GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44         QUEUE_MODE_STRICT_PRIORITY,
45         QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49         TX_QUEUE_PRIO_HIGH,
50         TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57                                 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99         /* required last entry */
100         {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128                             struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147                           netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167                                    bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169                                 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171                                  struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191                         igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198         .notifier_call  = igb_notify_dca,
199         .next           = NULL,
200         .priority       = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210                      pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215         .error_detected = igb_io_error_detected,
216         .slot_reset = igb_io_slot_reset,
217         .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223         .name     = igb_driver_name,
224         .id_table = igb_pci_tbl,
225         .probe    = igb_probe,
226         .remove   = igb_remove,
227 #ifdef CONFIG_PM
228         .driver.pm = &igb_pm_ops,
229 #endif
230         .shutdown = igb_shutdown,
231         .sriov_configure = igb_pci_sriov_configure,
232         .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245         u32 ofs;
246         char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251         /* General Registers */
252         {E1000_CTRL, "CTRL"},
253         {E1000_STATUS, "STATUS"},
254         {E1000_CTRL_EXT, "CTRL_EXT"},
255
256         /* Interrupt Registers */
257         {E1000_ICR, "ICR"},
258
259         /* RX Registers */
260         {E1000_RCTL, "RCTL"},
261         {E1000_RDLEN(0), "RDLEN"},
262         {E1000_RDH(0), "RDH"},
263         {E1000_RDT(0), "RDT"},
264         {E1000_RXDCTL(0), "RXDCTL"},
265         {E1000_RDBAL(0), "RDBAL"},
266         {E1000_RDBAH(0), "RDBAH"},
267
268         /* TX Registers */
269         {E1000_TCTL, "TCTL"},
270         {E1000_TDBAL(0), "TDBAL"},
271         {E1000_TDBAH(0), "TDBAH"},
272         {E1000_TDLEN(0), "TDLEN"},
273         {E1000_TDH(0), "TDH"},
274         {E1000_TDT(0), "TDT"},
275         {E1000_TXDCTL(0), "TXDCTL"},
276         {E1000_TDFH, "TDFH"},
277         {E1000_TDFT, "TDFT"},
278         {E1000_TDFHS, "TDFHS"},
279         {E1000_TDFPC, "TDFPC"},
280
281         /* List Terminator */
282         {}
283 };
284
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288         int n = 0;
289         char rname[16];
290         u32 regs[8];
291
292         switch (reginfo->ofs) {
293         case E1000_RDLEN(0):
294                 for (n = 0; n < 4; n++)
295                         regs[n] = rd32(E1000_RDLEN(n));
296                 break;
297         case E1000_RDH(0):
298                 for (n = 0; n < 4; n++)
299                         regs[n] = rd32(E1000_RDH(n));
300                 break;
301         case E1000_RDT(0):
302                 for (n = 0; n < 4; n++)
303                         regs[n] = rd32(E1000_RDT(n));
304                 break;
305         case E1000_RXDCTL(0):
306                 for (n = 0; n < 4; n++)
307                         regs[n] = rd32(E1000_RXDCTL(n));
308                 break;
309         case E1000_RDBAL(0):
310                 for (n = 0; n < 4; n++)
311                         regs[n] = rd32(E1000_RDBAL(n));
312                 break;
313         case E1000_RDBAH(0):
314                 for (n = 0; n < 4; n++)
315                         regs[n] = rd32(E1000_RDBAH(n));
316                 break;
317         case E1000_TDBAL(0):
318                 for (n = 0; n < 4; n++)
319                         regs[n] = rd32(E1000_RDBAL(n));
320                 break;
321         case E1000_TDBAH(0):
322                 for (n = 0; n < 4; n++)
323                         regs[n] = rd32(E1000_TDBAH(n));
324                 break;
325         case E1000_TDLEN(0):
326                 for (n = 0; n < 4; n++)
327                         regs[n] = rd32(E1000_TDLEN(n));
328                 break;
329         case E1000_TDH(0):
330                 for (n = 0; n < 4; n++)
331                         regs[n] = rd32(E1000_TDH(n));
332                 break;
333         case E1000_TDT(0):
334                 for (n = 0; n < 4; n++)
335                         regs[n] = rd32(E1000_TDT(n));
336                 break;
337         case E1000_TXDCTL(0):
338                 for (n = 0; n < 4; n++)
339                         regs[n] = rd32(E1000_TXDCTL(n));
340                 break;
341         default:
342                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343                 return;
344         }
345
346         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348                 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct e1000_hw *hw = &adapter->hw;
356         struct igb_reg_info *reginfo;
357         struct igb_ring *tx_ring;
358         union e1000_adv_tx_desc *tx_desc;
359         struct my_u0 { u64 a; u64 b; } *u0;
360         struct igb_ring *rx_ring;
361         union e1000_adv_rx_desc *rx_desc;
362         u32 staterr;
363         u16 i, n;
364
365         if (!netif_msg_hw(adapter))
366                 return;
367
368         /* Print netdevice Info */
369         if (netdev) {
370                 dev_info(&adapter->pdev->dev, "Net device Info\n");
371                 pr_info("Device Name     state            trans_start\n");
372                 pr_info("%-15s %016lX %016lX\n", netdev->name,
373                         netdev->state, dev_trans_start(netdev));
374         }
375
376         /* Print Registers */
377         dev_info(&adapter->pdev->dev, "Register Dump\n");
378         pr_info(" Register Name   Value\n");
379         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380              reginfo->name; reginfo++) {
381                 igb_regdump(hw, reginfo);
382         }
383
384         /* Print TX Ring Summary */
385         if (!netdev || !netif_running(netdev))
386                 goto exit;
387
388         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390         for (n = 0; n < adapter->num_tx_queues; n++) {
391                 struct igb_tx_buffer *buffer_info;
392                 tx_ring = adapter->tx_ring[n];
393                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
396                         (u64)dma_unmap_addr(buffer_info, dma),
397                         dma_unmap_len(buffer_info, len),
398                         buffer_info->next_to_watch,
399                         (u64)buffer_info->time_stamp);
400         }
401
402         /* Print TX Rings */
403         if (!netif_msg_tx_done(adapter))
404                 goto rx_ring_summary;
405
406         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408         /* Transmit Descriptor Formats
409          *
410          * Advanced Transmit Descriptor
411          *   +--------------------------------------------------------------+
412          * 0 |         Buffer Address [63:0]                                |
413          *   +--------------------------------------------------------------+
414          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415          *   +--------------------------------------------------------------+
416          *   63      46 45    40 39 38 36 35 32 31   24             15       0
417          */
418
419         for (n = 0; n < adapter->num_tx_queues; n++) {
420                 tx_ring = adapter->tx_ring[n];
421                 pr_info("------------------------------------\n");
422                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423                 pr_info("------------------------------------\n");
424                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425
426                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427                         const char *next_desc;
428                         struct igb_tx_buffer *buffer_info;
429                         tx_desc = IGB_TX_DESC(tx_ring, i);
430                         buffer_info = &tx_ring->tx_buffer_info[i];
431                         u0 = (struct my_u0 *)tx_desc;
432                         if (i == tx_ring->next_to_use &&
433                             i == tx_ring->next_to_clean)
434                                 next_desc = " NTC/U";
435                         else if (i == tx_ring->next_to_use)
436                                 next_desc = " NTU";
437                         else if (i == tx_ring->next_to_clean)
438                                 next_desc = " NTC";
439                         else
440                                 next_desc = "";
441
442                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443                                 i, le64_to_cpu(u0->a),
444                                 le64_to_cpu(u0->b),
445                                 (u64)dma_unmap_addr(buffer_info, dma),
446                                 dma_unmap_len(buffer_info, len),
447                                 buffer_info->next_to_watch,
448                                 (u64)buffer_info->time_stamp,
449                                 buffer_info->skb, next_desc);
450
451                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
452                                 print_hex_dump(KERN_INFO, "",
453                                         DUMP_PREFIX_ADDRESS,
454                                         16, 1, buffer_info->skb->data,
455                                         dma_unmap_len(buffer_info, len),
456                                         true);
457                 }
458         }
459
460         /* Print RX Rings Summary */
461 rx_ring_summary:
462         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463         pr_info("Queue [NTU] [NTC]\n");
464         for (n = 0; n < adapter->num_rx_queues; n++) {
465                 rx_ring = adapter->rx_ring[n];
466                 pr_info(" %5d %5X %5X\n",
467                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
468         }
469
470         /* Print RX Rings */
471         if (!netif_msg_rx_status(adapter))
472                 goto exit;
473
474         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476         /* Advanced Receive Descriptor (Read) Format
477          *    63                                           1        0
478          *    +-----------------------------------------------------+
479          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480          *    +----------------------------------------------+------+
481          *  8 |       Header Buffer Address [63:1]           |  DD  |
482          *    +-----------------------------------------------------+
483          *
484          *
485          * Advanced Receive Descriptor (Write-Back) Format
486          *
487          *   63       48 47    32 31  30      21 20 17 16   4 3     0
488          *   +------------------------------------------------------+
489          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490          *   | Checksum   Ident  |   |           |    | Type | Type |
491          *   +------------------------------------------------------+
492          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493          *   +------------------------------------------------------+
494          *   63       48 47    32 31            20 19               0
495          */
496
497         for (n = 0; n < adapter->num_rx_queues; n++) {
498                 rx_ring = adapter->rx_ring[n];
499                 pr_info("------------------------------------\n");
500                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501                 pr_info("------------------------------------\n");
502                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505                 for (i = 0; i < rx_ring->count; i++) {
506                         const char *next_desc;
507                         struct igb_rx_buffer *buffer_info;
508                         buffer_info = &rx_ring->rx_buffer_info[i];
509                         rx_desc = IGB_RX_DESC(rx_ring, i);
510                         u0 = (struct my_u0 *)rx_desc;
511                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513                         if (i == rx_ring->next_to_use)
514                                 next_desc = " NTU";
515                         else if (i == rx_ring->next_to_clean)
516                                 next_desc = " NTC";
517                         else
518                                 next_desc = "";
519
520                         if (staterr & E1000_RXD_STAT_DD) {
521                                 /* Descriptor Done */
522                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523                                         "RWB", i,
524                                         le64_to_cpu(u0->a),
525                                         le64_to_cpu(u0->b),
526                                         next_desc);
527                         } else {
528                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529                                         "R  ", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         (u64)buffer_info->dma,
533                                         next_desc);
534
535                                 if (netif_msg_pktdata(adapter) &&
536                                     buffer_info->dma && buffer_info->page) {
537                                         print_hex_dump(KERN_INFO, "",
538                                           DUMP_PREFIX_ADDRESS,
539                                           16, 1,
540                                           page_address(buffer_info->page) +
541                                                       buffer_info->page_offset,
542                                           igb_rx_bufsz(rx_ring), true);
543                                 }
544                         }
545                 }
546         }
547
548 exit:
549         return;
550 }
551
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560         struct igb_adapter *adapter = (struct igb_adapter *)data;
561         struct e1000_hw *hw = &adapter->hw;
562         s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564         return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576         struct igb_adapter *adapter = (struct igb_adapter *)data;
577         struct e1000_hw *hw = &adapter->hw;
578         s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580         if (state)
581                 i2cctl |= E1000_I2C_DATA_OUT;
582         else
583                 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585         i2cctl &= ~E1000_I2C_DATA_OE_N;
586         i2cctl |= E1000_I2C_CLK_OE_N;
587         wr32(E1000_I2CPARAMS, i2cctl);
588         wrfl();
589
590 }
591
592 /**
593  *  igb_set_i2c_clk - Sets the I2C SCL clock
594  *  @data: pointer to hardware structure
595  *  @state: state to set clock
596  *
597  *  Sets the I2C clock line to state
598  **/
599 static void igb_set_i2c_clk(void *data, int state)
600 {
601         struct igb_adapter *adapter = (struct igb_adapter *)data;
602         struct e1000_hw *hw = &adapter->hw;
603         s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605         if (state) {
606                 i2cctl |= E1000_I2C_CLK_OUT;
607                 i2cctl &= ~E1000_I2C_CLK_OE_N;
608         } else {
609                 i2cctl &= ~E1000_I2C_CLK_OUT;
610                 i2cctl &= ~E1000_I2C_CLK_OE_N;
611         }
612         wr32(E1000_I2CPARAMS, i2cctl);
613         wrfl();
614 }
615
616 /**
617  *  igb_get_i2c_clk - Gets the I2C SCL clock state
618  *  @data: pointer to hardware structure
619  *
620  *  Gets the I2C clock state
621  **/
622 static int igb_get_i2c_clk(void *data)
623 {
624         struct igb_adapter *adapter = (struct igb_adapter *)data;
625         struct e1000_hw *hw = &adapter->hw;
626         s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628         return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632         .setsda         = igb_set_i2c_data,
633         .setscl         = igb_set_i2c_clk,
634         .getsda         = igb_get_i2c_data,
635         .getscl         = igb_get_i2c_clk,
636         .udelay         = 5,
637         .timeout        = 20,
638 };
639
640 /**
641  *  igb_get_hw_dev - return device
642  *  @hw: pointer to hardware structure
643  *
644  *  used by hardware layer to print debugging information
645  **/
646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648         struct igb_adapter *adapter = hw->back;
649         return adapter->netdev;
650 }
651
652 /**
653  *  igb_init_module - Driver Registration Routine
654  *
655  *  igb_init_module is the first routine called when the driver is
656  *  loaded. All it does is register with the PCI subsystem.
657  **/
658 static int __init igb_init_module(void)
659 {
660         int ret;
661
662         pr_info("%s\n", igb_driver_string);
663         pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666         dca_register_notify(&dca_notifier);
667 #endif
668         ret = pci_register_driver(&igb_driver);
669         return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675  *  igb_exit_module - Driver Exit Cleanup Routine
676  *
677  *  igb_exit_module is called just before the driver is removed
678  *  from memory.
679  **/
680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683         dca_unregister_notify(&dca_notifier);
684 #endif
685         pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692  *  igb_cache_ring_register - Descriptor ring to register mapping
693  *  @adapter: board private structure to initialize
694  *
695  *  Once we know the feature-set enabled for the device, we'll cache
696  *  the register offset the descriptor ring is assigned to.
697  **/
698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700         int i = 0, j = 0;
701         u32 rbase_offset = adapter->vfs_allocated_count;
702
703         switch (adapter->hw.mac.type) {
704         case e1000_82576:
705                 /* The queues are allocated for virtualization such that VF 0
706                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707                  * In order to avoid collision we start at the first free queue
708                  * and continue consuming queues in the same sequence
709                  */
710                 if (adapter->vfs_allocated_count) {
711                         for (; i < adapter->rss_queues; i++)
712                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
713                                                                Q_IDX_82576(i);
714                 }
715                 fallthrough;
716         case e1000_82575:
717         case e1000_82580:
718         case e1000_i350:
719         case e1000_i354:
720         case e1000_i210:
721         case e1000_i211:
722         default:
723                 for (; i < adapter->num_rx_queues; i++)
724                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725                 for (; j < adapter->num_tx_queues; j++)
726                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727                 break;
728         }
729 }
730
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735         u32 value = 0;
736
737         if (E1000_REMOVED(hw_addr))
738                 return ~value;
739
740         value = readl(&hw_addr[reg]);
741
742         /* reads should not return all F's */
743         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744                 struct net_device *netdev = igb->netdev;
745                 hw->hw_addr = NULL;
746                 netdev_err(netdev, "PCIe link lost\n");
747                 WARN(pci_device_is_present(igb->pdev),
748                      "igb: Failed to read reg 0x%x!\n", reg);
749         }
750
751         return value;
752 }
753
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767                            int index, int offset)
768 {
769         u32 ivar = array_rd32(E1000_IVAR0, index);
770
771         /* clear any bits that are currently set */
772         ivar &= ~((u32)0xFF << offset);
773
774         /* write vector and valid bit */
775         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777         array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783         struct igb_adapter *adapter = q_vector->adapter;
784         struct e1000_hw *hw = &adapter->hw;
785         int rx_queue = IGB_N0_QUEUE;
786         int tx_queue = IGB_N0_QUEUE;
787         u32 msixbm = 0;
788
789         if (q_vector->rx.ring)
790                 rx_queue = q_vector->rx.ring->reg_idx;
791         if (q_vector->tx.ring)
792                 tx_queue = q_vector->tx.ring->reg_idx;
793
794         switch (hw->mac.type) {
795         case e1000_82575:
796                 /* The 82575 assigns vectors using a bitmask, which matches the
797                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798                  * or more queues to a vector, we write the appropriate bits
799                  * into the MSIXBM register for that vector.
800                  */
801                 if (rx_queue > IGB_N0_QUEUE)
802                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803                 if (tx_queue > IGB_N0_QUEUE)
804                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806                         msixbm |= E1000_EIMS_OTHER;
807                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808                 q_vector->eims_value = msixbm;
809                 break;
810         case e1000_82576:
811                 /* 82576 uses a table that essentially consists of 2 columns
812                  * with 8 rows.  The ordering is column-major so we use the
813                  * lower 3 bits as the row index, and the 4th bit as the
814                  * column offset.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         igb_write_ivar(hw, msix_vector,
818                                        rx_queue & 0x7,
819                                        (rx_queue & 0x8) << 1);
820                 if (tx_queue > IGB_N0_QUEUE)
821                         igb_write_ivar(hw, msix_vector,
822                                        tx_queue & 0x7,
823                                        ((tx_queue & 0x8) << 1) + 8);
824                 q_vector->eims_value = BIT(msix_vector);
825                 break;
826         case e1000_82580:
827         case e1000_i350:
828         case e1000_i354:
829         case e1000_i210:
830         case e1000_i211:
831                 /* On 82580 and newer adapters the scheme is similar to 82576
832                  * however instead of ordering column-major we have things
833                  * ordered row-major.  So we traverse the table by using
834                  * bit 0 as the column offset, and the remaining bits as the
835                  * row index.
836                  */
837                 if (rx_queue > IGB_N0_QUEUE)
838                         igb_write_ivar(hw, msix_vector,
839                                        rx_queue >> 1,
840                                        (rx_queue & 0x1) << 4);
841                 if (tx_queue > IGB_N0_QUEUE)
842                         igb_write_ivar(hw, msix_vector,
843                                        tx_queue >> 1,
844                                        ((tx_queue & 0x1) << 4) + 8);
845                 q_vector->eims_value = BIT(msix_vector);
846                 break;
847         default:
848                 BUG();
849                 break;
850         }
851
852         /* add q_vector eims value to global eims_enable_mask */
853         adapter->eims_enable_mask |= q_vector->eims_value;
854
855         /* configure q_vector to set itr on first interrupt */
856         q_vector->set_itr = 1;
857 }
858
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868         u32 tmp;
869         int i, vector = 0;
870         struct e1000_hw *hw = &adapter->hw;
871
872         adapter->eims_enable_mask = 0;
873
874         /* set vector for other causes, i.e. link changes */
875         switch (hw->mac.type) {
876         case e1000_82575:
877                 tmp = rd32(E1000_CTRL_EXT);
878                 /* enable MSI-X PBA support*/
879                 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881                 /* Auto-Mask interrupts upon ICR read. */
882                 tmp |= E1000_CTRL_EXT_EIAME;
883                 tmp |= E1000_CTRL_EXT_IRCA;
884
885                 wr32(E1000_CTRL_EXT, tmp);
886
887                 /* enable msix_other interrupt */
888                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889                 adapter->eims_other = E1000_EIMS_OTHER;
890
891                 break;
892
893         case e1000_82576:
894         case e1000_82580:
895         case e1000_i350:
896         case e1000_i354:
897         case e1000_i210:
898         case e1000_i211:
899                 /* Turn on MSI-X capability first, or our settings
900                  * won't stick.  And it will take days to debug.
901                  */
902                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
904                      E1000_GPIE_NSICR);
905
906                 /* enable msix_other interrupt */
907                 adapter->eims_other = BIT(vector);
908                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910                 wr32(E1000_IVAR_MISC, tmp);
911                 break;
912         default:
913                 /* do nothing, since nothing else supports MSI-X */
914                 break;
915         } /* switch (hw->mac.type) */
916
917         adapter->eims_enable_mask |= adapter->eims_other;
918
919         for (i = 0; i < adapter->num_q_vectors; i++)
920                 igb_assign_vector(adapter->q_vector[i], vector++);
921
922         wrfl();
923 }
924
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934         unsigned int num_q_vectors = adapter->num_q_vectors;
935         struct net_device *netdev = adapter->netdev;
936         int i, err = 0, vector = 0, free_vector = 0;
937
938         err = request_irq(adapter->msix_entries[vector].vector,
939                           igb_msix_other, 0, netdev->name, adapter);
940         if (err)
941                 goto err_out;
942
943         if (num_q_vectors > MAX_Q_VECTORS) {
944                 num_q_vectors = MAX_Q_VECTORS;
945                 dev_warn(&adapter->pdev->dev,
946                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947                          adapter->num_q_vectors, MAX_Q_VECTORS);
948         }
949         for (i = 0; i < num_q_vectors; i++) {
950                 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952                 vector++;
953
954                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956                 if (q_vector->rx.ring && q_vector->tx.ring)
957                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958                                 q_vector->rx.ring->queue_index);
959                 else if (q_vector->tx.ring)
960                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961                                 q_vector->tx.ring->queue_index);
962                 else if (q_vector->rx.ring)
963                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else
966                         sprintf(q_vector->name, "%s-unused", netdev->name);
967
968                 err = request_irq(adapter->msix_entries[vector].vector,
969                                   igb_msix_ring, 0, q_vector->name,
970                                   q_vector);
971                 if (err)
972                         goto err_free;
973         }
974
975         igb_configure_msix(adapter);
976         return 0;
977
978 err_free:
979         /* free already assigned IRQs */
980         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982         vector--;
983         for (i = 0; i < vector; i++) {
984                 free_irq(adapter->msix_entries[free_vector++].vector,
985                          adapter->q_vector[i]);
986         }
987 err_out:
988         return err;
989 }
990
991 /**
992  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
993  *  @adapter: board private structure to initialize
994  *  @v_idx: Index of vector to be freed
995  *
996  *  This function frees the memory allocated to the q_vector.
997  **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002         adapter->q_vector[v_idx] = NULL;
1003
1004         /* igb_get_stats64() might access the rings on this vector,
1005          * we must wait a grace period before freeing it.
1006          */
1007         if (q_vector)
1008                 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012  *  igb_reset_q_vector - Reset config for interrupt vector
1013  *  @adapter: board private structure to initialize
1014  *  @v_idx: Index of vector to be reset
1015  *
1016  *  If NAPI is enabled it will delete any references to the
1017  *  NAPI struct. This is preparation for igb_free_q_vector.
1018  **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024          * allocated. So, q_vector is NULL so we should stop here.
1025          */
1026         if (!q_vector)
1027                 return;
1028
1029         if (q_vector->tx.ring)
1030                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032         if (q_vector->rx.ring)
1033                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035         netif_napi_del(&q_vector->napi);
1036
1037 }
1038
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041         int v_idx = adapter->num_q_vectors;
1042
1043         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044                 pci_disable_msix(adapter->pdev);
1045         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046                 pci_disable_msi(adapter->pdev);
1047
1048         while (v_idx--)
1049                 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1054  *  @adapter: board private structure to initialize
1055  *
1056  *  This function frees the memory allocated to the q_vectors.  In addition if
1057  *  NAPI is enabled it will delete any references to the NAPI struct prior
1058  *  to freeing the q_vector.
1059  **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062         int v_idx = adapter->num_q_vectors;
1063
1064         adapter->num_tx_queues = 0;
1065         adapter->num_rx_queues = 0;
1066         adapter->num_q_vectors = 0;
1067
1068         while (v_idx--) {
1069                 igb_reset_q_vector(adapter, v_idx);
1070                 igb_free_q_vector(adapter, v_idx);
1071         }
1072 }
1073
1074 /**
1075  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076  *  @adapter: board private structure to initialize
1077  *
1078  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1079  *  MSI-X interrupts allocated.
1080  */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083         igb_free_q_vectors(adapter);
1084         igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1089  *  @adapter: board private structure to initialize
1090  *  @msix: boolean value of MSIX capability
1091  *
1092  *  Attempt to configure interrupts using the best available
1093  *  capabilities of the hardware and kernel.
1094  **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097         int err;
1098         int numvecs, i;
1099
1100         if (!msix)
1101                 goto msi_only;
1102         adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104         /* Number of supported queues. */
1105         adapter->num_rx_queues = adapter->rss_queues;
1106         if (adapter->vfs_allocated_count)
1107                 adapter->num_tx_queues = 1;
1108         else
1109                 adapter->num_tx_queues = adapter->rss_queues;
1110
1111         /* start with one vector for every Rx queue */
1112         numvecs = adapter->num_rx_queues;
1113
1114         /* if Tx handler is separate add 1 for every Tx queue */
1115         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116                 numvecs += adapter->num_tx_queues;
1117
1118         /* store the number of vectors reserved for queues */
1119         adapter->num_q_vectors = numvecs;
1120
1121         /* add 1 vector for link status interrupts */
1122         numvecs++;
1123         for (i = 0; i < numvecs; i++)
1124                 adapter->msix_entries[i].entry = i;
1125
1126         err = pci_enable_msix_range(adapter->pdev,
1127                                     adapter->msix_entries,
1128                                     numvecs,
1129                                     numvecs);
1130         if (err > 0)
1131                 return;
1132
1133         igb_reset_interrupt_capability(adapter);
1134
1135         /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139         /* disable SR-IOV for non MSI-X configurations */
1140         if (adapter->vf_data) {
1141                 struct e1000_hw *hw = &adapter->hw;
1142                 /* disable iov and allow time for transactions to clear */
1143                 pci_disable_sriov(adapter->pdev);
1144                 msleep(500);
1145
1146                 kfree(adapter->vf_mac_list);
1147                 adapter->vf_mac_list = NULL;
1148                 kfree(adapter->vf_data);
1149                 adapter->vf_data = NULL;
1150                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151                 wrfl();
1152                 msleep(100);
1153                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154         }
1155 #endif
1156         adapter->vfs_allocated_count = 0;
1157         adapter->rss_queues = 1;
1158         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159         adapter->num_rx_queues = 1;
1160         adapter->num_tx_queues = 1;
1161         adapter->num_q_vectors = 1;
1162         if (!pci_enable_msi(adapter->pdev))
1163                 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
1166 static void igb_add_ring(struct igb_ring *ring,
1167                          struct igb_ring_container *head)
1168 {
1169         head->ring = ring;
1170         head->count++;
1171 }
1172
1173 /**
1174  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175  *  @adapter: board private structure to initialize
1176  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1177  *  @v_idx: index of vector in adapter struct
1178  *  @txr_count: total number of Tx rings to allocate
1179  *  @txr_idx: index of first Tx ring to allocate
1180  *  @rxr_count: total number of Rx rings to allocate
1181  *  @rxr_idx: index of first Rx ring to allocate
1182  *
1183  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1184  **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186                               int v_count, int v_idx,
1187                               int txr_count, int txr_idx,
1188                               int rxr_count, int rxr_idx)
1189 {
1190         struct igb_q_vector *q_vector;
1191         struct igb_ring *ring;
1192         int ring_count;
1193         size_t size;
1194
1195         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196         if (txr_count > 1 || rxr_count > 1)
1197                 return -ENOMEM;
1198
1199         ring_count = txr_count + rxr_count;
1200         size = struct_size(q_vector, ring, ring_count);
1201
1202         /* allocate q_vector and rings */
1203         q_vector = adapter->q_vector[v_idx];
1204         if (!q_vector) {
1205                 q_vector = kzalloc(size, GFP_KERNEL);
1206         } else if (size > ksize(q_vector)) {
1207                 struct igb_q_vector *new_q_vector;
1208
1209                 new_q_vector = kzalloc(size, GFP_KERNEL);
1210                 if (new_q_vector)
1211                         kfree_rcu(q_vector, rcu);
1212                 q_vector = new_q_vector;
1213         } else {
1214                 memset(q_vector, 0, size);
1215         }
1216         if (!q_vector)
1217                 return -ENOMEM;
1218
1219         /* initialize NAPI */
1220         netif_napi_add(adapter->netdev, &q_vector->napi,
1221                        igb_poll, 64);
1222
1223         /* tie q_vector and adapter together */
1224         adapter->q_vector[v_idx] = q_vector;
1225         q_vector->adapter = adapter;
1226
1227         /* initialize work limits */
1228         q_vector->tx.work_limit = adapter->tx_work_limit;
1229
1230         /* initialize ITR configuration */
1231         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1232         q_vector->itr_val = IGB_START_ITR;
1233
1234         /* initialize pointer to rings */
1235         ring = q_vector->ring;
1236
1237         /* intialize ITR */
1238         if (rxr_count) {
1239                 /* rx or rx/tx vector */
1240                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241                         q_vector->itr_val = adapter->rx_itr_setting;
1242         } else {
1243                 /* tx only vector */
1244                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245                         q_vector->itr_val = adapter->tx_itr_setting;
1246         }
1247
1248         if (txr_count) {
1249                 /* assign generic ring traits */
1250                 ring->dev = &adapter->pdev->dev;
1251                 ring->netdev = adapter->netdev;
1252
1253                 /* configure backlink on ring */
1254                 ring->q_vector = q_vector;
1255
1256                 /* update q_vector Tx values */
1257                 igb_add_ring(ring, &q_vector->tx);
1258
1259                 /* For 82575, context index must be unique per ring. */
1260                 if (adapter->hw.mac.type == e1000_82575)
1261                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262
1263                 /* apply Tx specific ring traits */
1264                 ring->count = adapter->tx_ring_count;
1265                 ring->queue_index = txr_idx;
1266
1267                 ring->cbs_enable = false;
1268                 ring->idleslope = 0;
1269                 ring->sendslope = 0;
1270                 ring->hicredit = 0;
1271                 ring->locredit = 0;
1272
1273                 u64_stats_init(&ring->tx_syncp);
1274                 u64_stats_init(&ring->tx_syncp2);
1275
1276                 /* assign ring to adapter */
1277                 adapter->tx_ring[txr_idx] = ring;
1278
1279                 /* push pointer to next ring */
1280                 ring++;
1281         }
1282
1283         if (rxr_count) {
1284                 /* assign generic ring traits */
1285                 ring->dev = &adapter->pdev->dev;
1286                 ring->netdev = adapter->netdev;
1287
1288                 /* configure backlink on ring */
1289                 ring->q_vector = q_vector;
1290
1291                 /* update q_vector Rx values */
1292                 igb_add_ring(ring, &q_vector->rx);
1293
1294                 /* set flag indicating ring supports SCTP checksum offload */
1295                 if (adapter->hw.mac.type >= e1000_82576)
1296                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1297
1298                 /* On i350, i354, i210, and i211, loopback VLAN packets
1299                  * have the tag byte-swapped.
1300                  */
1301                 if (adapter->hw.mac.type >= e1000_i350)
1302                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1303
1304                 /* apply Rx specific ring traits */
1305                 ring->count = adapter->rx_ring_count;
1306                 ring->queue_index = rxr_idx;
1307
1308                 u64_stats_init(&ring->rx_syncp);
1309
1310                 /* assign ring to adapter */
1311                 adapter->rx_ring[rxr_idx] = ring;
1312         }
1313
1314         return 0;
1315 }
1316
1317
1318 /**
1319  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1320  *  @adapter: board private structure to initialize
1321  *
1322  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1323  *  return -ENOMEM.
1324  **/
1325 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1326 {
1327         int q_vectors = adapter->num_q_vectors;
1328         int rxr_remaining = adapter->num_rx_queues;
1329         int txr_remaining = adapter->num_tx_queues;
1330         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1331         int err;
1332
1333         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1334                 for (; rxr_remaining; v_idx++) {
1335                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1336                                                  0, 0, 1, rxr_idx);
1337
1338                         if (err)
1339                                 goto err_out;
1340
1341                         /* update counts and index */
1342                         rxr_remaining--;
1343                         rxr_idx++;
1344                 }
1345         }
1346
1347         for (; v_idx < q_vectors; v_idx++) {
1348                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1349                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1350
1351                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1352                                          tqpv, txr_idx, rqpv, rxr_idx);
1353
1354                 if (err)
1355                         goto err_out;
1356
1357                 /* update counts and index */
1358                 rxr_remaining -= rqpv;
1359                 txr_remaining -= tqpv;
1360                 rxr_idx++;
1361                 txr_idx++;
1362         }
1363
1364         return 0;
1365
1366 err_out:
1367         adapter->num_tx_queues = 0;
1368         adapter->num_rx_queues = 0;
1369         adapter->num_q_vectors = 0;
1370
1371         while (v_idx--)
1372                 igb_free_q_vector(adapter, v_idx);
1373
1374         return -ENOMEM;
1375 }
1376
1377 /**
1378  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1379  *  @adapter: board private structure to initialize
1380  *  @msix: boolean value of MSIX capability
1381  *
1382  *  This function initializes the interrupts and allocates all of the queues.
1383  **/
1384 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1385 {
1386         struct pci_dev *pdev = adapter->pdev;
1387         int err;
1388
1389         igb_set_interrupt_capability(adapter, msix);
1390
1391         err = igb_alloc_q_vectors(adapter);
1392         if (err) {
1393                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1394                 goto err_alloc_q_vectors;
1395         }
1396
1397         igb_cache_ring_register(adapter);
1398
1399         return 0;
1400
1401 err_alloc_q_vectors:
1402         igb_reset_interrupt_capability(adapter);
1403         return err;
1404 }
1405
1406 /**
1407  *  igb_request_irq - initialize interrupts
1408  *  @adapter: board private structure to initialize
1409  *
1410  *  Attempts to configure interrupts using the best available
1411  *  capabilities of the hardware and kernel.
1412  **/
1413 static int igb_request_irq(struct igb_adapter *adapter)
1414 {
1415         struct net_device *netdev = adapter->netdev;
1416         struct pci_dev *pdev = adapter->pdev;
1417         int err = 0;
1418
1419         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1420                 err = igb_request_msix(adapter);
1421                 if (!err)
1422                         goto request_done;
1423                 /* fall back to MSI */
1424                 igb_free_all_tx_resources(adapter);
1425                 igb_free_all_rx_resources(adapter);
1426
1427                 igb_clear_interrupt_scheme(adapter);
1428                 err = igb_init_interrupt_scheme(adapter, false);
1429                 if (err)
1430                         goto request_done;
1431
1432                 igb_setup_all_tx_resources(adapter);
1433                 igb_setup_all_rx_resources(adapter);
1434                 igb_configure(adapter);
1435         }
1436
1437         igb_assign_vector(adapter->q_vector[0], 0);
1438
1439         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1440                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1441                                   netdev->name, adapter);
1442                 if (!err)
1443                         goto request_done;
1444
1445                 /* fall back to legacy interrupts */
1446                 igb_reset_interrupt_capability(adapter);
1447                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1448         }
1449
1450         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1451                           netdev->name, adapter);
1452
1453         if (err)
1454                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1455                         err);
1456
1457 request_done:
1458         return err;
1459 }
1460
1461 static void igb_free_irq(struct igb_adapter *adapter)
1462 {
1463         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1464                 int vector = 0, i;
1465
1466                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1467
1468                 for (i = 0; i < adapter->num_q_vectors; i++)
1469                         free_irq(adapter->msix_entries[vector++].vector,
1470                                  adapter->q_vector[i]);
1471         } else {
1472                 free_irq(adapter->pdev->irq, adapter);
1473         }
1474 }
1475
1476 /**
1477  *  igb_irq_disable - Mask off interrupt generation on the NIC
1478  *  @adapter: board private structure
1479  **/
1480 static void igb_irq_disable(struct igb_adapter *adapter)
1481 {
1482         struct e1000_hw *hw = &adapter->hw;
1483
1484         /* we need to be careful when disabling interrupts.  The VFs are also
1485          * mapped into these registers and so clearing the bits can cause
1486          * issues on the VF drivers so we only need to clear what we set
1487          */
1488         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489                 u32 regval = rd32(E1000_EIAM);
1490
1491                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1492                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1493                 regval = rd32(E1000_EIAC);
1494                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1495         }
1496
1497         wr32(E1000_IAM, 0);
1498         wr32(E1000_IMC, ~0);
1499         wrfl();
1500         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1501                 int i;
1502
1503                 for (i = 0; i < adapter->num_q_vectors; i++)
1504                         synchronize_irq(adapter->msix_entries[i].vector);
1505         } else {
1506                 synchronize_irq(adapter->pdev->irq);
1507         }
1508 }
1509
1510 /**
1511  *  igb_irq_enable - Enable default interrupt generation settings
1512  *  @adapter: board private structure
1513  **/
1514 static void igb_irq_enable(struct igb_adapter *adapter)
1515 {
1516         struct e1000_hw *hw = &adapter->hw;
1517
1518         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1519                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1520                 u32 regval = rd32(E1000_EIAC);
1521
1522                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1523                 regval = rd32(E1000_EIAM);
1524                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1525                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1526                 if (adapter->vfs_allocated_count) {
1527                         wr32(E1000_MBVFIMR, 0xFF);
1528                         ims |= E1000_IMS_VMMB;
1529                 }
1530                 wr32(E1000_IMS, ims);
1531         } else {
1532                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1533                                 E1000_IMS_DRSTA);
1534                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1535                                 E1000_IMS_DRSTA);
1536         }
1537 }
1538
1539 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1540 {
1541         struct e1000_hw *hw = &adapter->hw;
1542         u16 pf_id = adapter->vfs_allocated_count;
1543         u16 vid = adapter->hw.mng_cookie.vlan_id;
1544         u16 old_vid = adapter->mng_vlan_id;
1545
1546         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1547                 /* add VID to filter table */
1548                 igb_vfta_set(hw, vid, pf_id, true, true);
1549                 adapter->mng_vlan_id = vid;
1550         } else {
1551                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1552         }
1553
1554         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1555             (vid != old_vid) &&
1556             !test_bit(old_vid, adapter->active_vlans)) {
1557                 /* remove VID from filter table */
1558                 igb_vfta_set(hw, vid, pf_id, false, true);
1559         }
1560 }
1561
1562 /**
1563  *  igb_release_hw_control - release control of the h/w to f/w
1564  *  @adapter: address of board private structure
1565  *
1566  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1567  *  For ASF and Pass Through versions of f/w this means that the
1568  *  driver is no longer loaded.
