GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.4.0-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac            = e1000_vfadapt,
70         .flags          = 0,
71         .pba            = 10,
72         .init_ops       = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac            = e1000_vfadapt_i350,
77         .flags          = 0,
78         .pba            = 10,
79         .init_ops       = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]      = &igbvf_vf_info,
84         [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  * @rx_ring: address of receive ring structure
90  **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
92 {
93         if (ring->next_to_clean > ring->next_to_use)
94                 return ring->next_to_clean - ring->next_to_use - 1;
95
96         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97 }
98
99 /**
100  * igbvf_receive_skb - helper function to handle Rx indications
101  * @adapter: board private structure
102  * @status: descriptor status field as written by hardware
103  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104  * @skb: pointer to sk_buff to be indicated to stack
105  **/
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107                               struct net_device *netdev,
108                               struct sk_buff *skb,
109                               u32 status, u16 vlan)
110 {
111         u16 vid;
112
113         if (status & E1000_RXD_STAT_VP) {
114                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115                     (status & E1000_RXDEXT_STATERR_LB))
116                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117                 else
118                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119                 if (test_bit(vid, adapter->active_vlans))
120                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
121         }
122
123         napi_gro_receive(&adapter->rx_ring->napi, skb);
124 }
125
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127                                          u32 status_err, struct sk_buff *skb)
128 {
129         skb_checksum_none_assert(skb);
130
131         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132         if ((status_err & E1000_RXD_STAT_IXSM) ||
133             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134                 return;
135
136         /* TCP/UDP checksum error bit is set */
137         if (status_err &
138             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139                 /* let the stack verify checksum errors */
140                 adapter->hw_csum_err++;
141                 return;
142         }
143
144         /* It must be a TCP or UDP packet with a valid checksum */
145         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146                 skb->ip_summed = CHECKSUM_UNNECESSARY;
147
148         adapter->hw_csum_good++;
149 }
150
151 /**
152  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153  * @rx_ring: address of ring structure to repopulate
154  * @cleaned_count: number of buffers to repopulate
155  **/
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157                                    int cleaned_count)
158 {
159         struct igbvf_adapter *adapter = rx_ring->adapter;
160         struct net_device *netdev = adapter->netdev;
161         struct pci_dev *pdev = adapter->pdev;
162         union e1000_adv_rx_desc *rx_desc;
163         struct igbvf_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         int bufsz;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         if (adapter->rx_ps_hdr_size)
172                 bufsz = adapter->rx_ps_hdr_size;
173         else
174                 bufsz = adapter->rx_buffer_len;
175
176         while (cleaned_count--) {
177                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178
179                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180                         if (!buffer_info->page) {
181                                 buffer_info->page = alloc_page(GFP_ATOMIC);
182                                 if (!buffer_info->page) {
183                                         adapter->alloc_rx_buff_failed++;
184                                         goto no_buffers;
185                                 }
186                                 buffer_info->page_offset = 0;
187                         } else {
188                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
189                         }
190                         buffer_info->page_dma =
191                                 dma_map_page(&pdev->dev, buffer_info->page,
192                                              buffer_info->page_offset,
193                                              PAGE_SIZE / 2,
194                                              DMA_FROM_DEVICE);
195                         if (dma_mapping_error(&pdev->dev,
196                                               buffer_info->page_dma)) {
197                                 __free_page(buffer_info->page);
198                                 buffer_info->page = NULL;
199                                 dev_err(&pdev->dev, "RX DMA map failed\n");
200                                 break;
201                         }
202                 }
203
204                 if (!buffer_info->skb) {
205                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206                         if (!skb) {
207                                 adapter->alloc_rx_buff_failed++;
208                                 goto no_buffers;
209                         }
210
211                         buffer_info->skb = skb;
212                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213                                                           bufsz,
214                                                           DMA_FROM_DEVICE);
215                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216                                 dev_kfree_skb(buffer_info->skb);
217                                 buffer_info->skb = NULL;
218                                 dev_err(&pdev->dev, "RX DMA map failed\n");
219                                 goto no_buffers;
220                         }
221                 }
222                 /* Refresh the desc even if buffer_addrs didn't change because
223                  * each write-back erases this info.
224                  */
225                 if (adapter->rx_ps_hdr_size) {
226                         rx_desc->read.pkt_addr =
227                              cpu_to_le64(buffer_info->page_dma);
228                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229                 } else {
230                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231                         rx_desc->read.hdr_addr = 0;
232                 }
233
234                 i++;
235                 if (i == rx_ring->count)
236                         i = 0;
237                 buffer_info = &rx_ring->buffer_info[i];
238         }
239
240 no_buffers:
241         if (rx_ring->next_to_use != i) {
242                 rx_ring->next_to_use = i;
243                 if (i == 0)
244                         i = (rx_ring->count - 1);
245                 else
246                         i--;
247
248                 /* Force memory writes to complete before letting h/w
249                  * know there are new descriptors to fetch.  (Only
250                  * applicable for weak-ordered memory model archs,
251                  * such as IA-64).
252                 */
253                 wmb();
254                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
255         }
256 }
257
258 /**
259  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260  * @adapter: board private structure
261  *
262  * the return value indicates whether actual cleaning was done, there
263  * is no guarantee that everything was cleaned
264  **/
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266                                int *work_done, int work_to_do)
267 {
268         struct igbvf_ring *rx_ring = adapter->rx_ring;
269         struct net_device *netdev = adapter->netdev;
270         struct pci_dev *pdev = adapter->pdev;
271         union e1000_adv_rx_desc *rx_desc, *next_rxd;
272         struct igbvf_buffer *buffer_info, *next_buffer;
273         struct sk_buff *skb;
274         bool cleaned = false;
275         int cleaned_count = 0;
276         unsigned int total_bytes = 0, total_packets = 0;
277         unsigned int i;
278         u32 length, hlen, staterr;
279
280         i = rx_ring->next_to_clean;
281         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283
284         while (staterr & E1000_RXD_STAT_DD) {
285                 if (*work_done >= work_to_do)
286                         break;
287                 (*work_done)++;
288                 rmb(); /* read descriptor and rx_buffer_info after status DD */
289
290                 buffer_info = &rx_ring->buffer_info[i];
291
292                 /* HW will not DMA in data larger than the given buffer, even
293                  * if it parses the (NFS, of course) header to be larger.  In
294                  * that case, it fills the header buffer and spills the rest
295                  * into the page.
296                  */
297                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
299                        E1000_RXDADV_HDRBUFLEN_SHIFT;
300                 if (hlen > adapter->rx_ps_hdr_size)
301                         hlen = adapter->rx_ps_hdr_size;
302
303                 length = le16_to_cpu(rx_desc->wb.upper.length);
304                 cleaned = true;
305                 cleaned_count++;
306
307                 skb = buffer_info->skb;
308                 prefetch(skb->data - NET_IP_ALIGN);
309                 buffer_info->skb = NULL;
310                 if (!adapter->rx_ps_hdr_size) {
311                         dma_unmap_single(&pdev->dev, buffer_info->dma,
312                                          adapter->rx_buffer_len,
313                                          DMA_FROM_DEVICE);
314                         buffer_info->dma = 0;
315                         skb_put(skb, length);
316                         goto send_up;
317                 }
318
319                 if (!skb_shinfo(skb)->nr_frags) {
320                         dma_unmap_single(&pdev->dev, buffer_info->dma,
321                                          adapter->rx_ps_hdr_size,
322                                          DMA_FROM_DEVICE);
323                         buffer_info->dma = 0;
324                         skb_put(skb, hlen);
325                 }
326
327                 if (length) {
328                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329                                        PAGE_SIZE / 2,
330                                        DMA_FROM_DEVICE);
331                         buffer_info->page_dma = 0;
332
333                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334                                            buffer_info->page,
335                                            buffer_info->page_offset,
336                                            length);
337
338                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339                             (page_count(buffer_info->page) != 1))
340                                 buffer_info->page = NULL;
341                         else
342                                 get_page(buffer_info->page);
343
344                         skb->len += length;
345                         skb->data_len += length;
346                         skb->truesize += PAGE_SIZE / 2;
347                 }
348 send_up:
349                 i++;
350                 if (i == rx_ring->count)
351                         i = 0;
352                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353                 prefetch(next_rxd);
354                 next_buffer = &rx_ring->buffer_info[i];
355
356                 if (!(staterr & E1000_RXD_STAT_EOP)) {
357                         buffer_info->skb = next_buffer->skb;
358                         buffer_info->dma = next_buffer->dma;
359                         next_buffer->skb = skb;
360                         next_buffer->dma = 0;
361                         goto next_desc;
362                 }
363
364                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365                         dev_kfree_skb_irq(skb);
366                         goto next_desc;
367                 }
368
369                 total_bytes += skb->len;
370                 total_packets++;
371
372                 igbvf_rx_checksum_adv(adapter, staterr, skb);
373
374                 skb->protocol = eth_type_trans(skb, netdev);
375
376                 igbvf_receive_skb(adapter, netdev, skb, staterr,
377                                   rx_desc->wb.upper.vlan);
378
379 next_desc:
380                 rx_desc->wb.upper.status_error = 0;
381
382                 /* return some buffers to hardware, one at a time is too slow */
383                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385                         cleaned_count = 0;
386                 }
387
388                 /* use prefetched values */
389                 rx_desc = next_rxd;
390                 buffer_info = next_buffer;
391
392                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393         }
394
395         rx_ring->next_to_clean = i;
396         cleaned_count = igbvf_desc_unused(rx_ring);
397
398         if (cleaned_count)
399                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400
401         adapter->total_rx_packets += total_packets;
402         adapter->total_rx_bytes += total_bytes;
403         netdev->stats.rx_bytes += total_bytes;
404         netdev->stats.rx_packets += total_packets;
405         return cleaned;
406 }
