GNU Linux-libre 4.19.268-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28
29 #include "e1000.h"
30
31 #define DRV_EXTRAVERSION "-k"
32
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41
42 static const struct e1000_info *e1000_info_tbl[] = {
43         [board_82571]           = &e1000_82571_info,
44         [board_82572]           = &e1000_82572_info,
45         [board_82573]           = &e1000_82573_info,
46         [board_82574]           = &e1000_82574_info,
47         [board_82583]           = &e1000_82583_info,
48         [board_80003es2lan]     = &e1000_es2_info,
49         [board_ich8lan]         = &e1000_ich8_info,
50         [board_ich9lan]         = &e1000_ich9_info,
51         [board_ich10lan]        = &e1000_ich10_info,
52         [board_pchlan]          = &e1000_pch_info,
53         [board_pch2lan]         = &e1000_pch2_info,
54         [board_pch_lpt]         = &e1000_pch_lpt_info,
55         [board_pch_spt]         = &e1000_pch_spt_info,
56         [board_pch_cnp]         = &e1000_pch_cnp_info,
57 };
58
59 struct e1000_reg_info {
60         u32 ofs;
61         char *name;
62 };
63
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65         /* General Registers */
66         {E1000_CTRL, "CTRL"},
67         {E1000_STATUS, "STATUS"},
68         {E1000_CTRL_EXT, "CTRL_EXT"},
69
70         /* Interrupt Registers */
71         {E1000_ICR, "ICR"},
72
73         /* Rx Registers */
74         {E1000_RCTL, "RCTL"},
75         {E1000_RDLEN(0), "RDLEN"},
76         {E1000_RDH(0), "RDH"},
77         {E1000_RDT(0), "RDT"},
78         {E1000_RDTR, "RDTR"},
79         {E1000_RXDCTL(0), "RXDCTL"},
80         {E1000_ERT, "ERT"},
81         {E1000_RDBAL(0), "RDBAL"},
82         {E1000_RDBAH(0), "RDBAH"},
83         {E1000_RDFH, "RDFH"},
84         {E1000_RDFT, "RDFT"},
85         {E1000_RDFHS, "RDFHS"},
86         {E1000_RDFTS, "RDFTS"},
87         {E1000_RDFPC, "RDFPC"},
88
89         /* Tx Registers */
90         {E1000_TCTL, "TCTL"},
91         {E1000_TDBAL(0), "TDBAL"},
92         {E1000_TDBAH(0), "TDBAH"},
93         {E1000_TDLEN(0), "TDLEN"},
94         {E1000_TDH(0), "TDH"},
95         {E1000_TDT(0), "TDT"},
96         {E1000_TIDV, "TIDV"},
97         {E1000_TXDCTL(0), "TXDCTL"},
98         {E1000_TADV, "TADV"},
99         {E1000_TARC(0), "TARC"},
100         {E1000_TDFH, "TDFH"},
101         {E1000_TDFT, "TDFT"},
102         {E1000_TDFHS, "TDFHS"},
103         {E1000_TDFTS, "TDFTS"},
104         {E1000_TDFPC, "TDFPC"},
105
106         /* List Terminator */
107         {0, NULL}
108 };
109
110 /**
111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112  * @hw: pointer to the HW structure
113  *
114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
115  * be accessing the registers at the same time.  Normally, this is handled in
116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117  * accesses later than it should which could result in the register to have
118  * an incorrect value.  Workaround this by checking the FWSM register which
119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120  * and try again a number of times.
121  **/
122 static void __ew32_prepare(struct e1000_hw *hw)
123 {
124         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125
126         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127                 udelay(50);
128 }
129
130 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
131 {
132         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
133                 __ew32_prepare(hw);
134
135         writel(val, hw->hw_addr + reg);
136 }
137
138 /**
139  * e1000_regdump - register printout routine
140  * @hw: pointer to the HW structure
141  * @reginfo: pointer to the register info table
142  **/
143 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144 {
145         int n = 0;
146         char rname[16];
147         u32 regs[8];
148
149         switch (reginfo->ofs) {
150         case E1000_RXDCTL(0):
151                 for (n = 0; n < 2; n++)
152                         regs[n] = __er32(hw, E1000_RXDCTL(n));
153                 break;
154         case E1000_TXDCTL(0):
155                 for (n = 0; n < 2; n++)
156                         regs[n] = __er32(hw, E1000_TXDCTL(n));
157                 break;
158         case E1000_TARC(0):
159                 for (n = 0; n < 2; n++)
160                         regs[n] = __er32(hw, E1000_TARC(n));
161                 break;
162         default:
163                 pr_info("%-15s %08x\n",
164                         reginfo->name, __er32(hw, reginfo->ofs));
165                 return;
166         }
167
168         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
169         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
170 }
171
172 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
173                                  struct e1000_buffer *bi)
174 {
175         int i;
176         struct e1000_ps_page *ps_page;
177
178         for (i = 0; i < adapter->rx_ps_pages; i++) {
179                 ps_page = &bi->ps_pages[i];
180
181                 if (ps_page->page) {
182                         pr_info("packet dump for ps_page %d:\n", i);
183                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
184                                        16, 1, page_address(ps_page->page),
185                                        PAGE_SIZE, true);
186                 }
187         }
188 }
189
190 /**
191  * e1000e_dump - Print registers, Tx-ring and Rx-ring
192  * @adapter: board private structure
193  **/
194 static void e1000e_dump(struct e1000_adapter *adapter)
195 {
196         struct net_device *netdev = adapter->netdev;
197         struct e1000_hw *hw = &adapter->hw;
198         struct e1000_reg_info *reginfo;
199         struct e1000_ring *tx_ring = adapter->tx_ring;
200         struct e1000_tx_desc *tx_desc;
201         struct my_u0 {
202                 __le64 a;
203                 __le64 b;
204         } *u0;
205         struct e1000_buffer *buffer_info;
206         struct e1000_ring *rx_ring = adapter->rx_ring;
207         union e1000_rx_desc_packet_split *rx_desc_ps;
208         union e1000_rx_desc_extended *rx_desc;
209         struct my_u1 {
210                 __le64 a;
211                 __le64 b;
212                 __le64 c;
213                 __le64 d;
214         } *u1;
215         u32 staterr;
216         int i = 0;
217
218         if (!netif_msg_hw(adapter))
219                 return;
220
221         /* Print netdevice Info */
222         if (netdev) {
223                 dev_info(&adapter->pdev->dev, "Net device Info\n");
224                 pr_info("Device Name     state            trans_start\n");
225                 pr_info("%-15s %016lX %016lX\n", netdev->name,
226                         netdev->state, dev_trans_start(netdev));
227         }
228
229         /* Print Registers */
230         dev_info(&adapter->pdev->dev, "Register Dump\n");
231         pr_info(" Register Name   Value\n");
232         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
233              reginfo->name; reginfo++) {
234                 e1000_regdump(hw, reginfo);
235         }
236
237         /* Print Tx Ring Summary */
238         if (!netdev || !netif_running(netdev))
239                 return;
240
241         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
242         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
243         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
244         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
245                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
246                 (unsigned long long)buffer_info->dma,
247                 buffer_info->length,
248                 buffer_info->next_to_watch,
249                 (unsigned long long)buffer_info->time_stamp);
250
251         /* Print Tx Ring */
252         if (!netif_msg_tx_done(adapter))
253                 goto rx_ring_summary;
254
255         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
256
257         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
258          *
259          * Legacy Transmit Descriptor
260          *   +--------------------------------------------------------------+
261          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
262          *   +--------------------------------------------------------------+
263          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
264          *   +--------------------------------------------------------------+
265          *   63       48 47        36 35    32 31     24 23    16 15        0
266          *
267          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
268          *   63      48 47    40 39       32 31             16 15    8 7      0
269          *   +----------------------------------------------------------------+
270          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
271          *   +----------------------------------------------------------------+
272          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
273          *   +----------------------------------------------------------------+
274          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
275          *
276          * Extended Data Descriptor (DTYP=0x1)
277          *   +----------------------------------------------------------------+
278          * 0 |                     Buffer Address [63:0]                      |
279          *   +----------------------------------------------------------------+
280          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
281          *   +----------------------------------------------------------------+
282          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
283          */
284         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
285         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
286         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
287         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
288                 const char *next_desc;
289                 tx_desc = E1000_TX_DESC(*tx_ring, i);
290                 buffer_info = &tx_ring->buffer_info[i];
291                 u0 = (struct my_u0 *)tx_desc;
292                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
293                         next_desc = " NTC/U";
294                 else if (i == tx_ring->next_to_use)
295                         next_desc = " NTU";
296                 else if (i == tx_ring->next_to_clean)
297                         next_desc = " NTC";
298                 else
299                         next_desc = "";
300                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
301                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
302                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
303                         i,
304                         (unsigned long long)le64_to_cpu(u0->a),
305                         (unsigned long long)le64_to_cpu(u0->b),
306                         (unsigned long long)buffer_info->dma,
307                         buffer_info->length, buffer_info->next_to_watch,
308                         (unsigned long long)buffer_info->time_stamp,
309                         buffer_info->skb, next_desc);
310
311                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
312                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
