1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 /* ethtool support for igb */
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
42 char stat_string[ETH_GSTRING_LEN];
47 #define IGB_STAT(_name, _stat) { \
48 .stat_string = _name, \
49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 .stat_offset = offsetof(struct igb_adapter, _stat) \
52 static const struct igb_stats igb_gstrings_stats[] = {
53 IGB_STAT("rx_packets", stats.gprc),
54 IGB_STAT("tx_packets", stats.gptc),
55 IGB_STAT("rx_bytes", stats.gorc),
56 IGB_STAT("tx_bytes", stats.gotc),
57 IGB_STAT("rx_broadcast", stats.bprc),
58 IGB_STAT("tx_broadcast", stats.bptc),
59 IGB_STAT("rx_multicast", stats.mprc),
60 IGB_STAT("tx_multicast", stats.mptc),
61 IGB_STAT("multicast", stats.mprc),
62 IGB_STAT("collisions", stats.colc),
63 IGB_STAT("rx_crc_errors", stats.crcerrs),
64 IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 IGB_STAT("rx_missed_errors", stats.mpc),
66 IGB_STAT("tx_aborted_errors", stats.ecol),
67 IGB_STAT("tx_carrier_errors", stats.tncrs),
68 IGB_STAT("tx_window_errors", stats.latecol),
69 IGB_STAT("tx_abort_late_coll", stats.latecol),
70 IGB_STAT("tx_deferred_ok", stats.dc),
71 IGB_STAT("tx_single_coll_ok", stats.scc),
72 IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 IGB_STAT("tx_timeout_count", tx_timeout_count),
74 IGB_STAT("rx_long_length_errors", stats.roc),
75 IGB_STAT("rx_short_length_errors", stats.ruc),
76 IGB_STAT("rx_align_errors", stats.algnerrc),
77 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 IGB_STAT("rx_long_byte_count", stats.gorc),
84 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 IGB_STAT("tx_smbus", stats.mgptc),
86 IGB_STAT("rx_smbus", stats.mgprc),
87 IGB_STAT("dropped_smbus", stats.mgpdc),
88 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 IGB_NETDEV_STAT(rx_errors),
103 IGB_NETDEV_STAT(tx_errors),
104 IGB_NETDEV_STAT(tx_dropped),
105 IGB_NETDEV_STAT(rx_length_errors),
106 IGB_NETDEV_STAT(rx_over_errors),
107 IGB_NETDEV_STAT(rx_frame_errors),
108 IGB_NETDEV_STAT(rx_fifo_errors),
109 IGB_NETDEV_STAT(tx_fifo_errors),
110 IGB_NETDEV_STAT(tx_heartbeat_errors)
113 #define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122 #define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130 enum igb_diagnostics_results {
138 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
139 [TEST_REG] = "Register test (offline)",
140 [TEST_EEP] = "Eeprom test (offline)",
141 [TEST_IRQ] = "Interrupt test (offline)",
142 [TEST_LOOP] = "Loopback test (offline)",
143 [TEST_LINK] = "Link test (on/offline)"
145 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
147 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
149 struct igb_adapter *adapter = netdev_priv(netdev);
150 struct e1000_hw *hw = &adapter->hw;
151 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
152 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
156 status = pm_runtime_suspended(&adapter->pdev->dev) ?
157 0 : rd32(E1000_STATUS);
158 if (hw->phy.media_type == e1000_media_type_copper) {
160 ecmd->supported = (SUPPORTED_10baseT_Half |
161 SUPPORTED_10baseT_Full |
162 SUPPORTED_100baseT_Half |
163 SUPPORTED_100baseT_Full |
164 SUPPORTED_1000baseT_Full|
168 ecmd->advertising = ADVERTISED_TP;
170 if (hw->mac.autoneg == 1) {
171 ecmd->advertising |= ADVERTISED_Autoneg;
172 /* the e1000 autoneg seems to match ethtool nicely */
173 ecmd->advertising |= hw->phy.autoneg_advertised;
176 ecmd->port = PORT_TP;
177 ecmd->phy_address = hw->phy.addr;
178 ecmd->transceiver = XCVR_INTERNAL;
180 ecmd->supported = (SUPPORTED_FIBRE |
181 SUPPORTED_1000baseKX_Full |
184 ecmd->advertising = (ADVERTISED_FIBRE |
185 ADVERTISED_1000baseKX_Full);
186 if (hw->mac.type == e1000_i354) {
187 if ((hw->device_id ==
188 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
189 !(status & E1000_STATUS_2P5_SKU_OVER)) {
190 ecmd->supported |= SUPPORTED_2500baseX_Full;
192 ~SUPPORTED_1000baseKX_Full;
193 ecmd->advertising |= ADVERTISED_2500baseX_Full;
195 ~ADVERTISED_1000baseKX_Full;
198 if (eth_flags->e100_base_fx) {
199 ecmd->supported |= SUPPORTED_100baseT_Full;
200 ecmd->advertising |= ADVERTISED_100baseT_Full;
202 if (hw->mac.autoneg == 1)
203 ecmd->advertising |= ADVERTISED_Autoneg;
205 ecmd->port = PORT_FIBRE;
206 ecmd->transceiver = XCVR_EXTERNAL;
208 if (hw->mac.autoneg != 1)
209 ecmd->advertising &= ~(ADVERTISED_Pause |
210 ADVERTISED_Asym_Pause);
212 switch (hw->fc.requested_mode) {
214 ecmd->advertising |= ADVERTISED_Pause;
216 case e1000_fc_rx_pause:
217 ecmd->advertising |= (ADVERTISED_Pause |
218 ADVERTISED_Asym_Pause);
220 case e1000_fc_tx_pause:
221 ecmd->advertising |= ADVERTISED_Asym_Pause;
224 ecmd->advertising &= ~(ADVERTISED_Pause |
225 ADVERTISED_Asym_Pause);
227 if (status & E1000_STATUS_LU) {
228 if ((status & E1000_STATUS_2P5_SKU) &&
229 !(status & E1000_STATUS_2P5_SKU_OVER)) {
231 } else if (status & E1000_STATUS_SPEED_1000) {
233 } else if (status & E1000_STATUS_SPEED_100) {
238 if ((status & E1000_STATUS_FD) ||
239 hw->phy.media_type != e1000_media_type_copper)
240 ecmd->duplex = DUPLEX_FULL;
242 ecmd->duplex = DUPLEX_HALF;
244 speed = SPEED_UNKNOWN;
245 ecmd->duplex = DUPLEX_UNKNOWN;
247 ethtool_cmd_speed_set(ecmd, speed);
248 if ((hw->phy.media_type == e1000_media_type_fiber) ||
250 ecmd->autoneg = AUTONEG_ENABLE;
252 ecmd->autoneg = AUTONEG_DISABLE;
254 /* MDI-X => 2; MDI =>1; Invalid =>0 */
255 if (hw->phy.media_type == e1000_media_type_copper)
256 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
259 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
261 if (hw->phy.mdix == AUTO_ALL_MODES)
262 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
264 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
269 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
271 struct igb_adapter *adapter = netdev_priv(netdev);
272 struct e1000_hw *hw = &adapter->hw;
274 /* When SoL/IDER sessions are active, autoneg/speed/duplex
277 if (igb_check_reset_block(hw)) {
278 dev_err(&adapter->pdev->dev,
279 "Cannot change link characteristics when SoL/IDER is active.\n");
283 /* MDI setting is only allowed when autoneg enabled because
284 * some hardware doesn't allow MDI setting when speed or
287 if (ecmd->eth_tp_mdix_ctrl) {
288 if (hw->phy.media_type != e1000_media_type_copper)
291 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
292 (ecmd->autoneg != AUTONEG_ENABLE)) {
293 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
298 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
299 usleep_range(1000, 2000);
301 if (ecmd->autoneg == AUTONEG_ENABLE) {
303 if (hw->phy.media_type == e1000_media_type_fiber) {
304 hw->phy.autoneg_advertised = ecmd->advertising |
307 switch (adapter->link_speed) {
309 hw->phy.autoneg_advertised =
310 ADVERTISED_2500baseX_Full;
313 hw->phy.autoneg_advertised =
314 ADVERTISED_1000baseT_Full;
317 hw->phy.autoneg_advertised =
318 ADVERTISED_100baseT_Full;
324 hw->phy.autoneg_advertised = ecmd->advertising |
328 ecmd->advertising = hw->phy.autoneg_advertised;
329 if (adapter->fc_autoneg)
330 hw->fc.requested_mode = e1000_fc_default;
332 u32 speed = ethtool_cmd_speed(ecmd);
333 /* calling this overrides forced MDI setting */
334 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
335 clear_bit(__IGB_RESETTING, &adapter->state);
340 /* MDI-X => 2; MDI => 1; Auto => 3 */
341 if (ecmd->eth_tp_mdix_ctrl) {
342 /* fix up the value for auto (3 => 0) as zero is mapped
345 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
346 hw->phy.mdix = AUTO_ALL_MODES;
348 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
352 if (netif_running(adapter->netdev)) {
358 clear_bit(__IGB_RESETTING, &adapter->state);
362 static u32 igb_get_link(struct net_device *netdev)
364 struct igb_adapter *adapter = netdev_priv(netdev);
365 struct e1000_mac_info *mac = &adapter->hw.mac;
367 /* If the link is not reported up to netdev, interrupts are disabled,
368 * and so the physical link state may have changed since we last
369 * looked. Set get_link_status to make sure that the true link
370 * state is interrogated, rather than pulling a cached and possibly
371 * stale link state from the driver.