1569  **/
1570 static void igb_release_hw_control(struct igb_adapter *adapter)
1571 {
1572         struct e1000_hw *hw = &adapter->hw;
1573         u32 ctrl_ext;
1574
1575         /* Let firmware take over control of h/w */
1576         ctrl_ext = rd32(E1000_CTRL_EXT);
1577         wr32(E1000_CTRL_EXT,
1578                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1579 }
1580
1581 /**
1582  *  igb_get_hw_control - get control of the h/w from f/w
1583  *  @adapter: address of board private structure
1584  *
1585  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1586  *  For ASF and Pass Through versions of f/w this means that
1587  *  the driver is loaded.
1588  **/
1589 static void igb_get_hw_control(struct igb_adapter *adapter)
1590 {
1591         struct e1000_hw *hw = &adapter->hw;
1592         u32 ctrl_ext;
1593
1594         /* Let firmware know the driver has taken over */
1595         ctrl_ext = rd32(E1000_CTRL_EXT);
1596         wr32(E1000_CTRL_EXT,
1597                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1598 }
1599
1600 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1601 {
1602         struct net_device *netdev = adapter->netdev;
1603         struct e1000_hw *hw = &adapter->hw;
1604
1605         WARN_ON(hw->mac.type != e1000_i210);
1606
1607         if (enable)
1608                 adapter->flags |= IGB_FLAG_FQTSS;
1609         else
1610                 adapter->flags &= ~IGB_FLAG_FQTSS;
1611
1612         if (netif_running(netdev))
1613                 schedule_work(&adapter->reset_task);
1614 }
1615
1616 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1617 {
1618         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1619 }
1620
1621 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1622                                    enum tx_queue_prio prio)
1623 {
1624         u32 val;
1625
1626         WARN_ON(hw->mac.type != e1000_i210);
1627         WARN_ON(queue < 0 || queue > 4);
1628
1629         val = rd32(E1000_I210_TXDCTL(queue));
1630
1631         if (prio == TX_QUEUE_PRIO_HIGH)
1632                 val |= E1000_TXDCTL_PRIORITY;
1633         else
1634                 val &= ~E1000_TXDCTL_PRIORITY;
1635
1636         wr32(E1000_I210_TXDCTL(queue), val);
1637 }
1638
1639 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1640 {
1641         u32 val;
1642
1643         WARN_ON(hw->mac.type != e1000_i210);
1644         WARN_ON(queue < 0 || queue > 1);
1645
1646         val = rd32(E1000_I210_TQAVCC(queue));
1647
1648         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1649                 val |= E1000_TQAVCC_QUEUEMODE;
1650         else
1651                 val &= ~E1000_TQAVCC_QUEUEMODE;
1652
1653         wr32(E1000_I210_TQAVCC(queue), val);
1654 }
1655
1656 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1657 {
1658         int i;
1659
1660         for (i = 0; i < adapter->num_tx_queues; i++) {
1661                 if (adapter->tx_ring[i]->cbs_enable)
1662                         return true;
1663         }
1664
1665         return false;
1666 }
1667
1668 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1669 {
1670         int i;
1671
1672         for (i = 0; i < adapter->num_tx_queues; i++) {
1673                 if (adapter->tx_ring[i]->launchtime_enable)
1674                         return true;
1675         }
1676
1677         return false;
1678 }
1679
1680 /**
1681  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1682  *  @adapter: pointer to adapter struct
1683  *  @queue: queue number
1684  *
1685  *  Configure CBS and Launchtime for a given hardware queue.
1686  *  Parameters are retrieved from the correct Tx ring, so
1687  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1688  *  for setting those correctly prior to this function being called.
1689  **/
1690 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1691 {
1692         struct net_device *netdev = adapter->netdev;
1693         struct e1000_hw *hw = &adapter->hw;
1694         struct igb_ring *ring;
1695         u32 tqavcc, tqavctrl;
1696         u16 value;
1697
1698         WARN_ON(hw->mac.type != e1000_i210);
1699         WARN_ON(queue < 0 || queue > 1);
1700         ring = adapter->tx_ring[queue];
1701
1702         /* If any of the Qav features is enabled, configure queues as SR and
1703          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1704          * as SP.
1705          */
1706         if (ring->cbs_enable || ring->launchtime_enable) {
1707                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1708                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1709         } else {
1710                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1711                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1712         }
1713
1714         /* If CBS is enabled, set DataTranARB and config its parameters. */
1715         if (ring->cbs_enable || queue == 0) {
1716                 /* i210 does not allow the queue 0 to be in the Strict
1717                  * Priority mode while the Qav mode is enabled, so,
1718                  * instead of disabling strict priority mode, we give
1719                  * queue 0 the maximum of credits possible.
1720                  *
1721                  * See section 8.12.19 of the i210 datasheet, "Note:
1722                  * Queue0 QueueMode must be set to 1b when
1723                  * TransmitMode is set to Qav."
1724                  */
1725                 if (queue == 0 && !ring->cbs_enable) {
1726                         /* max "linkspeed" idleslope in kbps */
1727                         ring->idleslope = 1000000;
1728                         ring->hicredit = ETH_FRAME_LEN;
1729                 }
1730
1731                 /* Always set data transfer arbitration to credit-based
1732                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1733                  * the queues.
1734                  */
1735                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1736                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1737                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1738
1739                 /* According to i210 datasheet section 7.2.7.7, we should set
1740                  * the 'idleSlope' field from TQAVCC register following the
1741                  * equation:
1742                  *
1743                  * For 100 Mbps link speed:
1744                  *
1745                  *     value = BW * 0x7735 * 0.2                          (E1)
1746                  *
1747                  * For 1000Mbps link speed:
1748                  *
1749                  *     value = BW * 0x7735 * 2                            (E2)
1750                  *
1751                  * E1 and E2 can be merged into one equation as shown below.
1752                  * Note that 'link-speed' is in Mbps.
1753                  *
1754                  *     value = BW * 0x7735 * 2 * link-speed
1755                  *                           --------------               (E3)
1756                  *                                1000
1757                  *
1758                  * 'BW' is the percentage bandwidth out of full link speed
1759                  * which can be found with the following equation. Note that
1760                  * idleSlope here is the parameter from this function which
1761                  * is in kbps.
1762                  *
1763                  *     BW =     idleSlope
1764                  *          -----------------                             (E4)
1765                  *          link-speed * 1000
1766                  *
1767                  * That said, we can come up with a generic equation to
1768                  * calculate the value we should set it TQAVCC register by
1769                  * replacing 'BW' in E3 by E4. The resulting equation is:
1770                  *
1771                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1772                  *         -----------------            --------------    (E5)
1773                  *         link-speed * 1000                 1000
1774                  *
1775                  * 'link-speed' is present in both sides of the fraction so
1776                  * it is canceled out. The final equation is the following:
1777                  *
1778                  *     value = idleSlope * 61034
1779                  *             -----------------                          (E6)
1780                  *                  1000000
1781                  *
1782                  * NOTE: For i210, given the above, we can see that idleslope
1783                  *       is represented in 16.38431 kbps units by the value at
1784                  *       the TQAVCC register (1Gbps / 61034), which reduces
1785                  *       the granularity for idleslope increments.
1786                  *       For instance, if you want to configure a 2576kbps
1787                  *       idleslope, the value to be written on the register
1788                  *       would have to be 157.23. If rounded down, you end
1789                  *       up with less bandwidth available than originally
1790                  *       required (~2572 kbps). If rounded up, you end up
1791                  *       with a higher bandwidth (~2589 kbps). Below the
1792                  *       approach we take is to always round up the
1793                  *       calculated value, so the resulting bandwidth might
1794                  *       be slightly higher for some configurations.
1795                  */
1796                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1797
1798                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1799                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1800                 tqavcc |= value;
1801                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1802
1803                 wr32(E1000_I210_TQAVHC(queue),
1804                      0x80000000 + ring->hicredit * 0x7735);
1805         } else {
1806
1807                 /* Set idleSlope to zero. */
1808                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1809                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1810                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1811
1812                 /* Set hiCredit to zero. */
1813                 wr32(E1000_I210_TQAVHC(queue), 0);
1814
1815                 /* If CBS is not enabled for any queues anymore, then return to
1816                  * the default state of Data Transmission Arbitration on
1817                  * TQAVCTRL.
1818                  */
1819                 if (!is_any_cbs_enabled(adapter)) {
1820                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1821                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1822                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1823                 }
1824         }
1825
1826         /* If LaunchTime is enabled, set DataTranTIM. */
1827         if (ring->launchtime_enable) {
1828                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1829                  * for any of the SR queues, and configure fetchtime delta.
1830                  * XXX NOTE:
1831                  *     - LaunchTime will be enabled for all SR queues.
1832                  *     - A fixed offset can be added relative to the launch
1833                  *       time of all packets if configured at reg LAUNCH_OS0.
1834                  *       We are keeping it as 0 for now (default value).
1835                  */
1836                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1837                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1838                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1839                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1840         } else {
1841                 /* If Launchtime is not enabled for any SR queues anymore,
1842                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1843                  * effectively disabling Launchtime.
1844                  */
1845                 if (!is_any_txtime_enabled(adapter)) {
1846                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1847                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1848                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1849                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1850                 }
1851         }
1852
1853         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1854          * CBS are not configurable by software so we don't do any 'controller
1855          * configuration' in respect to these parameters.
1856          */
1857
1858         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1859                    ring->cbs_enable ? "enabled" : "disabled",
1860                    ring->launchtime_enable ? "enabled" : "disabled",
1861                    queue,
1862                    ring->idleslope, ring->sendslope,
1863                    ring->hicredit, ring->locredit);
1864 }
1865
1866 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1867                                   bool enable)
1868 {
1869         struct igb_ring *ring;
1870
1871         if (queue < 0 || queue > adapter->num_tx_queues)
1872                 return -EINVAL;
1873
1874         ring = adapter->tx_ring[queue];
1875         ring->launchtime_enable = enable;
1876
1877         return 0;
1878 }
1879
1880 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1881                                bool enable, int idleslope, int sendslope,
1882                                int hicredit, int locredit)
1883 {
1884         struct igb_ring *ring;
1885
1886         if (queue < 0 || queue > adapter->num_tx_queues)
1887                 return -EINVAL;
1888
1889         ring = adapter->tx_ring[queue];
1890
1891         ring->cbs_enable = enable;
1892         ring->idleslope = idleslope;
1893         ring->sendslope = sendslope;
1894         ring->hicredit = hicredit;
1895         ring->locredit = locredit;
1896
1897         return 0;
1898 }
1899
1900 /**
1901  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1902  *  @adapter: pointer to adapter struct
1903  *
1904  *  Configure TQAVCTRL register switching the controller's Tx mode
1905  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1906  *  a call to igb_config_tx_modes() per queue so any previously saved
1907  *  Tx parameters are applied.
1908  **/
1909 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1910 {
1911         struct net_device *netdev = adapter->netdev;
1912         struct e1000_hw *hw = &adapter->hw;
1913         u32 val;
1914
1915         /* Only i210 controller supports changing the transmission mode. */
1916         if (hw->mac.type != e1000_i210)
1917                 return;
1918
1919         if (is_fqtss_enabled(adapter)) {
1920                 int i, max_queue;
1921
1922                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1923                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1924                  * so SP queues wait for SR ones.
1925                  */
1926                 val = rd32(E1000_I210_TQAVCTRL);
1927                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1928                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1929                 wr32(E1000_I210_TQAVCTRL, val);
1930
1931                 /* Configure Tx and Rx packet buffers sizes as described in
1932                  * i210 datasheet section 7.2.7.7.
1933                  */
1934                 val = rd32(E1000_TXPBS);
1935                 val &= ~I210_TXPBSIZE_MASK;
1936                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1937                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1938                 wr32(E1000_TXPBS, val);
1939
1940                 val = rd32(E1000_RXPBS);
1941                 val &= ~I210_RXPBSIZE_MASK;
1942                 val |= I210_RXPBSIZE_PB_30KB;
1943                 wr32(E1000_RXPBS, val);
1944
1945                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1946                  * register should not exceed the buffer size programmed in
1947                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1948                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1949                  * 4kB / 64.
1950                  *
1951                  * However, when we do so, no frame from queue 2 and 3 are
1952                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1953                  * or _equal_ to the buffer size programmed in TXPBS. For this
1954                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1955                  */
1956                 val = (4096 - 1) / 64;
1957                 wr32(E1000_I210_DTXMXPKTSZ, val);
1958
1959                 /* Since FQTSS mode is enabled, apply any CBS configuration
1960                  * previously set. If no previous CBS configuration has been
1961                  * done, then the initial configuration is applied, which means
1962                  * CBS is disabled.
1963                  */
1964                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1965                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1966
1967                 for (i = 0; i < max_queue; i++) {
1968                         igb_config_tx_modes(adapter, i);
1969                 }
1970         } else {
1971                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1972                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1973                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1974
1975                 val = rd32(E1000_I210_TQAVCTRL);
1976                 /* According to Section 8.12.21, the other flags we've set when
1977                  * enabling FQTSS are not relevant when disabling FQTSS so we
1978                  * don't set they here.
1979                  */
1980                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1981                 wr32(E1000_I210_TQAVCTRL, val);
1982         }
1983
1984         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1985                    "enabled" : "disabled");
1986 }
1987
1988 /**
1989  *  igb_configure - configure the hardware for RX and TX
1990  *  @adapter: private board structure
1991  **/
1992 static void igb_configure(struct igb_adapter *adapter)
1993 {
1994         struct net_device *netdev = adapter->netdev;
1995         int i;
1996
1997         igb_get_hw_control(adapter);
1998         igb_set_rx_mode(netdev);
1999         igb_setup_tx_mode(adapter);
2000
2001         igb_restore_vlan(adapter);
2002
2003         igb_setup_tctl(adapter);
2004         igb_setup_mrqc(adapter);
2005         igb_setup_rctl(adapter);
2006
2007         igb_nfc_filter_restore(adapter);
2008         igb_configure_tx(adapter);
2009         igb_configure_rx(adapter);
2010
2011         igb_rx_fifo_flush_82575(&adapter->hw);
2012
2013         /* call igb_desc_unused which always leaves
2014          * at least 1 descriptor unused to make sure
2015          * next_to_use != next_to_clean
2016          */
2017         for (i = 0; i < adapter->num_rx_queues; i++) {
2018                 struct igb_ring *ring = adapter->rx_ring[i];
2019                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2020         }
2021 }
2022
2023 /**
2024  *  igb_power_up_link - Power up the phy/serdes link
2025  *  @adapter: address of board private structure
2026  **/
2027 void igb_power_up_link(struct igb_adapter *adapter)
2028 {
2029         igb_reset_phy(&adapter->hw);
2030
2031         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2032                 igb_power_up_phy_copper(&adapter->hw);
2033         else
2034                 igb_power_up_serdes_link_82575(&adapter->hw);
2035
2036         igb_setup_link(&adapter->hw);
2037 }
2038
2039 /**
2040  *  igb_power_down_link - Power down the phy/serdes link
2041  *  @adapter: address of board private structure
2042  */
2043 static void igb_power_down_link(struct igb_adapter *adapter)
2044 {
2045         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2046                 igb_power_down_phy_copper_82575(&adapter->hw);
2047         else
2048                 igb_shutdown_serdes_link_82575(&adapter->hw);
2049 }
2050
2051 /**
2052  * Detect and switch function for Media Auto Sense
2053  * @adapter: address of the board private structure
2054  **/
2055 static void igb_check_swap_media(struct igb_adapter *adapter)
2056 {
2057         struct e1000_hw *hw = &adapter->hw;
2058         u32 ctrl_ext, connsw;
2059         bool swap_now = false;
2060
2061         ctrl_ext = rd32(E1000_CTRL_EXT);
2062         connsw = rd32(E1000_CONNSW);
2063
2064         /* need to live swap if current media is copper and we have fiber/serdes
2065          * to go to.
2066          */
2067
2068         if ((hw->phy.media_type == e1000_media_type_copper) &&
2069             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2070                 swap_now = true;
2071         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2072                    !(connsw & E1000_CONNSW_SERDESD)) {
2073                 /* copper signal takes time to appear */
2074                 if (adapter->copper_tries < 4) {
2075                         adapter->copper_tries++;
2076                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2077                         wr32(E1000_CONNSW, connsw);
2078                         return;
2079                 } else {
2080                         adapter->copper_tries = 0;
2081                         if ((connsw & E1000_CONNSW_PHYSD) &&
2082                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2083                                 swap_now = true;
2084                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2085                                 wr32(E1000_CONNSW, connsw);
2086                         }
2087                 }
2088         }
2089
2090         if (!swap_now)
2091                 return;
2092
2093         switch (hw->phy.media_type) {
2094         case e1000_media_type_copper:
2095                 netdev_info(adapter->netdev,
2096                         "MAS: changing media to fiber/serdes\n");
2097                 ctrl_ext |=
2098                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2099                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2100                 adapter->copper_tries = 0;
2101                 break;
2102         case e1000_media_type_internal_serdes:
2103         case e1000_media_type_fiber:
2104                 netdev_info(adapter->netdev,
2105                         "MAS: changing media to copper\n");
2106                 ctrl_ext &=
2107                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2108                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2109                 break;
2110         default:
2111                 /* shouldn't get here during regular operation */
2112                 netdev_err(adapter->netdev,
2113                         "AMS: Invalid media type found, returning\n");
2114                 break;
2115         }
2116         wr32(E1000_CTRL_EXT, ctrl_ext);
2117 }
2118
2119 /**
2120  *  igb_up - Open the interface and prepare it to handle traffic
2121  *  @adapter: board private structure
2122  **/
2123 int igb_up(struct igb_adapter *adapter)
2124 {
2125         struct e1000_hw *hw = &adapter->hw;
2126         int i;
2127
2128         /* hardware has been reset, we need to reload some things */
2129         igb_configure(adapter);
2130
2131         clear_bit(__IGB_DOWN, &adapter->state);
2132
2133         for (i = 0; i < adapter->num_q_vectors; i++)
2134                 napi_enable(&(adapter->q_vector[i]->napi));
2135
2136         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2137                 igb_configure_msix(adapter);
2138         else
2139                 igb_assign_vector(adapter->q_vector[0], 0);
2140
2141         /* Clear any pending interrupts. */
2142         rd32(E1000_TSICR);
2143         rd32(E1000_ICR);
2144         igb_irq_enable(adapter);
2145
2146         /* notify VFs that reset has been completed */
2147         if (adapter->vfs_allocated_count) {
2148                 u32 reg_data = rd32(E1000_CTRL_EXT);
2149
2150                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2151                 wr32(E1000_CTRL_EXT, reg_data);
2152         }
2153
2154         netif_tx_start_all_queues(adapter->netdev);
2155
2156         /* start the watchdog. */
2157         hw->mac.get_link_status = 1;
2158         schedule_work(&adapter->watchdog_task);
2159
2160         if ((adapter->flags & IGB_FLAG_EEE) &&
2161             (!hw->dev_spec._82575.eee_disable))
2162                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2163
2164         return 0;
2165 }
2166
2167 void igb_down(struct igb_adapter *adapter)
2168 {
2169         struct net_device *netdev = adapter->netdev;
2170         struct e1000_hw *hw = &adapter->hw;
2171         u32 tctl, rctl;
2172         int i;
2173
2174         /* signal that we're down so the interrupt handler does not
2175          * reschedule our watchdog timer
2176          */
2177         set_bit(__IGB_DOWN, &adapter->state);
2178
2179         /* disable receives in the hardware */
2180         rctl = rd32(E1000_RCTL);
2181         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2182         /* flush and sleep below */
2183
2184         igb_nfc_filter_exit(adapter);
2185
2186         netif_carrier_off(netdev);
2187         netif_tx_stop_all_queues(netdev);
2188
2189         /* disable transmits in the hardware */
2190         tctl = rd32(E1000_TCTL);
2191         tctl &= ~E1000_TCTL_EN;
2192         wr32(E1000_TCTL, tctl);
2193         /* flush both disables and wait for them to finish */
2194         wrfl();
2195         usleep_range(10000, 11000);
2196
2197         igb_irq_disable(adapter);
2198
2199         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2200
2201         for (i = 0; i < adapter->num_q_vectors; i++) {
2202                 if (adapter->q_vector[i]) {
2203                         napi_synchronize(&adapter->q_vector[i]->napi);
2204                         napi_disable(&adapter->q_vector[i]->napi);
2205                 }
2206         }
2207
2208         del_timer_sync(&adapter->watchdog_timer);
2209         del_timer_sync(&adapter->phy_info_timer);
2210
2211         /* record the stats before reset*/
2212         spin_lock(&adapter->stats64_lock);
2213         igb_update_stats(adapter);
2214         spin_unlock(&adapter->stats64_lock);
2215
2216         adapter->link_speed = 0;
2217         adapter->link_duplex = 0;
2218
2219         if (!pci_channel_offline(adapter->pdev))
2220                 igb_reset(adapter);
2221
2222         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2223         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2224
2225         igb_clean_all_tx_rings(adapter);
2226         igb_clean_all_rx_rings(adapter);
2227 #ifdef CONFIG_IGB_DCA
2228
2229         /* since we reset the hardware DCA settings were cleared */
2230         igb_setup_dca(adapter);
2231 #endif
2232 }
2233
2234 void igb_reinit_locked(struct igb_adapter *adapter)
2235 {
2236         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2237                 usleep_range(1000, 2000);
2238         igb_down(adapter);
2239         igb_up(adapter);
2240         clear_bit(__IGB_RESETTING, &adapter->state);
2241 }
2242
2243 /** igb_enable_mas - Media Autosense re-enable after swap
2244  *
2245  * @adapter: adapter struct
2246  **/
2247 static void igb_enable_mas(struct igb_adapter *adapter)
2248 {
2249         struct e1000_hw *hw = &adapter->hw;
2250         u32 connsw = rd32(E1000_CONNSW);
2251
2252         /* configure for SerDes media detect */
2253         if ((hw->phy.media_type == e1000_media_type_copper) &&
2254             (!(connsw & E1000_CONNSW_SERDESD))) {
2255                 connsw |= E1000_CONNSW_ENRGSRC;
2256                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2257                 wr32(E1000_CONNSW, connsw);
2258                 wrfl();
2259         }
2260 }
2261
2262 void igb_reset(struct igb_adapter *adapter)
2263 {
2264         struct pci_dev *pdev = adapter->pdev;
2265         struct e1000_hw *hw = &adapter->hw;
2266         struct e1000_mac_info *mac = &hw->mac;
2267         struct e1000_fc_info *fc = &hw->fc;
2268         u32 pba, hwm;
2269
2270         /* Repartition Pba for greater than 9k mtu
2271          * To take effect CTRL.RST is required.
2272          */
2273         switch (mac->type) {
2274         case e1000_i350:
2275         case e1000_i354:
2276         case e1000_82580:
2277                 pba = rd32(E1000_RXPBS);
2278                 pba = igb_rxpbs_adjust_82580(pba);
2279                 break;
2280         case e1000_82576:
2281                 pba = rd32(E1000_RXPBS);
2282                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2283                 break;
2284         case e1000_82575:
2285         case e1000_i210:
2286         case e1000_i211:
2287         default:
2288                 pba = E1000_PBA_34K;
2289                 break;
2290         }
2291
2292         if (mac->type == e1000_82575) {
2293                 u32 min_rx_space, min_tx_space, needed_tx_space;
2294
2295                 /* write Rx PBA so that hardware can report correct Tx PBA */
2296                 wr32(E1000_PBA, pba);
2297
2298                 /* To maintain wire speed transmits, the Tx FIFO should be
2299                  * large enough to accommodate two full transmit packets,
2300                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2301                  * the Rx FIFO should be large enough to accommodate at least
2302                  * one full receive packet and is similarly rounded up and
2303                  * expressed in KB.
2304                  */
2305                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2306
2307                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2308                  * but don't include Ethernet FCS because hardware appends it.
2309                  * We only need to round down to the nearest 512 byte block
2310                  * count since the value we care about is 2 frames, not 1.
2311                  */
2312                 min_tx_space = adapter->max_frame_size;
2313                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2314                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2315
2316                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2317                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2318
2319                 /* If current Tx allocation is less than the min Tx FIFO size,
2320                  * and the min Tx FIFO size is less than the current Rx FIFO
2321                  * allocation, take space away from current Rx allocation.
2322                  */
2323                 if (needed_tx_space < pba) {
2324                         pba -= needed_tx_space;
2325
2326                         /* if short on Rx space, Rx wins and must trump Tx
2327                          * adjustment
2328                          */
2329                         if (pba < min_rx_space)
2330                                 pba = min_rx_space;
2331                 }
2332
2333                 /* adjust PBA for jumbo frames */
2334                 wr32(E1000_PBA, pba);
2335         }
2336
2337         /* flow control settings
2338          * The high water mark must be low enough to fit one full frame
2339          * after transmitting the pause frame.  As such we must have enough
2340          * space to allow for us to complete our current transmit and then
2341          * receive the frame that is in progress from the link partner.
2342          * Set it to:
2343          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2344          */
2345         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2346
2347         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2348         fc->low_water = fc->high_water - 16;
2349         fc->pause_time = 0xFFFF;
2350         fc->send_xon = 1;
2351         fc->current_mode = fc->requested_mode;
2352
2353         /* disable receive for all VFs and wait one second */
2354         if (adapter->vfs_allocated_count) {
2355                 int i;
2356
2357                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2358                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2359
2360                 /* ping all the active vfs to let them know we are going down */
2361                 igb_ping_all_vfs(adapter);
2362
2363                 /* disable transmits and receives */
2364                 wr32(E1000_VFRE, 0);
2365                 wr32(E1000_VFTE, 0);
2366         }
2367
2368         /* Allow time for pending master requests to run */
2369         hw->mac.ops.reset_hw(hw);
2370         wr32(E1000_WUC, 0);
2371
2372         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2373                 /* need to resetup here after media swap */
2374                 adapter->ei.get_invariants(hw);
2375                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2376         }
2377         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2378             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2379                 igb_enable_mas(adapter);
2380         }
2381         if (hw->mac.ops.init_hw(hw))
2382                 dev_err(&pdev->dev, "Hardware Error\n");
2383
2384         /* RAR registers were cleared during init_hw, clear mac table */
2385         igb_flush_mac_table(adapter);
2386         __dev_uc_unsync(adapter->netdev, NULL);
2387
2388         /* Recover default RAR entry */
2389         igb_set_default_mac_filter(adapter);
2390
2391         /* Flow control settings reset on hardware reset, so guarantee flow
2392          * control is off when forcing speed.
2393          */
2394         if (!hw->mac.autoneg)
2395                 igb_force_mac_fc(hw);
2396
2397         igb_init_dmac(adapter, pba);
2398 #ifdef CONFIG_IGB_HWMON
2399         /* Re-initialize the thermal sensor on i350 devices. */
2400         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2401                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2402                         /* If present, re-initialize the external thermal sensor
2403                          * interface.
2404                          */
2405                         if (adapter->ets)
2406                                 mac->ops.init_thermal_sensor_thresh(hw);
2407                 }
2408         }
2409 #endif
2410         /* Re-establish EEE setting */
2411         if (hw->phy.media_type == e1000_media_type_copper) {
2412                 switch (mac->type) {
2413                 case e1000_i350:
2414                 case e1000_i210:
2415                 case e1000_i211:
2416                         igb_set_eee_i350(hw, true, true);
2417                         break;
2418                 case e1000_i354:
2419                         igb_set_eee_i354(hw, true, true);
2420                         break;
2421                 default:
2422                         break;
2423                 }
2424         }
2425         if (!netif_running(adapter->netdev))
2426                 igb_power_down_link(adapter);
2427
2428         igb_update_mng_vlan(adapter);
2429
2430         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2431         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2432
2433         /* Re-enable PTP, where applicable. */
2434         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2435                 igb_ptp_reset(adapter);
2436
2437         igb_get_phy_info(hw);
2438 }
2439
2440 static netdev_features_t igb_fix_features(struct net_device *netdev,
2441         netdev_features_t features)
2442 {
2443         /* Since there is no support for separate Rx/Tx vlan accel
2444          * enable/disable make sure Tx flag is always in same state as Rx.
2445          */
2446         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2447                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2448         else
2449                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2450
2451         return features;
2452 }
2453
2454 static int igb_set_features(struct net_device *netdev,
2455         netdev_features_t features)
2456 {
2457         netdev_features_t changed = netdev->features ^ features;
2458         struct igb_adapter *adapter = netdev_priv(netdev);
2459
2460         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2461                 igb_vlan_mode(netdev, features);
2462
2463         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2464                 return 0;
2465
2466         if (!(features & NETIF_F_NTUPLE)) {
2467                 struct hlist_node *node2;
2468                 struct igb_nfc_filter *rule;
2469
2470                 spin_lock(&adapter->nfc_lock);
2471                 hlist_for_each_entry_safe(rule, node2,
2472                                           &adapter->nfc_filter_list, nfc_node) {
2473                         igb_erase_filter(adapter, rule);
2474                         hlist_del(&rule->nfc_node);
2475                         kfree(rule);
2476                 }
2477                 spin_unlock(&adapter->nfc_lock);
2478                 adapter->nfc_filter_count = 0;
2479         }
2480
2481         netdev->features = features;
2482
2483         if (netif_running(netdev))
2484                 igb_reinit_locked(adapter);
2485         else
2486                 igb_reset(adapter);
2487
2488         return 1;
2489 }
2490
2491 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2492                            struct net_device *dev,
2493                            const unsigned char *addr, u16 vid,
2494                            u16 flags,
2495                            struct netlink_ext_ack *extack)
2496 {
2497         /* guarantee we can provide a unique filter for the unicast address */
2498         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2499                 struct igb_adapter *adapter = netdev_priv(dev);
2500                 int vfn = adapter->vfs_allocated_count;
2501
2502                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2503                         return -ENOMEM;
2504         }
2505
2506         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2507 }
2508
2509 #define IGB_MAX_MAC_HDR_LEN     127
2510 #define IGB_MAX_NETWORK_HDR_LEN 511
2511
2512 static netdev_features_t
2513 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2514                    netdev_features_t features)
2515 {
2516         unsigned int network_hdr_len, mac_hdr_len;
2517
2518         /* Make certain the headers can be described by a context descriptor */
2519         mac_hdr_len = skb_network_header(skb) - skb->data;
2520         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2521                 return features & ~(NETIF_F_HW_CSUM |
2522                                     NETIF_F_SCTP_CRC |
2523                                     NETIF_F_GSO_UDP_L4 |
2524                                     NETIF_F_HW_VLAN_CTAG_TX |
2525                                     NETIF_F_TSO |
2526                                     NETIF_F_TSO6);
2527
2528         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2529         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2530                 return features & ~(NETIF_F_HW_CSUM |
2531                                     NETIF_F_SCTP_CRC |
2532                                     NETIF_F_GSO_UDP_L4 |
2533                                     NETIF_F_TSO |
2534                                     NETIF_F_TSO6);
2535
2536         /* We can only support IPV4 TSO in tunnels if we can mangle the
2537          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2538          */
2539         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2540                 features &= ~NETIF_F_TSO;
2541
2542         return features;
2543 }
2544
2545 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2546 {
2547         if (!is_fqtss_enabled(adapter)) {
2548                 enable_fqtss(adapter, true);
2549                 return;
2550         }
2551
2552         igb_config_tx_modes(adapter, queue);
2553
2554         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2555                 enable_fqtss(adapter, false);
2556 }
2557
2558 static int igb_offload_cbs(struct igb_adapter *adapter,
2559                            struct tc_cbs_qopt_offload *qopt)
2560 {
2561         struct e1000_hw *hw = &adapter->hw;
2562         int err;
2563
2564         /* CBS offloading is only supported by i210 controller. */
2565         if (hw->mac.type != e1000_i210)
2566                 return -EOPNOTSUPP;
2567
2568         /* CBS offloading is only supported by queue 0 and queue 1. */
2569         if (qopt->queue < 0 || qopt->queue > 1)
2570                 return -EINVAL;
2571
2572         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2573                                   qopt->idleslope, qopt->sendslope,
2574                                   qopt->hicredit, qopt->locredit);
2575         if (err)
2576                 return err;
2577
2578         igb_offload_apply(adapter, qopt->queue);
2579
2580         return 0;
2581 }
2582
2583 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2584 #define VLAN_PRIO_FULL_MASK (0x07)
2585
2586 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2587                                 struct flow_cls_offload *f,
2588                                 int traffic_class,
2589                                 struct igb_nfc_filter *input)
2590 {
2591         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2592         struct flow_dissector *dissector = rule->match.dissector;
2593         struct netlink_ext_ack *extack = f->common.extack;
2594
2595         if (dissector->used_keys &
2596             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2597               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2598               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2599               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2600                 NL_SET_ERR_MSG_MOD(extack,
2601                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2602                 return -EOPNOTSUPP;
2603         }
2604
2605         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2606                 struct flow_match_eth_addrs match;
2607
2608                 flow_rule_match_eth_addrs(rule, &match);
2609                 if (!is_zero_ether_addr(match.mask->dst)) {
2610                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2611                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2612                                 return -EINVAL;
2613                         }
2614
2615                         input->filter.match_flags |=
2616                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2617                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2618                 }
2619
2620                 if (!is_zero_ether_addr(match.mask->src)) {
2621                         if (!is_broadcast_ether_addr(match.mask->src)) {
2622                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2623                                 return -EINVAL;
2624                         }
2625
2626                         input->filter.match_flags |=
2627                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2628                         ether_addr_copy(input->filter.src_addr, match.key->src);
2629                 }
2630         }
2631
2632         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2633                 struct flow_match_basic match;
2634
2635                 flow_rule_match_basic(rule, &match);
2636                 if (match.mask->n_proto) {
2637                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2638                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2639                                 return -EINVAL;
2640                         }
2641
2642                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2643                         input->filter.etype = match.key->n_proto;
2644                 }
2645         }
2646
2647         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2648                 struct flow_match_vlan match;
2649
2650                 flow_rule_match_vlan(rule, &match);
2651                 if (match.mask->vlan_priority) {
2652                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2653                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2654                                 return -EINVAL;
2655                         }
2656
2657                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2658                         input->filter.vlan_tci =
2659                                 (__force __be16)match.key->vlan_priority;
2660                 }
2661         }
2662
2663         input->action = traffic_class;
2664         input->cookie = f->cookie;
2665
2666         return 0;
2667 }
2668
2669 static int igb_configure_clsflower(struct igb_adapter *adapter,
2670                                    struct flow_cls_offload *cls_flower)
2671 {
2672         struct netlink_ext_ack *extack = cls_flower->common.extack;
2673         struct igb_nfc_filter *filter, *f;
2674         int err, tc;
2675
2676         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2677         if (tc < 0) {
2678                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2679                 return -EINVAL;
2680         }
2681
2682         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2683         if (!filter)
2684                 return -ENOMEM;
2685
2686         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2687         if (err < 0)
2688                 goto err_parse;
2689
2690         spin_lock(&adapter->nfc_lock);
2691
2692         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2693                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2694                         err = -EEXIST;
2695                         NL_SET_ERR_MSG_MOD(extack,
2696                                            "This filter is already set in ethtool");
2697                         goto err_locked;
2698                 }
2699         }
2700
2701         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2702                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2703                         err = -EEXIST;
2704                         NL_SET_ERR_MSG_MOD(extack,
2705                                            "This filter is already set in cls_flower");
2706                         goto err_locked;
2707                 }
2708         }
2709
2710         err = igb_add_filter(adapter, filter);
2711         if (err < 0) {
2712                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2713                 goto err_locked;
2714         }
2715
2716         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2717
2718         spin_unlock(&adapter->nfc_lock);
2719
2720         return 0;
2721
2722 err_locked:
2723         spin_unlock(&adapter->nfc_lock);
2724
2725 err_parse:
2726         kfree(filter);
2727
2728         return err;
2729 }
2730
2731 static int igb_delete_clsflower(struct igb_adapter *adapter,
2732                                 struct flow_cls_offload *cls_flower)
2733 {
2734         struct igb_nfc_filter *filter;
2735         int err;
2736
2737         spin_lock(&adapter->nfc_lock);
2738
2739         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2740                 if (filter->cookie == cls_flower->cookie)
2741                         break;
2742
2743         if (!filter) {
2744                 err = -ENOENT;
2745                 goto out;
2746         }
2747
2748         err = igb_erase_filter(adapter, filter);
2749         if (err < 0)
2750                 goto out;
2751
2752         hlist_del(&filter->nfc_node);
2753         kfree(filter);
2754
2755 out:
2756         spin_unlock(&adapter->nfc_lock);
2757
2758         return err;
2759 }
2760
2761 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2762                                    struct flow_cls_offload *cls_flower)
2763 {
2764         switch (cls_flower->command) {
2765         case FLOW_CLS_REPLACE:
2766                 return igb_configure_clsflower(adapter, cls_flower);
2767         case FLOW_CLS_DESTROY:
2768                 return igb_delete_clsflower(adapter, cls_flower);
2769         case FLOW_CLS_STATS:
2770                 return -EOPNOTSUPP;
2771         default:
2772                 return -EOPNOTSUPP;
2773         }
2774 }
2775
2776 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2777                                  void *cb_priv)
2778 {
2779         struct igb_adapter *adapter = cb_priv;
2780
2781         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2782                 return -EOPNOTSUPP;
2783
2784         switch (type) {
2785         case TC_SETUP_CLSFLOWER:
2786                 return igb_setup_tc_cls_flower(adapter, type_data);
2787
2788         default:
2789                 return -EOPNOTSUPP;
2790         }
2791 }
2792
2793 static int igb_offload_txtime(struct igb_adapter *adapter,
2794                               struct tc_etf_qopt_offload *qopt)
2795 {
2796         struct e1000_hw *hw = &adapter->hw;
2797         int err;
2798
2799         /* Launchtime offloading is only supported by i210 controller. */
2800         if (hw->mac.type != e1000_i210)
2801                 return -EOPNOTSUPP;
2802
2803         /* Launchtime offloading is only supported by queues 0 and 1. */
2804         if (qopt->queue < 0 || qopt->queue > 1)
2805                 return -EINVAL;
2806
2807         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2808         if (err)
2809                 return err;
2810
2811         igb_offload_apply(adapter, qopt->queue);
2812
2813         return 0;
2814 }
2815
2816 static LIST_HEAD(igb_block_cb_list);
2817
2818 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2819                         void *type_data)
2820 {
2821         struct igb_adapter *adapter = netdev_priv(dev);
2822
2823         switch (type) {
2824         case TC_SETUP_QDISC_CBS:
2825                 return igb_offload_cbs(adapter, type_data);
2826         case TC_SETUP_BLOCK:
2827                 return flow_block_cb_setup_simple(type_data,
2828                                                   &igb_block_cb_list,
2829                                                   igb_setup_tc_block_cb,
2830                                                   adapter, adapter, true);
2831
2832         case TC_SETUP_QDISC_ETF:
2833                 return igb_offload_txtime(adapter, type_data);
2834
2835         default:
2836                 return -EOPNOTSUPP;
2837         }
2838 }
2839
2840 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2841 {
2842         int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2843         struct igb_adapter *adapter = netdev_priv(dev);
2844         struct bpf_prog *prog = bpf->prog, *old_prog;
2845         bool running = netif_running(dev);
2846         bool need_reset;
2847
2848         /* verify igb ring attributes are sufficient for XDP */
2849         for (i = 0; i < adapter->num_rx_queues; i++) {
2850                 struct igb_ring *ring = adapter->rx_ring[i];
2851
2852                 if (frame_size > igb_rx_bufsz(ring)) {
2853                         NL_SET_ERR_MSG_MOD(bpf->extack,
2854                                            "The RX buffer size is too small for the frame size");
2855                         netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2856                                     igb_rx_bufsz(ring), frame_size);
2857                         return -EINVAL;
2858                 }
2859         }
2860
2861         old_prog = xchg(&adapter->xdp_prog, prog);
2862         need_reset = (!!prog != !!old_prog);
2863
2864         /* device is up and bpf is added/removed, must setup the RX queues */
2865         if (need_reset && running) {
2866                 igb_close(dev);
2867         } else {
2868                 for (i = 0; i < adapter->num_rx_queues; i++)
2869                         (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2870                             adapter->xdp_prog);
2871         }
2872
2873         if (old_prog)
2874                 bpf_prog_put(old_prog);
2875
2876         /* bpf is just replaced, RXQ and MTU are already setup */
2877         if (!need_reset)
2878                 return 0;
2879
2880         if (running)
2881                 igb_open(dev);
2882
2883         return 0;
2884 }
2885
2886 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2887 {
2888         switch (xdp->command) {
2889         case XDP_SETUP_PROG:
2890                 return igb_xdp_setup(dev, xdp);
2891         default:
2892                 return -EINVAL;
2893         }
2894 }
2895
2896 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2897 {
2898         /* Force memory writes to complete before letting h/w know there
2899          * are new descriptors to fetch.
