GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac            = e1000_vfadapt,
70         .flags          = 0,
71         .pba            = 10,
72         .init_ops       = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac            = e1000_vfadapt_i350,
77         .flags          = 0,
78         .pba            = 10,
79         .init_ops       = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]      = &igbvf_vf_info,
84         [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  * @rx_ring: address of receive ring structure
90  **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
92 {
93         if (ring->next_to_clean > ring->next_to_use)
94                 return ring->next_to_clean - ring->next_to_use - 1;
95
96         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97 }
98
99 /**
100  * igbvf_receive_skb - helper function to handle Rx indications
101  * @adapter: board private structure
102  * @status: descriptor status field as written by hardware
103  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104  * @skb: pointer to sk_buff to be indicated to stack
105  **/
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107                               struct net_device *netdev,
108                               struct sk_buff *skb,
109                               u32 status, u16 vlan)
110 {
111         u16 vid;
112
113         if (status & E1000_RXD_STAT_VP) {
114                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115                     (status & E1000_RXDEXT_STATERR_LB))
116                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117                 else
118                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119                 if (test_bit(vid, adapter->active_vlans))
120                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
121         }
122
123         napi_gro_receive(&adapter->rx_ring->napi, skb);
124 }
125
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127                                          u32 status_err, struct sk_buff *skb)
128 {
129         skb_checksum_none_assert(skb);
130
131         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132         if ((status_err & E1000_RXD_STAT_IXSM) ||
133             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134                 return;
135
136         /* TCP/UDP checksum error bit is set */
137         if (status_err &
138             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139                 /* let the stack verify checksum errors */
140                 adapter->hw_csum_err++;
141                 return;
142         }
143
144         /* It must be a TCP or UDP packet with a valid checksum */
145         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146                 skb->ip_summed = CHECKSUM_UNNECESSARY;
147
148         adapter->hw_csum_good++;
149 }
150
151 /**
152  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153  * @rx_ring: address of ring structure to repopulate
154  * @cleaned_count: number of buffers to repopulate
155  **/
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157                                    int cleaned_count)
158 {
159         struct igbvf_adapter *adapter = rx_ring->adapter;
160         struct net_device *netdev = adapter->netdev;
161         struct pci_dev *pdev = adapter->pdev;
162         union e1000_adv_rx_desc *rx_desc;
163         struct igbvf_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         int bufsz;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         if (adapter->rx_ps_hdr_size)
172                 bufsz = adapter->rx_ps_hdr_size;
173         else
174                 bufsz = adapter->rx_buffer_len;
175
176         while (cleaned_count--) {
177                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178
179                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180                         if (!buffer_info->page) {
181                                 buffer_info->page = alloc_page(GFP_ATOMIC);
182                                 if (!buffer_info->page) {
183                                         adapter->alloc_rx_buff_failed++;
184                                         goto no_buffers;
185                                 }
186                                 buffer_info->page_offset = 0;
187                         } else {
188                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
189                         }
190                         buffer_info->page_dma =
191                                 dma_map_page(&pdev->dev, buffer_info->page,
192                                              buffer_info->page_offset,
193                                              PAGE_SIZE / 2,
194                                              DMA_FROM_DEVICE);
195                         if (dma_mapping_error(&pdev->dev,
196                                               buffer_info->page_dma)) {
197                                 __free_page(buffer_info->page);
198                                 buffer_info->page = NULL;
199                                 dev_err(&pdev->dev, "RX DMA map failed\n");
200                                 break;
201                         }
202                 }
203
204                 if (!buffer_info->skb) {
205                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206                         if (!skb) {
207                                 adapter->alloc_rx_buff_failed++;
208                                 goto no_buffers;
209                         }
210
211                         buffer_info->skb = skb;
212                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213                                                           bufsz,
214                                                           DMA_FROM_DEVICE);
215                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216                                 dev_kfree_skb(buffer_info->skb);
217                                 buffer_info->skb = NULL;
218                                 dev_err(&pdev->dev, "RX DMA map failed\n");
219                                 goto no_buffers;
220                         }
221                 }
222                 /* Refresh the desc even if buffer_addrs didn't change because
223                  * each write-back erases this info.
224                  */
225                 if (adapter->rx_ps_hdr_size) {
226                         rx_desc->read.pkt_addr =
227                              cpu_to_le64(buffer_info->page_dma);
228                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229                 } else {
230                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231                         rx_desc->read.hdr_addr = 0;
232                 }
233
234                 i++;
235                 if (i == rx_ring->count)
236                         i = 0;
237                 buffer_info = &rx_ring->buffer_info[i];
238         }
239
240 no_buffers:
241         if (rx_ring->next_to_use != i) {
242                 rx_ring->next_to_use = i;
243                 if (i == 0)
244                         i = (rx_ring->count - 1);
245                 else
246                         i--;
247
248                 /* Force memory writes to complete before letting h/w
249                  * know there are new descriptors to fetch.  (Only
250                  * applicable for weak-ordered memory model archs,
251                  * such as IA-64).
252                 */
253                 wmb();
254                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
255         }
256 }
257
258 /**
259  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260  * @adapter: board private structure
261  *
262  * the return value indicates whether actual cleaning was done, there
263  * is no guarantee that everything was cleaned
264  **/
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266                                int *work_done, int work_to_do)
267 {
268         struct igbvf_ring *rx_ring = adapter->rx_ring;
269         struct net_device *netdev = adapter->netdev;
270         struct pci_dev *pdev = adapter->pdev;
271         union e1000_adv_rx_desc *rx_desc, *next_rxd;
272         struct igbvf_buffer *buffer_info, *next_buffer;
273         struct sk_buff *skb;
274         bool cleaned = false;
275         int cleaned_count = 0;
276         unsigned int total_bytes = 0, total_packets = 0;
277         unsigned int i;
278         u32 length, hlen, staterr;
279
280         i = rx_ring->next_to_clean;
281         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283
284         while (staterr & E1000_RXD_STAT_DD) {
285                 if (*work_done >= work_to_do)
286                         break;
287                 (*work_done)++;
288                 rmb(); /* read descriptor and rx_buffer_info after status DD */
289
290                 buffer_info = &rx_ring->buffer_info[i];
291
292                 /* HW will not DMA in data larger than the given buffer, even
293                  * if it parses the (NFS, of course) header to be larger.  In
294                  * that case, it fills the header buffer and spills the rest
295                  * into the page.
296                  */
297                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
299                        E1000_RXDADV_HDRBUFLEN_SHIFT;
300                 if (hlen > adapter->rx_ps_hdr_size)
301                         hlen = adapter->rx_ps_hdr_size;
302
303                 length = le16_to_cpu(rx_desc->wb.upper.length);
304                 cleaned = true;
305                 cleaned_count++;
306
307                 skb = buffer_info->skb;
308                 prefetch(skb->data - NET_IP_ALIGN);
309                 buffer_info->skb = NULL;
310                 if (!adapter->rx_ps_hdr_size) {
311                         dma_unmap_single(&pdev->dev, buffer_info->dma,
312                                          adapter->rx_buffer_len,
313                                          DMA_FROM_DEVICE);
314                         buffer_info->dma = 0;
315                         skb_put(skb, length);
316                         goto send_up;
317                 }
318
319                 if (!skb_shinfo(skb)->nr_frags) {
320                         dma_unmap_single(&pdev->dev, buffer_info->dma,
321                                          adapter->rx_ps_hdr_size,
322                                          DMA_FROM_DEVICE);
323                         buffer_info->dma = 0;
324                         skb_put(skb, hlen);
325                 }
326
327                 if (length) {
328                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329                                        PAGE_SIZE / 2,
330                                        DMA_FROM_DEVICE);
331                         buffer_info->page_dma = 0;
332
333                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334                                            buffer_info->page,
335                                            buffer_info->page_offset,
336                                            length);
337
338                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339                             (page_count(buffer_info->page) != 1))
340                                 buffer_info->page = NULL;
341                         else
342                                 get_page(buffer_info->page);
343
344                         skb->len += length;
345                         skb->data_len += length;
346                         skb->truesize += PAGE_SIZE / 2;
347                 }
348 send_up:
349                 i++;
350                 if (i == rx_ring->count)
351                         i = 0;
352                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353                 prefetch(next_rxd);
354                 next_buffer = &rx_ring->buffer_info[i];
355
356                 if (!(staterr & E1000_RXD_STAT_EOP)) {
357                         buffer_info->skb = next_buffer->skb;
358                         buffer_info->dma = next_buffer->dma;
359                         next_buffer->skb = skb;
360                         next_buffer->dma = 0;
361                         goto next_desc;
362                 }
363
364                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365                         dev_kfree_skb_irq(skb);
366                         goto next_desc;
367                 }
368
369                 total_bytes += skb->len;
370                 total_packets++;
371
372                 igbvf_rx_checksum_adv(adapter, staterr, skb);
373
374                 skb->protocol = eth_type_trans(skb, netdev);
375
376                 igbvf_receive_skb(adapter, netdev, skb, staterr,
377                                   rx_desc->wb.upper.vlan);
378
379 next_desc:
380                 rx_desc->wb.upper.status_error = 0;
381
382                 /* return some buffers to hardware, one at a time is too slow */
383                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385                         cleaned_count = 0;
386                 }
387
388                 /* use prefetched values */
389                 rx_desc = next_rxd;
390                 buffer_info = next_buffer;
391
392                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393         }
394
395         rx_ring->next_to_clean = i;
396         cleaned_count = igbvf_desc_unused(rx_ring);
397
398         if (cleaned_count)
399                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400
401         adapter->total_rx_packets += total_packets;
402         adapter->total_rx_bytes += total_bytes;
403         netdev->stats.rx_bytes += total_bytes;
404         netdev->stats.rx_packets += total_packets;
405         return cleaned;
406 }
407
