GNU Linux-libre 4.14.259-gnu1
[releases.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK           0x7fffffff
26 #define ISGN                    0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not available. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  *
69  * SYSTIM is converted to real time using a timecounter. As
70  * timecounter_cyc2time() allows old timestamps, the timecounter
71  * needs to be updated at least once per half of the SYSTIM interval.
72  * Scheduling of delayed work is not very accurate, so we aim for 8
73  * minutes to be sure the actual interval is shorter than 9.16 minutes.
74  */
75
76 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 8)
77 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
78 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
79 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
80 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
81 #define IGB_NBITS_82580                 40
82
83 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
84
85 /* SYSTIM read access for the 82576 */
86 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
87 {
88         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
89         struct e1000_hw *hw = &igb->hw;
90         u64 val;
91         u32 lo, hi;
92
93         lo = rd32(E1000_SYSTIML);
94         hi = rd32(E1000_SYSTIMH);
95
96         val = ((u64) hi) << 32;
97         val |= lo;
98
99         return val;
100 }
101
102 /* SYSTIM read access for the 82580 */
103 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
104 {
105         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
106         struct e1000_hw *hw = &igb->hw;
107         u32 lo, hi;
108         u64 val;
109
110         /* The timestamp latches on lowest register read. For the 82580
111          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
112          * need to provide nanosecond resolution, so we just ignore it.
113          */
114         rd32(E1000_SYSTIMR);
115         lo = rd32(E1000_SYSTIML);
116         hi = rd32(E1000_SYSTIMH);
117
118         val = ((u64) hi) << 32;
119         val |= lo;
120
121         return val;
122 }
123
124 /* SYSTIM read access for I210/I211 */
125 static void igb_ptp_read_i210(struct igb_adapter *adapter,
126                               struct timespec64 *ts)
127 {
128         struct e1000_hw *hw = &adapter->hw;
129         u32 sec, nsec;
130
131         /* The timestamp latches on lowest register read. For I210/I211, the
132          * lowest register is SYSTIMR. Since we only need to provide nanosecond
133          * resolution, we can ignore it.
134          */
135         rd32(E1000_SYSTIMR);
136         nsec = rd32(E1000_SYSTIML);
137         sec = rd32(E1000_SYSTIMH);
138
139         ts->tv_sec = sec;
140         ts->tv_nsec = nsec;
141 }
142
143 static void igb_ptp_write_i210(struct igb_adapter *adapter,
144                                const struct timespec64 *ts)
145 {
146         struct e1000_hw *hw = &adapter->hw;
147
148         /* Writing the SYSTIMR register is not necessary as it only provides
149          * sub-nanosecond resolution.
150          */
151         wr32(E1000_SYSTIML, ts->tv_nsec);
152         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
153 }
154
155 /**
156  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
157  * @adapter: board private structure
158  * @hwtstamps: timestamp structure to update
159  * @systim: unsigned 64bit system time value.
160  *
161  * We need to convert the system time value stored in the RX/TXSTMP registers
162  * into a hwtstamp which can be used by the upper level timestamping functions.
163  *
164  * The 'tmreg_lock' spinlock is used to protect the consistency of the
165  * system time value. This is needed because reading the 64 bit time
166  * value involves reading two (or three) 32 bit registers. The first
167  * read latches the value. Ditto for writing.
168  *
169  * In addition, here have extended the system time with an overflow
170  * counter in software.