407
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409                             struct igbvf_buffer *buffer_info)
410 {
411         if (buffer_info->dma) {
412                 if (buffer_info->mapped_as_page)
413                         dma_unmap_page(&adapter->pdev->dev,
414                                        buffer_info->dma,
415                                        buffer_info->length,
416                                        DMA_TO_DEVICE);
417                 else
418                         dma_unmap_single(&adapter->pdev->dev,
419                                          buffer_info->dma,
420                                          buffer_info->length,
421                                          DMA_TO_DEVICE);
422                 buffer_info->dma = 0;
423         }
424         if (buffer_info->skb) {
425                 dev_kfree_skb_any(buffer_info->skb);
426                 buffer_info->skb = NULL;
427         }
428         buffer_info->time_stamp = 0;
429 }
430
431 /**
432  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433  * @adapter: board private structure
434  *
435  * Return 0 on success, negative on failure
436  **/
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438                              struct igbvf_ring *tx_ring)
439 {
440         struct pci_dev *pdev = adapter->pdev;
441         int size;
442
443         size = sizeof(struct igbvf_buffer) * tx_ring->count;
444         tx_ring->buffer_info = vzalloc(size);
445         if (!tx_ring->buffer_info)
446                 goto err;
447
448         /* round up to nearest 4K */
449         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450         tx_ring->size = ALIGN(tx_ring->size, 4096);
451
452         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453                                            &tx_ring->dma, GFP_KERNEL);
454         if (!tx_ring->desc)
455                 goto err;
456
457         tx_ring->adapter = adapter;
458         tx_ring->next_to_use = 0;
459         tx_ring->next_to_clean = 0;
460
461         return 0;
462 err:
463         vfree(tx_ring->buffer_info);
464         dev_err(&adapter->pdev->dev,
465                 "Unable to allocate memory for the transmit descriptor ring\n");
466         return -ENOMEM;
467 }
468
469 /**
470  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471  * @adapter: board private structure
472  *
473  * Returns 0 on success, negative on failure
474  **/
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476                              struct igbvf_ring *rx_ring)
477 {
478         struct pci_dev *pdev = adapter->pdev;
479         int size, desc_len;
480
481         size = sizeof(struct igbvf_buffer) * rx_ring->count;
482         rx_ring->buffer_info = vzalloc(size);
483         if (!rx_ring->buffer_info)
484                 goto err;
485
486         desc_len = sizeof(union e1000_adv_rx_desc);
487
488         /* Round up to nearest 4K */
489         rx_ring->size = rx_ring->count * desc_len;
490         rx_ring->size = ALIGN(rx_ring->size, 4096);
491
492         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493                                            &rx_ring->dma, GFP_KERNEL);
494         if (!rx_ring->desc)
495                 goto err;
496
497         rx_ring->next_to_clean = 0;
498         rx_ring->next_to_use = 0;
499
500         rx_ring->adapter = adapter;
501
502         return 0;
503
504 err:
505         vfree(rx_ring->buffer_info);
506         rx_ring->buffer_info = NULL;
507         dev_err(&adapter->pdev->dev,
508                 "Unable to allocate memory for the receive descriptor ring\n");
509         return -ENOMEM;
510 }
511
512 /**
513  * igbvf_clean_tx_ring - Free Tx Buffers
514  * @tx_ring: ring to be cleaned
515  **/
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517 {
518         struct igbvf_adapter *adapter = tx_ring->adapter;
519         struct igbvf_buffer *buffer_info;
520         unsigned long size;
521         unsigned int i;
522
523         if (!tx_ring->buffer_info)
524                 return;
525
526         /* Free all the Tx ring sk_buffs */
527         for (i = 0; i < tx_ring->count; i++) {
528                 buffer_info = &tx_ring->buffer_info[i];
529                 igbvf_put_txbuf(adapter, buffer_info);
530         }
531
532         size = sizeof(struct igbvf_buffer) * tx_ring->count;
533         memset(tx_ring->buffer_info, 0, size);
534
535         /* Zero out the descriptor ring */
536         memset(tx_ring->desc, 0, tx_ring->size);
537
538         tx_ring->next_to_use = 0;
539         tx_ring->next_to_clean = 0;
540
541         writel(0, adapter->hw.hw_addr + tx_ring->head);
542         writel(0, adapter->hw.hw_addr + tx_ring->tail);
543 }
544
545 /**
546  * igbvf_free_tx_resources - Free Tx Resources per Queue
547  * @tx_ring: ring to free resources from
548  *
549  * Free all transmit software resources
550  **/
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552 {
553         struct pci_dev *pdev = tx_ring->adapter->pdev;
554
555         igbvf_clean_tx_ring(tx_ring);
556
557         vfree(tx_ring->buffer_info);
558         tx_ring->buffer_info = NULL;
559
560         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561                           tx_ring->dma);
562
563         tx_ring->desc = NULL;
564 }
565
566 /**
567  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568  * @adapter: board private structure
569  **/
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571 {
572         struct igbvf_adapter *adapter = rx_ring->adapter;
573         struct igbvf_buffer *buffer_info;
574         struct pci_dev *pdev = adapter->pdev;
575         unsigned long size;
576         unsigned int i;
577
578         if (!rx_ring->buffer_info)
579                 return;
580
581         /* Free all the Rx ring sk_buffs */
582         for (i = 0; i < rx_ring->count; i++) {
583                 buffer_info = &rx_ring->buffer_info[i];
584                 if (buffer_info->dma) {
585                         if (adapter->rx_ps_hdr_size) {
586                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
587                                                  adapter->rx_ps_hdr_size,
588                                                  DMA_FROM_DEVICE);
589                         } else {
590                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
591                                                  adapter->rx_buffer_len,
592                                                  DMA_FROM_DEVICE);
593                         }
594                         buffer_info->dma = 0;
595                 }
596
597                 if (buffer_info->skb) {
598                         dev_kfree_skb(buffer_info->skb);
599                         buffer_info->skb = NULL;
600                 }
601
602                 if (buffer_info->page) {
603                         if (buffer_info->page_dma)
604                                 dma_unmap_page(&pdev->dev,
605                                                buffer_info->page_dma,
606                                                PAGE_SIZE / 2,
607                                                DMA_FROM_DEVICE);
608                         put_page(buffer_info->page);
609                         buffer_info->page = NULL;
610                         buffer_info->page_dma = 0;
611                         buffer_info->page_offset = 0;
612                 }
613         }
614
615         size = sizeof(struct igbvf_buffer) * rx_ring->count;
616         memset(rx_ring->buffer_info, 0, size);
617
618         /* Zero out the descriptor ring */
619         memset(rx_ring->desc, 0, rx_ring->size);
620
621         rx_ring->next_to_clean = 0;
622         rx_ring->next_to_use = 0;
623
624         writel(0, adapter->hw.hw_addr + rx_ring->head);
625         writel(0, adapter->hw.hw_addr + rx_ring->tail);
626 }
627
628 /**
629  * igbvf_free_rx_resources - Free Rx Resources
630  * @rx_ring: ring to clean the resources from
631  *
632  * Free all receive software resources
633  **/
634
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636 {
637         struct pci_dev *pdev = rx_ring->adapter->pdev;
638
639         igbvf_clean_rx_ring(rx_ring);
640
641         vfree(rx_ring->buffer_info);
642         rx_ring->buffer_info = NULL;
643
644         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645                           rx_ring->dma);
646         rx_ring->desc = NULL;
647 }
648
649 /**
650  * igbvf_update_itr - update the dynamic ITR value based on statistics
651  * @adapter: pointer to adapter
652  * @itr_setting: current adapter->itr
653  * @packets: the number of packets during this measurement interval
654  * @bytes: the number of bytes during this measurement interval
655  *
656  * Stores a new ITR value based on packets and byte counts during the last
657  * interrupt.  The advantage of per interrupt computation is faster updates
658  * and more accurate ITR for the current traffic pattern.  Constants in this
659  * function were computed based on theoretical maximum wire speed and thresholds
660  * were set based on testing data as well as attempting to minimize response
661  * time while increasing bulk throughput.
662  **/
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664                                            enum latency_range itr_setting,
665                                            int packets, int bytes)
666 {
667         enum latency_range retval = itr_setting;
668
669         if (packets == 0)
670                 goto update_itr_done;
671
672         switch (itr_setting) {
673         case lowest_latency:
674                 /* handle TSO and jumbo frames */
675                 if (bytes/packets > 8000)
676                         retval = bulk_latency;
677                 else if ((packets < 5) && (bytes > 512))
678                         retval = low_latency;
679                 break;
680         case low_latency:  /* 50 usec aka 20000 ints/s */
681                 if (bytes > 10000) {
682                         /* this if handles the TSO accounting */
683                         if (bytes/packets > 8000)
684                                 retval = bulk_latency;
685                         else if ((packets < 10) || ((bytes/packets) > 1200))
686                                 retval = bulk_latency;
687                         else if ((packets > 35))
688                                 retval = lowest_latency;
689                 } else if (bytes/packets > 2000) {
690                         retval = bulk_latency;
691                 } else if (packets <= 2 && bytes < 512) {
692                         retval = lowest_latency;
693                 }
694                 break;
695         case bulk_latency: /* 250 usec aka 4000 ints/s */
696                 if (bytes > 25000) {
697                         if (packets > 35)
698                                 retval = low_latency;
699                 } else if (bytes < 6000) {
700                         retval = low_latency;
701                 }
702                 break;
703         default:
704                 break;
705         }
706
707 update_itr_done:
708         return retval;
709 }
710
711 static int igbvf_range_to_itr(enum latency_range current_range)
712 {
713         int new_itr;
714
715         switch (current_range) {
716         /* counts and packets in update_itr are dependent on these numbers */
717         case lowest_latency:
718                 new_itr = IGBVF_70K_ITR;
719                 break;
720         case low_latency:
721                 new_itr = IGBVF_20K_ITR;
722                 break;
723         case bulk_latency:
724                 new_itr = IGBVF_4K_ITR;
725                 break;
726         default:
727                 new_itr = IGBVF_START_ITR;
728                 break;
729         }
730         return new_itr;
731 }
732
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
734 {
735         u32 new_itr;
736
737         adapter->tx_ring->itr_range =
738                         igbvf_update_itr(adapter,
739                                          adapter->tx_ring->itr_val,
740                                          adapter->total_tx_packets,
741                                          adapter->total_tx_bytes);
742
743         /* conservative mode (itr 3) eliminates the lowest_latency setting */
744         if (adapter->requested_itr == 3 &&
745             adapter->tx_ring->itr_range == lowest_latency)
746                 adapter->tx_ring->itr_range = low_latency;
747
748         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749
750         if (new_itr != adapter->tx_ring->itr_val) {
751                 u32 current_itr = adapter->tx_ring->itr_val;
752                 /* this attempts to bias the interrupt rate towards Bulk
753                  * by adding intermediate steps when interrupt rate is
754                  * increasing
755                  */
756                 new_itr = new_itr > current_itr ?
757                           min(current_itr + (new_itr >> 2), new_itr) :
758                           new_itr;
759                 adapter->tx_ring->itr_val = new_itr;
760
761                 adapter->tx_ring->set_itr = 1;
762         }
763
764         adapter->rx_ring->itr_range =
765                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766                                          adapter->total_rx_packets,
767                                          adapter->total_rx_bytes);
768         if (adapter->requested_itr == 3 &&
769             adapter->rx_ring->itr_range == lowest_latency)
770                 adapter->rx_ring->itr_range = low_latency;
771
772         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773
774         if (new_itr != adapter->rx_ring->itr_val) {
775                 u32 current_itr = adapter->rx_ring->itr_val;
776
777                 new_itr = new_itr > current_itr ?