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409                             struct igbvf_buffer *buffer_info)
410 {
411         if (buffer_info->dma) {
412                 if (buffer_info->mapped_as_page)
413                         dma_unmap_page(&adapter->pdev->dev,
414                                        buffer_info->dma,
415                                        buffer_info->length,
416                                        DMA_TO_DEVICE);
417                 else
418                         dma_unmap_single(&adapter->pdev->dev,
419                                          buffer_info->dma,
420                                          buffer_info->length,
421                                          DMA_TO_DEVICE);
422                 buffer_info->dma = 0;
423         }
424         if (buffer_info->skb) {
425                 dev_kfree_skb_any(buffer_info->skb);
426                 buffer_info->skb = NULL;
427         }
428         buffer_info->time_stamp = 0;
429 }
430
431 /**
432  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433  * @adapter: board private structure
434  *
435  * Return 0 on success, negative on failure
436  **/
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438                              struct igbvf_ring *tx_ring)
439 {
440         struct pci_dev *pdev = adapter->pdev;
441         int size;
442
443         size = sizeof(struct igbvf_buffer) * tx_ring->count;
444         tx_ring->buffer_info = vzalloc(size);
445         if (!tx_ring->buffer_info)
446                 goto err;
447
448         /* round up to nearest 4K */
449         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450         tx_ring->size = ALIGN(tx_ring->size, 4096);
451
452         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453                                            &tx_ring->dma, GFP_KERNEL);
454         if (!tx_ring->desc)
455                 goto err;
456
457         tx_ring->adapter = adapter;
458         tx_ring->next_to_use = 0;
459         tx_ring->next_to_clean = 0;
460
461         return 0;
462 err:
463         vfree(tx_ring->buffer_info);
464         dev_err(&adapter->pdev->dev,
465                 "Unable to allocate memory for the transmit descriptor ring\n");
466         return -ENOMEM;
467 }
468
469 /**
470  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471  * @adapter: board private structure
472  *
473  * Returns 0 on success, negative on failure
474  **/
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476                              struct igbvf_ring *rx_ring)
477 {
478         struct pci_dev *pdev = adapter->pdev;
479         int size, desc_len;
480
481         size = sizeof(struct igbvf_buffer) * rx_ring->count;
482         rx_ring->buffer_info = vzalloc(size);
483         if (!rx_ring->buffer_info)
484                 goto err;
485
486         desc_len = sizeof(union e1000_adv_rx_desc);
487
488         /* Round up to nearest 4K */
489         rx_ring->size = rx_ring->count * desc_len;
490         rx_ring->size = ALIGN(rx_ring->size, 4096);
491
492         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493                                            &rx_ring->dma, GFP_KERNEL);
494         if (!rx_ring->desc)
495                 goto err;
496
497         rx_ring->next_to_clean = 0;
498         rx_ring->next_to_use = 0;
499
500         rx_ring->adapter = adapter;
501
502         return 0;
503
504 err:
505         vfree(rx_ring->buffer_info);
506         rx_ring->buffer_info = NULL;
507         dev_err(&adapter->pdev->dev,
508                 "Unable to allocate memory for the receive descriptor ring\n");
509         return -ENOMEM;
510 }
511
512 /**
513  * igbvf_clean_tx_ring - Free Tx Buffers
514  * @tx_ring: ring to be cleaned
515  **/
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517 {
518         struct igbvf_adapter *adapter = tx_ring->adapter;
519         struct igbvf_buffer *buffer_info;
520         unsigned long size;
521         unsigned int i;
522
523         if (!tx_ring->buffer_info)
524                 return;
525
526         /* Free all the Tx ring sk_buffs */
527         for (i = 0; i < tx_ring->count; i++) {
528                 buffer_info = &tx_ring->buffer_info[i];
529                 igbvf_put_txbuf(adapter, buffer_info);
530         }
531
532         size = sizeof(struct igbvf_buffer) * tx_ring->count;
533         memset(tx_ring->buffer_info, 0, size);
534
535         /* Zero out the descriptor ring */
536         memset(tx_ring->desc, 0, tx_ring->size);
537
538         tx_ring->next_to_use = 0;
539         tx_ring->next_to_clean = 0;
540
541         writel(0, adapter->hw.hw_addr + tx_ring->head);
542         writel(0, adapter->hw.hw_addr + tx_ring->tail);
543 }
544
545 /**
546  * igbvf_free_tx_resources - Free Tx Resources per Queue
547  * @tx_ring: ring to free resources from
548  *
549  * Free all transmit software resources
550  **/
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552 {
553         struct pci_dev *pdev = tx_ring->adapter->pdev;
554
555         igbvf_clean_tx_ring(tx_ring);
556
557         vfree(tx_ring->buffer_info);
558         tx_ring->buffer_info = NULL;
559
560         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561                           tx_ring->dma);
562
563         tx_ring->desc = NULL;
564 }
565
566 /**
567  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568  * @adapter: board private structure
569  **/
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571 {
572         struct igbvf_adapter *adapter = rx_ring->adapter;
573         struct igbvf_buffer *buffer_info;
574         struct pci_dev *pdev = adapter->pdev;
575         unsigned long size;
576         unsigned int i;
577
578         if (!rx_ring->buffer_info)
579                 return;
580
581         /* Free all the Rx ring sk_buffs */
582         for (i = 0; i < rx_ring->count; i++) {
583                 buffer_info = &rx_ring->buffer_info[i];
584                 if (buffer_info->dma) {
585                         if (adapter->rx_ps_hdr_size) {
586                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
587                                                  adapter->rx_ps_hdr_size,
588                                                  DMA_FROM_DEVICE);
589                         } else {
590                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
591                                                  adapter->rx_buffer_len,
592                                                  DMA_FROM_DEVICE);
593                         }
594                         buffer_info->dma = 0;
595                 }
596
597                 if (buffer_info->skb) {
598                         dev_kfree_skb(buffer_info->skb);
599                         buffer_info->skb = NULL;
600                 }
601
602                 if (buffer_info->page) {
603                         if (buffer_info->page_dma)
604                                 dma_unmap_page(&pdev->dev,
605                                                buffer_info->page_dma,
606                                                PAGE_SIZE / 2,
607                                                DMA_FROM_DEVICE);
608                         put_page(buffer_info->page);
609                         buffer_info->page = NULL;
610                         buffer_info->page_dma = 0;
611                         buffer_info->page_offset = 0;
612                 }
613         }
614
615         size = sizeof(struct igbvf_buffer) * rx_ring->count;
616         memset(rx_ring->buffer_info, 0, size);
617
618         /* Zero out the descriptor ring */
619         memset(rx_ring->desc, 0, rx_ring->size);
620
621         rx_ring->next_to_clean = 0;
622         rx_ring->next_to_use = 0;
623
624         writel(0, adapter->hw.hw_addr + rx_ring->head);
625         writel(0, adapter->hw.hw_addr + rx_ring->tail);
626 }
627
628 /**
629  * igbvf_free_rx_resources - Free Rx Resources
630  * @rx_ring: ring to clean the resources from
631  *
632  * Free all receive software resources
633  **/
634
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636 {
637         struct pci_dev *pdev = rx_ring->adapter->pdev;
638
639         igbvf_clean_rx_ring(rx_ring);
640
641         vfree(rx_ring->buffer_info);
642         rx_ring->buffer_info = NULL;
643
644         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645                           rx_ring->dma);
646         rx_ring->desc = NULL;
647 }
648
649 /**
650  * igbvf_update_itr - update the dynamic ITR value based on statistics
651  * @adapter: pointer to adapter
652  * @itr_setting: current adapter->itr
653  * @packets: the number of packets during this measurement interval
654  * @bytes: the number of bytes during this measurement interval
655  *
656  * Stores a new ITR value based on packets and byte counts during the last
657  * interrupt.  The advantage of per interrupt computation is faster updates
658  * and more accurate ITR for the current traffic pattern.  Constants in this
659  * function were computed based on theoretical maximum wire speed and thresholds
660  * were set based on testing data as well as attempting to minimize response
661  * time while increasing bulk throughput.
662  **/
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664                                            enum latency_range itr_setting,
665                                            int packets, int bytes)
666 {
667         enum latency_range retval = itr_setting;
668
669         if (packets == 0)
670                 goto update_itr_done;
671
672         switch (itr_setting) {
673         case lowest_latency:
674                 /* handle TSO and jumbo frames */
675                 if (bytes/packets > 8000)
676                         retval = bulk_latency;
677                 else if ((packets < 5) && (bytes > 512))
678                         retval = low_latency;
679                 break;
680         case low_latency:  /* 50 usec aka 20000 ints/s */
681                 if (bytes > 10000) {
682                         /* this if handles the TSO accounting */
683                         if (bytes/packets > 8000)
684                                 retval = bulk_latency;
685                         else if ((packets < 10) || ((bytes/packets) > 1200))
686                                 retval = bulk_latency;
687                         else if ((packets > 35))
688                                 retval = lowest_latency;
689                 } else if (bytes/packets > 2000) {
690                         retval = bulk_latency;
691                 } else if (packets <= 2 && bytes < 512) {
692                         retval = lowest_latency;
693                 }
694                 break;
695         case bulk_latency: /* 250 usec aka 4000 ints/s */
696                 if (bytes > 25000) {
697                         if (packets > 35)
698                                 retval = low_latency;
699                 } else if (bytes < 6000) {
700                         retval = low_latency;
701                 }
702                 break;
703         default:
704                 break;
705         }
706
707 update_itr_done:
708         return retval;
709 }
710
711 static int igbvf_range_to_itr(enum latency_range current_range)
712 {
713         int new_itr;
714
715         switch (current_range) {
716         /* counts and packets in update_itr are dependent on these numbers */
717         case lowest_latency:
718                 new_itr = IGBVF_70K_ITR;
719                 break;
720         case low_latency:
721                 new_itr = IGBVF_20K_ITR;
722                 break;
723         case bulk_latency:
724                 new_itr = IGBVF_4K_ITR;
725                 break;
726         default:
727                 new_itr = IGBVF_START_ITR;
728                 break;
729         }
730         return new_itr;
731 }
732
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
734 {
735         u32 new_itr;
736
737         adapter->tx_ring->itr_range =
738                         igbvf_update_itr(adapter,
739                                          adapter->tx_ring->itr_val,
740                                          adapter->total_tx_packets,
741                                          adapter->total_tx_bytes);
742
743         /* conservative mode (itr 3) eliminates the lowest_latency setting */
744         if (adapter->requested_itr == 3 &&
745             adapter->tx_ring->itr_range == lowest_latency)
746                 adapter->tx_ring->itr_range = low_latency;
747
748         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749
750         if (new_itr != adapter->tx_ring->itr_val) {
751                 u32 current_itr = adapter->tx_ring->itr_val;
752                 /* this attempts to bias the interrupt rate towards Bulk
753                  * by adding intermediate steps when interrupt rate is
754                  * increasing
755                  */
756                 new_itr = new_itr > current_itr ?
757                           min(current_itr + (new_itr >> 2), new_itr) :
758                           new_itr;
759                 adapter->tx_ring->itr_val = new_itr;
760
761                 adapter->tx_ring->set_itr = 1;
762         }
763
764         adapter->rx_ring->itr_range =
765                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766                                          adapter->total_rx_packets,
767                                          adapter->total_rx_bytes);
768         if (adapter->requested_itr == 3 &&
769             adapter->rx_ring->itr_range == lowest_latency)
770                 adapter->rx_ring->itr_range = low_latency;
771
772         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773
774         if (new_itr != adapter->rx_ring->itr_val) {
775                 u32 current_itr = adapter->rx_ring->itr_val;
776
777                 new_itr = new_itr > current_itr ?