373 if (!netif_carrier_ok(netdev))
374 mac->get_link_status = 1;
376 return igb_has_link(adapter);
379 static void igb_get_pauseparam(struct net_device *netdev,
380 struct ethtool_pauseparam *pause)
382 struct igb_adapter *adapter = netdev_priv(netdev);
383 struct e1000_hw *hw = &adapter->hw;
386 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
388 if (hw->fc.current_mode == e1000_fc_rx_pause)
390 else if (hw->fc.current_mode == e1000_fc_tx_pause)
392 else if (hw->fc.current_mode == e1000_fc_full) {
398 static int igb_set_pauseparam(struct net_device *netdev,
399 struct ethtool_pauseparam *pause)
401 struct igb_adapter *adapter = netdev_priv(netdev);
402 struct e1000_hw *hw = &adapter->hw;
405 /* 100basefx does not support setting link flow control */
406 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
409 adapter->fc_autoneg = pause->autoneg;
411 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
412 usleep_range(1000, 2000);
414 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
415 hw->fc.requested_mode = e1000_fc_default;
416 if (netif_running(adapter->netdev)) {
423 if (pause->rx_pause && pause->tx_pause)
424 hw->fc.requested_mode = e1000_fc_full;
425 else if (pause->rx_pause && !pause->tx_pause)
426 hw->fc.requested_mode = e1000_fc_rx_pause;
427 else if (!pause->rx_pause && pause->tx_pause)
428 hw->fc.requested_mode = e1000_fc_tx_pause;
429 else if (!pause->rx_pause && !pause->tx_pause)
430 hw->fc.requested_mode = e1000_fc_none;
432 hw->fc.current_mode = hw->fc.requested_mode;
434 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
435 igb_force_mac_fc(hw) : igb_setup_link(hw));
438 clear_bit(__IGB_RESETTING, &adapter->state);
442 static u32 igb_get_msglevel(struct net_device *netdev)
444 struct igb_adapter *adapter = netdev_priv(netdev);
445 return adapter->msg_enable;
448 static void igb_set_msglevel(struct net_device *netdev, u32 data)
450 struct igb_adapter *adapter = netdev_priv(netdev);
451 adapter->msg_enable = data;
454 static int igb_get_regs_len(struct net_device *netdev)
456 #define IGB_REGS_LEN 739
457 return IGB_REGS_LEN * sizeof(u32);
460 static void igb_get_regs(struct net_device *netdev,
461 struct ethtool_regs *regs, void *p)
463 struct igb_adapter *adapter = netdev_priv(netdev);
464 struct e1000_hw *hw = &adapter->hw;
468 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
470 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
472 /* General Registers */
473 regs_buff[0] = rd32(E1000_CTRL);
474 regs_buff[1] = rd32(E1000_STATUS);
475 regs_buff[2] = rd32(E1000_CTRL_EXT);
476 regs_buff[3] = rd32(E1000_MDIC);
477 regs_buff[4] = rd32(E1000_SCTL);
478 regs_buff[5] = rd32(E1000_CONNSW);
479 regs_buff[6] = rd32(E1000_VET);
480 regs_buff[7] = rd32(E1000_LEDCTL);
481 regs_buff[8] = rd32(E1000_PBA);
482 regs_buff[9] = rd32(E1000_PBS);
483 regs_buff[10] = rd32(E1000_FRTIMER);
484 regs_buff[11] = rd32(E1000_TCPTIMER);
487 regs_buff[12] = rd32(E1000_EECD);
490 /* Reading EICS for EICR because they read the
491 * same but EICS does not clear on read
493 regs_buff[13] = rd32(E1000_EICS);
494 regs_buff[14] = rd32(E1000_EICS);
495 regs_buff[15] = rd32(E1000_EIMS);
496 regs_buff[16] = rd32(E1000_EIMC);
497 regs_buff[17] = rd32(E1000_EIAC);
498 regs_buff[18] = rd32(E1000_EIAM);
499 /* Reading ICS for ICR because they read the
500 * same but ICS does not clear on read
502 regs_buff[19] = rd32(E1000_ICS);
503 regs_buff[20] = rd32(E1000_ICS);
504 regs_buff[21] = rd32(E1000_IMS);
505 regs_buff[22] = rd32(E1000_IMC);
506 regs_buff[23] = rd32(E1000_IAC);
507 regs_buff[24] = rd32(E1000_IAM);
508 regs_buff[25] = rd32(E1000_IMIRVP);
511 regs_buff[26] = rd32(E1000_FCAL);
512 regs_buff[27] = rd32(E1000_FCAH);
513 regs_buff[28] = rd32(E1000_FCTTV);
514 regs_buff[29] = rd32(E1000_FCRTL);
515 regs_buff[30] = rd32(E1000_FCRTH);
516 regs_buff[31] = rd32(E1000_FCRTV);
519 regs_buff[32] = rd32(E1000_RCTL);
520 regs_buff[33] = rd32(E1000_RXCSUM);
521 regs_buff[34] = rd32(E1000_RLPML);
522 regs_buff[35] = rd32(E1000_RFCTL);
523 regs_buff[36] = rd32(E1000_MRQC);
524 regs_buff[37] = rd32(E1000_VT_CTL);
527 regs_buff[38] = rd32(E1000_TCTL);
528 regs_buff[39] = rd32(E1000_TCTL_EXT);
529 regs_buff[40] = rd32(E1000_TIPG);
530 regs_buff[41] = rd32(E1000_DTXCTL);
533 regs_buff[42] = rd32(E1000_WUC);
534 regs_buff[43] = rd32(E1000_WUFC);
535 regs_buff[44] = rd32(E1000_WUS);
536 regs_buff[45] = rd32(E1000_IPAV);
537 regs_buff[46] = rd32(E1000_WUPL);
540 regs_buff[47] = rd32(E1000_PCS_CFG0);
541 regs_buff[48] = rd32(E1000_PCS_LCTL);
542 regs_buff[49] = rd32(E1000_PCS_LSTAT);
543 regs_buff[50] = rd32(E1000_PCS_ANADV);
544 regs_buff[51] = rd32(E1000_PCS_LPAB);
545 regs_buff[52] = rd32(E1000_PCS_NPTX);
546 regs_buff[53] = rd32(E1000_PCS_LPABNP);
549 regs_buff[54] = adapter->stats.crcerrs;
550 regs_buff[55] = adapter->stats.algnerrc;
551 regs_buff[56] = adapter->stats.symerrs;
552 regs_buff[57] = adapter->stats.rxerrc;
553 regs_buff[58] = adapter->stats.mpc;
554 regs_buff[59] = adapter->stats.scc;
555 regs_buff[60] = adapter->stats.ecol;
556 regs_buff[61] = adapter->stats.mcc;
557 regs_buff[62] = adapter->stats.latecol;
558 regs_buff[63] = adapter->stats.colc;
559 regs_buff[64] = adapter->stats.dc;
560 regs_buff[65] = adapter->stats.tncrs;
561 regs_buff[66] = adapter->stats.sec;
562 regs_buff[67] = adapter->stats.htdpmc;
563 regs_buff[68] = adapter->stats.rlec;
564 regs_buff[69] = adapter->stats.xonrxc;
565 regs_buff[70] = adapter->stats.xontxc;
566 regs_buff[71] = adapter->stats.xoffrxc;
567 regs_buff[72] = adapter->stats.xofftxc;
568 regs_buff[73] = adapter->stats.fcruc;
569 regs_buff[74] = adapter->stats.prc64;
570 regs_buff[75] = adapter->stats.prc127;
571 regs_buff[76] = adapter->stats.prc255;
572 regs_buff[77] = adapter->stats.prc511;
573 regs_buff[78] = adapter->stats.prc1023;
574 regs_buff[79] = adapter->stats.prc1522;
575 regs_buff[80] = adapter->stats.gprc;
576 regs_buff[81] = adapter->stats.bprc;
577 regs_buff[82] = adapter->stats.mprc;
578 regs_buff[83] = adapter->stats.gptc;
579 regs_buff[84] = adapter->stats.gorc;
580 regs_buff[86] = adapter->stats.gotc;
581 regs_buff[88] = adapter->stats.rnbc;
582 regs_buff[89] = adapter->stats.ruc;
583 regs_buff[90] = adapter->stats.rfc;
584 regs_buff[91] = adapter->stats.roc;
585 regs_buff[92] = adapter->stats.rjc;
586 regs_buff[93] = adapter->stats.mgprc;
587 regs_buff[94] = adapter->stats.mgpdc;
588 regs_buff[95] = adapter->stats.mgptc;
589 regs_buff[96] = adapter->stats.tor;
590 regs_buff[98] = adapter->stats.tot;
591 regs_buff[100] = adapter->stats.tpr;
592 regs_buff[101] = adapter->stats.tpt;
593 regs_buff[102] = adapter->stats.ptc64;
594 regs_buff[103] = adapter->stats.ptc127;
595 regs_buff[104] = adapter->stats.ptc255;
596 regs_buff[105] = adapter->stats.ptc511;
597 regs_buff[106] = adapter->stats.ptc1023;
598 regs_buff[107] = adapter->stats.ptc1522;
599 regs_buff[108] = adapter->stats.mptc;
600 regs_buff[109] = adapter->stats.bptc;
601 regs_buff[110] = adapter->stats.tsctc;
602 regs_buff[111] = adapter->stats.iac;
603 regs_buff[112] = adapter->stats.rpthc;
604 regs_buff[113] = adapter->stats.hgptc;
605 regs_buff[114] = adapter->stats.hgorc;
606 regs_buff[116] = adapter->stats.hgotc;
607 regs_buff[118] = adapter->stats.lenerrs;
608 regs_buff[119] = adapter->stats.scvpc;
609 regs_buff[120] = adapter->stats.hrmpc;
611 for (i = 0; i < 4; i++)
612 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
613 for (i = 0; i < 4; i++)
614 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
615 for (i = 0; i < 4; i++)
616 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
617 for (i = 0; i < 4; i++)
618 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
619 for (i = 0; i < 4; i++)
620 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
621 for (i = 0; i < 4; i++)
622 regs_buff[141 + i] = rd32(E1000_RDH(i));
623 for (i = 0; i < 4; i++)
624 regs_buff[145 + i] = rd32(E1000_RDT(i));
625 for (i = 0; i < 4; i++)
626 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
628 for (i = 0; i < 10; i++)
629 regs_buff[153 + i] = rd32(E1000_EITR(i));
630 for (i = 0; i < 8; i++)
631 regs_buff[163 + i] = rd32(E1000_IMIR(i));
632 for (i = 0; i < 8; i++)
633 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
634 for (i = 0; i < 16; i++)
635 regs_buff[179 + i] = rd32(E1000_RAL(i));
636 for (i = 0; i < 16; i++)
637 regs_buff[195 + i] = rd32(E1000_RAH(i));
639 for (i = 0; i < 4; i++)
640 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
641 for (i = 0; i < 4; i++)
642 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
643 for (i = 0; i < 4; i++)
644 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[223 + i] = rd32(E1000_TDH(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[227 + i] = rd32(E1000_TDT(i));
649 for (i = 0; i < 4; i++)
650 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
651 for (i = 0; i < 4; i++)
652 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
653 for (i = 0; i < 4; i++)