778                           min(current_itr + (new_itr >> 2), new_itr) :
779                           new_itr;
780                 adapter->rx_ring->itr_val = new_itr;
781
782                 adapter->rx_ring->set_itr = 1;
783         }
784 }
785
786 /**
787  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788  * @adapter: board private structure
789  *
790  * returns true if ring is completely cleaned
791  **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794         struct igbvf_adapter *adapter = tx_ring->adapter;
795         struct net_device *netdev = adapter->netdev;
796         struct igbvf_buffer *buffer_info;
797         struct sk_buff *skb;
798         union e1000_adv_tx_desc *tx_desc, *eop_desc;
799         unsigned int total_bytes = 0, total_packets = 0;
800         unsigned int i, count = 0;
801         bool cleaned = false;
802
803         i = tx_ring->next_to_clean;
804         buffer_info = &tx_ring->buffer_info[i];
805         eop_desc = buffer_info->next_to_watch;
806
807         do {
808                 /* if next_to_watch is not set then there is no work pending */
809                 if (!eop_desc)
810                         break;
811
812                 /* prevent any other reads prior to eop_desc */
813                 smp_rmb();
814
815                 /* if DD is not set pending work has not been completed */
816                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817                         break;
818
819                 /* clear next_to_watch to prevent false hangs */
820                 buffer_info->next_to_watch = NULL;
821
822                 for (cleaned = false; !cleaned; count++) {
823                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824                         cleaned = (tx_desc == eop_desc);
825                         skb = buffer_info->skb;
826
827                         if (skb) {
828                                 unsigned int segs, bytecount;
829
830                                 /* gso_segs is currently only valid for tcp */
831                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
832                                 /* multiply data chunks by size of headers */
833                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
834                                             skb->len;
835                                 total_packets += segs;
836                                 total_bytes += bytecount;
837                         }
838
839                         igbvf_put_txbuf(adapter, buffer_info);
840                         tx_desc->wb.status = 0;
841
842                         i++;
843                         if (i == tx_ring->count)
844                                 i = 0;
845
846                         buffer_info = &tx_ring->buffer_info[i];
847                 }
848
849                 eop_desc = buffer_info->next_to_watch;
850         } while (count < tx_ring->count);
851
852         tx_ring->next_to_clean = i;
853
854         if (unlikely(count && netif_carrier_ok(netdev) &&
855             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856                 /* Make sure that anybody stopping the queue after this
857                  * sees the new next_to_clean.
858                  */
859                 smp_mb();
860                 if (netif_queue_stopped(netdev) &&
861                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862                         netif_wake_queue(netdev);
863                         ++adapter->restart_queue;
864                 }
865         }
866
867         netdev->stats.tx_bytes += total_bytes;
868         netdev->stats.tx_packets += total_packets;
869         return count < tx_ring->count;
870 }
871
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
873 {
874         struct net_device *netdev = data;
875         struct igbvf_adapter *adapter = netdev_priv(netdev);
876         struct e1000_hw *hw = &adapter->hw;
877
878         adapter->int_counter1++;
879
880         hw->mac.get_link_status = 1;
881         if (!test_bit(__IGBVF_DOWN, &adapter->state))
882                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884         ew32(EIMS, adapter->eims_other);
885
886         return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891         struct net_device *netdev = data;
892         struct igbvf_adapter *adapter = netdev_priv(netdev);
893         struct e1000_hw *hw = &adapter->hw;
894         struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896         if (tx_ring->set_itr) {
897                 writel(tx_ring->itr_val,
898                        adapter->hw.hw_addr + tx_ring->itr_register);
899                 adapter->tx_ring->set_itr = 0;
900         }
901
902         adapter->total_tx_bytes = 0;
903         adapter->total_tx_packets = 0;
904
905         /* auto mask will automatically re-enable the interrupt when we write
906          * EICS
907          */
908         if (!igbvf_clean_tx_irq(tx_ring))
909                 /* Ring was not completely cleaned, so fire another interrupt */
910                 ew32(EICS, tx_ring->eims_value);
911         else
912                 ew32(EIMS, tx_ring->eims_value);
913
914         return IRQ_HANDLED;
915 }
916
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919         struct net_device *netdev = data;
920         struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922         adapter->int_counter0++;
923
924         /* Write the ITR value calculated at the end of the
925          * previous interrupt.
926          */
927         if (adapter->rx_ring->set_itr) {
928                 writel(adapter->rx_ring->itr_val,
929                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930                 adapter->rx_ring->set_itr = 0;
931         }
932
933         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934                 adapter->total_rx_bytes = 0;
935                 adapter->total_rx_packets = 0;
936                 __napi_schedule(&adapter->rx_ring->napi);
937         }
938
939         return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945                                 int tx_queue, int msix_vector)
946 {
947         struct e1000_hw *hw = &adapter->hw;
948         u32 ivar, index;
949
950         /* 82576 uses a table-based method for assigning vectors.
951          * Each queue has a single entry in the table to which we write
952          * a vector number along with a "valid" bit.  Sadly, the layout
953          * of the table is somewhat counterintuitive.
954          */
955         if (rx_queue > IGBVF_NO_QUEUE) {
956                 index = (rx_queue >> 1);
957                 ivar = array_er32(IVAR0, index);
958                 if (rx_queue & 0x1) {
959                         /* vector goes into third byte of register */
960                         ivar = ivar & 0xFF00FFFF;
961                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962                 } else {
963                         /* vector goes into low byte of register */
964                         ivar = ivar & 0xFFFFFF00;
965                         ivar |= msix_vector | E1000_IVAR_VALID;
966                 }
967                 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968                 array_ew32(IVAR0, index, ivar);
969         }
970         if (tx_queue > IGBVF_NO_QUEUE) {
971                 index = (tx_queue >> 1);
972                 ivar = array_er32(IVAR0, index);
973                 if (tx_queue & 0x1) {
974                         /* vector goes into high byte of register */
975                         ivar = ivar & 0x00FFFFFF;
976                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977                 } else {
978                         /* vector goes into second byte of register */
979                         ivar = ivar & 0xFFFF00FF;
980                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981                 }
982                 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983                 array_ew32(IVAR0, index, ivar);
984         }
985 }
986
987 /**
988  * igbvf_configure_msix - Configure MSI-X hardware
989  * @adapter: board private structure
990  *
991  * igbvf_configure_msix sets up the hardware to properly
992  * generate MSI-X interrupts.
993  **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996         u32 tmp;
997         struct e1000_hw *hw = &adapter->hw;
998         struct igbvf_ring *tx_ring = adapter->tx_ring;
999         struct igbvf_ring *rx_ring = adapter->rx_ring;
1000         int vector = 0;
1001
1002         adapter->eims_enable_mask = 0;
1003
1004         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005         adapter->eims_enable_mask |= tx_ring->eims_value;
1006         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008         adapter->eims_enable_mask |= rx_ring->eims_value;
1009         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011         /* set vector for other causes, i.e. link changes */
1012
1013         tmp = (vector++ | E1000_IVAR_VALID);
1014
1015         ew32(IVAR_MISC, tmp);
1016
1017         adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018         adapter->eims_other = BIT(vector - 1);
1019         e1e_flush();
1020 }
1021
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024         if (adapter->msix_entries) {
1025                 pci_disable_msix(adapter->pdev);
1026                 kfree(adapter->msix_entries);
1027                 adapter->msix_entries = NULL;
1028         }
1029 }
1030
1031 /**
1032  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033  * @adapter: board private structure
1034  *
1035  * Attempt to configure interrupts using the best available
1036  * capabilities of the hardware and kernel.
1037  **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040         int err = -ENOMEM;
1041         int i;
1042
1043         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045                                         GFP_KERNEL);
1046         if (adapter->msix_entries) {
1047                 for (i = 0; i < 3; i++)
1048                         adapter->msix_entries[i].entry = i;
1049
1050                 err = pci_enable_msix_range(adapter->pdev,
1051                                             adapter->msix_entries, 3, 3);
1052         }
1053
1054         if (err < 0) {
1055                 /* MSI-X failed */
1056                 dev_err(&adapter->pdev->dev,
1057                         "Failed to initialize MSI-X interrupts.\n");
1058                 igbvf_reset_interrupt_capability(adapter);
1059         }
1060 }
1061
1062 /**
1063  * igbvf_request_msix - Initialize MSI-X interrupts
1064  * @adapter: board private structure
1065  *
1066  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067  * kernel.
1068  **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071         struct net_device *netdev = adapter->netdev;
1072         int err = 0, vector = 0;
1073
1074         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077         } else {
1078                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080         }
1081
1082         err = request_irq(adapter->msix_entries[vector].vector,
1083                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084                           netdev);
1085         if (err)
1086                 goto out;
1087
1088         adapter->tx_ring->itr_register = E1000_EITR(vector);
1089         adapter->tx_ring->itr_val = adapter->current_itr;
1090         vector++;
1091
1092         err = request_irq(adapter->msix_entries[vector].vector,
1093                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094                           netdev);
1095         if (err)
1096                 goto out;
1097
1098         adapter->rx_ring->itr_register = E1000_EITR(vector);
1099         adapter->rx_ring->itr_val = adapter->current_itr;
1100         vector++;
1101
1102         err = request_irq(adapter->msix_entries[vector].vector,
1103                           igbvf_msix_other, 0, netdev->name, netdev);
1104         if (err)
1105                 goto out;
1106
1107         igbvf_configure_msix(adapter);
1108         return 0;
1109 out:
1110         return err;
1111 }
1112
1113 /**
1114  * igbvf_alloc_queues - Allocate memory for all rings
1115  * @adapter: board private structure to initialize
1116  **/
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119         struct net_device *netdev = adapter->netdev;
1120
1121         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122         if (!adapter->tx_ring)
1123                 return -ENOMEM;
1124
1125         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126         if (!adapter->rx_ring) {
1127                 kfree(adapter->tx_ring);
1128                 return -ENOMEM;
1129         }
1130
1131         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * igbvf_request_irq - initialize interrupts
1138  * @adapter: board private structure
1139  *
1140  * Attempts to configure interrupts using the best available
1141  * capabilities of the hardware and kernel.
1142  **/
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145         int err = -1;
1146
1147         /* igbvf supports msi-x only */
1148         if (adapter->msix_entries)
1149                 err = igbvf_request_msix(adapter);
1150
1151         if (!err)
1152                 return err;
1153
1154         dev_err(&adapter->pdev->dev,
1155                 "Unable to allocate interrupt, Error: %d\n", err);
1156
1157         return err;
1158 }
1159
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162         struct net_device *netdev = adapter->netdev;
1163         int vector;
1164
1165         if (adapter->msix_entries) {
1166                 for (vector = 0; vector < 3; vector++)
1167                         free_irq(adapter->msix_entries[vector].vector, netdev);
1168         }
1169 }
1170
1171 /**
1172  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173  * @adapter: board private structure
1174  **/
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177         struct e1000_hw *hw = &adapter->hw;
1178
1179         ew32(EIMC, ~0);
1180
1181         if (adapter->msix_entries)
1182                 ew32(EIAC, 0);
1183 }
1184
1185 /**
1186  * igbvf_irq_enable - Enable default interrupt generation settings
1187  * @adapter: board private structure
1188  **/
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         ew32(EIAC, adapter->eims_enable_mask);
1194         ew32(EIAM, adapter->eims_enable_mask);
1195         ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197
1198 /**
1199  * igbvf_poll - NAPI Rx polling callback
1200  * @napi: struct associated with this polling callback
1201  * @budget: amount of packets driver is allowed to process this poll
1202  **/
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206         struct igbvf_adapter *adapter = rx_ring->adapter;
1207         struct e1000_hw *hw = &adapter->hw;
1208         int work_done = 0;
1209
1210         igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212         /* If not enough Rx work done, exit the polling mode */
1213         if (work_done < budget) {
1214                 napi_complete_done(napi, work_done);
1215
1216                 if (adapter->requested_itr & 3)
1217                         igbvf_set_itr(adapter);
1218
1219                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220                         ew32(EIMS, adapter->rx_ring->eims_value);
1221         }
1222
1223         return work_done;
1224 }
1225
1226 /**
1227  * igbvf_set_rlpml - set receive large packet maximum length
1228  * @adapter: board private structure
1229  *
1230  * Configure the maximum size of packets that will be received
1231  */
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234         int max_frame_size;
1235         struct e1000_hw *hw = &adapter->hw;
1236
1237         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238
1239         spin_lock_bh(&hw->mbx_lock);
1240
1241         e1000_rlpml_set_vf(hw, max_frame_size);
1242
1243         spin_unlock_bh(&hw->mbx_lock);
1244 }
1245
1246 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1247                                  __be16 proto, u16 vid)
1248 {
1249         struct igbvf_adapter *adapter = netdev_priv(netdev);
1250         struct e1000_hw *hw = &adapter->hw;
1251
1252         spin_lock_bh(&hw->mbx_lock);
1253
1254         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1255                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1256                 spin_unlock_bh(&hw->mbx_lock);
1257                 return -EINVAL;
1258         }
1259
1260         spin_unlock_bh(&hw->mbx_lock);
1261
1262         set_bit(vid, adapter->active_vlans);
1263         return 0;
1264 }
1265
1266 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1267                                   __be16 proto, u16 vid)
1268 {
1269         struct igbvf_adapter *adapter = netdev_priv(netdev);
1270         struct e1000_hw *hw = &adapter->hw;
1271
1272         spin_lock_bh(&hw->mbx_lock);
1273
1274         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1275                 dev_err(&adapter->pdev->dev,
1276                         "Failed to remove vlan id %d\n", vid);
1277                 spin_unlock_bh(&hw->mbx_lock);
1278                 return -EINVAL;
1279         }
1280
1281         spin_unlock_bh(&hw->mbx_lock);
1282
1283         clear_bit(vid, adapter->active_vlans);
1284         return 0;
1285 }
1286
1287 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1288 {
1289         u16 vid;
1290
1291         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1292                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1293 }
1294
1295 /**
1296  * igbvf_configure_tx - Configure Transmit Unit after Reset
1297  * @adapter: board private structure
1298  *
1299  * Configure the Tx unit of the MAC after a reset.