313                                        16, 1, buffer_info->skb->data,
314                                        buffer_info->skb->len, true);
315         }
316
317         /* Print Rx Ring Summary */
318 rx_ring_summary:
319         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
320         pr_info("Queue [NTU] [NTC]\n");
321         pr_info(" %5d %5X %5X\n",
322                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
323
324         /* Print Rx Ring */
325         if (!netif_msg_rx_status(adapter))
326                 return;
327
328         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
329         switch (adapter->rx_ps_pages) {
330         case 1:
331         case 2:
332         case 3:
333                 /* [Extended] Packet Split Receive Descriptor Format
334                  *
335                  *    +-----------------------------------------------------+
336                  *  0 |                Buffer Address 0 [63:0]              |
337                  *    +-----------------------------------------------------+
338                  *  8 |                Buffer Address 1 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  * 16 |                Buffer Address 2 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  * 24 |                Buffer Address 3 [63:0]              |
343                  *    +-----------------------------------------------------+
344                  */
345                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
346                 /* [Extended] Receive Descriptor (Write-Back) Format
347                  *
348                  *   63       48 47    32 31     13 12    8 7    4 3        0
349                  *   +------------------------------------------------------+
350                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
351                  *   | Checksum | Ident  |         | Queue |      |  Type   |
352                  *   +------------------------------------------------------+
353                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
354                  *   +------------------------------------------------------+
355                  *   63       48 47    32 31            20 19               0
356                  */
357                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
358                 for (i = 0; i < rx_ring->count; i++) {
359                         const char *next_desc;
360                         buffer_info = &rx_ring->buffer_info[i];
361                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362                         u1 = (struct my_u1 *)rx_desc_ps;
363                         staterr =
364                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365
366                         if (i == rx_ring->next_to_use)
367                                 next_desc = " NTU";
368                         else if (i == rx_ring->next_to_clean)
369                                 next_desc = " NTC";
370                         else
371                                 next_desc = "";
372
373                         if (staterr & E1000_RXD_STAT_DD) {
374                                 /* Descriptor Done */
375                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
376                                         "RWB", i,
377                                         (unsigned long long)le64_to_cpu(u1->a),
378                                         (unsigned long long)le64_to_cpu(u1->b),
379                                         (unsigned long long)le64_to_cpu(u1->c),
380                                         (unsigned long long)le64_to_cpu(u1->d),
381                                         buffer_info->skb, next_desc);
382                         } else {
383                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
384                                         "R  ", i,
385                                         (unsigned long long)le64_to_cpu(u1->a),
386                                         (unsigned long long)le64_to_cpu(u1->b),
387                                         (unsigned long long)le64_to_cpu(u1->c),
388                                         (unsigned long long)le64_to_cpu(u1->d),
389                                         (unsigned long long)buffer_info->dma,
390                                         buffer_info->skb, next_desc);
391
392                                 if (netif_msg_pktdata(adapter))
393                                         e1000e_dump_ps_pages(adapter,
394                                                              buffer_info);
395                         }
396                 }
397                 break;
398         default:
399         case 0:
400                 /* Extended Receive Descriptor (Read) Format
401                  *
402                  *   +-----------------------------------------------------+
403                  * 0 |                Buffer Address [63:0]                |
404                  *   +-----------------------------------------------------+
405                  * 8 |                      Reserved                       |
406                  *   +-----------------------------------------------------+
407                  */
408                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
409                 /* Extended Receive Descriptor (Write-Back) Format
410                  *
411                  *   63       48 47    32 31    24 23            4 3        0
412                  *   +------------------------------------------------------+
413                  *   |     RSS Hash      |        |               |         |
414                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
415                  *   | Packet   | IP     |        |               |  Type   |
416                  *   | Checksum | Ident  |        |               |         |
417                  *   +------------------------------------------------------+
418                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
419                  *   +------------------------------------------------------+
420                  *   63       48 47    32 31            20 19               0
421                  */
422                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
423
424                 for (i = 0; i < rx_ring->count; i++) {
425                         const char *next_desc;
426
427                         buffer_info = &rx_ring->buffer_info[i];
428                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
429                         u1 = (struct my_u1 *)rx_desc;
430                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
431
432                         if (i == rx_ring->next_to_use)
433                                 next_desc = " NTU";
434                         else if (i == rx_ring->next_to_clean)
435                                 next_desc = " NTC";
436                         else
437                                 next_desc = "";
438
439                         if (staterr & E1000_RXD_STAT_DD) {
440                                 /* Descriptor Done */
441                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
442                                         "RWB", i,
443                                         (unsigned long long)le64_to_cpu(u1->a),
444                                         (unsigned long long)le64_to_cpu(u1->b),
445                                         buffer_info->skb, next_desc);
446                         } else {
447                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
448                                         "R  ", i,
449                                         (unsigned long long)le64_to_cpu(u1->a),
450                                         (unsigned long long)le64_to_cpu(u1->b),
451                                         (unsigned long long)buffer_info->dma,
452                                         buffer_info->skb, next_desc);
453
454                                 if (netif_msg_pktdata(adapter) &&
455                                     buffer_info->skb)
456                                         print_hex_dump(KERN_INFO, "",
457                                                        DUMP_PREFIX_ADDRESS, 16,
458                                                        1,
459                                                        buffer_info->skb->data,
460                                                        adapter->rx_buffer_len,
461                                                        true);
462                         }
463                 }
464         }
465 }
466
467 /**
468  * e1000_desc_unused - calculate if we have unused descriptors
469  **/
470 static int e1000_desc_unused(struct e1000_ring *ring)
471 {
472         if (ring->next_to_clean > ring->next_to_use)
473                 return ring->next_to_clean - ring->next_to_use - 1;
474
475         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 }
477
478 /**
479  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480  * @adapter: board private structure
481  * @hwtstamps: time stamp structure to update
482  * @systim: unsigned 64bit system time value.
483  *
484  * Convert the system time value stored in the RX/TXSTMP registers into a
485  * hwtstamp which can be used by the upper level time stamping functions.
486  *
487  * The 'systim_lock' spinlock is used to protect the consistency of the
488  * system time value. This is needed because reading the 64 bit time
489  * value involves reading two 32 bit registers. The first read latches the
490  * value.
491  **/
492 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493                                       struct skb_shared_hwtstamps *hwtstamps,
494                                       u64 systim)
495 {
496         u64 ns;
497         unsigned long flags;
498
499         spin_lock_irqsave(&adapter->systim_lock, flags);
500         ns = timecounter_cyc2time(&adapter->tc, systim);
501         spin_unlock_irqrestore(&adapter->systim_lock, flags);
502
503         memset(hwtstamps, 0, sizeof(*hwtstamps));
504         hwtstamps->hwtstamp = ns_to_ktime(ns);
505 }
506
507 /**
508  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509  * @adapter: board private structure
510  * @status: descriptor extended error and status field
511  * @skb: particular skb to include time stamp
512  *
513  * If the time stamp is valid, convert it into the timecounter ns value
514  * and store that result into the shhwtstamps structure which is passed
515  * up the network stack.
516  **/
517 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518                                struct sk_buff *skb)
519 {
520         struct e1000_hw *hw = &adapter->hw;
521         u64 rxstmp;
522
523         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524             !(status & E1000_RXDEXT_STATERR_TST) ||
525             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526                 return;
527
528         /* The Rx time stamp registers contain the time stamp.  No other
529          * received packet will be time stamped until the Rx time stamp
530          * registers are read.  Because only one packet can be time stamped
531          * at a time, the register values must belong to this packet and
532          * therefore none of the other additional attributes need to be
533          * compared.