2900          */
2901         wmb();
2902         writel(ring->next_to_use, ring->tail);
2903 }
2904
2905 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2906 {
2907         unsigned int r_idx = smp_processor_id();
2908
2909         if (r_idx >= adapter->num_tx_queues)
2910                 r_idx = r_idx % adapter->num_tx_queues;
2911
2912         return adapter->tx_ring[r_idx];
2913 }
2914
2915 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2916 {
2917         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2918         int cpu = smp_processor_id();
2919         struct igb_ring *tx_ring;
2920         struct netdev_queue *nq;
2921         u32 ret;
2922
2923         if (unlikely(!xdpf))
2924                 return IGB_XDP_CONSUMED;
2925
2926         /* During program transitions its possible adapter->xdp_prog is assigned
2927          * but ring has not been configured yet. In this case simply abort xmit.
2928          */
2929         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2930         if (unlikely(!tx_ring))
2931                 return IGB_XDP_CONSUMED;
2932
2933         nq = txring_txq(tx_ring);
2934         __netif_tx_lock(nq, cpu);
2935         /* Avoid transmit queue timeout since we share it with the slow path */
2936         nq->trans_start = jiffies;
2937         ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2938         __netif_tx_unlock(nq);
2939
2940         return ret;
2941 }
2942
2943 static int igb_xdp_xmit(struct net_device *dev, int n,
2944                         struct xdp_frame **frames, u32 flags)
2945 {
2946         struct igb_adapter *adapter = netdev_priv(dev);
2947         int cpu = smp_processor_id();
2948         struct igb_ring *tx_ring;
2949         struct netdev_queue *nq;
2950         int drops = 0;
2951         int i;
2952
2953         if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2954                 return -ENETDOWN;
2955
2956         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2957                 return -EINVAL;
2958
2959         /* During program transitions its possible adapter->xdp_prog is assigned
2960          * but ring has not been configured yet. In this case simply abort xmit.
2961          */
2962         tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2963         if (unlikely(!tx_ring))
2964                 return -ENXIO;
2965
2966         nq = txring_txq(tx_ring);
2967         __netif_tx_lock(nq, cpu);
2968
2969         /* Avoid transmit queue timeout since we share it with the slow path */
2970         nq->trans_start = jiffies;
2971
2972         for (i = 0; i < n; i++) {
2973                 struct xdp_frame *xdpf = frames[i];
2974                 int err;
2975
2976                 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2977                 if (err != IGB_XDP_TX) {
2978                         xdp_return_frame_rx_napi(xdpf);
2979                         drops++;
2980                 }
2981         }
2982
2983         __netif_tx_unlock(nq);
2984
2985         if (unlikely(flags & XDP_XMIT_FLUSH))
2986                 igb_xdp_ring_update_tail(tx_ring);
2987
2988         return n - drops;
2989 }
2990
2991 static const struct net_device_ops igb_netdev_ops = {
2992         .ndo_open               = igb_open,
2993         .ndo_stop               = igb_close,
2994         .ndo_start_xmit         = igb_xmit_frame,
2995         .ndo_get_stats64        = igb_get_stats64,
2996         .ndo_set_rx_mode        = igb_set_rx_mode,
2997         .ndo_set_mac_address    = igb_set_mac,
2998         .ndo_change_mtu         = igb_change_mtu,
2999         .ndo_do_ioctl           = igb_ioctl,
3000         .ndo_tx_timeout         = igb_tx_timeout,
3001         .ndo_validate_addr      = eth_validate_addr,
3002         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
3003         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
3004         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
3005         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
3006         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
3007         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3008         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
3009         .ndo_get_vf_config      = igb_ndo_get_vf_config,
3010         .ndo_fix_features       = igb_fix_features,
3011         .ndo_set_features       = igb_set_features,
3012         .ndo_fdb_add            = igb_ndo_fdb_add,
3013         .ndo_features_check     = igb_features_check,
3014         .ndo_setup_tc           = igb_setup_tc,
3015         .ndo_bpf                = igb_xdp,
3016         .ndo_xdp_xmit           = igb_xdp_xmit,
3017 };
3018
3019 /**
3020  * igb_set_fw_version - Configure version string for ethtool
3021  * @adapter: adapter struct
3022  **/
3023 void igb_set_fw_version(struct igb_adapter *adapter)
3024 {
3025         struct e1000_hw *hw = &adapter->hw;
3026         struct e1000_fw_version fw;
3027
3028         igb_get_fw_version(hw, &fw);
3029
3030         switch (hw->mac.type) {
3031         case e1000_i210:
3032         case e1000_i211:
3033                 if (!(igb_get_flash_presence_i210(hw))) {
3034                         snprintf(adapter->fw_version,
3035                                  sizeof(adapter->fw_version),
3036                                  "%2d.%2d-%d",
3037                                  fw.invm_major, fw.invm_minor,
3038                                  fw.invm_img_type);
3039                         break;
3040                 }
3041                 fallthrough;
3042         default:
3043                 /* if option is rom valid, display its version too */
3044                 if (fw.or_valid) {
3045                         snprintf(adapter->fw_version,
3046                                  sizeof(adapter->fw_version),
3047                                  "%d.%d, 0x%08x, %d.%d.%d",
3048                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3049                                  fw.or_major, fw.or_build, fw.or_patch);
3050                 /* no option rom */
3051                 } else if (fw.etrack_id != 0X0000) {
3052                         snprintf(adapter->fw_version,
3053                             sizeof(adapter->fw_version),
3054                             "%d.%d, 0x%08x",
3055                             fw.eep_major, fw.eep_minor, fw.etrack_id);
3056                 } else {
3057                 snprintf(adapter->fw_version,
3058                     sizeof(adapter->fw_version),
3059                     "%d.%d.%d",
3060                     fw.eep_major, fw.eep_minor, fw.eep_build);
3061                 }
3062                 break;
3063         }
3064 }
3065
3066 /**
3067  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3068  *
3069  * @adapter: adapter struct
3070  **/
3071 static void igb_init_mas(struct igb_adapter *adapter)
3072 {
3073         struct e1000_hw *hw = &adapter->hw;
3074         u16 eeprom_data;
3075
3076         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3077         switch (hw->bus.func) {
3078         case E1000_FUNC_0:
3079                 if (eeprom_data & IGB_MAS_ENABLE_0) {
3080                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3081                         netdev_info(adapter->netdev,
3082                                 "MAS: Enabling Media Autosense for port %d\n",
3083                                 hw->bus.func);
3084                 }
3085                 break;
3086         case E1000_FUNC_1:
3087                 if (eeprom_data & IGB_MAS_ENABLE_1) {
3088                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3089                         netdev_info(adapter->netdev,
3090                                 "MAS: Enabling Media Autosense for port %d\n",
3091                                 hw->bus.func);
3092                 }
3093                 break;
3094         case E1000_FUNC_2:
3095                 if (eeprom_data & IGB_MAS_ENABLE_2) {
3096                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3097                         netdev_info(adapter->netdev,
3098                                 "MAS: Enabling Media Autosense for port %d\n",
3099                                 hw->bus.func);
3100                 }
3101                 break;
3102         case E1000_FUNC_3:
3103                 if (eeprom_data & IGB_MAS_ENABLE_3) {
3104                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
3105                         netdev_info(adapter->netdev,
3106                                 "MAS: Enabling Media Autosense for port %d\n",
3107                                 hw->bus.func);
3108                 }
3109                 break;
3110         default:
3111                 /* Shouldn't get here */
3112                 netdev_err(adapter->netdev,
3113                         "MAS: Invalid port configuration, returning\n");
3114                 break;
3115         }
3116 }
3117
3118 /**
3119  *  igb_init_i2c - Init I2C interface
3120  *  @adapter: pointer to adapter structure
3121  **/
3122 static s32 igb_init_i2c(struct igb_adapter *adapter)
3123 {
3124         s32 status = 0;
3125
3126         /* I2C interface supported on i350 devices */
3127         if (adapter->hw.mac.type != e1000_i350)
3128                 return 0;
3129
3130         /* Initialize the i2c bus which is controlled by the registers.
3131          * This bus will use the i2c_algo_bit structue that implements
3132          * the protocol through toggling of the 4 bits in the register.
3133          */
3134         adapter->i2c_adap.owner = THIS_MODULE;
3135         adapter->i2c_algo = igb_i2c_algo;
3136         adapter->i2c_algo.data = adapter;
3137         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3138         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3139         strlcpy(adapter->i2c_adap.name, "igb BB",
3140                 sizeof(adapter->i2c_adap.name));
3141         status = i2c_bit_add_bus(&adapter->i2c_adap);
3142         return status;
3143 }
3144
3145 /**
3146  *  igb_probe - Device Initialization Routine
3147  *  @pdev: PCI device information struct
3148  *  @ent: entry in igb_pci_tbl
3149  *
3150  *  Returns 0 on success, negative on failure
3151  *
3152  *  igb_probe initializes an adapter identified by a pci_dev structure.
3153  *  The OS initialization, configuring of the adapter private structure,
3154  *  and a hardware reset occur.
3155  **/
3156 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3157 {
3158         struct net_device *netdev;
3159         struct igb_adapter *adapter;
3160         struct e1000_hw *hw;
3161         u16 eeprom_data = 0;
3162         s32 ret_val;
3163         static int global_quad_port_a; /* global quad port a indication */
3164         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3165         int err, pci_using_dac;
3166         u8 part_str[E1000_PBANUM_LENGTH];
3167
3168         /* Catch broken hardware that put the wrong VF device ID in
3169          * the PCIe SR-IOV capability.
3170          */
3171         if (pdev->is_virtfn) {
3172                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3173                         pci_name(pdev), pdev->vendor, pdev->device);
3174                 return -EINVAL;
3175         }
3176
3177         err = pci_enable_device_mem(pdev);
3178         if (err)
3179                 return err;
3180
3181         pci_using_dac = 0;
3182         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183         if (!err) {
3184                 pci_using_dac = 1;
3185         } else {
3186                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3187                 if (err) {
3188                         dev_err(&pdev->dev,
3189                                 "No usable DMA configuration, aborting\n");
3190                         goto err_dma;
3191                 }
3192         }
3193
3194         err = pci_request_mem_regions(pdev, igb_driver_name);
3195         if (err)
3196                 goto err_pci_reg;
3197
3198         pci_enable_pcie_error_reporting(pdev);
3199
3200         pci_set_master(pdev);
3201         pci_save_state(pdev);
3202
3203         err = -ENOMEM;
3204         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3205                                    IGB_MAX_TX_QUEUES);
3206         if (!netdev)
3207                 goto err_alloc_etherdev;
3208
3209         SET_NETDEV_DEV(netdev, &pdev->dev);
3210
3211         pci_set_drvdata(pdev, netdev);
3212         adapter = netdev_priv(netdev);
3213         adapter->netdev = netdev;
3214         adapter->pdev = pdev;
3215         hw = &adapter->hw;
3216         hw->back = adapter;
3217         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3218
3219         err = -EIO;
3220         adapter->io_addr = pci_iomap(pdev, 0, 0);
3221         if (!adapter->io_addr)
3222                 goto err_ioremap;
3223         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3224         hw->hw_addr = adapter->io_addr;
3225
3226         netdev->netdev_ops = &igb_netdev_ops;
3227         igb_set_ethtool_ops(netdev);
3228         netdev->watchdog_timeo = 5 * HZ;
3229
3230         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3231
3232         netdev->mem_start = pci_resource_start(pdev, 0);
3233         netdev->mem_end = pci_resource_end(pdev, 0);
3234
3235         /* PCI config space info */
3236         hw->vendor_id = pdev->vendor;
3237         hw->device_id = pdev->device;
3238         hw->revision_id = pdev->revision;
3239         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3240         hw->subsystem_device_id = pdev->subsystem_device;
3241
3242         /* Copy the default MAC, PHY and NVM function pointers */
3243         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3244         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3245         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3246         /* Initialize skew-specific constants */
3247         err = ei->get_invariants(hw);
3248         if (err)
3249                 goto err_sw_init;
3250
3251         /* setup the private structure */
3252         err = igb_sw_init(adapter);
3253         if (err)
3254                 goto err_sw_init;
3255
3256         igb_get_bus_info_pcie(hw);
3257
3258         hw->phy.autoneg_wait_to_complete = false;
3259
3260         /* Copper options */
3261         if (hw->phy.media_type == e1000_media_type_copper) {
3262                 hw->phy.mdix = AUTO_ALL_MODES;
3263                 hw->phy.disable_polarity_correction = false;
3264                 hw->phy.ms_type = e1000_ms_hw_default;
3265         }
3266
3267         if (igb_check_reset_block(hw))
3268                 dev_info(&pdev->dev,
3269                         "PHY reset is blocked due to SOL/IDER session.\n");
3270
3271         /* features is initialized to 0 in allocation, it might have bits
3272          * set by igb_sw_init so we should use an or instead of an
3273          * assignment.
3274          */
3275         netdev->features |= NETIF_F_SG |
3276                             NETIF_F_TSO |
3277                             NETIF_F_TSO6 |
3278                             NETIF_F_RXHASH |
3279                             NETIF_F_RXCSUM |
3280                             NETIF_F_HW_CSUM;
3281
3282         if (hw->mac.type >= e1000_82576)
3283                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3284
3285         if (hw->mac.type >= e1000_i350)
3286                 netdev->features |= NETIF_F_HW_TC;
3287
3288 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3289                                   NETIF_F_GSO_GRE_CSUM | \
3290                                   NETIF_F_GSO_IPXIP4 | \
3291                                   NETIF_F_GSO_IPXIP6 | \
3292                                   NETIF_F_GSO_UDP_TUNNEL | \
3293                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3294
3295         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3296         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3297
3298         /* copy netdev features into list of user selectable features */
3299         netdev->hw_features |= netdev->features |
3300                                NETIF_F_HW_VLAN_CTAG_RX |
3301                                NETIF_F_HW_VLAN_CTAG_TX |
3302                                NETIF_F_RXALL;
3303
3304         if (hw->mac.type >= e1000_i350)
3305                 netdev->hw_features |= NETIF_F_NTUPLE;
3306
3307         if (pci_using_dac)
3308                 netdev->features |= NETIF_F_HIGHDMA;
3309
3310         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3311         netdev->mpls_features |= NETIF_F_HW_CSUM;
3312         netdev->hw_enc_features |= netdev->vlan_features;
3313
3314         /* set this bit last since it cannot be part of vlan_features */
3315         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3316                             NETIF_F_HW_VLAN_CTAG_RX |
3317                             NETIF_F_HW_VLAN_CTAG_TX;
3318
3319         netdev->priv_flags |= IFF_SUPP_NOFCS;
3320
3321         netdev->priv_flags |= IFF_UNICAST_FLT;
3322
3323         /* MTU range: 68 - 9216 */
3324         netdev->min_mtu = ETH_MIN_MTU;
3325         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3326
3327         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3328
3329         /* before reading the NVM, reset the controller to put the device in a
3330          * known good starting state
3331          */
3332         hw->mac.ops.reset_hw(hw);
3333
3334         /* make sure the NVM is good , i211/i210 parts can have special NVM
3335          * that doesn't contain a checksum
3336          */
3337         switch (hw->mac.type) {
3338         case e1000_i210:
3339         case e1000_i211:
3340                 if (igb_get_flash_presence_i210(hw)) {
3341                         if (hw->nvm.ops.validate(hw) < 0) {
3342                                 dev_err(&pdev->dev,
3343                                         "The NVM Checksum Is Not Valid\n");
3344                                 err = -EIO;
3345                                 goto err_eeprom;
3346                         }
3347                 }
3348                 break;
3349         default:
3350                 if (hw->nvm.ops.validate(hw) < 0) {
3351                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3352                         err = -EIO;
3353                         goto err_eeprom;
3354                 }
3355                 break;
3356         }
3357
3358         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3359                 /* copy the MAC address out of the NVM */
3360                 if (hw->mac.ops.read_mac_addr(hw))
3361                         dev_err(&pdev->dev, "NVM Read Error\n");
3362         }
3363
3364         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3365
3366         if (!is_valid_ether_addr(netdev->dev_addr)) {
3367                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3368                 err = -EIO;
3369                 goto err_eeprom;
3370         }
3371
3372         igb_set_default_mac_filter(adapter);
3373
3374         /* get firmware version for ethtool -i */
3375         igb_set_fw_version(adapter);
3376
3377         /* configure RXPBSIZE and TXPBSIZE */
3378         if (hw->mac.type == e1000_i210) {
3379                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3380                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3381         }
3382
3383         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3384         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3385
3386         INIT_WORK(&adapter->reset_task, igb_reset_task);
3387         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3388
3389         /* Initialize link properties that are user-changeable */
3390         adapter->fc_autoneg = true;
3391         hw->mac.autoneg = true;
3392         hw->phy.autoneg_advertised = 0x2f;
3393
3394         hw->fc.requested_mode = e1000_fc_default;
3395         hw->fc.current_mode = e1000_fc_default;
3396
3397         igb_validate_mdi_setting(hw);
3398
3399         /* By default, support wake on port A */
3400         if (hw->bus.func == 0)
3401                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3402
3403         /* Check the NVM for wake support on non-port A ports */
3404         if (hw->mac.type >= e1000_82580)
3405                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3406                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3407                                  &eeprom_data);
3408         else if (hw->bus.func == 1)
3409                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3410
3411         if (eeprom_data & IGB_EEPROM_APME)
3412                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3413
3414         /* now that we have the eeprom settings, apply the special cases where
3415          * the eeprom may be wrong or the board simply won't support wake on
3416          * lan on a particular port
3417          */
3418         switch (pdev->device) {
3419         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3420                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3421                 break;
3422         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3423         case E1000_DEV_ID_82576_FIBER:
3424         case E1000_DEV_ID_82576_SERDES:
3425                 /* Wake events only supported on port A for dual fiber
3426                  * regardless of eeprom setting
3427                  */
3428                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3429                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3430                 break;
3431         case E1000_DEV_ID_82576_QUAD_COPPER:
3432         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3433                 /* if quad port adapter, disable WoL on all but port A */
3434                 if (global_quad_port_a != 0)
3435                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3436                 else
3437                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3438                 /* Reset for multiple quad port adapters */
3439                 if (++global_quad_port_a == 4)
3440                         global_quad_port_a = 0;
3441                 break;
3442         default:
3443                 /* If the device can't wake, don't set software support */
3444                 if (!device_can_wakeup(&adapter->pdev->dev))
3445                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3446         }
3447
3448         /* initialize the wol settings based on the eeprom settings */
3449         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3450                 adapter->wol |= E1000_WUFC_MAG;
3451
3452         /* Some vendors want WoL disabled by default, but still supported */
3453         if ((hw->mac.type == e1000_i350) &&
3454             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3455                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3456                 adapter->wol = 0;
3457         }
3458
3459         /* Some vendors want the ability to Use the EEPROM setting as
3460          * enable/disable only, and not for capability
3461          */
3462         if (((hw->mac.type == e1000_i350) ||
3463              (hw->mac.type == e1000_i354)) &&
3464             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3465                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3466                 adapter->wol = 0;
3467         }
3468         if (hw->mac.type == e1000_i350) {
3469                 if (((pdev->subsystem_device == 0x5001) ||
3470                      (pdev->subsystem_device == 0x5002)) &&
3471                                 (hw->bus.func == 0)) {
3472                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473                         adapter->wol = 0;
3474                 }
3475                 if (pdev->subsystem_device == 0x1F52)
3476                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3477         }
3478
3479         device_set_wakeup_enable(&adapter->pdev->dev,
3480                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3481
3482         /* reset the hardware with the new settings */
3483         igb_reset(adapter);
3484
3485         /* Init the I2C interface */
3486         err = igb_init_i2c(adapter);
3487         if (err) {
3488                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3489                 goto err_eeprom;
3490         }
3491
3492         /* let the f/w know that the h/w is now under the control of the
3493          * driver.
3494          */
3495         igb_get_hw_control(adapter);
3496
3497         strcpy(netdev->name, "eth%d");
3498         err = register_netdev(netdev);
3499         if (err)
3500                 goto err_register;
3501
3502         /* carrier off reporting is important to ethtool even BEFORE open */
3503         netif_carrier_off(netdev);
3504
3505 #ifdef CONFIG_IGB_DCA
3506         if (dca_add_requester(&pdev->dev) == 0) {
3507                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3508                 dev_info(&pdev->dev, "DCA enabled\n");
3509                 igb_setup_dca(adapter);
3510         }
3511
3512 #endif
3513 #ifdef CONFIG_IGB_HWMON
3514         /* Initialize the thermal sensor on i350 devices. */
3515         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3516                 u16 ets_word;
3517
3518                 /* Read the NVM to determine if this i350 device supports an
3519                  * external thermal sensor.
3520                  */
3521                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3522                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3523                         adapter->ets = true;
3524                 else
3525                         adapter->ets = false;
3526                 if (igb_sysfs_init(adapter))
3527                         dev_err(&pdev->dev,
3528                                 "failed to allocate sysfs resources\n");
3529         } else {
3530                 adapter->ets = false;
3531         }
3532 #endif
3533         /* Check if Media Autosense is enabled */
3534         adapter->ei = *ei;
3535         if (hw->dev_spec._82575.mas_capable)
3536                 igb_init_mas(adapter);
3537
3538         /* do hw tstamp init after resetting */
3539         igb_ptp_init(adapter);
3540
3541         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3542         /* print bus type/speed/width info, not applicable to i354 */
3543         if (hw->mac.type != e1000_i354) {
3544                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3545                          netdev->name,
3546                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3547                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3548                            "unknown"),
3549                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3550                           "Width x4" :
3551                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3552                           "Width x2" :
3553                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3554                           "Width x1" : "unknown"), netdev->dev_addr);
3555         }
3556
3557         if ((hw->mac.type == e1000_82576 &&
3558              rd32(E1000_EECD) & E1000_EECD_PRES) ||
3559             (hw->mac.type >= e1000_i210 ||
3560              igb_get_flash_presence_i210(hw))) {
3561                 ret_val = igb_read_part_string(hw, part_str,
3562                                                E1000_PBANUM_LENGTH);
3563         } else {
3564                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3565         }
3566
3567         if (ret_val)
3568                 strcpy(part_str, "Unknown");
3569         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3570         dev_info(&pdev->dev,
3571                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3572                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3573                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3574                 adapter->num_rx_queues, adapter->num_tx_queues);
3575         if (hw->phy.media_type == e1000_media_type_copper) {
3576                 switch (hw->mac.type) {
3577                 case e1000_i350:
3578                 case e1000_i210:
3579                 case e1000_i211:
3580                         /* Enable EEE for internal copper PHY devices */
3581                         err = igb_set_eee_i350(hw, true, true);
3582                         if ((!err) &&
3583                             (!hw->dev_spec._82575.eee_disable)) {
3584                                 adapter->eee_advert =
3585                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3586                                 adapter->flags |= IGB_FLAG_EEE;
3587                         }
3588                         break;
3589                 case e1000_i354:
3590                         if ((rd32(E1000_CTRL_EXT) &
3591                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3592                                 err = igb_set_eee_i354(hw, true, true);
3593                                 if ((!err) &&
3594                                         (!hw->dev_spec._82575.eee_disable)) {
3595                                         adapter->eee_advert =
3596                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3597                                         adapter->flags |= IGB_FLAG_EEE;
3598                                 }
3599                         }
3600                         break;
3601                 default:
3602                         break;
3603                 }
3604         }
3605
3606         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3607
3608         pm_runtime_put_noidle(&pdev->dev);
3609         return 0;
3610
3611 err_register:
3612         igb_release_hw_control(adapter);
3613         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3614 err_eeprom:
3615         if (!igb_check_reset_block(hw))
3616                 igb_reset_phy(hw);
3617
3618         if (hw->flash_address)
3619                 iounmap(hw->flash_address);
3620 err_sw_init:
3621         kfree(adapter->mac_table);
3622         kfree(adapter->shadow_vfta);
3623         igb_clear_interrupt_scheme(adapter);
3624 #ifdef CONFIG_PCI_IOV
3625         igb_disable_sriov(pdev);
3626 #endif
3627         pci_iounmap(pdev, adapter->io_addr);
3628 err_ioremap:
3629         free_netdev(netdev);
3630 err_alloc_etherdev:
3631         pci_disable_pcie_error_reporting(pdev);
3632         pci_release_mem_regions(pdev);
3633 err_pci_reg:
3634 err_dma:
3635         pci_disable_device(pdev);
3636         return err;
3637 }
3638
3639 #ifdef CONFIG_PCI_IOV
3640 static int igb_disable_sriov(struct pci_dev *pdev)
3641 {
3642         struct net_device *netdev = pci_get_drvdata(pdev);
3643         struct igb_adapter *adapter = netdev_priv(netdev);
3644         struct e1000_hw *hw = &adapter->hw;
3645         unsigned long flags;
3646
3647         /* reclaim resources allocated to VFs */
3648         if (adapter->vf_data) {
3649                 /* disable iov and allow time for transactions to clear */
3650                 if (pci_vfs_assigned(pdev)) {
3651                         dev_warn(&pdev->dev,
3652                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3653                         return -EPERM;
3654                 } else {
3655                         pci_disable_sriov(pdev);
3656                         msleep(500);
3657                 }
3658                 spin_lock_irqsave(&adapter->vfs_lock, flags);
3659                 kfree(adapter->vf_mac_list);
3660                 adapter->vf_mac_list = NULL;
3661                 kfree(adapter->vf_data);
3662                 adapter->vf_data = NULL;
3663                 adapter->vfs_allocated_count = 0;
3664                 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3665                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3666                 wrfl();
3667                 msleep(100);
3668                 dev_info(&pdev->dev, "IOV Disabled\n");
3669
3670                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3671                 adapter->flags |= IGB_FLAG_DMAC;
3672         }
3673
3674         return 0;
3675 }
3676
3677 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3678 {
3679         struct net_device *netdev = pci_get_drvdata(pdev);
3680         struct igb_adapter *adapter = netdev_priv(netdev);
3681         int old_vfs = pci_num_vf(pdev);
3682         struct vf_mac_filter *mac_list;
3683         int err = 0;
3684         int num_vf_mac_filters, i;
3685
3686         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3687                 err = -EPERM;
3688                 goto out;
3689         }
3690         if (!num_vfs)
3691                 goto out;
3692
3693         if (old_vfs) {
3694                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3695                          old_vfs, max_vfs);
3696                 adapter->vfs_allocated_count = old_vfs;
3697         } else
3698                 adapter->vfs_allocated_count = num_vfs;
3699
3700         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3701                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3702
3703         /* if allocation failed then we do not support SR-IOV */
3704         if (!adapter->vf_data) {
3705                 adapter->vfs_allocated_count = 0;
3706                 err = -ENOMEM;
3707                 goto out;
3708         }
3709
3710         /* Due to the limited number of RAR entries calculate potential
3711          * number of MAC filters available for the VFs. Reserve entries
3712          * for PF default MAC, PF MAC filters and at least one RAR entry
3713          * for each VF for VF MAC.
3714          */
3715         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3716                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3717                               adapter->vfs_allocated_count);
3718
3719         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3720                                        sizeof(struct vf_mac_filter),
3721                                        GFP_KERNEL);
3722
3723         mac_list = adapter->vf_mac_list;
3724         INIT_LIST_HEAD(&adapter->vf_macs.l);
3725
3726         if (adapter->vf_mac_list) {
3727                 /* Initialize list of VF MAC filters */
3728                 for (i = 0; i < num_vf_mac_filters; i++) {
3729                         mac_list->vf = -1;
3730                         mac_list->free = true;
3731                         list_add(&mac_list->l, &adapter->vf_macs.l);
3732                         mac_list++;
3733                 }
3734         } else {
3735                 /* If we could not allocate memory for the VF MAC filters
3736                  * we can continue without this feature but warn user.
3737                  */
3738                 dev_err(&pdev->dev,
3739                         "Unable to allocate memory for VF MAC filter list\n");
3740         }
3741
3742         /* only call pci_enable_sriov() if no VFs are allocated already */
3743         if (!old_vfs) {
3744                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3745                 if (err)
3746                         goto err_out;
3747         }
3748         dev_info(&pdev->dev, "%d VFs allocated\n",
3749                  adapter->vfs_allocated_count);
3750         for (i = 0; i < adapter->vfs_allocated_count; i++)
3751                 igb_vf_configure(adapter, i);
3752
3753         /* DMA Coalescing is not supported in IOV mode. */
3754         adapter->flags &= ~IGB_FLAG_DMAC;
3755         goto out;
3756
3757 err_out:
3758         kfree(adapter->vf_mac_list);
3759         adapter->vf_mac_list = NULL;
3760         kfree(adapter->vf_data);
3761         adapter->vf_data = NULL;
3762         adapter->vfs_allocated_count = 0;
3763 out:
3764         return err;
3765 }
3766
3767 #endif
3768 /**
3769  *  igb_remove_i2c - Cleanup  I2C interface
3770  *  @adapter: pointer to adapter structure
3771  **/
3772 static void igb_remove_i2c(struct igb_adapter *adapter)
3773 {
3774         /* free the adapter bus structure */
3775         i2c_del_adapter(&adapter->i2c_adap);
3776 }
3777
3778 /**
3779  *  igb_remove - Device Removal Routine
3780  *  @pdev: PCI device information struct
3781  *
3782  *  igb_remove is called by the PCI subsystem to alert the driver
3783  *  that it should release a PCI device.  The could be caused by a
3784  *  Hot-Plug event, or because the driver is going to be removed from
3785  *  memory.
3786  **/
3787 static void igb_remove(struct pci_dev *pdev)
3788 {
3789         struct net_device *netdev = pci_get_drvdata(pdev);
3790         struct igb_adapter *adapter = netdev_priv(netdev);
3791         struct e1000_hw *hw = &adapter->hw;
3792
3793         pm_runtime_get_noresume(&pdev->dev);
3794 #ifdef CONFIG_IGB_HWMON
3795         igb_sysfs_exit(adapter);
3796 #endif
3797         igb_remove_i2c(adapter);
3798         igb_ptp_stop(adapter);
3799         /* The watchdog timer may be rescheduled, so explicitly
3800          * disable watchdog from being rescheduled.
3801          */
3802         set_bit(__IGB_DOWN, &adapter->state);
3803         del_timer_sync(&adapter->watchdog_timer);
3804         del_timer_sync(&adapter->phy_info_timer);
3805
3806         cancel_work_sync(&adapter->reset_task);
3807         cancel_work_sync(&adapter->watchdog_task);
3808
3809 #ifdef CONFIG_IGB_DCA
3810         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3811                 dev_info(&pdev->dev, "DCA disabled\n");
3812                 dca_remove_requester(&pdev->dev);
3813                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3814                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3815         }
3816 #endif
3817
3818         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3819          * would have already happened in close and is redundant.
3820          */
3821         igb_release_hw_control(adapter);
3822
3823 #ifdef CONFIG_PCI_IOV
3824         igb_disable_sriov(pdev);
3825 #endif
3826
3827         unregister_netdev(netdev);
3828
3829         igb_clear_interrupt_scheme(adapter);
3830
3831         pci_iounmap(pdev, adapter->io_addr);
3832         if (hw->flash_address)
3833                 iounmap(hw->flash_address);
3834         pci_release_mem_regions(pdev);
3835
3836         kfree(adapter->mac_table);
3837         kfree(adapter->shadow_vfta);
3838         free_netdev(netdev);
3839
3840         pci_disable_pcie_error_reporting(pdev);
3841
3842         pci_disable_device(pdev);
3843 }
3844
3845 /**
3846  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3847  *  @adapter: board private structure to initialize
3848  *
3849  *  This function initializes the vf specific data storage and then attempts to
3850  *  allocate the VFs.  The reason for ordering it this way is because it is much
3851  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3852  *  the memory for the VFs.
3853  **/
3854 static void igb_probe_vfs(struct igb_adapter *adapter)
3855 {
3856 #ifdef CONFIG_PCI_IOV
3857         struct pci_dev *pdev = adapter->pdev;
3858         struct e1000_hw *hw = &adapter->hw;
3859
3860         /* Virtualization features not supported on i210 and 82580 family. */
3861         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3862             (hw->mac.type == e1000_82580))
3863                 return;
3864
3865         /* Of the below we really only want the effect of getting
3866          * IGB_FLAG_HAS_MSIX set (if available), without which
3867          * igb_enable_sriov() has no effect.
3868          */
3869         igb_set_interrupt_capability(adapter, true);
3870         igb_reset_interrupt_capability(adapter);
3871
3872         pci_sriov_set_totalvfs(pdev, 7);
3873         igb_enable_sriov(pdev, max_vfs);
3874
3875 #endif /* CONFIG_PCI_IOV */
3876 }
3877
3878 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3879 {
3880         struct e1000_hw *hw = &adapter->hw;
3881         unsigned int max_rss_queues;
3882
3883         /* Determine the maximum number of RSS queues supported. */
3884         switch (hw->mac.type) {
3885         case e1000_i211:
3886                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3887                 break;
3888         case e1000_82575:
3889         case e1000_i210:
3890                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3891                 break;
3892         case e1000_i350:
3893                 /* I350 cannot do RSS and SR-IOV at the same time */
3894                 if (!!adapter->vfs_allocated_count) {
3895                         max_rss_queues = 1;
3896                         break;
3897                 }
3898                 fallthrough;
3899         case e1000_82576:
3900                 if (!!adapter->vfs_allocated_count) {
3901                         max_rss_queues = 2;
3902                         break;
3903                 }
3904                 fallthrough;
3905         case e1000_82580:
3906         case e1000_i354:
3907         default:
3908                 max_rss_queues = IGB_MAX_RX_QUEUES;
3909                 break;
3910         }
3911
3912         return max_rss_queues;
3913 }
3914
3915 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3916 {
3917         u32 max_rss_queues;
3918
3919         max_rss_queues = igb_get_max_rss_queues(adapter);
3920         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3921
3922         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3923 }
3924
3925 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3926                               const u32 max_rss_queues)
3927 {
3928         struct e1000_hw *hw = &adapter->hw;
3929
3930         /* Determine if we need to pair queues. */
3931         switch (hw->mac.type) {
3932         case e1000_82575:
3933         case e1000_i211:
3934                 /* Device supports enough interrupts without queue pairing. */
3935                 break;
3936         case e1000_82576:
3937         case e1000_82580:
3938         case e1000_i350:
3939         case e1000_i354:
3940         case e1000_i210:
3941         default:
3942                 /* If rss_queues > half of max_rss_queues, pair the queues in
3943                  * order to conserve interrupts due to limited supply.