778                           min(current_itr + (new_itr >> 2), new_itr) :
779                           new_itr;
780                 adapter->rx_ring->itr_val = new_itr;
781
782                 adapter->rx_ring->set_itr = 1;
783         }
784 }
785
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794         struct igbvf_adapter *adapter = tx_ring->adapter;
795         struct net_device *netdev = adapter->netdev;
796         struct igbvf_buffer *buffer_info;
797         struct sk_buff *skb;
798         union e1000_adv_tx_desc *tx_desc, *eop_desc;
799         unsigned int total_bytes = 0, total_packets = 0;
800         unsigned int i, count = 0;
801         bool cleaned = false;
802
803         i = tx_ring->next_to_clean;
804         buffer_info = &tx_ring->buffer_info[i];
805         eop_desc = buffer_info->next_to_watch;
806
807         do {
808                 /* if next_to_watch is not set then there is no work pending */
809                 if (!eop_desc)
810                         break;
811
812                 /* prevent any other reads prior to eop_desc */
813                 smp_rmb();
814
815                 /* if DD is not set pending work has not been completed */
816                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817                         break;
818
819                 /* clear next_to_watch to prevent false hangs */
820                 buffer_info->next_to_watch = NULL;
821
822                 for (cleaned = false; !cleaned; count++) {
823                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824                         cleaned = (tx_desc == eop_desc);
825                         skb = buffer_info->skb;
826
827                         if (skb) {
828                                 unsigned int segs, bytecount;
829
830                                 /* gso_segs is currently only valid for tcp */
831                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
832                                 /* multiply data chunks by size of headers */
833                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
834                                             skb->len;
835                                 total_packets += segs;
836                                 total_bytes += bytecount;
837                         }
838
839                         igbvf_put_txbuf(adapter, buffer_info);
840                         tx_desc->wb.status = 0;
841
842                         i++;
843                         if (i == tx_ring->count)
844                                 i = 0;
845
846                         buffer_info = &tx_ring->buffer_info[i];
847                 }
848
849                 eop_desc = buffer_info->next_to_watch;
850         } while (count < tx_ring->count);
851
852         tx_ring->next_to_clean = i;
853
854         if (unlikely(count && netif_carrier_ok(netdev) &&
855             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856                 /* Make sure that anybody stopping the queue after this
857                  * sees the new next_to_clean.
858                  */
859                 smp_mb();
860                 if (netif_queue_stopped(netdev) &&
861                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862                         netif_wake_queue(netdev);
863                         ++adapter->restart_queue;
864                 }
865         }
866
867         netdev->stats.tx_bytes += total_bytes;
868         netdev->stats.tx_packets += total_packets;
869         return count < tx_ring->count;
870 }
871
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
873 {
874         struct net_device *netdev = data;
875         struct igbvf_adapter *adapter = netdev_priv(netdev);
876         struct e1000_hw *hw = &adapter->hw;
877
878         adapter->int_counter1++;
879
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically re-enable the interrupt when we write
906          * EICS
907          */
908         if (!igbvf_clean_tx_irq(tx_ring))
909                 /* Ring was not completely cleaned, so fire another interrupt */
910                 ew32(EICS, tx_ring->eims_value);
911         else
912                 ew32(EIMS, tx_ring->eims_value);
913
914         return IRQ_HANDLED;
915 }
916
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919         struct net_device *netdev = data;
920         struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922         adapter->int_counter0++;
923
924         /* Write the ITR value calculated at the end of the
925          * previous interrupt.
926          */
927         if (adapter->rx_ring->set_itr) {
928                 writel(adapter->rx_ring->itr_val,
929                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930                 adapter->rx_ring->set_itr = 0;
931         }
932
933         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934                 adapter->total_rx_bytes = 0;
935                 adapter->total_rx_packets = 0;
936                 __napi_schedule(&adapter->rx_ring->napi);
937         }
938
939         return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945                                 int tx_queue, int msix_vector)
946 {
947         struct e1000_hw *hw = &adapter->hw;
948         u32 ivar, index;
949
950         /* 82576 uses a table-based method for assigning vectors.
951          * Each queue has a single entry in the table to which we write
952          * a vector number along with a "valid" bit.  Sadly, the layout
953          * of the table is somewhat counterintuitive.
954          */
955         if (rx_queue > IGBVF_NO_QUEUE) {
956                 index = (rx_queue >> 1);
957                 ivar = array_er32(IVAR0, index);
958                 if (rx_queue & 0x1) {
959                         /* vector goes into third byte of register */
960                         ivar = ivar & 0xFF00FFFF;
961                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962                 } else {
963                         /* vector goes into low byte of register */
964                         ivar = ivar & 0xFFFFFF00;
965                         ivar |= msix_vector | E1000_IVAR_VALID;
966                 }
967                 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968                 array_ew32(IVAR0, index, ivar);
969         }
970         if (tx_queue > IGBVF_NO_QUEUE) {
971                 index = (tx_queue >> 1);
972                 ivar = array_er32(IVAR0, index);
973                 if (tx_queue & 0x1) {
974                         /* vector goes into high byte of register */
975                         ivar = ivar & 0x00FFFFFF;
976                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977                 } else {
978                         /* vector goes into second byte of register */
979                         ivar = ivar & 0xFFFF00FF;
980                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981                 }
982                 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983                 array_ew32(IVAR0, index, ivar);
984         }
985 }
986
987 /**
988  * igbvf_configure_msix - Configure MSI-X hardware
989  * @adapter: board private structure
990  *
991  * igbvf_configure_msix sets up the hardware to properly
992  * generate MSI-X interrupts.
993  **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996         u32 tmp;
997         struct e1000_hw *hw = &adapter->hw;
998         struct igbvf_ring *tx_ring = adapter->tx_ring;
999         struct igbvf_ring *rx_ring = adapter->rx_ring;
1000         int vector = 0;
1001
1002         adapter->eims_enable_mask = 0;
1003
1004         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005         adapter->eims_enable_mask |= tx_ring->eims_value;
1006         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008         adapter->eims_enable_mask |= rx_ring->eims_value;
1009         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011         /* set vector for other causes, i.e. link changes */
1012
1013         tmp = (vector++ | E1000_IVAR_VALID);
1014
1015         ew32(IVAR_MISC, tmp);
1016
1017         adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018         adapter->eims_other = BIT(vector - 1);
1019         e1e_flush();
1020 }
1021
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024         if (adapter->msix_entries) {
1025                 pci_disable_msix(adapter->pdev);
1026                 kfree(adapter->msix_entries);
1027                 adapter->msix_entries = NULL;
1028         }
1029 }
1030
1031 /**
1032  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033  * @adapter: board private structure
1034  *
1035  * Attempt to configure interrupts using the best available
1036  * capabilities of the hardware and kernel.
1037  **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040         int err = -ENOMEM;
1041         int i;
1042
1043         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                         GFP_KERNEL);
1046         if (adapter->msix_entries) {
1047                 for (i = 0; i < 3; i++)
1048                         adapter->msix_entries[i].entry = i;
1049
1050                 err = pci_enable_msix_range(adapter->pdev,
1051                                             adapter->msix_entries, 3, 3);
1052         }
1053
1054         if (err < 0) {
1055                 /* MSI-X failed */
1056                 dev_err(&adapter->pdev->dev,
1057                         "Failed to initialize MSI-X interrupts.\n");
1058                 igbvf_reset_interrupt_capability(adapter);
1059         }
1060 }
1061
1062 /**
1063  * igbvf_request_msix - Initialize MSI-X interrupts
1064  * @adapter: board private structure
1065  *
1066  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067  * kernel.
1068  **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071         struct net_device *netdev = adapter->netdev;
1072         int err = 0, vector = 0;
1073
1074         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077         } else {
1078                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080         }
1081
1082         err = request_irq(adapter->msix_entries[vector].vector,
1083                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                           netdev);
1085         if (err)
1086                 goto out;
1087
1088         adapter->tx_ring->itr_register = E1000_EITR(vector);
1089         adapter->tx_ring->itr_val = adapter->current_itr;
1090         vector++;
1091
1092         err = request_irq(adapter->msix_entries[vector].vector,
1093                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                           netdev);
1095         if (err)
1096                 goto free_irq_tx;
1097
1098         adapter->rx_ring->itr_register = E1000_EITR(vector);
1099         adapter->rx_ring->itr_val = adapter->current_itr;
1100         vector++;
1101
1102         err = request_irq(adapter->msix_entries[vector].vector,
1103                           igbvf_msix_other, 0, netdev->name, netdev);
1104         if (err)
1105                 goto free_irq_rx;
1106
1107         igbvf_configure_msix(adapter);
1108         return 0;
1109 free_irq_rx:
1110         free_irq(adapter->msix_entries[--vector].vector, netdev);
1111 free_irq_tx:
1112         free_irq(adapter->msix_entries[--vector].vector, netdev);
1113 out:
1114         return err;
1115 }
1116
1117 /**
1118  * igbvf_alloc_queues - Allocate memory for all rings
1119  * @adapter: board private structure to initialize
1120  **/
1121 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1122 {
1123         struct net_device *netdev = adapter->netdev;
1124
1125         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126         if (!adapter->tx_ring)
1127                 return -ENOMEM;
1128
1129         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1130         if (!adapter->rx_ring) {
1131                 kfree(adapter->tx_ring);
1132                 return -ENOMEM;
1133         }
1134
1135         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1136
1137         return 0;
1138 }
1139
1140 /**
1141  * igbvf_request_irq - initialize interrupts
1142  * @adapter: board private structure
1143  *
1144  * Attempts to configure interrupts using the best available
1145  * capabilities of the hardware and kernel.
1146  **/
1147 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1148 {
1149         int err = -1;
1150
1151         /* igbvf supports msi-x only */
1152         if (adapter->msix_entries)
1153                 err = igbvf_request_msix(adapter);
1154
1155         if (!err)
1156                 return err;
1157
1158         dev_err(&adapter->pdev->dev,
1159                 "Unable to allocate interrupt, Error: %d\n", err);
1160
1161         return err;
1162 }
1163
1164 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1165 {
1166         struct net_device *netdev = adapter->netdev;
1167         int vector;
1168
1169         if (adapter->msix_entries) {
1170                 for (vector = 0; vector < 3; vector++)
1171                         free_irq(adapter->msix_entries[vector].vector, netdev);
1172         }
1173 }
1174
1175 /**
1176  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1177  * @adapter: board private structure
1178  **/
1179 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1180 {
1181         struct e1000_hw *hw = &adapter->hw;
1182
1183         ew32(EIMC, ~0);
1184
1185         if (adapter->msix_entries)
1186                 ew32(EIAC, 0);
1187 }
1188
1189 /**
1190  * igbvf_irq_enable - Enable default interrupt generation settings
1191  * @adapter: board private structure
1192  **/
1193 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1194 {
1195         struct e1000_hw *hw = &adapter->hw;
1196
1197         ew32(EIAC, adapter->eims_enable_mask);
1198         ew32(EIAM, adapter->eims_enable_mask);
1199         ew32(EIMS, adapter->eims_enable_mask);
1200 }
1201
1202 /**
1203  * igbvf_poll - NAPI Rx polling callback
1204  * @napi: struct associated with this polling callback
1205  * @budget: amount of packets driver is allowed to process this poll
1206  **/
1207 static int igbvf_poll(struct napi_struct *napi, int budget)
1208 {
1209         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1210         struct igbvf_adapter *adapter = rx_ring->adapter;
1211         struct e1000_hw *hw = &adapter->hw;
1212         int work_done = 0;
1213
1214         igbvf_clean_rx_irq(adapter, &work_done, budget);
1215
1216         /* If not enough Rx work done, exit the polling mode */
1217         if (work_done < budget) {
1218                 napi_complete_done(napi, work_done);
1219
1220                 if (adapter->requested_itr & 3)
1221                         igbvf_set_itr(adapter);
1222
1223                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1224                         ew32(EIMS, adapter->rx_ring->eims_value);
1225         }
1226
1227         return work_done;
1228 }
1229
1230 /**
1231  * igbvf_set_rlpml - set receive large packet maximum length
1232  * @adapter: board private structure
1233  *
1234  * Configure the maximum size of packets that will be received
1235  */
1236 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1237 {
1238         int max_frame_size;
1239         struct e1000_hw *hw = &adapter->hw;
1240
1241         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1242
1243         spin_lock_bh(&hw->mbx_lock);
1244
1245         e1000_rlpml_set_vf(hw, max_frame_size);
1246
1247         spin_unlock_bh(&hw->mbx_lock);
1248 }
1249
1250 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1251                                  __be16 proto, u16 vid)
1252 {
1253         struct igbvf_adapter *adapter = netdev_priv(netdev);
1254         struct e1000_hw *hw = &adapter->hw;
1255
1256         spin_lock_bh(&hw->mbx_lock);
1257
1258         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1259                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1260                 spin_unlock_bh(&hw->mbx_lock);
1261                 return -EINVAL;
1262         }
1263
1264         spin_unlock_bh(&hw->mbx_lock);
1265
1266         set_bit(vid, adapter->active_vlans);
1267         return 0;
1268 }
1269
1270 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1271                                   __be16 proto, u16 vid)
1272 {
1273         struct igbvf_adapter *adapter = netdev_priv(netdev);
1274         struct e1000_hw *hw = &adapter->hw;
1275
1276         spin_lock_bh(&hw->mbx_lock);
1277
1278         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1279                 dev_err(&adapter->pdev->dev,
1280                         "Failed to remove vlan id %d\n", vid);
1281                 spin_unlock_bh(&hw->mbx_lock);
1282                 return -EINVAL;
1283         }
1284
1285         spin_unlock_bh(&hw->mbx_lock);
1286
1287         clear_bit(vid, adapter->active_vlans);
1288         return 0;
1289 }
1290
1291 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1292 {
1293         u16 vid;
1294
1295         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1296                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1297 }
1298
1299 /**
1300  * igbvf_configure_tx - Configure Transmit Unit after Reset
1301  * @adapter: board private structure
1302  *
1303  * Configure the Tx unit of the MAC after a reset.
