GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / intel / igb / e1000_i210.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 /* e1000_i210
5  * e1000_i211
6  */
7
8 #include <linux/types.h>
9 #include <linux/if_ether.h>
10
11 #include "e1000_hw.h"
12 #include "e1000_i210.h"
13
14 static s32 igb_update_flash_i210(struct e1000_hw *hw);
15
16 /**
17  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
18  *  @hw: pointer to the HW structure
19  *
20  *  Acquire the HW semaphore to access the PHY or NVM
21  */
22 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
23 {
24         u32 swsm;
25         s32 timeout = hw->nvm.word_size + 1;
26         s32 i = 0;
27
28         /* Get the SW semaphore */
29         while (i < timeout) {
30                 swsm = rd32(E1000_SWSM);
31                 if (!(swsm & E1000_SWSM_SMBI))
32                         break;
33
34                 udelay(50);
35                 i++;
36         }
37
38         if (i == timeout) {
39                 /* In rare circumstances, the SW semaphore may already be held
40                  * unintentionally. Clear the semaphore once before giving up.
41                  */
42                 if (hw->dev_spec._82575.clear_semaphore_once) {
43                         hw->dev_spec._82575.clear_semaphore_once = false;
44                         igb_put_hw_semaphore(hw);
45                         for (i = 0; i < timeout; i++) {
46                                 swsm = rd32(E1000_SWSM);
47                                 if (!(swsm & E1000_SWSM_SMBI))
48                                         break;
49
50                                 udelay(50);
51                         }
52                 }
53
54                 /* If we do not have the semaphore here, we have to give up. */
55                 if (i == timeout) {
56                         hw_dbg("Driver can't access device - SMBI bit is set.\n");
57                         return -E1000_ERR_NVM;
58                 }
59         }
60
61         /* Get the FW semaphore. */
62         for (i = 0; i < timeout; i++) {
63                 swsm = rd32(E1000_SWSM);
64                 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
65
66                 /* Semaphore acquired if bit latched */
67                 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
68                         break;
69
70                 udelay(50);
71         }
72
73         if (i == timeout) {
74                 /* Release semaphores */
75                 igb_put_hw_semaphore(hw);
76                 hw_dbg("Driver can't access the NVM\n");
77                 return -E1000_ERR_NVM;
78         }
79
80         return 0;
81 }
82
83 /**
84  *  igb_acquire_nvm_i210 - Request for access to EEPROM
85  *  @hw: pointer to the HW structure
86  *
87  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
88  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
89  *  Return successful if access grant bit set, else clear the request for
90  *  EEPROM access and return -E1000_ERR_NVM (-1).
91  **/
92 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93 {
94         return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
95 }
96
97 /**
98  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
99  *  @hw: pointer to the HW structure
100  *
101  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
102  *  then release the semaphores acquired.
103  **/
104 static void igb_release_nvm_i210(struct e1000_hw *hw)
105 {
106         igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
107 }
108
109 /**
110  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
111  *  @hw: pointer to the HW structure
112  *  @mask: specifies which semaphore to acquire
113  *
114  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
115  *  will also specify which port we're acquiring the lock for.
116  **/
117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
118 {
119         u32 swfw_sync;
120         u32 swmask = mask;
121         u32 fwmask = mask << 16;
122         s32 ret_val = 0;
123         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
124
125         while (i < timeout) {
126                 if (igb_get_hw_semaphore_i210(hw)) {
127                         ret_val = -E1000_ERR_SWFW_SYNC;
128                         goto out;
129                 }
130
131                 swfw_sync = rd32(E1000_SW_FW_SYNC);
132                 if (!(swfw_sync & (fwmask | swmask)))
133                         break;
134
135                 /* Firmware currently using resource (fwmask) */
136                 igb_put_hw_semaphore(hw);
137                 mdelay(5);
138                 i++;
139         }
140
141         if (i == timeout) {
142                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143                 ret_val = -E1000_ERR_SWFW_SYNC;
144                 goto out;
145         }
146
147         swfw_sync |= swmask;
148         wr32(E1000_SW_FW_SYNC, swfw_sync);
149
150         igb_put_hw_semaphore(hw);
151 out:
152         return ret_val;
153 }
154
155 /**
156  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
157  *  @hw: pointer to the HW structure
158  *  @mask: specifies which semaphore to acquire
159  *
160  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
161  *  will also specify which port we're releasing the lock for.