3944                  */
3945                 if (adapter->rss_queues > (max_rss_queues / 2))
3946                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3947                 else
3948                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3949                 break;
3950         }
3951 }
3952
3953 /**
3954  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3955  *  @adapter: board private structure to initialize
3956  *
3957  *  igb_sw_init initializes the Adapter private data structure.
3958  *  Fields are initialized based on PCI device information and
3959  *  OS network device settings (MTU size).
3960  **/
3961 static int igb_sw_init(struct igb_adapter *adapter)
3962 {
3963         struct e1000_hw *hw = &adapter->hw;
3964         struct net_device *netdev = adapter->netdev;
3965         struct pci_dev *pdev = adapter->pdev;
3966
3967         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3968
3969         /* set default ring sizes */
3970         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3971         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3972
3973         /* set default ITR values */
3974         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3975         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3976
3977         /* set default work limits */
3978         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3979
3980         adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3981         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3982
3983         spin_lock_init(&adapter->nfc_lock);
3984         spin_lock_init(&adapter->stats64_lock);
3985
3986         /* init spinlock to avoid concurrency of VF resources */
3987         spin_lock_init(&adapter->vfs_lock);
3988 #ifdef CONFIG_PCI_IOV
3989         switch (hw->mac.type) {
3990         case e1000_82576:
3991         case e1000_i350:
3992                 if (max_vfs > 7) {
3993                         dev_warn(&pdev->dev,
3994                                  "Maximum of 7 VFs per PF, using max\n");
3995                         max_vfs = adapter->vfs_allocated_count = 7;
3996                 } else
3997                         adapter->vfs_allocated_count = max_vfs;
3998                 if (adapter->vfs_allocated_count)
3999                         dev_warn(&pdev->dev,
4000                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4001                 break;
4002         default:
4003                 break;
4004         }
4005 #endif /* CONFIG_PCI_IOV */
4006
4007         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4008         adapter->flags |= IGB_FLAG_HAS_MSIX;
4009
4010         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4011                                      sizeof(struct igb_mac_addr),
4012                                      GFP_KERNEL);
4013         if (!adapter->mac_table)
4014                 return -ENOMEM;
4015
4016         igb_probe_vfs(adapter);
4017
4018         igb_init_queue_configuration(adapter);
4019
4020         /* Setup and initialize a copy of the hw vlan table array */
4021         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4022                                        GFP_KERNEL);
4023         if (!adapter->shadow_vfta)
4024                 return -ENOMEM;
4025
4026         /* This call may decrease the number of queues */
4027         if (igb_init_interrupt_scheme(adapter, true)) {
4028                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4029                 return -ENOMEM;
4030         }
4031
4032         /* Explicitly disable IRQ since the NIC can be in any state. */
4033         igb_irq_disable(adapter);
4034
4035         if (hw->mac.type >= e1000_i350)
4036                 adapter->flags &= ~IGB_FLAG_DMAC;
4037
4038         set_bit(__IGB_DOWN, &adapter->state);
4039         return 0;
4040 }
4041
4042 /**
4043  *  igb_open - Called when a network interface is made active
4044  *  @netdev: network interface device structure
4045  *  @resuming: indicates whether we are in a resume call
4046  *
4047  *  Returns 0 on success, negative value on failure
4048  *
4049  *  The open entry point is called when a network interface is made
4050  *  active by the system (IFF_UP).  At this point all resources needed
4051  *  for transmit and receive operations are allocated, the interrupt
4052  *  handler is registered with the OS, the watchdog timer is started,
4053  *  and the stack is notified that the interface is ready.
4054  **/
4055 static int __igb_open(struct net_device *netdev, bool resuming)
4056 {
4057         struct igb_adapter *adapter = netdev_priv(netdev);
4058         struct e1000_hw *hw = &adapter->hw;
4059         struct pci_dev *pdev = adapter->pdev;
4060         int err;
4061         int i;
4062
4063         /* disallow open during test */
4064         if (test_bit(__IGB_TESTING, &adapter->state)) {
4065                 WARN_ON(resuming);
4066                 return -EBUSY;
4067         }
4068
4069         if (!resuming)
4070                 pm_runtime_get_sync(&pdev->dev);
4071
4072         netif_carrier_off(netdev);
4073
4074         /* allocate transmit descriptors */
4075         err = igb_setup_all_tx_resources(adapter);
4076         if (err)
4077                 goto err_setup_tx;
4078
4079         /* allocate receive descriptors */
4080         err = igb_setup_all_rx_resources(adapter);
4081         if (err)
4082                 goto err_setup_rx;
4083
4084         igb_power_up_link(adapter);
4085
4086         /* before we allocate an interrupt, we must be ready to handle it.
4087          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4088          * as soon as we call pci_request_irq, so we have to setup our
4089          * clean_rx handler before we do so.
4090          */
4091         igb_configure(adapter);
4092
4093         err = igb_request_irq(adapter);
4094         if (err)
4095                 goto err_req_irq;
4096
4097         /* Notify the stack of the actual queue counts. */
4098         err = netif_set_real_num_tx_queues(adapter->netdev,
4099                                            adapter->num_tx_queues);
4100         if (err)
4101                 goto err_set_queues;
4102
4103         err = netif_set_real_num_rx_queues(adapter->netdev,
4104                                            adapter->num_rx_queues);
4105         if (err)
4106                 goto err_set_queues;
4107
4108         /* From here on the code is the same as igb_up() */
4109         clear_bit(__IGB_DOWN, &adapter->state);
4110
4111         for (i = 0; i < adapter->num_q_vectors; i++)
4112                 napi_enable(&(adapter->q_vector[i]->napi));
4113
4114         /* Clear any pending interrupts. */
4115         rd32(E1000_TSICR);
4116         rd32(E1000_ICR);
4117
4118         igb_irq_enable(adapter);
4119
4120         /* notify VFs that reset has been completed */
4121         if (adapter->vfs_allocated_count) {
4122                 u32 reg_data = rd32(E1000_CTRL_EXT);
4123
4124                 reg_data |= E1000_CTRL_EXT_PFRSTD;
4125                 wr32(E1000_CTRL_EXT, reg_data);
4126         }
4127
4128         netif_tx_start_all_queues(netdev);
4129
4130         if (!resuming)
4131                 pm_runtime_put(&pdev->dev);
4132
4133         /* start the watchdog. */
4134         hw->mac.get_link_status = 1;
4135         schedule_work(&adapter->watchdog_task);
4136
4137         return 0;
4138
4139 err_set_queues:
4140         igb_free_irq(adapter);
4141 err_req_irq:
4142         igb_release_hw_control(adapter);
4143         igb_power_down_link(adapter);
4144         igb_free_all_rx_resources(adapter);
4145 err_setup_rx:
4146         igb_free_all_tx_resources(adapter);
4147 err_setup_tx:
4148         igb_reset(adapter);
4149         if (!resuming)
4150                 pm_runtime_put(&pdev->dev);
4151
4152         return err;
4153 }
4154
4155 int igb_open(struct net_device *netdev)
4156 {
4157         return __igb_open(netdev, false);
4158 }
4159
4160 /**
4161  *  igb_close - Disables a network interface
4162  *  @netdev: network interface device structure
4163  *  @suspending: indicates we are in a suspend call
4164  *
4165  *  Returns 0, this is not allowed to fail
4166  *
4167  *  The close entry point is called when an interface is de-activated
4168  *  by the OS.  The hardware is still under the driver's control, but
4169  *  needs to be disabled.  A global MAC reset is issued to stop the
4170  *  hardware, and all transmit and receive resources are freed.
4171  **/
4172 static int __igb_close(struct net_device *netdev, bool suspending)
4173 {
4174         struct igb_adapter *adapter = netdev_priv(netdev);
4175         struct pci_dev *pdev = adapter->pdev;
4176
4177         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4178
4179         if (!suspending)
4180                 pm_runtime_get_sync(&pdev->dev);
4181
4182         igb_down(adapter);
4183         igb_free_irq(adapter);
4184
4185         igb_free_all_tx_resources(adapter);
4186         igb_free_all_rx_resources(adapter);
4187
4188         if (!suspending)
4189                 pm_runtime_put_sync(&pdev->dev);
4190         return 0;
4191 }
4192
4193 int igb_close(struct net_device *netdev)
4194 {
4195         if (netif_device_present(netdev) || netdev->dismantle)
4196                 return __igb_close(netdev, false);
4197         return 0;
4198 }
4199
4200 /**
4201  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4202  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4203  *
4204  *  Return 0 on success, negative on failure
4205  **/
4206 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4207 {
4208         struct device *dev = tx_ring->dev;
4209         int size;
4210
4211         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4212
4213         tx_ring->tx_buffer_info = vmalloc(size);
4214         if (!tx_ring->tx_buffer_info)
4215                 goto err;
4216
4217         /* round up to nearest 4K */
4218         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4219         tx_ring->size = ALIGN(tx_ring->size, 4096);
4220
4221         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4222                                            &tx_ring->dma, GFP_KERNEL);
4223         if (!tx_ring->desc)
4224                 goto err;
4225
4226         tx_ring->next_to_use = 0;
4227         tx_ring->next_to_clean = 0;
4228
4229         return 0;
4230
4231 err:
4232         vfree(tx_ring->tx_buffer_info);
4233         tx_ring->tx_buffer_info = NULL;
4234         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4235         return -ENOMEM;
4236 }
4237
4238 /**
4239  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4240  *                               (Descriptors) for all queues
4241  *  @adapter: board private structure
4242  *
4243  *  Return 0 on success, negative on failure
4244  **/
4245 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4246 {
4247         struct pci_dev *pdev = adapter->pdev;
4248         int i, err = 0;
4249
4250         for (i = 0; i < adapter->num_tx_queues; i++) {
4251                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4252                 if (err) {
4253                         dev_err(&pdev->dev,
4254                                 "Allocation for Tx Queue %u failed\n", i);
4255                         for (i--; i >= 0; i--)
4256                                 igb_free_tx_resources(adapter->tx_ring[i]);
4257                         break;
4258                 }
4259         }
4260
4261         return err;
4262 }
4263
4264 /**
4265  *  igb_setup_tctl - configure the transmit control registers
4266  *  @adapter: Board private structure
4267  **/
4268 void igb_setup_tctl(struct igb_adapter *adapter)
4269 {
4270         struct e1000_hw *hw = &adapter->hw;
4271         u32 tctl;
4272
4273         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4274         wr32(E1000_TXDCTL(0), 0);
4275
4276         /* Program the Transmit Control Register */
4277         tctl = rd32(E1000_TCTL);
4278         tctl &= ~E1000_TCTL_CT;
4279         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4280                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4281
4282         igb_config_collision_dist(hw);
4283
4284         /* Enable transmits */
4285         tctl |= E1000_TCTL_EN;
4286
4287         wr32(E1000_TCTL, tctl);
4288 }
4289
4290 /**
4291  *  igb_configure_tx_ring - Configure transmit ring after Reset
4292  *  @adapter: board private structure
4293  *  @ring: tx ring to configure
4294  *
4295  *  Configure a transmit ring after a reset.
4296  **/
4297 void igb_configure_tx_ring(struct igb_adapter *adapter,
4298                            struct igb_ring *ring)
4299 {
4300         struct e1000_hw *hw = &adapter->hw;
4301         u32 txdctl = 0;
4302         u64 tdba = ring->dma;
4303         int reg_idx = ring->reg_idx;
4304
4305         wr32(E1000_TDLEN(reg_idx),
4306              ring->count * sizeof(union e1000_adv_tx_desc));
4307         wr32(E1000_TDBAL(reg_idx),
4308              tdba & 0x00000000ffffffffULL);
4309         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4310
4311         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4312         wr32(E1000_TDH(reg_idx), 0);
4313         writel(0, ring->tail);
4314
4315         txdctl |= IGB_TX_PTHRESH;
4316         txdctl |= IGB_TX_HTHRESH << 8;
4317         txdctl |= IGB_TX_WTHRESH << 16;
4318
4319         /* reinitialize tx_buffer_info */
4320         memset(ring->tx_buffer_info, 0,
4321                sizeof(struct igb_tx_buffer) * ring->count);
4322
4323         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4324         wr32(E1000_TXDCTL(reg_idx), txdctl);
4325 }
4326
4327 /**
4328  *  igb_configure_tx - Configure transmit Unit after Reset
4329  *  @adapter: board private structure
4330  *
4331  *  Configure the Tx unit of the MAC after a reset.
4332  **/
4333 static void igb_configure_tx(struct igb_adapter *adapter)
4334 {
4335         struct e1000_hw *hw = &adapter->hw;
4336         int i;
4337
4338         /* disable the queues */
4339         for (i = 0; i < adapter->num_tx_queues; i++)
4340                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4341
4342         wrfl();
4343         usleep_range(10000, 20000);
4344
4345         for (i = 0; i < adapter->num_tx_queues; i++)
4346                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4347 }
4348
4349 /**
4350  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4351  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4352  *
4353  *  Returns 0 on success, negative on failure
4354  **/
4355 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4356 {
4357         struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4358         struct device *dev = rx_ring->dev;
4359         int size;
4360
4361         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4362
4363         rx_ring->rx_buffer_info = vmalloc(size);
4364         if (!rx_ring->rx_buffer_info)
4365                 goto err;
4366
4367         /* Round up to nearest 4K */
4368         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4369         rx_ring->size = ALIGN(rx_ring->size, 4096);
4370
4371         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4372                                            &rx_ring->dma, GFP_KERNEL);
4373         if (!rx_ring->desc)
4374                 goto err;
4375
4376         rx_ring->next_to_alloc = 0;
4377         rx_ring->next_to_clean = 0;
4378         rx_ring->next_to_use = 0;
4379
4380         rx_ring->xdp_prog = adapter->xdp_prog;
4381
4382         /* XDP RX-queue info */
4383         if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4384                              rx_ring->queue_index) < 0)
4385                 goto err;
4386
4387         return 0;
4388
4389 err:
4390         vfree(rx_ring->rx_buffer_info);
4391         rx_ring->rx_buffer_info = NULL;
4392         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4393         return -ENOMEM;
4394 }
4395
4396 /**
4397  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4398  *                               (Descriptors) for all queues
4399  *  @adapter: board private structure
4400  *
4401  *  Return 0 on success, negative on failure
4402  **/
4403 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4404 {
4405         struct pci_dev *pdev = adapter->pdev;
4406         int i, err = 0;
4407
4408         for (i = 0; i < adapter->num_rx_queues; i++) {
4409                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4410                 if (err) {
4411                         dev_err(&pdev->dev,
4412                                 "Allocation for Rx Queue %u failed\n", i);
4413                         for (i--; i >= 0; i--)
4414                                 igb_free_rx_resources(adapter->rx_ring[i]);
4415                         break;
4416                 }
4417         }
4418
4419         return err;
4420 }
4421
4422 /**
4423  *  igb_setup_mrqc - configure the multiple receive queue control registers
4424  *  @adapter: Board private structure
4425  **/
4426 static void igb_setup_mrqc(struct igb_adapter *adapter)
4427 {
4428         struct e1000_hw *hw = &adapter->hw;
4429         u32 mrqc, rxcsum;
4430         u32 j, num_rx_queues;
4431         u32 rss_key[10];
4432
4433         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4434         for (j = 0; j < 10; j++)
4435                 wr32(E1000_RSSRK(j), rss_key[j]);
4436
4437         num_rx_queues = adapter->rss_queues;
4438
4439         switch (hw->mac.type) {
4440         case e1000_82576:
4441                 /* 82576 supports 2 RSS queues for SR-IOV */
4442                 if (adapter->vfs_allocated_count)
4443                         num_rx_queues = 2;
4444                 break;
4445         default:
4446                 break;
4447         }
4448
4449         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4450                 for (j = 0; j < IGB_RETA_SIZE; j++)
4451                         adapter->rss_indir_tbl[j] =
4452                         (j * num_rx_queues) / IGB_RETA_SIZE;
4453                 adapter->rss_indir_tbl_init = num_rx_queues;
4454         }
4455         igb_write_rss_indir_tbl(adapter);
4456
4457         /* Disable raw packet checksumming so that RSS hash is placed in
4458          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4459          * offloads as they are enabled by default
4460          */
4461         rxcsum = rd32(E1000_RXCSUM);
4462         rxcsum |= E1000_RXCSUM_PCSD;
4463
4464         if (adapter->hw.mac.type >= e1000_82576)
4465                 /* Enable Receive Checksum Offload for SCTP */
4466                 rxcsum |= E1000_RXCSUM_CRCOFL;
4467
4468         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4469         wr32(E1000_RXCSUM, rxcsum);
4470
4471         /* Generate RSS hash based on packet types, TCP/UDP
4472          * port numbers and/or IPv4/v6 src and dst addresses
4473          */
4474         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4475                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4476                E1000_MRQC_RSS_FIELD_IPV6 |
4477                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4478                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4479
4480         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4481                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4482         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4483                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4484
4485         /* If VMDq is enabled then we set the appropriate mode for that, else
4486          * we default to RSS so that an RSS hash is calculated per packet even
4487          * if we are only using one queue
4488          */
4489         if (adapter->vfs_allocated_count) {
4490                 if (hw->mac.type > e1000_82575) {
4491                         /* Set the default pool for the PF's first queue */
4492                         u32 vtctl = rd32(E1000_VT_CTL);
4493
4494                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4495                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4496                         vtctl |= adapter->vfs_allocated_count <<
4497                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4498                         wr32(E1000_VT_CTL, vtctl);
4499                 }
4500                 if (adapter->rss_queues > 1)
4501                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4502                 else
4503                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4504         } else {
4505                 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4506         }
4507         igb_vmm_control(adapter);
4508
4509         wr32(E1000_MRQC, mrqc);
4510 }
4511
4512 /**
4513  *  igb_setup_rctl - configure the receive control registers
4514  *  @adapter: Board private structure
4515  **/
4516 void igb_setup_rctl(struct igb_adapter *adapter)
4517 {
4518         struct e1000_hw *hw = &adapter->hw;
4519         u32 rctl;
4520
4521         rctl = rd32(E1000_RCTL);
4522
4523         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4524         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4525
4526         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4527                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4528
4529         /* enable stripping of CRC. It's unlikely this will break BMC
4530          * redirection as it did with e1000. Newer features require
4531          * that the HW strips the CRC.
4532          */
4533         rctl |= E1000_RCTL_SECRC;
4534
4535         /* disable store bad packets and clear size bits. */
4536         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4537
4538         /* enable LPE to allow for reception of jumbo frames */
4539         rctl |= E1000_RCTL_LPE;
4540
4541         /* disable queue 0 to prevent tail write w/o re-config */
4542         wr32(E1000_RXDCTL(0), 0);
4543
4544         /* Attention!!!  For SR-IOV PF driver operations you must enable
4545          * queue drop for all VF and PF queues to prevent head of line blocking
4546          * if an un-trusted VF does not provide descriptors to hardware.
4547          */
4548         if (adapter->vfs_allocated_count) {
4549                 /* set all queue drop enable bits */
4550                 wr32(E1000_QDE, ALL_QUEUES);
4551         }
4552
4553         /* This is useful for sniffing bad packets. */
4554         if (adapter->netdev->features & NETIF_F_RXALL) {
4555                 /* UPE and MPE will be handled by normal PROMISC logic
4556                  * in e1000e_set_rx_mode
4557                  */
4558                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4559                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4560                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4561
4562                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4563                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4564                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4565                  * and that breaks VLANs.
4566                  */
4567         }
4568
4569         wr32(E1000_RCTL, rctl);
4570 }
4571
4572 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4573                                    int vfn)
4574 {
4575         struct e1000_hw *hw = &adapter->hw;
4576         u32 vmolr;
4577
4578         if (size > MAX_JUMBO_FRAME_SIZE)
4579                 size = MAX_JUMBO_FRAME_SIZE;
4580
4581         vmolr = rd32(E1000_VMOLR(vfn));
4582         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4583         vmolr |= size | E1000_VMOLR_LPE;
4584         wr32(E1000_VMOLR(vfn), vmolr);
4585
4586         return 0;
4587 }
4588
4589 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4590                                          int vfn, bool enable)
4591 {
4592         struct e1000_hw *hw = &adapter->hw;
4593         u32 val, reg;
4594
4595         if (hw->mac.type < e1000_82576)
4596                 return;
4597
4598         if (hw->mac.type == e1000_i350)
4599                 reg = E1000_DVMOLR(vfn);
4600         else
4601                 reg = E1000_VMOLR(vfn);
4602
4603         val = rd32(reg);
4604         if (enable)
4605                 val |= E1000_VMOLR_STRVLAN;
4606         else
4607                 val &= ~(E1000_VMOLR_STRVLAN);
4608         wr32(reg, val);
4609 }
4610
4611 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4612                                  int vfn, bool aupe)
4613 {
4614         struct e1000_hw *hw = &adapter->hw;
4615         u32 vmolr;
4616
4617         /* This register exists only on 82576 and newer so if we are older then
4618          * we should exit and do nothing
4619          */
4620         if (hw->mac.type < e1000_82576)
4621                 return;
4622
4623         vmolr = rd32(E1000_VMOLR(vfn));
4624         if (aupe)
4625                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4626         else
4627                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4628
4629         /* clear all bits that might not be set */
4630         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4631
4632         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4633                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4634         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4635          * multicast packets
4636          */
4637         if (vfn <= adapter->vfs_allocated_count)
4638                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4639
4640         wr32(E1000_VMOLR(vfn), vmolr);
4641 }
4642
4643 /**
4644  *  igb_setup_srrctl - configure the split and replication receive control
4645  *                     registers
4646  *  @adapter: Board private structure
4647  *  @ring: receive ring to be configured
4648  **/
4649 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4650 {
4651         struct e1000_hw *hw = &adapter->hw;
4652         int reg_idx = ring->reg_idx;
4653         u32 srrctl = 0;
4654
4655         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4656         if (ring_uses_large_buffer(ring))
4657                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4658         else
4659                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4660         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4661         if (hw->mac.type >= e1000_82580)
4662                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4663         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4664          * queues and rx flow control is disabled
4665          */
4666         if (adapter->vfs_allocated_count ||
4667             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4668              adapter->num_rx_queues > 1))
4669                 srrctl |= E1000_SRRCTL_DROP_EN;
4670
4671         wr32(E1000_SRRCTL(reg_idx), srrctl);
4672 }
4673
4674 /**
4675  *  igb_configure_rx_ring - Configure a receive ring after Reset
4676  *  @adapter: board private structure
4677  *  @ring: receive ring to be configured
4678  *
4679  *  Configure the Rx unit of the MAC after a reset.
4680  **/
4681 void igb_configure_rx_ring(struct igb_adapter *adapter,
4682                            struct igb_ring *ring)
4683 {
4684         struct e1000_hw *hw = &adapter->hw;
4685         union e1000_adv_rx_desc *rx_desc;
4686         u64 rdba = ring->dma;
4687         int reg_idx = ring->reg_idx;
4688         u32 rxdctl = 0;
4689
4690         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4691         WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4692                                            MEM_TYPE_PAGE_SHARED, NULL));
4693
4694         /* disable the queue */
4695         wr32(E1000_RXDCTL(reg_idx), 0);
4696
4697         /* Set DMA base address registers */
4698         wr32(E1000_RDBAL(reg_idx),
4699              rdba & 0x00000000ffffffffULL);
4700         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4701         wr32(E1000_RDLEN(reg_idx),
4702              ring->count * sizeof(union e1000_adv_rx_desc));
4703
4704         /* initialize head and tail */
4705         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4706         wr32(E1000_RDH(reg_idx), 0);
4707         writel(0, ring->tail);
4708
4709         /* set descriptor configuration */
4710         igb_setup_srrctl(adapter, ring);
4711
4712         /* set filtering for VMDQ pools */
4713         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4714
4715         rxdctl |= IGB_RX_PTHRESH;
4716         rxdctl |= IGB_RX_HTHRESH << 8;
4717         rxdctl |= IGB_RX_WTHRESH << 16;
4718
4719         /* initialize rx_buffer_info */
4720         memset(ring->rx_buffer_info, 0,
4721                sizeof(struct igb_rx_buffer) * ring->count);
4722
4723         /* initialize Rx descriptor 0 */
4724         rx_desc = IGB_RX_DESC(ring, 0);
4725         rx_desc->wb.upper.length = 0;
4726
4727         /* enable receive descriptor fetching */
4728         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4729         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4730 }
4731
4732 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4733                                   struct igb_ring *rx_ring)
4734 {
4735 #if (PAGE_SIZE < 8192)
4736         struct e1000_hw *hw = &adapter->hw;
4737 #endif
4738
4739         /* set build_skb and buffer size flags */
4740         clear_ring_build_skb_enabled(rx_ring);
4741         clear_ring_uses_large_buffer(rx_ring);
4742
4743         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4744                 return;
4745
4746         set_ring_build_skb_enabled(rx_ring);
4747
4748 #if (PAGE_SIZE < 8192)
4749         if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4750             rd32(E1000_RCTL) & E1000_RCTL_SBP)
4751                 set_ring_uses_large_buffer(rx_ring);
4752 #endif
4753 }
4754
4755 /**
4756  *  igb_configure_rx - Configure receive Unit after Reset
4757  *  @adapter: board private structure
4758  *
4759  *  Configure the Rx unit of the MAC after a reset.
4760  **/
4761 static void igb_configure_rx(struct igb_adapter *adapter)
4762 {
4763         int i;
4764
4765         /* set the correct pool for the PF default MAC address in entry 0 */
4766         igb_set_default_mac_filter(adapter);
4767
4768         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4769          * the Base and Length of the Rx Descriptor Ring
4770          */
4771         for (i = 0; i < adapter->num_rx_queues; i++) {
4772                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4773
4774                 igb_set_rx_buffer_len(adapter, rx_ring);
4775                 igb_configure_rx_ring(adapter, rx_ring);
4776         }
4777 }
4778
4779 /**
4780  *  igb_free_tx_resources - Free Tx Resources per Queue
4781  *  @tx_ring: Tx descriptor ring for a specific queue
4782  *
4783  *  Free all transmit software resources
4784  **/
4785 void igb_free_tx_resources(struct igb_ring *tx_ring)
4786 {
4787         igb_clean_tx_ring(tx_ring);
4788
4789         vfree(tx_ring->tx_buffer_info);
4790         tx_ring->tx_buffer_info = NULL;
4791
4792         /* if not set, then don't free */
4793         if (!tx_ring->desc)
4794                 return;
4795
4796         dma_free_coherent(tx_ring->dev, tx_ring->size,
4797                           tx_ring->desc, tx_ring->dma);
4798
4799         tx_ring->desc = NULL;
4800 }
4801
4802 /**
4803  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4804  *  @adapter: board private structure
4805  *
4806  *  Free all transmit software resources
4807  **/
4808 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809 {
4810         int i;
4811
4812         for (i = 0; i < adapter->num_tx_queues; i++)
4813                 if (adapter->tx_ring[i])
4814                         igb_free_tx_resources(adapter->tx_ring[i]);
4815 }
4816
4817 /**
4818  *  igb_clean_tx_ring - Free Tx Buffers
4819  *  @tx_ring: ring to be cleaned
4820  **/
4821 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822 {
4823         u16 i = tx_ring->next_to_clean;
4824         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825
4826         while (i != tx_ring->next_to_use) {
4827                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828
4829                 /* Free all the Tx ring sk_buffs or xdp frames */
4830                 if (tx_buffer->type == IGB_TYPE_SKB)
4831                         dev_kfree_skb_any(tx_buffer->skb);
4832                 else
4833                         xdp_return_frame(tx_buffer->xdpf);
4834
4835                 /* unmap skb header data */
4836                 dma_unmap_single(tx_ring->dev,
4837                                  dma_unmap_addr(tx_buffer, dma),
4838                                  dma_unmap_len(tx_buffer, len),
4839                                  DMA_TO_DEVICE);
4840
4841                 /* check for eop_desc to determine the end of the packet */
4842                 eop_desc = tx_buffer->next_to_watch;
4843                 tx_desc = IGB_TX_DESC(tx_ring, i);
4844
4845                 /* unmap remaining buffers */
4846                 while (tx_desc != eop_desc) {
4847                         tx_buffer++;
4848                         tx_desc++;
4849                         i++;
4850                         if (unlikely(i == tx_ring->count)) {
4851                                 i = 0;
4852                                 tx_buffer = tx_ring->tx_buffer_info;
4853                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4854                         }
4855
4856                         /* unmap any remaining paged data */
4857                         if (dma_unmap_len(tx_buffer, len))
4858                                 dma_unmap_page(tx_ring->dev,
4859                                                dma_unmap_addr(tx_buffer, dma),
4860                                                dma_unmap_len(tx_buffer, len),
4861                                                DMA_TO_DEVICE);
4862                 }
4863
4864                 tx_buffer->next_to_watch = NULL;
4865
4866                 /* move us one more past the eop_desc for start of next pkt */
4867                 tx_buffer++;
4868                 i++;
4869                 if (unlikely(i == tx_ring->count)) {
4870                         i = 0;
4871                         tx_buffer = tx_ring->tx_buffer_info;
4872                 }
4873         }
4874
4875         /* reset BQL for queue */
4876         netdev_tx_reset_queue(txring_txq(tx_ring));
4877
4878         /* reset next_to_use and next_to_clean */
4879         tx_ring->next_to_use = 0;
4880         tx_ring->next_to_clean = 0;
4881 }
4882
4883 /**
4884  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885  *  @adapter: board private structure
4886  **/
4887 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888 {
4889         int i;
4890
4891         for (i = 0; i < adapter->num_tx_queues; i++)
4892                 if (adapter->tx_ring[i])
4893                         igb_clean_tx_ring(adapter->tx_ring[i]);
4894 }
4895
4896 /**
4897  *  igb_free_rx_resources - Free Rx Resources
4898  *  @rx_ring: ring to clean the resources from
4899  *
4900  *  Free all receive software resources
4901  **/
4902 void igb_free_rx_resources(struct igb_ring *rx_ring)
4903 {
4904         igb_clean_rx_ring(rx_ring);
4905
4906         rx_ring->xdp_prog = NULL;
4907         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908         vfree(rx_ring->rx_buffer_info);
4909         rx_ring->rx_buffer_info = NULL;
4910
4911         /* if not set, then don't free */
4912         if (!rx_ring->desc)
4913                 return;
4914
4915         dma_free_coherent(rx_ring->dev, rx_ring->size,
4916                           rx_ring->desc, rx_ring->dma);
4917
4918         rx_ring->desc = NULL;
4919 }
4920
4921 /**
4922  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4923  *  @adapter: board private structure
4924  *
4925  *  Free all receive software resources
4926  **/
4927 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928 {
4929         int i;
4930
4931         for (i = 0; i < adapter->num_rx_queues; i++)
4932                 if (adapter->rx_ring[i])
4933                         igb_free_rx_resources(adapter->rx_ring[i]);
4934 }
4935
4936 /**
4937  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4938  *  @rx_ring: ring to free buffers from
4939  **/
4940 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941 {
4942         u16 i = rx_ring->next_to_clean;
4943
4944         dev_kfree_skb(rx_ring->skb);
4945         rx_ring->skb = NULL;
4946
4947         /* Free all the Rx ring sk_buffs */
4948         while (i != rx_ring->next_to_alloc) {
4949                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950
4951                 /* Invalidate cache lines that may have been written to by
4952                  * device so that we avoid corrupting memory.
4953                  */
4954                 dma_sync_single_range_for_cpu(rx_ring->dev,
4955                                               buffer_info->dma,
4956                                               buffer_info->page_offset,
4957                                               igb_rx_bufsz(rx_ring),
4958                                               DMA_FROM_DEVICE);
4959
4960                 /* free resources associated with mapping */
4961                 dma_unmap_page_attrs(rx_ring->dev,
4962                                      buffer_info->dma,
4963                                      igb_rx_pg_size(rx_ring),
4964                                      DMA_FROM_DEVICE,
4965                                      IGB_RX_DMA_ATTR);
4966                 __page_frag_cache_drain(buffer_info->page,
4967                                         buffer_info->pagecnt_bias);
4968
4969                 i++;
4970                 if (i == rx_ring->count)
4971                         i = 0;
4972         }
4973
4974         rx_ring->next_to_alloc = 0;
4975         rx_ring->next_to_clean = 0;
4976         rx_ring->next_to_use = 0;
4977 }
4978
4979 /**
4980  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981  *  @adapter: board private structure
4982  **/
4983 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984 {
4985         int i;
4986
4987         for (i = 0; i < adapter->num_rx_queues; i++)
4988                 if (adapter->rx_ring[i])
4989                         igb_clean_rx_ring(adapter->rx_ring[i]);
4990 }
4991
4992 /**
4993  *  igb_set_mac - Change the Ethernet Address of the NIC
4994  *  @netdev: network interface device structure
4995  *  @p: pointer to an address structure
4996  *
4997  *  Returns 0 on success, negative on failure
4998  **/
4999 static int igb_set_mac(struct net_device *netdev, void *p)
5000 {
5001         struct igb_adapter *adapter = netdev_priv(netdev);
5002         struct e1000_hw *hw = &adapter->hw;
5003         struct sockaddr *addr = p;
5004
5005         if (!is_valid_ether_addr(addr->sa_data))
5006                 return -EADDRNOTAVAIL;
5007
5008         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
5009         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010
5011         /* set the correct pool for the new PF MAC address in entry 0 */
5012         igb_set_default_mac_filter(adapter);
5013
5014         return 0;
5015 }
5016
5017 /**
5018  *  igb_write_mc_addr_list - write multicast addresses to MTA
5019  *  @netdev: network interface device structure
5020  *
5021  *  Writes multicast address list to the MTA hash table.
5022  *  Returns: -ENOMEM on failure
5023  *           0 on no addresses written
5024  *           X on writing X addresses to MTA
5025  **/
5026 static int igb_write_mc_addr_list(struct net_device *netdev)
5027 {
5028         struct igb_adapter *adapter = netdev_priv(netdev);
5029         struct e1000_hw *hw = &adapter->hw;
5030         struct netdev_hw_addr *ha;
5031         u8  *mta_list;
5032         int i;
5033
5034         if (netdev_mc_empty(netdev)) {
5035                 /* nothing to program, so clear mc list */
5036                 igb_update_mc_addr_list(hw, NULL, 0);
5037                 igb_restore_vf_multicasts(adapter);
5038                 return 0;
5039         }
5040
5041         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042         if (!mta_list)
5043                 return -ENOMEM;
5044
5045         /* The shared function expects a packed array of only addresses. */
5046         i = 0;
5047         netdev_for_each_mc_addr(ha, netdev)
5048                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049
5050         igb_update_mc_addr_list(hw, mta_list, i);
5051         kfree(mta_list);
5052
5053         return netdev_mc_count(netdev);
5054 }
5055
5056 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057 {
5058         struct e1000_hw *hw = &adapter->hw;
5059         u32 i, pf_id;
5060
5061         switch (hw->mac.type) {
5062         case e1000_i210:
5063         case e1000_i211:
5064         case e1000_i350:
5065                 /* VLAN filtering needed for VLAN prio filter */
5066                 if (adapter->netdev->features & NETIF_F_NTUPLE)
5067                         break;
5068                 fallthrough;
5069         case e1000_82576:
5070         case e1000_82580:
5071         case e1000_i354:
5072                 /* VLAN filtering needed for pool filtering */
5073                 if (adapter->vfs_allocated_count)
5074                         break;
5075                 fallthrough;
5076         default:
5077                 return 1;
5078         }
5079
5080         /* We are already in VLAN promisc, nothing to do */
5081         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082                 return 0;
5083
5084         if (!adapter->vfs_allocated_count)
5085                 goto set_vfta;
5086
5087         /* Add PF to all active pools */
5088         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089
5090         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091                 u32 vlvf = rd32(E1000_VLVF(i));
5092
5093                 vlvf |= BIT(pf_id);
5094                 wr32(E1000_VLVF(i), vlvf);
5095         }
5096
5097 set_vfta:
5098         /* Set all bits in the VLAN filter table array */
5099         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100                 hw->mac.ops.write_vfta(hw, i, ~0U);
5101
5102         /* Set flag so we don't redo unnecessary work */
5103         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104
5105         return 0;
5106 }
5107
5108 #define VFTA_BLOCK_SIZE 8
5109 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110 {
5111         struct e1000_hw *hw = &adapter->hw;
5112         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113         u32 vid_start = vfta_offset * 32;
5114         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115         u32 i, vid, word, bits, pf_id;
5116
5117         /* guarantee that we don't scrub out management VLAN */
5118         vid = adapter->mng_vlan_id;
5119         if (vid >= vid_start && vid < vid_end)
5120                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121
5122         if (!adapter->vfs_allocated_count)
5123                 goto set_vfta;
5124
5125         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126
5127         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128                 u32 vlvf = rd32(E1000_VLVF(i));
5129
5130                 /* pull VLAN ID from VLVF */
5131                 vid = vlvf & VLAN_VID_MASK;
5132
5133                 /* only concern ourselves with a certain range */
5134                 if (vid < vid_start || vid >= vid_end)
5135                         continue;
5136
5137                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138                         /* record VLAN ID in VFTA */
5139                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140
5141                         /* if PF is part of this then continue */
5142                         if (test_bit(vid, adapter->active_vlans))
5143                                 continue;
5144                 }
5145
5146                 /* remove PF from the pool */
5147                 bits = ~BIT(pf_id);
5148                 bits &= rd32(E1000_VLVF(i));
5149                 wr32(E1000_VLVF(i), bits);
5150         }
5151
5152 set_vfta:
5153         /* extract values from active_vlans and write back to VFTA */
5154         for (i = VFTA_BLOCK_SIZE; i--;) {
5155                 vid = (vfta_offset + i) * 32;
5156                 word = vid / BITS_PER_LONG;
5157                 bits = vid % BITS_PER_LONG;
5158
5159                 vfta[i] |= adapter->active_vlans[word] >> bits;
5160
5161                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162         }
5163 }
5164
5165 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166 {
5167         u32 i;
5168
5169         /* We are not in VLAN promisc, nothing to do */
5170         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171                 return;
5172
5173         /* Set flag so we don't redo unnecessary work */
5174         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175
5176         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177                 igb_scrub_vfta(adapter, i);
5178 }
5179
5180 /**
5181  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182  *  @netdev: network interface device structure
5183  *
5184  *  The set_rx_mode entry point is called whenever the unicast or multicast
5185  *  address lists or the network interface flags are updated.  This routine is
5186  *  responsible for configuring the hardware for proper unicast, multicast,
5187  *  promiscuous mode, and all-multi behavior.