1304  **/
1305 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1306 {
1307         struct e1000_hw *hw = &adapter->hw;
1308         struct igbvf_ring *tx_ring = adapter->tx_ring;
1309         u64 tdba;
1310         u32 txdctl, dca_txctrl;
1311
1312         /* disable transmits */
1313         txdctl = er32(TXDCTL(0));
1314         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1315         e1e_flush();
1316         msleep(10);
1317
1318         /* Setup the HW Tx Head and Tail descriptor pointers */
1319         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1320         tdba = tx_ring->dma;
1321         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1322         ew32(TDBAH(0), (tdba >> 32));
1323         ew32(TDH(0), 0);
1324         ew32(TDT(0), 0);
1325         tx_ring->head = E1000_TDH(0);
1326         tx_ring->tail = E1000_TDT(0);
1327
1328         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1329          * MUST be delivered in order or it will completely screw up
1330          * our bookkeeping.
1331          */
1332         dca_txctrl = er32(DCA_TXCTRL(0));
1333         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1334         ew32(DCA_TXCTRL(0), dca_txctrl);
1335
1336         /* enable transmits */
1337         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1338         ew32(TXDCTL(0), txdctl);
1339
1340         /* Setup Transmit Descriptor Settings for eop descriptor */
1341         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1342
1343         /* enable Report Status bit */
1344         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1345 }
1346
1347 /**
1348  * igbvf_setup_srrctl - configure the receive control registers
1349  * @adapter: Board private structure
1350  **/
1351 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1352 {
1353         struct e1000_hw *hw = &adapter->hw;
1354         u32 srrctl = 0;
1355
1356         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1357                     E1000_SRRCTL_BSIZEHDR_MASK |
1358                     E1000_SRRCTL_BSIZEPKT_MASK);
1359
1360         /* Enable queue drop to avoid head of line blocking */
1361         srrctl |= E1000_SRRCTL_DROP_EN;
1362
1363         /* Setup buffer sizes */
1364         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1365                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1366
1367         if (adapter->rx_buffer_len < 2048) {
1368                 adapter->rx_ps_hdr_size = 0;
1369                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1370         } else {
1371                 adapter->rx_ps_hdr_size = 128;
1372                 srrctl |= adapter->rx_ps_hdr_size <<
1373                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1374                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1375         }
1376
1377         ew32(SRRCTL(0), srrctl);
1378 }
1379
1380 /**
1381  * igbvf_configure_rx - Configure Receive Unit after Reset
1382  * @adapter: board private structure
1383  *
1384  * Configure the Rx unit of the MAC after a reset.
1385  **/
1386 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1387 {
1388         struct e1000_hw *hw = &adapter->hw;
1389         struct igbvf_ring *rx_ring = adapter->rx_ring;
1390         u64 rdba;
1391         u32 rxdctl;
1392
1393         /* disable receives */
1394         rxdctl = er32(RXDCTL(0));
1395         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1396         e1e_flush();
1397         msleep(10);
1398
1399         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1400          * the Base and Length of the Rx Descriptor Ring
1401          */
1402         rdba = rx_ring->dma;
1403         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1404         ew32(RDBAH(0), (rdba >> 32));
1405         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1406         rx_ring->head = E1000_RDH(0);
1407         rx_ring->tail = E1000_RDT(0);
1408         ew32(RDH(0), 0);
1409         ew32(RDT(0), 0);
1410
1411         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1412         rxdctl &= 0xFFF00000;
1413         rxdctl |= IGBVF_RX_PTHRESH;
1414         rxdctl |= IGBVF_RX_HTHRESH << 8;
1415         rxdctl |= IGBVF_RX_WTHRESH << 16;
1416
1417         igbvf_set_rlpml(adapter);
1418
1419         /* enable receives */
1420         ew32(RXDCTL(0), rxdctl);
1421 }
1422
1423 /**
1424  * igbvf_set_multi - Multicast and Promiscuous mode set
1425  * @netdev: network interface device structure
1426  *
1427  * The set_multi entry point is called whenever the multicast address
1428  * list or the network interface flags are updated.  This routine is
1429  * responsible for configuring the hardware for proper multicast,
1430  * promiscuous mode, and all-multi behavior.
1431  **/
1432 static void igbvf_set_multi(struct net_device *netdev)
1433 {
1434         struct igbvf_adapter *adapter = netdev_priv(netdev);
1435         struct e1000_hw *hw = &adapter->hw;
1436         struct netdev_hw_addr *ha;
1437         u8  *mta_list = NULL;
1438         int i;
1439
1440         if (!netdev_mc_empty(netdev)) {
1441                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1442                                          GFP_ATOMIC);
1443                 if (!mta_list)
1444                         return;
1445         }
1446
1447         /* prepare a packed array of only addresses. */
1448         i = 0;
1449         netdev_for_each_mc_addr(ha, netdev)
1450                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1451
1452         spin_lock_bh(&hw->mbx_lock);
1453
1454         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1455
1456         spin_unlock_bh(&hw->mbx_lock);
1457         kfree(mta_list);
1458 }
1459
1460 /**
1461  * igbvf_set_uni - Configure unicast MAC filters
1462  * @netdev: network interface device structure
1463  *
1464  * This routine is responsible for configuring the hardware for proper
1465  * unicast filters.
1466  **/
1467 static int igbvf_set_uni(struct net_device *netdev)
1468 {
1469         struct igbvf_adapter *adapter = netdev_priv(netdev);
1470         struct e1000_hw *hw = &adapter->hw;
1471
1472         if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1473                 pr_err("Too many unicast filters - No Space\n");
1474                 return -ENOSPC;
1475         }
1476
1477         spin_lock_bh(&hw->mbx_lock);
1478
1479         /* Clear all unicast MAC filters */
1480         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1481
1482         spin_unlock_bh(&hw->mbx_lock);
1483
1484         if (!netdev_uc_empty(netdev)) {
1485                 struct netdev_hw_addr *ha;
1486
1487                 /* Add MAC filters one by one */
1488                 netdev_for_each_uc_addr(ha, netdev) {
1489                         spin_lock_bh(&hw->mbx_lock);
1490
1491                         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1492                                                 ha->addr);
1493
1494                         spin_unlock_bh(&hw->mbx_lock);
1495                         udelay(200);
1496                 }
1497         }
1498
1499         return 0;
1500 }
1501
1502 static void igbvf_set_rx_mode(struct net_device *netdev)
1503 {
1504         igbvf_set_multi(netdev);
1505         igbvf_set_uni(netdev);
1506 }
1507
1508 /**
1509  * igbvf_configure - configure the hardware for Rx and Tx
1510  * @adapter: private board structure
1511  **/
1512 static void igbvf_configure(struct igbvf_adapter *adapter)
1513 {
1514         igbvf_set_rx_mode(adapter->netdev);
1515
1516         igbvf_restore_vlan(adapter);
1517
1518         igbvf_configure_tx(adapter);
1519         igbvf_setup_srrctl(adapter);
1520         igbvf_configure_rx(adapter);
1521         igbvf_alloc_rx_buffers(adapter->rx_ring,
1522                                igbvf_desc_unused(adapter->rx_ring));
1523 }
1524
1525 /* igbvf_reset - bring the hardware into a known good state
1526  * @adapter: private board structure
1527  *
1528  * This function boots the hardware and enables some settings that
1529  * require a configuration cycle of the hardware - those cannot be
1530  * set/changed during runtime. After reset the device needs to be
1531  * properly configured for Rx, Tx etc.
1532  */
1533 static void igbvf_reset(struct igbvf_adapter *adapter)
1534 {
1535         struct e1000_mac_info *mac = &adapter->hw.mac;
1536         struct net_device *netdev = adapter->netdev;
1537         struct e1000_hw *hw = &adapter->hw;
1538
1539         spin_lock_bh(&hw->mbx_lock);
1540
1541         /* Allow time for pending master requests to run */
1542         if (mac->ops.reset_hw(hw))
1543                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1544
1545         mac->ops.init_hw(hw);
1546
1547         spin_unlock_bh(&hw->mbx_lock);
1548
1549         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1550                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1551                        netdev->addr_len);
1552                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1553                        netdev->addr_len);
1554         }
1555
1556         adapter->last_reset = jiffies;
1557 }
1558
1559 int igbvf_up(struct igbvf_adapter *adapter)
1560 {
1561         struct e1000_hw *hw = &adapter->hw;
1562
1563         /* hardware has been reset, we need to reload some things */
1564         igbvf_configure(adapter);
1565
1566         clear_bit(__IGBVF_DOWN, &adapter->state);
1567
1568         napi_enable(&adapter->rx_ring->napi);
1569         if (adapter->msix_entries)
1570                 igbvf_configure_msix(adapter);
1571
1572         /* Clear any pending interrupts. */
1573         er32(EICR);
1574         igbvf_irq_enable(adapter);
1575
1576         /* start the watchdog */
1577         hw->mac.get_link_status = 1;
1578         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1579
1580         return 0;
1581 }
1582
1583 void igbvf_down(struct igbvf_adapter *adapter)
1584 {
1585         struct net_device *netdev = adapter->netdev;
1586         struct e1000_hw *hw = &adapter->hw;
1587         u32 rxdctl, txdctl;
1588
1589         /* signal that we're down so the interrupt handler does not
1590          * reschedule our watchdog timer
1591          */
1592         set_bit(__IGBVF_DOWN, &adapter->state);
1593
1594         /* disable receives in the hardware */
1595         rxdctl = er32(RXDCTL(0));
1596         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1597
1598         netif_carrier_off(netdev);
1599         netif_stop_queue(netdev);
1600
1601         /* disable transmits in the hardware */
1602         txdctl = er32(TXDCTL(0));
1603         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1604
1605         /* flush both disables and wait for them to finish */
1606         e1e_flush();
1607         msleep(10);
1608
1609         napi_disable(&adapter->rx_ring->napi);
1610
1611         igbvf_irq_disable(adapter);
1612
1613         del_timer_sync(&adapter->watchdog_timer);
1614
1615         /* record the stats before reset*/
1616         igbvf_update_stats(adapter);
1617
1618         adapter->link_speed = 0;
1619         adapter->link_duplex = 0;
1620
1621         igbvf_reset(adapter);
1622         igbvf_clean_tx_ring(adapter->tx_ring);
1623         igbvf_clean_rx_ring(adapter->rx_ring);
1624 }
1625
1626 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1627 {
1628         might_sleep();
1629         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1630                 usleep_range(1000, 2000);
1631         igbvf_down(adapter);
1632         igbvf_up(adapter);
1633         clear_bit(__IGBVF_RESETTING, &adapter->state);
1634 }
1635
1636 /**
1637  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1638  * @adapter: board private structure to initialize
1639  *
1640  * igbvf_sw_init initializes the Adapter private data structure.