654 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
658 for (i = 0; i < 4; i++)
659 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
660 for (i = 0; i < 4; i++)
661 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
662 for (i = 0; i < 32; i++)
663 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
664 for (i = 0; i < 128; i++)
665 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
666 for (i = 0; i < 128; i++)
667 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
668 for (i = 0; i < 4; i++)
669 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
671 regs_buff[547] = rd32(E1000_TDFH);
672 regs_buff[548] = rd32(E1000_TDFT);
673 regs_buff[549] = rd32(E1000_TDFHS);
674 regs_buff[550] = rd32(E1000_TDFPC);
676 if (hw->mac.type > e1000_82580) {
677 regs_buff[551] = adapter->stats.o2bgptc;
678 regs_buff[552] = adapter->stats.b2ospc;
679 regs_buff[553] = adapter->stats.o2bspc;
680 regs_buff[554] = adapter->stats.b2ogprc;
683 if (hw->mac.type != e1000_82576)
685 for (i = 0; i < 12; i++)
686 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
687 for (i = 0; i < 4; i++)
688 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
689 for (i = 0; i < 12; i++)
690 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
691 for (i = 0; i < 12; i++)
692 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
693 for (i = 0; i < 12; i++)
694 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
695 for (i = 0; i < 12; i++)
696 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
697 for (i = 0; i < 12; i++)
698 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
699 for (i = 0; i < 12; i++)
700 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
704 for (i = 0; i < 12; i++)
705 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
706 for (i = 0; i < 12; i++)
707 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
708 for (i = 0; i < 12; i++)
709 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
710 for (i = 0; i < 12; i++)
711 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
712 for (i = 0; i < 12; i++)
713 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
714 for (i = 0; i < 12; i++)
715 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
716 for (i = 0; i < 12; i++)
717 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
720 static int igb_get_eeprom_len(struct net_device *netdev)
722 struct igb_adapter *adapter = netdev_priv(netdev);
723 return adapter->hw.nvm.word_size * 2;
726 static int igb_get_eeprom(struct net_device *netdev,
727 struct ethtool_eeprom *eeprom, u8 *bytes)
729 struct igb_adapter *adapter = netdev_priv(netdev);
730 struct e1000_hw *hw = &adapter->hw;
732 int first_word, last_word;
736 if (eeprom->len == 0)
739 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
741 first_word = eeprom->offset >> 1;
742 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
744 eeprom_buff = kmalloc(sizeof(u16) *
745 (last_word - first_word + 1), GFP_KERNEL);
749 if (hw->nvm.type == e1000_nvm_eeprom_spi)
750 ret_val = hw->nvm.ops.read(hw, first_word,
751 last_word - first_word + 1,
754 for (i = 0; i < last_word - first_word + 1; i++) {
755 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
762 /* Device's eeprom is always little-endian, word addressable */
763 for (i = 0; i < last_word - first_word + 1; i++)
764 le16_to_cpus(&eeprom_buff[i]);
766 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
773 static int igb_set_eeprom(struct net_device *netdev,
774 struct ethtool_eeprom *eeprom, u8 *bytes)
776 struct igb_adapter *adapter = netdev_priv(netdev);
777 struct e1000_hw *hw = &adapter->hw;
780 int max_len, first_word, last_word, ret_val = 0;
783 if (eeprom->len == 0)
786 if ((hw->mac.type >= e1000_i210) &&
787 !igb_get_flash_presence_i210(hw)) {
791 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
794 max_len = hw->nvm.word_size * 2;
796 first_word = eeprom->offset >> 1;
797 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
798 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
802 ptr = (void *)eeprom_buff;
804 if (eeprom->offset & 1) {
805 /* need read/modify/write of first changed EEPROM word
806 * only the second byte of the word is being modified
808 ret_val = hw->nvm.ops.read(hw, first_word, 1,
812 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
813 /* need read/modify/write of last changed EEPROM word
814 * only the first byte of the word is being modified
816 ret_val = hw->nvm.ops.read(hw, last_word, 1,
817 &eeprom_buff[last_word - first_word]);
820 /* Device's eeprom is always little-endian, word addressable */
821 for (i = 0; i < last_word - first_word + 1; i++)
822 le16_to_cpus(&eeprom_buff[i]);
824 memcpy(ptr, bytes, eeprom->len);
826 for (i = 0; i < last_word - first_word + 1; i++)
827 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
829 ret_val = hw->nvm.ops.write(hw, first_word,
830 last_word - first_word + 1, eeprom_buff);
832 /* Update the checksum if nvm write succeeded */
834 hw->nvm.ops.update(hw);
836 igb_set_fw_version(adapter);
841 static void igb_get_drvinfo(struct net_device *netdev,
842 struct ethtool_drvinfo *drvinfo)
844 struct igb_adapter *adapter = netdev_priv(netdev);
846 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
847 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
849 /* EEPROM image version # is reported as firmware version # for
852 strlcpy(drvinfo->fw_version, adapter->fw_version,
853 sizeof(drvinfo->fw_version));
854 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
855 sizeof(drvinfo->bus_info));
858 static void igb_get_ringparam(struct net_device *netdev,
859 struct ethtool_ringparam *ring)
861 struct igb_adapter *adapter = netdev_priv(netdev);
863 ring->rx_max_pending = IGB_MAX_RXD;
864 ring->tx_max_pending = IGB_MAX_TXD;
865 ring->rx_pending = adapter->rx_ring_count;
866 ring->tx_pending = adapter->tx_ring_count;
869 static int igb_set_ringparam(struct net_device *netdev,
870 struct ethtool_ringparam *ring)
872 struct igb_adapter *adapter = netdev_priv(netdev);
873 struct igb_ring *temp_ring;
875 u16 new_rx_count, new_tx_count;
877 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
880 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
881 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
882 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
884 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
885 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
886 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
888 if ((new_tx_count == adapter->tx_ring_count) &&
889 (new_rx_count == adapter->rx_ring_count)) {
894 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
895 usleep_range(1000, 2000);
897 if (!netif_running(adapter->netdev)) {
898 for (i = 0; i < adapter->num_tx_queues; i++)
899 adapter->tx_ring[i]->count = new_tx_count;
900 for (i = 0; i < adapter->num_rx_queues; i++)
901 adapter->rx_ring[i]->count = new_rx_count;
902 adapter->tx_ring_count = new_tx_count;
903 adapter->rx_ring_count = new_rx_count;
907 if (adapter->num_tx_queues > adapter->num_rx_queues)
908 temp_ring = vmalloc(adapter->num_tx_queues *
909 sizeof(struct igb_ring));
911 temp_ring = vmalloc(adapter->num_rx_queues *
912 sizeof(struct igb_ring));
921 /* We can't just free everything and then setup again,
922 * because the ISRs in MSI-X mode get passed pointers
923 * to the Tx and Rx ring structs.
925 if (new_tx_count != adapter->tx_ring_count) {
926 for (i = 0; i < adapter->num_tx_queues; i++) {
927 memcpy(&temp_ring[i], adapter->tx_ring[i],
928 sizeof(struct igb_ring));
930 temp_ring[i].count = new_tx_count;
931 err = igb_setup_tx_resources(&temp_ring[i]);
935 igb_free_tx_resources(&temp_ring[i]);
941 for (i = 0; i < adapter->num_tx_queues; i++) {
942 igb_free_tx_resources(adapter->tx_ring[i]);
944 memcpy(adapter->tx_ring[i], &temp_ring[i],
945 sizeof(struct igb_ring));
948 adapter->tx_ring_count = new_tx_count;
951 if (new_rx_count != adapter->rx_ring_count) {
952 for (i = 0; i < adapter->num_rx_queues; i++) {
953 memcpy(&temp_ring[i], adapter->rx_ring[i],
954 sizeof(struct igb_ring));
956 temp_ring[i].count = new_rx_count;
957 err = igb_setup_rx_resources(&temp_ring[i]);
961 igb_free_rx_resources(&temp_ring[i]);
968 for (i = 0; i < adapter->num_rx_queues; i++) {
969 igb_free_rx_resources(adapter->rx_ring[i]);
971 memcpy(adapter->rx_ring[i], &temp_ring[i],
972 sizeof(struct igb_ring));
975 adapter->rx_ring_count = new_rx_count;
981 clear_bit(__IGB_RESETTING, &adapter->state);
985 /* ethtool register test data */
986 struct igb_reg_test {
995 /* In the hardware, registers are laid out either singly, in arrays
996 * spaced 0x100 bytes apart, or in contiguous tables. We assume
997 * most tests take place on arrays or single registers (handled
998 * as a single-element array) and special-case the tables.
999 * Table tests are always pattern tests.
1001 * We also make provision for some required setup steps by specifying
1002 * registers to be written without any read-back testing.