171  **/
172 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
173                                        struct skb_shared_hwtstamps *hwtstamps,
174                                        u64 systim)
175 {
176         unsigned long flags;
177         u64 ns;
178
179         switch (adapter->hw.mac.type) {
180         case e1000_82576:
181         case e1000_82580:
182         case e1000_i354:
183         case e1000_i350:
184                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
185
186                 ns = timecounter_cyc2time(&adapter->tc, systim);
187
188                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
189
190                 memset(hwtstamps, 0, sizeof(*hwtstamps));
191                 hwtstamps->hwtstamp = ns_to_ktime(ns);
192                 break;
193         case e1000_i210:
194         case e1000_i211:
195                 memset(hwtstamps, 0, sizeof(*hwtstamps));
196                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
197                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
198                                                 systim & 0xFFFFFFFF);
199                 break;
200         default:
201                 break;
202         }
203 }
204
205 /* PTP clock operations */
206 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
207 {
208         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
209                                                ptp_caps);
210         struct e1000_hw *hw = &igb->hw;
211         int neg_adj = 0;
212         u64 rate;
213         u32 incvalue;
214
215         if (ppb < 0) {
216                 neg_adj = 1;
217                 ppb = -ppb;
218         }
219         rate = ppb;
220         rate <<= 14;
221         rate = div_u64(rate, 1953125);
222
223         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
224
225         if (neg_adj)
226                 incvalue -= rate;
227         else
228                 incvalue += rate;
229
230         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
231
232         return 0;
233 }
234
235 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
236 {
237         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
238                                                ptp_caps);
239         struct e1000_hw *hw = &igb->hw;
240         int neg_adj = 0;
241         u64 rate;
242         u32 inca;
243
244         if (scaled_ppm < 0) {
245                 neg_adj = 1;
246                 scaled_ppm = -scaled_ppm;
247         }
248         rate = scaled_ppm;
249         rate <<= 13;
250         rate = div_u64(rate, 15625);
251
252         inca = rate & INCVALUE_MASK;
253         if (neg_adj)
254                 inca |= ISGN;
255
256         wr32(E1000_TIMINCA, inca);
257
258         return 0;
259 }
260
261 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
262 {
263         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264                                                ptp_caps);
265         unsigned long flags;
266
267         spin_lock_irqsave(&igb->tmreg_lock, flags);
268         timecounter_adjtime(&igb->tc, delta);
269         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
270
271         return 0;
272 }
273
274 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
275 {
276         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
277                                                ptp_caps);
278         unsigned long flags;
279         struct timespec64 now, then = ns_to_timespec64(delta);
280
281         spin_lock_irqsave(&igb->tmreg_lock, flags);
282
283         igb_ptp_read_i210(igb, &now);
284         now = timespec64_add(now, then);
285         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
286
287         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
288
289         return 0;
290 }
291
292 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
293                                  struct timespec64 *ts)
294 {
295         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
296                                                ptp_caps);
297         unsigned long flags;
298         u64 ns;
299
300         spin_lock_irqsave(&igb->tmreg_lock, flags);
301
302         ns = timecounter_read(&igb->tc);
303
304         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
305
306         *ts = ns_to_timespec64(ns);
307
308         return 0;
309 }
310
311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312                                 struct timespec64 *ts)
313 {
314         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315                                                ptp_caps);
316         unsigned long flags;
317
318         spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320         igb_ptp_read_i210(igb, ts);
321
322         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324         return 0;
325 }
326
327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328                                  const struct timespec64 *ts)
329 {
330         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331                                                ptp_caps);
332         unsigned long flags;
333         u64 ns;
334
335         ns = timespec64_to_ns(ts);
336
337         spin_lock_irqsave(&igb->tmreg_lock, flags);
338
339         timecounter_init(&igb->tc, &igb->cc, ns);
340
341         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
342
343         return 0;
344 }
345
346 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
347                                 const struct timespec64 *ts)
348 {
349         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
350                                                ptp_caps);
351         unsigned long flags;
352
353         spin_lock_irqsave(&igb->tmreg_lock, flags);
354
355         igb_ptp_write_i210(igb, ts);
356
357         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
358
359         return 0;
360 }
361
362 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
363 {
364         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
365         static const u32 mask[IGB_N_SDP] = {
366                 E1000_CTRL_SDP0_DIR,
367                 E1000_CTRL_SDP1_DIR,
368                 E1000_CTRL_EXT_SDP2_DIR,
369                 E1000_CTRL_EXT_SDP3_DIR,
370         };
371
372         if (input)
373                 *ptr &= ~mask[pin];
374         else
375                 *ptr |= mask[pin];
376 }
377
378 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
379 {