1300  **/
1301 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1302 {
1303         struct e1000_hw *hw = &adapter->hw;
1304         struct igbvf_ring *tx_ring = adapter->tx_ring;
1305         u64 tdba;
1306         u32 txdctl, dca_txctrl;
1307
1308         /* disable transmits */
1309         txdctl = er32(TXDCTL(0));
1310         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1311         e1e_flush();
1312         msleep(10);
1313
1314         /* Setup the HW Tx Head and Tail descriptor pointers */
1315         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1316         tdba = tx_ring->dma;
1317         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1318         ew32(TDBAH(0), (tdba >> 32));
1319         ew32(TDH(0), 0);
1320         ew32(TDT(0), 0);
1321         tx_ring->head = E1000_TDH(0);
1322         tx_ring->tail = E1000_TDT(0);
1323
1324         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1325          * MUST be delivered in order or it will completely screw up
1326          * our bookkeeping.
1327          */
1328         dca_txctrl = er32(DCA_TXCTRL(0));
1329         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1330         ew32(DCA_TXCTRL(0), dca_txctrl);
1331
1332         /* enable transmits */
1333         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1334         ew32(TXDCTL(0), txdctl);
1335
1336         /* Setup Transmit Descriptor Settings for eop descriptor */
1337         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1338
1339         /* enable Report Status bit */
1340         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1341 }
1342
1343 /**
1344  * igbvf_setup_srrctl - configure the receive control registers
1345  * @adapter: Board private structure
1346  **/
1347 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1348 {
1349         struct e1000_hw *hw = &adapter->hw;
1350         u32 srrctl = 0;
1351
1352         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1353                     E1000_SRRCTL_BSIZEHDR_MASK |
1354                     E1000_SRRCTL_BSIZEPKT_MASK);
1355
1356         /* Enable queue drop to avoid head of line blocking */
1357         srrctl |= E1000_SRRCTL_DROP_EN;
1358
1359         /* Setup buffer sizes */
1360         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1361                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1362
1363         if (adapter->rx_buffer_len < 2048) {
1364                 adapter->rx_ps_hdr_size = 0;
1365                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1366         } else {
1367                 adapter->rx_ps_hdr_size = 128;
1368                 srrctl |= adapter->rx_ps_hdr_size <<
1369                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1370                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1371         }
1372
1373         ew32(SRRCTL(0), srrctl);
1374 }
1375
1376 /**
1377  * igbvf_configure_rx - Configure Receive Unit after Reset
1378  * @adapter: board private structure
1379  *
1380  * Configure the Rx unit of the MAC after a reset.
1381  **/
1382 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1383 {
1384         struct e1000_hw *hw = &adapter->hw;
1385         struct igbvf_ring *rx_ring = adapter->rx_ring;
1386         u64 rdba;
1387         u32 rxdctl;
1388
1389         /* disable receives */
1390         rxdctl = er32(RXDCTL(0));
1391         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1392         e1e_flush();
1393         msleep(10);
1394
1395         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1396          * the Base and Length of the Rx Descriptor Ring
1397          */
1398         rdba = rx_ring->dma;
1399         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1400         ew32(RDBAH(0), (rdba >> 32));
1401         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1402         rx_ring->head = E1000_RDH(0);
1403         rx_ring->tail = E1000_RDT(0);
1404         ew32(RDH(0), 0);
1405         ew32(RDT(0), 0);
1406
1407         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1408         rxdctl &= 0xFFF00000;
1409         rxdctl |= IGBVF_RX_PTHRESH;
1410         rxdctl |= IGBVF_RX_HTHRESH << 8;
1411         rxdctl |= IGBVF_RX_WTHRESH << 16;
1412
1413         igbvf_set_rlpml(adapter);
1414
1415         /* enable receives */
1416         ew32(RXDCTL(0), rxdctl);
1417 }
1418
1419 /**
1420  * igbvf_set_multi - Multicast and Promiscuous mode set
1421  * @netdev: network interface device structure
1422  *
1423  * The set_multi entry point is called whenever the multicast address
1424  * list or the network interface flags are updated.  This routine is
1425  * responsible for configuring the hardware for proper multicast,
1426  * promiscuous mode, and all-multi behavior.
1427  **/
1428 static void igbvf_set_multi(struct net_device *netdev)
1429 {
1430         struct igbvf_adapter *adapter = netdev_priv(netdev);
1431         struct e1000_hw *hw = &adapter->hw;
1432         struct netdev_hw_addr *ha;
1433         u8  *mta_list = NULL;
1434         int i;
1435
1436         if (!netdev_mc_empty(netdev)) {
1437                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1438                                          GFP_ATOMIC);
1439                 if (!mta_list)
1440                         return;
1441         }
1442
1443         /* prepare a packed array of only addresses. */
1444         i = 0;
1445         netdev_for_each_mc_addr(ha, netdev)
1446                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1447
1448         spin_lock_bh(&hw->mbx_lock);
1449
1450         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1451
1452         spin_unlock_bh(&hw->mbx_lock);
1453         kfree(mta_list);
1454 }
1455
1456 /**
1457  * igbvf_set_uni - Configure unicast MAC filters
1458  * @netdev: network interface device structure
1459  *
1460  * This routine is responsible for configuring the hardware for proper
1461  * unicast filters.
1462  **/
1463 static int igbvf_set_uni(struct net_device *netdev)
1464 {
1465         struct igbvf_adapter *adapter = netdev_priv(netdev);
1466         struct e1000_hw *hw = &adapter->hw;
1467
1468         if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1469                 pr_err("Too many unicast filters - No Space\n");
1470                 return -ENOSPC;
1471         }
1472
1473         spin_lock_bh(&hw->mbx_lock);
1474
1475         /* Clear all unicast MAC filters */
1476         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1477
1478         spin_unlock_bh(&hw->mbx_lock);
1479
1480         if (!netdev_uc_empty(netdev)) {
1481                 struct netdev_hw_addr *ha;
1482
1483                 /* Add MAC filters one by one */
1484                 netdev_for_each_uc_addr(ha, netdev) {
1485                         spin_lock_bh(&hw->mbx_lock);
1486
1487                         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1488                                                 ha->addr);
1489
1490                         spin_unlock_bh(&hw->mbx_lock);
1491                         udelay(200);
1492                 }
1493         }
1494
1495         return 0;
1496 }
1497
1498 static void igbvf_set_rx_mode(struct net_device *netdev)
1499 {
1500         igbvf_set_multi(netdev);
1501         igbvf_set_uni(netdev);
1502 }
1503
1504 /**
1505  * igbvf_configure - configure the hardware for Rx and Tx
1506  * @adapter: private board structure
1507  **/
1508 static void igbvf_configure(struct igbvf_adapter *adapter)
1509 {
1510         igbvf_set_rx_mode(adapter->netdev);
1511
1512         igbvf_restore_vlan(adapter);
1513
1514         igbvf_configure_tx(adapter);
1515         igbvf_setup_srrctl(adapter);
1516         igbvf_configure_rx(adapter);
1517         igbvf_alloc_rx_buffers(adapter->rx_ring,
1518                                igbvf_desc_unused(adapter->rx_ring));
1519 }
1520
1521 /* igbvf_reset - bring the hardware into a known good state
1522  * @adapter: private board structure
1523  *
1524  * This function boots the hardware and enables some settings that
1525  * require a configuration cycle of the hardware - those cannot be
1526  * set/changed during runtime. After reset the device needs to be
1527  * properly configured for Rx, Tx etc.
1528  */
1529 static void igbvf_reset(struct igbvf_adapter *adapter)
1530 {
1531         struct e1000_mac_info *mac = &adapter->hw.mac;
1532         struct net_device *netdev = adapter->netdev;
1533         struct e1000_hw *hw = &adapter->hw;
1534
1535         spin_lock_bh(&hw->mbx_lock);
1536
1537         /* Allow time for pending master requests to run */
1538         if (mac->ops.reset_hw(hw))
1539                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1540
1541         mac->ops.init_hw(hw);
1542
1543         spin_unlock_bh(&hw->mbx_lock);
1544
1545         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1546                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1547                        netdev->addr_len);
1548                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1549                        netdev->addr_len);
1550         }
1551
1552         adapter->last_reset = jiffies;
1553 }
1554
1555 int igbvf_up(struct igbvf_adapter *adapter)
1556 {
1557         struct e1000_hw *hw = &adapter->hw;
1558
1559         /* hardware has been reset, we need to reload some things */
1560         igbvf_configure(adapter);
1561
1562         clear_bit(__IGBVF_DOWN, &adapter->state);
1563
1564         napi_enable(&adapter->rx_ring->napi);
1565         if (adapter->msix_entries)
1566                 igbvf_configure_msix(adapter);
1567
1568         /* Clear any pending interrupts. */
1569         er32(EICR);
1570         igbvf_irq_enable(adapter);
1571
1572         /* start the watchdog */
1573         hw->mac.get_link_status = 1;
1574         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1575
1576         return 0;
1577 }
1578
1579 void igbvf_down(struct igbvf_adapter *adapter)
1580 {
1581         struct net_device *netdev = adapter->netdev;
1582         struct e1000_hw *hw = &adapter->hw;
1583         u32 rxdctl, txdctl;
1584
1585         /* signal that we're down so the interrupt handler does not
1586          * reschedule our watchdog timer
1587          */
1588         set_bit(__IGBVF_DOWN, &adapter->state);
1589
1590         /* disable receives in the hardware */
1591         rxdctl = er32(RXDCTL(0));
1592         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1593
1594         netif_carrier_off(netdev);
1595         netif_stop_queue(netdev);
1596
1597         /* disable transmits in the hardware */
1598         txdctl = er32(TXDCTL(0));
1599         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1600
1601         /* flush both disables and wait for them to finish */
1602         e1e_flush();
1603         msleep(10);
1604
1605         napi_disable(&adapter->rx_ring->napi);
1606
1607         igbvf_irq_disable(adapter);
1608
1609         del_timer_sync(&adapter->watchdog_timer);
1610
1611         /* record the stats before reset*/
1612         igbvf_update_stats(adapter);
1613
1614         adapter->link_speed = 0;
1615         adapter->link_duplex = 0;
1616
1617         igbvf_reset(adapter);
1618         igbvf_clean_tx_ring(adapter->tx_ring);
1619         igbvf_clean_rx_ring(adapter->rx_ring);
1620 }
1621
1622 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1623 {
1624         might_sleep();
1625         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1626                 usleep_range(1000, 2000);
1627         igbvf_down(adapter);
1628         igbvf_up(adapter);
1629         clear_bit(__IGBVF_RESETTING, &adapter->state);
1630 }
1631
1632 /**
1633  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1634  * @adapter: board private structure to initialize
1635  *
1636  * igbvf_sw_init initializes the Adapter private data structure.
