleep);
4930
4931                 sp->m_cast_flg = 0;
4932                 sp->all_multi_pos = 0;
4933         }
4934
4935         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4936                 /*  Put the NIC into promiscuous mode */
4937                 add = &bar0->mac_cfg;
4938                 val64 = readq(&bar0->mac_cfg);
4939                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4940
4941                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4942                 writel((u32)val64, add);
4943                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4944                 writel((u32) (val64 >> 32), (add + 4));
4945
4946                 if (vlan_tag_strip != 1) {
4947                         val64 = readq(&bar0->rx_pa_cfg);
4948                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4949                         writeq(val64, &bar0->rx_pa_cfg);
4950                         sp->vlan_strip_flag = 0;
4951                 }
4952
4953                 val64 = readq(&bar0->mac_cfg);
4954                 sp->promisc_flg = 1;
4955                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4956                           dev->name);
4957         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4958                 /*  Remove the NIC from promiscuous mode */
4959                 add = &bar0->mac_cfg;
4960                 val64 = readq(&bar0->mac_cfg);
4961                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4962
4963                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4964                 writel((u32)val64, add);
4965                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4966                 writel((u32) (val64 >> 32), (add + 4));
4967
4968                 if (vlan_tag_strip != 0) {
4969                         val64 = readq(&bar0->rx_pa_cfg);
4970                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4971                         writeq(val64, &bar0->rx_pa_cfg);
4972                         sp->vlan_strip_flag = 1;
4973                 }
4974
4975                 val64 = readq(&bar0->mac_cfg);
4976                 sp->promisc_flg = 0;
4977                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
4978         }
4979
4980         /*  Update individual M_CAST address list */
4981         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
4982                 if (netdev_mc_count(dev) >
4983                     (config->max_mc_addr - config->max_mac_addr)) {
4984                         DBG_PRINT(ERR_DBG,
4985                                   "%s: No more Rx filters can be added - "
4986                                   "please enable ALL_MULTI instead\n",
4987                                   dev->name);
4988                         return;
4989                 }
4990
4991                 prev_cnt = sp->mc_addr_count;
4992                 sp->mc_addr_count = netdev_mc_count(dev);
4993
4994                 /* Clear out the previous list of Mc in the H/W. */
4995                 for (i = 0; i < prev_cnt; i++) {
4996                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4997                                &bar0->rmac_addr_data0_mem);
4998                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4999                                &bar0->rmac_addr_data1_mem);
5000                         val64 = RMAC_ADDR_CMD_MEM_WE |
5001                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5002                                 RMAC_ADDR_CMD_MEM_OFFSET
5003                                 (config->mc_start_offset + i);
5004                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5005
5006                         /* Wait for command completes */
5007                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5008                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5009                                                   S2IO_BIT_RESET, may_sleep)) {
5010                                 DBG_PRINT(ERR_DBG,
5011                                           "%s: Adding Multicasts failed\n",
5012                                           dev->name);
5013                                 return;
5014                         }
5015                 }
5016
5017                 /* Create the new Rx filter list and update the same in H/W. */
5018                 i = 0;
5019                 netdev_for_each_mc_addr(ha, dev) {
5020                         mac_addr = 0;
5021                         for (j = 0; j < ETH_ALEN; j++) {
5022                                 mac_addr |= ha->addr[j];
5023                                 mac_addr <<= 8;
5024                         }
5025                         mac_addr >>= 8;
5026                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5027                                &bar0->rmac_addr_data0_mem);
5028                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5029                                &bar0->rmac_addr_data1_mem);
5030                         val64 = RMAC_ADDR_CMD_MEM_WE |
5031                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5032                                 RMAC_ADDR_CMD_MEM_OFFSET
5033                                 (i + config->mc_start_offset);
5034                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5035
5036                         /* Wait for command completes */
5037                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5038                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5039                                                   S2IO_BIT_RESET, may_sleep)) {
5040                                 DBG_PRINT(ERR_DBG,
5041                                           "%s: Adding Multicasts failed\n",
5042                                           dev->name);
5043                                 return;
5044                         }
5045                         i++;
5046                 }
5047         }
5048 }
5049
5050 /* NDO wrapper for s2io_set_multicast */
5051 static void s2io_ndo_set_multicast(struct net_device *dev)
5052 {
5053         s2io_set_multicast(dev, false);
5054 }
5055
5056 /* read from CAM unicast & multicast addresses and store it in
5057  * def_mac_addr structure
5058  */
5059 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5060 {
5061         int offset;
5062         u64 mac_addr = 0x0;
5063         struct config_param *config = &sp->config;
5064
5065         /* store unicast & multicast mac addresses */
5066         for (offset = 0; offset < config->max_mc_addr; offset++) {
5067                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5068                 /* if read fails disable the entry */
5069                 if (mac_addr == FAILURE)
5070                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5071                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5072         }
5073 }
5074
5075 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5076 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5077 {
5078         int offset;
5079         struct config_param *config = &sp->config;
5080         /* restore unicast mac address */
5081         for (offset = 0; offset < config->max_mac_addr; offset++)
5082                 do_s2io_prog_unicast(sp->dev,
5083                                      sp->def_mac_addr[offset].mac_addr);
5084
5085         /* restore multicast mac address */
5086         for (offset = config->mc_start_offset;
5087              offset < config->max_mc_addr; offset++)
5088                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5089 }
5090
5091 /* add a multicast MAC address to CAM */
5092 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5093 {
5094         int i;
5095         u64 mac_addr;
5096         struct config_param *config = &sp->config;
5097
5098         mac_addr = ether_addr_to_u64(addr);
5099         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5100                 return SUCCESS;
5101
5102         /* check if the multicast mac already preset in CAM */
5103         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5104                 u64 tmp64;
5105                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5106                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5107                         break;
5108
5109                 if (tmp64 == mac_addr)
5110                         return SUCCESS;
5111         }
5112         if (i == config->max_mc_addr) {
5113                 DBG_PRINT(ERR_DBG,
5114                           "CAM full no space left for multicast MAC\n");
5115                 return FAILURE;
5116         }
5117         /* Update the internal structure with this new mac address */
5118         do_s2io_copy_mac_addr(sp, i, mac_addr);
5119
5120         return do_s2io_add_mac(sp, mac_addr, i);
5121 }
5122
5123 /* add MAC address to CAM */
5124 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5125 {
5126         u64 val64;
5127         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5128
5129         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5130                &bar0->rmac_addr_data0_mem);
5131
5132         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5133                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5134         writeq(val64, &bar0->rmac_addr_cmd_mem);
5135
5136         /* Wait till command completes */
5137         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5138                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5139                                   S2IO_BIT_RESET, true)) {
5140                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5141                 return FAILURE;
5142         }
5143         return SUCCESS;
5144 }
5145 /* deletes a specified unicast/multicast mac entry from CAM */
5146 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5147 {
5148         int offset;
5149         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5150         struct config_param *config = &sp->config;
5151
5152         for (offset = 1;
5153              offset < config->max_mc_addr; offset++) {
5154                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5155                 if (tmp64 == addr) {
5156                         /* disable the entry by writing  0xffffffffffffULL */
5157                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5158                                 return FAILURE;
5159                         /* store the new mac list from CAM */
5160                         do_s2io_store_unicast_mc(sp);
5161                         return SUCCESS;
5162                 }
5163         }
5164         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5165                   (unsigned long long)addr);
5166         return FAILURE;
5167 }
5168
5169 /* read mac entries from CAM */
5170 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5171 {
5172         u64 tmp64, val64;
5173         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5174
5175         /* read mac addr */
5176         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5177                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5178         writeq(val64, &bar0->rmac_addr_cmd_mem);
5179
5180         /* Wait till command completes */
5181         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5182                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5183                                   S2IO_BIT_RESET, true)) {
5184                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5185                 return FAILURE;
5186         }
5187         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5188
5189         return tmp64 >> 16;
5190 }
5191
5192 /*
5193  * s2io_set_mac_addr - driver entry point
5194  */
5195
5196 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5197 {
5198         struct sockaddr *addr = p;
5199
5200         if (!is_valid_ether_addr(addr->sa_data))
5201                 return -EADDRNOTAVAIL;
5202
5203         eth_hw_addr_set(dev, addr->sa_data);
5204
5205         /* store the MAC address in CAM */
5206         return do_s2io_prog_unicast(dev, dev->dev_addr);
5207 }
5208 /**
5209  *  do_s2io_prog_unicast - Programs the Xframe mac address
5210  *  @dev : pointer to the device structure.
5211  *  @addr: a uchar pointer to the new mac address which is to be set.
5212  *  Description : This procedure will program the Xframe to receive
5213  *  frames with new Mac Address
5214  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5215  *  as defined in errno.h file on failure.
5216  */
5217
5218 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr)
5219 {
5220         struct s2io_nic *sp = netdev_priv(dev);
5221         register u64 mac_addr, perm_addr;
5222         int i;
5223         u64 tmp64;
5224         struct config_param *config = &sp->config;
5225
5226         /*
5227          * Set the new MAC address as the new unicast filter and reflect this
5228          * change on the device address registered with the OS. It will be
5229          * at offset 0.
5230          */
5231         mac_addr = ether_addr_to_u64(addr);
5232         perm_addr = ether_addr_to_u64(sp->def_mac_addr[0].mac_addr);
5233
5234         /* check if the dev_addr is different than perm_addr */
5235         if (mac_addr == perm_addr)
5236                 return SUCCESS;
5237
5238         /* check if the mac already preset in CAM */
5239         for (i = 1; i < config->max_mac_addr; i++) {
5240                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5241                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5242                         break;
5243
5244                 if (tmp64 == mac_addr) {
5245                         DBG_PRINT(INFO_DBG,
5246                                   "MAC addr:0x%llx already present in CAM\n",
5247                                   (unsigned long long)mac_addr);
5248                         return SUCCESS;
5249                 }
5250         }
5251         if (i == config->max_mac_addr) {
5252                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5253                 return FAILURE;
5254         }
5255         /* Update the internal structure with this new mac address */
5256         do_s2io_copy_mac_addr(sp, i, mac_addr);
5257
5258         return do_s2io_add_mac(sp, mac_addr, i);
5259 }
5260
5261 /**
5262  * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5263  * @dev : pointer to netdev
5264  * @cmd: pointer to the structure with parameters given by ethtool to set
5265  * link information.
5266  * Description:
5267  * The function sets different link parameters provided by the user onto
5268  * the NIC.
5269  * Return value:
5270  * 0 on success.
5271  */
5272
5273 static int
5274 s2io_ethtool_set_link_ksettings(struct net_device *dev,
5275                                 const struct ethtool_link_ksettings *cmd)
5276 {
5277         struct s2io_nic *sp = netdev_priv(dev);
5278         if ((cmd->base.autoneg == AUTONEG_ENABLE) ||
5279             (cmd->base.speed != SPEED_10000) ||
5280             (cmd->base.duplex != DUPLEX_FULL))
5281                 return -EINVAL;
5282         else {
5283                 s2io_close(sp->dev);
5284                 s2io_open(sp->dev);
5285         }
5286
5287         return 0;
5288 }
5289
5290 /**
5291  * s2io_ethtool_get_link_ksettings - Return link specific information.
5292  * @dev: pointer to netdev
5293  * @cmd : pointer to the structure with parameters given by ethtool
5294  * to return link information.
5295  * Description:
5296  * Returns link specific information like speed, duplex etc.. to ethtool.
5297  * Return value :
5298  * return 0 on success.
5299  */
5300
5301 static int
5302 s2io_ethtool_get_link_ksettings(struct net_device *dev,
5303                                 struct ethtool_link_ksettings *cmd)
5304 {
5305         struct s2io_nic *sp = netdev_priv(dev);
5306
5307         ethtool_link_ksettings_zero_link_mode(cmd, supported);
5308         ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full);
5309         ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE);
5310
5311         ethtool_link_ksettings_zero_link_mode(cmd, advertising);
5312         ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full);
5313         ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE);
5314
5315         cmd->base.port = PORT_FIBRE;
5316
5317         if (netif_carrier_ok(sp->dev)) {
5318                 cmd->base.speed = SPEED_10000;
5319                 cmd->base.duplex = DUPLEX_FULL;
5320         } else {
5321                 cmd->base.speed = SPEED_UNKNOWN;
5322                 cmd->base.duplex = DUPLEX_UNKNOWN;
5323         }
5324
5325         cmd->base.autoneg = AUTONEG_DISABLE;
5326         return 0;
5327 }
5328
5329 /**
5330  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5331  * @dev: pointer to netdev
5332  * @info : pointer to the structure with parameters given by ethtool to
5333  * return driver information.
5334  * Description:
5335  * Returns driver specefic information like name, version etc.. to ethtool.
5336  * Return value:
5337  *  void
5338  */
5339
5340 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5341                                   struct ethtool_drvinfo *info)
5342 {
5343         struct s2io_nic *sp = netdev_priv(dev);
5344
5345         strscpy(info->driver, s2io_driver_name, sizeof(info->driver));
5346         strscpy(info->version, s2io_driver_version, sizeof(info->version));
5347         strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5348 }
5349
5350 /**
5351  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5352  *  @dev: pointer to netdev
5353  *  @regs : pointer to the structure with parameters given by ethtool for
5354  *          dumping the registers.
5355  *  @space: The input argument into which all the registers are dumped.
5356  *  Description:
5357  *  Dumps the entire register space of xFrame NIC into the user given
5358  *  buffer area.
5359  * Return value :
5360  * void .