380         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
381                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
382         };
383         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
384                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
385         };
386         static const u32 ts_sdp_en[IGB_N_SDP] = {
387                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
388         };
389         struct e1000_hw *hw = &igb->hw;
390         u32 ctrl, ctrl_ext, tssdp = 0;
391
392         ctrl = rd32(E1000_CTRL);
393         ctrl_ext = rd32(E1000_CTRL_EXT);
394         tssdp = rd32(E1000_TSSDP);
395
396         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
397
398         /* Make sure this pin is not enabled as an output. */
399         tssdp &= ~ts_sdp_en[pin];
400
401         if (chan == 1) {
402                 tssdp &= ~AUX1_SEL_SDP3;
403                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
404         } else {
405                 tssdp &= ~AUX0_SEL_SDP3;
406                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
407         }
408
409         wr32(E1000_TSSDP, tssdp);
410         wr32(E1000_CTRL, ctrl);
411         wr32(E1000_CTRL_EXT, ctrl_ext);
412 }
413
414 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
415 {
416         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
417                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
418         };
419         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
420                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
421         };
422         static const u32 ts_sdp_en[IGB_N_SDP] = {
423                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
424         };
425         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
426                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
427                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
428         };
429         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
430                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
431                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
432         };
433         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
434                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
435                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
436         };
437         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
438                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
439                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
440         };
441         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
442                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
443                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
444         };
445         struct e1000_hw *hw = &igb->hw;
446         u32 ctrl, ctrl_ext, tssdp = 0;
447
448         ctrl = rd32(E1000_CTRL);
449         ctrl_ext = rd32(E1000_CTRL_EXT);
450         tssdp = rd32(E1000_TSSDP);
451
452         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
453
454         /* Make sure this pin is not enabled as an input. */
455         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
456                 tssdp &= ~AUX0_TS_SDP_EN;
457
458         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
459                 tssdp &= ~AUX1_TS_SDP_EN;
460
461         tssdp &= ~ts_sdp_sel_clr[pin];
462         if (freq) {
463                 if (chan == 1)
464                         tssdp |= ts_sdp_sel_fc1[pin];
465                 else
466                         tssdp |= ts_sdp_sel_fc0[pin];
467         } else {
468                 if (chan == 1)
469                         tssdp |= ts_sdp_sel_tt1[pin];
470                 else
471                         tssdp |= ts_sdp_sel_tt0[pin];
472         }
473         tssdp |= ts_sdp_en[pin];
474
475         wr32(E1000_TSSDP, tssdp);
476         wr32(E1000_CTRL, ctrl);
477         wr32(E1000_CTRL_EXT, ctrl_ext);
478 }
479
480 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
481                                        struct ptp_clock_request *rq, int on)
482 {
483         struct igb_adapter *igb =
484                 container_of(ptp, struct igb_adapter, ptp_caps);
485         struct e1000_hw *hw = &igb->hw;
486         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
487         unsigned long flags;
488         struct timespec64 ts;
489         int use_freq = 0, pin = -1;
490         s64 ns;
491
492         switch (rq->type) {
493         case PTP_CLK_REQ_EXTTS:
494                 if (on) {
495                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
496                                            rq->extts.index);
497                         if (pin < 0)
498                                 return -EBUSY;
499                 }
500                 if (rq->extts.index == 1) {
501                         tsauxc_mask = TSAUXC_EN_TS1;
502                         tsim_mask = TSINTR_AUTT1;
503                 } else {
504                         tsauxc_mask = TSAUXC_EN_TS0;
505                         tsim_mask = TSINTR_AUTT0;
506                 }
507                 spin_lock_irqsave(&igb->tmreg_lock, flags);
508                 tsauxc = rd32(E1000_TSAUXC);
509                 tsim = rd32(E1000_TSIM);
510                 if (on) {
511                         igb_pin_extts(igb, rq->extts.index, pin);
512                         tsauxc |= tsauxc_mask;
513                         tsim |= tsim_mask;
514                 } else {
515                         tsauxc &= ~tsauxc_mask;
516                         tsim &= ~tsim_mask;
517                 }
518                 wr32(E1000_TSAUXC, tsauxc);
519                 wr32(E1000_TSIM, tsim);
520                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
521                 return 0;
522
523         case PTP_CLK_REQ_PEROUT:
524                 if (on) {
525                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
526                                            rq->perout.index);
527                         if (pin < 0)
528                                 return -EBUSY;
529                 }
530                 ts.tv_sec = rq->perout.period.sec;
531                 ts.tv_nsec = rq->perout.period.nsec;
532                 ns = timespec64_to_ns(&ts);
533                 ns = ns >> 1;
534                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