1005 #define PATTERN_TEST 1
1006 #define SET_READ_TEST 2
1007 #define WRITE_NO_TEST 3
1008 #define TABLE32_TEST 4
1009 #define TABLE64_TEST_LO 5
1010 #define TABLE64_TEST_HI 6
1013 static struct igb_reg_test reg_test_i210[] = {
1014 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1020 /* RDH is read-only for i210, only test RDT. */
1021 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1023 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1025 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1028 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1030 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1031 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1032 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1033 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1034 0xFFFFFFFF, 0xFFFFFFFF },
1035 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1036 0x900FFFFF, 0xFFFFFFFF },
1037 { E1000_MTA, 0, 128, TABLE32_TEST,
1038 0xFFFFFFFF, 0xFFFFFFFF },
1043 static struct igb_reg_test reg_test_i350[] = {
1044 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1047 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1048 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054 /* RDH is read-only for i350, only test RDT. */
1055 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1058 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1060 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1069 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1070 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1071 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1072 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1073 0xFFFFFFFF, 0xFFFFFFFF },
1074 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1075 0xC3FFFFFF, 0xFFFFFFFF },
1076 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1077 0xFFFFFFFF, 0xFFFFFFFF },
1078 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1079 0xC3FFFFFF, 0xFFFFFFFF },
1080 { E1000_MTA, 0, 128, TABLE32_TEST,
1081 0xFFFFFFFF, 0xFFFFFFFF },
1085 /* 82580 reg test */
1086 static struct igb_reg_test reg_test_82580[] = {
1087 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1090 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097 /* RDH is read-only for 82580, only test RDT. */
1098 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1101 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1102 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1103 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1112 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1113 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1114 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1115 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1116 0xFFFFFFFF, 0xFFFFFFFF },
1117 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1118 0x83FFFFFF, 0xFFFFFFFF },
1119 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1120 0xFFFFFFFF, 0xFFFFFFFF },
1121 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1122 0x83FFFFFF, 0xFFFFFFFF },
1123 { E1000_MTA, 0, 128, TABLE32_TEST,
1124 0xFFFFFFFF, 0xFFFFFFFF },
1128 /* 82576 reg test */
1129 static struct igb_reg_test reg_test_82576[] = {
1130 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1133 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1135 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1137 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140 /* Enable all RX queues before testing. */
1141 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1142 E1000_RXDCTL_QUEUE_ENABLE },
1143 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1144 E1000_RXDCTL_QUEUE_ENABLE },
1145 /* RDH is read-only for 82576, only test RDT. */
1146 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1148 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1149 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1150 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1151 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1152 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1153 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1157 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1159 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1161 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1162 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1163 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1164 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1165 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1166 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1167 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171 /* 82575 register test */
1172 static struct igb_reg_test reg_test_82575[] = {
1173 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1176 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1177 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1178 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1179 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1180 /* Enable all four RX queues before testing. */
1181 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1182 E1000_RXDCTL_QUEUE_ENABLE },
1183 /* RDH is read-only for 82575, only test RDT. */
1184 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1185 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1186 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1187 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1188 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1189 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1193 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1194 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1195 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1196 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1197 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1198 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1199 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1204 int reg, u32 mask, u32 write)
1206 struct e1000_hw *hw = &adapter->hw;
1208 static const u32 _test[] = {
1209 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1210 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1211 wr32(reg, (_test[pat] & write));
1212 val = rd32(reg) & mask;
1213 if (val != (_test[pat] & write & mask)) {
1214 dev_err(&adapter->pdev->dev,
1215 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1216 reg, val, (_test[pat] & write & mask));
1225 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1226 int reg, u32 mask, u32 write)
1228 struct e1000_hw *hw = &adapter->hw;
1231 wr32(reg, write & mask);
1233 if ((write & mask) != (val & mask)) {
1234 dev_err(&adapter->pdev->dev,
1235 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1236 reg, (val & mask), (write & mask));
1244 #define REG_PATTERN_TEST(reg, mask, write) \
1246 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1250 #define REG_SET_AND_CHECK(reg, mask, write) \
1252 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1256 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1258 struct e1000_hw *hw = &adapter->hw;
1259 struct igb_reg_test *test;
1260 u32 value, before, after;
1263 switch (adapter->hw.mac.type) {
1266 test = reg_test_i350;
1267 toggle = 0x7FEFF3FF;
1271 test = reg_test_i210;
1272 toggle = 0x7FEFF3FF;
1275 test = reg_test_82580;
1276 toggle = 0x7FEFF3FF;
1279 test = reg_test_82576;
1280 toggle = 0x7FFFF3FF;
1283 test = reg_test_82575;
1284 toggle = 0x7FFFF3FF;
1288 /* Because the status register is such a special case,
1289 * we handle it separately from the rest of the register
1290 * tests. Some bits are read-only, some toggle, and some
1291 * are writable on newer MACs.
1293 before = rd32(E1000_STATUS);
1294 value = (rd32(E1000_STATUS) & toggle);
1295 wr32(E1000_STATUS, toggle);
1296 after = rd32(E1000_STATUS) & toggle;
1297 if (value != after) {
1298 dev_err(&adapter->pdev->dev,
1299 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1304 /* restore previous status */
1305 wr32(E1000_STATUS, before);
1307 /* Perform the remainder of the register test, looping through
1308 * the test table until we either fail or reach the null entry.
1311 for (i = 0; i < test->array_len; i++) {
1312 switch (test->test_type) {
1314 REG_PATTERN_TEST(test->reg +
1315 (i * test->reg_offset),
1320 REG_SET_AND_CHECK(test->reg +
1321 (i * test->reg_offset),
1327 (adapter->hw.hw_addr + test->reg)
1328 + (i * test->reg_offset));
1331 REG_PATTERN_TEST(test->reg + (i * 4),
1335 case TABLE64_TEST_LO:
1336 REG_PATTERN_TEST(test->reg + (i * 8),
1340 case TABLE64_TEST_HI:
1341 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1356 struct e1000_hw *hw = &adapter->hw;
1360 /* Validate eeprom on all parts but flashless */
1361 switch (hw->mac.type) {
1364 if (igb_get_flash_presence_i210(hw)) {
1365 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1370 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378 static irqreturn_t igb_test_intr(int irq, void *data)
1380 struct igb_adapter *adapter = (struct igb_adapter *) data;
1381 struct e1000_hw *hw = &adapter->hw;
1383 adapter->test_icr |= rd32(E1000_ICR);
1388 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1390 struct e1000_hw *hw = &adapter->hw;
1391 struct net_device *netdev = adapter->netdev;
1392 u32 mask, ics_mask, i = 0, shared_int = true;
1393 u32 irq = adapter->pdev->irq;
1397 /* Hook up test interrupt handler just for this test */
1398 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1399 if (request_irq(adapter->msix_entries[0].vector,
1400 igb_test_intr, 0, netdev->name, adapter)) {
1404 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1406 if (request_irq(irq,
1407 igb_test_intr, 0, netdev->name, adapter)) {
1411 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1412 netdev->name, adapter)) {
1414 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1415 netdev->name, adapter)) {
1419 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1420 (shared_int ? "shared" : "unshared"));
1422 /* Disable all the interrupts */
1423 wr32(E1000_IMC, ~0);
1425 usleep_range(10000, 11000);
1427 /* Define all writable bits for ICS */
1428 switch (hw->mac.type) {
1430 ics_mask = 0x37F47EDD;
1433 ics_mask = 0x77D4FBFD;
1436 ics_mask = 0x77DCFED5;
1442 ics_mask = 0x77DCFED5;
1445 ics_mask = 0x7FFFFFFF;
1449 /* Test each interrupt */
1450 for (; i < 31; i++) {
1451 /* Interrupt to test */
1454 if (!(mask & ics_mask))
1458 /* Disable the interrupt to be reported in
1459 * the cause register and then force the same
1460 * interrupt and see if one gets posted. If
1461 * an interrupt was posted to the bus, the
1464 adapter->test_icr = 0;
1466 /* Flush any pending interrupts */
1467 wr32(E1000_ICR, ~0);
1469 wr32(E1000_IMC, mask);
1470 wr32(E1000_ICS, mask);
1472 usleep_range(10000, 11000);
1474 if (adapter->test_icr & mask) {
1480 /* Enable the interrupt to be reported in
1481 * the cause register and then force the same
1482 * interrupt and see if one gets posted. If
1483 * an interrupt was not posted to the bus, the
1486 adapter->test_icr = 0;
1488 /* Flush any pending interrupts */
1489 wr32(E1000_ICR, ~0);
1491 wr32(E1000_IMS, mask);
1492 wr32(E1000_ICS, mask);
1494 usleep_range(10000, 11000);
1496 if (!(adapter->test_icr & mask)) {
1502 /* Disable the other interrupts to be reported in
1503 * the cause register and then force the other
1504 * interrupts and see if any get posted. If
1505 * an interrupt was posted to the bus, the
1508 adapter->test_icr = 0;
1510 /* Flush any pending interrupts */
1511 wr32(E1000_ICR, ~0);
1513 wr32(E1000_IMC, ~mask);
1514 wr32(E1000_ICS, ~mask);
1516 usleep_range(10000, 11000);
1518 if (adapter->test_icr & mask) {
1525 /* Disable all the interrupts */
1526 wr32(E1000_IMC, ~0);
1528 usleep_range(10000, 11000);
1530 /* Unhook test interrupt handler */
1531 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1532 free_irq(adapter->msix_entries[0].vector, adapter);
1534 free_irq(irq, adapter);
1539 static void igb_free_desc_rings(struct igb_adapter *adapter)
1541 igb_free_tx_resources(&adapter->test_tx_ring);
1542 igb_free_rx_resources(&adapter->test_rx_ring);
1545 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1547 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1548 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1549 struct e1000_hw *hw = &adapter->hw;
1552 /* Setup Tx descriptor ring and Tx buffers */
1553 tx_ring->count = IGB_DEFAULT_TXD;
1554 tx_ring->dev = &adapter->pdev->dev;
1555 tx_ring->netdev = adapter->netdev;
1556 tx_ring->reg_idx = adapter->vfs_allocated_count;
1558 if (igb_setup_tx_resources(tx_ring)) {
1563 igb_setup_tctl(adapter);
1564 igb_configure_tx_ring(adapter, tx_ring);
1566 /* Setup Rx descriptor ring and Rx buffers */
1567 rx_ring->count = IGB_DEFAULT_RXD;
1568 rx_ring->dev = &adapter->pdev->dev;
1569 rx_ring->netdev = adapter->netdev;
1570 rx_ring->reg_idx = adapter->vfs_allocated_count;
1572 if (igb_setup_rx_resources(rx_ring)) {
1577 /* set the default queue to queue 0 of PF */
1578 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1580 /* enable receive ring */
1581 igb_setup_rctl(adapter);
1582 igb_configure_rx_ring(adapter, rx_ring);
1584 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1589 igb_free_desc_rings(adapter);
1593 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1595 struct e1000_hw *hw = &adapter->hw;
1597 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1598 igb_write_phy_reg(hw, 29, 0x001F);
1599 igb_write_phy_reg(hw, 30, 0x8FFC);
1600 igb_write_phy_reg(hw, 29, 0x001A);
1601 igb_write_phy_reg(hw, 30, 0x8FF0);
1604 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1606 struct e1000_hw *hw = &adapter->hw;
1609 hw->mac.autoneg = false;
1611 if (hw->phy.type == e1000_phy_m88) {
1612 if (hw->phy.id != I210_I_PHY_ID) {
1613 /* Auto-MDI/MDIX Off */
1614 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1615 /* reset to update Auto-MDI/MDIX */
1616 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1618 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1620 /* force 1000, set loopback */
1621 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1622 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624 } else if (hw->phy.type == e1000_phy_82580) {
1625 /* enable MII loopback */
1626 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1629 /* add small delay to avoid loopback test failure */
1632 /* force 1000, set loopback */
1633 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1635 /* Now set up the MAC to the same speed/duplex as the PHY. */
1636 ctrl_reg = rd32(E1000_CTRL);
1637 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1638 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1639 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1640 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1641 E1000_CTRL_FD | /* Force Duplex to FULL */
1642 E1000_CTRL_SLU); /* Set link up enable bit */
1644 if (hw->phy.type == e1000_phy_m88)
1645 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1647 wr32(E1000_CTRL, ctrl_reg);
1649 /* Disable the receiver on the PHY so when a cable is plugged in, the
1650 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1652 if (hw->phy.type == e1000_phy_m88)
1653 igb_phy_disable_receiver(adapter);
1659 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1661 return igb_integrated_phy_loopback(adapter);
1664 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1666 struct e1000_hw *hw = &adapter->hw;
1669 reg = rd32(E1000_CTRL_EXT);
1671 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1672 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1673 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1674 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1675 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1676 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1677 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1678 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1679 /* Enable DH89xxCC MPHY for near end loopback */
1680 reg = rd32(E1000_MPHY_ADDR_CTL);
1681 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1682 E1000_MPHY_PCS_CLK_REG_OFFSET;
1683 wr32(E1000_MPHY_ADDR_CTL, reg);
1685 reg = rd32(E1000_MPHY_DATA);
1686 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1687 wr32(E1000_MPHY_DATA, reg);
1690 reg = rd32(E1000_RCTL);
1691 reg |= E1000_RCTL_LBM_TCVR;
1692 wr32(E1000_RCTL, reg);
1694 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1696 reg = rd32(E1000_CTRL);
1697 reg &= ~(E1000_CTRL_RFCE |
1700 reg |= E1000_CTRL_SLU |
1702 wr32(E1000_CTRL, reg);
1704 /* Unset switch control to serdes energy detect */
1705 reg = rd32(E1000_CONNSW);
1706 reg &= ~E1000_CONNSW_ENRGSRC;
1707 wr32(E1000_CONNSW, reg);
1709 /* Unset sigdetect for SERDES loopback on
1710 * 82580 and newer devices.