5361  */
5362
5363 static void s2io_ethtool_gregs(struct net_device *dev,
5364                                struct ethtool_regs *regs, void *space)
5365 {
5366         int i;
5367         u64 reg;
5368         u8 *reg_space = (u8 *)space;
5369         struct s2io_nic *sp = netdev_priv(dev);
5370
5371         regs->len = XENA_REG_SPACE;
5372         regs->version = sp->pdev->subsystem_device;
5373
5374         for (i = 0; i < regs->len; i += 8) {
5375                 reg = readq(sp->bar0 + i);
5376                 memcpy((reg_space + i), &reg, 8);
5377         }
5378 }
5379
5380 /*
5381  *  s2io_set_led - control NIC led
5382  */
5383 static void s2io_set_led(struct s2io_nic *sp, bool on)
5384 {
5385         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5386         u16 subid = sp->pdev->subsystem_device;
5387         u64 val64;
5388
5389         if ((sp->device_type == XFRAME_II_DEVICE) ||
5390             ((subid & 0xFF) >= 0x07)) {
5391                 val64 = readq(&bar0->gpio_control);
5392                 if (on)
5393                         val64 |= GPIO_CTRL_GPIO_0;
5394                 else
5395                         val64 &= ~GPIO_CTRL_GPIO_0;
5396
5397                 writeq(val64, &bar0->gpio_control);
5398         } else {
5399                 val64 = readq(&bar0->adapter_control);
5400                 if (on)
5401                         val64 |= ADAPTER_LED_ON;
5402                 else
5403                         val64 &= ~ADAPTER_LED_ON;
5404
5405                 writeq(val64, &bar0->adapter_control);
5406         }
5407
5408 }
5409
5410 /**
5411  * s2io_ethtool_set_led - To physically identify the nic on the system.
5412  * @dev : network device
5413  * @state: led setting
5414  *
5415  * Description: Used to physically identify the NIC on the system.
5416  * The Link LED will blink for a time specified by the user for
5417  * identification.
5418  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5419  * identification is possible only if it's link is up.
5420  */
5421
5422 static int s2io_ethtool_set_led(struct net_device *dev,
5423                                 enum ethtool_phys_id_state state)
5424 {
5425         struct s2io_nic *sp = netdev_priv(dev);
5426         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5427         u16 subid = sp->pdev->subsystem_device;
5428
5429         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5430                 u64 val64 = readq(&bar0->adapter_control);
5431                 if (!(val64 & ADAPTER_CNTL_EN)) {
5432                         pr_err("Adapter Link down, cannot blink LED\n");
5433                         return -EAGAIN;
5434                 }
5435         }
5436
5437         switch (state) {
5438         case ETHTOOL_ID_ACTIVE:
5439                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5440                 return 1;       /* cycle on/off once per second */
5441
5442         case ETHTOOL_ID_ON:
5443                 s2io_set_led(sp, true);
5444                 break;
5445
5446         case ETHTOOL_ID_OFF:
5447                 s2io_set_led(sp, false);
5448                 break;
5449
5450         case ETHTOOL_ID_INACTIVE:
5451                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5452                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5453         }
5454
5455         return 0;
5456 }
5457
5458 static void
5459 s2io_ethtool_gringparam(struct net_device *dev,
5460                         struct ethtool_ringparam *ering,
5461                         struct kernel_ethtool_ringparam *kernel_ering,
5462                         struct netlink_ext_ack *extack)
5463 {
5464         struct s2io_nic *sp = netdev_priv(dev);
5465         int i, tx_desc_count = 0, rx_desc_count = 0;
5466
5467         if (sp->rxd_mode == RXD_MODE_1) {
5468                 ering->rx_max_pending = MAX_RX_DESC_1;
5469                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5470         } else {
5471                 ering->rx_max_pending = MAX_RX_DESC_2;
5472                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5473         }
5474
5475         ering->tx_max_pending = MAX_TX_DESC;
5476
5477         for (i = 0; i < sp->config.rx_ring_num; i++)
5478                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5479         ering->rx_pending = rx_desc_count;
5480         ering->rx_jumbo_pending = rx_desc_count;
5481
5482         for (i = 0; i < sp->config.tx_fifo_num; i++)
5483                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5484         ering->tx_pending = tx_desc_count;
5485         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5486 }
5487
5488 /**
5489  * s2io_ethtool_getpause_data -Pause frame generation and reception.
5490  * @dev: pointer to netdev
5491  * @ep : pointer to the structure with pause parameters given by ethtool.
5492  * Description:
5493  * Returns the Pause frame generation and reception capability of the NIC.
5494  * Return value:
5495  *  void
5496  */
5497 static void s2io_ethtool_getpause_data(struct net_device *dev,
5498                                        struct ethtool_pauseparam *ep)
5499 {
5500         u64 val64;
5501         struct s2io_nic *sp = netdev_priv(dev);
5502         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5503
5504         val64 = readq(&bar0->rmac_pause_cfg);
5505         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5506                 ep->tx_pause = true;
5507         if (val64 & RMAC_PAUSE_RX_ENABLE)
5508                 ep->rx_pause = true;
5509         ep->autoneg = false;
5510 }
5511
5512 /**
5513  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5514  * @dev: pointer to netdev
5515  * @ep : pointer to the structure with pause parameters given by ethtool.
5516  * Description:
5517  * It can be used to set or reset Pause frame generation or reception
5518  * support of the NIC.
5519  * Return value:
5520  * int, returns 0 on Success
5521  */
5522
5523 static int s2io_ethtool_setpause_data(struct net_device *dev,
5524                                       struct ethtool_pauseparam *ep)
5525 {
5526         u64 val64;
5527         struct s2io_nic *sp = netdev_priv(dev);
5528         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5529
5530         val64 = readq(&bar0->rmac_pause_cfg);
5531         if (ep->tx_pause)
5532                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5533         else
5534                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5535         if (ep->rx_pause)
5536                 val64 |= RMAC_PAUSE_RX_ENABLE;
5537         else
5538                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5539         writeq(val64, &bar0->rmac_pause_cfg);
5540         return 0;
5541 }
5542
5543 #define S2IO_DEV_ID             5
5544 /**
5545  * read_eeprom - reads 4 bytes of data from user given offset.
5546  * @sp : private member of the device structure, which is a pointer to the
5547  *      s2io_nic structure.
5548  * @off : offset at which the data must be written
5549  * @data : Its an output parameter where the data read at the given
5550  *      offset is stored.
5551  * Description:
5552  * Will read 4 bytes of data from the user given offset and return the
5553  * read data.
5554  * NOTE: Will allow to read only part of the EEPROM visible through the
5555  *   I2C bus.
5556  * Return value:
5557  *  -1 on failure and 0 on success.
5558  */
5559 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5560 {
5561         int ret = -1;
5562         u32 exit_cnt = 0;
5563         u64 val64;
5564         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5565
5566         if (sp->device_type == XFRAME_I_DEVICE) {
5567                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5568                         I2C_CONTROL_ADDR(off) |
5569                         I2C_CONTROL_BYTE_CNT(0x3) |
5570                         I2C_CONTROL_READ |
5571                         I2C_CONTROL_CNTL_START;
5572                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5573
5574                 while (exit_cnt < 5) {
5575                         val64 = readq(&bar0->i2c_control);
5576                         if (I2C_CONTROL_CNTL_END(val64)) {
5577                                 *data = I2C_CONTROL_GET_DATA(val64);
5578                                 ret = 0;
5579                                 break;
5580                         }
5581                         msleep(50);
5582                         exit_cnt++;
5583                 }
5584         }
5585
5586         if (sp->device_type == XFRAME_II_DEVICE) {
5587                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5588                         SPI_CONTROL_BYTECNT(0x3) |
5589                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5590                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5591                 val64 |= SPI_CONTROL_REQ;
5592                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5593                 while (exit_cnt < 5) {
5594                         val64 = readq(&bar0->spi_control);
5595                         if (val64 & SPI_CONTROL_NACK) {
5596                                 ret = 1;
5597                                 break;
5598                         } else if (val64 & SPI_CONTROL_DONE) {
5599                                 *data = readq(&bar0->spi_data);
5600                                 *data &= 0xffffff;
5601                                 ret = 0;
5602                                 break;
5603                         }
5604                         msleep(50);
5605                         exit_cnt++;
5606                 }
5607         }
5608         return ret;
5609 }
5610
5611 /**
5612  *  write_eeprom - actually writes the relevant part of the data value.
5613  *  @sp : private member of the device structure, which is a pointer to the
5614  *       s2io_nic structure.
5615  *  @off : offset at which the data must be written
5616  *  @data : The data that is to be written
5617  *  @cnt : Number of bytes of the data that are actually to be written into
5618  *  the Eeprom. (max of 3)
5619  * Description:
5620  *  Actually writes the relevant part of the data value into the Eeprom
5621  *  through the I2C bus.
5622  * Return value:
5623  *  0 on success, -1 on failure.
5624  */
5625
5626 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5627 {
5628         int exit_cnt = 0, ret = -1;
5629         u64 val64;
5630         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5631
5632         if (sp->device_type == XFRAME_I_DEVICE) {
5633                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5634                         I2C_CONTROL_ADDR(off) |
5635                         I2C_CONTROL_BYTE_CNT(cnt) |
5636                         I2C_CONTROL_SET_DATA((u32)data) |
5637                         I2C_CONTROL_CNTL_START;
5638                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5639
5640                 while (exit_cnt < 5) {
5641                         val64 = readq(&bar0->i2c_control);
5642                         if (I2C_CONTROL_CNTL_END(val64)) {
5643                                 if (!(val64 & I2C_CONTROL_NACK))
5644                                         ret = 0;
5645                                 break;
5646                         }
5647                         msleep(50);
5648                         exit_cnt++;
5649                 }
5650         }
5651
5652         if (sp->device_type == XFRAME_II_DEVICE) {
5653                 int write_cnt = (cnt == 8) ? 0 : cnt;
5654                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5655
5656                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657                         SPI_CONTROL_BYTECNT(write_cnt) |
5658                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5659                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660                 val64 |= SPI_CONTROL_REQ;
5661                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662                 while (exit_cnt < 5) {
5663                         val64 = readq(&bar0->spi_control);
5664                         if (val64 & SPI_CONTROL_NACK) {
5665                                 ret = 1;
5666                                 break;
5667                         } else if (val64 & SPI_CONTROL_DONE) {
5668                                 ret = 0;
5669                                 break;
5670                         }
5671                         msleep(50);
5672                         exit_cnt++;
5673                 }
5674         }
5675         return ret;
5676 }
5677 static void s2io_vpd_read(struct s2io_nic *nic)
5678 {
5679         u8 *vpd_data;
5680         u8 data;
5681         int i = 0, cnt, len, fail = 0;
5682         int vpd_addr = 0x80;
5683         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5684
5685         if (nic->device_type == XFRAME_II_DEVICE) {
5686                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5687                 vpd_addr = 0x80;
5688         } else {
5689                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5690                 vpd_addr = 0x50;
5691         }
5692         strcpy(nic->serial_num, "NOT AVAILABLE");
5693
5694         vpd_data = kmalloc(256, GFP_KERNEL);
5695         if (!vpd_data) {
5696                 swstats->mem_alloc_fail_cnt++;
5697                 return;
5698         }
5699         swstats->mem_allocated += 256;
5700
5701         for (i = 0; i < 256; i += 4) {
5702                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5703                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5704                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5705                 for (cnt = 0; cnt < 5; cnt++) {
5706                         msleep(2);
5707                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5708                         if (data == 0x80)
5709                                 break;
5710                 }
5711                 if (cnt >= 5) {
5712                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5713                         fail = 1;
5714                         break;
5715                 }
5716                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5717                                       (u32 *)&vpd_data[i]);
5718         }
5719
5720         if (!fail) {
5721                 /* read serial number of adapter */
5722                 for (cnt = 0; cnt < 252; cnt++) {
5723                         if ((vpd_data[cnt] == 'S') &&
5724                             (vpd_data[cnt+1] == 'N')) {
5725                                 len = vpd_data[cnt+2];
5726                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5727                                         memcpy(nic->serial_num,
5728                                                &vpd_data[cnt + 3],
5729                                                len);
5730                                         memset(nic->serial_num+len,
5731                                                0,
5732                                                VPD_STRING_LEN-len);
5733                                         break;
5734                                 }
5735                         }
5736                 }
5737         }
5738
5739         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5740                 len = vpd_data[1];
5741                 memcpy(nic->product_name, &vpd_data[3], len);
5742                 nic->product_name[len] = 0;
5743         }
5744         kfree(vpd_data);
5745         swstats->mem_freed += 256;
5746 }
5747
5748 /**
5749  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5750  *  @dev: pointer to netdev
5751  *  @eeprom : pointer to the user level structure provided by ethtool,
5752  *  containing all relevant information.
5753  *  @data_buf : user defined value to be written into Eeprom.
5754  *  Description: Reads the values stored in the Eeprom at given offset
5755  *  for a given length. Stores these values int the input argument data
5756  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5757  *  Return value:
5758  *  int  0 on success
5759  */
5760
5761 static int s2io_ethtool_geeprom(struct net_device *dev,
5762                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5763 {
5764         u32 i, valid;
5765         u64 data;
5766         struct s2io_nic *sp = netdev_priv(dev);
5767
5768         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5769
5770         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5771                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5772
5773         for (i = 0; i < eeprom->len; i += 4) {
5774                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5775                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5776                         return -EFAULT;
5777                 }
5778                 valid = INV(data);
5779                 memcpy((data_buf + i), &valid, 4);
5780         }
5781         return 0;
5782 }
5783
5784 /**
5785  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5786  *  @dev: pointer to netdev
5787  *  @eeprom : pointer to the user level structure provided by ethtool,
5788  *  containing all relevant information.
5789  *  @data_buf : user defined value to be written into Eeprom.
5790  *  Description:
5791  *  Tries to write the user provided value in the Eeprom, at the offset
5792  *  given by the user.
5793  *  Return value:
5794  *  0 on success, -EFAULT on failure.
5795  */
5796
5797 static int s2io_ethtool_seeprom(struct net_device *dev,
5798                                 struct ethtool_eeprom *eeprom,
5799                                 u8 *data_buf)
5800 {
5801         int len = eeprom->len, cnt = 0;
5802         u64 valid = 0, data;
5803         struct s2io_nic *sp = netdev_priv(dev);
5804
5805         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5806                 DBG_PRINT(ERR_DBG,
5807                           "ETHTOOL_WRITE_EEPROM Err: "
5808                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5809                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5810                           eeprom->magic);
5811                 return -EFAULT;
5812         }
5813
5814         while (len) {
5815                 data = (u32)data_buf[cnt] & 0x000000FF;
5816                 if (data)
5817                         valid = (u32)(data << 24);
5818                 else
5819                         valid = data;
5820
5821                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5822                         DBG_PRINT(ERR_DBG,
5823                                   "ETHTOOL_WRITE_EEPROM Err: "
5824                                   "Cannot write into the specified offset\n");
5825                         return -EFAULT;
5826                 }
5827                 cnt++;
5828                 len--;
5829         }
5830
5831         return 0;
5832 }
5833
5834 /**
5835  * s2io_register_test - reads and writes into all clock domains.