534          */
535         rxstmp = (u64)er32(RXSTMPL);
536         rxstmp |= (u64)er32(RXSTMPH) << 32;
537         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538
539         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 }
541
542 /**
543  * e1000_receive_skb - helper function to handle Rx indications
544  * @adapter: board private structure
545  * @staterr: descriptor extended error and status field as written by hardware
546  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
547  * @skb: pointer to sk_buff to be indicated to stack
548  **/
549 static void e1000_receive_skb(struct e1000_adapter *adapter,
550                               struct net_device *netdev, struct sk_buff *skb,
551                               u32 staterr, __le16 vlan)
552 {
553         u16 tag = le16_to_cpu(vlan);
554
555         e1000e_rx_hwtstamp(adapter, staterr, skb);
556
557         skb->protocol = eth_type_trans(skb, netdev);
558
559         if (staterr & E1000_RXD_STAT_VP)
560                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
561
562         napi_gro_receive(&adapter->napi, skb);
563 }
564
565 /**
566  * e1000_rx_checksum - Receive Checksum Offload
567  * @adapter: board private structure
568  * @status_err: receive descriptor status and error fields
569  * @csum: receive descriptor csum field
570  * @sk_buff: socket buffer with received data
571  **/
572 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573                               struct sk_buff *skb)
574 {
575         u16 status = (u16)status_err;
576         u8 errors = (u8)(status_err >> 24);
577
578         skb_checksum_none_assert(skb);
579
580         /* Rx checksum disabled */
581         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582                 return;
583
584         /* Ignore Checksum bit is set */
585         if (status & E1000_RXD_STAT_IXSM)
586                 return;
587
588         /* TCP/UDP checksum error bit or IP checksum error bit is set */
589         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
590                 /* let the stack verify checksum errors */
591                 adapter->hw_csum_err++;
592                 return;
593         }
594
595         /* TCP/UDP Checksum has not been calculated */
596         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597                 return;
598
599         /* It must be a TCP or UDP packet with a valid checksum */
600         skb->ip_summed = CHECKSUM_UNNECESSARY;
601         adapter->hw_csum_good++;
602 }
603
604 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
605 {
606         struct e1000_adapter *adapter = rx_ring->adapter;
607         struct e1000_hw *hw = &adapter->hw;
608
609         __ew32_prepare(hw);
610         writel(i, rx_ring->tail);
611
612         if (unlikely(i != readl(rx_ring->tail))) {
613                 u32 rctl = er32(RCTL);
614
615                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
616                 e_err("ME firmware caused invalid RDT - resetting\n");
617                 schedule_work(&adapter->reset_task);
618         }
619 }
620
621 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
622 {
623         struct e1000_adapter *adapter = tx_ring->adapter;
624         struct e1000_hw *hw = &adapter->hw;
625
626         __ew32_prepare(hw);
627         writel(i, tx_ring->tail);
628
629         if (unlikely(i != readl(tx_ring->tail))) {
630                 u32 tctl = er32(TCTL);
631
632                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
633                 e_err("ME firmware caused invalid TDT - resetting\n");
634                 schedule_work(&adapter->reset_task);
635         }
636 }
637
638 /**
639  * e1000_alloc_rx_buffers - Replace used receive buffers
640  * @rx_ring: Rx descriptor ring
641  **/
642 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
643                                    int cleaned_count, gfp_t gfp)
644 {
645         struct e1000_adapter *adapter = rx_ring->adapter;
646         struct net_device *netdev = adapter->netdev;
647         struct pci_dev *pdev = adapter->pdev;
648         union e1000_rx_desc_extended *rx_desc;
649         struct e1000_buffer *buffer_info;
650         struct sk_buff *skb;
651         unsigned int i;
652         unsigned int bufsz = adapter->rx_buffer_len;
653
654         i = rx_ring->next_to_use;
655         buffer_info = &rx_ring->buffer_info[i];
656
657         while (cleaned_count--) {
658                 skb = buffer_info->skb;
659                 if (skb) {
660                         skb_trim(skb, 0);
661                         goto map_skb;
662                 }
663
664                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
665                 if (!skb) {
666                         /* Better luck next round */
667                         adapter->alloc_rx_buff_failed++;
668                         break;
669                 }
670
671                 buffer_info->skb = skb;
672 map_skb:
673                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
674                                                   adapter->rx_buffer_len,
675                                                   DMA_FROM_DEVICE);
676                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
677                         dev_err(&pdev->dev, "Rx DMA map failed\n");
678                         adapter->rx_dma_failed++;
679                         break;
680                 }
681
682                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
683                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
684
685                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
686                         /* Force memory writes to complete before letting h/w
687                          * know there are new descriptors to fetch.  (Only
688                          * applicable for weak-ordered memory model archs,
689                          * such as IA-64).
690                          */
691                         wmb();
692                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
693                                 e1000e_update_rdt_wa(rx_ring, i);
694                         else
695                                 writel(i, rx_ring->tail);
696                 }
697                 i++;
698                 if (i == rx_ring->count)
699                         i = 0;
700                 buffer_info = &rx_ring->buffer_info[i];
701         }
702
703         rx_ring->next_to_use = i;
704 }
705
706 /**
707  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
708  * @rx_ring: Rx descriptor ring
709  **/
710 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
711                                       int cleaned_count, gfp_t gfp)
712 {
713         struct e1000_adapter *adapter = rx_ring->adapter;
714         struct net_device *netdev = adapter->netdev;
715         struct pci_dev *pdev = adapter->pdev;
716         union e1000_rx_desc_packet_split *rx_desc;
717         struct e1000_buffer *buffer_info;
718         struct e1000_ps_page *ps_page;
719         struct sk_buff *skb;
720         unsigned int i, j;
721
722         i = rx_ring->next_to_use;
723         buffer_info = &rx_ring->buffer_info[i];
724
725         while (cleaned_count--) {
726                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
727
728                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
729                         ps_page = &buffer_info->ps_pages[j];
730                         if (j >= adapter->rx_ps_pages) {
731                                 /* all unused desc entries get hw null ptr */
732                                 rx_desc->read.buffer_addr[j + 1] =
733                                     ~cpu_to_le64(0);
734                                 continue;
735                         }
736                         if (!ps_page->page) {
737                                 ps_page->page = alloc_page(gfp);
738                                 if (!ps_page->page) {
739                                         adapter->alloc_rx_buff_failed++;
740                                         goto no_buffers;
741                                 }
742                                 ps_page->dma = dma_map_page(&pdev->dev,
743                                                             ps_page->page,
744                                                             0, PAGE_SIZE,
745                                                             DMA_FROM_DEVICE);
746                                 if (dma_mapping_error(&pdev->dev,
747                                                       ps_page->dma)) {
748                                         dev_err(&adapter->pdev->dev,
749                                                 "Rx DMA page map failed\n");
750                                         adapter->rx_dma_failed++;
751                                         goto no_buffers;
752                                 }
753                         }
754                         /* Refresh the desc even if buffer_addrs
755                          * didn't change because each write-back
756                          * erases this info.
757                          */
758                         rx_desc->read.buffer_addr[j + 1] =
759                             cpu_to_le64(ps_page->dma);
760                 }
761
762                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
763                                                   gfp);
764
765                 if (!skb) {
766                         adapter->alloc_rx_buff_failed++;
767                         break;
768                 }
769
770                 buffer_info->skb = skb;
771                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
772                                                   adapter->rx_ps_bsize0,
773                                                   DMA_FROM_DEVICE);
774                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
775                         dev_err(&pdev->dev, "Rx DMA map failed\n");
776                         adapter->rx_dma_failed++;
777                         /* cleanup skb */
778                         dev_kfree_skb_any(skb);
779                         buffer_info->skb = NULL;
780                         break;
781                 }
782
783                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
784
785                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
786                         /* Force memory writes to complete before letting h/w
787                          * know there are new descriptors to fetch.  (Only
788                          * applicable for weak-ordered memory model archs,
789                          * such as IA-64).
790                          */
791                         wmb();
792                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
793                                 e1000e_update_rdt_wa(rx_ring, i << 1);
794                         else
795                                 writel(i << 1, rx_ring->tail);
796                 }
797
798                 i++;
799                 if (i == rx_ring->count)
800                         i = 0;
801                 buffer_info = &rx_ring->buffer_info[i];
802         }
803
804 no_buffers:
805         rx_ring->next_to_use = i;
806 }
807
808 /**
809  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
810  * @rx_ring: Rx descriptor ring
811  * @cleaned_count: number of buffers to allocate this pass
812  **/
813
814 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
815                                          int cleaned_count, gfp_t gfp)
816 {
817         struct e1000_adapter *adapter = rx_ring->adapter;
818         struct net_device *netdev = adapter->netdev;
819         struct pci_dev *pdev = adapter->pdev;
820         union e1000_rx_desc_extended *rx_desc;
821         struct e1000_buffer *buffer_info;
822         struct sk_buff *skb;
823         unsigned int i;
824         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
825
826         i = rx_ring->next_to_use;
827         buffer_info = &rx_ring->buffer_info[i];
828
829         while (cleaned_count--) {
830                 skb = buffer_info->skb;
831                 if (skb) {
832                         skb_trim(skb, 0);
833                         goto check_page;
834                 }
835
836                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
837                 if (unlikely(!skb)) {
838                         /* Better luck next round */
839                         adapter->alloc_rx_buff_failed++;
840                         break;
841                 }
842
843                 buffer_info->skb = skb;
844 check_page:
845                 /* allocate a new page if necessary */
846                 if (!buffer_info->page) {
847                         buffer_info->page = alloc_page(gfp);
848                         if (unlikely(!buffer_info->page)) {
849                                 adapter->alloc_rx_buff_failed++;
850                                 break;
851                         }
852                 }
853
854                 if (!buffer_info->dma) {
855                         buffer_info->dma = dma_map_page(&pdev->dev,
856                                                         buffer_info->page, 0,
857                                                         PAGE_SIZE,
858                                                         DMA_FROM_DEVICE);
859                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
860                                 adapter->alloc_rx_buff_failed++;
861                                 break;
862                         }
863                 }
864
865                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
866                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
867
868                 if (unlikely(++i == rx_ring->count))
869                         i = 0;
870                 buffer_info = &rx_ring->buffer_info[i];
871         }
872
873         if (likely(rx_ring->next_to_use != i)) {
874                 rx_ring->next_to_use = i;
875                 if (unlikely(i-- == 0))
876                         i = (rx_ring->count - 1);
877
878                 /* Force memory writes to complete before letting h/w
879                  * know there are new descriptors to fetch.  (Only
880                  * applicable for weak-ordered memory model archs,
881                  * such as IA-64).