535                            (ns == 250000000LL) || (ns == 500000000LL))) {
536                         if (ns < 8LL)
537                                 return -EINVAL;
538                         use_freq = 1;
539                 }
540                 ts = ns_to_timespec64(ns);
541                 if (rq->perout.index == 1) {
542                         if (use_freq) {
543                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
544                                 tsim_mask = 0;
545                         } else {
546                                 tsauxc_mask = TSAUXC_EN_TT1;
547                                 tsim_mask = TSINTR_TT1;
548                         }
549                         trgttiml = E1000_TRGTTIML1;
550                         trgttimh = E1000_TRGTTIMH1;
551                         freqout = E1000_FREQOUT1;
552                 } else {
553                         if (use_freq) {
554                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
555                                 tsim_mask = 0;
556                         } else {
557                                 tsauxc_mask = TSAUXC_EN_TT0;
558                                 tsim_mask = TSINTR_TT0;
559                         }
560                         trgttiml = E1000_TRGTTIML0;
561                         trgttimh = E1000_TRGTTIMH0;
562                         freqout = E1000_FREQOUT0;
563                 }
564                 spin_lock_irqsave(&igb->tmreg_lock, flags);
565                 tsauxc = rd32(E1000_TSAUXC);
566                 tsim = rd32(E1000_TSIM);
567                 if (rq->perout.index == 1) {
568                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
569                         tsim &= ~TSINTR_TT1;
570                 } else {
571                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
572                         tsim &= ~TSINTR_TT0;
573                 }
574                 if (on) {
575                         int i = rq->perout.index;
576                         igb_pin_perout(igb, i, pin, use_freq);
577                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
578                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
579                         igb->perout[i].period.tv_sec = ts.tv_sec;
580                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
581                         wr32(trgttimh, rq->perout.start.sec);
582                         wr32(trgttiml, rq->perout.start.nsec);
583                         if (use_freq)
584                                 wr32(freqout, ns);
585                         tsauxc |= tsauxc_mask;
586                         tsim |= tsim_mask;
587                 }
588                 wr32(E1000_TSAUXC, tsauxc);
589                 wr32(E1000_TSIM, tsim);
590                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
591                 return 0;
592
593         case PTP_CLK_REQ_PPS:
594                 spin_lock_irqsave(&igb->tmreg_lock, flags);
595                 tsim = rd32(E1000_TSIM);
596                 if (on)
597                         tsim |= TSINTR_SYS_WRAP;
598                 else
599                         tsim &= ~TSINTR_SYS_WRAP;
600                 igb->pps_sys_wrap_on = !!on;
601                 wr32(E1000_TSIM, tsim);
602                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
603                 return 0;
604         }
605
606         return -EOPNOTSUPP;
607 }
608
609 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
610                                   struct ptp_clock_request *rq, int on)
611 {
612         return -EOPNOTSUPP;
613 }
614
615 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
616                               enum ptp_pin_function func, unsigned int chan)
617 {
618         switch (func) {
619         case PTP_PF_NONE:
620         case PTP_PF_EXTTS:
621         case PTP_PF_PEROUT:
622                 break;
623         case PTP_PF_PHYSYNC:
624                 return -1;
625         }
626         return 0;
627 }
628
629 /**
630  * igb_ptp_tx_work
631  * @work: pointer to work struct
632  *
633  * This work function polls the TSYNCTXCTL valid bit to determine when a
634  * timestamp has been taken for the current stored skb.
635  **/
636 static void igb_ptp_tx_work(struct work_struct *work)
637 {
638         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
639                                                    ptp_tx_work);
640         struct e1000_hw *hw = &adapter->hw;
641         u32 tsynctxctl;
642
643         if (!adapter->ptp_tx_skb)
644                 return;
645
646         if (time_is_before_jiffies(adapter->ptp_tx_start +
647                                    IGB_PTP_TX_TIMEOUT)) {
648                 dev_kfree_skb_any(adapter->ptp_tx_skb);
649                 adapter->ptp_tx_skb = NULL;
650                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
651                 adapter->tx_hwtstamp_timeouts++;
652                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
653                  * interrupt
654                  */
655                 rd32(E1000_TXSTMPH);
656                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
657                 return;
658         }
659
660         tsynctxctl = rd32(E1000_TSYNCTXCTL);
661         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
662                 igb_ptp_tx_hwtstamp(adapter);
663         else
664                 /* reschedule to check later */
665                 schedule_work(&adapter->ptp_tx_work);
666 }
667
668 static void igb_ptp_overflow_check(struct work_struct *work)
669 {
670         struct igb_adapter *igb =
671                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
672         struct timespec64 ts;
673
674         igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
675
676         pr_debug("igb overflow check at %lld.%09lu\n",
677                  (long long) ts.tv_sec, ts.tv_nsec);
678
679         schedule_delayed_work(&igb->ptp_overflow_work,
680                               IGB_SYSTIM_OVERFLOW_PERIOD);
681 }
682
683 /**
684  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
685  * @adapter: private network adapter structure
686  *
687  * This watchdog task is scheduled to detect error case where hardware has
688  * dropped an Rx packet that was timestamped when the ring is full. The
689  * particular error is rare but leaves the device in a state unable to timestamp
690  * any future packets.