162  **/
163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
164 {
165         u32 swfw_sync;
166
167         while (igb_get_hw_semaphore_i210(hw))
168                 ; /* Empty */
169
170         swfw_sync = rd32(E1000_SW_FW_SYNC);
171         swfw_sync &= ~mask;
172         wr32(E1000_SW_FW_SYNC, swfw_sync);
173
174         igb_put_hw_semaphore(hw);
175 }
176
177 /**
178  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
179  *  @hw: pointer to the HW structure
180  *  @offset: offset of word in the Shadow Ram to read
181  *  @words: number of words to read
182  *  @data: word read from the Shadow Ram
183  *
184  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
185  *  Uses necessary synchronization semaphores.
186  **/
187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
188                                   u16 *data)
189 {
190         s32 status = 0;
191         u16 i, count;
192
193         /* We cannot hold synchronization semaphores for too long,
194          * because of forceful takeover procedure. However it is more efficient
195          * to read in bursts than synchronizing access for each word.
196          */
197         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
198                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
199                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
200                 if (!(hw->nvm.ops.acquire(hw))) {
201                         status = igb_read_nvm_eerd(hw, offset, count,
202                                                      data + i);
203                         hw->nvm.ops.release(hw);
204                 } else {
205                         status = E1000_ERR_SWFW_SYNC;
206                 }
207
208                 if (status)
209                         break;
210         }
211
212         return status;
213 }
214
215 /**
216  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
217  *  @hw: pointer to the HW structure
218  *  @offset: offset within the Shadow Ram to be written to
219  *  @words: number of words to write
220  *  @data: 16 bit word(s) to be written to the Shadow Ram
221  *
222  *  Writes data to Shadow Ram at offset using EEWR register.
223  *
224  *  If igb_update_nvm_checksum is not called after this function , the
225  *  Shadow Ram will most likely contain an invalid checksum.
226  **/
227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
228                                 u16 *data)
229 {
230         struct e1000_nvm_info *nvm = &hw->nvm;
231         u32 i, k, eewr = 0;
232         u32 attempts = 100000;
233         s32 ret_val = 0;
234
235         /* A check for invalid values:  offset too large, too many words,
236          * too many words for the offset, and not enough words.
237          */
238         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
239             (words == 0)) {
240                 hw_dbg("nvm parameter(s) out of bounds\n");
241                 ret_val = -E1000_ERR_NVM;
242                 goto out;
243         }
244
245         for (i = 0; i < words; i++) {
246                 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
247                         (data[i] << E1000_NVM_RW_REG_DATA) |
248                         E1000_NVM_RW_REG_START;
249
250                 wr32(E1000_SRWR, eewr);
251
252                 for (k = 0; k < attempts; k++) {
253                         if (E1000_NVM_RW_REG_DONE &
254                             rd32(E1000_SRWR)) {
255                                 ret_val = 0;
256                                 break;
257                         }
258                         udelay(5);
259         }
260
261                 if (ret_val) {
262                         hw_dbg("Shadow RAM write EEWR timed out\n");
263                         break;
264                 }
265         }
266
267 out:
268         return ret_val;
269 }
270
271 /**
272  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
273  *  @hw: pointer to the HW structure
274  *  @offset: offset within the Shadow RAM to be written to
275  *  @words: number of words to write
276  *  @data: 16 bit word(s) to be written to the Shadow RAM
277  *
278  *  Writes data to Shadow RAM at offset using EEWR register.
279  *
280  *  If e1000_update_nvm_checksum is not called after this function , the
281  *  data will not be committed to FLASH and also Shadow RAM will most likely
282  *  contain an invalid checksum.
283  *
284  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
285  *  partially written.
286  **/
287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
288                                    u16 *data)
289 {
290         s32 status = 0;
291         u16 i, count;
292
293         /* We cannot hold synchronization semaphores for too long,
294          * because of forceful takeover procedure. However it is more efficient
295          * to write in bursts than synchronizing access for each word.