882                  */
883                 wmb();
884                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
885                         e1000e_update_rdt_wa(rx_ring, i);
886                 else
887                         writel(i, rx_ring->tail);
888         }
889 }
890
891 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
892                                  struct sk_buff *skb)
893 {
894         if (netdev->features & NETIF_F_RXHASH)
895                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
896 }
897
898 /**
899  * e1000_clean_rx_irq - Send received data up the network stack
900  * @rx_ring: Rx descriptor ring
901  *
902  * the return value indicates whether actual cleaning was done, there
903  * is no guarantee that everything was cleaned
904  **/
905 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
906                                int work_to_do)
907 {
908         struct e1000_adapter *adapter = rx_ring->adapter;
909         struct net_device *netdev = adapter->netdev;
910         struct pci_dev *pdev = adapter->pdev;
911         struct e1000_hw *hw = &adapter->hw;
912         union e1000_rx_desc_extended *rx_desc, *next_rxd;
913         struct e1000_buffer *buffer_info, *next_buffer;
914         u32 length, staterr;
915         unsigned int i;
916         int cleaned_count = 0;
917         bool cleaned = false;
918         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
919
920         i = rx_ring->next_to_clean;
921         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
922         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
923         buffer_info = &rx_ring->buffer_info[i];
924
925         while (staterr & E1000_RXD_STAT_DD) {
926                 struct sk_buff *skb;
927
928                 if (*work_done >= work_to_do)
929                         break;
930                 (*work_done)++;
931                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
932
933                 skb = buffer_info->skb;
934                 buffer_info->skb = NULL;
935
936                 prefetch(skb->data - NET_IP_ALIGN);
937
938                 i++;
939                 if (i == rx_ring->count)
940                         i = 0;
941                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
942                 prefetch(next_rxd);
943
944                 next_buffer = &rx_ring->buffer_info[i];
945
946                 cleaned = true;
947                 cleaned_count++;
948                 dma_unmap_single(&pdev->dev, buffer_info->dma,
949                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
950                 buffer_info->dma = 0;
951
952                 length = le16_to_cpu(rx_desc->wb.upper.length);
953
954                 /* !EOP means multiple descriptors were used to store a single
955                  * packet, if that's the case we need to toss it.  In fact, we
956                  * need to toss every packet with the EOP bit clear and the
957                  * next frame that _does_ have the EOP bit set, as it is by
958                  * definition only a frame fragment
959                  */
960                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
961                         adapter->flags2 |= FLAG2_IS_DISCARDING;
962
963                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
964                         /* All receives must fit into a single buffer */
965                         e_dbg("Receive packet consumed multiple buffers\n");
966                         /* recycle */
967                         buffer_info->skb = skb;
968                         if (staterr & E1000_RXD_STAT_EOP)
969                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
970                         goto next_desc;
971                 }
972
973                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
974                              !(netdev->features & NETIF_F_RXALL))) {
975                         /* recycle */
976                         buffer_info->skb = skb;
977                         goto next_desc;
978                 }
979
980                 /* adjust length to remove Ethernet CRC */
981                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
982                         /* If configured to store CRC, don't subtract FCS,
983                          * but keep the FCS bytes out of the total_rx_bytes
984                          * counter
985                          */
986                         if (netdev->features & NETIF_F_RXFCS)
987                                 total_rx_bytes -= 4;
988                         else
989                                 length -= 4;
990                 }
991
992                 total_rx_bytes += length;
993                 total_rx_packets++;
994
995                 /* code added for copybreak, this should improve
996                  * performance for small packets with large amounts
997                  * of reassembly being done in the stack
998                  */
999                 if (length < copybreak) {
1000                         struct sk_buff *new_skb =
1001                                 napi_alloc_skb(&adapter->napi, length);
1002                         if (new_skb) {
1003                                 skb_copy_to_linear_data_offset(new_skb,
1004                                                                -NET_IP_ALIGN,
1005                                                                (skb->data -
1006                                                                 NET_IP_ALIGN),
1007                                                                (length +
1008                                                                 NET_IP_ALIGN));
1009                                 /* save the skb in buffer_info as good */
1010                                 buffer_info->skb = skb;
1011                                 skb = new_skb;
1012                         }
1013                         /* else just continue with the old one */
1014                 }
1015                 /* end copybreak code */
1016                 skb_put(skb, length);
1017
1018                 /* Receive Checksum Offload */
1019                 e1000_rx_checksum(adapter, staterr, skb);
1020
1021                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1022
1023                 e1000_receive_skb(adapter, netdev, skb, staterr,
1024                                   rx_desc->wb.upper.vlan);
1025
1026 next_desc:
1027                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1028
1029                 /* return some buffers to hardware, one at a time is too slow */
1030                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1031                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1032                                               GFP_ATOMIC);
1033                         cleaned_count = 0;
1034                 }
1035
1036                 /* use prefetched values */
1037                 rx_desc = next_rxd;
1038                 buffer_info = next_buffer;
1039
1040                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1041         }
1042         rx_ring->next_to_clean = i;
1043
1044         cleaned_count = e1000_desc_unused(rx_ring);
1045         if (cleaned_count)
1046                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1047
1048         adapter->total_rx_bytes += total_rx_bytes;
1049         adapter->total_rx_packets += total_rx_packets;
1050         return cleaned;
1051 }
1052
1053 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1054                             struct e1000_buffer *buffer_info,
1055                             bool drop)
1056 {
1057         struct e1000_adapter *adapter = tx_ring->adapter;
1058
1059         if (buffer_info->dma) {
1060                 if (buffer_info->mapped_as_page)
1061                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1062                                        buffer_info->length, DMA_TO_DEVICE);
1063                 else
1064                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1065                                          buffer_info->length, DMA_TO_DEVICE);
1066                 buffer_info->dma = 0;
1067         }
1068         if (buffer_info->skb) {
1069                 if (drop)
1070                         dev_kfree_skb_any(buffer_info->skb);
1071                 else
1072                         dev_consume_skb_any(buffer_info->skb);
1073                 buffer_info->skb = NULL;
1074         }
1075         buffer_info->time_stamp = 0;
1076 }
1077
1078 static void e1000_print_hw_hang(struct work_struct *work)
1079 {
1080         struct e1000_adapter *adapter = container_of(work,
1081                                                      struct e1000_adapter,
1082                                                      print_hang_task);
1083         struct net_device *netdev = adapter->netdev;
1084         struct e1000_ring *tx_ring = adapter->tx_ring;
1085         unsigned int i = tx_ring->next_to_clean;
1086         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1087         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1088         struct e1000_hw *hw = &adapter->hw;
1089         u16 phy_status, phy_1000t_status, phy_ext_status;
1090         u16 pci_status;
1091
1092         if (test_bit(__E1000_DOWN, &adapter->state))
1093                 return;
1094
1095         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1096                 /* May be block on write-back, flush and detect again
1097                  * flush pending descriptor writebacks to memory
1098                  */
1099                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1100                 /* execute the writes immediately */
1101                 e1e_flush();
1102                 /* Due to rare timing issues, write to TIDV again to ensure
1103                  * the write is successful
1104                  */
1105                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106                 /* execute the writes immediately */
1107                 e1e_flush();
1108                 adapter->tx_hang_recheck = true;
1109                 return;
1110         }
1111         adapter->tx_hang_recheck = false;
1112
1113         if (er32(TDH(0)) == er32(TDT(0))) {
1114                 e_dbg("false hang detected, ignoring\n");
1115                 return;
1116         }
1117
1118         /* Real hang detected */
1119         netif_stop_queue(netdev);
1120
1121         e1e_rphy(hw, MII_BMSR, &phy_status);
1122         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1123         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1124
1125         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1126
1127         /* detected Hardware unit hang */
1128         e_err("Detected Hardware Unit Hang:\n"
1129               "  TDH                  <%x>\n"
1130               "  TDT                  <%x>\n"
1131               "  next_to_use          <%x>\n"
1132               "  next_to_clean        <%x>\n"
1133               "buffer_info[next_to_clean]:\n"
1134               "  time_stamp           <%lx>\n"
1135               "  next_to_watch        <%x>\n"
1136               "  jiffies              <%lx>\n"
1137               "  next_to_watch.status <%x>\n"
1138               "MAC Status             <%x>\n"
1139               "PHY Status             <%x>\n"
1140               "PHY 1000BASE-T Status  <%x>\n"
1141               "PHY Extended Status    <%x>\n"
1142               "PCI Status             <%x>\n",
1143               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1144               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1145               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1146               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1147
1148         e1000e_dump(adapter);
1149
1150         /* Suggest workaround for known h/w issue */
1151         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1152                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1153 }
1154
1155 /**
1156  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1157  * @work: pointer to work struct
1158  *
1159  * This work function polls the TSYNCTXCTL valid bit to determine when a
1160  * timestamp has been taken for the current stored skb.  The timestamp must
1161  * be for this skb because only one such packet is allowed in the queue.
1162  */
1163 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1164 {
1165         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1166                                                      tx_hwtstamp_work);
1167         struct e1000_hw *hw = &adapter->hw;
1168
1169         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1170                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1171                 struct skb_shared_hwtstamps shhwtstamps;
1172                 u64 txstmp;
1173
1174                 txstmp = er32(TXSTMPL);
1175                 txstmp |= (u64)er32(TXSTMPH) << 32;
1176
1177                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1178
1179                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1180                  * prior to notifying the stack of a Tx timestamp.