1637  * Fields are initialized based on PCI device information and
1638  * OS network device settings (MTU size).
1639  **/
1640 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1641 {
1642         struct net_device *netdev = adapter->netdev;
1643         s32 rc;
1644
1645         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1646         adapter->rx_ps_hdr_size = 0;
1647         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1648         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1649
1650         adapter->tx_int_delay = 8;
1651         adapter->tx_abs_int_delay = 32;
1652         adapter->rx_int_delay = 0;
1653         adapter->rx_abs_int_delay = 8;
1654         adapter->requested_itr = 3;
1655         adapter->current_itr = IGBVF_START_ITR;
1656
1657         /* Set various function pointers */
1658         adapter->ei->init_ops(&adapter->hw);
1659
1660         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1661         if (rc)
1662                 return rc;
1663
1664         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1665         if (rc)
1666                 return rc;
1667
1668         igbvf_set_interrupt_capability(adapter);
1669
1670         if (igbvf_alloc_queues(adapter))
1671                 return -ENOMEM;
1672
1673         spin_lock_init(&adapter->tx_queue_lock);
1674
1675         /* Explicitly disable IRQ since the NIC can be in any state. */
1676         igbvf_irq_disable(adapter);
1677
1678         spin_lock_init(&adapter->stats_lock);
1679         spin_lock_init(&adapter->hw.mbx_lock);
1680
1681         set_bit(__IGBVF_DOWN, &adapter->state);
1682         return 0;
1683 }
1684
1685 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1686 {
1687         struct e1000_hw *hw = &adapter->hw;
1688
1689         adapter->stats.last_gprc = er32(VFGPRC);
1690         adapter->stats.last_gorc = er32(VFGORC);
1691         adapter->stats.last_gptc = er32(VFGPTC);
1692         adapter->stats.last_gotc = er32(VFGOTC);
1693         adapter->stats.last_mprc = er32(VFMPRC);
1694         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1695         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1696         adapter->stats.last_gorlbc = er32(VFGORLBC);
1697         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1698
1699         adapter->stats.base_gprc = er32(VFGPRC);
1700         adapter->stats.base_gorc = er32(VFGORC);
1701         adapter->stats.base_gptc = er32(VFGPTC);
1702         adapter->stats.base_gotc = er32(VFGOTC);
1703         adapter->stats.base_mprc = er32(VFMPRC);
1704         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1705         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1706         adapter->stats.base_gorlbc = er32(VFGORLBC);
1707         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1708 }
1709
1710 /**
1711  * igbvf_open - Called when a network interface is made active
1712  * @netdev: network interface device structure
1713  *
1714  * Returns 0 on success, negative value on failure
1715  *
1716  * The open entry point is called when a network interface is made
1717  * active by the system (IFF_UP).  At this point all resources needed
1718  * for transmit and receive operations are allocated, the interrupt
1719  * handler is registered with the OS, the watchdog timer is started,
1720  * and the stack is notified that the interface is ready.
1721  **/
1722 static int igbvf_open(struct net_device *netdev)
1723 {
1724         struct igbvf_adapter *adapter = netdev_priv(netdev);
1725         struct e1000_hw *hw = &adapter->hw;
1726         int err;
1727
1728         /* disallow open during test */
1729         if (test_bit(__IGBVF_TESTING, &adapter->state))
1730                 return -EBUSY;
1731
1732         /* allocate transmit descriptors */
1733         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1734         if (err)
1735                 goto err_setup_tx;
1736
1737         /* allocate receive descriptors */
1738         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1739         if (err)
1740                 goto err_setup_rx;
1741
1742         /* before we allocate an interrupt, we must be ready to handle it.
1743          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1744          * as soon as we call pci_request_irq, so we have to setup our
1745          * clean_rx handler before we do so.
1746          */
1747         igbvf_configure(adapter);
1748
1749         err = igbvf_request_irq(adapter);
1750         if (err)
1751                 goto err_req_irq;
1752
1753         /* From here on the code is the same as igbvf_up() */
1754         clear_bit(__IGBVF_DOWN, &adapter->state);
1755
1756         napi_enable(&adapter->rx_ring->napi);
1757
1758         /* clear any pending interrupts */
1759         er32(EICR);
1760
1761         igbvf_irq_enable(adapter);
1762
1763         /* start the watchdog */
1764         hw->mac.get_link_status = 1;
1765         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1766
1767         return 0;
1768
1769 err_req_irq:
1770         igbvf_free_rx_resources(adapter->rx_ring);
1771 err_setup_rx:
1772         igbvf_free_tx_resources(adapter->tx_ring);
1773 err_setup_tx:
1774         igbvf_reset(adapter);
1775
1776         return err;
1777 }
1778
1779 /**
1780  * igbvf_close - Disables a network interface
1781  * @netdev: network interface device structure
1782  *
1783  * Returns 0, this is not allowed to fail
1784  *
1785  * The close entry point is called when an interface is de-activated
1786  * by the OS.  The hardware is still under the drivers control, but
1787  * needs to be disabled.  A global MAC reset is issued to stop the
1788  * hardware, and all transmit and receive resources are freed.
1789  **/
1790 static int igbvf_close(struct net_device *netdev)
1791 {
1792         struct igbvf_adapter *adapter = netdev_priv(netdev);
1793
1794         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1795         igbvf_down(adapter);
1796
1797         igbvf_free_irq(adapter);
1798
1799         igbvf_free_tx_resources(adapter->tx_ring);
1800         igbvf_free_rx_resources(adapter->rx_ring);
1801
1802         return 0;
1803 }
1804
1805 /**
1806  * igbvf_set_mac - Change the Ethernet Address of the NIC
1807  * @netdev: network interface device structure
1808  * @p: pointer to an address structure
1809  *
1810  * Returns 0 on success, negative on failure
1811  **/
1812 static int igbvf_set_mac(struct net_device *netdev, void *p)
1813 {
1814         struct igbvf_adapter *adapter = netdev_priv(netdev);
1815         struct e1000_hw *hw = &adapter->hw;
1816         struct sockaddr *addr = p;
1817
1818         if (!is_valid_ether_addr(addr->sa_data))
1819                 return -EADDRNOTAVAIL;
1820
1821         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1822
1823         spin_lock_bh(&hw->mbx_lock);
1824
1825         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1826
1827         spin_unlock_bh(&hw->mbx_lock);
1828
1829         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1830                 return -EADDRNOTAVAIL;
1831
1832         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1833
1834         return 0;
1835 }
1836
1837 #define UPDATE_VF_COUNTER(reg, name) \
1838 { \
1839         u32 current_counter = er32(reg); \
1840         if (current_counter < adapter->stats.last_##name) \
1841                 adapter->stats.name += 0x100000000LL; \
1842         adapter->stats.last_##name = current_counter; \
1843         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1844         adapter->stats.name |= current_counter; \
1845 }
1846
1847 /**
1848  * igbvf_update_stats - Update the board statistics counters
1849  * @adapter: board private structure
1850 **/
1851 void igbvf_update_stats(struct igbvf_adapter *adapter)
1852 {
1853         struct e1000_hw *hw = &adapter->hw;
1854         struct pci_dev *pdev = adapter->pdev;
1855
1856         /* Prevent stats update while adapter is being reset, link is down
1857          * or if the pci connection is down.
1858          */
1859         if (adapter->link_speed == 0)
1860                 return;
1861
1862         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1863                 return;
1864
1865         if (pci_channel_offline(pdev))
1866                 return;
1867
1868         UPDATE_VF_COUNTER(VFGPRC, gprc);
1869         UPDATE_VF_COUNTER(VFGORC, gorc);
1870         UPDATE_VF_COUNTER(VFGPTC, gptc);
1871         UPDATE_VF_COUNTER(VFGOTC, gotc);
1872         UPDATE_VF_COUNTER(VFMPRC, mprc);
1873         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1874         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1875         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1876         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1877
1878         /* Fill out the OS statistics structure */
1879         adapter->netdev->stats.multicast = adapter->stats.mprc;
1880 }
1881
1882 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1883 {
1884         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1885                  adapter->link_speed,
1886                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1887 }
1888
1889 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1890 {
1891         struct e1000_hw *hw = &adapter->hw;
1892         s32 ret_val = E1000_SUCCESS;
1893         bool link_active;
1894
1895         /* If interface is down, stay link down */
1896         if (test_bit(__IGBVF_DOWN, &adapter->state))
1897                 return false;
1898
1899         spin_lock_bh(&hw->mbx_lock);
1900
1901         ret_val = hw->mac.ops.check_for_link(hw);
1902
1903         spin_unlock_bh(&hw->mbx_lock);
1904
1905         link_active = !hw->mac.get_link_status;
1906
1907         /* if check for link returns error we will need to reset */
1908         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1909                 schedule_work(&adapter->reset_task);
1910
1911         return link_active;
1912 }
1913
1914 /**
1915  * igbvf_watchdog - Timer Call-back
1916  * @data: pointer to adapter cast into an unsigned long
1917  **/
1918 static void igbvf_watchdog(unsigned long data)
1919 {
1920         struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1921
1922         /* Do the rest outside of interrupt context */
1923         schedule_work(&adapter->watchdog_task);
1924 }
1925
1926 static void igbvf_watchdog_task(struct work_struct *work)
1927 {
1928         struct igbvf_adapter *adapter = container_of(work,
1929                                                      struct igbvf_adapter,
1930                                                      watchdog_task);
1931         struct net_device *netdev = adapter->netdev;
1932         struct e1000_mac_info *mac = &adapter->hw.mac;
1933         struct igbvf_ring *tx_ring = adapter->tx_ring;
1934         struct e1000_hw *hw = &adapter->hw;
1935         u32 link;
1936         int tx_pending = 0;
1937
1938         link = igbvf_has_link(adapter);
1939
1940         if (link) {
1941                 if (!netif_carrier_ok(netdev)) {
1942                         mac->ops.get_link_up_info(&adapter->hw,
1943                                                   &adapter->link_speed,
1944                                                   &adapter->link_duplex);
1945                         igbvf_print_link_info(adapter);
1946
1947                         netif_carrier_on(netdev);
1948                         netif_wake_queue(netdev);
1949                 }
1950         } else {
1951                 if (netif_carrier_ok(netdev)) {
1952                         adapter->link_speed = 0;
1953                         adapter->link_duplex = 0;
1954                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1955                         netif_carrier_off(netdev);
1956                         netif_stop_queue(netdev);
1957                 }
1958         }
1959
1960         if (netif_carrier_ok(netdev)) {
1961                 igbvf_update_stats(adapter);
1962         } else {
1963                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1964                               tx_ring->count);
1965                 if (tx_pending) {
1966                         /* We've lost link, so the controller stops DMA,
1967                          * but we've got queued Tx work that's never going
1968                          * to get done, so reset controller to flush Tx.