691  **/
692 void igb_ptp_rx_hang(struct igb_adapter *adapter)
693 {
694         struct e1000_hw *hw = &adapter->hw;
695         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
696         unsigned long rx_event;
697
698         /* Other hardware uses per-packet timestamps */
699         if (hw->mac.type != e1000_82576)
700                 return;
701
702         /* If we don't have a valid timestamp in the registers, just update the
703          * timeout counter and exit
704          */
705         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
706                 adapter->last_rx_ptp_check = jiffies;
707                 return;
708         }
709
710         /* Determine the most recent watchdog or rx_timestamp event */
711         rx_event = adapter->last_rx_ptp_check;
712         if (time_after(adapter->last_rx_timestamp, rx_event))
713                 rx_event = adapter->last_rx_timestamp;
714
715         /* Only need to read the high RXSTMP register to clear the lock */
716         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
717                 rd32(E1000_RXSTMPH);
718                 adapter->last_rx_ptp_check = jiffies;
719                 adapter->rx_hwtstamp_cleared++;
720                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
721         }
722 }
723
724 /**
725  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
726  * @adapter: private network adapter structure
727  */
728 void igb_ptp_tx_hang(struct igb_adapter *adapter)
729 {
730         struct e1000_hw *hw = &adapter->hw;
731         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
732                                               IGB_PTP_TX_TIMEOUT);
733
734         if (!adapter->ptp_tx_skb)
735                 return;
736
737         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
738                 return;
739
740         /* If we haven't received a timestamp within the timeout, it is
741          * reasonable to assume that it will never occur, so we can unlock the
742          * timestamp bit when this occurs.
743          */
744         if (timeout) {
745                 cancel_work_sync(&adapter->ptp_tx_work);
746                 dev_kfree_skb_any(adapter->ptp_tx_skb);
747                 adapter->ptp_tx_skb = NULL;
748                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
749                 adapter->tx_hwtstamp_timeouts++;
750                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
751                  * interrupt
752                  */
753                 rd32(E1000_TXSTMPH);
754                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
755         }
756 }
757
758 /**
759  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
760  * @adapter: Board private structure.
761  *
762  * If we were asked to do hardware stamping and such a time stamp is
763  * available, then it must have been for this skb here because we only
764  * allow only one such packet into the queue.
765  **/
766 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
767 {
768         struct sk_buff *skb = adapter->ptp_tx_skb;
769         struct e1000_hw *hw = &adapter->hw;
770         struct skb_shared_hwtstamps shhwtstamps;
771         u64 regval;
772         int adjust = 0;
773
774         regval = rd32(E1000_TXSTMPL);
775         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
776
777         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
778         /* adjust timestamp for the TX latency based on link speed */
779         if (adapter->hw.mac.type == e1000_i210) {
780                 switch (adapter->link_speed) {
781                 case SPEED_10:
782                         adjust = IGB_I210_TX_LATENCY_10;
783                         break;
784                 case SPEED_100:
785                         adjust = IGB_I210_TX_LATENCY_100;
786                         break;
787                 case SPEED_1000:
788                         adjust = IGB_I210_TX_LATENCY_1000;
789                         break;
790                 }
791         }
792
793         shhwtstamps.hwtstamp =
794                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
795
796         /* Clear the lock early before calling skb_tstamp_tx so that
797          * applications are not woken up before the lock bit is clear. We use
798          * a copy of the skb pointer to ensure other threads can't change it
799          * while we're notifying the stack.
800          */
801         adapter->ptp_tx_skb = NULL;
802         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
803
804         /* Notify the stack and free the skb after we've unlocked */
805         skb_tstamp_tx(skb, &shhwtstamps);
806         dev_kfree_skb_any(skb);
807 }
808
809 /**
810  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
811  * @q_vector: Pointer to interrupt specific structure
812  * @va: Pointer to address containing Rx buffer
813  * @skb: Buffer containing timestamp and packet
814  *
815  * This function is meant to retrieve a timestamp from the first buffer of an
816  * incoming frame.  The value is stored in little endian format starting on
817  * byte 8.
818  **/
819 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
820                          struct sk_buff *skb)
821 {
822         __le64 *regval = (__le64 *)va;
823         struct igb_adapter *adapter = q_vector->adapter;
824         int adjust = 0;
825
826         /* The timestamp is recorded in little endian format.
827          * DWORD: 0        1        2        3
828          * Field: Reserved Reserved SYSTIML  SYSTIMH
829          */
830         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
831                                    le64_to_cpu(regval[1]));
832
833         /* adjust timestamp for the RX latency based on link speed */
834         if (adapter->hw.mac.type == e1000_i210) {
835                 switch (adapter->link_speed) {
836                 case SPEED_10:
837                         adjust = IGB_I210_RX_LATENCY_10;
838                         break;
839                 case SPEED_100:
840                         adjust = IGB_I210_RX_LATENCY_100;
841                         break;
842                 case SPEED_1000:
843                         adjust = IGB_I210_RX_LATENCY_1000;
844                         break;
845                 }
846         }
847         skb_hwtstamps(skb)->hwtstamp =
848                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
849 }
850
851 /**
852  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
853  * @q_vector: Pointer to interrupt specific structure
854  * @skb: Buffer containing timestamp and packet
855  *
856  * This function is meant to retrieve a timestamp from the internal registers
857  * of the adapter and store it in the skb.