1712 if (hw->mac.type >= e1000_82580) {
1713 reg = rd32(E1000_PCS_CFG0);
1714 reg |= E1000_PCS_CFG_IGN_SD;
1715 wr32(E1000_PCS_CFG0, reg);
1718 /* Set PCS register for forced speed */
1719 reg = rd32(E1000_PCS_LCTL);
1720 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1721 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1722 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1723 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1724 E1000_PCS_LCTL_FSD | /* Force Speed */
1725 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1726 wr32(E1000_PCS_LCTL, reg);
1731 return igb_set_phy_loopback(adapter);
1734 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1736 struct e1000_hw *hw = &adapter->hw;
1740 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1741 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1742 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1743 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1744 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1747 /* Disable near end loopback on DH89xxCC */
1748 reg = rd32(E1000_MPHY_ADDR_CTL);
1749 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1750 E1000_MPHY_PCS_CLK_REG_OFFSET;
1751 wr32(E1000_MPHY_ADDR_CTL, reg);
1753 reg = rd32(E1000_MPHY_DATA);
1754 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1755 wr32(E1000_MPHY_DATA, reg);
1758 rctl = rd32(E1000_RCTL);
1759 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1760 wr32(E1000_RCTL, rctl);
1762 hw->mac.autoneg = true;
1763 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1764 if (phy_reg & MII_CR_LOOPBACK) {
1765 phy_reg &= ~MII_CR_LOOPBACK;
1766 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1767 igb_phy_sw_reset(hw);
1771 static void igb_create_lbtest_frame(struct sk_buff *skb,
1772 unsigned int frame_size)
1774 memset(skb->data, 0xFF, frame_size);
1776 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1777 memset(&skb->data[frame_size + 10], 0xBE, 1);
1778 memset(&skb->data[frame_size + 12], 0xAF, 1);
1781 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1782 unsigned int frame_size)
1784 unsigned char *data;
1789 data = kmap(rx_buffer->page);
1791 if (data[3] != 0xFF ||
1792 data[frame_size + 10] != 0xBE ||
1793 data[frame_size + 12] != 0xAF)
1796 kunmap(rx_buffer->page);
1801 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1802 struct igb_ring *tx_ring,
1805 union e1000_adv_rx_desc *rx_desc;
1806 struct igb_rx_buffer *rx_buffer_info;
1807 struct igb_tx_buffer *tx_buffer_info;
1808 u16 rx_ntc, tx_ntc, count = 0;
1810 /* initialize next to clean and descriptor values */
1811 rx_ntc = rx_ring->next_to_clean;
1812 tx_ntc = tx_ring->next_to_clean;
1813 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1815 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1816 /* check Rx buffer */
1817 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1819 /* sync Rx buffer for CPU read */
1820 dma_sync_single_for_cpu(rx_ring->dev,
1821 rx_buffer_info->dma,
1825 /* verify contents of skb */
1826 if (igb_check_lbtest_frame(rx_buffer_info, size))
1829 /* sync Rx buffer for device write */
1830 dma_sync_single_for_device(rx_ring->dev,
1831 rx_buffer_info->dma,
1835 /* unmap buffer on Tx side */
1836 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1837 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1839 /* increment Rx/Tx next to clean counters */
1841 if (rx_ntc == rx_ring->count)
1844 if (tx_ntc == tx_ring->count)
1847 /* fetch next descriptor */
1848 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1851 netdev_tx_reset_queue(txring_txq(tx_ring));
1853 /* re-map buffers to ring, store next to clean values */
1854 igb_alloc_rx_buffers(rx_ring, count);
1855 rx_ring->next_to_clean = rx_ntc;
1856 tx_ring->next_to_clean = tx_ntc;
1861 static int igb_run_loopback_test(struct igb_adapter *adapter)
1863 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1864 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1865 u16 i, j, lc, good_cnt;
1867 unsigned int size = IGB_RX_HDR_LEN;
1868 netdev_tx_t tx_ret_val;
1869 struct sk_buff *skb;
1871 /* allocate test skb */
1872 skb = alloc_skb(size, GFP_KERNEL);
1876 /* place data into test skb */
1877 igb_create_lbtest_frame(skb, size);
1880 /* Calculate the loop count based on the largest descriptor ring
1881 * The idea is to wrap the largest ring a number of times using 64
1882 * send/receive pairs during each loop
1885 if (rx_ring->count <= tx_ring->count)
1886 lc = ((tx_ring->count / 64) * 2) + 1;
1888 lc = ((rx_ring->count / 64) * 2) + 1;
1890 for (j = 0; j <= lc; j++) { /* loop count loop */
1891 /* reset count of good packets */
1894 /* place 64 packets on the transmit queue*/
1895 for (i = 0; i < 64; i++) {
1897 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1898 if (tx_ret_val == NETDEV_TX_OK)
1902 if (good_cnt != 64) {
1907 /* allow 200 milliseconds for packets to go from Tx to Rx */
1910 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1911 if (good_cnt != 64) {
1915 } /* end loop count loop */
1917 /* free the original skb */
1923 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1925 /* PHY loopback cannot be performed if SoL/IDER
1926 * sessions are active
1928 if (igb_check_reset_block(&adapter->hw)) {
1929 dev_err(&adapter->pdev->dev,
1930 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1935 if (adapter->hw.mac.type == e1000_i354) {
1936 dev_info(&adapter->pdev->dev,
1937 "Loopback test not supported on i354.\n");
1941 *data = igb_setup_desc_rings(adapter);
1944 *data = igb_setup_loopback_test(adapter);
1947 *data = igb_run_loopback_test(adapter);
1948 igb_loopback_cleanup(adapter);
1951 igb_free_desc_rings(adapter);
1956 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1958 struct e1000_hw *hw = &adapter->hw;
1960 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1963 hw->mac.serdes_has_link = false;
1965 /* On some blade server designs, link establishment
1966 * could take as long as 2-3 minutes
1969 hw->mac.ops.check_for_link(&adapter->hw);
1970 if (hw->mac.serdes_has_link)
1973 } while (i++ < 3750);
1977 hw->mac.ops.check_for_link(&adapter->hw);
1978 if (hw->mac.autoneg)
1981 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1987 static void igb_diag_test(struct net_device *netdev,
1988 struct ethtool_test *eth_test, u64 *data)
1990 struct igb_adapter *adapter = netdev_priv(netdev);
1991 u16 autoneg_advertised;
1992 u8 forced_speed_duplex, autoneg;
1993 bool if_running = netif_running(netdev);
1995 set_bit(__IGB_TESTING, &adapter->state);
1997 /* can't do offline tests on media switching devices */
1998 if (adapter->hw.dev_spec._82575.mas_capable)
1999 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2000 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2003 /* save speed, duplex, autoneg settings */
2004 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2005 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2006 autoneg = adapter->hw.mac.autoneg;
2008 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2010 /* power up link for link test */
2011 igb_power_up_link(adapter);
2013 /* Link test performed before hardware reset so autoneg doesn't
2014 * interfere with test result
2016 if (igb_link_test(adapter, &data[TEST_LINK]))
2017 eth_test->flags |= ETH_TEST_FL_FAILED;
2020 /* indicate we're in test mode */
2025 if (igb_reg_test(adapter, &data[TEST_REG]))
2026 eth_test->flags |= ETH_TEST_FL_FAILED;
2029 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2030 eth_test->flags |= ETH_TEST_FL_FAILED;
2033 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2034 eth_test->flags |= ETH_TEST_FL_FAILED;
2037 /* power up link for loopback test */
2038 igb_power_up_link(adapter);
2039 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2040 eth_test->flags |= ETH_TEST_FL_FAILED;
2042 /* restore speed, duplex, autoneg settings */
2043 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2044 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2045 adapter->hw.mac.autoneg = autoneg;
2047 /* force this routine to wait until autoneg complete/timeout */
2048 adapter->hw.phy.autoneg_wait_to_complete = true;
2050 adapter->hw.phy.autoneg_wait_to_complete = false;
2052 clear_bit(__IGB_TESTING, &adapter->state);
2056 dev_info(&adapter->pdev->dev, "online testing starting\n");
2058 /* PHY is powered down when interface is down */
2059 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2060 eth_test->flags |= ETH_TEST_FL_FAILED;
2062 data[TEST_LINK] = 0;
2064 /* Online tests aren't run; pass by default */
2068 data[TEST_LOOP] = 0;
2070 clear_bit(__IGB_TESTING, &adapter->state);
2072 msleep_interruptible(4 * 1000);
2075 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2077 struct igb_adapter *adapter = netdev_priv(netdev);
2081 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2084 wol->supported = WAKE_UCAST | WAKE_MCAST |
2085 WAKE_BCAST | WAKE_MAGIC |
2088 /* apply any specific unsupported masks here */
2089 switch (adapter->hw.device_id) {
