GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.h
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
29
30 /* Interrupt Throttling and Rate Limiting Goodies */
31
32 #define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
33 #define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
34 #define I40E_ITR_100K              0x0005
35 #define I40E_ITR_50K               0x000A
36 #define I40E_ITR_20K               0x0019
37 #define I40E_ITR_18K               0x001B
38 #define I40E_ITR_8K                0x003E
39 #define I40E_ITR_4K                0x007A
40 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
41 #define I40E_ITR_RX_DEF            I40E_ITR_20K
42 #define I40E_ITR_TX_DEF            I40E_ITR_20K
43 #define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
44 #define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45 #define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
46 #define I40E_DEFAULT_IRQ_WORK      256
47 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
50 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51  * the value of the rate limit is non-zero
52  */
53 #define INTRL_ENA                  BIT(6)
54 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
56 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
57 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
58 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
59
60 #define I40E_QUEUE_END_OF_LIST 0x7FF
61
62 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
63  * registers and QINT registers or more generally anywhere in the manual
64  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
65  * register but instead is a special value meaning "don't update" ITR0/1/2.
66  */
67 enum i40e_dyn_idx_t {
68         I40E_IDX_ITR0 = 0,
69         I40E_IDX_ITR1 = 1,
70         I40E_IDX_ITR2 = 2,
71         I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
72 };
73
74 /* these are indexes into ITRN registers */
75 #define I40E_RX_ITR    I40E_IDX_ITR0
76 #define I40E_TX_ITR    I40E_IDX_ITR1
77 #define I40E_PE_ITR    I40E_IDX_ITR2
78
79 /* Supported RSS offloads */
80 #define I40E_DEFAULT_RSS_HENA ( \
81         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
82         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
83         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
84         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
85         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
86         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
87         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
88         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
89         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
90         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
91         BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
92
93 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
94         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
95         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
96         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
97         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
98         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
99         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
100
101 /* Supported Rx Buffer Sizes (a multiple of 128) */
102 #define I40E_RXBUFFER_256   256
103 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
104 #define I40E_RXBUFFER_2048  2048
105 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
106 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
107
108 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
109  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
110  * this adds up to 512 bytes of extra data meaning the smallest allocation
111  * we could have is 1K.
112  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
113  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
114  */
115 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
116 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
117 #define i40e_rx_desc i40e_32byte_rx_desc
118
119 #define I40E_RX_DMA_ATTR \
120         (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
121
122 /* Attempt to maximize the headroom available for incoming frames.  We
123  * use a 2K buffer for receives and need 1536/1534 to store the data for
124  * the frame.  This leaves us with 512 bytes of room.  From that we need
125  * to deduct the space needed for the shared info and the padding needed
126  * to IP align the frame.
127  *
128  * Note: For cache line sizes 256 or larger this value is going to end
129  *       up negative.  In these cases we should fall back to the legacy
130  *       receive path.
131  */
132 #if (PAGE_SIZE < 8192)
133 #define I40E_2K_TOO_SMALL_WITH_PADDING \
134 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
135
136 static inline int i40e_compute_pad(int rx_buf_len)
137 {
138         int page_size, pad_size;
139
140         page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
141         pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
142
143         return pad_size;
144 }
145
146 static inline int i40e_skb_pad(void)
147 {
148         int rx_buf_len;
149
150         /* If a 2K buffer cannot handle a standard Ethernet frame then
151          * optimize padding for a 3K buffer instead of a 1.5K buffer.
152          *
153          * For a 3K buffer we need to add enough padding to allow for
154          * tailroom due to NET_IP_ALIGN possibly shifting us out of
155          * cache-line alignment.