296          */
297         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
298                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
299                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
300                 if (!(hw->nvm.ops.acquire(hw))) {
301                         status = igb_write_nvm_srwr(hw, offset, count,
302                                                       data + i);
303                         hw->nvm.ops.release(hw);
304                 } else {
305                         status = E1000_ERR_SWFW_SYNC;
306                 }
307
308                 if (status)
309                         break;
310         }
311
312         return status;
313 }
314
315 /**
316  *  igb_read_invm_word_i210 - Reads OTP
317  *  @hw: pointer to the HW structure
318  *  @address: the word address (aka eeprom offset) to read
319  *  @data: pointer to the data read
320  *
321  *  Reads 16-bit words from the OTP. Return error when the word is not
322  *  stored in OTP.
323  **/
324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
325 {
326         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
327         u32 invm_dword;
328         u16 i;
329         u8 record_type, word_address;
330
331         for (i = 0; i < E1000_INVM_SIZE; i++) {
332                 invm_dword = rd32(E1000_INVM_DATA_REG(i));
333                 /* Get record type */
334                 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
335                 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
336                         break;
337                 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
338                         i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
339                 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
340                         i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
341                 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
342                         word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
343                         if (word_address == address) {
344                                 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345                                 hw_dbg("Read INVM Word 0x%02x = %x\n",
346                                           address, *data);
347                                 status = 0;
348                                 break;
349                         }
350                 }
351         }
352         if (status)
353                 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
354         return status;
355 }
356
357 /**
358  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359  *  @hw: pointer to the HW structure
360  *  @offset: offset to read from
361  *  @words: number of words to read (unused)
362  *  @data: pointer to the data read
363  *
364  *  Wrapper function to return data formerly found in the NVM.
365  **/
366 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
367                                 u16 __always_unused words, u16 *data)
368 {
369         s32 ret_val = 0;
370
371         /* Only the MAC addr is required to be present in the iNVM */
372         switch (offset) {
373         case NVM_MAC_ADDR:
374                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
375                 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
376                                                      &data[1]);
377                 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
378                                                      &data[2]);
379                 if (ret_val)
380                         hw_dbg("MAC Addr not found in iNVM\n");
381                 break;
382         case NVM_INIT_CTRL_2:
383                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
384                 if (ret_val) {
385                         *data = NVM_INIT_CTRL_2_DEFAULT_I211;
386                         ret_val = 0;
387                 }
388                 break;
389         case NVM_INIT_CTRL_4:
390                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
391                 if (ret_val) {
392                         *data = NVM_INIT_CTRL_4_DEFAULT_I211;
393                         ret_val = 0;
394                 }
395                 break;
396         case NVM_LED_1_CFG:
397                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
398                 if (ret_val) {
399                         *data = NVM_LED_1_CFG_DEFAULT_I211;
400                         ret_val = 0;
401                 }
402                 break;
403         case NVM_LED_0_2_CFG:
404                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
405                 if (ret_val) {
406                         *data = NVM_LED_0_2_CFG_DEFAULT_I211;
407                         ret_val = 0;
408                 }
409                 break;
410         case NVM_ID_LED_SETTINGS:
411                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
412                 if (ret_val) {
413                         *data = ID_LED_RESERVED_FFFF;
414                         ret_val = 0;
415                 }
416                 break;
417         case NVM_SUB_DEV_ID:
418                 *data = hw->subsystem_device_id;
419                 break;
420         case NVM_SUB_VEN_ID:
421                 *data = hw->subsystem_vendor_id;
422                 break;
423         case NVM_DEV_ID:
424                 *data = hw->device_id;
425                 break;
426         case NVM_VEN_ID:
427                 *data = hw->vendor_id;
428                 break;
429         default:
430                 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
431                 *data = NVM_RESERVED_WORD;
432                 break;
433         }
434         return ret_val;
435 }
436
437 /**
438  *  igb_read_invm_version - Reads iNVM version and image type
439  *  @hw: pointer to the HW structure
440  *  @invm_ver: version structure for the version read
441  *
442  *  Reads iNVM version and image type.