1181                  */
1182                 adapter->tx_hwtstamp_skb = NULL;
1183                 wmb(); /* force write prior to skb_tstamp_tx */
1184
1185                 skb_tstamp_tx(skb, &shhwtstamps);
1186                 dev_consume_skb_any(skb);
1187         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1188                               + adapter->tx_timeout_factor * HZ)) {
1189                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1190                 adapter->tx_hwtstamp_skb = NULL;
1191                 adapter->tx_hwtstamp_timeouts++;
1192                 e_warn("clearing Tx timestamp hang\n");
1193         } else {
1194                 /* reschedule to check later */
1195                 schedule_work(&adapter->tx_hwtstamp_work);
1196         }
1197 }
1198
1199 /**
1200  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1201  * @tx_ring: Tx descriptor ring
1202  *
1203  * the return value indicates whether actual cleaning was done, there
1204  * is no guarantee that everything was cleaned
1205  **/
1206 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1207 {
1208         struct e1000_adapter *adapter = tx_ring->adapter;
1209         struct net_device *netdev = adapter->netdev;
1210         struct e1000_hw *hw = &adapter->hw;
1211         struct e1000_tx_desc *tx_desc, *eop_desc;
1212         struct e1000_buffer *buffer_info;
1213         unsigned int i, eop;
1214         unsigned int count = 0;
1215         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1216         unsigned int bytes_compl = 0, pkts_compl = 0;
1217
1218         i = tx_ring->next_to_clean;
1219         eop = tx_ring->buffer_info[i].next_to_watch;
1220         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1221
1222         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1223                (count < tx_ring->count)) {
1224                 bool cleaned = false;
1225
1226                 dma_rmb();              /* read buffer_info after eop_desc */
1227                 for (; !cleaned; count++) {
1228                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1229                         buffer_info = &tx_ring->buffer_info[i];
1230                         cleaned = (i == eop);
1231
1232                         if (cleaned) {
1233                                 total_tx_packets += buffer_info->segs;
1234                                 total_tx_bytes += buffer_info->bytecount;
1235                                 if (buffer_info->skb) {
1236                                         bytes_compl += buffer_info->skb->len;
1237                                         pkts_compl++;
1238                                 }
1239                         }
1240
1241                         e1000_put_txbuf(tx_ring, buffer_info, false);
1242                         tx_desc->upper.data = 0;
1243
1244                         i++;
1245                         if (i == tx_ring->count)
1246                                 i = 0;
1247                 }
1248
1249                 if (i == tx_ring->next_to_use)
1250                         break;
1251                 eop = tx_ring->buffer_info[i].next_to_watch;
1252                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1253         }
1254
1255         tx_ring->next_to_clean = i;
1256
1257         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1258
1259 #define TX_WAKE_THRESHOLD 32
1260         if (count && netif_carrier_ok(netdev) &&
1261             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1262                 /* Make sure that anybody stopping the queue after this
1263                  * sees the new next_to_clean.
1264                  */
1265                 smp_mb();
1266
1267                 if (netif_queue_stopped(netdev) &&
1268                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1269                         netif_wake_queue(netdev);
1270                         ++adapter->restart_queue;
1271                 }
1272         }
1273
1274         if (adapter->detect_tx_hung) {
1275                 /* Detect a transmit hang in hardware, this serializes the
1276                  * check with the clearing of time_stamp and movement of i
1277                  */
1278                 adapter->detect_tx_hung = false;
1279                 if (tx_ring->buffer_info[i].time_stamp &&
1280                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1281                                + (adapter->tx_timeout_factor * HZ)) &&
1282                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1283                         schedule_work(&adapter->print_hang_task);
1284                 else
1285                         adapter->tx_hang_recheck = false;
1286         }
1287         adapter->total_tx_bytes += total_tx_bytes;
1288         adapter->total_tx_packets += total_tx_packets;
1289         return count < tx_ring->count;
1290 }
1291
1292 /**
1293  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1294  * @rx_ring: Rx descriptor ring
1295  *
1296  * the return value indicates whether actual cleaning was done, there
1297  * is no guarantee that everything was cleaned
1298  **/
1299 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1300                                   int work_to_do)
1301 {
1302         struct e1000_adapter *adapter = rx_ring->adapter;
1303         struct e1000_hw *hw = &adapter->hw;
1304         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1305         struct net_device *netdev = adapter->netdev;
1306         struct pci_dev *pdev = adapter->pdev;
1307         struct e1000_buffer *buffer_info, *next_buffer;
1308         struct e1000_ps_page *ps_page;
1309         struct sk_buff *skb;
1310         unsigned int i, j;
1311         u32 length, staterr;
1312         int cleaned_count = 0;
1313         bool cleaned = false;
1314         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1315
1316         i = rx_ring->next_to_clean;
1317         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1318         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1319         buffer_info = &rx_ring->buffer_info[i];
1320
1321         while (staterr & E1000_RXD_STAT_DD) {
1322                 if (*work_done >= work_to_do)
1323                         break;
1324                 (*work_done)++;
1325                 skb = buffer_info->skb;
1326                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1327
1328                 /* in the packet split case this is header only */
1329                 prefetch(skb->data - NET_IP_ALIGN);
1330
1331                 i++;
1332                 if (i == rx_ring->count)
1333                         i = 0;
1334                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1335                 prefetch(next_rxd);
1336
1337                 next_buffer = &rx_ring->buffer_info[i];
1338
1339                 cleaned = true;
1340                 cleaned_count++;
1341                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1342                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1343                 buffer_info->dma = 0;
1344
1345                 /* see !EOP comment in other Rx routine */
1346                 if (!(staterr & E1000_RXD_STAT_EOP))
1347                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1348
1349                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1350                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1351                         dev_kfree_skb_irq(skb);
1352                         if (staterr & E1000_RXD_STAT_EOP)
1353                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1354                         goto next_desc;
1355                 }
1356
1357                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1358                              !(netdev->features & NETIF_F_RXALL))) {
1359                         dev_kfree_skb_irq(skb);
1360                         goto next_desc;
1361                 }
1362
1363                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1364
1365                 if (!length) {
1366                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1367                         dev_kfree_skb_irq(skb);
1368                         goto next_desc;
1369                 }
1370
1371                 /* Good Receive */
1372                 skb_put(skb, length);
1373
1374                 {
1375                         /* this looks ugly, but it seems compiler issues make
1376                          * it more efficient than reusing j
1377                          */
1378                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1379
1380                         /* page alloc/put takes too long and effects small
1381                          * packet throughput, so unsplit small packets and
1382                          * save the alloc/put only valid in softirq (napi)
1383                          * context to call kmap_*
1384                          */
1385                         if (l1 && (l1 <= copybreak) &&
1386                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1387                                 u8 *vaddr;
1388
1389                                 ps_page = &buffer_info->ps_pages[0];
1390
1391                                 /* there is no documentation about how to call
1392                                  * kmap_atomic, so we can't hold the mapping
1393                                  * very long
1394                                  */
1395                                 dma_sync_single_for_cpu(&pdev->dev,
1396                                                         ps_page->dma,
1397                                                         PAGE_SIZE,
1398                                                         DMA_FROM_DEVICE);
1399                                 vaddr = kmap_atomic(ps_page->page);
1400                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1401                                 kunmap_atomic(vaddr);
1402                                 dma_sync_single_for_device(&pdev->dev,
1403                                                            ps_page->dma,
1404                                                            PAGE_SIZE,
1405                                                            DMA_FROM_DEVICE);
1406
1407                                 /* remove the CRC */
1408                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1409                                         if (!(netdev->features & NETIF_F_RXFCS))
1410                                                 l1 -= 4;
1411                                 }
1412
1413                                 skb_put(skb, l1);
1414                                 goto copydone;
1415                         }       /* if */
1416                 }
1417
1418                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1419                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1420                         if (!length)
1421                                 break;
1422
1423                         ps_page = &buffer_info->ps_pages[j];
1424                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1425                                        DMA_FROM_DEVICE);
1426                         ps_page->dma = 0;
1427                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1428                         ps_page->page = NULL;
1429                         skb->len += length;
1430                         skb->data_len += length;
1431                         skb->truesize += PAGE_SIZE;
1432                 }
1433
1434                 /* strip the ethernet crc, problem is we're using pages now so
1435                  * this whole operation can get a little cpu intensive
1436                  */
1437                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1438                         if (!(netdev->features & NETIF_F_RXFCS))
1439                                 pskb_trim(skb, skb->len - 4);
1440                 }
1441
1442 copydone:
1443                 total_rx_bytes += skb->len;
1444                 total_rx_packets++;
1445
1446                 e1000_rx_checksum(adapter, staterr, skb);
1447
1448                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1449
1450                 if (rx_desc->wb.upper.header_status &
1451                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1452                         adapter->rx_hdr_split++;
1453
1454                 e1000_receive_skb(adapter, netdev, skb, staterr,
1455                                   rx_desc->wb.middle.vlan);
1456
1457 next_desc:
1458                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1459                 buffer_info->skb = NULL;
1460
1461                 /* return some buffers to hardware, one at a time is too slow */
1462                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1463                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1464                                               GFP_ATOMIC);
1465                         cleaned_count = 0;