858  **/
859 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
860                          struct sk_buff *skb)
861 {
862         struct igb_adapter *adapter = q_vector->adapter;
863         struct e1000_hw *hw = &adapter->hw;
864         u64 regval;
865         int adjust = 0;
866
867         /* If this bit is set, then the RX registers contain the time stamp. No
868          * other packet will be time stamped until we read these registers, so
869          * read the registers to make them available again. Because only one
870          * packet can be time stamped at a time, we know that the register
871          * values must belong to this one here and therefore we don't need to
872          * compare any of the additional attributes stored for it.
873          *
874          * If nothing went wrong, then it should have a shared tx_flags that we
875          * can turn into a skb_shared_hwtstamps.
876          */
877         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
878                 return;
879
880         regval = rd32(E1000_RXSTMPL);
881         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
882
883         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
884
885         /* adjust timestamp for the RX latency based on link speed */
886         if (adapter->hw.mac.type == e1000_i210) {
887                 switch (adapter->link_speed) {
888                 case SPEED_10:
889                         adjust = IGB_I210_RX_LATENCY_10;
890                         break;
891                 case SPEED_100:
892                         adjust = IGB_I210_RX_LATENCY_100;
893                         break;
894                 case SPEED_1000:
895                         adjust = IGB_I210_RX_LATENCY_1000;
896                         break;
897                 }
898         }
899         skb_hwtstamps(skb)->hwtstamp =
900                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
901
902         /* Update the last_rx_timestamp timer in order to enable watchdog check
903          * for error case of latched timestamp on a dropped packet.
904          */
905         adapter->last_rx_timestamp = jiffies;
906 }
907
908 /**
909  * igb_ptp_get_ts_config - get hardware time stamping config
910  * @netdev:
911  * @ifreq:
912  *
913  * Get the hwtstamp_config settings to return to the user. Rather than attempt
914  * to deconstruct the settings from the registers, just return a shadow copy
915  * of the last known settings.
916  **/
917 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
918 {
919         struct igb_adapter *adapter = netdev_priv(netdev);
920         struct hwtstamp_config *config = &adapter->tstamp_config;
921
922         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
923                 -EFAULT : 0;
924 }
925
926 /**
927  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
928  * @adapter: networking device structure
929  * @config: hwtstamp configuration
930  *
931  * Outgoing time stamping can be enabled and disabled. Play nice and
932  * disable it when requested, although it shouldn't case any overhead
933  * when no packet needs it. At most one packet in the queue may be
934  * marked for time stamping, otherwise it would be impossible to tell
935  * for sure to which packet the hardware time stamp belongs.
936  *
937  * Incoming time stamping has to be configured via the hardware
938  * filters. Not all combinations are supported, in particular event
939  * type has to be specified. Matching the kind of event packet is
940  * not supported, with the exception of "all V2 events regardless of
941  * level 2 or 4".
942  */
943 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
944                                       struct hwtstamp_config *config)
945 {
946         struct e1000_hw *hw = &adapter->hw;
947         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
948         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
949         u32 tsync_rx_cfg = 0;
950         bool is_l4 = false;
951         bool is_l2 = false;
952         u32 regval;
953
954         /* reserved for future extensions */
955         if (config->flags)
956                 return -EINVAL;
957
958         switch (config->tx_type) {
959         case HWTSTAMP_TX_OFF:
960                 tsync_tx_ctl = 0;
961         case HWTSTAMP_TX_ON:
962                 break;
963         default:
964                 return -ERANGE;
965         }
966
967         switch (config->rx_filter) {
968         case HWTSTAMP_FILTER_NONE:
969                 tsync_rx_ctl = 0;
970                 break;
971         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
972                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
973                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
974                 is_l4 = true;
975                 break;
976         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
977                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
978                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
979                 is_l4 = true;
980                 break;
981         case HWTSTAMP_FILTER_PTP_V2_EVENT:
982         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
983         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
984         case HWTSTAMP_FILTER_PTP_V2_SYNC:
985         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
986         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
987         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
988         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
989         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
990                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
991                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
992                 is_l2 = true;
993                 is_l4 = true;
994                 break;
995         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
996         case HWTSTAMP_FILTER_NTP_ALL:
997         case HWTSTAMP_FILTER_ALL:
998                 /* 82576 cannot timestamp all packets, which it needs to do to
999                  * support both V1 Sync and Delay_Req messages
1000                  */
1001                 if (hw->mac.type != e1000_82576) {
1002                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1003                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1004                         break;
1005                 }
1006                 /* fall through */
1007         default:
1008                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1009                 return -ERANGE;
1010         }
1011
1012         if (hw->mac.type == e1000_82575) {
1013                 if (tsync_rx_ctl | tsync_tx_ctl)
1014                         return -EINVAL;
1015                 return 0;
1016         }
1017
1018         /* Per-packet timestamping only works if all packets are
1019          * timestamped, so enable timestamping in all packets as
1020          * long as one Rx filter was configured.