5836  * @sp : private member of the device structure, which is a pointer to the
5837  * s2io_nic structure.
5838  * @data : variable that returns the result of each of the test conducted b
5839  * by the driver.
5840  * Description:
5841  * Read and write into all clock domains. The NIC has 3 clock domains,
5842  * see that registers in all the three regions are accessible.
5843  * Return value:
5844  * 0 on success.
5845  */
5846
5847 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5848 {
5849         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5850         u64 val64 = 0, exp_val;
5851         int fail = 0;
5852
5853         val64 = readq(&bar0->pif_rd_swapper_fb);
5854         if (val64 != 0x123456789abcdefULL) {
5855                 fail = 1;
5856                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5857         }
5858
5859         val64 = readq(&bar0->rmac_pause_cfg);
5860         if (val64 != 0xc000ffff00000000ULL) {
5861                 fail = 1;
5862                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5863         }
5864
5865         val64 = readq(&bar0->rx_queue_cfg);
5866         if (sp->device_type == XFRAME_II_DEVICE)
5867                 exp_val = 0x0404040404040404ULL;
5868         else
5869                 exp_val = 0x0808080808080808ULL;
5870         if (val64 != exp_val) {
5871                 fail = 1;
5872                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5873         }
5874
5875         val64 = readq(&bar0->xgxs_efifo_cfg);
5876         if (val64 != 0x000000001923141EULL) {
5877                 fail = 1;
5878                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5879         }
5880
5881         val64 = 0x5A5A5A5A5A5A5A5AULL;
5882         writeq(val64, &bar0->xmsi_data);
5883         val64 = readq(&bar0->xmsi_data);
5884         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5885                 fail = 1;
5886                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5887         }
5888
5889         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5890         writeq(val64, &bar0->xmsi_data);
5891         val64 = readq(&bar0->xmsi_data);
5892         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5893                 fail = 1;
5894                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5895         }
5896
5897         *data = fail;
5898         return fail;
5899 }
5900
5901 /**
5902  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5903  * @sp : private member of the device structure, which is a pointer to the
5904  * s2io_nic structure.
5905  * @data:variable that returns the result of each of the test conducted by
5906  * the driver.
5907  * Description:
5908  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5909  * register.
5910  * Return value:
5911  * 0 on success.
5912  */
5913
5914 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5915 {
5916         int fail = 0;
5917         u64 ret_data, org_4F0, org_7F0;
5918         u8 saved_4F0 = 0, saved_7F0 = 0;
5919         struct net_device *dev = sp->dev;
5920
5921         /* Test Write Error at offset 0 */
5922         /* Note that SPI interface allows write access to all areas
5923          * of EEPROM. Hence doing all negative testing only for Xframe I.
5924          */
5925         if (sp->device_type == XFRAME_I_DEVICE)
5926                 if (!write_eeprom(sp, 0, 0, 3))
5927                         fail = 1;
5928
5929         /* Save current values at offsets 0x4F0 and 0x7F0 */
5930         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5931                 saved_4F0 = 1;
5932         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5933                 saved_7F0 = 1;
5934
5935         /* Test Write at offset 4f0 */
5936         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5937                 fail = 1;
5938         if (read_eeprom(sp, 0x4F0, &ret_data))
5939                 fail = 1;
5940
5941         if (ret_data != 0x012345) {
5942                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5943                           "Data written %llx Data read %llx\n",
5944                           dev->name, (unsigned long long)0x12345,
5945                           (unsigned long long)ret_data);
5946                 fail = 1;
5947         }
5948
5949         /* Reset the EEPROM data go FFFF */
5950         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5951
5952         /* Test Write Request Error at offset 0x7c */
5953         if (sp->device_type == XFRAME_I_DEVICE)
5954                 if (!write_eeprom(sp, 0x07C, 0, 3))
5955                         fail = 1;
5956
5957         /* Test Write Request at offset 0x7f0 */
5958         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5959                 fail = 1;
5960         if (read_eeprom(sp, 0x7F0, &ret_data))
5961                 fail = 1;
5962
5963         if (ret_data != 0x012345) {
5964                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5965                           "Data written %llx Data read %llx\n",
5966                           dev->name, (unsigned long long)0x12345,
5967                           (unsigned long long)ret_data);
5968                 fail = 1;
5969         }
5970
5971         /* Reset the EEPROM data go FFFF */
5972         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5973
5974         if (sp->device_type == XFRAME_I_DEVICE) {
5975                 /* Test Write Error at offset 0x80 */
5976                 if (!write_eeprom(sp, 0x080, 0, 3))
5977                         fail = 1;
5978
5979                 /* Test Write Error at offset 0xfc */
5980                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5981                         fail = 1;
5982
5983                 /* Test Write Error at offset 0x100 */
5984                 if (!write_eeprom(sp, 0x100, 0, 3))
5985                         fail = 1;
5986
5987                 /* Test Write Error at offset 4ec */
5988                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5989                         fail = 1;
5990         }
5991
5992         /* Restore values at offsets 0x4F0 and 0x7F0 */
5993         if (saved_4F0)
5994                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5995         if (saved_7F0)
5996                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5997
5998         *data = fail;
5999         return fail;
6000 }
6001
6002 /**
6003  * s2io_bist_test - invokes the MemBist test of the card .
6004  * @sp : private member of the device structure, which is a pointer to the
6005  * s2io_nic structure.
6006  * @data:variable that returns the result of each of the test conducted by
6007  * the driver.
6008  * Description:
6009  * This invokes the MemBist test of the card. We give around
6010  * 2 secs time for the Test to complete. If it's still not complete
6011  * within this peiod, we consider that the test failed.
6012  * Return value:
6013  * 0 on success and -1 on failure.
6014  */
6015
6016 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6017 {
6018         u8 bist = 0;
6019         int cnt = 0, ret = -1;
6020
6021         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6022         bist |= PCI_BIST_START;
6023         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6024
6025         while (cnt < 20) {
6026                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6027                 if (!(bist & PCI_BIST_START)) {
6028                         *data = (bist & PCI_BIST_CODE_MASK);
6029                         ret = 0;
6030                         break;
6031                 }
6032                 msleep(100);
6033                 cnt++;
6034         }
6035
6036         return ret;
6037 }
6038
6039 /**
6040  * s2io_link_test - verifies the link state of the nic
6041  * @sp: private member of the device structure, which is a pointer to the
6042  * s2io_nic structure.
6043  * @data: variable that returns the result of each of the test conducted by
6044  * the driver.
6045  * Description:
6046  * The function verifies the link state of the NIC and updates the input
6047  * argument 'data' appropriately.
6048  * Return value:
6049  * 0 on success.
6050  */
6051
6052 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6053 {
6054         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6055         u64 val64;
6056
6057         val64 = readq(&bar0->adapter_status);
6058         if (!(LINK_IS_UP(val64)))
6059                 *data = 1;
6060         else
6061                 *data = 0;
6062
6063         return *data;
6064 }
6065
6066 /**
6067  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6068  * @sp: private member of the device structure, which is a pointer to the
6069  * s2io_nic structure.
6070  * @data: variable that returns the result of each of the test
6071  * conducted by the driver.
6072  * Description:
6073  *  This is one of the offline test that tests the read and write
6074  *  access to the RldRam chip on the NIC.
6075  * Return value:
6076  *  0 on success.
6077  */
6078
6079 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6080 {
6081         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6082         u64 val64;
6083         int cnt, iteration = 0, test_fail = 0;
6084
6085         val64 = readq(&bar0->adapter_control);
6086         val64 &= ~ADAPTER_ECC_EN;
6087         writeq(val64, &bar0->adapter_control);
6088
6089         val64 = readq(&bar0->mc_rldram_test_ctrl);
6090         val64 |= MC_RLDRAM_TEST_MODE;
6091         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6092
6093         val64 = readq(&bar0->mc_rldram_mrs);
6094         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6095         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6096
6097         val64 |= MC_RLDRAM_MRS_ENABLE;
6098         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6099
6100         while (iteration < 2) {
6101                 val64 = 0x55555555aaaa0000ULL;
6102                 if (iteration == 1)
6103                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6104                 writeq(val64, &bar0->mc_rldram_test_d0);
6105
6106                 val64 = 0xaaaa5a5555550000ULL;
6107                 if (iteration == 1)
6108                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6109                 writeq(val64, &bar0->mc_rldram_test_d1);
6110
6111                 val64 = 0x55aaaaaaaa5a0000ULL;
6112                 if (iteration == 1)
6113                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6114                 writeq(val64, &bar0->mc_rldram_test_d2);
6115
6116                 val64 = (u64) (0x0000003ffffe0100ULL);
6117                 writeq(val64, &bar0->mc_rldram_test_add);
6118
6119                 val64 = MC_RLDRAM_TEST_MODE |
6120                         MC_RLDRAM_TEST_WRITE |
6121                         MC_RLDRAM_TEST_GO;
6122                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6123
6124                 for (cnt = 0; cnt < 5; cnt++) {
6125                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6126                         if (val64 & MC_RLDRAM_TEST_DONE)
6127                                 break;
6128                         msleep(200);
6129                 }
6130
6131                 if (cnt == 5)
6132                         break;
6133
6134                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6135                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6136
6137                 for (cnt = 0; cnt < 5; cnt++) {
6138                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6139                         if (val64 & MC_RLDRAM_TEST_DONE)
6140                                 break;
6141                         msleep(500);
6142                 }
6143
6144                 if (cnt == 5)
6145                         break;
6146
6147                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6148                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6149                         test_fail = 1;
6150
6151                 iteration++;
6152         }
6153
6154         *data = test_fail;
6155
6156         /* Bring the adapter out of test mode */
6157         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6158
6159         return test_fail;
6160 }
6161
6162 /**
6163  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6164  *  @dev: pointer to netdev
6165  *  @ethtest : pointer to a ethtool command specific structure that will be
6166  *  returned to the user.
6167  *  @data : variable that returns the result of each of the test
6168  * conducted by the driver.
6169  * Description:
6170  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6171  *  the health of the card.
6172  * Return value:
6173  *  void
6174  */
6175
6176 static void s2io_ethtool_test(struct net_device *dev,
6177                               struct ethtool_test *ethtest,
6178                               uint64_t *data)
6179 {
6180         struct s2io_nic *sp = netdev_priv(dev);
6181         int orig_state = netif_running(sp->dev);
6182
6183         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6184                 /* Offline Tests. */
6185                 if (orig_state)
6186                         s2io_close(sp->dev);
6187
6188                 if (s2io_register_test(sp, &data[0]))
6189                         ethtest->flags |= ETH_TEST_FL_FAILED;
6190
6191                 s2io_reset(sp);
6192
6193                 if (s2io_rldram_test(sp, &data[3]))
6194                         ethtest->flags |= ETH_TEST_FL_FAILED;
6195
6196                 s2io_reset(sp);
6197
6198                 if (s2io_eeprom_test(sp, &data[1]))
6199                         ethtest->flags |= ETH_TEST_FL_FAILED;
6200
6201                 if (s2io_bist_test(sp, &data[4]))
6202                         ethtest->flags |= ETH_TEST_FL_FAILED;
6203
6204                 if (orig_state)
6205                         s2io_open(sp->dev);
6206
6207                 data[2] = 0;
6208         } else {
6209                 /* Online Tests. */
6210                 if (!orig_state) {
6211                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6212                                   dev->name);
6213                         data[0] = -1;
6214                         data[1] = -1;
6215                         data[2] = -1;
6216                         data[3] = -1;
6217                         data[4] = -1;
6218                 }
6219
6220                 if (s2io_link_test(sp, &data[2]))
6221                         ethtest->flags |= ETH_TEST_FL_FAILED;
6222
6223                 data[0] = 0;
6224                 data[1] = 0;
6225                 data[3] = 0;
6226                 data[4] = 0;
6227         }
6228 }
6229
6230 static void s2io_get_ethtool_stats(struct net_device *dev,
6231                                    struct ethtool_stats *estats,
6232                                    u64 *tmp_stats)
6233 {
6234         int i = 0, k;
6235         struct s2io_nic *sp = netdev_priv(dev);
6236         struct stat_block *stats = sp->mac_control.stats_info;
6237         struct swStat *swstats = &stats->sw_stat;
6238         struct xpakStat *xstats = &stats->xpak_stat;
6239
6240         s2io_updt_stats(sp);
6241         tmp_stats[i++] =
6242                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6243                 le32_to_cpu(stats->tmac_frms);
6244         tmp_stats[i++] =
6245                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6246                 le32_to_cpu(stats->tmac_data_octets);
6247         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6248         tmp_stats[i++] =
6249                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6250                 le32_to_cpu(stats->tmac_mcst_frms);
6251         tmp_stats[i++] =
6252                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6253                 le32_to_cpu(stats->tmac_bcst_frms);
6254         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6255         tmp_stats[i++] =
6256                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6257                 le32_to_cpu(stats->tmac_ttl_octets);
6258         tmp_stats[i++] =
6259                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6260                 le32_to_cpu(stats->tmac_ucst_frms);
6261         tmp_stats[i++] =
6262                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6263                 le32_to_cpu(stats->tmac_nucst_frms);
6264         tmp_stats[i++] =
6265                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6266                 le32_to_cpu(stats->tmac_any_err_frms);
6267         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6268         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6269         tmp_stats[i++] =
6270                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6271                 le32_to_cpu(stats->tmac_vld_ip);
6272         tmp_stats[i++] =
6273                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6274                 le32_to_cpu(stats->tmac_drop_ip);
6275         tmp_stats[i++] =
6276                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6277                 le32_to_cpu(stats->tmac_icmp);
6278         tmp_stats[i++] =
6279                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6280                 le32_to_cpu(stats->tmac_rst_tcp);
6281         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6282         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6283                 le32_to_cpu(stats->tmac_udp);
6284         tmp_stats[i++] =
6285                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6286                 le32_to_cpu(stats->rmac_vld_frms);
6287         tmp_stats[i++] =
6288                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6289                 le32_to_cpu(stats->rmac_data_octets);
6290         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6291         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6292         tmp_stats[i++] =
6293                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6294                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6295         tmp_stats[i++] =
6296                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6297                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6298         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6299         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6300         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6301         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6302         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6303         tmp_stats[i++] =
6304                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6305                 le32_to_cpu(stats->rmac_ttl_octets);
6306         tmp_stats[i++] =
6307                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6308                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6309         tmp_stats[i++] =
6310                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6311                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6314                 le32_to_cpu(stats->rmac_discarded_frms);
6315         tmp_stats[i++] =
6316                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6317                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6318         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6319         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6320         tmp_stats[i++] =
6321                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6322                 le32_to_cpu(stats->rmac_usized_frms);
6323         tmp_stats[i++] =
6324                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6325                 le32_to_cpu(stats->rmac_osized_frms);
6326         tmp_stats[i++] =
6327                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6328                 le32_to_cpu(stats->rmac_frag_frms);
6329         tmp_stats[i++] =
6330                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6331                 le32_to_cpu(stats->rmac_jabber_frms);
6332         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6333         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6334         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6335         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6336         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6337         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6338         tmp_stats[i++] =
6339                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6340                 le32_to_cpu(stats->rmac_ip);
6341         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6342         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6343         tmp_stats[i++] =
6344                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6345                 le32_to_cpu(stats->rmac_drop_ip);
6346         tmp_stats[i++] =
6347                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6348                 le32_to_cpu(stats->rmac_icmp);
6349         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6350         tmp_stats[i++] =
6351                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6352                 le32_to_cpu(stats->rmac_udp);
6353         tmp_stats[i++] =
6354                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6355                 le32_to_cpu(stats->rmac_err_drp_udp);
6356         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6357         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6358         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6359         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6360         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6361         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6362         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6363         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6364         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6365         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6366         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6367         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6368         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6369         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6370         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6371         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6372         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6375                 le32_to_cpu(stats->rmac_pause_cnt);
6376         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6377         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6378         tmp_stats[i++] =
6379                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6380                 le32_to_cpu(stats->rmac_accepted_ip);
6381         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6382         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6383         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6384         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6385         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6386         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6387         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6388         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6389         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6390         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6391         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6392         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6393         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6394         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6395         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6396         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6397         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6398         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6399         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6400
6401         /* Enhanced statistics exist only for Hercules */
6402         if (sp->device_type == XFRAME_II_DEVICE) {
6403                 tmp_stats[i++] =
6404                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6405                 tmp_stats[i++] =
6406                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6407                 tmp_stats[i++] =
6408                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6409                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6410                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6411                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6412                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6413                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6414                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6415                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6416                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6417                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6418                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6419                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6420                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6421                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6422         }
6423
6424         tmp_stats[i++] = 0;
6425         tmp_stats[i++] = swstats->single_ecc_errs;
6426         tmp_stats[i++] = swstats->double_ecc_errs;
6427         tmp_stats[i++] = swstats->parity_err_cnt;
6428         tmp_stats[i++] = swstats->serious_err_cnt;
6429         tmp_stats[i++] = swstats->soft_reset_cnt;
6430         tmp_stats[i++] = swstats->fifo_full_cnt;
6431         for (k = 0; k < MAX_RX_RINGS; k++)
6432                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6433         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6434         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6435         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6436         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6437         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6438         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6439         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6440         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6441         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6442         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6443         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6444         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6445         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6446         tmp_stats[i++] = swstats->sending_both;
6447         tmp_stats[i++] = swstats->outof_sequence_pkts;
6448         tmp_stats[i++] = swstats->flush_max_pkts;
6449         if (swstats->num_aggregations) {
6450                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6451                 int count = 0;
6452                 /*
6453                  * Since 64-bit divide does not work on all platforms,
6454                  * do repeated subtraction.