5188  **/
5189 static void igb_set_rx_mode(struct net_device *netdev)
5190 {
5191         struct igb_adapter *adapter = netdev_priv(netdev);
5192         struct e1000_hw *hw = &adapter->hw;
5193         unsigned int vfn = adapter->vfs_allocated_count;
5194         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195         int count;
5196
5197         /* Check for Promiscuous and All Multicast modes */
5198         if (netdev->flags & IFF_PROMISC) {
5199                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200                 vmolr |= E1000_VMOLR_MPME;
5201
5202                 /* enable use of UTA filter to force packets to default pool */
5203                 if (hw->mac.type == e1000_82576)
5204                         vmolr |= E1000_VMOLR_ROPE;
5205         } else {
5206                 if (netdev->flags & IFF_ALLMULTI) {
5207                         rctl |= E1000_RCTL_MPE;
5208                         vmolr |= E1000_VMOLR_MPME;
5209                 } else {
5210                         /* Write addresses to the MTA, if the attempt fails
5211                          * then we should just turn on promiscuous mode so
5212                          * that we can at least receive multicast traffic
5213                          */
5214                         count = igb_write_mc_addr_list(netdev);
5215                         if (count < 0) {
5216                                 rctl |= E1000_RCTL_MPE;
5217                                 vmolr |= E1000_VMOLR_MPME;
5218                         } else if (count) {
5219                                 vmolr |= E1000_VMOLR_ROMPE;
5220                         }
5221                 }
5222         }
5223
5224         /* Write addresses to available RAR registers, if there is not
5225          * sufficient space to store all the addresses then enable
5226          * unicast promiscuous mode
5227          */
5228         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229                 rctl |= E1000_RCTL_UPE;
5230                 vmolr |= E1000_VMOLR_ROPE;
5231         }
5232
5233         /* enable VLAN filtering by default */
5234         rctl |= E1000_RCTL_VFE;
5235
5236         /* disable VLAN filtering for modes that require it */
5237         if ((netdev->flags & IFF_PROMISC) ||
5238             (netdev->features & NETIF_F_RXALL)) {
5239                 /* if we fail to set all rules then just clear VFE */
5240                 if (igb_vlan_promisc_enable(adapter))
5241                         rctl &= ~E1000_RCTL_VFE;
5242         } else {
5243                 igb_vlan_promisc_disable(adapter);
5244         }
5245
5246         /* update state of unicast, multicast, and VLAN filtering modes */
5247         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248                                      E1000_RCTL_VFE);
5249         wr32(E1000_RCTL, rctl);
5250
5251 #if (PAGE_SIZE < 8192)
5252         if (!adapter->vfs_allocated_count) {
5253                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255         }
5256 #endif
5257         wr32(E1000_RLPML, rlpml);
5258
5259         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5260          * the VMOLR to enable the appropriate modes.  Without this workaround
5261          * we will have issues with VLAN tag stripping not being done for frames
5262          * that are only arriving because we are the default pool
5263          */
5264         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265                 return;
5266
5267         /* set UTA to appropriate mode */
5268         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269
5270         vmolr |= rd32(E1000_VMOLR(vfn)) &
5271                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272
5273         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5274         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275 #if (PAGE_SIZE < 8192)
5276         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278         else
5279 #endif
5280                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5281         vmolr |= E1000_VMOLR_LPE;
5282
5283         wr32(E1000_VMOLR(vfn), vmolr);
5284
5285         igb_restore_vf_multicasts(adapter);
5286 }
5287
5288 static void igb_check_wvbr(struct igb_adapter *adapter)
5289 {
5290         struct e1000_hw *hw = &adapter->hw;
5291         u32 wvbr = 0;
5292
5293         switch (hw->mac.type) {
5294         case e1000_82576:
5295         case e1000_i350:
5296                 wvbr = rd32(E1000_WVBR);
5297                 if (!wvbr)
5298                         return;
5299                 break;
5300         default:
5301                 break;
5302         }
5303
5304         adapter->wvbr |= wvbr;
5305 }
5306
5307 #define IGB_STAGGERED_QUEUE_OFFSET 8
5308
5309 static void igb_spoof_check(struct igb_adapter *adapter)
5310 {
5311         int j;
5312
5313         if (!adapter->wvbr)
5314                 return;
5315
5316         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317                 if (adapter->wvbr & BIT(j) ||
5318                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319                         dev_warn(&adapter->pdev->dev,
5320                                 "Spoof event(s) detected on VF %d\n", j);
5321                         adapter->wvbr &=
5322                                 ~(BIT(j) |
5323                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324                 }
5325         }
5326 }
5327
5328 /* Need to wait a few seconds after link up to get diagnostic information from
5329  * the phy
5330  */
5331 static void igb_update_phy_info(struct timer_list *t)
5332 {
5333         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334         igb_get_phy_info(&adapter->hw);
5335 }
5336
5337 /**
5338  *  igb_has_link - check shared code for link and determine up/down
5339  *  @adapter: pointer to driver private info
5340  **/
5341 bool igb_has_link(struct igb_adapter *adapter)
5342 {
5343         struct e1000_hw *hw = &adapter->hw;
5344         bool link_active = false;
5345
5346         /* get_link_status is set on LSC (link status) interrupt or
5347          * rx sequence error interrupt.  get_link_status will stay
5348          * false until the e1000_check_for_link establishes link
5349          * for copper adapters ONLY
5350          */
5351         switch (hw->phy.media_type) {
5352         case e1000_media_type_copper:
5353                 if (!hw->mac.get_link_status)
5354                         return true;
5355                 fallthrough;
5356         case e1000_media_type_internal_serdes:
5357                 hw->mac.ops.check_for_link(hw);
5358                 link_active = !hw->mac.get_link_status;
5359                 break;
5360         default:
5361         case e1000_media_type_unknown:
5362                 break;
5363         }
5364
5365         if (((hw->mac.type == e1000_i210) ||
5366              (hw->mac.type == e1000_i211)) &&
5367              (hw->phy.id == I210_I_PHY_ID)) {
5368                 if (!netif_carrier_ok(adapter->netdev)) {
5369                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372                         adapter->link_check_timeout = jiffies;
5373                 }
5374         }
5375
5376         return link_active;
5377 }
5378
5379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380 {
5381         bool ret = false;
5382         u32 ctrl_ext, thstat;
5383
5384         /* check for thermal sensor event on i350 copper only */
5385         if (hw->mac.type == e1000_i350) {
5386                 thstat = rd32(E1000_THSTAT);
5387                 ctrl_ext = rd32(E1000_CTRL_EXT);
5388
5389                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5390                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391                         ret = !!(thstat & event);
5392         }
5393
5394         return ret;
5395 }
5396
5397 /**
5398  *  igb_check_lvmmc - check for malformed packets received
5399  *  and indicated in LVMMC register
5400  *  @adapter: pointer to adapter
5401  **/
5402 static void igb_check_lvmmc(struct igb_adapter *adapter)
5403 {
5404         struct e1000_hw *hw = &adapter->hw;
5405         u32 lvmmc;
5406
5407         lvmmc = rd32(E1000_LVMMC);
5408         if (lvmmc) {
5409                 if (unlikely(net_ratelimit())) {
5410                         netdev_warn(adapter->netdev,
5411                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412                                     lvmmc);
5413                 }
5414         }
5415 }
5416
5417 /**
5418  *  igb_watchdog - Timer Call-back
5419  *  @t: pointer to timer_list containing our private info pointer
5420  **/
5421 static void igb_watchdog(struct timer_list *t)
5422 {
5423         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424         /* Do the rest outside of interrupt context */
5425         schedule_work(&adapter->watchdog_task);
5426 }
5427
5428 static void igb_watchdog_task(struct work_struct *work)
5429 {
5430         struct igb_adapter *adapter = container_of(work,
5431                                                    struct igb_adapter,
5432                                                    watchdog_task);
5433         struct e1000_hw *hw = &adapter->hw;
5434         struct e1000_phy_info *phy = &hw->phy;
5435         struct net_device *netdev = adapter->netdev;
5436         u32 link;
5437         int i;
5438         u32 connsw;
5439         u16 phy_data, retry_count = 20;
5440
5441         link = igb_has_link(adapter);
5442
5443         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446                 else
5447                         link = false;
5448         }
5449
5450         /* Force link down if we have fiber to swap to */
5451         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452                 if (hw->phy.media_type == e1000_media_type_copper) {
5453                         connsw = rd32(E1000_CONNSW);
5454                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455                                 link = 0;
5456                 }
5457         }
5458         if (link) {
5459                 /* Perform a reset if the media type changed. */
5460                 if (hw->dev_spec._82575.media_changed) {
5461                         hw->dev_spec._82575.media_changed = false;
5462                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463                         igb_reset(adapter);
5464                 }
5465                 /* Cancel scheduled suspend requests. */
5466                 pm_runtime_resume(netdev->dev.parent);
5467
5468                 if (!netif_carrier_ok(netdev)) {
5469                         u32 ctrl;
5470
5471                         hw->mac.ops.get_speed_and_duplex(hw,
5472                                                          &adapter->link_speed,
5473                                                          &adapter->link_duplex);
5474
5475                         ctrl = rd32(E1000_CTRL);
5476                         /* Links status message must follow this format */
5477                         netdev_info(netdev,
5478                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479                                netdev->name,
5480                                adapter->link_speed,
5481                                adapter->link_duplex == FULL_DUPLEX ?
5482                                "Full" : "Half",
5483                                (ctrl & E1000_CTRL_TFCE) &&
5484                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5486                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5487
5488                         /* disable EEE if enabled */
5489                         if ((adapter->flags & IGB_FLAG_EEE) &&
5490                                 (adapter->link_duplex == HALF_DUPLEX)) {
5491                                 dev_info(&adapter->pdev->dev,
5492                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493                                 adapter->hw.dev_spec._82575.eee_disable = true;
5494                                 adapter->flags &= ~IGB_FLAG_EEE;
5495                         }
5496
5497                         /* check if SmartSpeed worked */
5498                         igb_check_downshift(hw);
5499                         if (phy->speed_downgraded)
5500                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501
5502                         /* check for thermal sensor event */
5503                         if (igb_thermal_sensor_event(hw,
5504                             E1000_THSTAT_LINK_THROTTLE))
5505                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506
5507                         /* adjust timeout factor according to speed/duplex */
5508                         adapter->tx_timeout_factor = 1;
5509                         switch (adapter->link_speed) {
5510                         case SPEED_10:
5511                                 adapter->tx_timeout_factor = 14;
5512                                 break;
5513                         case SPEED_100:
5514                                 /* maybe add some timeout factor ? */
5515                                 break;
5516                         }
5517
5518                         if (adapter->link_speed != SPEED_1000 ||
5519                             !hw->phy.ops.read_reg)
5520                                 goto no_wait;
5521
5522                         /* wait for Remote receiver status OK */
5523 retry_read_status:
5524                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525                                               &phy_data)) {
5526                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527                                     retry_count) {
5528                                         msleep(100);
5529                                         retry_count--;
5530                                         goto retry_read_status;
5531                                 } else if (!retry_count) {
5532                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533                                 }
5534                         } else {
5535                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536                         }
5537 no_wait:
5538                         netif_carrier_on(netdev);
5539
5540                         igb_ping_all_vfs(adapter);
5541                         igb_check_vf_rate_limit(adapter);
5542
5543                         /* link state has changed, schedule phy info update */
5544                         if (!test_bit(__IGB_DOWN, &adapter->state))
5545                                 mod_timer(&adapter->phy_info_timer,
5546                                           round_jiffies(jiffies + 2 * HZ));
5547                 }
5548         } else {
5549                 if (netif_carrier_ok(netdev)) {
5550                         adapter->link_speed = 0;
5551                         adapter->link_duplex = 0;
5552
5553                         /* check for thermal sensor event */
5554                         if (igb_thermal_sensor_event(hw,
5555                             E1000_THSTAT_PWR_DOWN)) {
5556                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557                         }
5558
5559                         /* Links status message must follow this format */
5560                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561                                netdev->name);
5562                         netif_carrier_off(netdev);
5563
5564                         igb_ping_all_vfs(adapter);
5565
5566                         /* link state has changed, schedule phy info update */
5567                         if (!test_bit(__IGB_DOWN, &adapter->state))
5568                                 mod_timer(&adapter->phy_info_timer,
5569                                           round_jiffies(jiffies + 2 * HZ));
5570
5571                         /* link is down, time to check for alternate media */
5572                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573                                 igb_check_swap_media(adapter);
5574                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575                                         schedule_work(&adapter->reset_task);
5576                                         /* return immediately */
5577                                         return;
5578                                 }
5579                         }
5580                         pm_schedule_suspend(netdev->dev.parent,
5581                                             MSEC_PER_SEC * 5);
5582
5583                 /* also check for alternate media here */
5584                 } else if (!netif_carrier_ok(netdev) &&
5585                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586                         igb_check_swap_media(adapter);
5587                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588                                 schedule_work(&adapter->reset_task);
5589                                 /* return immediately */
5590                                 return;
5591                         }
5592                 }
5593         }
5594
5595         spin_lock(&adapter->stats64_lock);
5596         igb_update_stats(adapter);
5597         spin_unlock(&adapter->stats64_lock);
5598
5599         for (i = 0; i < adapter->num_tx_queues; i++) {
5600                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5601                 if (!netif_carrier_ok(netdev)) {
5602                         /* We've lost link, so the controller stops DMA,
5603                          * but we've got queued Tx work that's never going
5604                          * to get done, so reset controller to flush Tx.
5605                          * (Do the reset outside of interrupt context).
5606                          */
5607                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608                                 adapter->tx_timeout_count++;
5609                                 schedule_work(&adapter->reset_task);
5610                                 /* return immediately since reset is imminent */
5611                                 return;
5612                         }
5613                 }
5614
5615                 /* Force detection of hung controller every watchdog period */
5616                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617         }
5618
5619         /* Cause software interrupt to ensure Rx ring is cleaned */
5620         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621                 u32 eics = 0;
5622
5623                 for (i = 0; i < adapter->num_q_vectors; i++)
5624                         eics |= adapter->q_vector[i]->eims_value;
5625                 wr32(E1000_EICS, eics);
5626         } else {
5627                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628         }
5629
5630         igb_spoof_check(adapter);
5631         igb_ptp_rx_hang(adapter);
5632         igb_ptp_tx_hang(adapter);
5633
5634         /* Check LVMMC register on i350/i354 only */
5635         if ((adapter->hw.mac.type == e1000_i350) ||
5636             (adapter->hw.mac.type == e1000_i354))
5637                 igb_check_lvmmc(adapter);
5638
5639         /* Reset the timer */
5640         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642                         mod_timer(&adapter->watchdog_timer,
5643                                   round_jiffies(jiffies +  HZ));
5644                 else
5645                         mod_timer(&adapter->watchdog_timer,
5646                                   round_jiffies(jiffies + 2 * HZ));
5647         }
5648 }
5649
5650 enum latency_range {
5651         lowest_latency = 0,
5652         low_latency = 1,
5653         bulk_latency = 2,
5654         latency_invalid = 255
5655 };
5656
5657 /**
5658  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5659  *  @q_vector: pointer to q_vector
5660  *
5661  *  Stores a new ITR value based on strictly on packet size.  This
5662  *  algorithm is less sophisticated than that used in igb_update_itr,
5663  *  due to the difficulty of synchronizing statistics across multiple
5664  *  receive rings.  The divisors and thresholds used by this function
5665  *  were determined based on theoretical maximum wire speed and testing
5666  *  data, in order to minimize response time while increasing bulk
5667  *  throughput.
5668  *  This functionality is controlled by ethtool's coalescing settings.
5669  *  NOTE:  This function is called only when operating in a multiqueue
5670  *         receive environment.
5671  **/
5672 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673 {
5674         int new_val = q_vector->itr_val;
5675         int avg_wire_size = 0;
5676         struct igb_adapter *adapter = q_vector->adapter;
5677         unsigned int packets;
5678
5679         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5680          * ints/sec - ITR timer value of 120 ticks.
5681          */
5682         if (adapter->link_speed != SPEED_1000) {
5683                 new_val = IGB_4K_ITR;
5684                 goto set_itr_val;
5685         }
5686
5687         packets = q_vector->rx.total_packets;
5688         if (packets)
5689                 avg_wire_size = q_vector->rx.total_bytes / packets;
5690
5691         packets = q_vector->tx.total_packets;
5692         if (packets)
5693                 avg_wire_size = max_t(u32, avg_wire_size,
5694                                       q_vector->tx.total_bytes / packets);
5695
5696         /* if avg_wire_size isn't set no work was done */
5697         if (!avg_wire_size)
5698                 goto clear_counts;
5699
5700         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5701         avg_wire_size += 24;
5702
5703         /* Don't starve jumbo frames */
5704         avg_wire_size = min(avg_wire_size, 3000);
5705
5706         /* Give a little boost to mid-size frames */
5707         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708                 new_val = avg_wire_size / 3;
5709         else
5710                 new_val = avg_wire_size / 2;
5711
5712         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5713         if (new_val < IGB_20K_ITR &&
5714             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716                 new_val = IGB_20K_ITR;
5717
5718 set_itr_val:
5719         if (new_val != q_vector->itr_val) {
5720                 q_vector->itr_val = new_val;
5721                 q_vector->set_itr = 1;
5722         }
5723 clear_counts:
5724         q_vector->rx.total_bytes = 0;
5725         q_vector->rx.total_packets = 0;
5726         q_vector->tx.total_bytes = 0;
5727         q_vector->tx.total_packets = 0;
5728 }
5729
5730 /**
5731  *  igb_update_itr - update the dynamic ITR value based on statistics
5732  *  @q_vector: pointer to q_vector
5733  *  @ring_container: ring info to update the itr for
5734  *
5735  *  Stores a new ITR value based on packets and byte
5736  *  counts during the last interrupt.  The advantage of per interrupt
5737  *  computation is faster updates and more accurate ITR for the current
5738  *  traffic pattern.  Constants in this function were computed
5739  *  based on theoretical maximum wire speed and thresholds were set based
5740  *  on testing data as well as attempting to minimize response time
5741  *  while increasing bulk throughput.
5742  *  This functionality is controlled by ethtool's coalescing settings.
5743  *  NOTE:  These calculations are only valid when operating in a single-
5744  *         queue environment.
5745  **/
5746 static void igb_update_itr(struct igb_q_vector *q_vector,
5747                            struct igb_ring_container *ring_container)
5748 {
5749         unsigned int packets = ring_container->total_packets;
5750         unsigned int bytes = ring_container->total_bytes;
5751         u8 itrval = ring_container->itr;
5752
5753         /* no packets, exit with status unchanged */
5754         if (packets == 0)
5755                 return;
5756
5757         switch (itrval) {
5758         case lowest_latency:
5759                 /* handle TSO and jumbo frames */
5760                 if (bytes/packets > 8000)
5761                         itrval = bulk_latency;
5762                 else if ((packets < 5) && (bytes > 512))
5763                         itrval = low_latency;
5764                 break;
5765         case low_latency:  /* 50 usec aka 20000 ints/s */
5766                 if (bytes > 10000) {
5767                         /* this if handles the TSO accounting */
5768                         if (bytes/packets > 8000)
5769                                 itrval = bulk_latency;
5770                         else if ((packets < 10) || ((bytes/packets) > 1200))
5771                                 itrval = bulk_latency;
5772                         else if ((packets > 35))
5773                                 itrval = lowest_latency;
5774                 } else if (bytes/packets > 2000) {
5775                         itrval = bulk_latency;
5776                 } else if (packets <= 2 && bytes < 512) {
5777                         itrval = lowest_latency;
5778                 }
5779                 break;
5780         case bulk_latency: /* 250 usec aka 4000 ints/s */
5781                 if (bytes > 25000) {
5782                         if (packets > 35)
5783                                 itrval = low_latency;
5784                 } else if (bytes < 1500) {
5785                         itrval = low_latency;
5786                 }
5787                 break;
5788         }
5789
5790         /* clear work counters since we have the values we need */
5791         ring_container->total_bytes = 0;
5792         ring_container->total_packets = 0;
5793
5794         /* write updated itr to ring container */
5795         ring_container->itr = itrval;
5796 }
5797
5798 static void igb_set_itr(struct igb_q_vector *q_vector)
5799 {
5800         struct igb_adapter *adapter = q_vector->adapter;
5801         u32 new_itr = q_vector->itr_val;
5802         u8 current_itr = 0;
5803
5804         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805         if (adapter->link_speed != SPEED_1000) {
5806                 current_itr = 0;
5807                 new_itr = IGB_4K_ITR;
5808                 goto set_itr_now;
5809         }
5810
5811         igb_update_itr(q_vector, &q_vector->tx);
5812         igb_update_itr(q_vector, &q_vector->rx);
5813
5814         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815
5816         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5817         if (current_itr == lowest_latency &&
5818             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820                 current_itr = low_latency;
5821
5822         switch (current_itr) {
5823         /* counts and packets in update_itr are dependent on these numbers */
5824         case lowest_latency:
5825                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826                 break;
5827         case low_latency:
5828                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829                 break;
5830         case bulk_latency:
5831                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5832                 break;
5833         default:
5834                 break;
5835         }
5836
5837 set_itr_now:
5838         if (new_itr != q_vector->itr_val) {
5839                 /* this attempts to bias the interrupt rate towards Bulk
5840                  * by adding intermediate steps when interrupt rate is
5841                  * increasing
5842                  */
5843                 new_itr = new_itr > q_vector->itr_val ?
5844                           max((new_itr * q_vector->itr_val) /
5845                           (new_itr + (q_vector->itr_val >> 2)),
5846                           new_itr) : new_itr;
5847                 /* Don't write the value here; it resets the adapter's
5848                  * internal timer, and causes us to delay far longer than
5849                  * we should between interrupts.  Instead, we write the ITR
5850                  * value at the beginning of the next interrupt so the timing
5851                  * ends up being correct.
5852                  */
5853                 q_vector->itr_val = new_itr;
5854                 q_vector->set_itr = 1;
5855         }
5856 }
5857
5858 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859                             struct igb_tx_buffer *first,
5860                             u32 vlan_macip_lens, u32 type_tucmd,
5861                             u32 mss_l4len_idx)
5862 {
5863         struct e1000_adv_tx_context_desc *context_desc;
5864         u16 i = tx_ring->next_to_use;
5865         struct timespec64 ts;
5866
5867         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868
5869         i++;
5870         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871
5872         /* set bits to identify this as an advanced context descriptor */
5873         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874
5875         /* For 82575, context index must be unique per ring. */
5876         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5878
5879         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5880         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5881         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5882
5883         /* We assume there is always a valid tx time available. Invalid times
5884          * should have been handled by the upper layers.
5885          */
5886         if (tx_ring->launchtime_enable) {
5887                 ts = ktime_to_timespec64(first->skb->tstamp);
5888                 skb_txtime_consumed(first->skb);
5889                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890         } else {
5891                 context_desc->seqnum_seed = 0;
5892         }
5893 }
5894
5895 static int igb_tso(struct igb_ring *tx_ring,
5896                    struct igb_tx_buffer *first,
5897                    u8 *hdr_len)
5898 {
5899         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900         struct sk_buff *skb = first->skb;
5901         union {
5902                 struct iphdr *v4;
5903                 struct ipv6hdr *v6;
5904                 unsigned char *hdr;
5905         } ip;
5906         union {
5907                 struct tcphdr *tcp;
5908                 struct udphdr *udp;
5909                 unsigned char *hdr;
5910         } l4;
5911         u32 paylen, l4_offset;
5912         int err;
5913
5914         if (skb->ip_summed != CHECKSUM_PARTIAL)
5915                 return 0;
5916
5917         if (!skb_is_gso(skb))
5918                 return 0;
5919
5920         err = skb_cow_head(skb, 0);
5921         if (err < 0)
5922                 return err;
5923
5924         ip.hdr = skb_network_header(skb);
5925         l4.hdr = skb_checksum_start(skb);
5926
5927         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930
5931         /* initialize outer IP header fields */
5932         if (ip.v4->version == 4) {
5933                 unsigned char *csum_start = skb_checksum_start(skb);
5934                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935
5936                 /* IP header will have to cancel out any data that
5937                  * is not a part of the outer IP header
5938                  */
5939                 ip.v4->check = csum_fold(csum_partial(trans_start,
5940                                                       csum_start - trans_start,
5941                                                       0));
5942                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943
5944                 ip.v4->tot_len = 0;
5945                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5946                                    IGB_TX_FLAGS_CSUM |
5947                                    IGB_TX_FLAGS_IPV4;
5948         } else {
5949                 ip.v6->payload_len = 0;
5950                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5951                                    IGB_TX_FLAGS_CSUM;
5952         }
5953
5954         /* determine offset of inner transport header */
5955         l4_offset = l4.hdr - skb->data;
5956
5957         /* remove payload length from inner checksum */
5958         paylen = skb->len - l4_offset;
5959         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960                 /* compute length of segmentation header */
5961                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962                 csum_replace_by_diff(&l4.tcp->check,
5963                         (__force __wsum)htonl(paylen));
5964         } else {
5965                 /* compute length of segmentation header */
5966                 *hdr_len = sizeof(*l4.udp) + l4_offset;
5967                 csum_replace_by_diff(&l4.udp->check,
5968                                      (__force __wsum)htonl(paylen));
5969         }
5970
5971         /* update gso size and bytecount with header size */
5972         first->gso_segs = skb_shinfo(skb)->gso_segs;
5973         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974
5975         /* MSS L4LEN IDX */
5976         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978
5979         /* VLAN MACLEN IPLEN */
5980         vlan_macip_lens = l4.hdr - ip.hdr;
5981         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983
5984         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985                         type_tucmd, mss_l4len_idx);
5986
5987         return 1;
5988 }
5989
5990 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5991 {
5992         unsigned int offset = 0;
5993
5994         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5995
5996         return offset == skb_checksum_start_offset(skb);
5997 }
5998
5999 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6000 {
6001         struct sk_buff *skb = first->skb;
6002         u32 vlan_macip_lens = 0;
6003         u32 type_tucmd = 0;
6004
6005         if (skb->ip_summed != CHECKSUM_PARTIAL) {
6006 csum_failed:
6007                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6008                     !tx_ring->launchtime_enable)
6009                         return;
6010                 goto no_csum;
6011         }
6012
6013         switch (skb->csum_offset) {
6014         case offsetof(struct tcphdr, check):
6015                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6016                 fallthrough;
6017         case offsetof(struct udphdr, check):
6018                 break;
6019         case offsetof(struct sctphdr, checksum):
6020                 /* validate that this is actually an SCTP request */
6021                 if (((first->protocol == htons(ETH_P_IP)) &&
6022                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6023                     ((first->protocol == htons(ETH_P_IPV6)) &&
6024                      igb_ipv6_csum_is_sctp(skb))) {
6025                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6026                         break;
6027                 }
6028                 fallthrough;
6029         default:
6030                 skb_checksum_help(skb);
6031                 goto csum_failed;
6032         }
6033
6034         /* update TX checksum flag */
6035         first->tx_flags |= IGB_TX_FLAGS_CSUM;
6036         vlan_macip_lens = skb_checksum_start_offset(skb) -
6037                           skb_network_offset(skb);
6038 no_csum:
6039         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6040         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6041
6042         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6043 }
6044
6045 #define IGB_SET_FLAG(_input, _flag, _result) \
6046         ((_flag <= _result) ? \
6047          ((u32)(_input & _flag) * (_result / _flag)) : \
6048          ((u32)(_input & _flag) / (_flag / _result)))
6049
6050 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6051 {
6052         /* set type for advanced descriptor with frame checksum insertion */
6053         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6054                        E1000_ADVTXD_DCMD_DEXT |
6055                        E1000_ADVTXD_DCMD_IFCS;
6056
6057         /* set HW vlan bit if vlan is present */
6058         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6059                                  (E1000_ADVTXD_DCMD_VLE));
6060
6061         /* set segmentation bits for TSO */
6062         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6063                                  (E1000_ADVTXD_DCMD_TSE));
6064
6065         /* set timestamp bit if present */
6066         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6067                                  (E1000_ADVTXD_MAC_TSTAMP));
6068
6069         /* insert frame checksum */
6070         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6071
6072         return cmd_type;
6073 }
6074
6075 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6076                                  union e1000_adv_tx_desc *tx_desc,
6077                                  u32 tx_flags, unsigned int paylen)
6078 {
6079         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6080
6081         /* 82575 requires a unique index per ring */
6082         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6083                 olinfo_status |= tx_ring->reg_idx << 4;
6084
6085         /* insert L4 checksum */
6086         olinfo_status |= IGB_SET_FLAG(tx_flags,
6087                                       IGB_TX_FLAGS_CSUM,
6088                                       (E1000_TXD_POPTS_TXSM << 8));
6089
6090         /* insert IPv4 checksum */
6091         olinfo_status |= IGB_SET_FLAG(tx_flags,
6092                                       IGB_TX_FLAGS_IPV4,
6093                                       (E1000_TXD_POPTS_IXSM << 8));
6094
6095         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6096 }
6097
6098 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6099 {
6100         struct net_device *netdev = tx_ring->netdev;
6101
6102         netif_stop_subqueue(netdev, tx_ring->queue_index);
6103
6104         /* Herbert's original patch had:
6105          *  smp_mb__after_netif_stop_queue();
6106          * but since that doesn't exist yet, just open code it.
6107          */
6108         smp_mb();
6109
6110         /* We need to check again in a case another CPU has just
6111          * made room available.
6112          */
6113         if (igb_desc_unused(tx_ring) < size)
6114                 return -EBUSY;
6115
6116         /* A reprieve! */
6117         netif_wake_subqueue(netdev, tx_ring->queue_index);
6118
6119         u64_stats_update_begin(&tx_ring->tx_syncp2);
6120         tx_ring->tx_stats.restart_queue2++;
6121         u64_stats_update_end(&tx_ring->tx_syncp2);
6122
6123         return 0;
6124 }
6125
6126 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6127 {
6128         if (igb_desc_unused(tx_ring) >= size)
6129                 return 0;
6130         return __igb_maybe_stop_tx(tx_ring, size);
6131 }
6132
6133 static int igb_tx_map(struct igb_ring *tx_ring,
6134                       struct igb_tx_buffer *first,
6135                       const u8 hdr_len)
6136 {
6137         struct sk_buff *skb = first->skb;
6138         struct igb_tx_buffer *tx_buffer;
6139         union e1000_adv_tx_desc *tx_desc;
6140         skb_frag_t *frag;
6141         dma_addr_t dma;
6142         unsigned int data_len, size;
6143         u32 tx_flags = first->tx_flags;
6144         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6145         u16 i = tx_ring->next_to_use;
6146
6147         tx_desc = IGB_TX_DESC(tx_ring, i);
6148
6149         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6150
6151         size = skb_headlen(skb);
6152         data_len = skb->data_len;
6153
6154         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6155
6156         tx_buffer = first;
6157
6158         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6159                 if (dma_mapping_error(tx_ring->dev, dma))
6160                         goto dma_error;
6161
6162                 /* record length, and DMA address */
6163                 dma_unmap_len_set(tx_buffer, len, size);
6164                 dma_unmap_addr_set(tx_buffer, dma, dma);
6165
6166                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6167
6168                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6169                         tx_desc->read.cmd_type_len =
6170                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6171
6172                         i++;
6173                         tx_desc++;
6174                         if (i == tx_ring->count) {
6175                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6176                                 i = 0;
6177                         }
6178                         tx_desc->read.olinfo_status = 0;
6179
6180                         dma += IGB_MAX_DATA_PER_TXD;
6181                         size -= IGB_MAX_DATA_PER_TXD;
6182
6183                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6184                 }
6185
6186                 if (likely(!data_len))
6187                         break;
6188
6189                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6190
6191                 i++;
6192                 tx_desc++;
6193                 if (i == tx_ring->count) {
6194                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6195                         i = 0;
6196                 }
6197                 tx_desc->read.olinfo_status = 0;
6198
6199                 size = skb_frag_size(frag);
6200                 data_len -= size;
6201
6202                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6203                                        size, DMA_TO_DEVICE);
6204
6205                 tx_buffer = &tx_ring->tx_buffer_info[i];
6206         }
6207
6208         /* write last descriptor with RS and EOP bits */
6209         cmd_type |= size | IGB_TXD_DCMD;
6210         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6211
6212         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6213
6214         /* set the timestamp */
6215         first->time_stamp = jiffies;
6216
6217         skb_tx_timestamp(skb);
6218
6219         /* Force memory writes to complete before letting h/w know there
6220          * are new descriptors to fetch.  (Only applicable for weak-ordered
6221          * memory model archs, such as IA-64).
6222          *
6223          * We also need this memory barrier to make certain all of the
6224          * status bits have been updated before next_to_watch is written.
6225          */
6226         dma_wmb();
6227
6228         /* set next_to_watch value indicating a packet is present */
6229         first->next_to_watch = tx_desc;
6230
6231         i++;
6232         if (i == tx_ring->count)
6233                 i = 0;
6234
6235         tx_ring->next_to_use = i;
6236
6237         /* Make sure there is space in the ring for the next send. */
6238         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6239
6240         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6241                 writel(i, tx_ring->tail);
6242         }
6243         return 0;
6244
6245 dma_error:
6246         dev_err(tx_ring->dev, "TX DMA map failed\n");
6247         tx_buffer = &tx_ring->tx_buffer_info[i];
6248
6249         /* clear dma mappings for failed tx_buffer_info map */
6250         while (tx_buffer != first) {
6251                 if (dma_unmap_len(tx_buffer, len))
6252                         dma_unmap_page(tx_ring->dev,
6253                                        dma_unmap_addr(tx_buffer, dma),
6254                                        dma_unmap_len(tx_buffer, len),
6255                                        DMA_TO_DEVICE);
6256                 dma_unmap_len_set(tx_buffer, len, 0);
6257
6258                 if (i-- == 0)
6259                         i += tx_ring->count;
6260                 tx_buffer = &tx_ring->tx_buffer_info[i];
6261         }
6262
6263         if (dma_unmap_len(tx_buffer, len))
6264                 dma_unmap_single(tx_ring->dev,
6265                                  dma_unmap_addr(tx_buffer, dma),
6266                                  dma_unmap_len(tx_buffer, len),
6267                                  DMA_TO_DEVICE);
6268         dma_unmap_len_set(tx_buffer, len, 0);
6269
6270         dev_kfree_skb_any(tx_buffer->skb);
6271         tx_buffer->skb = NULL;
6272
6273         tx_ring->next_to_use = i;
6274
6275         return -1;
6276 }
6277
6278 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6279                       struct igb_ring *tx_ring,
6280                       struct xdp_frame *xdpf)
6281 {
6282         union e1000_adv_tx_desc *tx_desc;
6283         u32 len, cmd_type, olinfo_status;
6284         struct igb_tx_buffer *tx_buffer;
6285         dma_addr_t dma;
6286         u16 i;
6287
6288         len = xdpf->len;
6289
6290         if (unlikely(!igb_desc_unused(tx_ring)))
6291                 return IGB_XDP_CONSUMED;
6292
6293         dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6294         if (dma_mapping_error(tx_ring->dev, dma))
6295                 return IGB_XDP_CONSUMED;
6296
6297         /* record the location of the first descriptor for this packet */
6298         tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6299         tx_buffer->bytecount = len;
6300         tx_buffer->gso_segs = 1;
6301         tx_buffer->protocol = 0;
6302
6303         i = tx_ring->next_to_use;
6304         tx_desc = IGB_TX_DESC(tx_ring, i);
6305
6306         dma_unmap_len_set(tx_buffer, len, len);
6307         dma_unmap_addr_set(tx_buffer, dma, dma);
6308         tx_buffer->type = IGB_TYPE_XDP;
6309         tx_buffer->xdpf = xdpf;
6310
6311         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6312
6313         /* put descriptor type bits */
6314         cmd_type = E1000_ADVTXD_DTYP_DATA |
6315                    E1000_ADVTXD_DCMD_DEXT |
6316                    E1000_ADVTXD_DCMD_IFCS;
6317         cmd_type |= len | IGB_TXD_DCMD;
6318         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6319
6320         olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6321         /* 82575 requires a unique index per ring */
6322         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6323                 olinfo_status |= tx_ring->reg_idx << 4;
6324
6325         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6326
6327         netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6328
6329         /* set the timestamp */
6330         tx_buffer->time_stamp = jiffies;
6331
6332         /* Avoid any potential race with xdp_xmit and cleanup */
6333         smp_wmb();
6334
6335         /* set next_to_watch value indicating a packet is present */
6336         i++;
6337         if (i == tx_ring->count)
6338                 i = 0;
6339
6340         tx_buffer->next_to_watch = tx_desc;
6341         tx_ring->next_to_use = i;
6342
6343         /* Make sure there is space in the ring for the next send. */
6344         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6345
6346         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6347                 writel(i, tx_ring->tail);
6348
6349         return IGB_XDP_TX;
6350 }
6351
6352 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6353                                 struct igb_ring *tx_ring)
6354 {
6355         struct igb_tx_buffer *first;
6356         int tso;
6357         u32 tx_flags = 0;
6358         unsigned short f;
6359         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6360         __be16 protocol = vlan_get_protocol(skb);
6361         u8 hdr_len = 0;
6362
6363         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6364          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6365          *       + 2 desc gap to keep tail from touching head,
6366          *       + 1 desc for context descriptor,
6367          * otherwise try next time
6368          */
6369         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6370                 count += TXD_USE_COUNT(skb_frag_size(
6371                                                 &skb_shinfo(skb)->frags[f]));
6372
6373         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6374                 /* this is a hard error */
6375                 return NETDEV_TX_BUSY;
6376         }
6377
6378         /* record the location of the first descriptor for this packet */
6379         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6380         first->type = IGB_TYPE_SKB;
6381         first->skb = skb;
6382         first->bytecount = skb->len;
6383         first->gso_segs = 1;
6384
6385         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6386                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387
6388                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6389                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6390                                            &adapter->state)) {
6391                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6392                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6393
6394                         adapter->ptp_tx_skb = skb_get(skb);
6395                         adapter->ptp_tx_start = jiffies;
6396                         if (adapter->hw.mac.type == e1000_82576)
6397                                 schedule_work(&adapter->ptp_tx_work);
6398                 } else {
6399                         adapter->tx_hwtstamp_skipped++;
6400                 }
6401         }
6402
6403         if (skb_vlan_tag_present(skb)) {
6404                 tx_flags |= IGB_TX_FLAGS_VLAN;
6405                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6406         }
6407
6408         /* record initial flags and protocol */
6409         first->tx_flags = tx_flags;
6410         first->protocol = protocol;
6411
6412         tso = igb_tso(tx_ring, first, &hdr_len);
6413         if (tso < 0)
6414                 goto out_drop;
6415         else if (!tso)
6416                 igb_tx_csum(tx_ring, first);
6417
6418         if (igb_tx_map(tx_ring, first, hdr_len))
6419                 goto cleanup_tx_tstamp;
6420
6421         return NETDEV_TX_OK;
6422
6423 out_drop:
6424         dev_kfree_skb_any(first->skb);
6425         first->skb = NULL;
6426 cleanup_tx_tstamp:
6427         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6428                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6429
6430                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6431                 adapter->ptp_tx_skb = NULL;
6432                 if (adapter->hw.mac.type == e1000_82576)
6433                         cancel_work_sync(&adapter->ptp_tx_work);
6434                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6435         }
6436
6437         return NETDEV_TX_OK;
6438 }
6439
6440 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6441                                                     struct sk_buff *skb)
6442 {
6443         unsigned int r_idx = skb->queue_mapping;
6444
6445         if (r_idx >= adapter->num_tx_queues)
6446                 r_idx = r_idx % adapter->num_tx_queues;
6447
6448         return adapter->tx_ring[r_idx];
6449 }
6450
6451 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6452                                   struct net_device *netdev)
6453 {
6454         struct igb_adapter *adapter = netdev_priv(netdev);
6455
6456         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6457          * in order to meet this minimum size requirement.