2094 if (adapter->wol & E1000_WUFC_EX)
2095 wol->wolopts |= WAKE_UCAST;
2096 if (adapter->wol & E1000_WUFC_MC)
2097 wol->wolopts |= WAKE_MCAST;
2098 if (adapter->wol & E1000_WUFC_BC)
2099 wol->wolopts |= WAKE_BCAST;
2100 if (adapter->wol & E1000_WUFC_MAG)
2101 wol->wolopts |= WAKE_MAGIC;
2102 if (adapter->wol & E1000_WUFC_LNKC)
2103 wol->wolopts |= WAKE_PHY;
2106 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2108 struct igb_adapter *adapter = netdev_priv(netdev);
2110 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2113 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2114 return wol->wolopts ? -EOPNOTSUPP : 0;
2116 /* these settings will always override what we currently have */
2119 if (wol->wolopts & WAKE_UCAST)
2120 adapter->wol |= E1000_WUFC_EX;
2121 if (wol->wolopts & WAKE_MCAST)
2122 adapter->wol |= E1000_WUFC_MC;
2123 if (wol->wolopts & WAKE_BCAST)
2124 adapter->wol |= E1000_WUFC_BC;
2125 if (wol->wolopts & WAKE_MAGIC)
2126 adapter->wol |= E1000_WUFC_MAG;
2127 if (wol->wolopts & WAKE_PHY)
2128 adapter->wol |= E1000_WUFC_LNKC;
2129 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2134 /* bit defines for adapter->led_status */
2135 #define IGB_LED_ON 0
2137 static int igb_set_phys_id(struct net_device *netdev,
2138 enum ethtool_phys_id_state state)
2140 struct igb_adapter *adapter = netdev_priv(netdev);
2141 struct e1000_hw *hw = &adapter->hw;
2144 case ETHTOOL_ID_ACTIVE:
2150 case ETHTOOL_ID_OFF:
2153 case ETHTOOL_ID_INACTIVE:
2155 clear_bit(IGB_LED_ON, &adapter->led_status);
2156 igb_cleanup_led(hw);
2163 static int igb_set_coalesce(struct net_device *netdev,
2164 struct ethtool_coalesce *ec)
2166 struct igb_adapter *adapter = netdev_priv(netdev);
2169 if (ec->rx_max_coalesced_frames ||
2170 ec->rx_coalesce_usecs_irq ||
2171 ec->rx_max_coalesced_frames_irq ||
2172 ec->tx_max_coalesced_frames ||
2173 ec->tx_coalesce_usecs_irq ||
2174 ec->stats_block_coalesce_usecs ||
2175 ec->use_adaptive_rx_coalesce ||
2176 ec->use_adaptive_tx_coalesce ||
2178 ec->rx_coalesce_usecs_low ||
2179 ec->rx_max_coalesced_frames_low ||
2180 ec->tx_coalesce_usecs_low ||
2181 ec->tx_max_coalesced_frames_low ||
2182 ec->pkt_rate_high ||
2183 ec->rx_coalesce_usecs_high ||
2184 ec->rx_max_coalesced_frames_high ||
2185 ec->tx_coalesce_usecs_high ||
2186 ec->tx_max_coalesced_frames_high ||
2187 ec->rate_sample_interval)
2190 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2191 ((ec->rx_coalesce_usecs > 3) &&
2192 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2193 (ec->rx_coalesce_usecs == 2))
2196 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2197 ((ec->tx_coalesce_usecs > 3) &&
2198 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2199 (ec->tx_coalesce_usecs == 2))
2202 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2205 /* If ITR is disabled, disable DMAC */
2206 if (ec->rx_coalesce_usecs == 0) {
2207 if (adapter->flags & IGB_FLAG_DMAC)
2208 adapter->flags &= ~IGB_FLAG_DMAC;
2211 /* convert to rate of irq's per second */
2212 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2213 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2215 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2217 /* convert to rate of irq's per second */
2218 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2219 adapter->tx_itr_setting = adapter->rx_itr_setting;
2220 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2221 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2223 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2225 for (i = 0; i < adapter->num_q_vectors; i++) {
2226 struct igb_q_vector *q_vector = adapter->q_vector[i];
2227 q_vector->tx.work_limit = adapter->tx_work_limit;
2228 if (q_vector->rx.ring)
2229 q_vector->itr_val = adapter->rx_itr_setting;
2231 q_vector->itr_val = adapter->tx_itr_setting;
2232 if (q_vector->itr_val && q_vector->itr_val <= 3)
2233 q_vector->itr_val = IGB_START_ITR;
2234 q_vector->set_itr = 1;
2240 static int igb_get_coalesce(struct net_device *netdev,
2241 struct ethtool_coalesce *ec)
2243 struct igb_adapter *adapter = netdev_priv(netdev);
2245 if (adapter->rx_itr_setting <= 3)
2246 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2248 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2250 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2251 if (adapter->tx_itr_setting <= 3)
2252 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2254 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2260 static int igb_nway_reset(struct net_device *netdev)
2262 struct igb_adapter *adapter = netdev_priv(netdev);
2263 if (netif_running(netdev))
2264 igb_reinit_locked(adapter);
2268 static int igb_get_sset_count(struct net_device *netdev, int sset)
2272 return IGB_STATS_LEN;
2274 return IGB_TEST_LEN;
2280 static void igb_get_ethtool_stats(struct net_device *netdev,
2281 struct ethtool_stats *stats, u64 *data)
2283 struct igb_adapter *adapter = netdev_priv(netdev);
2284 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2286 struct igb_ring *ring;
2290 spin_lock(&adapter->stats64_lock);
2291 igb_update_stats(adapter, net_stats);
2293 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2294 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2295 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2296 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2298 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2299 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2300 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2301 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2303 for (j = 0; j < adapter->num_tx_queues; j++) {
2306 ring = adapter->tx_ring[j];
2308 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2309 data[i] = ring->tx_stats.packets;
2310 data[i+1] = ring->tx_stats.bytes;
2311 data[i+2] = ring->tx_stats.restart_queue;
2312 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2314 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2315 restart2 = ring->tx_stats.restart_queue2;
2316 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2317 data[i+2] += restart2;
2319 i += IGB_TX_QUEUE_STATS_LEN;
2321 for (j = 0; j < adapter->num_rx_queues; j++) {
2322 ring = adapter->rx_ring[j];
2324 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2325 data[i] = ring->rx_stats.packets;
2326 data[i+1] = ring->rx_stats.bytes;
2327 data[i+2] = ring->rx_stats.drops;
2328 data[i+3] = ring->rx_stats.csum_err;
2329 data[i+4] = ring->rx_stats.alloc_failed;
2330 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2331 i += IGB_RX_QUEUE_STATS_LEN;
2333 spin_unlock(&adapter->stats64_lock);
2336 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2338 struct igb_adapter *adapter = netdev_priv(netdev);
2342 switch (stringset) {
2344 memcpy(data, *igb_gstrings_test,
2345 IGB_TEST_LEN*ETH_GSTRING_LEN);
2348 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2349 memcpy(p, igb_gstrings_stats[i].stat_string,
2351 p += ETH_GSTRING_LEN;
2353 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2354 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2356 p += ETH_GSTRING_LEN;
2358 for (i = 0; i < adapter->num_tx_queues; i++) {
2359 sprintf(p, "tx_queue_%u_packets", i);
2360 p += ETH_GSTRING_LEN;
2361 sprintf(p, "tx_queue_%u_bytes", i);
2362 p += ETH_GSTRING_LEN;
2363 sprintf(p, "tx_queue_%u_restart", i);
2364 p += ETH_GSTRING_LEN;
2366 for (i = 0; i < adapter->num_rx_queues; i++) {
2367 sprintf(p, "rx_queue_%u_packets", i);
2368 p += ETH_GSTRING_LEN;
2369 sprintf(p, "rx_queue_%u_bytes", i);
2370 p += ETH_GSTRING_LEN;
2371 sprintf(p, "rx_queue_%u_drops", i);
2372 p += ETH_GSTRING_LEN;
2373 sprintf(p, "rx_queue_%u_csum_err", i);
2374 p += ETH_GSTRING_LEN;
2375 sprintf(p, "rx_queue_%u_alloc_failed", i);
2376 p += ETH_GSTRING_LEN;
2378 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2383 static int igb_get_ts_info(struct net_device *dev,
2384 struct ethtool_ts_info *info)
2386 struct igb_adapter *adapter = netdev_priv(dev);
2388 if (adapter->ptp_clock)
2389 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2391 info->phc_index = -1;
2393 switch (adapter->hw.mac.type) {
2395 info->so_timestamping =
2396 SOF_TIMESTAMPING_TX_SOFTWARE |
2397 SOF_TIMESTAMPING_RX_SOFTWARE |
2398 SOF_TIMESTAMPING_SOFTWARE;
2406 info->so_timestamping =
2407 SOF_TIMESTAMPING_TX_SOFTWARE |
2408 SOF_TIMESTAMPING_RX_SOFTWARE |
2409 SOF_TIMESTAMPING_SOFTWARE |
2410 SOF_TIMESTAMPING_TX_HARDWARE |
2411 SOF_TIMESTAMPING_RX_HARDWARE |
2412 SOF_TIMESTAMPING_RAW_HARDWARE;
2415 BIT(HWTSTAMP_TX_OFF) |
2416 BIT(HWTSTAMP_TX_ON);
2418 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2420 /* 82576 does not support timestamping all packets. */
2421 if (adapter->hw.mac.type >= e1000_82580)
2422 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2425 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2426 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2427 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2435 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2436 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2437 struct ethtool_rxnfc *cmd)