6455                  */
6456                 while (tmp >= swstats->num_aggregations) {
6457                         tmp -= swstats->num_aggregations;
6458                         count++;
6459                 }
6460                 tmp_stats[i++] = count;
6461         } else
6462                 tmp_stats[i++] = 0;
6463         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6464         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6465         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6466         tmp_stats[i++] = swstats->mem_allocated;
6467         tmp_stats[i++] = swstats->mem_freed;
6468         tmp_stats[i++] = swstats->link_up_cnt;
6469         tmp_stats[i++] = swstats->link_down_cnt;
6470         tmp_stats[i++] = swstats->link_up_time;
6471         tmp_stats[i++] = swstats->link_down_time;
6472
6473         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6474         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6475         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6476         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6477         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6478
6479         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6480         tmp_stats[i++] = swstats->rx_abort_cnt;
6481         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6482         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6483         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6484         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6485         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6486         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6487         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6488         tmp_stats[i++] = swstats->tda_err_cnt;
6489         tmp_stats[i++] = swstats->pfc_err_cnt;
6490         tmp_stats[i++] = swstats->pcc_err_cnt;
6491         tmp_stats[i++] = swstats->tti_err_cnt;
6492         tmp_stats[i++] = swstats->tpa_err_cnt;
6493         tmp_stats[i++] = swstats->sm_err_cnt;
6494         tmp_stats[i++] = swstats->lso_err_cnt;
6495         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6496         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6497         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6498         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6499         tmp_stats[i++] = swstats->rc_err_cnt;
6500         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6501         tmp_stats[i++] = swstats->rpa_err_cnt;
6502         tmp_stats[i++] = swstats->rda_err_cnt;
6503         tmp_stats[i++] = swstats->rti_err_cnt;
6504         tmp_stats[i++] = swstats->mc_err_cnt;
6505 }
6506
6507 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6508 {
6509         return XENA_REG_SPACE;
6510 }
6511
6512
6513 static int s2io_get_eeprom_len(struct net_device *dev)
6514 {
6515         return XENA_EEPROM_SPACE;
6516 }
6517
6518 static int s2io_get_sset_count(struct net_device *dev, int sset)
6519 {
6520         struct s2io_nic *sp = netdev_priv(dev);
6521
6522         switch (sset) {
6523         case ETH_SS_TEST:
6524                 return S2IO_TEST_LEN;
6525         case ETH_SS_STATS:
6526                 switch (sp->device_type) {
6527                 case XFRAME_I_DEVICE:
6528                         return XFRAME_I_STAT_LEN;
6529                 case XFRAME_II_DEVICE:
6530                         return XFRAME_II_STAT_LEN;
6531                 default:
6532                         return 0;
6533                 }
6534         default:
6535                 return -EOPNOTSUPP;
6536         }
6537 }
6538
6539 static void s2io_ethtool_get_strings(struct net_device *dev,
6540                                      u32 stringset, u8 *data)
6541 {
6542         int stat_size = 0;
6543         struct s2io_nic *sp = netdev_priv(dev);
6544
6545         switch (stringset) {
6546         case ETH_SS_TEST:
6547                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6548                 break;
6549         case ETH_SS_STATS:
6550                 stat_size = sizeof(ethtool_xena_stats_keys);
6551                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6552                 if (sp->device_type == XFRAME_II_DEVICE) {
6553                         memcpy(data + stat_size,
6554                                &ethtool_enhanced_stats_keys,
6555                                sizeof(ethtool_enhanced_stats_keys));
6556                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6557                 }
6558
6559                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6560                        sizeof(ethtool_driver_stats_keys));
6561         }
6562 }
6563
6564 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6565 {
6566         struct s2io_nic *sp = netdev_priv(dev);
6567         netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6568
6569         if (changed && netif_running(dev)) {
6570                 int rc;
6571
6572                 s2io_stop_all_tx_queue(sp);
6573                 s2io_card_down(sp);
6574                 dev->features = features;
6575                 rc = s2io_card_up(sp);
6576                 if (rc)
6577                         s2io_reset(sp);
6578                 else
6579                         s2io_start_all_tx_queue(sp);
6580
6581                 return rc ? rc : 1;
6582         }
6583
6584         return 0;
6585 }
6586
6587 static const struct ethtool_ops netdev_ethtool_ops = {
6588         .get_drvinfo = s2io_ethtool_gdrvinfo,
6589         .get_regs_len = s2io_ethtool_get_regs_len,
6590         .get_regs = s2io_ethtool_gregs,
6591         .get_link = ethtool_op_get_link,
6592         .get_eeprom_len = s2io_get_eeprom_len,
6593         .get_eeprom = s2io_ethtool_geeprom,
6594         .set_eeprom = s2io_ethtool_seeprom,
6595         .get_ringparam = s2io_ethtool_gringparam,
6596         .get_pauseparam = s2io_ethtool_getpause_data,
6597         .set_pauseparam = s2io_ethtool_setpause_data,
6598         .self_test = s2io_ethtool_test,
6599         .get_strings = s2io_ethtool_get_strings,
6600         .set_phys_id = s2io_ethtool_set_led,
6601         .get_ethtool_stats = s2io_get_ethtool_stats,
6602         .get_sset_count = s2io_get_sset_count,
6603         .get_link_ksettings = s2io_ethtool_get_link_ksettings,
6604         .set_link_ksettings = s2io_ethtool_set_link_ksettings,
6605 };
6606
6607 /**
6608  *  s2io_ioctl - Entry point for the Ioctl
6609  *  @dev :  Device pointer.
6610  *  @rq :  An IOCTL specefic structure, that can contain a pointer to
6611  *  a proprietary structure used to pass information to the driver.
6612  *  @cmd :  This is used to distinguish between the different commands that
6613  *  can be passed to the IOCTL functions.
6614  *  Description:
6615  *  Currently there are no special functionality supported in IOCTL, hence
6616  *  function always return EOPNOTSUPPORTED
6617  */
6618
6619 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6620 {
6621         return -EOPNOTSUPP;
6622 }
6623
6624 /**
6625  *  s2io_change_mtu - entry point to change MTU size for the device.
6626  *   @dev : device pointer.
6627  *   @new_mtu : the new MTU size for the device.
6628  *   Description: A driver entry point to change MTU size for the device.
6629  *   Before changing the MTU the device must be stopped.
6630  *  Return value:
6631  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6632  *   file on failure.
6633  */
6634
6635 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6636 {
6637         struct s2io_nic *sp = netdev_priv(dev);
6638         int ret = 0;
6639
6640         dev->mtu = new_mtu;
6641         if (netif_running(dev)) {
6642                 s2io_stop_all_tx_queue(sp);
6643                 s2io_card_down(sp);
6644                 ret = s2io_card_up(sp);
6645                 if (ret) {
6646                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6647                                   __func__);
6648                         return ret;
6649                 }
6650                 s2io_wake_all_tx_queue(sp);
6651         } else { /* Device is down */
6652                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6653                 u64 val64 = new_mtu;
6654
6655                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6656         }
6657
6658         return ret;
6659 }
6660
6661 /**
6662  * s2io_set_link - Set the LInk status
6663  * @work: work struct containing a pointer to device private structure
6664  * Description: Sets the link status for the adapter
6665  */
6666
6667 static void s2io_set_link(struct work_struct *work)
6668 {
6669         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6670                                             set_link_task);
6671         struct net_device *dev = nic->dev;
6672         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6673         register u64 val64;
6674         u16 subid;
6675
6676         rtnl_lock();
6677
6678         if (!netif_running(dev))
6679                 goto out_unlock;
6680
6681         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6682                 /* The card is being reset, no point doing anything */
6683                 goto out_unlock;
6684         }
6685
6686         subid = nic->pdev->subsystem_device;
6687         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6688                 /*
6689                  * Allow a small delay for the NICs self initiated
6690                  * cleanup to complete.