6458          */
6459         if (skb_put_padto(skb, 17))
6460                 return NETDEV_TX_OK;
6461
6462         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6463 }
6464
6465 /**
6466  *  igb_tx_timeout - Respond to a Tx Hang
6467  *  @netdev: network interface device structure
6468  *  @txqueue: number of the Tx queue that hung (unused)
6469  **/
6470 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6471 {
6472         struct igb_adapter *adapter = netdev_priv(netdev);
6473         struct e1000_hw *hw = &adapter->hw;
6474
6475         /* Do the reset outside of interrupt context */
6476         adapter->tx_timeout_count++;
6477
6478         if (hw->mac.type >= e1000_82580)
6479                 hw->dev_spec._82575.global_device_reset = true;
6480
6481         schedule_work(&adapter->reset_task);
6482         wr32(E1000_EICS,
6483              (adapter->eims_enable_mask & ~adapter->eims_other));
6484 }
6485
6486 static void igb_reset_task(struct work_struct *work)
6487 {
6488         struct igb_adapter *adapter;
6489         adapter = container_of(work, struct igb_adapter, reset_task);
6490
6491         rtnl_lock();
6492         /* If we're already down or resetting, just bail */
6493         if (test_bit(__IGB_DOWN, &adapter->state) ||
6494             test_bit(__IGB_RESETTING, &adapter->state)) {
6495                 rtnl_unlock();
6496                 return;
6497         }
6498
6499         igb_dump(adapter);
6500         netdev_err(adapter->netdev, "Reset adapter\n");
6501         igb_reinit_locked(adapter);
6502         rtnl_unlock();
6503 }
6504
6505 /**
6506  *  igb_get_stats64 - Get System Network Statistics
6507  *  @netdev: network interface device structure
6508  *  @stats: rtnl_link_stats64 pointer
6509  **/
6510 static void igb_get_stats64(struct net_device *netdev,
6511                             struct rtnl_link_stats64 *stats)
6512 {
6513         struct igb_adapter *adapter = netdev_priv(netdev);
6514
6515         spin_lock(&adapter->stats64_lock);
6516         igb_update_stats(adapter);
6517         memcpy(stats, &adapter->stats64, sizeof(*stats));
6518         spin_unlock(&adapter->stats64_lock);
6519 }
6520
6521 /**
6522  *  igb_change_mtu - Change the Maximum Transfer Unit
6523  *  @netdev: network interface device structure
6524  *  @new_mtu: new value for maximum frame size
6525  *
6526  *  Returns 0 on success, negative on failure
6527  **/
6528 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6529 {
6530         struct igb_adapter *adapter = netdev_priv(netdev);
6531         int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6532
6533         if (adapter->xdp_prog) {
6534                 int i;
6535
6536                 for (i = 0; i < adapter->num_rx_queues; i++) {
6537                         struct igb_ring *ring = adapter->rx_ring[i];
6538
6539                         if (max_frame > igb_rx_bufsz(ring)) {
6540                                 netdev_warn(adapter->netdev,
6541                                             "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6542                                             max_frame);
6543                                 return -EINVAL;
6544                         }
6545                 }
6546         }
6547
6548         /* adjust max frame to be at least the size of a standard frame */
6549         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6550                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6551
6552         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6553                 usleep_range(1000, 2000);
6554
6555         /* igb_down has a dependency on max_frame_size */
6556         adapter->max_frame_size = max_frame;
6557
6558         if (netif_running(netdev))
6559                 igb_down(adapter);
6560
6561         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6562                    netdev->mtu, new_mtu);
6563         netdev->mtu = new_mtu;
6564
6565         if (netif_running(netdev))
6566                 igb_up(adapter);
6567         else
6568                 igb_reset(adapter);
6569
6570         clear_bit(__IGB_RESETTING, &adapter->state);
6571
6572         return 0;
6573 }
6574
6575 /**
6576  *  igb_update_stats - Update the board statistics counters
6577  *  @adapter: board private structure
6578  **/
6579 void igb_update_stats(struct igb_adapter *adapter)
6580 {
6581         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6582         struct e1000_hw *hw = &adapter->hw;
6583         struct pci_dev *pdev = adapter->pdev;
6584         u32 reg, mpc;
6585         int i;
6586         u64 bytes, packets;
6587         unsigned int start;
6588         u64 _bytes, _packets;
6589
6590         /* Prevent stats update while adapter is being reset, or if the pci
6591          * connection is down.
6592          */
6593         if (adapter->link_speed == 0)
6594                 return;
6595         if (pci_channel_offline(pdev))
6596                 return;
6597
6598         bytes = 0;
6599         packets = 0;
6600
6601         rcu_read_lock();
6602         for (i = 0; i < adapter->num_rx_queues; i++) {
6603                 struct igb_ring *ring = adapter->rx_ring[i];
6604                 u32 rqdpc = rd32(E1000_RQDPC(i));
6605                 if (hw->mac.type >= e1000_i210)
6606                         wr32(E1000_RQDPC(i), 0);
6607
6608                 if (rqdpc) {
6609                         ring->rx_stats.drops += rqdpc;
6610                         net_stats->rx_fifo_errors += rqdpc;
6611                 }
6612
6613                 do {
6614                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6615                         _bytes = ring->rx_stats.bytes;
6616                         _packets = ring->rx_stats.packets;
6617                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6618                 bytes += _bytes;
6619                 packets += _packets;
6620         }
6621
6622         net_stats->rx_bytes = bytes;
6623         net_stats->rx_packets = packets;
6624
6625         bytes = 0;
6626         packets = 0;
6627         for (i = 0; i < adapter->num_tx_queues; i++) {
6628                 struct igb_ring *ring = adapter->tx_ring[i];
6629                 do {
6630                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6631                         _bytes = ring->tx_stats.bytes;
6632                         _packets = ring->tx_stats.packets;
6633                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6634                 bytes += _bytes;
6635                 packets += _packets;
6636         }
6637         net_stats->tx_bytes = bytes;
6638         net_stats->tx_packets = packets;
6639         rcu_read_unlock();
6640
6641         /* read stats registers */
6642         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6643         adapter->stats.gprc += rd32(E1000_GPRC);
6644         adapter->stats.gorc += rd32(E1000_GORCL);
6645         rd32(E1000_GORCH); /* clear GORCL */
6646         adapter->stats.bprc += rd32(E1000_BPRC);
6647         adapter->stats.mprc += rd32(E1000_MPRC);
6648         adapter->stats.roc += rd32(E1000_ROC);
6649
6650         adapter->stats.prc64 += rd32(E1000_PRC64);
6651         adapter->stats.prc127 += rd32(E1000_PRC127);
6652         adapter->stats.prc255 += rd32(E1000_PRC255);
6653         adapter->stats.prc511 += rd32(E1000_PRC511);
6654         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6655         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6656         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6657         adapter->stats.sec += rd32(E1000_SEC);
6658
6659         mpc = rd32(E1000_MPC);
6660         adapter->stats.mpc += mpc;
6661         net_stats->rx_fifo_errors += mpc;
6662         adapter->stats.scc += rd32(E1000_SCC);
6663         adapter->stats.ecol += rd32(E1000_ECOL);
6664         adapter->stats.mcc += rd32(E1000_MCC);
6665         adapter->stats.latecol += rd32(E1000_LATECOL);
6666         adapter->stats.dc += rd32(E1000_DC);
6667         adapter->stats.rlec += rd32(E1000_RLEC);
6668         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6669         adapter->stats.xontxc += rd32(E1000_XONTXC);
6670         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6671         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6672         adapter->stats.fcruc += rd32(E1000_FCRUC);
6673         adapter->stats.gptc += rd32(E1000_GPTC);
6674         adapter->stats.gotc += rd32(E1000_GOTCL);
6675         rd32(E1000_GOTCH); /* clear GOTCL */
6676         adapter->stats.rnbc += rd32(E1000_RNBC);
6677         adapter->stats.ruc += rd32(E1000_RUC);
6678         adapter->stats.rfc += rd32(E1000_RFC);
6679         adapter->stats.rjc += rd32(E1000_RJC);
6680         adapter->stats.tor += rd32(E1000_TORH);
6681         adapter->stats.tot += rd32(E1000_TOTH);
6682         adapter->stats.tpr += rd32(E1000_TPR);
6683
6684         adapter->stats.ptc64 += rd32(E1000_PTC64);
6685         adapter->stats.ptc127 += rd32(E1000_PTC127);
6686         adapter->stats.ptc255 += rd32(E1000_PTC255);
6687         adapter->stats.ptc511 += rd32(E1000_PTC511);
6688         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6689         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6690
6691         adapter->stats.mptc += rd32(E1000_MPTC);
6692         adapter->stats.bptc += rd32(E1000_BPTC);
6693
6694         adapter->stats.tpt += rd32(E1000_TPT);
6695         adapter->stats.colc += rd32(E1000_COLC);
6696
6697         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6698         /* read internal phy specific stats */
6699         reg = rd32(E1000_CTRL_EXT);
6700         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6701                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6702
6703                 /* this stat has invalid values on i210/i211 */
6704                 if ((hw->mac.type != e1000_i210) &&
6705                     (hw->mac.type != e1000_i211))
6706                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6707         }
6708
6709         adapter->stats.tsctc += rd32(E1000_TSCTC);
6710         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6711
6712         adapter->stats.iac += rd32(E1000_IAC);
6713         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6714         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6715         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6716         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6717         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6718         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6719         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6720         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6721
6722         /* Fill out the OS statistics structure */
6723         net_stats->multicast = adapter->stats.mprc;
6724         net_stats->collisions = adapter->stats.colc;
6725
6726         /* Rx Errors */
6727
6728         /* RLEC on some newer hardware can be incorrect so build
6729          * our own version based on RUC and ROC
6730          */
6731         net_stats->rx_errors = adapter->stats.rxerrc +
6732                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6733                 adapter->stats.ruc + adapter->stats.roc +
6734                 adapter->stats.cexterr;
6735         net_stats->rx_length_errors = adapter->stats.ruc +
6736                                       adapter->stats.roc;
6737         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6738         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6739         net_stats->rx_missed_errors = adapter->stats.mpc;
6740
6741         /* Tx Errors */
6742         net_stats->tx_errors = adapter->stats.ecol +
6743                                adapter->stats.latecol;
6744         net_stats->tx_aborted_errors = adapter->stats.ecol;
6745         net_stats->tx_window_errors = adapter->stats.latecol;
6746         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6747
6748         /* Tx Dropped needs to be maintained elsewhere */
6749
6750         /* Management Stats */
6751         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6752         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6753         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6754
6755         /* OS2BMC Stats */
6756         reg = rd32(E1000_MANC);
6757         if (reg & E1000_MANC_EN_BMC2OS) {
6758                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6759                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6760                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6761                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6762         }
6763 }
6764
6765 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6766 {
6767         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6768         struct e1000_hw *hw = &adapter->hw;
6769         struct timespec64 ts;
6770         u32 tsauxc;
6771
6772         if (pin < 0 || pin >= IGB_N_PEROUT)
6773                 return;
6774
6775         spin_lock(&adapter->tmreg_lock);
6776         ts = timespec64_add(adapter->perout[pin].start,
6777                             adapter->perout[pin].period);
6778         /* u32 conversion of tv_sec is safe until y2106 */
6779         wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6780         wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6781         tsauxc = rd32(E1000_TSAUXC);
6782         tsauxc |= TSAUXC_EN_TT0;
6783         wr32(E1000_TSAUXC, tsauxc);
6784         adapter->perout[pin].start = ts;
6785         spin_unlock(&adapter->tmreg_lock);
6786 }
6787
6788 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6789 {
6790         int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6791         struct e1000_hw *hw = &adapter->hw;
6792         struct ptp_clock_event event;
6793         u32 sec, nsec;
6794
6795         if (pin < 0 || pin >= IGB_N_EXTTS)
6796                 return;
6797
6798         nsec = rd32((tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0);
6799         sec  = rd32((tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0);
6800         event.type = PTP_CLOCK_EXTTS;
6801         event.index = tsintr_tt;
6802         event.timestamp = sec * 1000000000ULL + nsec;
6803         ptp_clock_event(adapter->ptp_clock, &event);
6804 }
6805
6806 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6807 {
6808         struct e1000_hw *hw = &adapter->hw;
6809         u32 tsicr = rd32(E1000_TSICR);
6810         struct ptp_clock_event event;
6811
6812         if (tsicr & TSINTR_SYS_WRAP) {
6813                 event.type = PTP_CLOCK_PPS;
6814                 if (adapter->ptp_caps.pps)
6815                         ptp_clock_event(adapter->ptp_clock, &event);
6816         }
6817
6818         if (tsicr & E1000_TSICR_TXTS) {
6819                 /* retrieve hardware timestamp */
6820                 schedule_work(&adapter->ptp_tx_work);
6821         }
6822
6823         if (tsicr & TSINTR_TT0)
6824                 igb_perout(adapter, 0);
6825
6826         if (tsicr & TSINTR_TT1)
6827                 igb_perout(adapter, 1);
6828
6829         if (tsicr & TSINTR_AUTT0)
6830                 igb_extts(adapter, 0);
6831
6832         if (tsicr & TSINTR_AUTT1)
6833                 igb_extts(adapter, 1);
6834 }
6835
6836 static irqreturn_t igb_msix_other(int irq, void *data)
6837 {
6838         struct igb_adapter *adapter = data;
6839         struct e1000_hw *hw = &adapter->hw;
6840         u32 icr = rd32(E1000_ICR);
6841         /* reading ICR causes bit 31 of EICR to be cleared */
6842
6843         if (icr & E1000_ICR_DRSTA)
6844                 schedule_work(&adapter->reset_task);
6845
6846         if (icr & E1000_ICR_DOUTSYNC) {
6847                 /* HW is reporting DMA is out of sync */
6848                 adapter->stats.doosync++;
6849                 /* The DMA Out of Sync is also indication of a spoof event
6850                  * in IOV mode. Check the Wrong VM Behavior register to
6851                  * see if it is really a spoof event.
6852                  */
6853                 igb_check_wvbr(adapter);
6854         }
6855
6856         /* Check for a mailbox event */
6857         if (icr & E1000_ICR_VMMB)
6858                 igb_msg_task(adapter);
6859
6860         if (icr & E1000_ICR_LSC) {
6861                 hw->mac.get_link_status = 1;
6862                 /* guard against interrupt when we're going down */
6863                 if (!test_bit(__IGB_DOWN, &adapter->state))
6864                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6865         }
6866
6867         if (icr & E1000_ICR_TS)
6868                 igb_tsync_interrupt(adapter);
6869
6870         wr32(E1000_EIMS, adapter->eims_other);
6871
6872         return IRQ_HANDLED;
6873 }
6874
6875 static void igb_write_itr(struct igb_q_vector *q_vector)
6876 {
6877         struct igb_adapter *adapter = q_vector->adapter;
6878         u32 itr_val = q_vector->itr_val & 0x7FFC;
6879
6880         if (!q_vector->set_itr)
6881                 return;
6882
6883         if (!itr_val)
6884                 itr_val = 0x4;
6885
6886         if (adapter->hw.mac.type == e1000_82575)
6887                 itr_val |= itr_val << 16;
6888         else
6889                 itr_val |= E1000_EITR_CNT_IGNR;
6890
6891         writel(itr_val, q_vector->itr_register);
6892         q_vector->set_itr = 0;
6893 }
6894
6895 static irqreturn_t igb_msix_ring(int irq, void *data)
6896 {
6897         struct igb_q_vector *q_vector = data;
6898
6899         /* Write the ITR value calculated from the previous interrupt. */
6900         igb_write_itr(q_vector);
6901
6902         napi_schedule(&q_vector->napi);
6903
6904         return IRQ_HANDLED;
6905 }
6906
6907 #ifdef CONFIG_IGB_DCA
6908 static void igb_update_tx_dca(struct igb_adapter *adapter,
6909                               struct igb_ring *tx_ring,
6910                               int cpu)
6911 {
6912         struct e1000_hw *hw = &adapter->hw;
6913         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6914
6915         if (hw->mac.type != e1000_82575)
6916                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6917
6918         /* We can enable relaxed ordering for reads, but not writes when
6919          * DCA is enabled.  This is due to a known issue in some chipsets
6920          * which will cause the DCA tag to be cleared.
6921          */
6922         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6923                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6924                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6925
6926         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6927 }
6928
6929 static void igb_update_rx_dca(struct igb_adapter *adapter,
6930                               struct igb_ring *rx_ring,
6931                               int cpu)
6932 {
6933         struct e1000_hw *hw = &adapter->hw;
6934         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6935
6936         if (hw->mac.type != e1000_82575)
6937                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6938
6939         /* We can enable relaxed ordering for reads, but not writes when
6940          * DCA is enabled.  This is due to a known issue in some chipsets
6941          * which will cause the DCA tag to be cleared.
6942          */
6943         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6944                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6945
6946         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6947 }
6948
6949 static void igb_update_dca(struct igb_q_vector *q_vector)
6950 {
6951         struct igb_adapter *adapter = q_vector->adapter;
6952         int cpu = get_cpu();
6953
6954         if (q_vector->cpu == cpu)
6955                 goto out_no_update;
6956
6957         if (q_vector->tx.ring)
6958                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6959
6960         if (q_vector->rx.ring)
6961                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6962
6963         q_vector->cpu = cpu;
6964 out_no_update:
6965         put_cpu();
6966 }
6967
6968 static void igb_setup_dca(struct igb_adapter *adapter)
6969 {
6970         struct e1000_hw *hw = &adapter->hw;
6971         int i;
6972
6973         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6974                 return;
6975
6976         /* Always use CB2 mode, difference is masked in the CB driver. */
6977         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6978
6979         for (i = 0; i < adapter->num_q_vectors; i++) {
6980                 adapter->q_vector[i]->cpu = -1;
6981                 igb_update_dca(adapter->q_vector[i]);
6982         }
6983 }
6984
6985 static int __igb_notify_dca(struct device *dev, void *data)
6986 {
6987         struct net_device *netdev = dev_get_drvdata(dev);
6988         struct igb_adapter *adapter = netdev_priv(netdev);
6989         struct pci_dev *pdev = adapter->pdev;
6990         struct e1000_hw *hw = &adapter->hw;
6991         unsigned long event = *(unsigned long *)data;
6992
6993         switch (event) {
6994         case DCA_PROVIDER_ADD:
6995                 /* if already enabled, don't do it again */
6996                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6997                         break;
6998                 if (dca_add_requester(dev) == 0) {
6999                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
7000                         dev_info(&pdev->dev, "DCA enabled\n");
7001                         igb_setup_dca(adapter);
7002                         break;
7003                 }
7004                 fallthrough; /* since DCA is disabled. */
7005         case DCA_PROVIDER_REMOVE:
7006                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7007                         /* without this a class_device is left
7008                          * hanging around in the sysfs model
7009                          */
7010                         dca_remove_requester(dev);
7011                         dev_info(&pdev->dev, "DCA disabled\n");
7012                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7013                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7014                 }
7015                 break;
7016         }
7017
7018         return 0;
7019 }
7020
7021 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7022                           void *p)
7023 {
7024         int ret_val;
7025
7026         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7027                                          __igb_notify_dca);
7028
7029         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7030 }
7031 #endif /* CONFIG_IGB_DCA */
7032
7033 #ifdef CONFIG_PCI_IOV
7034 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7035 {
7036         unsigned char mac_addr[ETH_ALEN];
7037
7038         eth_zero_addr(mac_addr);
7039         igb_set_vf_mac(adapter, vf, mac_addr);
7040
7041         /* By default spoof check is enabled for all VFs */
7042         adapter->vf_data[vf].spoofchk_enabled = true;
7043
7044         /* By default VFs are not trusted */
7045         adapter->vf_data[vf].trusted = false;
7046
7047         return 0;
7048 }
7049
7050 #endif
7051 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7052 {
7053         struct e1000_hw *hw = &adapter->hw;
7054         u32 ping;
7055         int i;
7056
7057         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7058                 ping = E1000_PF_CONTROL_MSG;
7059                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7060                         ping |= E1000_VT_MSGTYPE_CTS;
7061                 igb_write_mbx(hw, &ping, 1, i);
7062         }
7063 }
7064
7065 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7066 {
7067         struct e1000_hw *hw = &adapter->hw;
7068         u32 vmolr = rd32(E1000_VMOLR(vf));
7069         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7070
7071         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7072                             IGB_VF_FLAG_MULTI_PROMISC);
7073         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7074
7075         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7076                 vmolr |= E1000_VMOLR_MPME;
7077                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7078                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7079         } else {
7080                 /* if we have hashes and we are clearing a multicast promisc
7081                  * flag we need to write the hashes to the MTA as this step
7082                  * was previously skipped
7083                  */
7084                 if (vf_data->num_vf_mc_hashes > 30) {
7085                         vmolr |= E1000_VMOLR_MPME;
7086                 } else if (vf_data->num_vf_mc_hashes) {
7087                         int j;
7088
7089                         vmolr |= E1000_VMOLR_ROMPE;
7090                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7091                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7092                 }
7093         }
7094
7095         wr32(E1000_VMOLR(vf), vmolr);
7096
7097         /* there are flags left unprocessed, likely not supported */
7098         if (*msgbuf & E1000_VT_MSGINFO_MASK)
7099                 return -EINVAL;
7100
7101         return 0;
7102 }
7103
7104 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7105                                   u32 *msgbuf, u32 vf)
7106 {
7107         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7108         u16 *hash_list = (u16 *)&msgbuf[1];
7109         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7110         int i;
7111
7112         /* salt away the number of multicast addresses assigned
7113          * to this VF for later use to restore when the PF multi cast
7114          * list changes
7115          */
7116         vf_data->num_vf_mc_hashes = n;
7117
7118         /* only up to 30 hash values supported */
7119         if (n > 30)
7120                 n = 30;
7121
7122         /* store the hashes for later use */
7123         for (i = 0; i < n; i++)
7124                 vf_data->vf_mc_hashes[i] = hash_list[i];
7125
7126         /* Flush and reset the mta with the new values */
7127         igb_set_rx_mode(adapter->netdev);
7128
7129         return 0;
7130 }
7131
7132 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7133 {
7134         struct e1000_hw *hw = &adapter->hw;
7135         struct vf_data_storage *vf_data;
7136         int i, j;
7137
7138         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7139                 u32 vmolr = rd32(E1000_VMOLR(i));
7140
7141                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7142
7143                 vf_data = &adapter->vf_data[i];
7144
7145                 if ((vf_data->num_vf_mc_hashes > 30) ||
7146                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7147                         vmolr |= E1000_VMOLR_MPME;
7148                 } else if (vf_data->num_vf_mc_hashes) {
7149                         vmolr |= E1000_VMOLR_ROMPE;
7150                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7151                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7152                 }
7153                 wr32(E1000_VMOLR(i), vmolr);
7154         }
7155 }
7156
7157 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7158 {
7159         struct e1000_hw *hw = &adapter->hw;
7160         u32 pool_mask, vlvf_mask, i;
7161
7162         /* create mask for VF and other pools */
7163         pool_mask = E1000_VLVF_POOLSEL_MASK;
7164         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7165
7166         /* drop PF from pool bits */
7167         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7168                              adapter->vfs_allocated_count);
7169
7170         /* Find the vlan filter for this id */
7171         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7172                 u32 vlvf = rd32(E1000_VLVF(i));
7173                 u32 vfta_mask, vid, vfta;
7174
7175                 /* remove the vf from the pool */
7176                 if (!(vlvf & vlvf_mask))
7177                         continue;
7178
7179                 /* clear out bit from VLVF */
7180                 vlvf ^= vlvf_mask;
7181
7182                 /* if other pools are present, just remove ourselves */
7183                 if (vlvf & pool_mask)
7184                         goto update_vlvfb;
7185
7186                 /* if PF is present, leave VFTA */
7187                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7188                         goto update_vlvf;
7189
7190                 vid = vlvf & E1000_VLVF_VLANID_MASK;
7191                 vfta_mask = BIT(vid % 32);
7192
7193                 /* clear bit from VFTA */
7194                 vfta = adapter->shadow_vfta[vid / 32];
7195                 if (vfta & vfta_mask)
7196                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7197 update_vlvf:
7198                 /* clear pool selection enable */
7199                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7200                         vlvf &= E1000_VLVF_POOLSEL_MASK;
7201                 else
7202                         vlvf = 0;
7203 update_vlvfb:
7204                 /* clear pool bits */
7205                 wr32(E1000_VLVF(i), vlvf);
7206         }
7207 }
7208
7209 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7210 {
7211         u32 vlvf;
7212         int idx;
7213
7214         /* short cut the special case */
7215         if (vlan == 0)
7216                 return 0;
7217
7218         /* Search for the VLAN id in the VLVF entries */
7219         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7220                 vlvf = rd32(E1000_VLVF(idx));
7221                 if ((vlvf & VLAN_VID_MASK) == vlan)
7222                         break;
7223         }
7224
7225         return idx;
7226 }
7227
7228 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7229 {
7230         struct e1000_hw *hw = &adapter->hw;
7231         u32 bits, pf_id;
7232         int idx;
7233
7234         idx = igb_find_vlvf_entry(hw, vid);
7235         if (!idx)
7236                 return;
7237
7238         /* See if any other pools are set for this VLAN filter
7239          * entry other than the PF.
7240          */
7241         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7242         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7243         bits &= rd32(E1000_VLVF(idx));
7244
7245         /* Disable the filter so this falls into the default pool. */
7246         if (!bits) {
7247                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7248                         wr32(E1000_VLVF(idx), BIT(pf_id));
7249                 else
7250                         wr32(E1000_VLVF(idx), 0);
7251         }
7252 }
7253
7254 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7255                            bool add, u32 vf)
7256 {
7257         int pf_id = adapter->vfs_allocated_count;
7258         struct e1000_hw *hw = &adapter->hw;
7259         int err;
7260
7261         /* If VLAN overlaps with one the PF is currently monitoring make
7262          * sure that we are able to allocate a VLVF entry.  This may be
7263          * redundant but it guarantees PF will maintain visibility to
7264          * the VLAN.
7265          */
7266         if (add && test_bit(vid, adapter->active_vlans)) {
7267                 err = igb_vfta_set(hw, vid, pf_id, true, false);
7268                 if (err)
7269                         return err;
7270         }
7271
7272         err = igb_vfta_set(hw, vid, vf, add, false);
7273
7274         if (add && !err)
7275                 return err;
7276
7277         /* If we failed to add the VF VLAN or we are removing the VF VLAN
7278          * we may need to drop the PF pool bit in order to allow us to free
7279          * up the VLVF resources.
7280          */
7281         if (test_bit(vid, adapter->active_vlans) ||
7282             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7283                 igb_update_pf_vlvf(adapter, vid);
7284
7285         return err;
7286 }
7287
7288 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7289 {
7290         struct e1000_hw *hw = &adapter->hw;
7291
7292         if (vid)
7293                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7294         else
7295                 wr32(E1000_VMVIR(vf), 0);
7296 }
7297
7298 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7299                                 u16 vlan, u8 qos)
7300 {
7301         int err;
7302
7303         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7304         if (err)
7305                 return err;
7306
7307         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7308         igb_set_vmolr(adapter, vf, !vlan);
7309
7310         /* revoke access to previous VLAN */
7311         if (vlan != adapter->vf_data[vf].pf_vlan)
7312                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7313                                 false, vf);
7314
7315         adapter->vf_data[vf].pf_vlan = vlan;
7316         adapter->vf_data[vf].pf_qos = qos;
7317         igb_set_vf_vlan_strip(adapter, vf, true);
7318         dev_info(&adapter->pdev->dev,
7319                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7320         if (test_bit(__IGB_DOWN, &adapter->state)) {
7321                 dev_warn(&adapter->pdev->dev,
7322                          "The VF VLAN has been set, but the PF device is not up.\n");
7323                 dev_warn(&adapter->pdev->dev,
7324                          "Bring the PF device up before attempting to use the VF device.\n");
7325         }
7326
7327         return err;
7328 }
7329
7330 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7331 {
7332         /* Restore tagless access via VLAN 0 */
7333         igb_set_vf_vlan(adapter, 0, true, vf);
7334
7335         igb_set_vmvir(adapter, 0, vf);
7336         igb_set_vmolr(adapter, vf, true);
7337
7338         /* Remove any PF assigned VLAN */
7339         if (adapter->vf_data[vf].pf_vlan)
7340                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7341                                 false, vf);
7342
7343         adapter->vf_data[vf].pf_vlan = 0;
7344         adapter->vf_data[vf].pf_qos = 0;
7345         igb_set_vf_vlan_strip(adapter, vf, false);
7346
7347         return 0;
7348 }
7349
7350 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7351                                u16 vlan, u8 qos, __be16 vlan_proto)
7352 {
7353         struct igb_adapter *adapter = netdev_priv(netdev);
7354
7355         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7356                 return -EINVAL;
7357
7358         if (vlan_proto != htons(ETH_P_8021Q))
7359                 return -EPROTONOSUPPORT;
7360
7361         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7362                                igb_disable_port_vlan(adapter, vf);
7363 }
7364
7365 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7366 {
7367         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7368         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7369         int ret;
7370
7371         if (adapter->vf_data[vf].pf_vlan)
7372                 return -1;
7373
7374         /* VLAN 0 is a special case, don't allow it to be removed */
7375         if (!vid && !add)
7376                 return 0;
7377
7378         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7379         if (!ret)
7380                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7381         return ret;
7382 }
7383
7384 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7385 {
7386         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7387
7388         /* clear flags - except flag that indicates PF has set the MAC */
7389         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7390         vf_data->last_nack = jiffies;
7391
7392         /* reset vlans for device */
7393         igb_clear_vf_vfta(adapter, vf);
7394         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7395         igb_set_vmvir(adapter, vf_data->pf_vlan |
7396                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7397         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7398         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7399
7400         /* reset multicast table array for vf */
7401         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7402
7403         /* Flush and reset the mta with the new values */
7404         igb_set_rx_mode(adapter->netdev);
7405 }
7406
7407 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7408 {
7409         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7410
7411         /* clear mac address as we were hotplug removed/added */
7412         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7413                 eth_zero_addr(vf_mac);
7414
7415         /* process remaining reset events */
7416         igb_vf_reset(adapter, vf);
7417 }
7418
7419 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7420 {
7421         struct e1000_hw *hw = &adapter->hw;
7422         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7423         u32 reg, msgbuf[3] = {};
7424         u8 *addr = (u8 *)(&msgbuf[1]);
7425
7426         /* process all the same items cleared in a function level reset */
7427         igb_vf_reset(adapter, vf);
7428
7429         /* set vf mac address */
7430         igb_set_vf_mac(adapter, vf, vf_mac);
7431
7432         /* enable transmit and receive for vf */
7433         reg = rd32(E1000_VFTE);
7434         wr32(E1000_VFTE, reg | BIT(vf));
7435         reg = rd32(E1000_VFRE);
7436         wr32(E1000_VFRE, reg | BIT(vf));
7437
7438         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7439
7440         /* reply to reset with ack and vf mac address */
7441         if (!is_zero_ether_addr(vf_mac)) {
7442                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7443                 memcpy(addr, vf_mac, ETH_ALEN);
7444         } else {
7445                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7446         }
7447         igb_write_mbx(hw, msgbuf, 3, vf);
7448 }
7449
7450 static void igb_flush_mac_table(struct igb_adapter *adapter)
7451 {
7452         struct e1000_hw *hw = &adapter->hw;
7453         int i;
7454
7455         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7456                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7457                 eth_zero_addr(adapter->mac_table[i].addr);
7458                 adapter->mac_table[i].queue = 0;
7459                 igb_rar_set_index(adapter, i);
7460         }
7461 }
7462
7463 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7464 {
7465         struct e1000_hw *hw = &adapter->hw;
7466         /* do not count rar entries reserved for VFs MAC addresses */
7467         int rar_entries = hw->mac.rar_entry_count -
7468                           adapter->vfs_allocated_count;
7469         int i, count = 0;
7470
7471         for (i = 0; i < rar_entries; i++) {
7472                 /* do not count default entries */
7473                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7474                         continue;
7475
7476                 /* do not count "in use" entries for different queues */
7477                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7478                     (adapter->mac_table[i].queue != queue))
7479                         continue;
7480
7481                 count++;
7482         }
7483
7484         return count;
7485 }
7486
7487 /* Set default MAC address for the PF in the first RAR entry */
7488 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7489 {
7490         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7491
7492         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7493         mac_table->queue = adapter->vfs_allocated_count;
7494         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7495
7496         igb_rar_set_index(adapter, 0);
7497 }
7498
7499 /* If the filter to be added and an already existing filter express
7500  * the same address and address type, it should be possible to only
7501  * override the other configurations, for example the queue to steer
7502  * traffic.
7503  */
7504 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7505                                       const u8 *addr, const u8 flags)
7506 {
7507         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7508                 return true;
7509
7510         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7511             (flags & IGB_MAC_STATE_SRC_ADDR))
7512                 return false;
7513
7514         if (!ether_addr_equal(addr, entry->addr))
7515                 return false;
7516
7517         return true;
7518 }
7519
7520 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7521  * 'flags' is used to indicate what kind of match is made, match is by
7522  * default for the destination address, if matching by source address
7523  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7524  */
7525 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7526                                     const u8 *addr, const u8 queue,
7527                                     const u8 flags)
7528 {
7529         struct e1000_hw *hw = &adapter->hw;
7530         int rar_entries = hw->mac.rar_entry_count -
7531                           adapter->vfs_allocated_count;
7532         int i;
7533
7534         if (is_zero_ether_addr(addr))
7535                 return -EINVAL;
7536
7537         /* Search for the first empty entry in the MAC table.
7538          * Do not touch entries at the end of the table reserved for the VF MAC
7539          * addresses.
7540          */
7541         for (i = 0; i < rar_entries; i++) {
7542                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7543                                                addr, flags))
7544                         continue;
7545
7546                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7547                 adapter->mac_table[i].queue = queue;
7548                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7549
7550                 igb_rar_set_index(adapter, i);
7551                 return i;
7552         }
7553
7554         return -ENOSPC;
7555 }
7556
7557 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7558                               const u8 queue)
7559 {
7560         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7561 }
7562
7563 /* Remove a MAC filter for 'addr' directing matching traffic to
7564  * 'queue', 'flags' is used to indicate what kind of match need to be
7565  * removed, match is by default for the destination address, if
7566  * matching by source address is to be removed the flag
7567  * IGB_MAC_STATE_SRC_ADDR can be used.