1021          */
1022         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1023                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1024                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1025                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1026                 is_l2 = true;
1027                 is_l4 = true;
1028
1029                 if ((hw->mac.type == e1000_i210) ||
1030                     (hw->mac.type == e1000_i211)) {
1031                         regval = rd32(E1000_RXPBS);
1032                         regval |= E1000_RXPBS_CFG_TS_EN;
1033                         wr32(E1000_RXPBS, regval);
1034                 }
1035         }
1036
1037         /* enable/disable TX */
1038         regval = rd32(E1000_TSYNCTXCTL);
1039         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1040         regval |= tsync_tx_ctl;
1041         wr32(E1000_TSYNCTXCTL, regval);
1042
1043         /* enable/disable RX */
1044         regval = rd32(E1000_TSYNCRXCTL);
1045         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1046         regval |= tsync_rx_ctl;
1047         wr32(E1000_TSYNCRXCTL, regval);
1048
1049         /* define which PTP packets are time stamped */
1050         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1051
1052         /* define ethertype filter for timestamped packets */
1053         if (is_l2)
1054                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1055                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1056                       E1000_ETQF_1588 | /* enable timestamping */
1057                       ETH_P_1588));     /* 1588 eth protocol type */
1058         else
1059                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1060
1061         /* L4 Queue Filter[3]: filter by destination port and protocol */
1062         if (is_l4) {
1063                 u32 ftqf = (IPPROTO_UDP /* UDP */
1064                         | E1000_FTQF_VF_BP /* VF not compared */
1065                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1066                         | E1000_FTQF_MASK); /* mask all inputs */
1067                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1068
1069                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1070                 wr32(E1000_IMIREXT(3),
1071                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1072                 if (hw->mac.type == e1000_82576) {
1073                         /* enable source port check */
1074                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1075                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1076                 }
1077                 wr32(E1000_FTQF(3), ftqf);
1078         } else {
1079                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1080         }
1081         wrfl();
1082
1083         /* clear TX/RX time stamp registers, just to be sure */
1084         regval = rd32(E1000_TXSTMPL);
1085         regval = rd32(E1000_TXSTMPH);
1086         regval = rd32(E1000_RXSTMPL);
1087         regval = rd32(E1000_RXSTMPH);
1088
1089         return 0;
1090 }
1091
1092 /**
1093  * igb_ptp_set_ts_config - set hardware time stamping config
1094  * @netdev:
1095  * @ifreq:
1096  *
1097  **/
1098 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1099 {
1100         struct igb_adapter *adapter = netdev_priv(netdev);
1101         struct hwtstamp_config config;
1102         int err;
1103
1104         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1105                 return -EFAULT;
1106
1107         err = igb_ptp_set_timestamp_mode(adapter, &config);
1108         if (err)
1109                 return err;
1110
1111         /* save these settings for future reference */
1112         memcpy(&adapter->tstamp_config, &config,
1113                sizeof(adapter->tstamp_config));
1114
1115         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1116                 -EFAULT : 0;
1117 }
1118
1119 /**
1120  * igb_ptp_init - Initialize PTP functionality
1121  * @adapter: Board private structure
1122  *
1123  * This function is called at device probe to initialize the PTP
1124  * functionality.