6691                  */
6692                 msleep(100);
6693         }
6694
6695         val64 = readq(&bar0->adapter_status);
6696         if (LINK_IS_UP(val64)) {
6697                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6698                         if (verify_xena_quiescence(nic)) {
6699                                 val64 = readq(&bar0->adapter_control);
6700                                 val64 |= ADAPTER_CNTL_EN;
6701                                 writeq(val64, &bar0->adapter_control);
6702                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6703                                             nic->device_type, subid)) {
6704                                         val64 = readq(&bar0->gpio_control);
6705                                         val64 |= GPIO_CTRL_GPIO_0;
6706                                         writeq(val64, &bar0->gpio_control);
6707                                         val64 = readq(&bar0->gpio_control);
6708                                 } else {
6709                                         val64 |= ADAPTER_LED_ON;
6710                                         writeq(val64, &bar0->adapter_control);
6711                                 }
6712                                 nic->device_enabled_once = true;
6713                         } else {
6714                                 DBG_PRINT(ERR_DBG,
6715                                           "%s: Error: device is not Quiescent\n",
6716                                           dev->name);
6717                                 s2io_stop_all_tx_queue(nic);
6718                         }
6719                 }
6720                 val64 = readq(&bar0->adapter_control);
6721                 val64 |= ADAPTER_LED_ON;
6722                 writeq(val64, &bar0->adapter_control);
6723                 s2io_link(nic, LINK_UP);
6724         } else {
6725                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6726                                                       subid)) {
6727                         val64 = readq(&bar0->gpio_control);
6728                         val64 &= ~GPIO_CTRL_GPIO_0;
6729                         writeq(val64, &bar0->gpio_control);
6730                         val64 = readq(&bar0->gpio_control);
6731                 }
6732                 /* turn off LED */
6733                 val64 = readq(&bar0->adapter_control);
6734                 val64 = val64 & (~ADAPTER_LED_ON);
6735                 writeq(val64, &bar0->adapter_control);
6736                 s2io_link(nic, LINK_DOWN);
6737         }
6738         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6739
6740 out_unlock:
6741         rtnl_unlock();
6742 }
6743
6744 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6745                                   struct buffAdd *ba,
6746                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6747                                   u64 *temp2, int size)
6748 {
6749         struct net_device *dev = sp->dev;
6750         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6751
6752         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6753                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6754                 /* allocate skb */
6755                 if (*skb) {
6756                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6757                         /*
6758                          * As Rx frame are not going to be processed,
6759                          * using same mapped address for the Rxd
6760                          * buffer pointer
6761                          */
6762                         rxdp1->Buffer0_ptr = *temp0;
6763                 } else {
6764                         *skb = netdev_alloc_skb(dev, size);
6765                         if (!(*skb)) {
6766                                 DBG_PRINT(INFO_DBG,
6767                                           "%s: Out of memory to allocate %s\n",
6768                                           dev->name, "1 buf mode SKBs");
6769                                 stats->mem_alloc_fail_cnt++;
6770                                 return -ENOMEM ;
6771                         }
6772                         stats->mem_allocated += (*skb)->truesize;
6773                         /* storing the mapped addr in a temp variable
6774                          * such it will be used for next rxd whose
6775                          * Host Control is NULL
6776                          */
6777                         rxdp1->Buffer0_ptr = *temp0 =
6778                                 dma_map_single(&sp->pdev->dev, (*skb)->data,
6779                                                size - NET_IP_ALIGN,
6780                                                DMA_FROM_DEVICE);
6781                         if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr))
6782                                 goto memalloc_failed;
6783                         rxdp->Host_Control = (unsigned long) (*skb);
6784                 }
6785         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6786                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6787                 /* Two buffer Mode */
6788                 if (*skb) {
6789                         rxdp3->Buffer2_ptr = *temp2;
6790                         rxdp3->Buffer0_ptr = *temp0;
6791                         rxdp3->Buffer1_ptr = *temp1;
6792                 } else {
6793                         *skb = netdev_alloc_skb(dev, size);
6794                         if (!(*skb)) {
6795                                 DBG_PRINT(INFO_DBG,
6796                                           "%s: Out of memory to allocate %s\n",
6797                                           dev->name,
6798                                           "2 buf mode SKBs");
6799                                 stats->mem_alloc_fail_cnt++;
6800                                 return -ENOMEM;
6801                         }
6802                         stats->mem_allocated += (*skb)->truesize;
6803                         rxdp3->Buffer2_ptr = *temp2 =
6804                                 dma_map_single(&sp->pdev->dev, (*skb)->data,
6805                                                dev->mtu + 4, DMA_FROM_DEVICE);
6806                         if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr))
6807                                 goto memalloc_failed;
6808                         rxdp3->Buffer0_ptr = *temp0 =
6809                                 dma_map_single(&sp->pdev->dev, ba->ba_0,
6810                                                BUF0_LEN, DMA_FROM_DEVICE);
6811                         if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) {
6812                                 dma_unmap_single(&sp->pdev->dev,
6813                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6814                                                  dev->mtu + 4,
6815                                                  DMA_FROM_DEVICE);
6816                                 goto memalloc_failed;
6817                         }
6818                         rxdp->Host_Control = (unsigned long) (*skb);
6819
6820                         /* Buffer-1 will be dummy buffer not used */
6821                         rxdp3->Buffer1_ptr = *temp1 =
6822                                 dma_map_single(&sp->pdev->dev, ba->ba_1,
6823                                                BUF1_LEN, DMA_FROM_DEVICE);
6824                         if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) {
6825                                 dma_unmap_single(&sp->pdev->dev,
6826                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6827                                                  BUF0_LEN, DMA_FROM_DEVICE);
6828                                 dma_unmap_single(&sp->pdev->dev,
6829                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6830                                                  dev->mtu + 4,
6831                                                  DMA_FROM_DEVICE);
6832                                 goto memalloc_failed;
6833                         }
6834                 }
6835         }
6836         return 0;
6837
6838 memalloc_failed:
6839         stats->pci_map_fail_cnt++;
6840         stats->mem_freed += (*skb)->truesize;
6841         dev_kfree_skb(*skb);
6842         return -ENOMEM;
6843 }
6844
6845 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6846                                 int size)
6847 {
6848         struct net_device *dev = sp->dev;
6849         if (sp->rxd_mode == RXD_MODE_1) {
6850                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6851         } else if (sp->rxd_mode == RXD_MODE_3B) {
6852                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6853                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6854                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6855         }
6856 }
6857
6858 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6859 {
6860         int i, j, k, blk_cnt = 0, size;
6861         struct config_param *config = &sp->config;
6862         struct mac_info *mac_control = &sp->mac_control;
6863         struct net_device *dev = sp->dev;
6864         struct RxD_t *rxdp = NULL;
6865         struct sk_buff *skb = NULL;
6866         struct buffAdd *ba = NULL;
6867         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6868
6869         /* Calculate the size based on ring mode */
6870         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6871                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6872         if (sp->rxd_mode == RXD_MODE_1)
6873                 size += NET_IP_ALIGN;
6874         else if (sp->rxd_mode == RXD_MODE_3B)
6875                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6876
6877         for (i = 0; i < config->rx_ring_num; i++) {
6878                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6879                 struct ring_info *ring = &mac_control->rings[i];
6880
6881                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6882
6883                 for (j = 0; j < blk_cnt; j++) {
6884                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6885                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6886                                 if (sp->rxd_mode == RXD_MODE_3B)
6887                                         ba = &ring->ba[j][k];
6888                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6889                                                            &temp0_64,
6890                                                            &temp1_64,
6891                                                            &temp2_64,
6892                                                            size) == -ENOMEM) {
6893                                         return 0;
6894                                 }
6895
6896                                 set_rxd_buffer_size(sp, rxdp, size);
6897                                 dma_wmb();
6898                                 /* flip the Ownership bit to Hardware */
6899                                 rxdp->Control_1 |= RXD_OWN_XENA;
6900                         }
6901                 }
6902         }
6903         return 0;
6904
6905 }
6906
6907 static int s2io_add_isr(struct s2io_nic *sp)
6908 {
6909         int ret = 0;
6910         struct net_device *dev = sp->dev;
6911         int err = 0;
6912
6913         if (sp->config.intr_type == MSI_X)
6914                 ret = s2io_enable_msi_x(sp);
6915         if (ret) {
6916                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6917                 sp->config.intr_type = INTA;
6918         }
6919
6920         /*
6921          * Store the values of the MSIX table in
6922          * the struct s2io_nic structure
6923          */
6924         store_xmsi_data(sp);
6925
6926         /* After proper initialization of H/W, register ISR */
6927         if (sp->config.intr_type == MSI_X) {
6928                 int i, msix_rx_cnt = 0;
6929
6930                 for (i = 0; i < sp->num_entries; i++) {
6931                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6932                                 if (sp->s2io_entries[i].type ==
6933                                     MSIX_RING_TYPE) {
6934                                         snprintf(sp->desc[i],
6935                                                 sizeof(sp->desc[i]),
6936                                                 "%s:MSI-X-%d-RX",
6937                                                 dev->name, i);
6938                                         err = request_irq(sp->entries[i].vector,
6939                                                           s2io_msix_ring_handle,
6940                                                           0,
6941                                                           sp->desc[i],
6942                                                           sp->s2io_entries[i].arg);
6943                                 } else if (sp->s2io_entries[i].type ==
6944                                            MSIX_ALARM_TYPE) {
6945                                         snprintf(sp->desc[i],
6946                                                 sizeof(sp->desc[i]),
6947                                                 "%s:MSI-X-%d-TX",
6948                                                 dev->name, i);
6949                                         err = request_irq(sp->entries[i].vector,
6950                                                           s2io_msix_fifo_handle,
6951                                                           0,
6952                                                           sp->desc[i],
6953                                                           sp->s2io_entries[i].arg);
6954
6955                                 }
6956                                 /* if either data or addr is zero print it. */
6957                                 if (!(sp->msix_info[i].addr &&
6958                                       sp->msix_info[i].data)) {
6959                                         DBG_PRINT(ERR_DBG,
6960                                                   "%s @Addr:0x%llx Data:0x%llx\n",
6961                                                   sp->desc[i],
6962                                                   (unsigned long long)
6963                                                   sp->msix_info[i].addr,
6964                                                   (unsigned long long)
6965                                                   ntohl(sp->msix_info[i].data));
6966                                 } else
6967                                         msix_rx_cnt++;
6968                                 if (err) {
6969                                         remove_msix_isr(sp);
6970
6971                                         DBG_PRINT(ERR_DBG,
6972                                                   "%s:MSI-X-%d registration "
6973                                                   "failed\n", dev->name, i);
6974
6975                                         DBG_PRINT(ERR_DBG,
6976                                                   "%s: Defaulting to INTA\n",
6977                                                   dev->name);
6978                                         sp->config.intr_type = INTA;
6979                                         break;
6980                                 }
6981                                 sp->s2io_entries[i].in_use =
6982                                         MSIX_REGISTERED_SUCCESS;
6983                         }
6984                 }
6985                 if (!err) {
6986                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
6987                         DBG_PRINT(INFO_DBG,
6988                                   "MSI-X-TX entries enabled through alarm vector\n");
6989                 }
6990         }
6991         if (sp->config.intr_type == INTA) {
6992                 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
6993                                   sp->name, dev);
6994                 if (err) {
6995                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6996                                   dev->name);
6997                         return -1;
6998                 }
6999         }
7000         return 0;
7001 }
7002
7003 static void s2io_rem_isr(struct s2io_nic *sp)
7004 {
7005         if (sp->config.intr_type == MSI_X)
7006                 remove_msix_isr(sp);
7007         else
7008                 remove_inta_isr(sp);
7009 }
7010
7011 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7012 {
7013         int cnt = 0;
7014         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7015         register u64 val64 = 0;
7016         struct config_param *config;
7017         config = &sp->config;
7018
7019         if (!is_s2io_card_up(sp))
7020                 return;
7021
7022         del_timer_sync(&sp->alarm_timer);
7023         /* If s2io_set_link task is executing, wait till it completes. */
7024         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7025                 msleep(50);
7026         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7027
7028         /* Disable napi */
7029         if (sp->config.napi) {
7030                 int off = 0;
7031                 if (config->intr_type ==  MSI_X) {
7032                         for (; off < sp->config.rx_ring_num; off++)
7033                                 napi_disable(&sp->mac_control.rings[off].napi);
7034                 }
7035                 else
7036                         napi_disable(&sp->napi);
7037         }
7038
7039         /* disable Tx and Rx traffic on the NIC */
7040         if (do_io)
7041                 stop_nic(sp);
7042
7043         s2io_rem_isr(sp);
7044
7045         /* stop the tx queue, indicate link down */
7046         s2io_link(sp, LINK_DOWN);
7047
7048         /* Check if the device is Quiescent and then Reset the NIC */
7049         while (do_io) {
7050                 /* As per the HW requirement we need to replenish the
7051                  * receive buffer to avoid the ring bump. Since there is
7052                  * no intention of processing the Rx frame at this pointwe are
7053                  * just setting the ownership bit of rxd in Each Rx
7054                  * ring to HW and set the appropriate buffer size
7055                  * based on the ring mode
7056                  */
7057                 rxd_owner_bit_reset(sp);
7058
7059                 val64 = readq(&bar0->adapter_status);
7060                 if (verify_xena_quiescence(sp)) {
7061                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7062                                 break;
7063                 }
7064
7065                 msleep(50);
7066                 cnt++;
7067                 if (cnt == 10) {
7068                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7069                                   "adapter status reads 0x%llx\n",
7070                                   (unsigned long long)val64);
7071                         break;
7072                 }
7073         }
7074         if (do_io)
7075                 s2io_reset(sp);
7076
7077         /* Free all Tx buffers */
7078         free_tx_buffers(sp);
7079
7080         /* Free all Rx buffers */
7081         free_rx_buffers(sp);
7082
7083         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7084 }
7085
7086 static void s2io_card_down(struct s2io_nic *sp)
7087 {
7088         do_s2io_card_down(sp, 1);
7089 }
7090
7091 static int s2io_card_up(struct s2io_nic *sp)
7092 {
7093         int i, ret = 0;
7094         struct config_param *config;
7095         struct mac_info *mac_control;
7096         struct net_device *dev = sp->dev;
7097         u16 interruptible;
7098
7099         /* Initialize the H/W I/O registers */
7100         ret = init_nic(sp);
7101         if (ret != 0) {
7102                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7103                           dev->name);
7104                 if (ret != -EIO)
7105                         s2io_reset(sp);
7106                 return ret;
7107         }
7108
7109         /*
7110          * Initializing the Rx buffers. For now we are considering only 1
7111          * Rx ring and initializing buffers into 30 Rx blocks
7112          */
7113         config = &sp->config;
7114         mac_control = &sp->mac_control;
7115
7116         for (i = 0; i < config->rx_ring_num; i++) {
7117                 struct ring_info *ring = &mac_control->rings[i];
7118
7119                 ring->mtu = dev->mtu;
7120                 ring->lro = !!(dev->features & NETIF_F_LRO);
7121                 ret = fill_rx_buffers(sp, ring, 1);
7122                 if (ret) {
7123                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7124                                   dev->name);
7125                         ret = -ENOMEM;
7126                         goto err_fill_buff;
7127                 }
7128                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7129                           ring->rx_bufs_left);
7130         }
7131
7132         /* Initialise napi */
7133         if (config->napi) {
7134                 if (config->intr_type ==  MSI_X) {
7135                         for (i = 0; i < sp->config.rx_ring_num; i++)
7136                                 napi_enable(&sp->mac_control.rings[i].napi);
7137                 } else {
7138                         napi_enable(&sp->napi);
7139                 }
7140         }
7141
7142         /* Maintain the state prior to the open */
7143         if (sp->promisc_flg)
7144                 sp->promisc_flg = 0;
7145         if (sp->m_cast_flg) {
7146                 sp->m_cast_flg = 0;
7147                 sp->all_multi_pos = 0;
7148         }
7149
7150         /* Setting its receive mode */
7151         s2io_set_multicast(dev, true);
7152
7153         if (dev->features & NETIF_F_LRO) {
7154                 /* Initialize max aggregatable pkts per session based on MTU */
7155                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7156                 /* Check if we can use (if specified) user provided value */
7157                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7158                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7159         }
7160
7161         /* Enable Rx Traffic and interrupts on the NIC */
7162         if (start_nic(sp)) {
7163                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7164                 ret = -ENODEV;
7165                 goto err_out;
7166         }
7167
7168         /* Add interrupt service routine */
7169         if (s2io_add_isr(sp) != 0) {
7170                 if (sp->config.intr_type == MSI_X)
7171                         s2io_rem_isr(sp);
7172                 ret = -ENODEV;
7173                 goto err_out;
7174         }
7175
7176         timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0);
7177         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
7178
7179         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7180
7181         /*  Enable select interrupts */
7182         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7183         if (sp->config.intr_type != INTA) {
7184                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7185                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7186         } else {
7187                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7188                 interruptible |= TX_PIC_INTR;
7189                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7190         }
7191
7192         return 0;
7193
7194 err_out:
7195         if (config->napi) {
7196                 if (config->intr_type == MSI_X) {
7197                         for (i = 0; i < sp->config.rx_ring_num; i++)
7198                                 napi_disable(&sp->mac_control.rings[i].napi);
7199                 } else {
7200                         napi_disable(&sp->napi);
7201                 }
7202         }
7203 err_fill_buff:
7204         s2io_reset(sp);
7205         free_rx_buffers(sp);
7206         return ret;
7207 }
7208
7209 /**
7210  * s2io_restart_nic - Resets the NIC.