7568  */
7569 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7570                                     const u8 *addr, const u8 queue,
7571                                     const u8 flags)
7572 {
7573         struct e1000_hw *hw = &adapter->hw;
7574         int rar_entries = hw->mac.rar_entry_count -
7575                           adapter->vfs_allocated_count;
7576         int i;
7577
7578         if (is_zero_ether_addr(addr))
7579                 return -EINVAL;
7580
7581         /* Search for matching entry in the MAC table based on given address
7582          * and queue. Do not touch entries at the end of the table reserved
7583          * for the VF MAC addresses.
7584          */
7585         for (i = 0; i < rar_entries; i++) {
7586                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7587                         continue;
7588                 if ((adapter->mac_table[i].state & flags) != flags)
7589                         continue;
7590                 if (adapter->mac_table[i].queue != queue)
7591                         continue;
7592                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7593                         continue;
7594
7595                 /* When a filter for the default address is "deleted",
7596                  * we return it to its initial configuration
7597                  */
7598                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7599                         adapter->mac_table[i].state =
7600                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7601                         adapter->mac_table[i].queue =
7602                                 adapter->vfs_allocated_count;
7603                 } else {
7604                         adapter->mac_table[i].state = 0;
7605                         adapter->mac_table[i].queue = 0;
7606                         eth_zero_addr(adapter->mac_table[i].addr);
7607                 }
7608
7609                 igb_rar_set_index(adapter, i);
7610                 return 0;
7611         }
7612
7613         return -ENOENT;
7614 }
7615
7616 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7617                               const u8 queue)
7618 {
7619         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7620 }
7621
7622 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7623                                 const u8 *addr, u8 queue, u8 flags)
7624 {
7625         struct e1000_hw *hw = &adapter->hw;
7626
7627         /* In theory, this should be supported on 82575 as well, but
7628          * that part wasn't easily accessible during development.
7629          */
7630         if (hw->mac.type != e1000_i210)
7631                 return -EOPNOTSUPP;
7632
7633         return igb_add_mac_filter_flags(adapter, addr, queue,
7634                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7635 }
7636
7637 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7638                                 const u8 *addr, u8 queue, u8 flags)
7639 {
7640         return igb_del_mac_filter_flags(adapter, addr, queue,
7641                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7642 }
7643
7644 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7645 {
7646         struct igb_adapter *adapter = netdev_priv(netdev);
7647         int ret;
7648
7649         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7650
7651         return min_t(int, ret, 0);
7652 }
7653
7654 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7655 {
7656         struct igb_adapter *adapter = netdev_priv(netdev);
7657
7658         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7659
7660         return 0;
7661 }
7662
7663 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7664                                  const u32 info, const u8 *addr)
7665 {
7666         struct pci_dev *pdev = adapter->pdev;
7667         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7668         struct list_head *pos;
7669         struct vf_mac_filter *entry = NULL;
7670         int ret = 0;
7671
7672         if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7673             !vf_data->trusted) {
7674                 dev_warn(&pdev->dev,
7675                          "VF %d requested MAC filter but is administratively denied\n",
7676                           vf);
7677                 return -EINVAL;
7678         }
7679         if (!is_valid_ether_addr(addr)) {
7680                 dev_warn(&pdev->dev,
7681                          "VF %d attempted to set invalid MAC filter\n",
7682                           vf);
7683                 return -EINVAL;
7684         }
7685
7686         switch (info) {
7687         case E1000_VF_MAC_FILTER_CLR:
7688                 /* remove all unicast MAC filters related to the current VF */
7689                 list_for_each(pos, &adapter->vf_macs.l) {
7690                         entry = list_entry(pos, struct vf_mac_filter, l);
7691                         if (entry->vf == vf) {
7692                                 entry->vf = -1;
7693                                 entry->free = true;
7694                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7695                         }
7696                 }
7697                 break;
7698         case E1000_VF_MAC_FILTER_ADD:
7699                 /* try to find empty slot in the list */
7700                 list_for_each(pos, &adapter->vf_macs.l) {
7701                         entry = list_entry(pos, struct vf_mac_filter, l);
7702                         if (entry->free)
7703                                 break;
7704                 }
7705
7706                 if (entry && entry->free) {
7707                         entry->free = false;
7708                         entry->vf = vf;
7709                         ether_addr_copy(entry->vf_mac, addr);
7710
7711                         ret = igb_add_mac_filter(adapter, addr, vf);
7712                         ret = min_t(int, ret, 0);
7713                 } else {
7714                         ret = -ENOSPC;
7715                 }
7716
7717                 if (ret == -ENOSPC)
7718                         dev_warn(&pdev->dev,
7719                                  "VF %d has requested MAC filter but there is no space for it\n",
7720                                  vf);
7721                 break;
7722         default:
7723                 ret = -EINVAL;
7724                 break;
7725         }
7726
7727         return ret;
7728 }
7729
7730 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7731 {
7732         struct pci_dev *pdev = adapter->pdev;
7733         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7734         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7735
7736         /* The VF MAC Address is stored in a packed array of bytes
7737          * starting at the second 32 bit word of the msg array
7738          */
7739         unsigned char *addr = (unsigned char *)&msg[1];
7740         int ret = 0;
7741
7742         if (!info) {
7743                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7744                     !vf_data->trusted) {
7745                         dev_warn(&pdev->dev,
7746                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7747                                  vf);
7748                         return -EINVAL;
7749                 }
7750
7751                 if (!is_valid_ether_addr(addr)) {
7752                         dev_warn(&pdev->dev,
7753                                  "VF %d attempted to set invalid MAC\n",
7754                                  vf);
7755                         return -EINVAL;
7756                 }
7757
7758                 ret = igb_set_vf_mac(adapter, vf, addr);
7759         } else {
7760                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7761         }
7762
7763         return ret;
7764 }
7765
7766 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7767 {
7768         struct e1000_hw *hw = &adapter->hw;
7769         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7770         u32 msg = E1000_VT_MSGTYPE_NACK;
7771
7772         /* if device isn't clear to send it shouldn't be reading either */
7773         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7774             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7775                 igb_write_mbx(hw, &msg, 1, vf);
7776                 vf_data->last_nack = jiffies;
7777         }
7778 }
7779
7780 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7781 {
7782         struct pci_dev *pdev = adapter->pdev;
7783         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7784         struct e1000_hw *hw = &adapter->hw;
7785         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7786         s32 retval;
7787
7788         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7789
7790         if (retval) {
7791                 /* if receive failed revoke VF CTS stats and restart init */
7792                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7793                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7794                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7795                         goto unlock;
7796                 goto out;
7797         }
7798
7799         /* this is a message we already processed, do nothing */
7800         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7801                 goto unlock;
7802
7803         /* until the vf completes a reset it should not be
7804          * allowed to start any configuration.
7805          */
7806         if (msgbuf[0] == E1000_VF_RESET) {
7807                 /* unlocks mailbox */
7808                 igb_vf_reset_msg(adapter, vf);
7809                 return;
7810         }
7811
7812         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7813                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7814                         goto unlock;
7815                 retval = -1;
7816                 goto out;
7817         }
7818
7819         switch ((msgbuf[0] & 0xFFFF)) {
7820         case E1000_VF_SET_MAC_ADDR:
7821                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7822                 break;
7823         case E1000_VF_SET_PROMISC:
7824                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7825                 break;
7826         case E1000_VF_SET_MULTICAST:
7827                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7828                 break;
7829         case E1000_VF_SET_LPE:
7830                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7831                 break;
7832         case E1000_VF_SET_VLAN:
7833                 retval = -1;
7834                 if (vf_data->pf_vlan)
7835                         dev_warn(&pdev->dev,
7836                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7837                                  vf);
7838                 else
7839                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7840                 break;
7841         default:
7842                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7843                 retval = -1;
7844                 break;
7845         }
7846
7847         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7848 out:
7849         /* notify the VF of the results of what it sent us */
7850         if (retval)
7851                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7852         else
7853                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7854
7855         /* unlocks mailbox */
7856         igb_write_mbx(hw, msgbuf, 1, vf);
7857         return;
7858
7859 unlock:
7860         igb_unlock_mbx(hw, vf);
7861 }
7862
7863 static void igb_msg_task(struct igb_adapter *adapter)
7864 {
7865         struct e1000_hw *hw = &adapter->hw;
7866         unsigned long flags;
7867         u32 vf;
7868
7869         spin_lock_irqsave(&adapter->vfs_lock, flags);
7870         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7871                 /* process any reset requests */
7872                 if (!igb_check_for_rst(hw, vf))
7873                         igb_vf_reset_event(adapter, vf);
7874
7875                 /* process any messages pending */
7876                 if (!igb_check_for_msg(hw, vf))
7877                         igb_rcv_msg_from_vf(adapter, vf);
7878
7879                 /* process any acks */
7880                 if (!igb_check_for_ack(hw, vf))
7881                         igb_rcv_ack_from_vf(adapter, vf);
7882         }
7883         spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7884 }
7885
7886 /**
7887  *  igb_set_uta - Set unicast filter table address
7888  *  @adapter: board private structure
7889  *  @set: boolean indicating if we are setting or clearing bits
7890  *
7891  *  The unicast table address is a register array of 32-bit registers.
7892  *  The table is meant to be used in a way similar to how the MTA is used
7893  *  however due to certain limitations in the hardware it is necessary to
7894  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7895  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7896  **/
7897 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7898 {
7899         struct e1000_hw *hw = &adapter->hw;
7900         u32 uta = set ? ~0 : 0;
7901         int i;
7902
7903         /* we only need to do this if VMDq is enabled */
7904         if (!adapter->vfs_allocated_count)
7905                 return;
7906
7907         for (i = hw->mac.uta_reg_count; i--;)
7908                 array_wr32(E1000_UTA, i, uta);
7909 }
7910
7911 /**
7912  *  igb_intr_msi - Interrupt Handler
7913  *  @irq: interrupt number
7914  *  @data: pointer to a network interface device structure
7915  **/
7916 static irqreturn_t igb_intr_msi(int irq, void *data)
7917 {
7918         struct igb_adapter *adapter = data;
7919         struct igb_q_vector *q_vector = adapter->q_vector[0];
7920         struct e1000_hw *hw = &adapter->hw;
7921         /* read ICR disables interrupts using IAM */
7922         u32 icr = rd32(E1000_ICR);
7923
7924         igb_write_itr(q_vector);
7925
7926         if (icr & E1000_ICR_DRSTA)
7927                 schedule_work(&adapter->reset_task);
7928
7929         if (icr & E1000_ICR_DOUTSYNC) {
7930                 /* HW is reporting DMA is out of sync */
7931                 adapter->stats.doosync++;
7932         }
7933
7934         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7935                 hw->mac.get_link_status = 1;
7936                 if (!test_bit(__IGB_DOWN, &adapter->state))
7937                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7938         }
7939
7940         if (icr & E1000_ICR_TS)
7941                 igb_tsync_interrupt(adapter);
7942
7943         napi_schedule(&q_vector->napi);
7944
7945         return IRQ_HANDLED;
7946 }
7947
7948 /**
7949  *  igb_intr - Legacy Interrupt Handler
7950  *  @irq: interrupt number
7951  *  @data: pointer to a network interface device structure
7952  **/
7953 static irqreturn_t igb_intr(int irq, void *data)
7954 {
7955         struct igb_adapter *adapter = data;
7956         struct igb_q_vector *q_vector = adapter->q_vector[0];
7957         struct e1000_hw *hw = &adapter->hw;
7958         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7959          * need for the IMC write
7960          */
7961         u32 icr = rd32(E1000_ICR);
7962
7963         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7964          * not set, then the adapter didn't send an interrupt
7965          */
7966         if (!(icr & E1000_ICR_INT_ASSERTED))
7967                 return IRQ_NONE;
7968
7969         igb_write_itr(q_vector);
7970
7971         if (icr & E1000_ICR_DRSTA)
7972                 schedule_work(&adapter->reset_task);
7973
7974         if (icr & E1000_ICR_DOUTSYNC) {
7975                 /* HW is reporting DMA is out of sync */
7976                 adapter->stats.doosync++;
7977         }
7978
7979         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7980                 hw->mac.get_link_status = 1;
7981                 /* guard against interrupt when we're going down */
7982                 if (!test_bit(__IGB_DOWN, &adapter->state))
7983                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7984         }
7985
7986         if (icr & E1000_ICR_TS)
7987                 igb_tsync_interrupt(adapter);
7988
7989         napi_schedule(&q_vector->napi);
7990
7991         return IRQ_HANDLED;
7992 }
7993
7994 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7995 {
7996         struct igb_adapter *adapter = q_vector->adapter;
7997         struct e1000_hw *hw = &adapter->hw;
7998
7999         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8000             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8001                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8002                         igb_set_itr(q_vector);
8003                 else
8004                         igb_update_ring_itr(q_vector);
8005         }
8006
8007         if (!test_bit(__IGB_DOWN, &adapter->state)) {
8008                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8009                         wr32(E1000_EIMS, q_vector->eims_value);
8010                 else
8011                         igb_irq_enable(adapter);
8012         }
8013 }
8014
8015 /**
8016  *  igb_poll - NAPI Rx polling callback
8017  *  @napi: napi polling structure
8018  *  @budget: count of how many packets we should handle
8019  **/
8020 static int igb_poll(struct napi_struct *napi, int budget)
8021 {
8022         struct igb_q_vector *q_vector = container_of(napi,
8023                                                      struct igb_q_vector,
8024                                                      napi);
8025         bool clean_complete = true;
8026         int work_done = 0;
8027
8028 #ifdef CONFIG_IGB_DCA
8029         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8030                 igb_update_dca(q_vector);
8031 #endif
8032         if (q_vector->tx.ring)
8033                 clean_complete = igb_clean_tx_irq(q_vector, budget);
8034
8035         if (q_vector->rx.ring) {
8036                 int cleaned = igb_clean_rx_irq(q_vector, budget);
8037
8038                 work_done += cleaned;
8039                 if (cleaned >= budget)
8040                         clean_complete = false;
8041         }
8042
8043         /* If all work not completed, return budget and keep polling */
8044         if (!clean_complete)
8045                 return budget;
8046
8047         /* Exit the polling mode, but don't re-enable interrupts if stack might
8048          * poll us due to busy-polling
8049          */
8050         if (likely(napi_complete_done(napi, work_done)))
8051                 igb_ring_irq_enable(q_vector);
8052
8053         return work_done;
8054 }
8055
8056 /**
8057  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8058  *  @q_vector: pointer to q_vector containing needed info
8059  *  @napi_budget: Used to determine if we are in netpoll
8060  *
8061  *  returns true if ring is completely cleaned
8062  **/
8063 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8064 {
8065         struct igb_adapter *adapter = q_vector->adapter;
8066         struct igb_ring *tx_ring = q_vector->tx.ring;
8067         struct igb_tx_buffer *tx_buffer;
8068         union e1000_adv_tx_desc *tx_desc;
8069         unsigned int total_bytes = 0, total_packets = 0;
8070         unsigned int budget = q_vector->tx.work_limit;
8071         unsigned int i = tx_ring->next_to_clean;
8072
8073         if (test_bit(__IGB_DOWN, &adapter->state))
8074                 return true;
8075
8076         tx_buffer = &tx_ring->tx_buffer_info[i];
8077         tx_desc = IGB_TX_DESC(tx_ring, i);
8078         i -= tx_ring->count;
8079
8080         do {
8081                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8082
8083                 /* if next_to_watch is not set then there is no work pending */
8084                 if (!eop_desc)
8085                         break;
8086
8087                 /* prevent any other reads prior to eop_desc */
8088                 smp_rmb();
8089
8090                 /* if DD is not set pending work has not been completed */
8091                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8092                         break;
8093
8094                 /* clear next_to_watch to prevent false hangs */
8095                 tx_buffer->next_to_watch = NULL;
8096
8097                 /* update the statistics for this packet */
8098                 total_bytes += tx_buffer->bytecount;
8099                 total_packets += tx_buffer->gso_segs;
8100
8101                 /* free the skb */
8102                 if (tx_buffer->type == IGB_TYPE_SKB)
8103                         napi_consume_skb(tx_buffer->skb, napi_budget);
8104                 else
8105                         xdp_return_frame(tx_buffer->xdpf);
8106
8107                 /* unmap skb header data */
8108                 dma_unmap_single(tx_ring->dev,
8109                                  dma_unmap_addr(tx_buffer, dma),
8110                                  dma_unmap_len(tx_buffer, len),
8111                                  DMA_TO_DEVICE);
8112
8113                 /* clear tx_buffer data */
8114                 dma_unmap_len_set(tx_buffer, len, 0);
8115
8116                 /* clear last DMA location and unmap remaining buffers */
8117                 while (tx_desc != eop_desc) {
8118                         tx_buffer++;
8119                         tx_desc++;
8120                         i++;
8121                         if (unlikely(!i)) {
8122                                 i -= tx_ring->count;
8123                                 tx_buffer = tx_ring->tx_buffer_info;
8124                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8125                         }
8126
8127                         /* unmap any remaining paged data */
8128                         if (dma_unmap_len(tx_buffer, len)) {
8129                                 dma_unmap_page(tx_ring->dev,
8130                                                dma_unmap_addr(tx_buffer, dma),
8131                                                dma_unmap_len(tx_buffer, len),
8132                                                DMA_TO_DEVICE);
8133                                 dma_unmap_len_set(tx_buffer, len, 0);
8134                         }
8135                 }
8136
8137                 /* move us one more past the eop_desc for start of next pkt */
8138                 tx_buffer++;
8139                 tx_desc++;
8140                 i++;
8141                 if (unlikely(!i)) {
8142                         i -= tx_ring->count;
8143                         tx_buffer = tx_ring->tx_buffer_info;
8144                         tx_desc = IGB_TX_DESC(tx_ring, 0);
8145                 }
8146
8147                 /* issue prefetch for next Tx descriptor */
8148                 prefetch(tx_desc);
8149
8150                 /* update budget accounting */
8151                 budget--;
8152         } while (likely(budget));
8153
8154         netdev_tx_completed_queue(txring_txq(tx_ring),
8155                                   total_packets, total_bytes);
8156         i += tx_ring->count;
8157         tx_ring->next_to_clean = i;
8158         u64_stats_update_begin(&tx_ring->tx_syncp);
8159         tx_ring->tx_stats.bytes += total_bytes;
8160         tx_ring->tx_stats.packets += total_packets;
8161         u64_stats_update_end(&tx_ring->tx_syncp);
8162         q_vector->tx.total_bytes += total_bytes;
8163         q_vector->tx.total_packets += total_packets;
8164
8165         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8166                 struct e1000_hw *hw = &adapter->hw;
8167
8168                 /* Detect a transmit hang in hardware, this serializes the
8169                  * check with the clearing of time_stamp and movement of i
8170                  */
8171                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8172                 if (tx_buffer->next_to_watch &&
8173                     time_after(jiffies, tx_buffer->time_stamp +
8174                                (adapter->tx_timeout_factor * HZ)) &&
8175                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8176
8177                         /* detected Tx unit hang */
8178                         dev_err(tx_ring->dev,
8179                                 "Detected Tx Unit Hang\n"
8180                                 "  Tx Queue             <%d>\n"
8181                                 "  TDH                  <%x>\n"
8182                                 "  TDT                  <%x>\n"
8183                                 "  next_to_use          <%x>\n"
8184                                 "  next_to_clean        <%x>\n"
8185                                 "buffer_info[next_to_clean]\n"
8186                                 "  time_stamp           <%lx>\n"
8187                                 "  next_to_watch        <%p>\n"
8188                                 "  jiffies              <%lx>\n"
8189                                 "  desc.status          <%x>\n",
8190                                 tx_ring->queue_index,
8191                                 rd32(E1000_TDH(tx_ring->reg_idx)),
8192                                 readl(tx_ring->tail),
8193                                 tx_ring->next_to_use,
8194                                 tx_ring->next_to_clean,
8195                                 tx_buffer->time_stamp,
8196                                 tx_buffer->next_to_watch,
8197                                 jiffies,
8198                                 tx_buffer->next_to_watch->wb.status);
8199                         netif_stop_subqueue(tx_ring->netdev,
8200                                             tx_ring->queue_index);
8201
8202                         /* we are about to reset, no point in enabling stuff */
8203                         return true;
8204                 }
8205         }
8206
8207 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8208         if (unlikely(total_packets &&
8209             netif_carrier_ok(tx_ring->netdev) &&
8210             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8211                 /* Make sure that anybody stopping the queue after this
8212                  * sees the new next_to_clean.
8213                  */
8214                 smp_mb();
8215                 if (__netif_subqueue_stopped(tx_ring->netdev,
8216                                              tx_ring->queue_index) &&
8217                     !(test_bit(__IGB_DOWN, &adapter->state))) {
8218                         netif_wake_subqueue(tx_ring->netdev,
8219                                             tx_ring->queue_index);
8220
8221                         u64_stats_update_begin(&tx_ring->tx_syncp);
8222                         tx_ring->tx_stats.restart_queue++;
8223                         u64_stats_update_end(&tx_ring->tx_syncp);
8224                 }
8225         }
8226
8227         return !!budget;
8228 }
8229
8230 /**
8231  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8232  *  @rx_ring: rx descriptor ring to store buffers on
8233  *  @old_buff: donor buffer to have page reused
8234  *
8235  *  Synchronizes page for reuse by the adapter
8236  **/
8237 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8238                               struct igb_rx_buffer *old_buff)
8239 {
8240         struct igb_rx_buffer *new_buff;
8241         u16 nta = rx_ring->next_to_alloc;
8242
8243         new_buff = &rx_ring->rx_buffer_info[nta];
8244
8245         /* update, and store next to alloc */
8246         nta++;
8247         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8248
8249         /* Transfer page from old buffer to new buffer.
8250          * Move each member individually to avoid possible store
8251          * forwarding stalls.
8252          */
8253         new_buff->dma           = old_buff->dma;
8254         new_buff->page          = old_buff->page;
8255         new_buff->page_offset   = old_buff->page_offset;
8256         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8257 }
8258
8259 static inline bool igb_page_is_reserved(struct page *page)
8260 {
8261         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8262 }
8263
8264 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8265                                   int rx_buf_pgcnt)
8266 {
8267         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8268         struct page *page = rx_buffer->page;
8269
8270         /* avoid re-using remote pages */
8271         if (unlikely(igb_page_is_reserved(page)))
8272                 return false;
8273
8274 #if (PAGE_SIZE < 8192)
8275         /* if we are only owner of page we can reuse it */
8276         if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8277                 return false;
8278 #else
8279 #define IGB_LAST_OFFSET \
8280         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8281
8282         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8283                 return false;
8284 #endif
8285
8286         /* If we have drained the page fragment pool we need to update
8287          * the pagecnt_bias and page count so that we fully restock the
8288          * number of references the driver holds.
8289          */
8290         if (unlikely(pagecnt_bias == 1)) {
8291                 page_ref_add(page, USHRT_MAX - 1);
8292                 rx_buffer->pagecnt_bias = USHRT_MAX;
8293         }
8294
8295         return true;
8296 }
8297
8298 /**
8299  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8300  *  @rx_ring: rx descriptor ring to transact packets on
8301  *  @rx_buffer: buffer containing page to add
8302  *  @skb: sk_buff to place the data into
8303  *  @size: size of buffer to be added
8304  *
8305  *  This function will add the data contained in rx_buffer->page to the skb.
8306  **/
8307 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8308                             struct igb_rx_buffer *rx_buffer,
8309                             struct sk_buff *skb,
8310                             unsigned int size)
8311 {
8312 #if (PAGE_SIZE < 8192)
8313         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8314 #else
8315         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8316                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8317                                 SKB_DATA_ALIGN(size);
8318 #endif
8319         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8320                         rx_buffer->page_offset, size, truesize);
8321 #if (PAGE_SIZE < 8192)
8322         rx_buffer->page_offset ^= truesize;
8323 #else
8324         rx_buffer->page_offset += truesize;
8325 #endif
8326 }
8327
8328 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8329                                          struct igb_rx_buffer *rx_buffer,
8330                                          struct xdp_buff *xdp,
8331                                          union e1000_adv_rx_desc *rx_desc)
8332 {
8333 #if (PAGE_SIZE < 8192)
8334         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8335 #else
8336         unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8337                                                xdp->data_hard_start);
8338 #endif
8339         unsigned int size = xdp->data_end - xdp->data;
8340         unsigned int headlen;
8341         struct sk_buff *skb;
8342
8343         /* prefetch first cache line of first page */
8344         net_prefetch(xdp->data);
8345
8346         /* allocate a skb to store the frags */
8347         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8348         if (unlikely(!skb))
8349                 return NULL;
8350
8351         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8352                 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8353                         xdp->data += IGB_TS_HDR_LEN;
8354                         size -= IGB_TS_HDR_LEN;
8355                 }
8356         }
8357
8358         /* Determine available headroom for copy */
8359         headlen = size;
8360         if (headlen > IGB_RX_HDR_LEN)
8361                 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8362
8363         /* align pull length to size of long to optimize memcpy performance */
8364         memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8365
8366         /* update all of the pointers */
8367         size -= headlen;
8368         if (size) {
8369                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8370                                 (xdp->data + headlen) - page_address(rx_buffer->page),
8371                                 size, truesize);
8372 #if (PAGE_SIZE < 8192)
8373                 rx_buffer->page_offset ^= truesize;
8374 #else
8375                 rx_buffer->page_offset += truesize;
8376 #endif
8377         } else {
8378                 rx_buffer->pagecnt_bias++;
8379         }
8380
8381         return skb;
8382 }
8383
8384 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8385                                      struct igb_rx_buffer *rx_buffer,
8386                                      struct xdp_buff *xdp,
8387                                      union e1000_adv_rx_desc *rx_desc)
8388 {
8389 #if (PAGE_SIZE < 8192)
8390         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8391 #else
8392         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8393                                 SKB_DATA_ALIGN(xdp->data_end -
8394                                                xdp->data_hard_start);
8395 #endif
8396         unsigned int metasize = xdp->data - xdp->data_meta;
8397         struct sk_buff *skb;
8398
8399         /* prefetch first cache line of first page */
8400         net_prefetch(xdp->data_meta);
8401
8402         /* build an skb around the page buffer */
8403         skb = build_skb(xdp->data_hard_start, truesize);
8404         if (unlikely(!skb))
8405                 return NULL;
8406
8407         /* update pointers within the skb to store the data */
8408         skb_reserve(skb, xdp->data - xdp->data_hard_start);
8409         __skb_put(skb, xdp->data_end - xdp->data);
8410
8411         if (metasize)
8412                 skb_metadata_set(skb, metasize);
8413
8414         /* pull timestamp out of packet data */
8415         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8416                 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8417                         __skb_pull(skb, IGB_TS_HDR_LEN);
8418         }
8419
8420         /* update buffer offset */
8421 #if (PAGE_SIZE < 8192)
8422         rx_buffer->page_offset ^= truesize;
8423 #else
8424         rx_buffer->page_offset += truesize;
8425 #endif
8426
8427         return skb;
8428 }
8429
8430 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8431                                    struct igb_ring *rx_ring,
8432                                    struct xdp_buff *xdp)
8433 {
8434         int err, result = IGB_XDP_PASS;
8435         struct bpf_prog *xdp_prog;
8436         u32 act;
8437
8438         rcu_read_lock();
8439         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8440
8441         if (!xdp_prog)
8442                 goto xdp_out;
8443
8444         prefetchw(xdp->data_hard_start); /* xdp_frame write */
8445
8446         act = bpf_prog_run_xdp(xdp_prog, xdp);
8447         switch (act) {
8448         case XDP_PASS:
8449                 break;
8450         case XDP_TX:
8451                 result = igb_xdp_xmit_back(adapter, xdp);
8452                 if (result == IGB_XDP_CONSUMED)
8453                         goto out_failure;
8454                 break;
8455         case XDP_REDIRECT:
8456                 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8457                 if (err)
8458                         goto out_failure;
8459                 result = IGB_XDP_REDIR;
8460                 break;
8461         default:
8462                 bpf_warn_invalid_xdp_action(act);
8463                 fallthrough;
8464         case XDP_ABORTED:
8465 out_failure:
8466                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8467                 fallthrough;
8468         case XDP_DROP:
8469                 result = IGB_XDP_CONSUMED;
8470                 break;
8471         }
8472 xdp_out:
8473         rcu_read_unlock();
8474         return ERR_PTR(-result);
8475 }
8476
8477 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8478                                           unsigned int size)
8479 {
8480         unsigned int truesize;
8481
8482 #if (PAGE_SIZE < 8192)
8483         truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8484 #else
8485         truesize = ring_uses_build_skb(rx_ring) ?
8486                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8487                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8488                 SKB_DATA_ALIGN(size);
8489 #endif
8490         return truesize;
8491 }
8492
8493 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8494                                struct igb_rx_buffer *rx_buffer,
8495                                unsigned int size)
8496 {
8497         unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8498 #if (PAGE_SIZE < 8192)
8499         rx_buffer->page_offset ^= truesize;
8500 #else
8501         rx_buffer->page_offset += truesize;
8502 #endif
8503 }
8504
8505 static inline void igb_rx_checksum(struct igb_ring *ring,
8506                                    union e1000_adv_rx_desc *rx_desc,
8507                                    struct sk_buff *skb)
8508 {
8509         skb_checksum_none_assert(skb);
8510
8511         /* Ignore Checksum bit is set */
8512         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8513                 return;
8514
8515         /* Rx checksum disabled via ethtool */
8516         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8517                 return;
8518
8519         /* TCP/UDP checksum error bit is set */
8520         if (igb_test_staterr(rx_desc,
8521                              E1000_RXDEXT_STATERR_TCPE |
8522                              E1000_RXDEXT_STATERR_IPE)) {
8523                 /* work around errata with sctp packets where the TCPE aka
8524                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8525                  * packets, (aka let the stack check the crc32c)
8526                  */
8527                 if (!((skb->len == 60) &&
8528                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8529                         u64_stats_update_begin(&ring->rx_syncp);
8530                         ring->rx_stats.csum_err++;
8531                         u64_stats_update_end(&ring->rx_syncp);
8532                 }
8533                 /* let the stack verify checksum errors */
8534                 return;
8535         }
8536         /* It must be a TCP or UDP packet with a valid checksum */
8537         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8538                                       E1000_RXD_STAT_UDPCS))
8539                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8540
8541         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8542                 le32_to_cpu(rx_desc->wb.upper.status_error));
8543 }
8544
8545 static inline void igb_rx_hash(struct igb_ring *ring,
8546                                union e1000_adv_rx_desc *rx_desc,
8547                                struct sk_buff *skb)
8548 {
8549         if (ring->netdev->features & NETIF_F_RXHASH)
8550                 skb_set_hash(skb,
8551                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8552                              PKT_HASH_TYPE_L3);
8553 }
8554
8555 /**
8556  *  igb_is_non_eop - process handling of non-EOP buffers
8557  *  @rx_ring: Rx ring being processed
8558  *  @rx_desc: Rx descriptor for current buffer
8559  *
8560  *  This function updates next to clean.  If the buffer is an EOP buffer
8561  *  this function exits returning false, otherwise it will place the
8562  *  sk_buff in the next buffer to be chained and return true indicating
8563  *  that this is in fact a non-EOP buffer.
8564  **/
8565 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8566                            union e1000_adv_rx_desc *rx_desc)
8567 {
8568         u32 ntc = rx_ring->next_to_clean + 1;
8569
8570         /* fetch, update, and store next to clean */
8571         ntc = (ntc < rx_ring->count) ? ntc : 0;
8572         rx_ring->next_to_clean = ntc;
8573
8574         prefetch(IGB_RX_DESC(rx_ring, ntc));
8575
8576         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8577                 return false;
8578
8579         return true;
8580 }
8581
8582 /**
8583  *  igb_cleanup_headers - Correct corrupted or empty headers
8584  *  @rx_ring: rx descriptor ring packet is being transacted on
8585  *  @rx_desc: pointer to the EOP Rx descriptor
8586  *  @skb: pointer to current skb being fixed
8587  *
8588  *  Address the case where we are pulling data in on pages only
8589  *  and as such no data is present in the skb header.
8590  *
8591  *  In addition if skb is not at least 60 bytes we need to pad it so that
8592  *  it is large enough to qualify as a valid Ethernet frame.
8593  *
8594  *  Returns true if an error was encountered and skb was freed.
8595  **/
8596 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8597                                 union e1000_adv_rx_desc *rx_desc,
8598                                 struct sk_buff *skb)
8599 {
8600         /* XDP packets use error pointer so abort at this point */
8601         if (IS_ERR(skb))
8602                 return true;
8603
8604         if (unlikely((igb_test_staterr(rx_desc,
8605                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8606                 struct net_device *netdev = rx_ring->netdev;
8607                 if (!(netdev->features & NETIF_F_RXALL)) {
8608                         dev_kfree_skb_any(skb);
8609                         return true;
8610                 }
8611         }
8612
8613         /* if eth_skb_pad returns an error the skb was freed */
8614         if (eth_skb_pad(skb))
8615                 return true;
8616
8617         return false;
8618 }
8619
8620 /**
8621  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8622  *  @rx_ring: rx descriptor ring packet is being transacted on
8623  *  @rx_desc: pointer to the EOP Rx descriptor
8624  *  @skb: pointer to current skb being populated
8625  *
8626  *  This function checks the ring, descriptor, and packet information in
8627  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8628  *  other fields within the skb.
8629  **/
8630 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8631                                    union e1000_adv_rx_desc *rx_desc,
8632                                    struct sk_buff *skb)
8633 {
8634         struct net_device *dev = rx_ring->netdev;
8635
8636         igb_rx_hash(rx_ring, rx_desc, skb);
8637
8638         igb_rx_checksum(rx_ring, rx_desc, skb);
8639
8640         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8641             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8642                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8643
8644         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8645             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8646                 u16 vid;
8647
8648                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8649                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8650                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8651                 else
8652                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8653
8654                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8655         }
8656
8657         skb_record_rx_queue(skb, rx_ring->queue_index);
8658
8659         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8660 }
8661
8662 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8663 {
8664         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8665 }
8666
8667 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8668                                                const unsigned int size, int *rx_buf_pgcnt)
8669 {
8670         struct igb_rx_buffer *rx_buffer;
8671
8672         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8673         *rx_buf_pgcnt =
8674 #if (PAGE_SIZE < 8192)
8675                 page_count(rx_buffer->page);
8676 #else
8677                 0;
8678 #endif
8679         prefetchw(rx_buffer->page);
8680
8681         /* we are reusing so sync this buffer for CPU use */
8682         dma_sync_single_range_for_cpu(rx_ring->dev,
8683                                       rx_buffer->dma,
8684                                       rx_buffer->page_offset,
8685                                       size,
8686                                       DMA_FROM_DEVICE);
8687
8688         rx_buffer->pagecnt_bias--;
8689
8690         return rx_buffer;
8691 }
8692
8693 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8694                               struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8695 {
8696         if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8697                 /* hand second half of page back to the ring */
8698                 igb_reuse_rx_page(rx_ring, rx_buffer);
8699         } else {
8700                 /* We are not reusing the buffer so unmap it and free
8701                  * any references we are holding to it
8702                  */
8703                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8704                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8705                                      IGB_RX_DMA_ATTR);
8706                 __page_frag_cache_drain(rx_buffer->page,
8707                                         rx_buffer->pagecnt_bias);
8708         }
8709
8710         /* clear contents of rx_buffer */
8711         rx_buffer->page = NULL;
8712 }
8713
8714 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8715 {
8716         struct igb_adapter *adapter = q_vector->adapter;
8717         struct igb_ring *rx_ring = q_vector->rx.ring;
8718         struct sk_buff *skb = rx_ring->skb;
8719         unsigned int total_bytes = 0, total_packets = 0;
8720         u16 cleaned_count = igb_desc_unused(rx_ring);
8721         unsigned int xdp_xmit = 0;
8722         struct xdp_buff xdp;
8723         int rx_buf_pgcnt;
8724
8725         xdp.rxq = &rx_ring->xdp_rxq;
8726
8727         /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8728 #if (PAGE_SIZE < 8192)
8729         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8730 #endif
8731
8732         while (likely(total_packets < budget)) {
8733                 union e1000_adv_rx_desc *rx_desc;
8734                 struct igb_rx_buffer *rx_buffer;
8735                 unsigned int size;
8736
8737                 /* return some buffers to hardware, one at a time is too slow */
8738                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8739                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8740                         cleaned_count = 0;
8741                 }
8742
8743                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8744                 size = le16_to_cpu(rx_desc->wb.upper.length);
8745                 if (!size)
8746                         break;
8747
8748                 /* This memory barrier is needed to keep us from reading
8749                  * any other fields out of the rx_desc until we know the
8750                  * descriptor has been written back
8751                  */
8752                 dma_rmb();
8753
8754                 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8755
8756                 /* retrieve a buffer from the ring */
8757                 if (!skb) {
8758                         xdp.data = page_address(rx_buffer->page) +
8759                                    rx_buffer->page_offset;
8760                         xdp.data_meta = xdp.data;
8761                         xdp.data_hard_start = xdp.data -
8762                                               igb_rx_offset(rx_ring);
8763                         xdp.data_end = xdp.data + size;
8764 #if (PAGE_SIZE > 4096)
8765                         /* At larger PAGE_SIZE, frame_sz depend on len size */
8766                         xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8767 #endif
8768                         skb = igb_run_xdp(adapter, rx_ring, &xdp);
8769                 }
8770
8771                 if (IS_ERR(skb)) {
8772                         unsigned int xdp_res = -PTR_ERR(skb);
8773
8774                         if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8775                                 xdp_xmit |= xdp_res;
8776                                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8777                         } else {
8778                                 rx_buffer->pagecnt_bias++;
8779                         }
8780                         total_packets++;
8781                         total_bytes += size;
8782                 } else if (skb)
8783                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8784                 else if (ring_uses_build_skb(rx_ring))
8785                         skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8786                 else
8787                         skb = igb_construct_skb(rx_ring, rx_buffer,
8788                                                 &xdp, rx_desc);
8789
8790                 /* exit if we failed to retrieve a buffer */
8791                 if (!skb) {
8792                         rx_ring->rx_stats.alloc_failed++;
8793                         rx_buffer->pagecnt_bias++;
8794                         break;
8795                 }
8796
8797                 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8798                 cleaned_count++;
8799
8800                 /* fetch next buffer in frame if non-eop */
8801                 if (igb_is_non_eop(rx_ring, rx_desc))
8802                         continue;
8803
8804                 /* verify the packet layout is correct */
8805                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8806                         skb = NULL;
8807                         continue;
8808                 }
8809
8810                 /* probably a little skewed due to removing CRC */
8811                 total_bytes += skb->len;
8812
8813                 /* populate checksum, timestamp, VLAN, and protocol */
8814                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8815
8816                 napi_gro_receive(&q_vector->napi, skb);
8817
8818                 /* reset skb pointer */
8819                 skb = NULL;
8820
8821                 /* update budget accounting */
8822                 total_packets++;
8823         }
8824
8825         /* place incomplete frames back on ring for completion */
8826         rx_ring->skb = skb;
8827
8828         if (xdp_xmit & IGB_XDP_REDIR)
8829                 xdp_do_flush();
8830
8831         if (xdp_xmit & IGB_XDP_TX) {
8832                 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8833
8834                 igb_xdp_ring_update_tail(tx_ring);
8835         }
8836
8837         u64_stats_update_begin(&rx_ring->rx_syncp);
8838         rx_ring->rx_stats.packets += total_packets;
8839         rx_ring->rx_stats.bytes += total_bytes;
8840         u64_stats_update_end(&rx_ring->rx_syncp);
8841         q_vector->rx.total_packets += total_packets;
8842         q_vector->rx.total_bytes += total_bytes;
8843
8844         if (cleaned_count)
8845                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8846
8847         return total_packets;
8848 }
8849
8850 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8851                                   struct igb_rx_buffer *bi)
8852 {
8853         struct page *page = bi->page;
8854         dma_addr_t dma;
8855
8856         /* since we are recycling buffers we should seldom need to alloc */
8857         if (likely(page))
8858                 return true;
8859
8860         /* alloc new page for storage */
8861         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8862         if (unlikely(!page)) {
8863                 rx_ring->rx_stats.alloc_failed++;
8864                 return false;
8865         }
8866
8867         /* map page for use */
8868         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8869                                  igb_rx_pg_size(rx_ring),
8870                                  DMA_FROM_DEVICE,
8871                                  IGB_RX_DMA_ATTR);
8872
8873         /* if mapping failed free memory back to system since
8874          * there isn't much point in holding memory we can't use
8875          */
8876         if (dma_mapping_error(rx_ring->dev, dma)) {
8877                 __free_pages(page, igb_rx_pg_order(rx_ring));
8878
8879                 rx_ring->rx_stats.alloc_failed++;
8880                 return false;
8881         }
8882
8883         bi->dma = dma;
8884         bi->page = page;
8885         bi->page_offset = igb_rx_offset(rx_ring);
8886         page_ref_add(page, USHRT_MAX - 1);
8887         bi->pagecnt_bias = USHRT_MAX;
8888
8889         return true;
8890 }
8891
8892 /**
8893  *  igb_alloc_rx_buffers - Replace used receive buffers
8894  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8895  *  @cleaned_count: count of buffers to allocate
8896  **/
8897 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8898 {
8899         union e1000_adv_rx_desc *rx_desc;
8900         struct igb_rx_buffer *bi;
8901         u16 i = rx_ring->next_to_use;
8902         u16 bufsz;
8903
8904         /* nothing to do */
8905         if (!cleaned_count)
8906                 return;
8907
8908         rx_desc = IGB_RX_DESC(rx_ring, i);
8909         bi = &rx_ring->rx_buffer_info[i];
8910         i -= rx_ring->count;
8911
8912         bufsz = igb_rx_bufsz(rx_ring);
8913
8914         do {
8915                 if (!igb_alloc_mapped_page(rx_ring, bi))
8916                         break;
8917
8918                 /* sync the buffer for use by the device */
8919                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8920                                                  bi->page_offset, bufsz,
8921                                                  DMA_FROM_DEVICE);
8922
8923                 /* Refresh the desc even if buffer_addrs didn't change
8924                  * because each write-back erases this info.