156          */
157         if (I40E_2K_TOO_SMALL_WITH_PADDING)
158                 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
159         else
160                 rx_buf_len = I40E_RXBUFFER_1536;
161
162         /* if needed make room for NET_IP_ALIGN */
163         rx_buf_len -= NET_IP_ALIGN;
164
165         return i40e_compute_pad(rx_buf_len);
166 }
167
168 #define I40E_SKB_PAD i40e_skb_pad()
169 #else
170 #define I40E_2K_TOO_SMALL_WITH_PADDING false
171 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
172 #endif
173
174 /**
175  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
176  * @rx_desc: pointer to receive descriptor (in le64 format)
177  * @stat_err_bits: value to mask
178  *
179  * This function does some fast chicanery in order to return the
180  * value of the mask which is really only used for boolean tests.
181  * The status_error_len doesn't need to be shifted because it begins
182  * at offset zero.
183  */
184 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
185                                      const u64 stat_err_bits)
186 {
187         return !!(rx_desc->wb.qword1.status_error_len &
188                   cpu_to_le64(stat_err_bits));
189 }
190
191 /* How many Rx Buffers do we bundle into one write to the hardware ? */
192 #define I40E_RX_BUFFER_WRITE    16      /* Must be power of 2 */
193 #define I40E_RX_INCREMENT(r, i) \
194         do {                                    \
195                 (i)++;                          \
196                 if ((i) == (r)->count)          \
197                         i = 0;                  \
198                 r->next_to_clean = i;           \
199         } while (0)
200
201 #define I40E_RX_NEXT_DESC(r, i, n)              \
202         do {                                    \
203                 (i)++;                          \
204                 if ((i) == (r)->count)          \
205                         i = 0;                  \
206                 (n) = I40E_RX_DESC((r), (i));   \
207         } while (0)
208
209 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
210         do {                                            \
211                 I40E_RX_NEXT_DESC((r), (i), (n));       \
212                 prefetch((n));                          \
213         } while (0)
214
215 #define I40E_MAX_BUFFER_TXD     8
216 #define I40E_MIN_TX_LEN         17
217
218 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
219  * In order to align with the read requests we will align the value to
220  * the nearest 4K which represents our maximum read request size.
221  */
222 #define I40E_MAX_READ_REQ_SIZE          4096
223 #define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
224 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
225         (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
226
227 /**
228  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
229  * @size: transmit request size in bytes
230  *
231  * Due to hardware alignment restrictions (4K alignment), we need to
232  * assume that we can have no more than 12K of data per descriptor, even
233  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
234  * Thus, we need to divide by 12K. But division is slow! Instead,
235  * we decompose the operation into shifts and one relatively cheap
236  * multiply operation.
237  *
238  * To divide by 12K, we first divide by 4K, then divide by 3:
239  *     To divide by 4K, shift right by 12 bits
240  *     To divide by 3, multiply by 85, then divide by 256
241  *     (Divide by 256 is done by shifting right by 8 bits)
242  * Finally, we add one to round up. Because 256 isn't an exact multiple of
243  * 3, we'll underestimate near each multiple of 12K. This is actually more
244  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
245  * segment.  For our purposes this is accurate out to 1M which is orders of
246  * magnitude greater than our largest possible GSO size.