7211  * @work : work struct containing a pointer to the device private structure
7212  * Description:
7213  * This function is scheduled to be run by the s2io_tx_watchdog
7214  * function after 0.5 secs to reset the NIC. The idea is to reduce
7215  * the run time of the watch dog routine which is run holding a
7216  * spin lock.
7217  */
7218
7219 static void s2io_restart_nic(struct work_struct *work)
7220 {
7221         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7222         struct net_device *dev = sp->dev;
7223
7224         rtnl_lock();
7225
7226         if (!netif_running(dev))
7227                 goto out_unlock;
7228
7229         s2io_card_down(sp);
7230         if (s2io_card_up(sp)) {
7231                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7232         }
7233         s2io_wake_all_tx_queue(sp);
7234         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7235 out_unlock:
7236         rtnl_unlock();
7237 }
7238
7239 /**
7240  *  s2io_tx_watchdog - Watchdog for transmit side.
7241  *  @dev : Pointer to net device structure
7242  *  @txqueue: index of the hanging queue
7243  *  Description:
7244  *  This function is triggered if the Tx Queue is stopped
7245  *  for a pre-defined amount of time when the Interface is still up.
7246  *  If the Interface is jammed in such a situation, the hardware is
7247  *  reset (by s2io_close) and restarted again (by s2io_open) to
7248  *  overcome any problem that might have been caused in the hardware.
7249  *  Return value:
7250  *  void
7251  */
7252
7253 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue)
7254 {
7255         struct s2io_nic *sp = netdev_priv(dev);
7256         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7257
7258         if (netif_carrier_ok(dev)) {
7259                 swstats->watchdog_timer_cnt++;
7260                 schedule_work(&sp->rst_timer_task);
7261                 swstats->soft_reset_cnt++;
7262         }
7263 }
7264
7265 /**
7266  *   rx_osm_handler - To perform some OS related operations on SKB.
7267  *   @ring_data : the ring from which this RxD was extracted.
7268  *   @rxdp: descriptor
7269  *   Description:
7270  *   This function is called by the Rx interrupt serivce routine to perform
7271  *   some OS related operations on the SKB before passing it to the upper
7272  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7273  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7274  *   to the upper layer. If the checksum is wrong, it increments the Rx
7275  *   packet error count, frees the SKB and returns error.
7276  *   Return value:
7277  *   SUCCESS on success and -1 on failure.
7278  */
7279 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7280 {
7281         struct s2io_nic *sp = ring_data->nic;
7282         struct net_device *dev = ring_data->dev;
7283         struct sk_buff *skb = (struct sk_buff *)
7284                 ((unsigned long)rxdp->Host_Control);
7285         int ring_no = ring_data->ring_no;
7286         u16 l3_csum, l4_csum;
7287         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7288         struct lro *lro;
7289         u8 err_mask;
7290         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7291
7292         skb->dev = dev;
7293
7294         if (err) {
7295                 /* Check for parity error */
7296                 if (err & 0x1)
7297                         swstats->parity_err_cnt++;
7298
7299                 err_mask = err >> 48;
7300                 switch (err_mask) {
7301                 case 1:
7302                         swstats->rx_parity_err_cnt++;
7303                         break;
7304
7305                 case 2:
7306                         swstats->rx_abort_cnt++;
7307                         break;
7308
7309                 case 3:
7310                         swstats->rx_parity_abort_cnt++;
7311                         break;
7312
7313                 case 4:
7314                         swstats->rx_rda_fail_cnt++;
7315                         break;
7316
7317                 case 5:
7318                         swstats->rx_unkn_prot_cnt++;
7319                         break;
7320
7321                 case 6:
7322                         swstats->rx_fcs_err_cnt++;
7323                         break;
7324
7325                 case 7:
7326                         swstats->rx_buf_size_err_cnt++;
7327                         break;
7328
7329                 case 8:
7330                         swstats->rx_rxd_corrupt_cnt++;
7331                         break;
7332
7333                 case 15:
7334                         swstats->rx_unkn_err_cnt++;
7335                         break;
7336                 }
7337                 /*
7338                  * Drop the packet if bad transfer code. Exception being
7339                  * 0x5, which could be due to unsupported IPv6 extension header.
7340                  * In this case, we let stack handle the packet.
7341                  * Note that in this case, since checksum will be incorrect,
7342                  * stack will validate the same.
7343                  */
7344                 if (err_mask != 0x5) {
7345                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7346                                   dev->name, err_mask);
7347                         dev->stats.rx_crc_errors++;
7348                         swstats->mem_freed
7349                                 += skb->truesize;
7350                         dev_kfree_skb(skb);
7351                         ring_data->rx_bufs_left -= 1;
7352                         rxdp->Host_Control = 0;
7353                         return 0;
7354                 }
7355         }
7356
7357         rxdp->Host_Control = 0;
7358         if (sp->rxd_mode == RXD_MODE_1) {
7359                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7360
7361                 skb_put(skb, len);
7362         } else if (sp->rxd_mode == RXD_MODE_3B) {
7363                 int get_block = ring_data->rx_curr_get_info.block_index;
7364                 int get_off = ring_data->rx_curr_get_info.offset;
7365                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7366                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7367
7368                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7369                 skb_put_data(skb, ba->ba_0, buf0_len);
7370                 skb_put(skb, buf2_len);
7371         }
7372
7373         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7374             ((!ring_data->lro) ||
7375              (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) &&
7376             (dev->features & NETIF_F_RXCSUM)) {
7377                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7378                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7379                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7380                         /*
7381                          * NIC verifies if the Checksum of the received
7382                          * frame is Ok or not and accordingly returns
7383                          * a flag in the RxD.
7384                          */
7385                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7386                         if (ring_data->lro) {
7387                                 u32 tcp_len = 0;
7388                                 u8 *tcp;
7389                                 int ret = 0;
7390
7391                                 ret = s2io_club_tcp_session(ring_data,
7392                                                             skb->data, &tcp,
7393                                                             &tcp_len, &lro,
7394                                                             rxdp, sp);
7395                                 switch (ret) {
7396                                 case 3: /* Begin anew */
7397                                         lro->parent = skb;
7398                                         goto aggregate;
7399                                 case 1: /* Aggregate */
7400                                         lro_append_pkt(sp, lro, skb, tcp_len);
7401                                         goto aggregate;
7402                                 case 4: /* Flush session */
7403                                         lro_append_pkt(sp, lro, skb, tcp_len);
7404                                         queue_rx_frame(lro->parent,
7405                                                        lro->vlan_tag);
7406                                         clear_lro_session(lro);
7407                                         swstats->flush_max_pkts++;
7408                                         goto aggregate;
7409                                 case 2: /* Flush both */
7410                                         lro->parent->data_len = lro->frags_len;
7411                                         swstats->sending_both++;
7412                                         queue_rx_frame(lro->parent,
7413                                                        lro->vlan_tag);
7414                                         clear_lro_session(lro);
7415                                         goto send_up;
7416                                 case 0: /* sessions exceeded */
7417                                 case -1: /* non-TCP or not L2 aggregatable */
7418                                 case 5: /*
7419                                          * First pkt in session not
7420                                          * L3/L4 aggregatable
7421                                          */
7422                                         break;
7423                                 default:
7424                                         DBG_PRINT(ERR_DBG,
7425                                                   "%s: Samadhana!!\n",
7426                                                   __func__);
7427                                         BUG();
7428                                 }
7429                         }
7430                 } else {
7431                         /*
7432                          * Packet with erroneous checksum, let the
7433                          * upper layers deal with it.
7434                          */
7435                         skb_checksum_none_assert(skb);
7436                 }
7437         } else
7438                 skb_checksum_none_assert(skb);
7439
7440         swstats->mem_freed += skb->truesize;
7441 send_up:
7442         skb_record_rx_queue(skb, ring_no);
7443         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7444 aggregate:
7445         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7446         return SUCCESS;
7447 }
7448
7449 /**
7450  *  s2io_link - stops/starts the Tx queue.
7451  *  @sp : private member of the device structure, which is a pointer to the
7452  *  s2io_nic structure.
7453  *  @link : inidicates whether link is UP/DOWN.
7454  *  Description:
7455  *  This function stops/starts the Tx queue depending on whether the link
7456  *  status of the NIC is down or up. This is called by the Alarm
7457  *  interrupt handler whenever a link change interrupt comes up.
7458  *  Return value:
7459  *  void.
7460  */
7461
7462 static void s2io_link(struct s2io_nic *sp, int link)
7463 {
7464         struct net_device *dev = sp->dev;
7465         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7466
7467         if (link != sp->last_link_state) {
7468                 init_tti(sp, link, false);
7469                 if (link == LINK_DOWN) {
7470                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7471                         s2io_stop_all_tx_queue(sp);
7472                         netif_carrier_off(dev);
7473                         if (swstats->link_up_cnt)
7474                                 swstats->link_up_time =
7475                                         jiffies - sp->start_time;
7476                         swstats->link_down_cnt++;
7477                 } else {
7478                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7479                         if (swstats->link_down_cnt)
7480                                 swstats->link_down_time =
7481                                         jiffies - sp->start_time;
7482                         swstats->link_up_cnt++;
7483                         netif_carrier_on(dev);
7484                         s2io_wake_all_tx_queue(sp);
7485                 }
7486         }
7487         sp->last_link_state = link;
7488         sp->start_time = jiffies;
7489 }
7490
7491 /**
7492  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7493  *  @sp : private member of the device structure, which is a pointer to the
7494  *  s2io_nic structure.
7495  *  Description:
7496  *  This function initializes a few of the PCI and PCI-X configuration registers
7497  *  with recommended values.
7498  *  Return value:
7499  *  void
7500  */
7501
7502 static void s2io_init_pci(struct s2io_nic *sp)
7503 {
7504         u16 pci_cmd = 0, pcix_cmd = 0;
7505
7506         /* Enable Data Parity Error Recovery in PCI-X command register. */
7507         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7508                              &(pcix_cmd));
7509         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7510                               (pcix_cmd | 1));
7511         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7512                              &(pcix_cmd));
7513
7514         /* Set the PErr Response bit in PCI command register. */
7515         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7516         pci_write_config_word(sp->pdev, PCI_COMMAND,
7517                               (pci_cmd | PCI_COMMAND_PARITY));
7518         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7519 }
7520
7521 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7522                             u8 *dev_multiq)
7523 {
7524         int i;
7525
7526         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7527                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7528                           "(%d) not supported\n", tx_fifo_num);
7529
7530                 if (tx_fifo_num < 1)
7531                         tx_fifo_num = 1;
7532                 else
7533                         tx_fifo_num = MAX_TX_FIFOS;
7534
7535                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7536         }
7537
7538         if (multiq)
7539                 *dev_multiq = multiq;
7540
7541         if (tx_steering_type && (1 == tx_fifo_num)) {
7542                 if (tx_steering_type != TX_DEFAULT_STEERING)
7543                         DBG_PRINT(ERR_DBG,
7544                                   "Tx steering is not supported with "
7545                                   "one fifo. Disabling Tx steering.\n");
7546                 tx_steering_type = NO_STEERING;
7547         }
7548
7549         if ((tx_steering_type < NO_STEERING) ||
7550             (tx_steering_type > TX_DEFAULT_STEERING)) {
7551                 DBG_PRINT(ERR_DBG,
7552                           "Requested transmit steering not supported\n");
7553                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7554                 tx_steering_type = NO_STEERING;
7555         }
7556
7557         if (rx_ring_num > MAX_RX_RINGS) {
7558                 DBG_PRINT(ERR_DBG,
7559                           "Requested number of rx rings not supported\n");
7560                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7561                           MAX_RX_RINGS);
7562                 rx_ring_num = MAX_RX_RINGS;
7563         }
7564
7565         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7566                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7567                           "Defaulting to INTA\n");
7568                 *dev_intr_type = INTA;
7569         }
7570
7571         if ((*dev_intr_type == MSI_X) &&
7572             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7573              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7574                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7575                           "Defaulting to INTA\n");
7576                 *dev_intr_type = INTA;
7577         }
7578
7579         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7580                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7581                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7582                 rx_ring_mode = 1;
7583         }
7584
7585         for (i = 0; i < MAX_RX_RINGS; i++)
7586                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7587                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7588                                   "supported\nDefaulting to %d\n",
7589                                   MAX_RX_BLOCKS_PER_RING);
7590                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7591                 }
7592
7593         return SUCCESS;
7594 }
7595
7596 /**
7597  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7598  * @nic: device private variable
7599  * @ds_codepoint: data
7600  * @ring: ring index
7601  * Description: The function configures the receive steering to
7602  * desired receive ring.
7603  * Return Value:  SUCCESS on success and
7604  * '-1' on failure (endian settings incorrect).
7605  */
7606 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7607 {
7608         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7609         register u64 val64 = 0;
7610
7611         if (ds_codepoint > 63)
7612                 return FAILURE;
7613
7614         val64 = RTS_DS_MEM_DATA(ring);
7615         writeq(val64, &bar0->rts_ds_mem_data);
7616
7617         val64 = RTS_DS_MEM_CTRL_WE |
7618                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7619                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7620
7621         writeq(val64, &bar0->rts_ds_mem_ctrl);
7622
7623         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7624                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7625                                      S2IO_BIT_RESET, true);
7626 }
7627
7628 static const struct net_device_ops s2io_netdev_ops = {
7629         .ndo_open               = s2io_open,
7630         .ndo_stop               = s2io_close,
7631         .ndo_get_stats          = s2io_get_stats,
7632         .ndo_start_xmit         = s2io_xmit,
7633         .ndo_validate_addr      = eth_validate_addr,
7634         .ndo_set_rx_mode        = s2io_ndo_set_multicast,
7635         .ndo_eth_ioctl          = s2io_ioctl,
7636         .ndo_set_mac_address    = s2io_set_mac_addr,
7637         .ndo_change_mtu         = s2io_change_mtu,
7638         .ndo_set_features       = s2io_set_features,
7639         .ndo_tx_timeout         = s2io_tx_watchdog,
7640 #ifdef CONFIG_NET_POLL_CONTROLLER
7641         .ndo_poll_controller    = s2io_netpoll,
7642 #endif
7643 };
7644
7645 /**
7646  *  s2io_init_nic - Initialization of the adapter .