1969                          * (Do the reset outside of interrupt context).
1970                          */
1971                         adapter->tx_timeout_count++;
1972                         schedule_work(&adapter->reset_task);
1973                 }
1974         }
1975
1976         /* Cause software interrupt to ensure Rx ring is cleaned */
1977         ew32(EICS, adapter->rx_ring->eims_value);
1978
1979         /* Reset the timer */
1980         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1981                 mod_timer(&adapter->watchdog_timer,
1982                           round_jiffies(jiffies + (2 * HZ)));
1983 }
1984
1985 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1986 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1987 #define IGBVF_TX_FLAGS_TSO              0x00000004
1988 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1989 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1990 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1991
1992 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1993                               u32 type_tucmd, u32 mss_l4len_idx)
1994 {
1995         struct e1000_adv_tx_context_desc *context_desc;
1996         struct igbvf_buffer *buffer_info;
1997         u16 i = tx_ring->next_to_use;
1998
1999         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2000         buffer_info = &tx_ring->buffer_info[i];
2001
2002         i++;
2003         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2004
2005         /* set bits to identify this as an advanced context descriptor */
2006         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2007
2008         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
2009         context_desc->seqnum_seed       = 0;
2010         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
2011         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
2012
2013         buffer_info->time_stamp = jiffies;
2014         buffer_info->dma = 0;
2015 }
2016
2017 static int igbvf_tso(struct igbvf_ring *tx_ring,
2018                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2019 {
2020         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2021         union {
2022                 struct iphdr *v4;
2023                 struct ipv6hdr *v6;
2024                 unsigned char *hdr;
2025         } ip;
2026         union {
2027                 struct tcphdr *tcp;
2028                 unsigned char *hdr;
2029         } l4;
2030         u32 paylen, l4_offset;
2031         int err;
2032
2033         if (skb->ip_summed != CHECKSUM_PARTIAL)
2034                 return 0;
2035
2036         if (!skb_is_gso(skb))
2037                 return 0;
2038
2039         err = skb_cow_head(skb, 0);
2040         if (err < 0)
2041                 return err;
2042
2043         ip.hdr = skb_network_header(skb);
2044         l4.hdr = skb_checksum_start(skb);
2045
2046         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2047         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2048
2049         /* initialize outer IP header fields */
2050         if (ip.v4->version == 4) {
2051                 unsigned char *csum_start = skb_checksum_start(skb);
2052                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2053
2054                 /* IP header will have to cancel out any data that
2055                  * is not a part of the outer IP header
2056                  */
2057                 ip.v4->check = csum_fold(csum_partial(trans_start,
2058                                                       csum_start - trans_start,
2059                                                       0));
2060                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2061
2062                 ip.v4->tot_len = 0;
2063         } else {
2064                 ip.v6->payload_len = 0;
2065         }
2066
2067         /* determine offset of inner transport header */
2068         l4_offset = l4.hdr - skb->data;
2069
2070         /* compute length of segmentation header */
2071         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2072
2073         /* remove payload length from inner checksum */
2074         paylen = skb->len - l4_offset;
2075         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2076
2077         /* MSS L4LEN IDX */
2078         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2079         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2080
2081         /* VLAN MACLEN IPLEN */
2082         vlan_macip_lens = l4.hdr - ip.hdr;
2083         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2084         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2085
2086         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2087
2088         return 1;
2089 }
2090
2091 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2092 {
2093         unsigned int offset = 0;
2094
2095         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2096
2097         return offset == skb_checksum_start_offset(skb);
2098 }
2099
2100 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2101                           u32 tx_flags, __be16 protocol)
2102 {
2103         u32 vlan_macip_lens = 0;
2104         u32 type_tucmd = 0;
2105
2106         if (skb->ip_summed != CHECKSUM_PARTIAL) {
2107 csum_failed:
2108                 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2109                         return false;
2110                 goto no_csum;
2111         }
2112
2113         switch (skb->csum_offset) {
2114         case offsetof(struct tcphdr, check):
2115                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2116                 /* fall through */
2117         case offsetof(struct udphdr, check):
2118                 break;
2119         case offsetof(struct sctphdr, checksum):
2120                 /* validate that this is actually an SCTP request */
2121                 if (((protocol == htons(ETH_P_IP)) &&
2122                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2123                     ((protocol == htons(ETH_P_IPV6)) &&
2124                      igbvf_ipv6_csum_is_sctp(skb))) {
2125                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2126                         break;
2127                 }
2128         default:
2129                 skb_checksum_help(skb);
2130                 goto csum_failed;
2131         }
2132
2133         vlan_macip_lens = skb_checksum_start_offset(skb) -
2134                           skb_network_offset(skb);
2135 no_csum:
2136         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2137         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2138
2139         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2140         return true;
2141 }
2142
2143 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2144 {
2145         struct igbvf_adapter *adapter = netdev_priv(netdev);
2146
2147         /* there is enough descriptors then we don't need to worry  */
2148         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2149                 return 0;
2150
2151         netif_stop_queue(netdev);
2152
2153         /* Herbert's original patch had:
2154          *  smp_mb__after_netif_stop_queue();
2155          * but since that doesn't exist yet, just open code it.
2156          */
2157         smp_mb();
2158
2159         /* We need to check again just in case room has been made available */
2160         if (igbvf_desc_unused(adapter->tx_ring) < size)
2161                 return -EBUSY;
2162
2163         netif_wake_queue(netdev);
2164
2165         ++adapter->restart_queue;
2166         return 0;
2167 }
2168
2169 #define IGBVF_MAX_TXD_PWR       16
2170 #define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2171
2172 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2173                                    struct igbvf_ring *tx_ring,
2174                                    struct sk_buff *skb)
2175 {
2176         struct igbvf_buffer *buffer_info;
2177         struct pci_dev *pdev = adapter->pdev;
2178         unsigned int len = skb_headlen(skb);
2179         unsigned int count = 0, i;
2180         unsigned int f;
2181
2182         i = tx_ring->next_to_use;
2183
2184         buffer_info = &tx_ring->buffer_info[i];
2185         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2186         buffer_info->length = len;
2187         /* set time_stamp *before* dma to help avoid a possible race */
2188         buffer_info->time_stamp = jiffies;
2189         buffer_info->mapped_as_page = false;
2190         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2191                                           DMA_TO_DEVICE);
2192         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193                 goto dma_error;
2194
2195         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2196                 const struct skb_frag_struct *frag;
2197
2198                 count++;
2199                 i++;
2200                 if (i == tx_ring->count)
2201                         i = 0;
2202
2203                 frag = &skb_shinfo(skb)->frags[f];
2204                 len = skb_frag_size(frag);
2205
2206                 buffer_info = &tx_ring->buffer_info[i];
2207                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2208                 buffer_info->length = len;
2209                 buffer_info->time_stamp = jiffies;
2210                 buffer_info->mapped_as_page = true;
2211                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2212                                                     DMA_TO_DEVICE);
2213                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2214                         goto dma_error;
2215         }
2216
2217         tx_ring->buffer_info[i].skb = skb;
2218
2219         return ++count;
2220
2221 dma_error:
2222         dev_err(&pdev->dev, "TX DMA map failed\n");
2223
2224         /* clear timestamp and dma mappings for failed buffer_info mapping */
2225         buffer_info->dma = 0;
2226         buffer_info->time_stamp = 0;
2227         buffer_info->length = 0;
2228         buffer_info->mapped_as_page = false;
2229         if (count)
2230                 count--;
2231
2232         /* clear timestamp and dma mappings for remaining portion of packet */
2233         while (count--) {
2234                 if (i == 0)
2235                         i += tx_ring->count;
2236                 i--;
2237                 buffer_info = &tx_ring->buffer_info[i];
2238                 igbvf_put_txbuf(adapter, buffer_info);
2239         }
2240
2241         return 0;
2242 }
2243
2244 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2245                                       struct igbvf_ring *tx_ring,
2246                                       int tx_flags, int count,
2247                                       unsigned int first, u32 paylen,
2248                                       u8 hdr_len)
2249 {
2250         union e1000_adv_tx_desc *tx_desc = NULL;
2251         struct igbvf_buffer *buffer_info;
2252         u32 olinfo_status = 0, cmd_type_len;
2253         unsigned int i;
2254
2255         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2256                         E1000_ADVTXD_DCMD_DEXT);
2257
2258         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2259                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2260
2261         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2262                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2263
2264                 /* insert tcp checksum */
2265                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2266
2267                 /* insert ip checksum */
2268                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2269                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2270
2271         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2272                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2273         }
2274
2275         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2276
2277         i = tx_ring->next_to_use;
2278         while (count--) {
2279                 buffer_info = &tx_ring->buffer_info[i];
2280                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2281                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2282                 tx_desc->read.cmd_type_len =
2283                          cpu_to_le32(cmd_type_len | buffer_info->length);
2284                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2285                 i++;
2286                 if (i == tx_ring->count)
2287                         i = 0;
2288         }
2289
2290         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2291         /* Force memory writes to complete before letting h/w
2292          * know there are new descriptors to fetch.  (Only
2293          * applicable for weak-ordered memory model archs,
2294          * such as IA-64).