8925                  */
8926                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8927
8928                 rx_desc++;
8929                 bi++;
8930                 i++;
8931                 if (unlikely(!i)) {
8932                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8933                         bi = rx_ring->rx_buffer_info;
8934                         i -= rx_ring->count;
8935                 }
8936
8937                 /* clear the length for the next_to_use descriptor */
8938                 rx_desc->wb.upper.length = 0;
8939
8940                 cleaned_count--;
8941         } while (cleaned_count);
8942
8943         i += rx_ring->count;
8944
8945         if (rx_ring->next_to_use != i) {
8946                 /* record the next descriptor to use */
8947                 rx_ring->next_to_use = i;
8948
8949                 /* update next to alloc since we have filled the ring */
8950                 rx_ring->next_to_alloc = i;
8951
8952                 /* Force memory writes to complete before letting h/w
8953                  * know there are new descriptors to fetch.  (Only
8954                  * applicable for weak-ordered memory model archs,
8955                  * such as IA-64).
8956                  */
8957                 dma_wmb();
8958                 writel(i, rx_ring->tail);
8959         }
8960 }
8961
8962 /**
8963  * igb_mii_ioctl -
8964  * @netdev: pointer to netdev struct
8965  * @ifr: interface structure
8966  * @cmd: ioctl command to execute
8967  **/
8968 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8969 {
8970         struct igb_adapter *adapter = netdev_priv(netdev);
8971         struct mii_ioctl_data *data = if_mii(ifr);
8972
8973         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8974                 return -EOPNOTSUPP;
8975
8976         switch (cmd) {
8977         case SIOCGMIIPHY:
8978                 data->phy_id = adapter->hw.phy.addr;
8979                 break;
8980         case SIOCGMIIREG:
8981                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8982                                      &data->val_out))
8983                         return -EIO;
8984                 break;
8985         case SIOCSMIIREG:
8986         default:
8987                 return -EOPNOTSUPP;
8988         }
8989         return 0;
8990 }
8991
8992 /**
8993  * igb_ioctl -
8994  * @netdev: pointer to netdev struct
8995  * @ifr: interface structure
8996  * @cmd: ioctl command to execute
8997  **/
8998 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8999 {
9000         switch (cmd) {
9001         case SIOCGMIIPHY:
9002         case SIOCGMIIREG:
9003         case SIOCSMIIREG:
9004                 return igb_mii_ioctl(netdev, ifr, cmd);
9005         case SIOCGHWTSTAMP:
9006                 return igb_ptp_get_ts_config(netdev, ifr);
9007         case SIOCSHWTSTAMP:
9008                 return igb_ptp_set_ts_config(netdev, ifr);
9009         default:
9010                 return -EOPNOTSUPP;
9011         }
9012 }
9013
9014 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9015 {
9016         struct igb_adapter *adapter = hw->back;
9017
9018         pci_read_config_word(adapter->pdev, reg, value);
9019 }
9020
9021 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9022 {
9023         struct igb_adapter *adapter = hw->back;
9024
9025         pci_write_config_word(adapter->pdev, reg, *value);
9026 }
9027
9028 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9029 {
9030         struct igb_adapter *adapter = hw->back;
9031
9032         if (pcie_capability_read_word(adapter->pdev, reg, value))
9033                 return -E1000_ERR_CONFIG;
9034
9035         return 0;
9036 }
9037
9038 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9039 {
9040         struct igb_adapter *adapter = hw->back;
9041
9042         if (pcie_capability_write_word(adapter->pdev, reg, *value))
9043                 return -E1000_ERR_CONFIG;
9044
9045         return 0;
9046 }
9047
9048 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9049 {
9050         struct igb_adapter *adapter = netdev_priv(netdev);
9051         struct e1000_hw *hw = &adapter->hw;
9052         u32 ctrl, rctl;
9053         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9054
9055         if (enable) {
9056                 /* enable VLAN tag insert/strip */
9057                 ctrl = rd32(E1000_CTRL);
9058                 ctrl |= E1000_CTRL_VME;
9059                 wr32(E1000_CTRL, ctrl);
9060
9061                 /* Disable CFI check */
9062                 rctl = rd32(E1000_RCTL);
9063                 rctl &= ~E1000_RCTL_CFIEN;
9064                 wr32(E1000_RCTL, rctl);
9065         } else {
9066                 /* disable VLAN tag insert/strip */
9067                 ctrl = rd32(E1000_CTRL);
9068                 ctrl &= ~E1000_CTRL_VME;
9069                 wr32(E1000_CTRL, ctrl);
9070         }
9071
9072         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9073 }
9074
9075 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9076                                __be16 proto, u16 vid)
9077 {
9078         struct igb_adapter *adapter = netdev_priv(netdev);
9079         struct e1000_hw *hw = &adapter->hw;
9080         int pf_id = adapter->vfs_allocated_count;
9081
9082         /* add the filter since PF can receive vlans w/o entry in vlvf */
9083         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9084                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9085
9086         set_bit(vid, adapter->active_vlans);
9087
9088         return 0;
9089 }
9090
9091 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9092                                 __be16 proto, u16 vid)
9093 {
9094         struct igb_adapter *adapter = netdev_priv(netdev);
9095         int pf_id = adapter->vfs_allocated_count;
9096         struct e1000_hw *hw = &adapter->hw;
9097
9098         /* remove VID from filter table */
9099         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9100                 igb_vfta_set(hw, vid, pf_id, false, true);
9101
9102         clear_bit(vid, adapter->active_vlans);
9103
9104         return 0;
9105 }
9106
9107 static void igb_restore_vlan(struct igb_adapter *adapter)
9108 {
9109         u16 vid = 1;
9110
9111         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9112         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9113
9114         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9115                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9116 }
9117
9118 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9119 {
9120         struct pci_dev *pdev = adapter->pdev;
9121         struct e1000_mac_info *mac = &adapter->hw.mac;
9122
9123         mac->autoneg = 0;
9124
9125         /* Make sure dplx is at most 1 bit and lsb of speed is not set
9126          * for the switch() below to work
9127          */
9128         if ((spd & 1) || (dplx & ~1))
9129                 goto err_inval;
9130
9131         /* Fiber NIC's only allow 1000 gbps Full duplex
9132          * and 100Mbps Full duplex for 100baseFx sfp
9133          */
9134         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9135                 switch (spd + dplx) {
9136                 case SPEED_10 + DUPLEX_HALF:
9137                 case SPEED_10 + DUPLEX_FULL:
9138                 case SPEED_100 + DUPLEX_HALF:
9139                         goto err_inval;
9140                 default:
9141                         break;
9142                 }
9143         }
9144
9145         switch (spd + dplx) {
9146         case SPEED_10 + DUPLEX_HALF:
9147                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9148                 break;
9149         case SPEED_10 + DUPLEX_FULL:
9150                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9151                 break;
9152         case SPEED_100 + DUPLEX_HALF:
9153                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9154                 break;
9155         case SPEED_100 + DUPLEX_FULL:
9156                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9157                 break;
9158         case SPEED_1000 + DUPLEX_FULL:
9159                 mac->autoneg = 1;
9160                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9161                 break;
9162         case SPEED_1000 + DUPLEX_HALF: /* not supported */
9163         default:
9164                 goto err_inval;
9165         }
9166
9167         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9168         adapter->hw.phy.mdix = AUTO_ALL_MODES;
9169
9170         return 0;
9171
9172 err_inval:
9173         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9174         return -EINVAL;
9175 }
9176
9177 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9178                           bool runtime)
9179 {
9180         struct net_device *netdev = pci_get_drvdata(pdev);
9181         struct igb_adapter *adapter = netdev_priv(netdev);
9182         struct e1000_hw *hw = &adapter->hw;
9183         u32 ctrl, rctl, status;
9184         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9185         bool wake;
9186
9187         rtnl_lock();
9188         netif_device_detach(netdev);
9189
9190         if (netif_running(netdev))
9191                 __igb_close(netdev, true);
9192
9193         igb_ptp_suspend(adapter);
9194
9195         igb_clear_interrupt_scheme(adapter);
9196         rtnl_unlock();
9197
9198         status = rd32(E1000_STATUS);
9199         if (status & E1000_STATUS_LU)
9200                 wufc &= ~E1000_WUFC_LNKC;
9201
9202         if (wufc) {
9203                 igb_setup_rctl(adapter);
9204                 igb_set_rx_mode(netdev);
9205
9206                 /* turn on all-multi mode if wake on multicast is enabled */
9207                 if (wufc & E1000_WUFC_MC) {
9208                         rctl = rd32(E1000_RCTL);
9209                         rctl |= E1000_RCTL_MPE;
9210                         wr32(E1000_RCTL, rctl);
9211                 }
9212
9213                 ctrl = rd32(E1000_CTRL);
9214                 ctrl |= E1000_CTRL_ADVD3WUC;
9215                 wr32(E1000_CTRL, ctrl);
9216
9217                 /* Allow time for pending master requests to run */
9218                 igb_disable_pcie_master(hw);
9219
9220                 wr32(E1000_WUC, E1000_WUC_PME_EN);
9221                 wr32(E1000_WUFC, wufc);
9222         } else {
9223                 wr32(E1000_WUC, 0);
9224                 wr32(E1000_WUFC, 0);
9225         }
9226
9227         wake = wufc || adapter->en_mng_pt;
9228         if (!wake)
9229                 igb_power_down_link(adapter);
9230         else
9231                 igb_power_up_link(adapter);
9232
9233         if (enable_wake)
9234                 *enable_wake = wake;
9235
9236         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9237          * would have already happened in close and is redundant.
9238          */
9239         igb_release_hw_control(adapter);
9240
9241         pci_disable_device(pdev);
9242
9243         return 0;
9244 }
9245
9246 static void igb_deliver_wake_packet(struct net_device *netdev)
9247 {
9248         struct igb_adapter *adapter = netdev_priv(netdev);
9249         struct e1000_hw *hw = &adapter->hw;
9250         struct sk_buff *skb;
9251         u32 wupl;
9252
9253         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9254
9255         /* WUPM stores only the first 128 bytes of the wake packet.
9256          * Read the packet only if we have the whole thing.
9257          */
9258         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9259                 return;
9260
9261         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9262         if (!skb)
9263                 return;
9264
9265         skb_put(skb, wupl);
9266
9267         /* Ensure reads are 32-bit aligned */
9268         wupl = roundup(wupl, 4);
9269
9270         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9271
9272         skb->protocol = eth_type_trans(skb, netdev);
9273         netif_rx(skb);
9274 }
9275
9276 static int __maybe_unused igb_suspend(struct device *dev)
9277 {
9278         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9279 }
9280
9281 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9282 {
9283         struct pci_dev *pdev = to_pci_dev(dev);
9284         struct net_device *netdev = pci_get_drvdata(pdev);
9285         struct igb_adapter *adapter = netdev_priv(netdev);
9286         struct e1000_hw *hw = &adapter->hw;
9287         u32 err, val;
9288
9289         pci_set_power_state(pdev, PCI_D0);
9290         pci_restore_state(pdev);
9291         pci_save_state(pdev);
9292
9293         if (!pci_device_is_present(pdev))
9294                 return -ENODEV;
9295         err = pci_enable_device_mem(pdev);
9296         if (err) {
9297                 dev_err(&pdev->dev,
9298                         "igb: Cannot enable PCI device from suspend\n");
9299                 return err;
9300         }
9301         pci_set_master(pdev);
9302
9303         pci_enable_wake(pdev, PCI_D3hot, 0);
9304         pci_enable_wake(pdev, PCI_D3cold, 0);
9305
9306         if (igb_init_interrupt_scheme(adapter, true)) {
9307                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9308                 return -ENOMEM;
9309         }
9310
9311         igb_reset(adapter);
9312
9313         /* let the f/w know that the h/w is now under the control of the
9314          * driver.
9315          */
9316         igb_get_hw_control(adapter);
9317
9318         val = rd32(E1000_WUS);
9319         if (val & WAKE_PKT_WUS)
9320                 igb_deliver_wake_packet(netdev);
9321
9322         wr32(E1000_WUS, ~0);
9323
9324         if (!rpm)
9325                 rtnl_lock();
9326         if (!err && netif_running(netdev))
9327                 err = __igb_open(netdev, true);
9328
9329         if (!err)
9330                 netif_device_attach(netdev);
9331         if (!rpm)
9332                 rtnl_unlock();
9333
9334         return err;
9335 }
9336
9337 static int __maybe_unused igb_resume(struct device *dev)
9338 {
9339         return __igb_resume(dev, false);
9340 }
9341
9342 static int __maybe_unused igb_runtime_idle(struct device *dev)
9343 {
9344         struct net_device *netdev = dev_get_drvdata(dev);
9345         struct igb_adapter *adapter = netdev_priv(netdev);
9346
9347         if (!igb_has_link(adapter))
9348                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9349
9350         return -EBUSY;
9351 }
9352
9353 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9354 {
9355         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9356 }
9357
9358 static int __maybe_unused igb_runtime_resume(struct device *dev)
9359 {
9360         return __igb_resume(dev, true);
9361 }
9362
9363 static void igb_shutdown(struct pci_dev *pdev)
9364 {
9365         bool wake;
9366
9367         __igb_shutdown(pdev, &wake, 0);
9368
9369         if (system_state == SYSTEM_POWER_OFF) {
9370                 pci_wake_from_d3(pdev, wake);
9371                 pci_set_power_state(pdev, PCI_D3hot);
9372         }
9373 }
9374
9375 #ifdef CONFIG_PCI_IOV
9376 static int igb_sriov_reinit(struct pci_dev *dev)
9377 {
9378         struct net_device *netdev = pci_get_drvdata(dev);
9379         struct igb_adapter *adapter = netdev_priv(netdev);
9380         struct pci_dev *pdev = adapter->pdev;
9381
9382         rtnl_lock();
9383
9384         if (netif_running(netdev))
9385                 igb_close(netdev);
9386         else
9387                 igb_reset(adapter);
9388
9389         igb_clear_interrupt_scheme(adapter);
9390
9391         igb_init_queue_configuration(adapter);
9392
9393         if (igb_init_interrupt_scheme(adapter, true)) {
9394                 rtnl_unlock();
9395                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9396                 return -ENOMEM;
9397         }
9398
9399         if (netif_running(netdev))
9400                 igb_open(netdev);
9401
9402         rtnl_unlock();
9403
9404         return 0;
9405 }
9406
9407 static int igb_pci_disable_sriov(struct pci_dev *dev)
9408 {
9409         int err = igb_disable_sriov(dev);
9410
9411         if (!err)
9412                 err = igb_sriov_reinit(dev);
9413
9414         return err;
9415 }
9416
9417 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9418 {
9419         int err = igb_enable_sriov(dev, num_vfs);
9420
9421         if (err)
9422                 goto out;
9423
9424         err = igb_sriov_reinit(dev);
9425         if (!err)
9426                 return num_vfs;
9427
9428 out:
9429         return err;
9430 }
9431
9432 #endif
9433 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9434 {
9435 #ifdef CONFIG_PCI_IOV
9436         if (num_vfs == 0)
9437                 return igb_pci_disable_sriov(dev);
9438         else
9439                 return igb_pci_enable_sriov(dev, num_vfs);
9440 #endif
9441         return 0;
9442 }
9443
9444 /**
9445  *  igb_io_error_detected - called when PCI error is detected
9446  *  @pdev: Pointer to PCI device
9447  *  @state: The current pci connection state
9448  *
9449  *  This function is called after a PCI bus error affecting
9450  *  this device has been detected.
9451  **/
9452 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9453                                               pci_channel_state_t state)
9454 {
9455         struct net_device *netdev = pci_get_drvdata(pdev);
9456         struct igb_adapter *adapter = netdev_priv(netdev);
9457
9458         if (state == pci_channel_io_normal) {
9459                 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9460                 return PCI_ERS_RESULT_CAN_RECOVER;
9461         }
9462
9463         netif_device_detach(netdev);
9464
9465         if (state == pci_channel_io_perm_failure)
9466                 return PCI_ERS_RESULT_DISCONNECT;
9467
9468         if (netif_running(netdev))
9469                 igb_down(adapter);
9470         pci_disable_device(pdev);
9471
9472         /* Request a slot slot reset. */
9473         return PCI_ERS_RESULT_NEED_RESET;
9474 }
9475
9476 /**
9477  *  igb_io_slot_reset - called after the pci bus has been reset.
9478  *  @pdev: Pointer to PCI device
9479  *
9480  *  Restart the card from scratch, as if from a cold-boot. Implementation
9481  *  resembles the first-half of the __igb_resume routine.
9482  **/
9483 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9484 {
9485         struct net_device *netdev = pci_get_drvdata(pdev);
9486         struct igb_adapter *adapter = netdev_priv(netdev);
9487         struct e1000_hw *hw = &adapter->hw;
9488         pci_ers_result_t result;
9489
9490         if (pci_enable_device_mem(pdev)) {
9491                 dev_err(&pdev->dev,
9492                         "Cannot re-enable PCI device after reset.\n");
9493                 result = PCI_ERS_RESULT_DISCONNECT;
9494         } else {
9495                 pci_set_master(pdev);
9496                 pci_restore_state(pdev);
9497                 pci_save_state(pdev);
9498
9499                 pci_enable_wake(pdev, PCI_D3hot, 0);
9500                 pci_enable_wake(pdev, PCI_D3cold, 0);
9501
9502                 /* In case of PCI error, adapter lose its HW address
9503                  * so we should re-assign it here.
9504                  */
9505                 hw->hw_addr = adapter->io_addr;
9506
9507                 igb_reset(adapter);
9508                 wr32(E1000_WUS, ~0);
9509                 result = PCI_ERS_RESULT_RECOVERED;
9510         }
9511
9512         return result;
9513 }
9514
9515 /**
9516  *  igb_io_resume - called when traffic can start flowing again.
9517  *  @pdev: Pointer to PCI device
9518  *
9519  *  This callback is called when the error recovery driver tells us that
9520  *  its OK to resume normal operation. Implementation resembles the
9521  *  second-half of the __igb_resume routine.
9522  */
9523 static void igb_io_resume(struct pci_dev *pdev)
9524 {
9525         struct net_device *netdev = pci_get_drvdata(pdev);
9526         struct igb_adapter *adapter = netdev_priv(netdev);
9527
9528         if (netif_running(netdev)) {
9529                 if (igb_up(adapter)) {
9530                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9531                         return;
9532                 }
9533         }
9534
9535         netif_device_attach(netdev);
9536
9537         /* let the f/w know that the h/w is now under the control of the
9538          * driver.
9539          */
9540         igb_get_hw_control(adapter);
9541 }
9542
9543 /**
9544  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9545  *  @adapter: Pointer to adapter structure
9546  *  @index: Index of the RAR entry which need to be synced with MAC table
9547  **/
9548 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9549 {
9550         struct e1000_hw *hw = &adapter->hw;
9551         u32 rar_low, rar_high;
9552         u8 *addr = adapter->mac_table[index].addr;
9553
9554         /* HW expects these to be in network order when they are plugged
9555          * into the registers which are little endian.  In order to guarantee
9556          * that ordering we need to do an leXX_to_cpup here in order to be
9557          * ready for the byteswap that occurs with writel
9558          */
9559         rar_low = le32_to_cpup((__le32 *)(addr));
9560         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9561
9562         /* Indicate to hardware the Address is Valid. */
9563         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9564                 if (is_valid_ether_addr(addr))
9565                         rar_high |= E1000_RAH_AV;
9566
9567                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9568                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9569
9570                 switch (hw->mac.type) {
9571                 case e1000_82575:
9572                 case e1000_i210:
9573                         if (adapter->mac_table[index].state &
9574                             IGB_MAC_STATE_QUEUE_STEERING)
9575                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9576
9577                         rar_high |= E1000_RAH_POOL_1 *
9578                                     adapter->mac_table[index].queue;
9579                         break;
9580                 default:
9581                         rar_high |= E1000_RAH_POOL_1 <<
9582                                     adapter->mac_table[index].queue;
9583                         break;
9584                 }
9585         }
9586
9587         wr32(E1000_RAL(index), rar_low);
9588         wrfl();
9589         wr32(E1000_RAH(index), rar_high);
9590         wrfl();
9591 }
9592
9593 static int igb_set_vf_mac(struct igb_adapter *adapter,
9594                           int vf, unsigned char *mac_addr)
9595 {
9596         struct e1000_hw *hw = &adapter->hw;
9597         /* VF MAC addresses start at end of receive addresses and moves
9598          * towards the first, as a result a collision should not be possible
9599          */
9600         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9601         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9602
9603         ether_addr_copy(vf_mac_addr, mac_addr);
9604         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9605         adapter->mac_table[rar_entry].queue = vf;
9606         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9607         igb_rar_set_index(adapter, rar_entry);
9608
9609         return 0;
9610 }
9611
9612 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9613 {
9614         struct igb_adapter *adapter = netdev_priv(netdev);
9615
9616         if (vf >= adapter->vfs_allocated_count)
9617                 return -EINVAL;
9618
9619         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9620          * flag and allows to overwrite the MAC via VF netdev.  This
9621          * is necessary to allow libvirt a way to restore the original
9622          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9623          * down a VM.
9624          */
9625         if (is_zero_ether_addr(mac)) {
9626                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9627                 dev_info(&adapter->pdev->dev,
9628                          "remove administratively set MAC on VF %d\n",
9629                          vf);
9630         } else if (is_valid_ether_addr(mac)) {
9631                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9632                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9633                          mac, vf);
9634                 dev_info(&adapter->pdev->dev,
9635                          "Reload the VF driver to make this change effective.");
9636                 /* Generate additional warning if PF is down */
9637                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9638                         dev_warn(&adapter->pdev->dev,
9639                                  "The VF MAC address has been set, but the PF device is not up.\n");
9640                         dev_warn(&adapter->pdev->dev,
9641                                  "Bring the PF device up before attempting to use the VF device.\n");
9642                 }
9643         } else {
9644                 return -EINVAL;
9645         }
9646         return igb_set_vf_mac(adapter, vf, mac);
9647 }
9648
9649 static int igb_link_mbps(int internal_link_speed)
9650 {
9651         switch (internal_link_speed) {
9652         case SPEED_100:
9653                 return 100;
9654         case SPEED_1000:
9655                 return 1000;
9656         default:
9657                 return 0;
9658         }
9659 }
9660
9661 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9662                                   int link_speed)
9663 {
9664         int rf_dec, rf_int;
9665         u32 bcnrc_val;
9666
9667         if (tx_rate != 0) {
9668                 /* Calculate the rate factor values to set */
9669                 rf_int = link_speed / tx_rate;
9670                 rf_dec = (link_speed - (rf_int * tx_rate));
9671                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9672                          tx_rate;
9673
9674                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9675                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9676                               E1000_RTTBCNRC_RF_INT_MASK);
9677                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9678         } else {
9679                 bcnrc_val = 0;
9680         }
9681
9682         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9683         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9684          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9685          */
9686         wr32(E1000_RTTBCNRM, 0x14);
9687         wr32(E1000_RTTBCNRC, bcnrc_val);
9688 }
9689
9690 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9691 {
9692         int actual_link_speed, i;
9693         bool reset_rate = false;
9694
9695         /* VF TX rate limit was not set or not supported */
9696         if ((adapter->vf_rate_link_speed == 0) ||
9697             (adapter->hw.mac.type != e1000_82576))
9698                 return;
9699
9700         actual_link_speed = igb_link_mbps(adapter->link_speed);
9701         if (actual_link_speed != adapter->vf_rate_link_speed) {
9702                 reset_rate = true;
9703                 adapter->vf_rate_link_speed = 0;
9704                 dev_info(&adapter->pdev->dev,
9705                          "Link speed has been changed. VF Transmit rate is disabled\n");
9706         }
9707
9708         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9709                 if (reset_rate)
9710                         adapter->vf_data[i].tx_rate = 0;
9711
9712                 igb_set_vf_rate_limit(&adapter->hw, i,
9713                                       adapter->vf_data[i].tx_rate,
9714                                       actual_link_speed);
9715         }
9716 }
9717
9718 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9719                              int min_tx_rate, int max_tx_rate)
9720 {
9721         struct igb_adapter *adapter = netdev_priv(netdev);
9722         struct e1000_hw *hw = &adapter->hw;
9723         int actual_link_speed;
9724
9725         if (hw->mac.type != e1000_82576)
9726                 return -EOPNOTSUPP;
9727
9728         if (min_tx_rate)
9729                 return -EINVAL;
9730
9731         actual_link_speed = igb_link_mbps(adapter->link_speed);
9732         if ((vf >= adapter->vfs_allocated_count) ||
9733             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9734             (max_tx_rate < 0) ||
9735             (max_tx_rate > actual_link_speed))
9736                 return -EINVAL;
9737
9738         adapter->vf_rate_link_speed = actual_link_speed;
9739         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9740         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9741
9742         return 0;
9743 }
9744
9745 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9746                                    bool setting)
9747 {
9748         struct igb_adapter *adapter = netdev_priv(netdev);
9749         struct e1000_hw *hw = &adapter->hw;
9750         u32 reg_val, reg_offset;
9751
9752         if (!adapter->vfs_allocated_count)
9753                 return -EOPNOTSUPP;
9754
9755         if (vf >= adapter->vfs_allocated_count)
9756                 return -EINVAL;
9757
9758         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9759         reg_val = rd32(reg_offset);
9760         if (setting)
9761                 reg_val |= (BIT(vf) |
9762                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9763         else
9764                 reg_val &= ~(BIT(vf) |
9765                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9766         wr32(reg_offset, reg_val);
9767
9768         adapter->vf_data[vf].spoofchk_enabled = setting;
9769         return 0;
9770 }
9771
9772 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9773 {
9774         struct igb_adapter *adapter = netdev_priv(netdev);
9775
9776         if (vf >= adapter->vfs_allocated_count)
9777                 return -EINVAL;
9778         if (adapter->vf_data[vf].trusted == setting)
9779                 return 0;
9780
9781         adapter->vf_data[vf].trusted = setting;
9782
9783         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9784                  vf, setting ? "" : "not ");
9785         return 0;
9786 }
9787
9788 static int igb_ndo_get_vf_config(struct net_device *netdev,
9789                                  int vf, struct ifla_vf_info *ivi)
9790 {
9791         struct igb_adapter *adapter = netdev_priv(netdev);
9792         if (vf >= adapter->vfs_allocated_count)
9793                 return -EINVAL;
9794         ivi->vf = vf;
9795         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9796         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9797         ivi->min_tx_rate = 0;
9798         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9799         ivi->qos = adapter->vf_data[vf].pf_qos;
9800         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9801         ivi->trusted = adapter->vf_data[vf].trusted;
9802         return 0;
9803 }
9804
9805 static void igb_vmm_control(struct igb_adapter *adapter)
9806 {
9807         struct e1000_hw *hw = &adapter->hw;
9808         u32 reg;
9809
9810         switch (hw->mac.type) {
9811         case e1000_82575:
9812         case e1000_i210:
9813         case e1000_i211:
9814         case e1000_i354:
9815         default:
9816                 /* replication is not supported for 82575 */
9817                 return;
9818         case e1000_82576:
9819                 /* notify HW that the MAC is adding vlan tags */
9820                 reg = rd32(E1000_DTXCTL);
9821                 reg |= E1000_DTXCTL_VLAN_ADDED;
9822                 wr32(E1000_DTXCTL, reg);
9823                 fallthrough;
9824         case e1000_82580:
9825                 /* enable replication vlan tag stripping */
9826                 reg = rd32(E1000_RPLOLR);
9827                 reg |= E1000_RPLOLR_STRVLAN;
9828                 wr32(E1000_RPLOLR, reg);
9829                 fallthrough;
9830         case e1000_i350:
9831                 /* none of the above registers are supported by i350 */
9832                 break;
9833         }
9834
9835         if (adapter->vfs_allocated_count) {
9836                 igb_vmdq_set_loopback_pf(hw, true);
9837                 igb_vmdq_set_replication_pf(hw, true);
9838                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9839                                               adapter->vfs_allocated_count);
9840         } else {
9841                 igb_vmdq_set_loopback_pf(hw, false);
9842                 igb_vmdq_set_replication_pf(hw, false);
9843         }
9844 }
9845
9846 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9847 {
9848         struct e1000_hw *hw = &adapter->hw;
9849         u32 dmac_thr;
9850         u16 hwm;
9851         u32 reg;
9852
9853         if (hw->mac.type > e1000_82580) {
9854                 if (adapter->flags & IGB_FLAG_DMAC) {
9855                         /* force threshold to 0. */
9856                         wr32(E1000_DMCTXTH, 0);
9857
9858                         /* DMA Coalescing high water mark needs to be greater
9859                          * than the Rx threshold. Set hwm to PBA - max frame
9860                          * size in 16B units, capping it at PBA - 6KB.
9861                          */
9862                         hwm = 64 * (pba - 6);
9863                         reg = rd32(E1000_FCRTC);
9864                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9865                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9866                                 & E1000_FCRTC_RTH_COAL_MASK);
9867                         wr32(E1000_FCRTC, reg);
9868
9869                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9870                          * frame size, capping it at PBA - 10KB.
9871                          */
9872                         dmac_thr = pba - 10;
9873                         reg = rd32(E1000_DMACR);
9874                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9875                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9876                                 & E1000_DMACR_DMACTHR_MASK);
9877
9878                         /* transition to L0x or L1 if available..*/
9879                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9880
9881                         /* watchdog timer= +-1000 usec in 32usec intervals */
9882                         reg |= (1000 >> 5);
9883
9884                         /* Disable BMC-to-OS Watchdog Enable */
9885                         if (hw->mac.type != e1000_i354)
9886                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9887                         wr32(E1000_DMACR, reg);
9888
9889                         /* no lower threshold to disable
9890                          * coalescing(smart fifb)-UTRESH=0
9891                          */
9892                         wr32(E1000_DMCRTRH, 0);
9893
9894                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9895
9896                         wr32(E1000_DMCTLX, reg);
9897
9898                         /* free space in tx packet buffer to wake from
9899                          * DMA coal
9900                          */
9901                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9902                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9903                 }
9904
9905                 if (hw->mac.type >= e1000_i210 ||
9906                     (adapter->flags & IGB_FLAG_DMAC)) {
9907                         reg = rd32(E1000_PCIEMISC);
9908                         reg |= E1000_PCIEMISC_LX_DECISION;
9909                         wr32(E1000_PCIEMISC, reg);
9910                 } /* endif adapter->dmac is not disabled */
9911         } else if (hw->mac.type == e1000_82580) {
9912                 u32 reg = rd32(E1000_PCIEMISC);
9913
9914                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9915                 wr32(E1000_DMACR, 0);
9916         }
9917 }
9918
9919 /**
9920  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9921  *  @hw: pointer to hardware structure
9922  *  @byte_offset: byte offset to read
9923  *  @dev_addr: device address
9924  *  @data: value read
9925  *
9926  *  Performs byte read operation over I2C interface at
9927  *  a specified device address.
9928  **/
9929 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9930                       u8 dev_addr, u8 *data)
9931 {
9932         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9933         struct i2c_client *this_client = adapter->i2c_client;
9934         s32 status;
9935         u16 swfw_mask = 0;
9936
9937         if (!this_client)
9938                 return E1000_ERR_I2C;
9939
9940         swfw_mask = E1000_SWFW_PHY0_SM;
9941
9942         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9943                 return E1000_ERR_SWFW_SYNC;
9944
9945         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9946         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9947
9948         if (status < 0)
9949                 return E1000_ERR_I2C;
9950         else {
9951                 *data = status;
9952                 return 0;
9953         }
9954 }
9955
9956 /**
9957  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9958  *  @hw: pointer to hardware structure
9959  *  @byte_offset: byte offset to write
9960  *  @dev_addr: device address
9961  *  @data: value to write
9962  *
9963  *  Performs byte write operation over I2C interface at
9964  *  a specified device address.
9965  **/
9966 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9967                        u8 dev_addr, u8 data)
9968 {
9969         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9970         struct i2c_client *this_client = adapter->i2c_client;
9971         s32 status;
9972         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9973
9974         if (!this_client)
9975                 return E1000_ERR_I2C;
9976
9977         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9978                 return E1000_ERR_SWFW_SYNC;
9979         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9980         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9981
9982         if (status)
9983                 return E1000_ERR_I2C;
9984         else
9985                 return 0;
9986
9987 }
9988
9989 int igb_reinit_queues(struct igb_adapter *adapter)
9990 {
9991         struct net_device *netdev = adapter->netdev;
9992         struct pci_dev *pdev = adapter->pdev;
9993         int err = 0;
9994
9995         if (netif_running(netdev))
9996                 igb_close(netdev);
9997
9998         igb_reset_interrupt_capability(adapter);
9999
10000         if (igb_init_interrupt_scheme(adapter, true)) {
10001                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10002                 return -ENOMEM;
10003         }
10004
10005         if (netif_running(netdev))
10006                 err = igb_open(netdev);
10007
10008         return err;
10009 }
10010
10011 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10012 {
10013         struct igb_nfc_filter *rule;
10014
10015         spin_lock(&adapter->nfc_lock);
10016
10017         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10018                 igb_erase_filter(adapter, rule);
10019
10020         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10021                 igb_erase_filter(adapter, rule);
10022
10023         spin_unlock(&adapter->nfc_lock);
10024 }
10025
10026 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10027 {
10028         struct igb_nfc_filter *rule;
10029
10030         spin_lock(&adapter->nfc_lock);
10031
10032         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10033                 igb_add_filter(adapter, rule);
10034
10035         spin_unlock(&adapter->nfc_lock);
10036 }
10037 /* igb_main.c */