1466                 }
1467
1468                 /* use prefetched values */
1469                 rx_desc = next_rxd;
1470                 buffer_info = next_buffer;
1471
1472                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1473         }
1474         rx_ring->next_to_clean = i;
1475
1476         cleaned_count = e1000_desc_unused(rx_ring);
1477         if (cleaned_count)
1478                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1479
1480         adapter->total_rx_bytes += total_rx_bytes;
1481         adapter->total_rx_packets += total_rx_packets;
1482         return cleaned;
1483 }
1484
1485 /**
1486  * e1000_consume_page - helper function
1487  **/
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489                                u16 length)
1490 {
1491         bi->page = NULL;
1492         skb->len += length;
1493         skb->data_len += length;
1494         skb->truesize += PAGE_SIZE;
1495 }
1496
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @adapter: board private structure
1500  *
1501  * the return value indicates whether actual cleaning was done, there
1502  * is no guarantee that everything was cleaned
1503  **/
1504 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1505                                      int work_to_do)
1506 {
1507         struct e1000_adapter *adapter = rx_ring->adapter;
1508         struct net_device *netdev = adapter->netdev;
1509         struct pci_dev *pdev = adapter->pdev;
1510         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1511         struct e1000_buffer *buffer_info, *next_buffer;
1512         u32 length, staterr;
1513         unsigned int i;
1514         int cleaned_count = 0;
1515         bool cleaned = false;
1516         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1517         struct skb_shared_info *shinfo;
1518
1519         i = rx_ring->next_to_clean;
1520         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1521         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1522         buffer_info = &rx_ring->buffer_info[i];
1523
1524         while (staterr & E1000_RXD_STAT_DD) {
1525                 struct sk_buff *skb;
1526
1527                 if (*work_done >= work_to_do)
1528                         break;
1529                 (*work_done)++;
1530                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1531
1532                 skb = buffer_info->skb;
1533                 buffer_info->skb = NULL;
1534
1535                 ++i;
1536                 if (i == rx_ring->count)
1537                         i = 0;
1538                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1539                 prefetch(next_rxd);
1540
1541                 next_buffer = &rx_ring->buffer_info[i];
1542
1543                 cleaned = true;
1544                 cleaned_count++;
1545                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1546                                DMA_FROM_DEVICE);
1547                 buffer_info->dma = 0;
1548
1549                 length = le16_to_cpu(rx_desc->wb.upper.length);
1550
1551                 /* errors is only valid for DD + EOP descriptors */
1552                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1553                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1554                               !(netdev->features & NETIF_F_RXALL)))) {
1555                         /* recycle both page and skb */
1556                         buffer_info->skb = skb;
1557                         /* an error means any chain goes out the window too */
1558                         if (rx_ring->rx_skb_top)
1559                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1560                         rx_ring->rx_skb_top = NULL;
1561                         goto next_desc;
1562                 }
1563 #define rxtop (rx_ring->rx_skb_top)
1564                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1565                         /* this descriptor is only the beginning (or middle) */
1566                         if (!rxtop) {
1567                                 /* this is the beginning of a chain */
1568                                 rxtop = skb;
1569                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1570                                                    0, length);
1571                         } else {
1572                                 /* this is the middle of a chain */
1573                                 shinfo = skb_shinfo(rxtop);
1574                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1575                                                    buffer_info->page, 0,
1576                                                    length);
1577                                 /* re-use the skb, only consumed the page */
1578                                 buffer_info->skb = skb;
1579                         }
1580                         e1000_consume_page(buffer_info, rxtop, length);
1581                         goto next_desc;
1582                 } else {
1583                         if (rxtop) {
1584                                 /* end of the chain */
1585                                 shinfo = skb_shinfo(rxtop);
1586                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1587                                                    buffer_info->page, 0,
1588                                                    length);
1589                                 /* re-use the current skb, we only consumed the
1590                                  * page
1591                                  */
1592                                 buffer_info->skb = skb;
1593                                 skb = rxtop;
1594                                 rxtop = NULL;
1595                                 e1000_consume_page(buffer_info, skb, length);
1596                         } else {
1597                                 /* no chain, got EOP, this buf is the packet
1598                                  * copybreak to save the put_page/alloc_page
1599                                  */
1600                                 if (length <= copybreak &&
1601                                     skb_tailroom(skb) >= length) {
1602                                         u8 *vaddr;
1603                                         vaddr = kmap_atomic(buffer_info->page);
1604                                         memcpy(skb_tail_pointer(skb), vaddr,
1605                                                length);
1606                                         kunmap_atomic(vaddr);
1607                                         /* re-use the page, so don't erase
1608                                          * buffer_info->page
1609                                          */
1610                                         skb_put(skb, length);
1611                                 } else {
1612                                         skb_fill_page_desc(skb, 0,
1613                                                            buffer_info->page, 0,
1614                                                            length);
1615                                         e1000_consume_page(buffer_info, skb,
1616                                                            length);
1617                                 }
1618                         }
1619                 }
1620
1621                 /* Receive Checksum Offload */
1622                 e1000_rx_checksum(adapter, staterr, skb);
1623
1624                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626                 /* probably a little skewed due to removing CRC */
1627                 total_rx_bytes += skb->len;
1628                 total_rx_packets++;
1629
1630                 /* eth type trans needs skb->data to point to something */
1631                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1632                         e_err("pskb_may_pull failed.\n");
1633                         dev_kfree_skb_irq(skb);
1634                         goto next_desc;
1635                 }
1636
1637                 e1000_receive_skb(adapter, netdev, skb, staterr,
1638                                   rx_desc->wb.upper.vlan);
1639
1640 next_desc:
1641                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643                 /* return some buffers to hardware, one at a time is too slow */
1644                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646                                               GFP_ATOMIC);
1647                         cleaned_count = 0;
1648                 }
1649
1650                 /* use prefetched values */
1651                 rx_desc = next_rxd;
1652                 buffer_info = next_buffer;
1653
1654                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655         }
1656         rx_ring->next_to_clean = i;
1657
1658         cleaned_count = e1000_desc_unused(rx_ring);
1659         if (cleaned_count)
1660                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662         adapter->total_rx_bytes += total_rx_bytes;
1663         adapter->total_rx_packets += total_rx_packets;
1664         return cleaned;
1665 }
1666
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673         struct e1000_adapter *adapter = rx_ring->adapter;
1674         struct e1000_buffer *buffer_info;
1675         struct e1000_ps_page *ps_page;
1676         struct pci_dev *pdev = adapter->pdev;
1677         unsigned int i, j;
1678
1679         /* Free all the Rx ring sk_buffs */
1680         for (i = 0; i < rx_ring->count; i++) {
1681                 buffer_info = &rx_ring->buffer_info[i];
1682                 if (buffer_info->dma) {
1683                         if (adapter->clean_rx == e1000_clean_rx_irq)
1684                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1685                                                  adapter->rx_buffer_len,
1686                                                  DMA_FROM_DEVICE);
1687                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1689                                                PAGE_SIZE, DMA_FROM_DEVICE);
1690                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1692                                                  adapter->rx_ps_bsize0,
1693                                                  DMA_FROM_DEVICE);
1694                         buffer_info->dma = 0;
1695                 }
1696
1697                 if (buffer_info->page) {
1698                         put_page(buffer_info->page);
1699                         buffer_info->page = NULL;
1700                 }
1701
1702                 if (buffer_info->skb) {
1703                         dev_kfree_skb(buffer_info->skb);
1704                         buffer_info->skb = NULL;
1705                 }
1706
1707                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708                         ps_page = &buffer_info->ps_pages[j];
1709                         if (!ps_page->page)
1710                                 break;
1711                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712                                        DMA_FROM_DEVICE);
1713                         ps_page->dma = 0;
1714                         put_page(ps_page->page);
1715                         ps_page->page = NULL;
1716                 }
1717         }
1718
1719         /* there also may be some cached data from a chained receive */
1720         if (rx_ring->rx_skb_top) {
1721                 dev_kfree_skb(rx_ring->rx_skb_top);
1722                 rx_ring->rx_skb_top = NULL;
1723         }
1724
1725         /* Zero out the descriptor ring */
1726         memset(rx_ring->desc, 0, rx_ring->size);
1727
1728         rx_ring->next_to_clean = 0;
1729         rx_ring->next_to_use = 0;
1730         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735         struct e1000_adapter *adapter = container_of(work,
1736                                                      struct e1000_adapter,
1737                                                      downshift_task);
1738
1739         if (test_bit(__E1000_DOWN, &adapter->state))
1740                 return;
1741
1742         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752         struct net_device *netdev = data;
1753         struct e1000_adapter *adapter = netdev_priv(netdev);
1754         struct e1000_hw *hw = &adapter->hw;
1755         u32 icr = er32(ICR);
1756
1757         /* read ICR disables interrupts using IAM */
1758         if (icr & E1000_ICR_LSC) {
1759                 hw->mac.get_link_status = true;
1760                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1761                  * disconnect (LSC) before accessing any PHY registers
1762                  */
1763                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764                     (!(er32(STATUS) & E1000_STATUS_LU)))
1765                         schedule_work(&adapter->downshift_task);
1766
1767                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1768                  * link down event; disable receives here in the ISR and reset