247  *
248  * This would then be implemented as:
249  *     return (((size >> 12) * 85) >> 8) + 1;
250  *
251  * Since multiplication and division are commutative, we can reorder
252  * operations into:
253  *     return ((size * 85) >> 20) + 1;
254  */
255 static inline unsigned int i40e_txd_use_count(unsigned int size)
256 {
257         return ((size * 85) >> 20) + 1;
258 }
259
260 /* Tx Descriptors needed, worst case */
261 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
262 #define I40E_MIN_DESC_PENDING   4
263
264 #define I40E_TX_FLAGS_HW_VLAN           BIT(1)
265 #define I40E_TX_FLAGS_SW_VLAN           BIT(2)
266 #define I40E_TX_FLAGS_TSO               BIT(3)
267 #define I40E_TX_FLAGS_IPV4              BIT(4)
268 #define I40E_TX_FLAGS_IPV6              BIT(5)
269 #define I40E_TX_FLAGS_FCCRC             BIT(6)
270 #define I40E_TX_FLAGS_FSO               BIT(7)
271 #define I40E_TX_FLAGS_FD_SB             BIT(9)
272 #define I40E_TX_FLAGS_VXLAN_TUNNEL      BIT(10)
273 #define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
274 #define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
275 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
276 #define I40E_TX_FLAGS_VLAN_SHIFT        16
277
278 struct i40e_tx_buffer {
279         struct i40e_tx_desc *next_to_watch;
280         union {
281                 struct sk_buff *skb;
282                 void *raw_buf;
283         };
284         unsigned int bytecount;
285         unsigned short gso_segs;
286
287         DEFINE_DMA_UNMAP_ADDR(dma);
288         DEFINE_DMA_UNMAP_LEN(len);
289         u32 tx_flags;
290 };
291
292 struct i40e_rx_buffer {
293         dma_addr_t dma;
294         struct page *page;
295 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
296         __u32 page_offset;
297 #else
298         __u16 page_offset;
299 #endif
300         __u16 pagecnt_bias;
301 };
302
303 struct i40e_queue_stats {
304         u64 packets;
305         u64 bytes;
306 };
307
308 struct i40e_tx_queue_stats {
309         u64 restart_queue;
310         u64 tx_busy;
311         u64 tx_done_old;
312         u64 tx_linearize;
313         u64 tx_force_wb;
314         u64 tx_lost_interrupt;
315 };
316
317 struct i40e_rx_queue_stats {
318         u64 non_eop_descs;
319         u64 alloc_page_failed;
320         u64 alloc_buff_failed;
321         u64 page_reuse_count;
322         u64 realloc_count;
323 };
324
325 enum i40e_ring_state_t {
326         __I40E_TX_FDIR_INIT_DONE,
327         __I40E_TX_XPS_INIT_DONE,
328 };
329
330 /* some useful defines for virtchannel interface, which
331  * is the only remaining user of header split
332  */
333 #define I40E_RX_DTYPE_NO_SPLIT      0
334 #define I40E_RX_DTYPE_HEADER_SPLIT  1
335 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
336 #define I40E_RX_SPLIT_L2      0x1
337 #define I40E_RX_SPLIT_IP      0x2
338 #define I40E_RX_SPLIT_TCP_UDP 0x4
339 #define I40E_RX_SPLIT_SCTP    0x8
340
341 /* struct that defines a descriptor ring, associated with a VSI */
342 struct i40e_ring {
343         struct i40e_ring *next;         /* pointer to next ring in q_vector */
344         void *desc;                     /* Descriptor ring memory */
345         struct device *dev;             /* Used for DMA mapping */
346         struct net_device *netdev;      /* netdev ring maps to */
347         union {
348                 struct i40e_tx_buffer *tx_bi;
349                 struct i40e_rx_buffer *rx_bi;
350         };
351         unsigned long state;
352         u16 queue_index;                /* Queue number of ring */
353         u8 dcb_tc;                      /* Traffic class of ring */
354         u8 __iomem *tail;
355
356         /* high bit set means dynamic, use accessors routines to read/write.
357          * hardware only supports 2us resolution for the ITR registers.
358          * these values always store the USER setting, and must be converted
359          * before programming to a register.
360          */
361         u16 rx_itr_setting;
362         u16 tx_itr_setting;
363
364         u16 count;                      /* Number of descriptors */
365         u16 reg_idx;                    /* HW register index of the ring */
366         u16 rx_buf_len;
367
368         /* used in interrupt processing */
369         u16 next_to_use;
370         u16 next_to_clean;
371
372         u8 atr_sample_rate;
373         u8 atr_count;
374
375         bool ring_active;               /* is ring online or not */
376         bool arm_wb;            /* do something to arm write back */
377         u8 packet_stride;
378
379         u16 flags;
380 #define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
381 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
382
383         /* stats structs */
384         struct i40e_queue_stats stats;
385         struct u64_stats_sync syncp;
386         union {
387                 struct i40e_tx_queue_stats tx_stats;
388                 struct i40e_rx_queue_stats rx_stats;
389         };
390
391         unsigned int size;              /* length of descriptor ring in bytes */
392         dma_addr_t dma;                 /* physical address of ring */
393
394         struct i40e_vsi *vsi;           /* Backreference to associated VSI */
395         struct i40e_q_vector *q_vector; /* Backreference to associated vector */
396
397         struct rcu_head rcu;            /* to avoid race on free */
398         u16 next_to_alloc;
399         struct sk_buff *skb;            /* When i40evf_clean_rx_ring_irq() must
400                                          * return before it sees the EOP for
401                                          * the current packet, we save that skb
402                                          * here and resume receiving this
403                                          * packet the next time
404                                          * i40evf_clean_rx_ring_irq() is called
405                                          * for this ring.