1641  * Fields are initialized based on PCI device information and
1642  * OS network device settings (MTU size).
1643  **/
1644 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1645 {
1646         struct net_device *netdev = adapter->netdev;
1647         s32 rc;
1648
1649         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1650         adapter->rx_ps_hdr_size = 0;
1651         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1652         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1653
1654         adapter->tx_int_delay = 8;
1655         adapter->tx_abs_int_delay = 32;
1656         adapter->rx_int_delay = 0;
1657         adapter->rx_abs_int_delay = 8;
1658         adapter->requested_itr = 3;
1659         adapter->current_itr = IGBVF_START_ITR;
1660
1661         /* Set various function pointers */
1662         adapter->ei->init_ops(&adapter->hw);
1663
1664         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1665         if (rc)
1666                 return rc;
1667
1668         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1669         if (rc)
1670                 return rc;
1671
1672         igbvf_set_interrupt_capability(adapter);
1673
1674         if (igbvf_alloc_queues(adapter))
1675                 return -ENOMEM;
1676
1677         spin_lock_init(&adapter->tx_queue_lock);
1678
1679         /* Explicitly disable IRQ since the NIC can be in any state. */
1680         igbvf_irq_disable(adapter);
1681
1682         spin_lock_init(&adapter->stats_lock);
1683         spin_lock_init(&adapter->hw.mbx_lock);
1684
1685         set_bit(__IGBVF_DOWN, &adapter->state);
1686         return 0;
1687 }
1688
1689 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1690 {
1691         struct e1000_hw *hw = &adapter->hw;
1692
1693         adapter->stats.last_gprc = er32(VFGPRC);
1694         adapter->stats.last_gorc = er32(VFGORC);
1695         adapter->stats.last_gptc = er32(VFGPTC);
1696         adapter->stats.last_gotc = er32(VFGOTC);
1697         adapter->stats.last_mprc = er32(VFMPRC);
1698         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1699         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1700         adapter->stats.last_gorlbc = er32(VFGORLBC);
1701         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1702
1703         adapter->stats.base_gprc = er32(VFGPRC);
1704         adapter->stats.base_gorc = er32(VFGORC);
1705         adapter->stats.base_gptc = er32(VFGPTC);
1706         adapter->stats.base_gotc = er32(VFGOTC);
1707         adapter->stats.base_mprc = er32(VFMPRC);
1708         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1709         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1710         adapter->stats.base_gorlbc = er32(VFGORLBC);
1711         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1712 }
1713
1714 /**
1715  * igbvf_open - Called when a network interface is made active
1716  * @netdev: network interface device structure
1717  *
1718  * Returns 0 on success, negative value on failure
1719  *
1720  * The open entry point is called when a network interface is made
1721  * active by the system (IFF_UP).  At this point all resources needed
1722  * for transmit and receive operations are allocated, the interrupt
1723  * handler is registered with the OS, the watchdog timer is started,
1724  * and the stack is notified that the interface is ready.
1725  **/
1726 static int igbvf_open(struct net_device *netdev)
1727 {
1728         struct igbvf_adapter *adapter = netdev_priv(netdev);
1729         struct e1000_hw *hw = &adapter->hw;
1730         int err;
1731
1732         /* disallow open during test */
1733         if (test_bit(__IGBVF_TESTING, &adapter->state))
1734                 return -EBUSY;
1735
1736         /* allocate transmit descriptors */
1737         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1738         if (err)
1739                 goto err_setup_tx;
1740
1741         /* allocate receive descriptors */
1742         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1743         if (err)
1744                 goto err_setup_rx;
1745
1746         /* before we allocate an interrupt, we must be ready to handle it.
1747          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1748          * as soon as we call pci_request_irq, so we have to setup our
1749          * clean_rx handler before we do so.
1750          */
1751         igbvf_configure(adapter);
1752
1753         err = igbvf_request_irq(adapter);
1754         if (err)
1755                 goto err_req_irq;
1756
1757         /* From here on the code is the same as igbvf_up() */
1758         clear_bit(__IGBVF_DOWN, &adapter->state);
1759
1760         napi_enable(&adapter->rx_ring->napi);
1761
1762         /* clear any pending interrupts */
1763         er32(EICR);
1764
1765         igbvf_irq_enable(adapter);
1766
1767         /* start the watchdog */
1768         hw->mac.get_link_status = 1;
1769         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1770
1771         return 0;
1772
1773 err_req_irq:
1774         igbvf_free_rx_resources(adapter->rx_ring);
1775 err_setup_rx:
1776         igbvf_free_tx_resources(adapter->tx_ring);
1777 err_setup_tx:
1778         igbvf_reset(adapter);
1779
1780         return err;
1781 }
1782
1783 /**
1784  * igbvf_close - Disables a network interface
1785  * @netdev: network interface device structure
1786  *
1787  * Returns 0, this is not allowed to fail
1788  *
1789  * The close entry point is called when an interface is de-activated
1790  * by the OS.  The hardware is still under the drivers control, but
1791  * needs to be disabled.  A global MAC reset is issued to stop the
1792  * hardware, and all transmit and receive resources are freed.
1793  **/
1794 static int igbvf_close(struct net_device *netdev)
1795 {
1796         struct igbvf_adapter *adapter = netdev_priv(netdev);
1797
1798         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1799         igbvf_down(adapter);
1800
1801         igbvf_free_irq(adapter);
1802
1803         igbvf_free_tx_resources(adapter->tx_ring);
1804         igbvf_free_rx_resources(adapter->rx_ring);
1805
1806         return 0;
1807 }
1808
1809 /**
1810  * igbvf_set_mac - Change the Ethernet Address of the NIC
1811  * @netdev: network interface device structure
1812  * @p: pointer to an address structure
1813  *
1814  * Returns 0 on success, negative on failure
1815  **/
1816 static int igbvf_set_mac(struct net_device *netdev, void *p)
1817 {
1818         struct igbvf_adapter *adapter = netdev_priv(netdev);
1819         struct e1000_hw *hw = &adapter->hw;
1820         struct sockaddr *addr = p;
1821
1822         if (!is_valid_ether_addr(addr->sa_data))
1823                 return -EADDRNOTAVAIL;
1824
1825         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1826
1827         spin_lock_bh(&hw->mbx_lock);
1828
1829         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1830
1831         spin_unlock_bh(&hw->mbx_lock);
1832
1833         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1834                 return -EADDRNOTAVAIL;
1835
1836         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1837
1838         return 0;
1839 }
1840
1841 #define UPDATE_VF_COUNTER(reg, name) \
1842 { \
1843         u32 current_counter = er32(reg); \
1844         if (current_counter < adapter->stats.last_##name) \
1845                 adapter->stats.name += 0x100000000LL; \
1846         adapter->stats.last_##name = current_counter; \
1847         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1848         adapter->stats.name |= current_counter; \
1849 }
1850
1851 /**
1852  * igbvf_update_stats - Update the board statistics counters
1853  * @adapter: board private structure
1854 **/
1855 void igbvf_update_stats(struct igbvf_adapter *adapter)
1856 {
1857         struct e1000_hw *hw = &adapter->hw;
1858         struct pci_dev *pdev = adapter->pdev;
1859
1860         /* Prevent stats update while adapter is being reset, link is down
1861          * or if the pci connection is down.
1862          */
1863         if (adapter->link_speed == 0)
1864                 return;
1865
1866         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1867                 return;
1868
1869         if (pci_channel_offline(pdev))
1870                 return;
1871
1872         UPDATE_VF_COUNTER(VFGPRC, gprc);
1873         UPDATE_VF_COUNTER(VFGORC, gorc);
1874         UPDATE_VF_COUNTER(VFGPTC, gptc);
1875         UPDATE_VF_COUNTER(VFGOTC, gotc);
1876         UPDATE_VF_COUNTER(VFMPRC, mprc);
1877         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1878         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1879         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1880         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1881
1882         /* Fill out the OS statistics structure */
1883         adapter->netdev->stats.multicast = adapter->stats.mprc;
1884 }
1885
1886 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1887 {
1888         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1889                  adapter->link_speed,
1890                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1891 }
1892
1893 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1894 {
1895         struct e1000_hw *hw = &adapter->hw;
1896         s32 ret_val = E1000_SUCCESS;
1897         bool link_active;
1898
1899         /* If interface is down, stay link down */
1900         if (test_bit(__IGBVF_DOWN, &adapter->state))
1901                 return false;
1902
1903         spin_lock_bh(&hw->mbx_lock);
1904
1905         ret_val = hw->mac.ops.check_for_link(hw);
1906
1907         spin_unlock_bh(&hw->mbx_lock);
1908
1909         link_active = !hw->mac.get_link_status;
1910
1911         /* if check for link returns error we will need to reset */
1912         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1913                 schedule_work(&adapter->reset_task);
1914
1915         return link_active;
1916 }
1917
1918 /**
1919  * igbvf_watchdog - Timer Call-back
1920  * @data: pointer to adapter cast into an unsigned long
1921  **/
1922 static void igbvf_watchdog(unsigned long data)
1923 {
1924         struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1925
1926         /* Do the rest outside of interrupt context */
1927         schedule_work(&adapter->watchdog_task);
1928 }
1929
1930 static void igbvf_watchdog_task(struct work_struct *work)
1931 {
1932         struct igbvf_adapter *adapter = container_of(work,
1933                                                      struct igbvf_adapter,
1934                                                      watchdog_task);
1935         struct net_device *netdev = adapter->netdev;
1936         struct e1000_mac_info *mac = &adapter->hw.mac;
1937         struct igbvf_ring *tx_ring = adapter->tx_ring;
1938         struct e1000_hw *hw = &adapter->hw;
1939         u32 link;
1940         int tx_pending = 0;
1941
1942         link = igbvf_has_link(adapter);
1943
1944         if (link) {
1945                 if (!netif_carrier_ok(netdev)) {
1946                         mac->ops.get_link_up_info(&adapter->hw,
1947                                                   &adapter->link_speed,
1948                                                   &adapter->link_duplex);
1949                         igbvf_print_link_info(adapter);
1950
1951                         netif_carrier_on(netdev);
1952                         netif_wake_queue(netdev);
1953                 }
1954         } else {
1955                 if (netif_carrier_ok(netdev)) {
1956                         adapter->link_speed = 0;
1957                         adapter->link_duplex = 0;
1958                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1959                         netif_carrier_off(netdev);
1960                         netif_stop_queue(netdev);
1961                 }
1962         }
1963
1964         if (netif_carrier_ok(netdev)) {
1965                 igbvf_update_stats(adapter);
1966         } else {
1967                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1968                               tx_ring->count);
1969                 if (tx_pending) {
1970                         /* We've lost link, so the controller stops DMA,
1971                          * but we've got queued Tx work that's never going
1972                          * to get done, so reset controller to flush Tx.