2439 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2440 struct igb_nfc_filter *rule = NULL;
2442 /* report total rule count */
2443 cmd->data = IGB_MAX_RXNFC_FILTERS;
2445 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2446 if (fsp->location <= rule->sw_idx)
2450 if (!rule || fsp->location != rule->sw_idx)
2453 if (rule->filter.match_flags) {
2454 fsp->flow_type = ETHER_FLOW;
2455 fsp->ring_cookie = rule->action;
2456 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2457 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2458 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2460 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2461 fsp->flow_type |= FLOW_EXT;
2462 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2463 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2470 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2471 struct ethtool_rxnfc *cmd,
2474 struct igb_nfc_filter *rule;
2477 /* report total rule count */
2478 cmd->data = IGB_MAX_RXNFC_FILTERS;
2480 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2481 if (cnt == cmd->rule_cnt)
2483 rule_locs[cnt] = rule->sw_idx;
2487 cmd->rule_cnt = cnt;
2492 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2493 struct ethtool_rxnfc *cmd)
2497 /* Report default options for RSS on igb */
2498 switch (cmd->flow_type) {
2500 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2503 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2504 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2507 case AH_ESP_V4_FLOW:
2511 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2514 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2517 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2518 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2521 case AH_ESP_V6_FLOW:
2525 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2534 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2537 struct igb_adapter *adapter = netdev_priv(dev);
2538 int ret = -EOPNOTSUPP;
2541 case ETHTOOL_GRXRINGS:
2542 cmd->data = adapter->num_rx_queues;
2545 case ETHTOOL_GRXCLSRLCNT:
2546 cmd->rule_cnt = adapter->nfc_filter_count;
2549 case ETHTOOL_GRXCLSRULE:
2550 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2552 case ETHTOOL_GRXCLSRLALL:
2553 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2556 ret = igb_get_rss_hash_opts(adapter, cmd);
2565 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2566 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2567 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2568 struct ethtool_rxnfc *nfc)
2570 u32 flags = adapter->flags;
2572 /* RSS does not support anything other than hashing
2573 * to queues on src and dst IPs and ports
2575 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2576 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2579 switch (nfc->flow_type) {
2582 if (!(nfc->data & RXH_IP_SRC) ||
2583 !(nfc->data & RXH_IP_DST) ||
2584 !(nfc->data & RXH_L4_B_0_1) ||
2585 !(nfc->data & RXH_L4_B_2_3))
2589 if (!(nfc->data & RXH_IP_SRC) ||
2590 !(nfc->data & RXH_IP_DST))
2592 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2594 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2596 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2597 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2604 if (!(nfc->data & RXH_IP_SRC) ||
2605 !(nfc->data & RXH_IP_DST))
2607 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2609 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2611 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2612 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2618 case AH_ESP_V4_FLOW:
2622 case AH_ESP_V6_FLOW:
2626 if (!(nfc->data & RXH_IP_SRC) ||
2627 !(nfc->data & RXH_IP_DST) ||
2628 (nfc->data & RXH_L4_B_0_1) ||
2629 (nfc->data & RXH_L4_B_2_3))
2636 /* if we changed something we need to update flags */
2637 if (flags != adapter->flags) {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 mrqc = rd32(E1000_MRQC);
2641 if ((flags & UDP_RSS_FLAGS) &&
2642 !(adapter->flags & UDP_RSS_FLAGS))
2643 dev_err(&adapter->pdev->dev,
2644 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2646 adapter->flags = flags;
2648 /* Perform hash on these packet types */
2649 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2650 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2651 E1000_MRQC_RSS_FIELD_IPV6 |
2652 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2654 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2655 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2657 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2658 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2660 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2661 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2663 wr32(E1000_MRQC, mrqc);
2669 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2670 struct igb_nfc_filter *input)
2672 struct e1000_hw *hw = &adapter->hw;
2677 /* find an empty etype filter register */
2678 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2679 if (!adapter->etype_bitmap[i])
2682 if (i == MAX_ETYPE_FILTER) {
2683 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2687 adapter->etype_bitmap[i] = true;
2689 etqf = rd32(E1000_ETQF(i));
2690 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2692 etqf |= E1000_ETQF_FILTER_ENABLE;
2693 etqf &= ~E1000_ETQF_ETYPE_MASK;
2694 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2696 etqf &= ~E1000_ETQF_QUEUE_MASK;
2697 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2698 & E1000_ETQF_QUEUE_MASK);
2699 etqf |= E1000_ETQF_QUEUE_ENABLE;
2701 wr32(E1000_ETQF(i), etqf);
2703 input->etype_reg_index = i;
2708 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2709 struct igb_nfc_filter *input)
2711 struct e1000_hw *hw = &adapter->hw;
2716 vlapqf = rd32(E1000_VLAPQF);
2717 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2719 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2721 /* check whether this vlan prio is already set */
2722 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2723 (queue_index != input->action)) {
2724 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2728 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2729 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2731 wr32(E1000_VLAPQF, vlapqf);
2736 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2740 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2741 err = igb_rxnfc_write_etype_filter(adapter, input);
2746 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2747 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2752 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2755 struct e1000_hw *hw = &adapter->hw;
2756 u32 etqf = rd32(E1000_ETQF(reg_index));
2758 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2759 etqf &= ~E1000_ETQF_QUEUE_MASK;
2760 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2762 wr32(E1000_ETQF(reg_index), etqf);
2764 adapter->etype_bitmap[reg_index] = false;
2767 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2770 struct e1000_hw *hw = &adapter->hw;
2774 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2776 vlapqf = rd32(E1000_VLAPQF);
2777 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2778 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2779 E1000_VLAPQF_QUEUE_MASK);
2781 wr32(E1000_VLAPQF, vlapqf);
2784 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2786 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2787 igb_clear_etype_filter_regs(adapter,
2788 input->etype_reg_index);
2790 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2791 igb_clear_vlan_prio_filter(adapter,
2792 ntohs(input->filter.vlan_tci));
2797 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2798 struct igb_nfc_filter *input,
2801 struct igb_nfc_filter *rule, *parent;
2807 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2808 /* hash found, or no matching entry */
2809 if (rule->sw_idx >= sw_idx)
2814 /* if there is an old rule occupying our place remove it */
2815 if (rule && (rule->sw_idx == sw_idx)) {
2817 err = igb_erase_filter(adapter, rule);
2819 hlist_del(&rule->nfc_node);
2821 adapter->nfc_filter_count--;
2824 /* If no input this was a delete, err should be 0 if a rule was
2825 * successfully found and removed from the list else -EINVAL
2830 /* initialize node */
2831 INIT_HLIST_NODE(&input->nfc_node);
2833 /* add filter to the list */
2835 hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2837 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2840 adapter->nfc_filter_count++;
2845 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2846 struct ethtool_rxnfc *cmd)
2848 struct net_device *netdev = adapter->netdev;
2849 struct ethtool_rx_flow_spec *fsp =
2850 (struct ethtool_rx_flow_spec *)&cmd->fs;
2851 struct igb_nfc_filter *input, *rule;
2854 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2857 /* Don't allow programming if the action is a queue greater than
2858 * the number of online Rx queues.