2295          */
2296         wmb();
2297
2298         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2299         tx_ring->next_to_use = i;
2300         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2301         /* we need this if more than one processor can write to our tail
2302          * at a time, it synchronizes IO on IA64/Altix systems
2303          */
2304         mmiowb();
2305 }
2306
2307 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2308                                              struct net_device *netdev,
2309                                              struct igbvf_ring *tx_ring)
2310 {
2311         struct igbvf_adapter *adapter = netdev_priv(netdev);
2312         unsigned int first, tx_flags = 0;
2313         u8 hdr_len = 0;
2314         int count = 0;
2315         int tso = 0;
2316         __be16 protocol = vlan_get_protocol(skb);
2317
2318         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2319                 dev_kfree_skb_any(skb);
2320                 return NETDEV_TX_OK;
2321         }
2322
2323         if (skb->len <= 0) {
2324                 dev_kfree_skb_any(skb);
2325                 return NETDEV_TX_OK;
2326         }
2327
2328         /* need: count + 4 desc gap to keep tail from touching
2329          *       + 2 desc gap to keep tail from touching head,
2330          *       + 1 desc for skb->data,
2331          *       + 1 desc for context descriptor,
2332          * head, otherwise try next time
2333          */
2334         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2335                 /* this is a hard error */
2336                 return NETDEV_TX_BUSY;
2337         }
2338
2339         if (skb_vlan_tag_present(skb)) {
2340                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2341                 tx_flags |= (skb_vlan_tag_get(skb) <<
2342                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2343         }
2344
2345         if (protocol == htons(ETH_P_IP))
2346                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2347
2348         first = tx_ring->next_to_use;
2349
2350         tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2351         if (unlikely(tso < 0)) {
2352                 dev_kfree_skb_any(skb);
2353                 return NETDEV_TX_OK;
2354         }
2355
2356         if (tso)
2357                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2358         else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2359                  (skb->ip_summed == CHECKSUM_PARTIAL))
2360                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2361
2362         /* count reflects descriptors mapped, if 0 then mapping error
2363          * has occurred and we need to rewind the descriptor queue
2364          */
2365         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2366
2367         if (count) {
2368                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2369                                    first, skb->len, hdr_len);
2370                 /* Make sure there is space in the ring for the next send. */
2371                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2372         } else {
2373                 dev_kfree_skb_any(skb);
2374                 tx_ring->buffer_info[first].time_stamp = 0;
2375                 tx_ring->next_to_use = first;
2376         }
2377
2378         return NETDEV_TX_OK;
2379 }
2380
2381 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2382                                     struct net_device *netdev)
2383 {
2384         struct igbvf_adapter *adapter = netdev_priv(netdev);
2385         struct igbvf_ring *tx_ring;
2386
2387         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2388                 dev_kfree_skb_any(skb);
2389                 return NETDEV_TX_OK;
2390         }
2391
2392         tx_ring = &adapter->tx_ring[0];
2393
2394         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2395 }
2396
2397 /**
2398  * igbvf_tx_timeout - Respond to a Tx Hang
2399  * @netdev: network interface device structure
2400  **/
2401 static void igbvf_tx_timeout(struct net_device *netdev)
2402 {
2403         struct igbvf_adapter *adapter = netdev_priv(netdev);
2404
2405         /* Do the reset outside of interrupt context */
2406         adapter->tx_timeout_count++;
2407         schedule_work(&adapter->reset_task);
2408 }
2409
2410 static void igbvf_reset_task(struct work_struct *work)
2411 {
2412         struct igbvf_adapter *adapter;
2413
2414         adapter = container_of(work, struct igbvf_adapter, reset_task);
2415
2416         igbvf_reinit_locked(adapter);
2417 }
2418
2419 /**
2420  * igbvf_change_mtu - Change the Maximum Transfer Unit
2421  * @netdev: network interface device structure
2422  * @new_mtu: new value for maximum frame size
2423  *
2424  * Returns 0 on success, negative on failure
2425  **/
2426 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2427 {
2428         struct igbvf_adapter *adapter = netdev_priv(netdev);
2429         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2430
2431         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2432                 usleep_range(1000, 2000);
2433         /* igbvf_down has a dependency on max_frame_size */
2434         adapter->max_frame_size = max_frame;
2435         if (netif_running(netdev))
2436                 igbvf_down(adapter);
2437
2438         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2439          * means we reserve 2 more, this pushes us to allocate from the next
2440          * larger slab size.
2441          * i.e. RXBUFFER_2048 --> size-4096 slab
2442          * However with the new *_jumbo_rx* routines, jumbo receives will use
2443          * fragmented skbs
2444          */
2445
2446         if (max_frame <= 1024)
2447                 adapter->rx_buffer_len = 1024;
2448         else if (max_frame <= 2048)
2449                 adapter->rx_buffer_len = 2048;
2450         else
2451 #if (PAGE_SIZE / 2) > 16384
2452                 adapter->rx_buffer_len = 16384;
2453 #else
2454                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2455 #endif
2456
2457         /* adjust allocation if LPE protects us, and we aren't using SBP */
2458         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2459             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2460                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2461                                          ETH_FCS_LEN;
2462
2463         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2464                  netdev->mtu, new_mtu);
2465         netdev->mtu = new_mtu;
2466
2467         if (netif_running(netdev))
2468                 igbvf_up(adapter);
2469         else
2470                 igbvf_reset(adapter);
2471
2472         clear_bit(__IGBVF_RESETTING, &adapter->state);
2473
2474         return 0;
2475 }
2476
2477 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2478 {
2479         switch (cmd) {
2480         default:
2481                 return -EOPNOTSUPP;
2482         }
2483 }
2484
2485 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2486 {
2487         struct net_device *netdev = pci_get_drvdata(pdev);
2488         struct igbvf_adapter *adapter = netdev_priv(netdev);
2489 #ifdef CONFIG_PM
2490         int retval = 0;
2491 #endif
2492
2493         netif_device_detach(netdev);
2494
2495         if (netif_running(netdev)) {
2496                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2497                 igbvf_down(adapter);
2498                 igbvf_free_irq(adapter);
2499         }
2500
2501 #ifdef CONFIG_PM
2502         retval = pci_save_state(pdev);
2503         if (retval)
2504                 return retval;
2505 #endif
2506
2507         pci_disable_device(pdev);
2508
2509         return 0;
2510 }
2511
2512 #ifdef CONFIG_PM
2513 static int igbvf_resume(struct pci_dev *pdev)
2514 {
2515         struct net_device *netdev = pci_get_drvdata(pdev);
2516         struct igbvf_adapter *adapter = netdev_priv(netdev);
2517         u32 err;
2518
2519         pci_restore_state(pdev);
2520         err = pci_enable_device_mem(pdev);
2521         if (err) {
2522                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2523                 return err;
2524         }
2525
2526         pci_set_master(pdev);
2527
2528         if (netif_running(netdev)) {
2529                 err = igbvf_request_irq(adapter);
2530                 if (err)
2531                         return err;
2532         }
2533
2534         igbvf_reset(adapter);
2535
2536         if (netif_running(netdev))
2537                 igbvf_up(adapter);
2538
2539         netif_device_attach(netdev);
2540
2541         return 0;
2542 }
2543 #endif
2544
2545 static void igbvf_shutdown(struct pci_dev *pdev)
2546 {
2547         igbvf_suspend(pdev, PMSG_SUSPEND);
2548 }
2549
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 /* Polling 'interrupt' - used by things like netconsole to send skbs
2552  * without having to re-enable interrupts. It's not called while
2553  * the interrupt routine is executing.
2554  */
2555 static void igbvf_netpoll(struct net_device *netdev)
2556 {
2557         struct igbvf_adapter *adapter = netdev_priv(netdev);
2558
2559         disable_irq(adapter->pdev->irq);
2560
2561         igbvf_clean_tx_irq(adapter->tx_ring);
2562
2563         enable_irq(adapter->pdev->irq);
2564 }
2565 #endif
2566
2567 /**
2568  * igbvf_io_error_detected - called when PCI error is detected
2569  * @pdev: Pointer to PCI device
2570  * @state: The current pci connection state
2571  *
2572  * This function is called after a PCI bus error affecting
2573  * this device has been detected.
2574  */
2575 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2576                                                 pci_channel_state_t state)
2577 {
2578         struct net_device *netdev = pci_get_drvdata(pdev);
2579         struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581         netif_device_detach(netdev);
2582
2583         if (state == pci_channel_io_perm_failure)
2584                 return PCI_ERS_RESULT_DISCONNECT;
2585
2586         if (netif_running(netdev))
2587                 igbvf_down(adapter);
2588         pci_disable_device(pdev);
2589
2590         /* Request a slot slot reset. */
2591         return PCI_ERS_RESULT_NEED_RESET;
2592 }
2593
2594 /**
2595  * igbvf_io_slot_reset - called after the pci bus has been reset.
2596  * @pdev: Pointer to PCI device
2597  *
2598  * Restart the card from scratch, as if from a cold-boot. Implementation
2599  * resembles the first-half of the igbvf_resume routine.
2600  */
2601 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2602 {
2603         struct net_device *netdev = pci_get_drvdata(pdev);
2604         struct igbvf_adapter *adapter = netdev_priv(netdev);
2605
2606         if (pci_enable_device_mem(pdev)) {
2607                 dev_err(&pdev->dev,
2608                         "Cannot re-enable PCI device after reset.\n");
2609                 return PCI_ERS_RESULT_DISCONNECT;
2610         }
2611         pci_set_master(pdev);
2612
2613         igbvf_reset(adapter);
2614
2615         return PCI_ERS_RESULT_RECOVERED;
2616 }
2617
2618 /**
2619  * igbvf_io_resume - called when traffic can start flowing again.
2620  * @pdev: Pointer to PCI device
2621  *
2622  * This callback is called when the error recovery driver tells us that
2623  * its OK to resume normal operation. Implementation resembles the
2624  * second-half of the igbvf_resume routine.
2625  */
2626 static void igbvf_io_resume(struct pci_dev *pdev)
2627 {
2628         struct net_device *netdev = pci_get_drvdata(pdev);
2629         struct igbvf_adapter *adapter = netdev_priv(netdev);
2630
2631         if (netif_running(netdev)) {
2632                 if (igbvf_up(adapter)) {
2633                         dev_err(&pdev->dev,
2634                                 "can't bring device back up after reset\n");
2635                         return;
2636                 }
2637         }
2638
2639         netif_device_attach(netdev);
2640 }
2641
2642 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2643 {
2644         struct e1000_hw *hw = &adapter->hw;
2645         struct net_device *netdev = adapter->netdev;
2646         struct pci_dev *pdev = adapter->pdev;
2647
2648         if (hw->mac.type == e1000_vfadapt_i350)
2649                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2650         else
2651                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2652         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2653 }
2654
2655 static int igbvf_set_features(struct net_device *netdev,
2656                               netdev_features_t features)
2657 {
2658         struct igbvf_adapter *adapter = netdev_priv(netdev);
2659
2660         if (features & NETIF_F_RXCSUM)
2661                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2662         else
2663                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2664
2665         return 0;
2666 }
2667
2668 #define IGBVF_MAX_MAC_HDR_LEN           127
2669 #define IGBVF_MAX_NETWORK_HDR_LEN       511
2670
2671 static netdev_features_t
2672 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2673                      netdev_features_t features)
2674 {
2675         unsigned int network_hdr_len, mac_hdr_len;
2676
2677         /* Make certain the headers can be described by a context descriptor */
2678         mac_hdr_len = skb_network_header(skb) - skb->data;
2679         if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2680                 return features & ~(NETIF_F_HW_CSUM |
2681                                     NETIF_F_SCTP_CRC |
2682                                     NETIF_F_HW_VLAN_CTAG_TX |
2683                                     NETIF_F_TSO |
2684                                     NETIF_F_TSO6);
2685
2686         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2687         if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2688                 return features & ~(NETIF_F_HW_CSUM |
2689                                     NETIF_F_SCTP_CRC |
2690                                     NETIF_F_TSO |
2691                                     NETIF_F_TSO6);
2692
2693         /* We can only support IPV4 TSO in tunnels if we can mangle the
2694          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2695          */
2696         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2697                 features &= ~NETIF_F_TSO;
2698
2699         return features;
2700 }
2701
2702 static const struct net_device_ops igbvf_netdev_ops = {
2703         .ndo_open               = igbvf_open,
2704         .ndo_stop               = igbvf_close,
2705         .ndo_start_xmit         = igbvf_xmit_frame,
2706         .ndo_set_rx_mode        = igbvf_set_rx_mode,
2707         .ndo_set_mac_address    = igbvf_set_mac,
2708         .ndo_change_mtu         = igbvf_change_mtu,
2709         .ndo_do_ioctl           = igbvf_ioctl,
2710         .ndo_tx_timeout         = igbvf_tx_timeout,
2711         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2712         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714         .ndo_poll_controller    = igbvf_netpoll,
2715 #endif
2716         .ndo_set_features       = igbvf_set_features,
2717         .ndo_features_check     = igbvf_features_check,
2718 };
2719
2720 /**
2721  * igbvf_probe - Device Initialization Routine
2722  * @pdev: PCI device information struct
2723  * @ent: entry in igbvf_pci_tbl
2724  *
2725  * Returns 0 on success, negative on failure
2726  *
2727  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2728  * The OS initialization, configuring of the adapter private structure,
2729  * and a hardware reset occur.