406                                          */
407 } ____cacheline_internodealigned_in_smp;
408
409 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
410 {
411         return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
412 }
413
414 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
415 {
416         ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
417 }
418
419 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
420 {
421         ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
422 }
423
424 enum i40e_latency_range {
425         I40E_LOWEST_LATENCY = 0,
426         I40E_LOW_LATENCY = 1,
427         I40E_BULK_LATENCY = 2,
428 };
429
430 struct i40e_ring_container {
431         /* array of pointers to rings */
432         struct i40e_ring *ring;
433         unsigned int total_bytes;       /* total bytes processed this int */
434         unsigned int total_packets;     /* total packets processed this int */
435         unsigned long last_itr_update;  /* jiffies of last ITR update */
436         u16 count;
437         enum i40e_latency_range latency_range;
438         u16 itr;
439 };
440
441 /* iterator for handling rings in ring container */
442 #define i40e_for_each_ring(pos, head) \
443         for (pos = (head).ring; pos != NULL; pos = pos->next)
444
445 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
446 {
447 #if (PAGE_SIZE < 8192)
448         if (ring->rx_buf_len > (PAGE_SIZE / 2))
449                 return 1;
450 #endif
451         return 0;
452 }
453
454 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
455
456 bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
457 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
458 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
459 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
460 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
461 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
462 void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
463 void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
464 int i40evf_napi_poll(struct napi_struct *napi, int budget);
465 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
466 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
467 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
468 bool __i40evf_chk_linearize(struct sk_buff *skb);
469
470 /**
471  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
472  * @skb:     send buffer
473  * @tx_ring: ring to send buffer on
474  *
475  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
476  * there is not enough descriptors available in this ring since we need at least
477  * one descriptor.
478  **/
479 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
480 {
481         const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
482         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
483         int count = 0, size = skb_headlen(skb);
484
485         for (;;) {
486                 count += i40e_txd_use_count(size);
487
488                 if (!nr_frags--)
489                         break;
490
491                 size = skb_frag_size(frag++);
492         }
493
494         return count;
495 }
496
497 /**
498  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
499  * @tx_ring: the ring to be checked
500  * @size:    the size buffer we want to assure is available
501  *
502  * Returns 0 if stop is not needed
503  **/
504 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
505 {
506         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
507                 return 0;
508         return __i40evf_maybe_stop_tx(tx_ring, size);
509 }
510
511 /**
512  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
513  * @skb:      send buffer
514  * @count:    number of buffers used
515  *
516  * Note: Our HW can't scatter-gather more than 8 fragments to build
517  * a packet on the wire and so we need to figure out the cases where we
518  * need to linearize the skb.
519  **/
520 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
521 {
522         /* Both TSO and single send will work if count is less than 8 */
523         if (likely(count < I40E_MAX_BUFFER_TXD))
524                 return false;
525
526         if (skb_is_gso(skb))
527                 return __i40evf_chk_linearize(skb);
528
529         /* we can support up to 8 data buffers for a single send */
530         return count != I40E_MAX_BUFFER_TXD;
531 }
532 /**
533  * @ring: Tx ring to find the netdev equivalent of
534  **/
535 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
536 {
537         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
538 }
539 #endif /* _I40E_TXRX_H_ */