1973                          * (Do the reset outside of interrupt context).
1974                          */
1975                         adapter->tx_timeout_count++;
1976                         schedule_work(&adapter->reset_task);
1977                 }
1978         }
1979
1980         /* Cause software interrupt to ensure Rx ring is cleaned */
1981         ew32(EICS, adapter->rx_ring->eims_value);
1982
1983         /* Reset the timer */
1984         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1985                 mod_timer(&adapter->watchdog_timer,
1986                           round_jiffies(jiffies + (2 * HZ)));
1987 }
1988
1989 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1990 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1991 #define IGBVF_TX_FLAGS_TSO              0x00000004
1992 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1993 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1994 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1995
1996 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1997                               u32 type_tucmd, u32 mss_l4len_idx)
1998 {
1999         struct e1000_adv_tx_context_desc *context_desc;
2000         struct igbvf_buffer *buffer_info;
2001         u16 i = tx_ring->next_to_use;
2002
2003         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2004         buffer_info = &tx_ring->buffer_info[i];
2005
2006         i++;
2007         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2008
2009         /* set bits to identify this as an advanced context descriptor */
2010         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2011
2012         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
2013         context_desc->seqnum_seed       = 0;
2014         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
2015         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
2016
2017         buffer_info->time_stamp = jiffies;
2018         buffer_info->dma = 0;
2019 }
2020
2021 static int igbvf_tso(struct igbvf_ring *tx_ring,
2022                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2023 {
2024         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2025         union {
2026                 struct iphdr *v4;
2027                 struct ipv6hdr *v6;
2028                 unsigned char *hdr;
2029         } ip;
2030         union {
2031                 struct tcphdr *tcp;
2032                 unsigned char *hdr;
2033         } l4;
2034         u32 paylen, l4_offset;
2035         int err;
2036
2037         if (skb->ip_summed != CHECKSUM_PARTIAL)
2038                 return 0;
2039
2040         if (!skb_is_gso(skb))
2041                 return 0;
2042
2043         err = skb_cow_head(skb, 0);
2044         if (err < 0)
2045                 return err;
2046
2047         ip.hdr = skb_network_header(skb);
2048         l4.hdr = skb_checksum_start(skb);
2049
2050         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2051         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2052
2053         /* initialize outer IP header fields */
2054         if (ip.v4->version == 4) {
2055                 unsigned char *csum_start = skb_checksum_start(skb);
2056                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2057
2058                 /* IP header will have to cancel out any data that
2059                  * is not a part of the outer IP header
2060                  */
2061                 ip.v4->check = csum_fold(csum_partial(trans_start,
2062                                                       csum_start - trans_start,
2063                                                       0));
2064                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2065
2066                 ip.v4->tot_len = 0;
2067         } else {
2068                 ip.v6->payload_len = 0;
2069         }
2070
2071         /* determine offset of inner transport header */
2072         l4_offset = l4.hdr - skb->data;
2073
2074         /* compute length of segmentation header */
2075         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2076
2077         /* remove payload length from inner checksum */
2078         paylen = skb->len - l4_offset;
2079         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2080
2081         /* MSS L4LEN IDX */
2082         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2083         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2084
2085         /* VLAN MACLEN IPLEN */
2086         vlan_macip_lens = l4.hdr - ip.hdr;
2087         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2088         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2089
2090         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2091
2092         return 1;
2093 }
2094
2095 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2096 {
2097         unsigned int offset = 0;
2098
2099         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2100
2101         return offset == skb_checksum_start_offset(skb);
2102 }
2103
2104 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2105                           u32 tx_flags, __be16 protocol)
2106 {
2107         u32 vlan_macip_lens = 0;
2108         u32 type_tucmd = 0;
2109
2110         if (skb->ip_summed != CHECKSUM_PARTIAL) {
2111 csum_failed:
2112                 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2113                         return false;
2114                 goto no_csum;
2115         }
2116
2117         switch (skb->csum_offset) {
2118         case offsetof(struct tcphdr, check):
2119                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2120                 /* fall through */
2121         case offsetof(struct udphdr, check):
2122                 break;
2123         case offsetof(struct sctphdr, checksum):
2124                 /* validate that this is actually an SCTP request */
2125                 if (((protocol == htons(ETH_P_IP)) &&
2126                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2127                     ((protocol == htons(ETH_P_IPV6)) &&
2128                      igbvf_ipv6_csum_is_sctp(skb))) {
2129                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2130                         break;
2131                 }
2132         default:
2133                 skb_checksum_help(skb);
2134                 goto csum_failed;
2135         }
2136
2137         vlan_macip_lens = skb_checksum_start_offset(skb) -
2138                           skb_network_offset(skb);
2139 no_csum:
2140         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2141         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2142
2143         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2144         return true;
2145 }
2146
2147 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2148 {
2149         struct igbvf_adapter *adapter = netdev_priv(netdev);
2150
2151         /* there is enough descriptors then we don't need to worry  */
2152         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2153                 return 0;
2154
2155         netif_stop_queue(netdev);
2156
2157         /* Herbert's original patch had:
2158          *  smp_mb__after_netif_stop_queue();
2159          * but since that doesn't exist yet, just open code it.
2160          */
2161         smp_mb();
2162
2163         /* We need to check again just in case room has been made available */
2164         if (igbvf_desc_unused(adapter->tx_ring) < size)
2165                 return -EBUSY;
2166
2167         netif_wake_queue(netdev);
2168
2169         ++adapter->restart_queue;
2170         return 0;
2171 }
2172
2173 #define IGBVF_MAX_TXD_PWR       16
2174 #define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2175
2176 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2177                                    struct igbvf_ring *tx_ring,
2178                                    struct sk_buff *skb)
2179 {
2180         struct igbvf_buffer *buffer_info;
2181         struct pci_dev *pdev = adapter->pdev;
2182         unsigned int len = skb_headlen(skb);
2183         unsigned int count = 0, i;
2184         unsigned int f;
2185
2186         i = tx_ring->next_to_use;
2187
2188         buffer_info = &tx_ring->buffer_info[i];
2189         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2190         buffer_info->length = len;
2191         /* set time_stamp *before* dma to help avoid a possible race */
2192         buffer_info->time_stamp = jiffies;
2193         buffer_info->mapped_as_page = false;
2194         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2195                                           DMA_TO_DEVICE);
2196         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2197                 goto dma_error;
2198
2199         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2200                 const struct skb_frag_struct *frag;
2201
2202                 count++;
2203                 i++;
2204                 if (i == tx_ring->count)
2205                         i = 0;
2206
2207                 frag = &skb_shinfo(skb)->frags[f];
2208                 len = skb_frag_size(frag);
2209
2210                 buffer_info = &tx_ring->buffer_info[i];
2211                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2212                 buffer_info->length = len;
2213                 buffer_info->time_stamp = jiffies;
2214                 buffer_info->mapped_as_page = true;
2215                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2216                                                     DMA_TO_DEVICE);
2217                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2218                         goto dma_error;
2219         }
2220
2221         tx_ring->buffer_info[i].skb = skb;
2222
2223         return ++count;
2224
2225 dma_error:
2226         dev_err(&pdev->dev, "TX DMA map failed\n");
2227
2228         /* clear timestamp and dma mappings for failed buffer_info mapping */
2229         buffer_info->dma = 0;
2230         buffer_info->time_stamp = 0;
2231         buffer_info->length = 0;
2232         buffer_info->mapped_as_page = false;
2233         if (count)
2234                 count--;
2235
2236         /* clear timestamp and dma mappings for remaining portion of packet */
2237         while (count--) {
2238                 if (i == 0)
2239                         i += tx_ring->count;
2240                 i--;
2241                 buffer_info = &tx_ring->buffer_info[i];
2242                 igbvf_put_txbuf(adapter, buffer_info);
2243         }
2244
2245         return 0;
2246 }
2247
2248 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2249                                       struct igbvf_ring *tx_ring,
2250                                       int tx_flags, int count,
2251                                       unsigned int first, u32 paylen,
2252                                       u8 hdr_len)
2253 {
2254         union e1000_adv_tx_desc *tx_desc = NULL;
2255         struct igbvf_buffer *buffer_info;
2256         u32 olinfo_status = 0, cmd_type_len;
2257         unsigned int i;
2258
2259         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2260                         E1000_ADVTXD_DCMD_DEXT);
2261
2262         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2263                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2264
2265         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2266                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2267
2268                 /* insert tcp checksum */
2269                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2270
2271                 /* insert ip checksum */
2272                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2273                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2274
2275         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2276                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2277         }
2278
2279         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2280
2281         i = tx_ring->next_to_use;
2282         while (count--) {
2283                 buffer_info = &tx_ring->buffer_info[i];
2284                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2285                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2286                 tx_desc->read.cmd_type_len =
2287                          cpu_to_le32(cmd_type_len | buffer_info->length);
2288                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2289                 i++;
2290                 if (i == tx_ring->count)
2291                         i = 0;
2292         }
2293
2294         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2295         /* Force memory writes to complete before letting h/w
2296          * know there are new descriptors to fetch.  (Only
2297          * applicable for weak-ordered memory model archs,
2298          * such as IA-64).