7647  *  @pdev : structure containing the PCI related information of the device.
7648  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7649  *  Description:
7650  *  The function initializes an adapter identified by the pci_dec structure.
7651  *  All OS related initialization including memory and device structure and
7652  *  initlaization of the device private variable is done. Also the swapper
7653  *  control register is initialized to enable read and write into the I/O
7654  *  registers of the device.
7655  *  Return value:
7656  *  returns 0 on success and negative on failure.
7657  */
7658
7659 static int
7660 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7661 {
7662         struct s2io_nic *sp;
7663         struct net_device *dev;
7664         int i, j, ret;
7665         u32 mac_up, mac_down;
7666         u64 val64 = 0, tmp64 = 0;
7667         struct XENA_dev_config __iomem *bar0 = NULL;
7668         u16 subid;
7669         struct config_param *config;
7670         struct mac_info *mac_control;
7671         int mode;
7672         u8 dev_intr_type = intr_type;
7673         u8 dev_multiq = 0;
7674
7675         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7676         if (ret)
7677                 return ret;
7678
7679         ret = pci_enable_device(pdev);
7680         if (ret) {
7681                 DBG_PRINT(ERR_DBG,
7682                           "%s: pci_enable_device failed\n", __func__);
7683                 return ret;
7684         }
7685
7686         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
7687                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7688         } else {
7689                 pci_disable_device(pdev);
7690                 return -ENOMEM;
7691         }
7692         ret = pci_request_regions(pdev, s2io_driver_name);
7693         if (ret) {
7694                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7695                           __func__, ret);
7696                 pci_disable_device(pdev);
7697                 return -ENODEV;
7698         }
7699         if (dev_multiq)
7700                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7701         else
7702                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7703         if (dev == NULL) {
7704                 pci_disable_device(pdev);
7705                 pci_release_regions(pdev);
7706                 return -ENODEV;
7707         }
7708
7709         pci_set_master(pdev);
7710         pci_set_drvdata(pdev, dev);
7711         SET_NETDEV_DEV(dev, &pdev->dev);
7712
7713         /*  Private member variable initialized to s2io NIC structure */
7714         sp = netdev_priv(dev);
7715         sp->dev = dev;
7716         sp->pdev = pdev;
7717         sp->device_enabled_once = false;
7718         if (rx_ring_mode == 1)
7719                 sp->rxd_mode = RXD_MODE_1;
7720         if (rx_ring_mode == 2)
7721                 sp->rxd_mode = RXD_MODE_3B;
7722
7723         sp->config.intr_type = dev_intr_type;
7724
7725         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7726             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7727                 sp->device_type = XFRAME_II_DEVICE;
7728         else
7729                 sp->device_type = XFRAME_I_DEVICE;
7730
7731
7732         /* Initialize some PCI/PCI-X fields of the NIC. */
7733         s2io_init_pci(sp);
7734
7735         /*
7736          * Setting the device configuration parameters.
7737          * Most of these parameters can be specified by the user during
7738          * module insertion as they are module loadable parameters. If
7739          * these parameters are not specified during load time, they
7740          * are initialized with default values.
7741          */
7742         config = &sp->config;
7743         mac_control = &sp->mac_control;
7744
7745         config->napi = napi;
7746         config->tx_steering_type = tx_steering_type;
7747
7748         /* Tx side parameters. */
7749         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7750                 config->tx_fifo_num = MAX_TX_FIFOS;
7751         else
7752                 config->tx_fifo_num = tx_fifo_num;
7753
7754         /* Initialize the fifos used for tx steering */
7755         if (config->tx_fifo_num < 5) {
7756                 if (config->tx_fifo_num  == 1)
7757                         sp->total_tcp_fifos = 1;
7758                 else
7759                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7760                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7761                 sp->total_udp_fifos = 1;
7762                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7763         } else {
7764                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7765                                        FIFO_OTHER_MAX_NUM);
7766                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7767                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7768                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7769         }
7770
7771         config->multiq = dev_multiq;
7772         for (i = 0; i < config->tx_fifo_num; i++) {
7773                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7774
7775                 tx_cfg->fifo_len = tx_fifo_len[i];
7776                 tx_cfg->fifo_priority = i;
7777         }
7778
7779         /* mapping the QoS priority to the configured fifos */
7780         for (i = 0; i < MAX_TX_FIFOS; i++)
7781                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7782
7783         /* map the hashing selector table to the configured fifos */
7784         for (i = 0; i < config->tx_fifo_num; i++)
7785                 sp->fifo_selector[i] = fifo_selector[i];
7786
7787
7788         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7789         for (i = 0; i < config->tx_fifo_num; i++) {
7790                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7791
7792                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7793                 if (tx_cfg->fifo_len < 65) {
7794                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7795                         break;
7796                 }
7797         }
7798         /* + 2 because one Txd for skb->data and one Txd for UFO */
7799         config->max_txds = MAX_SKB_FRAGS + 2;
7800
7801         /* Rx side parameters. */
7802         config->rx_ring_num = rx_ring_num;
7803         for (i = 0; i < config->rx_ring_num; i++) {
7804                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7805                 struct ring_info *ring = &mac_control->rings[i];
7806
7807                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7808                 rx_cfg->ring_priority = i;
7809                 ring->rx_bufs_left = 0;
7810                 ring->rxd_mode = sp->rxd_mode;
7811                 ring->rxd_count = rxd_count[sp->rxd_mode];
7812                 ring->pdev = sp->pdev;
7813                 ring->dev = sp->dev;
7814         }
7815
7816         for (i = 0; i < rx_ring_num; i++) {
7817                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7818
7819                 rx_cfg->ring_org = RING_ORG_BUFF1;
7820                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7821         }
7822
7823         /*  Setting Mac Control parameters */
7824         mac_control->rmac_pause_time = rmac_pause_time;
7825         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7826         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7827
7828
7829         /*  initialize the shared memory used by the NIC and the host */
7830         if (init_shared_mem(sp)) {
7831                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7832                 ret = -ENOMEM;
7833                 goto mem_alloc_failed;
7834         }
7835
7836         sp->bar0 = pci_ioremap_bar(pdev, 0);
7837         if (!sp->bar0) {
7838                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7839                           dev->name);
7840                 ret = -ENOMEM;
7841                 goto bar0_remap_failed;
7842         }
7843
7844         sp->bar1 = pci_ioremap_bar(pdev, 2);
7845         if (!sp->bar1) {
7846                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7847                           dev->name);
7848                 ret = -ENOMEM;
7849                 goto bar1_remap_failed;
7850         }
7851
7852         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7853         for (j = 0; j < MAX_TX_FIFOS; j++) {
7854                 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7855         }
7856
7857         /*  Driver entry points */
7858         dev->netdev_ops = &s2io_netdev_ops;
7859         dev->ethtool_ops = &netdev_ethtool_ops;
7860         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7861                 NETIF_F_TSO | NETIF_F_TSO6 |
7862                 NETIF_F_RXCSUM | NETIF_F_LRO;
7863         dev->features |= dev->hw_features |
7864                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
7865                 NETIF_F_HIGHDMA;
7866         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7867         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7868         INIT_WORK(&sp->set_link_task, s2io_set_link);
7869
7870         pci_save_state(sp->pdev);
7871
7872         /* Setting swapper control on the NIC, for proper reset operation */
7873         if (s2io_set_swapper(sp)) {
7874                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7875                           dev->name);
7876                 ret = -EAGAIN;
7877                 goto set_swap_failed;
7878         }
7879
7880         /* Verify if the Herc works on the slot its placed into */
7881         if (sp->device_type & XFRAME_II_DEVICE) {
7882                 mode = s2io_verify_pci_mode(sp);
7883                 if (mode < 0) {
7884                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7885                                   __func__);
7886                         ret = -EBADSLT;
7887                         goto set_swap_failed;
7888                 }
7889         }
7890
7891         if (sp->config.intr_type == MSI_X) {
7892                 sp->num_entries = config->rx_ring_num + 1;
7893                 ret = s2io_enable_msi_x(sp);
7894
7895                 if (!ret) {
7896                         ret = s2io_test_msi(sp);
7897                         /* rollback MSI-X, will re-enable during add_isr() */
7898                         remove_msix_isr(sp);
7899                 }
7900                 if (ret) {
7901
7902                         DBG_PRINT(ERR_DBG,
7903                                   "MSI-X requested but failed to enable\n");
7904                         sp->config.intr_type = INTA;
7905                 }
7906         }
7907
7908         if (config->intr_type ==  MSI_X) {
7909                 for (i = 0; i < config->rx_ring_num ; i++) {
7910                         struct ring_info *ring = &mac_control->rings[i];
7911
7912                         netif_napi_add(dev, &ring->napi, s2io_poll_msix);
7913                 }
7914         } else {
7915                 netif_napi_add(dev, &sp->napi, s2io_poll_inta);
7916         }
7917
7918         /* Not needed for Herc */
7919         if (sp->device_type & XFRAME_I_DEVICE) {
7920                 /*
7921                  * Fix for all "FFs" MAC address problems observed on
7922                  * Alpha platforms
7923                  */
7924                 fix_mac_address(sp);
7925                 s2io_reset(sp);
7926         }
7927
7928         /*
7929          * MAC address initialization.
7930          * For now only one mac address will be read and used.
7931          */
7932         bar0 = sp->bar0;
7933         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7934                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7935         writeq(val64, &bar0->rmac_addr_cmd_mem);
7936         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7937                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
7938                               S2IO_BIT_RESET, true);
7939         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7940         mac_down = (u32)tmp64;
7941         mac_up = (u32) (tmp64 >> 32);
7942
7943         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7944         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7945         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7946         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7947         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7948         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7949
7950         /*  Set the factory defined MAC address initially   */
7951         dev->addr_len = ETH_ALEN;
7952         eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr);
7953
7954         /* initialize number of multicast & unicast MAC entries variables */
7955         if (sp->device_type == XFRAME_I_DEVICE) {
7956                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7957                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7958                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7959         } else if (sp->device_type == XFRAME_II_DEVICE) {
7960                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7961                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7962                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7963         }
7964
7965         /* MTU range: 46 - 9600 */
7966         dev->min_mtu = MIN_MTU;
7967         dev->max_mtu = S2IO_JUMBO_SIZE;
7968
7969         /* store mac addresses from CAM to s2io_nic structure */
7970         do_s2io_store_unicast_mc(sp);
7971
7972         /* Configure MSIX vector for number of rings configured plus one */
7973         if ((sp->device_type == XFRAME_II_DEVICE) &&
7974             (config->intr_type == MSI_X))
7975                 sp->num_entries = config->rx_ring_num + 1;
7976
7977         /* Store the values of the MSIX table in the s2io_nic structure */
7978         store_xmsi_data(sp);
7979         /* reset Nic and bring it to known state */
7980         s2io_reset(sp);
7981
7982         /*
7983          * Initialize link state flags
7984          * and the card state parameter
7985          */
7986         sp->state = 0;
7987
7988         /* Initialize spinlocks */
7989         for (i = 0; i < sp->config.tx_fifo_num; i++) {
7990                 struct fifo_info *fifo = &mac_control->fifos[i];
7991
7992                 spin_lock_init(&fifo->tx_lock);
7993         }
7994
7995         /*
7996          * SXE-002: Configure link and activity LED to init state
7997          * on driver load.
7998          */
7999         subid = sp->pdev->subsystem_device;
8000         if ((subid & 0xFF) >= 0x07) {
8001                 val64 = readq(&bar0->gpio_control);
8002                 val64 |= 0x0000800000000000ULL;
8003                 writeq(val64, &bar0->gpio_control);
8004                 val64 = 0x0411040400000000ULL;
8005                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8006                 val64 = readq(&bar0->gpio_control);
8007         }
8008
8009         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8010
8011         if (register_netdev(dev)) {
8012                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8013                 ret = -ENODEV;
8014                 goto register_failed;
8015         }
8016         s2io_vpd_read(sp);
8017         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8018         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8019                   sp->product_name, pdev->revision);
8020         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8021                   s2io_driver_version);
8022         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8023         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8024         if (sp->device_type & XFRAME_II_DEVICE) {
8025                 mode = s2io_print_pci_mode(sp);
8026                 if (mode < 0) {
8027                         ret = -EBADSLT;
8028                         unregister_netdev(dev);
8029                         goto set_swap_failed;
8030                 }
8031         }
8032         switch (sp->rxd_mode) {
8033         case RXD_MODE_1:
8034                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8035                           dev->name);
8036                 break;
8037         case RXD_MODE_3B:
8038                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8039                           dev->name);
8040                 break;
8041         }
8042
8043         switch (sp->config.napi) {
8044         case 0:
8045                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8046                 break;
8047         case 1:
8048                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8049                 break;
8050         }
8051
8052         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8053                   sp->config.tx_fifo_num);
8054
8055         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8056                   sp->config.rx_ring_num);
8057
8058         switch (sp->config.intr_type) {
8059         case INTA:
8060                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8061                 break;
8062         case MSI_X:
8063                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8064                 break;
8065         }
8066         if (sp->config.multiq) {
8067                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8068                         struct fifo_info *fifo = &mac_control->fifos[i];
8069
8070                         fifo->multiq = config->multiq;
8071                 }
8072                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8073                           dev->name);
8074         } else
8075                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8076                           dev->name);
8077
8078         switch (sp->config.tx_steering_type) {
8079         case NO_STEERING:
8080                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8081                           dev->name);
8082                 break;
8083         case TX_PRIORITY_STEERING:
8084                 DBG_PRINT(ERR_DBG,
8085                           "%s: Priority steering enabled for transmit\n",
8086                           dev->name);
8087                 break;
8088         case TX_DEFAULT_STEERING:
8089                 DBG_PRINT(ERR_DBG,
8090                           "%s: Default steering enabled for transmit\n",
8091                           dev->name);
8092         }
8093
8094         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8095                   dev->name);
8096         /* Initialize device name */
8097         snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8098                  sp->product_name);
8099
8100         if (vlan_tag_strip)
8101                 sp->vlan_strip_flag = 1;
8102         else
8103                 sp->vlan_strip_flag = 0;
8104
8105         /*
8106          * Make Link state as off at this point, when the Link change
8107          * interrupt comes the state will be automatically changed to
8108          * the right state.