443  **/
444 s32 igb_read_invm_version(struct e1000_hw *hw,
445                           struct e1000_fw_version *invm_ver) {
446         u32 *record = NULL;
447         u32 *next_record = NULL;
448         u32 i = 0;
449         u32 invm_dword = 0;
450         u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
451                                              E1000_INVM_RECORD_SIZE_IN_BYTES);
452         u32 buffer[E1000_INVM_SIZE];
453         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
454         u16 version = 0;
455
456         /* Read iNVM memory */
457         for (i = 0; i < E1000_INVM_SIZE; i++) {
458                 invm_dword = rd32(E1000_INVM_DATA_REG(i));
459                 buffer[i] = invm_dword;
460         }
461
462         /* Read version number */
463         for (i = 1; i < invm_blocks; i++) {
464                 record = &buffer[invm_blocks - i];
465                 next_record = &buffer[invm_blocks - i + 1];
466
467                 /* Check if we have first version location used */
468                 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
469                         version = 0;
470                         status = 0;
471                         break;
472                 }
473                 /* Check if we have second version location used */
474                 else if ((i == 1) &&
475                          ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
476                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
477                         status = 0;
478                         break;
479                 }
480                 /* Check if we have odd version location
481                  * used and it is the last one used
482                  */
483                 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
484                          ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
485                          (i != 1))) {
486                         version = (*next_record & E1000_INVM_VER_FIELD_TWO)
487                                   >> 13;
488                         status = 0;
489                         break;
490                 }
491                 /* Check if we have even version location
492                  * used and it is the last one used
493                  */
494                 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
495                          ((*record & 0x3) == 0)) {
496                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
497                         status = 0;
498                         break;
499                 }
500         }
501
502         if (!status) {
503                 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
504                                         >> E1000_INVM_MAJOR_SHIFT;
505                 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
506         }
507         /* Read Image Type */
508         for (i = 1; i < invm_blocks; i++) {
509                 record = &buffer[invm_blocks - i];
510                 next_record = &buffer[invm_blocks - i + 1];
511
512                 /* Check if we have image type in first location used */
513                 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
514                         invm_ver->invm_img_type = 0;
515                         status = 0;
516                         break;
517                 }
518                 /* Check if we have image type in first location used */
519                 else if ((((*record & 0x3) == 0) &&
520                          ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
521                          ((((*record & 0x3) != 0) && (i != 1)))) {
522                         invm_ver->invm_img_type =
523                                 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
524                         status = 0;
525                         break;
526                 }
527         }
528         return status;
529 }
530
531 /**
532  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
533  *  @hw: pointer to the HW structure
534  *
535  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
536  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
537  **/
538 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
539 {
540         s32 status = 0;
541         s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
542
543         if (!(hw->nvm.ops.acquire(hw))) {
544
545                 /* Replace the read function with semaphore grabbing with
546                  * the one that skips this for a while.
547                  * We have semaphore taken already here.
548                  */
549                 read_op_ptr = hw->nvm.ops.read;
550                 hw->nvm.ops.read = igb_read_nvm_eerd;
551
552                 status = igb_validate_nvm_checksum(hw);
553
554                 /* Revert original read operation. */
555                 hw->nvm.ops.read = read_op_ptr;
556
557                 hw->nvm.ops.release(hw);
558         } else {
559                 status = E1000_ERR_SWFW_SYNC;
560         }
561
562         return status;
563 }
564
565 /**
566  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
567  *  @hw: pointer to the HW structure
568  *
569  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
570  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
571  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
572  **/
573 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
574 {
575         s32 ret_val = 0;
576         u16 checksum = 0;
577         u16 i, nvm_data;
578
579         /* Read the first word from the EEPROM. If this times out or fails, do
580          * not continue or we could be in for a very long wait while every
581          * EEPROM read fails
582          */
583         ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
584         if (ret_val) {
585                 hw_dbg("EEPROM read failed\n");
586                 goto out;
587         }
588
589         if (!(hw->nvm.ops.acquire(hw))) {
590                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
591                  * because we do not want to take the synchronization
592                  * semaphores twice here.