2299          */
2300         wmb();
2301
2302         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2303         tx_ring->next_to_use = i;
2304         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2305         /* we need this if more than one processor can write to our tail
2306          * at a time, it synchronizes IO on IA64/Altix systems
2307          */
2308         mmiowb();
2309 }
2310
2311 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2312                                              struct net_device *netdev,
2313                                              struct igbvf_ring *tx_ring)
2314 {
2315         struct igbvf_adapter *adapter = netdev_priv(netdev);
2316         unsigned int first, tx_flags = 0;
2317         u8 hdr_len = 0;
2318         int count = 0;
2319         int tso = 0;
2320         __be16 protocol = vlan_get_protocol(skb);
2321
2322         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2323                 dev_kfree_skb_any(skb);
2324                 return NETDEV_TX_OK;
2325         }
2326
2327         if (skb->len <= 0) {
2328                 dev_kfree_skb_any(skb);
2329                 return NETDEV_TX_OK;
2330         }
2331
2332         /* need: count + 4 desc gap to keep tail from touching
2333          *       + 2 desc gap to keep tail from touching head,
2334          *       + 1 desc for skb->data,
2335          *       + 1 desc for context descriptor,
2336          * head, otherwise try next time
2337          */
2338         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2339                 /* this is a hard error */
2340                 return NETDEV_TX_BUSY;
2341         }
2342
2343         if (skb_vlan_tag_present(skb)) {
2344                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2345                 tx_flags |= (skb_vlan_tag_get(skb) <<
2346                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2347         }
2348
2349         if (protocol == htons(ETH_P_IP))
2350                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2351
2352         first = tx_ring->next_to_use;
2353
2354         tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2355         if (unlikely(tso < 0)) {
2356                 dev_kfree_skb_any(skb);
2357                 return NETDEV_TX_OK;
2358         }
2359
2360         if (tso)
2361                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2362         else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2363                  (skb->ip_summed == CHECKSUM_PARTIAL))
2364                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2365
2366         /* count reflects descriptors mapped, if 0 then mapping error
2367          * has occurred and we need to rewind the descriptor queue
2368          */
2369         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2370
2371         if (count) {
2372                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2373                                    first, skb->len, hdr_len);
2374                 /* Make sure there is space in the ring for the next send. */
2375                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2376         } else {
2377                 dev_kfree_skb_any(skb);
2378                 tx_ring->buffer_info[first].time_stamp = 0;
2379                 tx_ring->next_to_use = first;
2380         }
2381
2382         return NETDEV_TX_OK;
2383 }
2384
2385 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2386                                     struct net_device *netdev)
2387 {
2388         struct igbvf_adapter *adapter = netdev_priv(netdev);
2389         struct igbvf_ring *tx_ring;
2390
2391         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2392                 dev_kfree_skb_any(skb);
2393                 return NETDEV_TX_OK;
2394         }
2395
2396         tx_ring = &adapter->tx_ring[0];
2397
2398         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2399 }
2400
2401 /**
2402  * igbvf_tx_timeout - Respond to a Tx Hang
2403  * @netdev: network interface device structure
2404  **/
2405 static void igbvf_tx_timeout(struct net_device *netdev)
2406 {
2407         struct igbvf_adapter *adapter = netdev_priv(netdev);
2408
2409         /* Do the reset outside of interrupt context */
2410         adapter->tx_timeout_count++;
2411         schedule_work(&adapter->reset_task);
2412 }
2413
2414 static void igbvf_reset_task(struct work_struct *work)
2415 {
2416         struct igbvf_adapter *adapter;
2417
2418         adapter = container_of(work, struct igbvf_adapter, reset_task);
2419
2420         igbvf_reinit_locked(adapter);
2421 }
2422
2423 /**
2424  * igbvf_change_mtu - Change the Maximum Transfer Unit
2425  * @netdev: network interface device structure
2426  * @new_mtu: new value for maximum frame size
2427  *
2428  * Returns 0 on success, negative on failure
2429  **/
2430 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2431 {
2432         struct igbvf_adapter *adapter = netdev_priv(netdev);
2433         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2434
2435         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2436                 usleep_range(1000, 2000);
2437         /* igbvf_down has a dependency on max_frame_size */
2438         adapter->max_frame_size = max_frame;
2439         if (netif_running(netdev))
2440                 igbvf_down(adapter);
2441
2442         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2443          * means we reserve 2 more, this pushes us to allocate from the next
2444          * larger slab size.
2445          * i.e. RXBUFFER_2048 --> size-4096 slab
2446          * However with the new *_jumbo_rx* routines, jumbo receives will use
2447          * fragmented skbs
2448          */
2449
2450         if (max_frame <= 1024)
2451                 adapter->rx_buffer_len = 1024;
2452         else if (max_frame <= 2048)
2453                 adapter->rx_buffer_len = 2048;
2454         else
2455 #if (PAGE_SIZE / 2) > 16384
2456                 adapter->rx_buffer_len = 16384;
2457 #else
2458                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2459 #endif
2460
2461         /* adjust allocation if LPE protects us, and we aren't using SBP */
2462         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2463             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2464                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2465                                          ETH_FCS_LEN;
2466
2467         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2468                  netdev->mtu, new_mtu);
2469         netdev->mtu = new_mtu;
2470
2471         if (netif_running(netdev))
2472                 igbvf_up(adapter);
2473         else
2474                 igbvf_reset(adapter);
2475
2476         clear_bit(__IGBVF_RESETTING, &adapter->state);
2477
2478         return 0;
2479 }
2480
2481 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2482 {
2483         switch (cmd) {
2484         default:
2485                 return -EOPNOTSUPP;
2486         }
2487 }
2488
2489 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2490 {
2491         struct net_device *netdev = pci_get_drvdata(pdev);
2492         struct igbvf_adapter *adapter = netdev_priv(netdev);
2493 #ifdef CONFIG_PM
2494         int retval = 0;
2495 #endif
2496
2497         netif_device_detach(netdev);
2498
2499         if (netif_running(netdev)) {
2500                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2501                 igbvf_down(adapter);
2502                 igbvf_free_irq(adapter);
2503         }
2504
2505 #ifdef CONFIG_PM
2506         retval = pci_save_state(pdev);
2507         if (retval)
2508                 return retval;
2509 #endif
2510
2511         pci_disable_device(pdev);
2512
2513         return 0;
2514 }
2515
2516 #ifdef CONFIG_PM
2517 static int igbvf_resume(struct pci_dev *pdev)
2518 {
2519         struct net_device *netdev = pci_get_drvdata(pdev);
2520         struct igbvf_adapter *adapter = netdev_priv(netdev);
2521         u32 err;
2522
2523         pci_restore_state(pdev);
2524         err = pci_enable_device_mem(pdev);
2525         if (err) {
2526                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2527                 return err;
2528         }
2529
2530         pci_set_master(pdev);
2531
2532         if (netif_running(netdev)) {
2533                 err = igbvf_request_irq(adapter);
2534                 if (err)
2535                         return err;
2536         }
2537
2538         igbvf_reset(adapter);
2539
2540         if (netif_running(netdev))
2541                 igbvf_up(adapter);
2542
2543         netif_device_attach(netdev);
2544
2545         return 0;
2546 }
2547 #endif
2548
2549 static void igbvf_shutdown(struct pci_dev *pdev)
2550 {
2551         igbvf_suspend(pdev, PMSG_SUSPEND);
2552 }
2553
2554 #ifdef CONFIG_NET_POLL_CONTROLLER
2555 /* Polling 'interrupt' - used by things like netconsole to send skbs
2556  * without having to re-enable interrupts. It's not called while
2557  * the interrupt routine is executing.
2558  */
2559 static void igbvf_netpoll(struct net_device *netdev)
2560 {
2561         struct igbvf_adapter *adapter = netdev_priv(netdev);
2562
2563         disable_irq(adapter->pdev->irq);
2564
2565         igbvf_clean_tx_irq(adapter->tx_ring);
2566
2567         enable_irq(adapter->pdev->irq);
2568 }
2569 #endif
2570
2571 /**
2572  * igbvf_io_error_detected - called when PCI error is detected
2573  * @pdev: Pointer to PCI device
2574  * @state: The current pci connection state
2575  *
2576  * This function is called after a PCI bus error affecting
2577  * this device has been detected.
2578  */
2579 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2580                                                 pci_channel_state_t state)
2581 {
2582         struct net_device *netdev = pci_get_drvdata(pdev);
2583         struct igbvf_adapter *adapter = netdev_priv(netdev);
2584
2585         netif_device_detach(netdev);
2586
2587         if (state == pci_channel_io_perm_failure)
2588                 return PCI_ERS_RESULT_DISCONNECT;
2589
2590         if (netif_running(netdev))
2591                 igbvf_down(adapter);
2592         pci_disable_device(pdev);
2593
2594         /* Request a slot slot reset. */
2595         return PCI_ERS_RESULT_NEED_RESET;
2596 }
2597
2598 /**
2599  * igbvf_io_slot_reset - called after the pci bus has been reset.
2600  * @pdev: Pointer to PCI device
2601  *
2602  * Restart the card from scratch, as if from a cold-boot. Implementation
2603  * resembles the first-half of the igbvf_resume routine.
2604  */
2605 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2606 {
2607         struct net_device *netdev = pci_get_drvdata(pdev);
2608         struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610         if (pci_enable_device_mem(pdev)) {
2611                 dev_err(&pdev->dev,
2612                         "Cannot re-enable PCI device after reset.\n");
2613                 return PCI_ERS_RESULT_DISCONNECT;
2614         }
2615         pci_set_master(pdev);
2616
2617         igbvf_reset(adapter);
2618
2619         return PCI_ERS_RESULT_RECOVERED;
2620 }
2621
2622 /**
2623  * igbvf_io_resume - called when traffic can start flowing again.
2624  * @pdev: Pointer to PCI device
2625  *
2626  * This callback is called when the error recovery driver tells us that
2627  * its OK to resume normal operation. Implementation resembles the
2628  * second-half of the igbvf_resume routine.
2629  */
2630 static void igbvf_io_resume(struct pci_dev *pdev)
2631 {
2632         struct net_device *netdev = pci_get_drvdata(pdev);
2633         struct igbvf_adapter *adapter = netdev_priv(netdev);
2634
2635         if (netif_running(netdev)) {
2636                 if (igbvf_up(adapter)) {
2637                         dev_err(&pdev->dev,
2638                                 "can't bring device back up after reset\n");
2639                         return;
2640                 }
2641         }
2642
2643         netif_device_attach(netdev);
2644 }
2645
2646 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2647 {
2648         struct e1000_hw *hw = &adapter->hw;
2649         struct net_device *netdev = adapter->netdev;
2650         struct pci_dev *pdev = adapter->pdev;
2651
2652         if (hw->mac.type == e1000_vfadapt_i350)
2653                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2654         else
2655                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2656         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2657 }
2658
2659 static int igbvf_set_features(struct net_device *netdev,
2660                               netdev_features_t features)
2661 {
2662         struct igbvf_adapter *adapter = netdev_priv(netdev);
2663
2664         if (features & NETIF_F_RXCSUM)
2665                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2666         else
2667                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2668
2669         return 0;
2670 }
2671
2672 #define IGBVF_MAX_MAC_HDR_LEN           127
2673 #define IGBVF_MAX_NETWORK_HDR_LEN       511
2674
2675 static netdev_features_t
2676 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2677                      netdev_features_t features)
2678 {
2679         unsigned int network_hdr_len, mac_hdr_len;
2680
2681         /* Make certain the headers can be described by a context descriptor */
2682         mac_hdr_len = skb_network_header(skb) - skb->data;
2683         if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2684                 return features & ~(NETIF_F_HW_CSUM |
2685                                     NETIF_F_SCTP_CRC |
2686                                     NETIF_F_HW_VLAN_CTAG_TX |
2687                                     NETIF_F_TSO |
2688                                     NETIF_F_TSO6);
2689
2690         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2691         if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2692                 return features & ~(NETIF_F_HW_CSUM |
2693                                     NETIF_F_SCTP_CRC |
2694                                     NETIF_F_TSO |
2695                                     NETIF_F_TSO6);
2696
2697         /* We can only support IPV4 TSO in tunnels if we can mangle the
2698          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2699          */
2700         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2701                 features &= ~NETIF_F_TSO;
2702
2703         return features;
2704 }
2705
2706 static const struct net_device_ops igbvf_netdev_ops = {
2707         .ndo_open               = igbvf_open,
2708         .ndo_stop               = igbvf_close,
2709         .ndo_start_xmit         = igbvf_xmit_frame,
2710         .ndo_set_rx_mode        = igbvf_set_rx_mode,
2711         .ndo_set_mac_address    = igbvf_set_mac,
2712         .ndo_change_mtu         = igbvf_change_mtu,
2713         .ndo_do_ioctl           = igbvf_ioctl,
2714         .ndo_tx_timeout         = igbvf_tx_timeout,
2715         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2716         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2717 #ifdef CONFIG_NET_POLL_CONTROLLER
2718         .ndo_poll_controller    = igbvf_netpoll,
2719 #endif
2720         .ndo_set_features       = igbvf_set_features,
2721         .ndo_features_check     = igbvf_features_check,
2722 };
2723
2724 /**
2725  * igbvf_probe - Device Initialization Routine
2726  * @pdev: PCI device information struct
2727  * @ent: entry in igbvf_pci_tbl
2728  *
2729  * Returns 0 on success, negative on failure
2730  *
2731  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2732  * The OS initialization, configuring of the adapter private structure,
2733  * and a hardware reset occur.