8109          */
8110         netif_carrier_off(dev);
8111
8112         return 0;
8113
8114 register_failed:
8115 set_swap_failed:
8116         iounmap(sp->bar1);
8117 bar1_remap_failed:
8118         iounmap(sp->bar0);
8119 bar0_remap_failed:
8120 mem_alloc_failed:
8121         free_shared_mem(sp);
8122         pci_disable_device(pdev);
8123         pci_release_regions(pdev);
8124         free_netdev(dev);
8125
8126         return ret;
8127 }
8128
8129 /**
8130  * s2io_rem_nic - Free the PCI device
8131  * @pdev: structure containing the PCI related information of the device.
8132  * Description: This function is called by the Pci subsystem to release a
8133  * PCI device and free up all resource held up by the device. This could
8134  * be in response to a Hot plug event or when the driver is to be removed
8135  * from memory.
8136  */
8137
8138 static void s2io_rem_nic(struct pci_dev *pdev)
8139 {
8140         struct net_device *dev = pci_get_drvdata(pdev);
8141         struct s2io_nic *sp;
8142
8143         if (dev == NULL) {
8144                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8145                 return;
8146         }
8147
8148         sp = netdev_priv(dev);
8149
8150         cancel_work_sync(&sp->rst_timer_task);
8151         cancel_work_sync(&sp->set_link_task);
8152
8153         unregister_netdev(dev);
8154
8155         free_shared_mem(sp);
8156         iounmap(sp->bar0);
8157         iounmap(sp->bar1);
8158         pci_release_regions(pdev);
8159         free_netdev(dev);
8160         pci_disable_device(pdev);
8161 }
8162
8163 module_pci_driver(s2io_driver);
8164
8165 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8166                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8167                                 struct s2io_nic *sp)
8168 {
8169         int ip_off;
8170         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8171
8172         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8173                 DBG_PRINT(INIT_DBG,
8174                           "%s: Non-TCP frames not supported for LRO\n",
8175                           __func__);
8176                 return -1;
8177         }
8178
8179         /* Checking for DIX type or DIX type with VLAN */
8180         if ((l2_type == 0) || (l2_type == 4)) {
8181                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8182                 /*
8183                  * If vlan stripping is disabled and the frame is VLAN tagged,
8184                  * shift the offset by the VLAN header size bytes.
8185                  */
8186                 if ((!sp->vlan_strip_flag) &&
8187                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8188                         ip_off += HEADER_VLAN_SIZE;
8189         } else {
8190                 /* LLC, SNAP etc are considered non-mergeable */
8191                 return -1;
8192         }
8193
8194         *ip = (struct iphdr *)(buffer + ip_off);
8195         ip_len = (u8)((*ip)->ihl);
8196         ip_len <<= 2;
8197         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8198
8199         return 0;
8200 }
8201
8202 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8203                                   struct tcphdr *tcp)
8204 {
8205         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8206         if ((lro->iph->saddr != ip->saddr) ||
8207             (lro->iph->daddr != ip->daddr) ||
8208             (lro->tcph->source != tcp->source) ||
8209             (lro->tcph->dest != tcp->dest))
8210                 return -1;
8211         return 0;
8212 }
8213
8214 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8215 {
8216         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8217 }
8218
8219 static void initiate_new_session(struct lro *lro, u8 *l2h,
8220                                  struct iphdr *ip, struct tcphdr *tcp,
8221                                  u32 tcp_pyld_len, u16 vlan_tag)
8222 {
8223         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8224         lro->l2h = l2h;
8225         lro->iph = ip;
8226         lro->tcph = tcp;
8227         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8228         lro->tcp_ack = tcp->ack_seq;
8229         lro->sg_num = 1;
8230         lro->total_len = ntohs(ip->tot_len);
8231         lro->frags_len = 0;
8232         lro->vlan_tag = vlan_tag;
8233         /*
8234          * Check if we saw TCP timestamp.
8235          * Other consistency checks have already been done.
8236          */
8237         if (tcp->doff == 8) {
8238                 __be32 *ptr;
8239                 ptr = (__be32 *)(tcp+1);
8240                 lro->saw_ts = 1;
8241                 lro->cur_tsval = ntohl(*(ptr+1));
8242                 lro->cur_tsecr = *(ptr+2);
8243         }
8244         lro->in_use = 1;
8245 }
8246
8247 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8248 {
8249         struct iphdr *ip = lro->iph;
8250         struct tcphdr *tcp = lro->tcph;
8251         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8252
8253         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8254
8255         /* Update L3 header */
8256         csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8257         ip->tot_len = htons(lro->total_len);
8258
8259         /* Update L4 header */
8260         tcp->ack_seq = lro->tcp_ack;
8261         tcp->window = lro->window;
8262
8263         /* Update tsecr field if this session has timestamps enabled */
8264         if (lro->saw_ts) {
8265                 __be32 *ptr = (__be32 *)(tcp + 1);
8266                 *(ptr+2) = lro->cur_tsecr;
8267         }
8268
8269         /* Update counters required for calculation of
8270          * average no. of packets aggregated.
8271          */
8272         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8273         swstats->num_aggregations++;
8274 }
8275
8276 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8277                              struct tcphdr *tcp, u32 l4_pyld)
8278 {
8279         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8280         lro->total_len += l4_pyld;
8281         lro->frags_len += l4_pyld;
8282         lro->tcp_next_seq += l4_pyld;
8283         lro->sg_num++;
8284
8285         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8286         lro->tcp_ack = tcp->ack_seq;
8287         lro->window = tcp->window;
8288
8289         if (lro->saw_ts) {
8290                 __be32 *ptr;
8291                 /* Update tsecr and tsval from this packet */
8292                 ptr = (__be32 *)(tcp+1);
8293                 lro->cur_tsval = ntohl(*(ptr+1));
8294                 lro->cur_tsecr = *(ptr + 2);
8295         }
8296 }
8297
8298 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8299                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8300 {
8301         u8 *ptr;
8302
8303         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8304
8305         if (!tcp_pyld_len) {
8306                 /* Runt frame or a pure ack */
8307                 return -1;
8308         }
8309
8310         if (ip->ihl != 5) /* IP has options */
8311                 return -1;
8312
8313         /* If we see CE codepoint in IP header, packet is not mergeable */
8314         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8315                 return -1;
8316
8317         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8318         if (tcp->urg || tcp->psh || tcp->rst ||
8319             tcp->syn || tcp->fin ||
8320             tcp->ece || tcp->cwr || !tcp->ack) {
8321                 /*
8322                  * Currently recognize only the ack control word and
8323                  * any other control field being set would result in
8324                  * flushing the LRO session
8325                  */
8326                 return -1;
8327         }
8328
8329         /*
8330          * Allow only one TCP timestamp option. Don't aggregate if
8331          * any other options are detected.
8332          */
8333         if (tcp->doff != 5 && tcp->doff != 8)
8334                 return -1;
8335
8336         if (tcp->doff == 8) {
8337                 ptr = (u8 *)(tcp + 1);
8338                 while (*ptr == TCPOPT_NOP)
8339                         ptr++;
8340                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8341                         return -1;
8342
8343                 /* Ensure timestamp value increases monotonically */
8344                 if (l_lro)
8345                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8346                                 return -1;
8347
8348                 /* timestamp echo reply should be non-zero */
8349                 if (*((__be32 *)(ptr+6)) == 0)
8350                         return -1;
8351         }
8352
8353         return 0;
8354 }
8355
8356 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8357                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8358                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8359 {
8360         struct iphdr *ip;
8361         struct tcphdr *tcph;
8362         int ret = 0, i;
8363         u16 vlan_tag = 0;
8364         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8365
8366         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8367                                    rxdp, sp);
8368         if (ret)
8369                 return ret;
8370
8371         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8372
8373         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8374         tcph = (struct tcphdr *)*tcp;
8375         *tcp_len = get_l4_pyld_length(ip, tcph);
8376         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8377                 struct lro *l_lro = &ring_data->lro0_n[i];
8378                 if (l_lro->in_use) {
8379                         if (check_for_socket_match(l_lro, ip, tcph))
8380                                 continue;
8381                         /* Sock pair matched */
8382                         *lro = l_lro;
8383
8384                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8385                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8386                                           "expected 0x%x, actual 0x%x\n",
8387                                           __func__,
8388                                           (*lro)->tcp_next_seq,
8389                                           ntohl(tcph->seq));
8390
8391                                 swstats->outof_sequence_pkts++;
8392                                 ret = 2;
8393                                 break;
8394                         }
8395
8396                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8397                                                       *tcp_len))
8398                                 ret = 1; /* Aggregate */
8399                         else
8400                                 ret = 2; /* Flush both */
8401                         break;
8402                 }
8403         }
8404
8405         if (ret == 0) {
8406                 /* Before searching for available LRO objects,
8407                  * check if the pkt is L3/L4 aggregatable. If not
8408                  * don't create new LRO session. Just send this
8409                  * packet up.
8410                  */
8411                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8412                         return 5;
8413
8414                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8415                         struct lro *l_lro = &ring_data->lro0_n[i];
8416                         if (!(l_lro->in_use)) {
8417                                 *lro = l_lro;
8418                                 ret = 3; /* Begin anew */
8419                                 break;
8420                         }
8421                 }
8422         }
8423
8424         if (ret == 0) { /* sessions exceeded */
8425                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8426                           __func__);
8427                 *lro = NULL;
8428                 return ret;
8429         }
8430
8431         switch (ret) {
8432         case 3:
8433                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8434                                      vlan_tag);
8435                 break;
8436         case 2:
8437                 update_L3L4_header(sp, *lro);
8438                 break;
8439         case 1:
8440                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8441                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8442                         update_L3L4_header(sp, *lro);
8443                         ret = 4; /* Flush the LRO */
8444                 }
8445                 break;
8446         default:
8447                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8448                 break;
8449         }
8450
8451         return ret;
8452 }
8453
8454 static void clear_lro_session(struct lro *lro)
8455 {
8456         static u16 lro_struct_size = sizeof(struct lro);
8457
8458         memset(lro, 0, lro_struct_size);
8459 }
8460
8461 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8462 {
8463         struct net_device *dev = skb->dev;
8464         struct s2io_nic *sp = netdev_priv(dev);
8465
8466         skb->protocol = eth_type_trans(skb, dev);
8467         if (vlan_tag && sp->vlan_strip_flag)
8468                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8469         if (sp->config.napi)
8470                 netif_receive_skb(skb);
8471         else
8472                 netif_rx(skb);
8473 }
8474
8475 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8476                            struct sk_buff *skb, u32 tcp_len)
8477 {
8478         struct sk_buff *first = lro->parent;
8479         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8480
8481         first->len += tcp_len;
8482         first->data_len = lro->frags_len;
8483         skb_pull(skb, (skb->len - tcp_len));
8484         if (skb_shinfo(first)->frag_list)
8485                 lro->last_frag->next = skb;
8486         else
8487                 skb_shinfo(first)->frag_list = skb;
8488         first->truesize += skb->truesize;
8489         lro->last_frag = skb;
8490         swstats->clubbed_frms_cnt++;
8491 }
8492
8493 /**
8494  * s2io_io_error_detected - called when PCI error is detected
8495  * @pdev: Pointer to PCI device
8496  * @state: The current pci connection state
8497  *
8498  * This function is called after a PCI bus error affecting
8499  * this device has been detected.
8500  */
8501 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8502                                                pci_channel_state_t state)
8503 {
8504         struct net_device *netdev = pci_get_drvdata(pdev);
8505         struct s2io_nic *sp = netdev_priv(netdev);
8506
8507         netif_device_detach(netdev);
8508
8509         if (state == pci_channel_io_perm_failure)
8510                 return PCI_ERS_RESULT_DISCONNECT;
8511
8512         if (netif_running(netdev)) {
8513                 /* Bring down the card, while avoiding PCI I/O */
8514                 do_s2io_card_down(sp, 0);
8515         }
8516         pci_disable_device(pdev);
8517
8518         return PCI_ERS_RESULT_NEED_RESET;
8519 }
8520
8521 /**
8522  * s2io_io_slot_reset - called after the pci bus has been reset.
8523  * @pdev: Pointer to PCI device
8524  *
8525  * Restart the card from scratch, as if from a cold-boot.
8526  * At this point, the card has exprienced a hard reset,
8527  * followed by fixups by BIOS, and has its config space
8528  * set up identically to what it was at cold boot.
8529  */
8530 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8531 {
8532         struct net_device *netdev = pci_get_drvdata(pdev);
8533         struct s2io_nic *sp = netdev_priv(netdev);
8534
8535         if (pci_enable_device(pdev)) {
8536                 pr_err("Cannot re-enable PCI device after reset.\n");
8537                 return PCI_ERS_RESULT_DISCONNECT;
8538         }
8539
8540         pci_set_master(pdev);
8541         s2io_reset(sp);
8542
8543         return PCI_ERS_RESULT_RECOVERED;
8544 }
8545
8546 /**
8547  * s2io_io_resume - called when traffic can start flowing again.
8548  * @pdev: Pointer to PCI device
8549  *
8550  * This callback is called when the error recovery driver tells
8551  * us that its OK to resume normal operation.
8552  */
8553 static void s2io_io_resume(struct pci_dev *pdev)
8554 {
8555         struct net_device *netdev = pci_get_drvdata(pdev);
8556         struct s2io_nic *sp = netdev_priv(netdev);
8557
8558         if (netif_running(netdev)) {
8559                 if (s2io_card_up(sp)) {
8560                         pr_err("Can't bring device back up after reset.\n");
8561                         return;
8562                 }
8563
8564                 if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) {
8565                         s2io_card_down(sp);
8566                         pr_err("Can't restore mac addr after reset.\n");
8567                         return;
8568                 }
8569         }
8570
8571         netif_device_attach(netdev);
8572         netif_tx_wake_all_queues(netdev);
8573 }