1125  */
1126 void igb_ptp_init(struct igb_adapter *adapter)
1127 {
1128         struct e1000_hw *hw = &adapter->hw;
1129         struct net_device *netdev = adapter->netdev;
1130         int i;
1131
1132         switch (hw->mac.type) {
1133         case e1000_82576:
1134                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1135                 adapter->ptp_caps.owner = THIS_MODULE;
1136                 adapter->ptp_caps.max_adj = 999999881;
1137                 adapter->ptp_caps.n_ext_ts = 0;
1138                 adapter->ptp_caps.pps = 0;
1139                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1140                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1141                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1142                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1143                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1144                 adapter->cc.read = igb_ptp_read_82576;
1145                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1146                 adapter->cc.mult = 1;
1147                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1148                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1149                 break;
1150         case e1000_82580:
1151         case e1000_i354:
1152         case e1000_i350:
1153                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1154                 adapter->ptp_caps.owner = THIS_MODULE;
1155                 adapter->ptp_caps.max_adj = 62499999;
1156                 adapter->ptp_caps.n_ext_ts = 0;
1157                 adapter->ptp_caps.pps = 0;
1158                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1159                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1160                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1161                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1162                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1163                 adapter->cc.read = igb_ptp_read_82580;
1164                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1165                 adapter->cc.mult = 1;
1166                 adapter->cc.shift = 0;
1167                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1168                 break;
1169         case e1000_i210:
1170         case e1000_i211:
1171                 for (i = 0; i < IGB_N_SDP; i++) {
1172                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1173
1174                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1175                         ppd->index = i;
1176                         ppd->func = PTP_PF_NONE;
1177                 }
1178                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1179                 adapter->ptp_caps.owner = THIS_MODULE;
1180                 adapter->ptp_caps.max_adj = 62499999;
1181                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1182                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1183                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1184                 adapter->ptp_caps.pps = 1;
1185                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1186                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1187                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1188                 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1189                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1190                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1191                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1192                 break;
1193         default:
1194                 adapter->ptp_clock = NULL;
1195                 return;
1196         }
1197
1198         spin_lock_init(&adapter->tmreg_lock);
1199         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1200
1201         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1202                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1203                                   igb_ptp_overflow_check);
1204
1205         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1206         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1207
1208         igb_ptp_reset(adapter);
1209
1210         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1211                                                 &adapter->pdev->dev);
1212         if (IS_ERR(adapter->ptp_clock)) {
1213                 adapter->ptp_clock = NULL;
1214                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1215         } else if (adapter->ptp_clock) {
1216                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1217                          adapter->netdev->name);
1218                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1219         }
1220 }
1221
1222 /**
1223  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1224  * @adapter: Board private structure
1225  *
1226  * This function stops the overflow check work and PTP Tx timestamp work, and
1227  * will prepare the device for OS suspend.
1228  */
1229 void igb_ptp_suspend(struct igb_adapter *adapter)
1230 {
1231         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1232                 return;
1233
1234         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1235                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1236
1237         cancel_work_sync(&adapter->ptp_tx_work);
1238         if (adapter->ptp_tx_skb) {
1239                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1240                 adapter->ptp_tx_skb = NULL;
1241                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1242         }
1243 }
1244
1245 /**
1246  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1247  * @adapter: Board private structure.
1248  *
1249  * This function stops the PTP support and cancels the delayed work.
1250  **/
1251 void igb_ptp_stop(struct igb_adapter *adapter)
1252 {
1253         igb_ptp_suspend(adapter);
1254
1255         if (adapter->ptp_clock) {
1256                 ptp_clock_unregister(adapter->ptp_clock);
1257                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1258                          adapter->netdev->name);
1259                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1260         }
1261 }
1262
1263 /**
1264  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1265  * @adapter: Board private structure.
1266  *
1267  * This function handles the reset work required to re-enable the PTP device.
1268  **/
1269 void igb_ptp_reset(struct igb_adapter *adapter)
1270 {
1271         struct e1000_hw *hw = &adapter->hw;
1272         unsigned long flags;
1273
1274         /* reset the tstamp_config */
1275         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1276
1277         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1278
1279         switch (adapter->hw.mac.type) {
1280         case e1000_82576:
1281                 /* Dial the nominal frequency. */
1282                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1283                 break;
1284         case e1000_82580:
1285         case e1000_i354:
1286         case e1000_i350:
1287         case e1000_i210:
1288         case e1000_i211:
1289                 wr32(E1000_TSAUXC, 0x0);
1290                 wr32(E1000_TSSDP, 0x0);
1291                 wr32(E1000_TSIM,
1292                      TSYNC_INTERRUPTS |
1293                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1294                 wr32(E1000_IMS, E1000_IMS_TS);
1295                 break;
1296         default:
1297                 /* No work to do. */
1298                 goto out;
1299         }
1300
1301         /* Re-initialize the timer. */
1302         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1303                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1304
1305                 igb_ptp_write_i210(adapter, &ts);
1306         } else {
1307                 timecounter_init(&adapter->tc, &adapter->cc,
1308                                  ktime_to_ns(ktime_get_real()));
1309         }
1310 out:
1311         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1312
1313         wrfl();
1314
1315         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1316                 schedule_delayed_work(&adapter->ptp_overflow_work,
1317                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1318 }