2734  **/
2735 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2736 {
2737         struct net_device *netdev;
2738         struct igbvf_adapter *adapter;
2739         struct e1000_hw *hw;
2740         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2741
2742         static int cards_found;
2743         int err, pci_using_dac;
2744
2745         err = pci_enable_device_mem(pdev);
2746         if (err)
2747                 return err;
2748
2749         pci_using_dac = 0;
2750         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2751         if (!err) {
2752                 pci_using_dac = 1;
2753         } else {
2754                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2755                 if (err) {
2756                         dev_err(&pdev->dev,
2757                                 "No usable DMA configuration, aborting\n");
2758                         goto err_dma;
2759                 }
2760         }
2761
2762         err = pci_request_regions(pdev, igbvf_driver_name);
2763         if (err)
2764                 goto err_pci_reg;
2765
2766         pci_set_master(pdev);
2767
2768         err = -ENOMEM;
2769         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2770         if (!netdev)
2771                 goto err_alloc_etherdev;
2772
2773         SET_NETDEV_DEV(netdev, &pdev->dev);
2774
2775         pci_set_drvdata(pdev, netdev);
2776         adapter = netdev_priv(netdev);
2777         hw = &adapter->hw;
2778         adapter->netdev = netdev;
2779         adapter->pdev = pdev;
2780         adapter->ei = ei;
2781         adapter->pba = ei->pba;
2782         adapter->flags = ei->flags;
2783         adapter->hw.back = adapter;
2784         adapter->hw.mac.type = ei->mac;
2785         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2786
2787         /* PCI config space info */
2788
2789         hw->vendor_id = pdev->vendor;
2790         hw->device_id = pdev->device;
2791         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2792         hw->subsystem_device_id = pdev->subsystem_device;
2793         hw->revision_id = pdev->revision;
2794
2795         err = -EIO;
2796         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2797                                       pci_resource_len(pdev, 0));
2798
2799         if (!adapter->hw.hw_addr)
2800                 goto err_ioremap;
2801
2802         if (ei->get_variants) {
2803                 err = ei->get_variants(adapter);
2804                 if (err)
2805                         goto err_get_variants;
2806         }
2807
2808         /* setup adapter struct */
2809         err = igbvf_sw_init(adapter);
2810         if (err)
2811                 goto err_sw_init;
2812
2813         /* construct the net_device struct */
2814         netdev->netdev_ops = &igbvf_netdev_ops;
2815
2816         igbvf_set_ethtool_ops(netdev);
2817         netdev->watchdog_timeo = 5 * HZ;
2818         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2819
2820         adapter->bd_number = cards_found++;
2821
2822         netdev->hw_features = NETIF_F_SG |
2823                               NETIF_F_TSO |
2824                               NETIF_F_TSO6 |
2825                               NETIF_F_RXCSUM |
2826                               NETIF_F_HW_CSUM |
2827                               NETIF_F_SCTP_CRC;
2828
2829 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2830                                     NETIF_F_GSO_GRE_CSUM | \
2831                                     NETIF_F_GSO_IPXIP4 | \
2832                                     NETIF_F_GSO_IPXIP6 | \
2833                                     NETIF_F_GSO_UDP_TUNNEL | \
2834                                     NETIF_F_GSO_UDP_TUNNEL_CSUM)
2835
2836         netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2837         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2838                                IGBVF_GSO_PARTIAL_FEATURES;
2839
2840         netdev->features = netdev->hw_features;
2841
2842         if (pci_using_dac)
2843                 netdev->features |= NETIF_F_HIGHDMA;
2844
2845         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2846         netdev->mpls_features |= NETIF_F_HW_CSUM;
2847         netdev->hw_enc_features |= netdev->vlan_features;
2848
2849         /* set this bit last since it cannot be part of vlan_features */
2850         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2851                             NETIF_F_HW_VLAN_CTAG_RX |
2852                             NETIF_F_HW_VLAN_CTAG_TX;
2853
2854         /* MTU range: 68 - 9216 */
2855         netdev->min_mtu = ETH_MIN_MTU;
2856         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2857
2858         spin_lock_bh(&hw->mbx_lock);
2859
2860         /*reset the controller to put the device in a known good state */
2861         err = hw->mac.ops.reset_hw(hw);
2862         if (err) {
2863                 dev_info(&pdev->dev,
2864                          "PF still in reset state. Is the PF interface up?\n");
2865         } else {
2866                 err = hw->mac.ops.read_mac_addr(hw);
2867                 if (err)
2868                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2869                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2870                         dev_info(&pdev->dev,
2871                                  "MAC address not assigned by administrator.\n");
2872                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2873                        netdev->addr_len);
2874         }
2875
2876         spin_unlock_bh(&hw->mbx_lock);
2877
2878         if (!is_valid_ether_addr(netdev->dev_addr)) {
2879                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2880                 eth_hw_addr_random(netdev);
2881                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2882                        netdev->addr_len);
2883         }
2884
2885         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2886                     (unsigned long)adapter);
2887
2888         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2889         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2890
2891         /* ring size defaults */
2892         adapter->rx_ring->count = 1024;
2893         adapter->tx_ring->count = 1024;
2894
2895         /* reset the hardware with the new settings */
2896         igbvf_reset(adapter);
2897
2898         /* set hardware-specific flags */
2899         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2900                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2901
2902         strcpy(netdev->name, "eth%d");
2903         err = register_netdev(netdev);
2904         if (err)
2905                 goto err_hw_init;
2906
2907         /* tell the stack to leave us alone until igbvf_open() is called */
2908         netif_carrier_off(netdev);
2909         netif_stop_queue(netdev);
2910
2911         igbvf_print_device_info(adapter);
2912
2913         igbvf_initialize_last_counter_stats(adapter);
2914
2915         return 0;
2916
2917 err_hw_init:
2918         netif_napi_del(&adapter->rx_ring->napi);
2919         kfree(adapter->tx_ring);
2920         kfree(adapter->rx_ring);
2921 err_sw_init:
2922         igbvf_reset_interrupt_capability(adapter);
2923 err_get_variants:
2924         iounmap(adapter->hw.hw_addr);
2925 err_ioremap:
2926         free_netdev(netdev);
2927 err_alloc_etherdev:
2928         pci_release_regions(pdev);
2929 err_pci_reg:
2930 err_dma:
2931         pci_disable_device(pdev);
2932         return err;
2933 }
2934
2935 /**
2936  * igbvf_remove - Device Removal Routine
2937  * @pdev: PCI device information struct
2938  *
2939  * igbvf_remove is called by the PCI subsystem to alert the driver
2940  * that it should release a PCI device.  The could be caused by a
2941  * Hot-Plug event, or because the driver is going to be removed from
2942  * memory.
2943  **/
2944 static void igbvf_remove(struct pci_dev *pdev)
2945 {
2946         struct net_device *netdev = pci_get_drvdata(pdev);
2947         struct igbvf_adapter *adapter = netdev_priv(netdev);
2948         struct e1000_hw *hw = &adapter->hw;
2949
2950         /* The watchdog timer may be rescheduled, so explicitly
2951          * disable it from being rescheduled.
2952          */
2953         set_bit(__IGBVF_DOWN, &adapter->state);
2954         del_timer_sync(&adapter->watchdog_timer);
2955
2956         cancel_work_sync(&adapter->reset_task);
2957         cancel_work_sync(&adapter->watchdog_task);
2958
2959         unregister_netdev(netdev);
2960
2961         igbvf_reset_interrupt_capability(adapter);
2962
2963         /* it is important to delete the NAPI struct prior to freeing the
2964          * Rx ring so that you do not end up with null pointer refs
2965          */
2966         netif_napi_del(&adapter->rx_ring->napi);
2967         kfree(adapter->tx_ring);
2968         kfree(adapter->rx_ring);
2969
2970         iounmap(hw->hw_addr);
2971         if (hw->flash_address)
2972                 iounmap(hw->flash_address);
2973         pci_release_regions(pdev);
2974
2975         free_netdev(netdev);
2976
2977         pci_disable_device(pdev);
2978 }
2979
2980 /* PCI Error Recovery (ERS) */
2981 static const struct pci_error_handlers igbvf_err_handler = {
2982         .error_detected = igbvf_io_error_detected,
2983         .slot_reset = igbvf_io_slot_reset,
2984         .resume = igbvf_io_resume,
2985 };
2986
2987 static const struct pci_device_id igbvf_pci_tbl[] = {
2988         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2989         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2990         { } /* terminate list */
2991 };
2992 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2993
2994 /* PCI Device API Driver */
2995 static struct pci_driver igbvf_driver = {
2996         .name           = igbvf_driver_name,
2997         .id_table       = igbvf_pci_tbl,
2998         .probe          = igbvf_probe,
2999         .remove         = igbvf_remove,
3000 #ifdef CONFIG_PM
3001         /* Power Management Hooks */
3002         .suspend        = igbvf_suspend,
3003         .resume         = igbvf_resume,
3004 #endif
3005         .shutdown       = igbvf_shutdown,
3006         .err_handler    = &igbvf_err_handler
3007 };
3008
3009 /**
3010  * igbvf_init_module - Driver Registration Routine
3011  *
3012  * igbvf_init_module is the first routine called when the driver is
3013  * loaded. All it does is register with the PCI subsystem.
3014  **/
3015 static int __init igbvf_init_module(void)
3016 {
3017         int ret;
3018
3019         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3020         pr_info("%s\n", igbvf_copyright);
3021
3022         ret = pci_register_driver(&igbvf_driver);
3023
3024         return ret;
3025 }
3026 module_init(igbvf_init_module);
3027
3028 /**
3029  * igbvf_exit_module - Driver Exit Cleanup Routine
3030  *
3031  * igbvf_exit_module is called just before the driver is removed
3032  * from memory.
3033  **/
3034 static void __exit igbvf_exit_module(void)
3035 {
3036         pci_unregister_driver(&igbvf_driver);
3037 }
3038 module_exit(igbvf_exit_module);
3039
3040 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3041 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3042 MODULE_LICENSE("GPL");
3043 MODULE_VERSION(DRV_VERSION);
3044
3045 /* netdev.c */