1769                  * adapter in watchdog
1770                  */
1771                 if (netif_carrier_ok(netdev) &&
1772                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773                         /* disable receives */
1774                         u32 rctl = er32(RCTL);
1775
1776                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777                         adapter->flags |= FLAG_RESTART_NOW;
1778                 }
1779                 /* guard against interrupt when we're going down */
1780                 if (!test_bit(__E1000_DOWN, &adapter->state))
1781                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782         }
1783
1784         /* Reset on uncorrectable ECC error */
1785         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786                 u32 pbeccsts = er32(PBECCSTS);
1787
1788                 adapter->corr_errors +=
1789                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790                 adapter->uncorr_errors +=
1791                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1792                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1793
1794                 /* Do the reset outside of interrupt context */
1795                 schedule_work(&adapter->reset_task);
1796
1797                 /* return immediately since reset is imminent */
1798                 return IRQ_HANDLED;
1799         }
1800
1801         if (napi_schedule_prep(&adapter->napi)) {
1802                 adapter->total_tx_bytes = 0;
1803                 adapter->total_tx_packets = 0;
1804                 adapter->total_rx_bytes = 0;
1805                 adapter->total_rx_packets = 0;
1806                 __napi_schedule(&adapter->napi);
1807         }
1808
1809         return IRQ_HANDLED;
1810 }
1811
1812 /**
1813  * e1000_intr - Interrupt Handler
1814  * @irq: interrupt number
1815  * @data: pointer to a network interface device structure
1816  **/
1817 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1818 {
1819         struct net_device *netdev = data;
1820         struct e1000_adapter *adapter = netdev_priv(netdev);
1821         struct e1000_hw *hw = &adapter->hw;
1822         u32 rctl, icr = er32(ICR);
1823
1824         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1825                 return IRQ_NONE;        /* Not our interrupt */
1826
1827         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1828          * not set, then the adapter didn't send an interrupt
1829          */
1830         if (!(icr & E1000_ICR_INT_ASSERTED))
1831                 return IRQ_NONE;
1832
1833         /* Interrupt Auto-Mask...upon reading ICR,
1834          * interrupts are masked.  No need for the
1835          * IMC write
1836          */
1837
1838         if (icr & E1000_ICR_LSC) {
1839                 hw->mac.get_link_status = true;
1840                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1841                  * disconnect (LSC) before accessing any PHY registers
1842                  */
1843                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1844                     (!(er32(STATUS) & E1000_STATUS_LU)))
1845                         schedule_work(&adapter->downshift_task);
1846
1847                 /* 80003ES2LAN workaround--
1848                  * For packet buffer work-around on link down event;
1849                  * disable receives here in the ISR and
1850                  * reset adapter in watchdog
1851                  */
1852                 if (netif_carrier_ok(netdev) &&
1853                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1854                         /* disable receives */
1855                         rctl = er32(RCTL);
1856                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1857                         adapter->flags |= FLAG_RESTART_NOW;
1858                 }
1859                 /* guard against interrupt when we're going down */
1860                 if (!test_bit(__E1000_DOWN, &adapter->state))
1861                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1862         }
1863
1864         /* Reset on uncorrectable ECC error */
1865         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1866                 u32 pbeccsts = er32(PBECCSTS);
1867
1868                 adapter->corr_errors +=
1869                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1870                 adapter->uncorr_errors +=
1871                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1872                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1873
1874                 /* Do the reset outside of interrupt context */
1875                 schedule_work(&adapter->reset_task);
1876
1877                 /* return immediately since reset is imminent */
1878                 return IRQ_HANDLED;
1879         }
1880
1881         if (napi_schedule_prep(&adapter->napi)) {
1882                 adapter->total_tx_bytes = 0;
1883                 adapter->total_tx_packets = 0;
1884                 adapter->total_rx_bytes = 0;
1885                 adapter->total_rx_packets = 0;
1886                 __napi_schedule(&adapter->napi);
1887         }
1888
1889         return IRQ_HANDLED;
1890 }
1891
1892 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1893 {
1894         struct net_device *netdev = data;
1895         struct e1000_adapter *adapter = netdev_priv(netdev);
1896         struct e1000_hw *hw = &adapter->hw;
1897         u32 icr = er32(ICR);
1898
1899         if (icr & adapter->eiac_mask)
1900                 ew32(ICS, (icr & adapter->eiac_mask));
1901
1902         if (icr & E1000_ICR_LSC) {
1903                 hw->mac.get_link_status = true;
1904                 /* guard against interrupt when we're going down */
1905                 if (!test_bit(__E1000_DOWN, &adapter->state))
1906                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1907         }
1908
1909         if (!test_bit(__E1000_DOWN, &adapter->state))
1910                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1911
1912         return IRQ_HANDLED;
1913 }
1914
1915 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1916 {
1917         struct net_device *netdev = data;
1918         struct e1000_adapter *adapter = netdev_priv(netdev);
1919         struct e1000_hw *hw = &adapter->hw;
1920         struct e1000_ring *tx_ring = adapter->tx_ring;
1921
1922         adapter->total_tx_bytes = 0;
1923         adapter->total_tx_packets = 0;
1924
1925         if (!e1000_clean_tx_irq(tx_ring))
1926                 /* Ring was not completely cleaned, so fire another interrupt */
1927                 ew32(ICS, tx_ring->ims_val);
1928
1929         if (!test_bit(__E1000_DOWN, &adapter->state))
1930                 ew32(IMS, adapter->tx_ring->ims_val);
1931
1932         return IRQ_HANDLED;
1933 }
1934
1935 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1936 {
1937         struct net_device *netdev = data;
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939         struct e1000_ring *rx_ring = adapter->rx_ring;
1940
1941         /* Write the ITR value calculated at the end of the
1942          * previous interrupt.
1943          */
1944         if (rx_ring->set_itr) {
1945                 u32 itr = rx_ring->itr_val ?
1946                           1000000000 / (rx_ring->itr_val * 256) : 0;
1947
1948                 writel(itr, rx_ring->itr_register);
1949                 rx_ring->set_itr = 0;
1950         }
1951
1952         if (napi_schedule_prep(&adapter->napi)) {
1953                 adapter->total_rx_bytes = 0;
1954                 adapter->total_rx_packets = 0;
1955                 __napi_schedule(&adapter->napi);
1956         }
1957         return IRQ_HANDLED;
1958 }
1959
1960 /**
1961  * e1000_configure_msix - Configure MSI-X hardware
1962  *
1963  * e1000_configure_msix sets up the hardware to properly
1964  * generate MSI-X interrupts.
1965  **/
1966 static void e1000_configure_msix(struct e1000_adapter *adapter)
1967 {
1968         struct e1000_hw *hw = &adapter->hw;
1969         struct e1000_ring *rx_ring = adapter->rx_ring;
1970         struct e1000_ring *tx_ring = adapter->tx_ring;
1971         int vector = 0;
1972         u32 ctrl_ext, ivar = 0;
1973
1974         adapter->eiac_mask = 0;
1975
1976         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1977         if (hw->mac.type == e1000_82574) {
1978                 u32 rfctl = er32(RFCTL);
1979
1980                 rfctl |= E1000_RFCTL_ACK_DIS;
1981                 ew32(RFCTL, rfctl);
1982         }
1983
1984         /* Configure Rx vector */
1985         rx_ring->ims_val = E1000_IMS_RXQ0;
1986         adapter->eiac_mask |= rx_ring->ims_val;
1987         if (rx_ring->itr_val)
1988                 writel(1000000000 / (rx_ring->itr_val * 256),
1989                        rx_ring->itr_register);
1990         else
1991                 writel(1, rx_ring->itr_register);
1992         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1993
1994         /* Configure Tx vector */
1995         tx_ring->ims_val = E1000_IMS_TXQ0;
1996         vector++;
1997         if (tx_ring->itr_val)
1998                 writel(1000000000 / (tx_ring->itr_val * 256),
1999                        tx_ring->itr_register);
2000         else
2001                 writel(1, tx_ring->itr_register);
2002         adapter->eiac_mask |= tx_ring->ims_val;
2003         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2004
2005         /* set vector for Other Causes, e.g. link changes */
2006         vector++;
2007         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2008         if (rx_ring->itr_val)
2009                 writel(1000000000 / (rx_ring->itr_val * 256),
2010                        hw->hw_addr + E1000_EITR_82574(vector));
2011         else
2012                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2013
2014         /* Cause Tx interrupts on every write back */
2015         ivar |= BIT(31);
2016
2017         ew32(IVAR, ivar);
2018
2019         /* enable MSI-X PBA support */
2020         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2021         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2022         ew32(CTRL_EXT, ctrl_ext);
2023         e1e_flush();
2024 }
2025
2026 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2027 {
2028         if (adapter->msix_entries) {
2029                 pci_disable_msix(adapter->pdev);
2030                 kfree(adapter->msix_entries);
2031                 adapter->msix_entries = NULL;
2032         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2033                 pci_disable_msi(adapter->pdev);
2034                 adapter->flags &= ~FLAG_MSI_ENABLED;
2035         }
2036 }
2037
2038 /**
2039  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046         int err;
2047         int i;
2048
2049         switch (adapter->int_mode) {
2050         case E1000E_INT_MODE_MSIX:
2051                 if (adapter->flags & FLAG_HAS_MSIX) {
2052                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2054                                                         sizeof(struct
2055                                                                msix_entry),
2056                                                         GFP_KERNEL);
2057                         if (adapter->msix_entries) {
2058                                 struct e1000_adapter *a = adapter;
2059
2060                                 for (i = 0; i < adapter->num_vectors; i++)
2061                                         adapter->msix_entries[i].entry = i;
2062
2063                                 err = pci_enable_msix_range(a->pdev,
2064                                                             a->msix_entries,
2065                                                             a->num_vectors,
2066                                                             a->num_vectors);
2067                                 if (err > 0)
2068                                         return;
2069                         }
2070                         /* MSI-X failed, so fall through and try MSI */
2071                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072                         e1000e_reset_interrupt_capability(adapter);
2073                 }
2074                 adapter->int_mode = E1000E_INT_MODE_MSI;
2075                 /* Fall through */
2076         case E1000E_INT_MODE_MSI:
2077                 if (!pci_enable_msi(adapter->pdev)) {
2078                         adapter->flags |= FLAG_MSI_ENABLED;
2079                 } else {
2080                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082                 }
2083                 /* Fall through */
2084         case E1000E_INT_MODE_LEGACY:
2085                 /* Don't do anything; this is the system default */
2086                 break;
2087         }
2088
2089         /* store the number of vectors being used */
2090         adapter->num_vectors = 1;
2091 }
2092
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  *
2096  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2097  * kernel.