593                  */
594
595                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
596                         ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
597                         if (ret_val) {
598                                 hw->nvm.ops.release(hw);
599                                 hw_dbg("NVM Read Error while updating checksum.\n");
600                                 goto out;
601                         }
602                         checksum += nvm_data;
603                 }
604                 checksum = (u16) NVM_SUM - checksum;
605                 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
606                                                 &checksum);
607                 if (ret_val) {
608                         hw->nvm.ops.release(hw);
609                         hw_dbg("NVM Write Error while updating checksum.\n");
610                         goto out;
611                 }
612
613                 hw->nvm.ops.release(hw);
614
615                 ret_val = igb_update_flash_i210(hw);
616         } else {
617                 ret_val = -E1000_ERR_SWFW_SYNC;
618         }
619 out:
620         return ret_val;
621 }
622
623 /**
624  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
625  *  @hw: pointer to the HW structure
626  *
627  **/
628 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
629 {
630         s32 ret_val = -E1000_ERR_NVM;
631         u32 i, reg;
632
633         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
634                 reg = rd32(E1000_EECD);
635                 if (reg & E1000_EECD_FLUDONE_I210) {
636                         ret_val = 0;
637                         break;
638                 }
639                 udelay(5);
640         }
641
642         return ret_val;
643 }
644
645 /**
646  *  igb_get_flash_presence_i210 - Check if flash device is detected.
647  *  @hw: pointer to the HW structure
648  *
649  **/
650 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
651 {
652         u32 eec = 0;
653         bool ret_val = false;
654
655         eec = rd32(E1000_EECD);
656         if (eec & E1000_EECD_FLASH_DETECTED_I210)
657                 ret_val = true;
658
659         return ret_val;
660 }
661
662 /**
663  *  igb_update_flash_i210 - Commit EEPROM to the flash
664  *  @hw: pointer to the HW structure
665  *
666  **/
667 static s32 igb_update_flash_i210(struct e1000_hw *hw)
668 {
669         s32 ret_val = 0;
670         u32 flup;
671
672         ret_val = igb_pool_flash_update_done_i210(hw);
673         if (ret_val == -E1000_ERR_NVM) {
674                 hw_dbg("Flash update time out\n");
675                 goto out;
676         }
677
678         flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
679         wr32(E1000_EECD, flup);
680
681         ret_val = igb_pool_flash_update_done_i210(hw);
682         if (ret_val)
683                 hw_dbg("Flash update time out\n");
684         else
685                 hw_dbg("Flash update complete\n");
686
687 out:
688         return ret_val;
689 }
690
691 /**
692  *  igb_valid_led_default_i210 - Verify a valid default LED config
693  *  @hw: pointer to the HW structure
694  *  @data: pointer to the NVM (EEPROM)
695  *
696  *  Read the EEPROM for the current default LED configuration.  If the
697  *  LED configuration is not valid, set to a valid LED configuration.
698  **/
699 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
700 {
701         s32 ret_val;
702
703         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
704         if (ret_val) {
705                 hw_dbg("NVM Read Error\n");
706                 goto out;
707         }
708
709         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
710                 switch (hw->phy.media_type) {
711                 case e1000_media_type_internal_serdes:
712                         *data = ID_LED_DEFAULT_I210_SERDES;
713                         break;
714                 case e1000_media_type_copper:
715                 default:
716                         *data = ID_LED_DEFAULT_I210;
717                         break;
718                 }
719         }
720 out:
721         return ret_val;
722 }
723
724 /**
725  *  __igb_access_xmdio_reg - Read/write XMDIO register
726  *  @hw: pointer to the HW structure
727  *  @address: XMDIO address to program
728  *  @dev_addr: device address to program
729  *  @data: pointer to value to read/write from/to the XMDIO address
730  *  @read: boolean flag to indicate read or write
731  **/
732 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
733                                   u8 dev_addr, u16 *data, bool read)
734 {
735         s32 ret_val = 0;
736
737         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
738         if (ret_val)
739                 return ret_val;
740
741         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
742         if (ret_val)
743                 return ret_val;
744
745         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
746                                                          dev_addr);
747         if (ret_val)
748                 return ret_val;
749
750         if (read)
751                 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
752         else
753                 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
754         if (ret_val)
755                 return ret_val;
756
757         /* Recalibrate the device back to 0 */
758         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
759         if (ret_val)
760                 return ret_val;
761
762         return ret_val;
763 }
764
765 /**
766  *  igb_read_xmdio_reg - Read XMDIO register
767  *  @hw: pointer to the HW structure
768  *  @addr: XMDIO address to program