2860 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2861 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2862 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2866 /* Don't allow indexes to exist outside of available space */
2867 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2868 dev_err(&adapter->pdev->dev, "Location out of range\n");
2872 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2875 if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2876 fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2879 input = kzalloc(sizeof(*input), GFP_KERNEL);
2883 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2884 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2885 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2888 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2889 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2893 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2894 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2897 input->action = fsp->ring_cookie;
2898 input->sw_idx = fsp->location;
2900 spin_lock(&adapter->nfc_lock);
2902 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2903 if (!memcmp(&input->filter, &rule->filter,
2904 sizeof(input->filter))) {
2906 dev_err(&adapter->pdev->dev,
2907 "ethtool: this filter is already set\n");
2908 goto err_out_w_lock;
2912 err = igb_add_filter(adapter, input);
2914 goto err_out_w_lock;
2916 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2918 spin_unlock(&adapter->nfc_lock);
2922 spin_unlock(&adapter->nfc_lock);
2928 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2929 struct ethtool_rxnfc *cmd)
2931 struct ethtool_rx_flow_spec *fsp =
2932 (struct ethtool_rx_flow_spec *)&cmd->fs;
2935 spin_lock(&adapter->nfc_lock);
2936 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2937 spin_unlock(&adapter->nfc_lock);
2942 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2944 struct igb_adapter *adapter = netdev_priv(dev);
2945 int ret = -EOPNOTSUPP;
2949 ret = igb_set_rss_hash_opt(adapter, cmd);
2951 case ETHTOOL_SRXCLSRLINS:
2952 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2954 case ETHTOOL_SRXCLSRLDEL:
2955 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2963 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2965 struct igb_adapter *adapter = netdev_priv(netdev);
2966 struct e1000_hw *hw = &adapter->hw;
2970 if ((hw->mac.type < e1000_i350) ||
2971 (hw->phy.media_type != e1000_media_type_copper))
2974 edata->supported = (SUPPORTED_1000baseT_Full |
2975 SUPPORTED_100baseT_Full);
2976 if (!hw->dev_spec._82575.eee_disable)
2978 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2980 /* The IPCNFG and EEER registers are not supported on I354. */
2981 if (hw->mac.type == e1000_i354) {
2982 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2986 eeer = rd32(E1000_EEER);
2988 /* EEE status on negotiated link */
2989 if (eeer & E1000_EEER_EEE_NEG)
2990 edata->eee_active = true;
2992 if (eeer & E1000_EEER_TX_LPI_EN)
2993 edata->tx_lpi_enabled = true;
2996 /* EEE Link Partner Advertised */
2997 switch (hw->mac.type) {
2999 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3004 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3009 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3010 E1000_EEE_LP_ADV_DEV_I210,
3015 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3022 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3024 if ((hw->mac.type == e1000_i354) &&
3025 (edata->eee_enabled))
3026 edata->tx_lpi_enabled = true;
3028 /* Report correct negotiated EEE status for devices that
3029 * wrongly report EEE at half-duplex
3031 if (adapter->link_duplex == HALF_DUPLEX) {
3032 edata->eee_enabled = false;
3033 edata->eee_active = false;
3034 edata->tx_lpi_enabled = false;
3035 edata->advertised &= ~edata->advertised;
3041 static int igb_set_eee(struct net_device *netdev,
3042 struct ethtool_eee *edata)
3044 struct igb_adapter *adapter = netdev_priv(netdev);
3045 struct e1000_hw *hw = &adapter->hw;
3046 struct ethtool_eee eee_curr;
3047 bool adv1g_eee = true, adv100m_eee = true;
3050 if ((hw->mac.type < e1000_i350) ||
3051 (hw->phy.media_type != e1000_media_type_copper))
3054 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3056 ret_val = igb_get_eee(netdev, &eee_curr);
3060 if (eee_curr.eee_enabled) {
3061 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3062 dev_err(&adapter->pdev->dev,
3063 "Setting EEE tx-lpi is not supported\n");
3067 /* Tx LPI timer is not implemented currently */
3068 if (edata->tx_lpi_timer) {
3069 dev_err(&adapter->pdev->dev,
3070 "Setting EEE Tx LPI timer is not supported\n");
3074 if (!edata->advertised || (edata->advertised &
3075 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3076 dev_err(&adapter->pdev->dev,
3077 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3080 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3081 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3083 } else if (!edata->eee_enabled) {
3084 dev_err(&adapter->pdev->dev,
3085 "Setting EEE options are not supported with EEE disabled\n");
3089 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3090 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3091 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3092 adapter->flags |= IGB_FLAG_EEE;
3095 if (netif_running(netdev))
3096 igb_reinit_locked(adapter);
3101 if (hw->mac.type == e1000_i354)
3102 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3104 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3107 dev_err(&adapter->pdev->dev,
3108 "Problem setting EEE advertisement options\n");
3115 static int igb_get_module_info(struct net_device *netdev,
3116 struct ethtool_modinfo *modinfo)
3118 struct igb_adapter *adapter = netdev_priv(netdev);
3119 struct e1000_hw *hw = &adapter->hw;
3121 u16 sff8472_rev, addr_mode;
3122 bool page_swap = false;
3124 if ((hw->phy.media_type == e1000_media_type_copper) ||
3125 (hw->phy.media_type == e1000_media_type_unknown))
3128 /* Check whether we support SFF-8472 or not */
3129 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3133 /* addressing mode is not supported */
3134 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3138 /* addressing mode is not supported */
3139 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3140 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3144 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3145 /* We have an SFP, but it does not support SFF-8472 */
3146 modinfo->type = ETH_MODULE_SFF_8079;
3147 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3149 /* We have an SFP which supports a revision of SFF-8472 */
3150 modinfo->type = ETH_MODULE_SFF_8472;
3151 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3157 static int igb_get_module_eeprom(struct net_device *netdev,
3158 struct ethtool_eeprom *ee, u8 *data)
3160 struct igb_adapter *adapter = netdev_priv(netdev);
3161 struct e1000_hw *hw = &adapter->hw;
3164 u16 first_word, last_word;
3170 first_word = ee->offset >> 1;
3171 last_word = (ee->offset + ee->len - 1) >> 1;
3173 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3178 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3179 for (i = 0; i < last_word - first_word + 1; i++) {
3180 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3183 /* Error occurred while reading module */
3188 be16_to_cpus(&dataword[i]);
3191 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3197 static int igb_ethtool_begin(struct net_device *netdev)
3199 struct igb_adapter *adapter = netdev_priv(netdev);
3200 pm_runtime_get_sync(&adapter->pdev->dev);
3204 static void igb_ethtool_complete(struct net_device *netdev)
3206 struct igb_adapter *adapter = netdev_priv(netdev);
3207 pm_runtime_put(&adapter->pdev->dev);
3210 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3212 return IGB_RETA_SIZE;
3215 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3218 struct igb_adapter *adapter = netdev_priv(netdev);
3222 *hfunc = ETH_RSS_HASH_TOP;
3225 for (i = 0; i < IGB_RETA_SIZE; i++)
3226 indir[i] = adapter->rss_indir_tbl[i];
3231 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3233 struct e1000_hw *hw = &adapter->hw;
3234 u32 reg = E1000_RETA(0);
3238 switch (hw->mac.type) {
3243 /* 82576 supports 2 RSS queues for SR-IOV */
3244 if (adapter->vfs_allocated_count)
3251 while (i < IGB_RETA_SIZE) {
3255 for (j = 3; j >= 0; j--) {
3257 val |= adapter->rss_indir_tbl[i + j];
3260 wr32(reg, val << shift);
3266 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3267 const u8 *key, const u8 hfunc)
3269 struct igb_adapter *adapter = netdev_priv(netdev);
3270 struct e1000_hw *hw = &adapter->hw;
3274 /* We do not allow change in unsupported parameters */
3276 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3281 num_queues = adapter->rss_queues;
3283 switch (hw->mac.type) {
3285 /* 82576 supports 2 RSS queues for SR-IOV */
3286 if (adapter->vfs_allocated_count)
3293 /* Verify user input. */
3294 for (i = 0; i < IGB_RETA_SIZE; i++)
3295 if (indir[i] >= num_queues)
3299 for (i = 0; i < IGB_RETA_SIZE; i++)
3300 adapter->rss_indir_tbl[i] = indir[i];
3302 igb_write_rss_indir_tbl(adapter);
3307 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3309 struct e1000_hw *hw = &adapter->hw;
3310 unsigned int max_combined = 0;
3312 switch (hw->mac.type) {
3314 max_combined = IGB_MAX_RX_QUEUES_I211;
3318 max_combined = IGB_MAX_RX_QUEUES_82575;
3321 if (!!adapter->vfs_allocated_count) {
3327 if (!!adapter->vfs_allocated_count) {
3335 max_combined = IGB_MAX_RX_QUEUES;
3339 return max_combined;
3342 static void igb_get_channels(struct net_device *netdev,
3343 struct ethtool_channels *ch)
3345 struct igb_adapter *adapter = netdev_priv(netdev);
3347 /* Report maximum channels */
3348 ch->max_combined = igb_max_channels(adapter);
3350 /* Report info for other vector */
3351 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3352 ch->max_other = NON_Q_VECTORS;
3353 ch->other_count = NON_Q_VECTORS;
3356 ch->combined_count = adapter->rss_queues;
3359 static int igb_set_channels(struct net_device *netdev,
3360 struct ethtool_channels *ch)
3362 struct igb_adapter *adapter = netdev_priv(netdev);
3363 unsigned int count = ch->combined_count;
3364 unsigned int max_combined = 0;
3366 /* Verify they are not requesting separate vectors */
3367 if (!count || ch->rx_count || ch->tx_count)
3370 /* Verify other_count is valid and has not been changed */
3371 if (ch->other_count != NON_Q_VECTORS)
3374 /* Verify the number of channels doesn't exceed hw limits */
3375 max_combined = igb_max_channels(adapter);
3376 if (count > max_combined)
3379 if (count != adapter->rss_queues) {
3380 adapter->rss_queues = count;
3381 igb_set_flag_queue_pairs(adapter, max_combined);
3383 /* Hardware has to reinitialize queues and interrupts to
3384 * match the new configuration.
3386 return igb_reinit_queues(adapter);
3392 static const struct ethtool_ops igb_ethtool_ops = {
3393 .get_settings = igb_get_settings,
3394 .set_settings = igb_set_settings,
3395 .get_drvinfo = igb_get_drvinfo,
3396 .get_regs_len = igb_get_regs_len,
3397 .get_regs = igb_get_regs,
3398 .get_wol = igb_get_wol,
3399 .set_wol = igb_set_wol,
3400 .get_msglevel = igb_get_msglevel,
3401 .set_msglevel = igb_set_msglevel,
3402 .nway_reset = igb_nway_reset,
3403 .get_link = igb_get_link,
3404 .get_eeprom_len = igb_get_eeprom_len,
3405 .get_eeprom = igb_get_eeprom,
3406 .set_eeprom = igb_set_eeprom,
3407 .get_ringparam = igb_get_ringparam,
3408 .set_ringparam = igb_set_ringparam,
3409 .get_pauseparam = igb_get_pauseparam,
3410 .set_pauseparam = igb_set_pauseparam,
3411 .self_test = igb_diag_test,
3412 .get_strings = igb_get_strings,
3413 .set_phys_id = igb_set_phys_id,
3414 .get_sset_count = igb_get_sset_count,
3415 .get_ethtool_stats = igb_get_ethtool_stats,
3416 .get_coalesce = igb_get_coalesce,
3417 .set_coalesce = igb_set_coalesce,
3418 .get_ts_info = igb_get_ts_info,
3419 .get_rxnfc = igb_get_rxnfc,
3420 .set_rxnfc = igb_set_rxnfc,
3421 .get_eee = igb_get_eee,
3422 .set_eee = igb_set_eee,
3423 .get_module_info = igb_get_module_info,
3424 .get_module_eeprom = igb_get_module_eeprom,
3425 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3426 .get_rxfh = igb_get_rxfh,
3427 .set_rxfh = igb_set_rxfh,
3428 .get_channels = igb_get_channels,
3429 .set_channels = igb_set_channels,
3430 .begin = igb_ethtool_begin,
3431 .complete = igb_ethtool_complete,
3434 void igb_set_ethtool_ops(struct net_device *netdev)
3436 netdev->ethtool_ops = &igb_ethtool_ops;