2730  **/
2731 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2732 {
2733         struct net_device *netdev;
2734         struct igbvf_adapter *adapter;
2735         struct e1000_hw *hw;
2736         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2737
2738         static int cards_found;
2739         int err, pci_using_dac;
2740
2741         err = pci_enable_device_mem(pdev);
2742         if (err)
2743                 return err;
2744
2745         pci_using_dac = 0;
2746         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2747         if (!err) {
2748                 pci_using_dac = 1;
2749         } else {
2750                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2751                 if (err) {
2752                         dev_err(&pdev->dev,
2753                                 "No usable DMA configuration, aborting\n");
2754                         goto err_dma;
2755                 }
2756         }
2757
2758         err = pci_request_regions(pdev, igbvf_driver_name);
2759         if (err)
2760                 goto err_pci_reg;
2761
2762         pci_set_master(pdev);
2763
2764         err = -ENOMEM;
2765         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2766         if (!netdev)
2767                 goto err_alloc_etherdev;
2768
2769         SET_NETDEV_DEV(netdev, &pdev->dev);
2770
2771         pci_set_drvdata(pdev, netdev);
2772         adapter = netdev_priv(netdev);
2773         hw = &adapter->hw;
2774         adapter->netdev = netdev;
2775         adapter->pdev = pdev;
2776         adapter->ei = ei;
2777         adapter->pba = ei->pba;
2778         adapter->flags = ei->flags;
2779         adapter->hw.back = adapter;
2780         adapter->hw.mac.type = ei->mac;
2781         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2782
2783         /* PCI config space info */
2784
2785         hw->vendor_id = pdev->vendor;
2786         hw->device_id = pdev->device;
2787         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2788         hw->subsystem_device_id = pdev->subsystem_device;
2789         hw->revision_id = pdev->revision;
2790
2791         err = -EIO;
2792         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2793                                       pci_resource_len(pdev, 0));
2794
2795         if (!adapter->hw.hw_addr)
2796                 goto err_ioremap;
2797
2798         if (ei->get_variants) {
2799                 err = ei->get_variants(adapter);
2800                 if (err)
2801                         goto err_get_variants;
2802         }
2803
2804         /* setup adapter struct */
2805         err = igbvf_sw_init(adapter);
2806         if (err)
2807                 goto err_sw_init;
2808
2809         /* construct the net_device struct */
2810         netdev->netdev_ops = &igbvf_netdev_ops;
2811
2812         igbvf_set_ethtool_ops(netdev);
2813         netdev->watchdog_timeo = 5 * HZ;
2814         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2815
2816         adapter->bd_number = cards_found++;
2817
2818         netdev->hw_features = NETIF_F_SG |
2819                               NETIF_F_TSO |
2820                               NETIF_F_TSO6 |
2821                               NETIF_F_RXCSUM |
2822                               NETIF_F_HW_CSUM |
2823                               NETIF_F_SCTP_CRC;
2824
2825 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826                                     NETIF_F_GSO_GRE_CSUM | \
2827                                     NETIF_F_GSO_IPXIP4 | \
2828                                     NETIF_F_GSO_IPXIP6 | \
2829                                     NETIF_F_GSO_UDP_TUNNEL | \
2830                                     NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831
2832         netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2833         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2834                                IGBVF_GSO_PARTIAL_FEATURES;
2835
2836         netdev->features = netdev->hw_features;
2837
2838         if (pci_using_dac)
2839                 netdev->features |= NETIF_F_HIGHDMA;
2840
2841         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2842         netdev->mpls_features |= NETIF_F_HW_CSUM;
2843         netdev->hw_enc_features |= netdev->vlan_features;
2844
2845         /* set this bit last since it cannot be part of vlan_features */
2846         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2847                             NETIF_F_HW_VLAN_CTAG_RX |
2848                             NETIF_F_HW_VLAN_CTAG_TX;
2849
2850         /* MTU range: 68 - 9216 */
2851         netdev->min_mtu = ETH_MIN_MTU;
2852         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2853
2854         spin_lock_bh(&hw->mbx_lock);
2855
2856         /*reset the controller to put the device in a known good state */
2857         err = hw->mac.ops.reset_hw(hw);
2858         if (err) {
2859                 dev_info(&pdev->dev,
2860                          "PF still in reset state. Is the PF interface up?\n");
2861         } else {
2862                 err = hw->mac.ops.read_mac_addr(hw);
2863                 if (err)
2864                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2865                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2866                         dev_info(&pdev->dev,
2867                                  "MAC address not assigned by administrator.\n");
2868                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2869                        netdev->addr_len);
2870         }
2871
2872         spin_unlock_bh(&hw->mbx_lock);
2873
2874         if (!is_valid_ether_addr(netdev->dev_addr)) {
2875                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2876                 eth_hw_addr_random(netdev);
2877                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2878                        netdev->addr_len);
2879         }
2880
2881         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2882                     (unsigned long)adapter);
2883
2884         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2885         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886
2887         /* ring size defaults */
2888         adapter->rx_ring->count = 1024;
2889         adapter->tx_ring->count = 1024;
2890
2891         /* reset the hardware with the new settings */
2892         igbvf_reset(adapter);
2893
2894         /* set hardware-specific flags */
2895         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2896                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897
2898         strcpy(netdev->name, "eth%d");
2899         err = register_netdev(netdev);
2900         if (err)
2901                 goto err_hw_init;
2902
2903         /* tell the stack to leave us alone until igbvf_open() is called */
2904         netif_carrier_off(netdev);
2905         netif_stop_queue(netdev);
2906
2907         igbvf_print_device_info(adapter);
2908
2909         igbvf_initialize_last_counter_stats(adapter);
2910
2911         return 0;
2912
2913 err_hw_init:
2914         kfree(adapter->tx_ring);
2915         kfree(adapter->rx_ring);
2916 err_sw_init:
2917         igbvf_reset_interrupt_capability(adapter);
2918 err_get_variants:
2919         iounmap(adapter->hw.hw_addr);
2920 err_ioremap:
2921         free_netdev(netdev);
2922 err_alloc_etherdev:
2923         pci_release_regions(pdev);
2924 err_pci_reg:
2925 err_dma:
2926         pci_disable_device(pdev);
2927         return err;
2928 }
2929
2930 /**
2931  * igbvf_remove - Device Removal Routine
2932  * @pdev: PCI device information struct
2933  *
2934  * igbvf_remove is called by the PCI subsystem to alert the driver
2935  * that it should release a PCI device.  The could be caused by a
2936  * Hot-Plug event, or because the driver is going to be removed from
2937  * memory.
2938  **/
2939 static void igbvf_remove(struct pci_dev *pdev)
2940 {
2941         struct net_device *netdev = pci_get_drvdata(pdev);
2942         struct igbvf_adapter *adapter = netdev_priv(netdev);
2943         struct e1000_hw *hw = &adapter->hw;
2944
2945         /* The watchdog timer may be rescheduled, so explicitly
2946          * disable it from being rescheduled.
2947          */
2948         set_bit(__IGBVF_DOWN, &adapter->state);
2949         del_timer_sync(&adapter->watchdog_timer);
2950
2951         cancel_work_sync(&adapter->reset_task);
2952         cancel_work_sync(&adapter->watchdog_task);
2953
2954         unregister_netdev(netdev);
2955
2956         igbvf_reset_interrupt_capability(adapter);
2957
2958         /* it is important to delete the NAPI struct prior to freeing the
2959          * Rx ring so that you do not end up with null pointer refs
2960          */
2961         netif_napi_del(&adapter->rx_ring->napi);
2962         kfree(adapter->tx_ring);
2963         kfree(adapter->rx_ring);
2964
2965         iounmap(hw->hw_addr);
2966         if (hw->flash_address)
2967                 iounmap(hw->flash_address);
2968         pci_release_regions(pdev);
2969
2970         free_netdev(netdev);
2971
2972         pci_disable_device(pdev);
2973 }
2974
2975 /* PCI Error Recovery (ERS) */
2976 static const struct pci_error_handlers igbvf_err_handler = {
2977         .error_detected = igbvf_io_error_detected,
2978         .slot_reset = igbvf_io_slot_reset,
2979         .resume = igbvf_io_resume,
2980 };
2981
2982 static const struct pci_device_id igbvf_pci_tbl[] = {
2983         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2984         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2985         { } /* terminate list */
2986 };
2987 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988
2989 /* PCI Device API Driver */
2990 static struct pci_driver igbvf_driver = {
2991         .name           = igbvf_driver_name,
2992         .id_table       = igbvf_pci_tbl,
2993         .probe          = igbvf_probe,
2994         .remove         = igbvf_remove,
2995 #ifdef CONFIG_PM
2996         /* Power Management Hooks */
2997         .suspend        = igbvf_suspend,
2998         .resume         = igbvf_resume,
2999 #endif
3000         .shutdown       = igbvf_shutdown,
3001         .err_handler    = &igbvf_err_handler
3002 };
3003
3004 /**
3005  * igbvf_init_module - Driver Registration Routine
3006  *
3007  * igbvf_init_module is the first routine called when the driver is
3008  * loaded. All it does is register with the PCI subsystem.
3009  **/
3010 static int __init igbvf_init_module(void)
3011 {
3012         int ret;
3013
3014         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3015         pr_info("%s\n", igbvf_copyright);
3016
3017         ret = pci_register_driver(&igbvf_driver);
3018
3019         return ret;
3020 }
3021 module_init(igbvf_init_module);
3022
3023 /**
3024  * igbvf_exit_module - Driver Exit Cleanup Routine
3025  *
3026  * igbvf_exit_module is called just before the driver is removed
3027  * from memory.
3028  **/
3029 static void __exit igbvf_exit_module(void)
3030 {
3031         pci_unregister_driver(&igbvf_driver);
3032 }
3033 module_exit(igbvf_exit_module);
3034
3035 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3036 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3037 MODULE_LICENSE("GPL");
3038 MODULE_VERSION(DRV_VERSION);
3039
3040 /* netdev.c */