769  *  @dev_addr: device address to program
770  *  @data: value to be read from the EMI address
771  **/
772 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
773 {
774         return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
775 }
776
777 /**
778  *  igb_write_xmdio_reg - Write XMDIO register
779  *  @hw: pointer to the HW structure
780  *  @addr: XMDIO address to program
781  *  @dev_addr: device address to program
782  *  @data: value to be written to the XMDIO address
783  **/
784 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
785 {
786         return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
787 }
788
789 /**
790  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
791  *  @hw: pointer to the HW structure
792  **/
793 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
794 {
795         s32 ret_val = 0;
796         struct e1000_nvm_info *nvm = &hw->nvm;
797
798         nvm->ops.acquire = igb_acquire_nvm_i210;
799         nvm->ops.release = igb_release_nvm_i210;
800         nvm->ops.valid_led_default = igb_valid_led_default_i210;
801
802         /* NVM Function Pointers */
803         if (igb_get_flash_presence_i210(hw)) {
804                 hw->nvm.type = e1000_nvm_flash_hw;
805                 nvm->ops.read    = igb_read_nvm_srrd_i210;
806                 nvm->ops.write   = igb_write_nvm_srwr_i210;
807                 nvm->ops.validate = igb_validate_nvm_checksum_i210;
808                 nvm->ops.update   = igb_update_nvm_checksum_i210;
809         } else {
810                 hw->nvm.type = e1000_nvm_invm;
811                 nvm->ops.read     = igb_read_invm_i210;
812                 nvm->ops.write    = NULL;
813                 nvm->ops.validate = NULL;
814                 nvm->ops.update   = NULL;
815         }
816         return ret_val;
817 }
818
819 /**
820  * igb_pll_workaround_i210
821  * @hw: pointer to the HW structure
822  *
823  * Works around an errata in the PLL circuit where it occasionally
824  * provides the wrong clock frequency after power up.
825  **/
826 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
827 {
828         s32 ret_val;
829         u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
830         u16 nvm_word, phy_word, pci_word, tmp_nvm;
831         int i;
832
833         /* Get and set needed register values */
834         wuc = rd32(E1000_WUC);
835         mdicnfg = rd32(E1000_MDICNFG);
836         reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
837         wr32(E1000_MDICNFG, reg_val);
838
839         /* Get data from NVM, or set default */
840         ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
841                                           &nvm_word);
842         if (ret_val)
843                 nvm_word = E1000_INVM_DEFAULT_AL;
844         tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
845         igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
846         phy_word = E1000_PHY_PLL_UNCONF;
847         for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
848                 /* check current state directly from internal PHY */
849                 igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
850                 if ((phy_word & E1000_PHY_PLL_UNCONF)
851                     != E1000_PHY_PLL_UNCONF) {
852                         ret_val = 0;
853                         break;
854                 } else {
855                         ret_val = -E1000_ERR_PHY;
856                 }
857                 /* directly reset the internal PHY */
858                 ctrl = rd32(E1000_CTRL);
859                 wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
860
861                 ctrl_ext = rd32(E1000_CTRL_EXT);
862                 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
863                 wr32(E1000_CTRL_EXT, ctrl_ext);
864
865                 wr32(E1000_WUC, 0);
866                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
867                 wr32(E1000_EEARBC_I210, reg_val);
868
869                 igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
870                 pci_word |= E1000_PCI_PMCSR_D3;
871                 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
872                 usleep_range(1000, 2000);
873                 pci_word &= ~E1000_PCI_PMCSR_D3;
874                 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
875                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
876                 wr32(E1000_EEARBC_I210, reg_val);
877
878                 /* restore WUC register */
879                 wr32(E1000_WUC, wuc);
880         }
881         igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
882         /* restore MDICNFG setting */
883         wr32(E1000_MDICNFG, mdicnfg);
884         return ret_val;
885 }
886
887 /**
888  *  igb_get_cfg_done_i210 - Read config done bit
889  *  @hw: pointer to the HW structure
890  *
891  *  Read the management control register for the config done bit for
892  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
893  *  to read the config done bit, so an error is *ONLY* logged and returns
894  *  0.  If we were to return with error, EEPROM-less silicon
895  *  would not be able to be reset or change link.
896  **/
897 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
898 {
899         s32 timeout = PHY_CFG_TIMEOUT;
900         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
901
902         while (timeout) {
903                 if (rd32(E1000_EEMNGCTL_I210) & mask)
904                         break;
905                 usleep_range(1000, 2000);
906                 timeout--;
907         }
908         if (!timeout)
909                 hw_dbg("MNG configuration cycle has not completed.\n");
910
911         return 0;
912 }