2098  **/
2099 static int e1000_request_msix(struct e1000_adapter *adapter)
2100 {
2101         struct net_device *netdev = adapter->netdev;
2102         int err = 0, vector = 0;
2103
2104         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2105                 snprintf(adapter->rx_ring->name,
2106                          sizeof(adapter->rx_ring->name) - 1,
2107                          "%.14s-rx-0", netdev->name);
2108         else
2109                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2110         err = request_irq(adapter->msix_entries[vector].vector,
2111                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2112                           netdev);
2113         if (err)
2114                 return err;
2115         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2116             E1000_EITR_82574(vector);
2117         adapter->rx_ring->itr_val = adapter->itr;
2118         vector++;
2119
2120         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2121                 snprintf(adapter->tx_ring->name,
2122                          sizeof(adapter->tx_ring->name) - 1,
2123                          "%.14s-tx-0", netdev->name);
2124         else
2125                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2126         err = request_irq(adapter->msix_entries[vector].vector,
2127                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2128                           netdev);
2129         if (err)
2130                 return err;
2131         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2132             E1000_EITR_82574(vector);
2133         adapter->tx_ring->itr_val = adapter->itr;
2134         vector++;
2135
2136         err = request_irq(adapter->msix_entries[vector].vector,
2137                           e1000_msix_other, 0, netdev->name, netdev);
2138         if (err)
2139                 return err;
2140
2141         e1000_configure_msix(adapter);
2142
2143         return 0;
2144 }
2145
2146 /**
2147  * e1000_request_irq - initialize interrupts
2148  *
2149  * Attempts to configure interrupts using the best available
2150  * capabilities of the hardware and kernel.
2151  **/
2152 static int e1000_request_irq(struct e1000_adapter *adapter)
2153 {
2154         struct net_device *netdev = adapter->netdev;
2155         int err;
2156
2157         if (adapter->msix_entries) {
2158                 err = e1000_request_msix(adapter);
2159                 if (!err)
2160                         return err;
2161                 /* fall back to MSI */
2162                 e1000e_reset_interrupt_capability(adapter);
2163                 adapter->int_mode = E1000E_INT_MODE_MSI;
2164                 e1000e_set_interrupt_capability(adapter);
2165         }
2166         if (adapter->flags & FLAG_MSI_ENABLED) {
2167                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2168                                   netdev->name, netdev);
2169                 if (!err)
2170                         return err;
2171
2172                 /* fall back to legacy interrupt */
2173                 e1000e_reset_interrupt_capability(adapter);
2174                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2175         }
2176
2177         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2178                           netdev->name, netdev);
2179         if (err)
2180                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2181
2182         return err;
2183 }
2184
2185 static void e1000_free_irq(struct e1000_adapter *adapter)
2186 {
2187         struct net_device *netdev = adapter->netdev;
2188
2189         if (adapter->msix_entries) {
2190                 int vector = 0;
2191
2192                 free_irq(adapter->msix_entries[vector].vector, netdev);
2193                 vector++;
2194
2195                 free_irq(adapter->msix_entries[vector].vector, netdev);
2196                 vector++;
2197
2198                 /* Other Causes interrupt vector */
2199                 free_irq(adapter->msix_entries[vector].vector, netdev);
2200                 return;
2201         }
2202
2203         free_irq(adapter->pdev->irq, netdev);
2204 }
2205
2206 /**
2207  * e1000_irq_disable - Mask off interrupt generation on the NIC
2208  **/
2209 static void e1000_irq_disable(struct e1000_adapter *adapter)
2210 {
2211         struct e1000_hw *hw = &adapter->hw;
2212
2213         ew32(IMC, ~0);
2214         if (adapter->msix_entries)
2215                 ew32(EIAC_82574, 0);
2216         e1e_flush();
2217
2218         if (adapter->msix_entries) {
2219                 int i;
2220
2221                 for (i = 0; i < adapter->num_vectors; i++)
2222                         synchronize_irq(adapter->msix_entries[i].vector);
2223         } else {
2224                 synchronize_irq(adapter->pdev->irq);
2225         }
2226 }
2227
2228 /**
2229  * e1000_irq_enable - Enable default interrupt generation settings
2230  **/
2231 static void e1000_irq_enable(struct e1000_adapter *adapter)
2232 {
2233         struct e1000_hw *hw = &adapter->hw;
2234
2235         if (adapter->msix_entries) {
2236                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2237                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2238                      IMS_OTHER_MASK);
2239         } else if (hw->mac.type >= e1000_pch_lpt) {
2240                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2241         } else {
2242                 ew32(IMS, IMS_ENABLE_MASK);
2243         }
2244         e1e_flush();
2245 }
2246
2247 /**
2248  * e1000e_get_hw_control - get control of the h/w from f/w
2249  * @adapter: address of board private structure
2250  *
2251  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2252  * For ASF and Pass Through versions of f/w this means that
2253  * the driver is loaded. For AMT version (only with 82573)
2254  * of the f/w this means that the network i/f is open.
2255  **/
2256 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2257 {
2258         struct e1000_hw *hw = &adapter->hw;
2259         u32 ctrl_ext;
2260         u32 swsm;
2261
2262         /* Let firmware know the driver has taken over */
2263         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2264                 swsm = er32(SWSM);
2265                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2266         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2267                 ctrl_ext = er32(CTRL_EXT);
2268                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2269         }
2270 }
2271
2272 /**
2273  * e1000e_release_hw_control - release control of the h/w to f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that the
2278  * driver is no longer loaded. For AMT version (only with 82573) i
2279  * of the f/w this means that the network i/f is closed.
2280  *
2281  **/
2282 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2283 {
2284         struct e1000_hw *hw = &adapter->hw;
2285         u32 ctrl_ext;
2286         u32 swsm;
2287
2288         /* Let firmware taken over control of h/w */
2289         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2290                 swsm = er32(SWSM);
2291                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2292         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2293                 ctrl_ext = er32(CTRL_EXT);
2294                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2295         }
2296 }
2297
2298 /**
2299  * e1000_alloc_ring_dma - allocate memory for a ring structure
2300  **/
2301 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2302                                 struct e1000_ring *ring)
2303 {
2304         struct pci_dev *pdev = adapter->pdev;
2305
2306         ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2307                                          GFP_KERNEL);
2308         if (!ring->desc)
2309                 return -ENOMEM;
2310
2311         return 0;
2312 }
2313
2314 /**
2315  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2316  * @tx_ring: Tx descriptor ring
2317  *
2318  * Return 0 on success, negative on failure
2319  **/
2320 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2321 {
2322         struct e1000_adapter *adapter = tx_ring->adapter;
2323         int err = -ENOMEM, size;
2324
2325         size = sizeof(struct e1000_buffer) * tx_ring->count;
2326         tx_ring->buffer_info = vzalloc(size);
2327         if (!tx_ring->buffer_info)
2328                 goto err;
2329
2330         /* round up to nearest 4K */
2331         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2332         tx_ring->size = ALIGN(tx_ring->size, 4096);
2333
2334         err = e1000_alloc_ring_dma(adapter, tx_ring);
2335         if (err)
2336                 goto err;
2337
2338         tx_ring->next_to_use = 0;
2339         tx_ring->next_to_clean = 0;
2340
2341         return 0;
2342 err:
2343         vfree(tx_ring->buffer_info);
2344         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2345         return err;
2346 }
2347
2348 /**
2349  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2350  * @rx_ring: Rx descriptor ring
2351  *
2352  * Returns 0 on success, negative on failure
2353  **/
2354 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2355 {
2356         struct e1000_adapter *adapter = rx_ring->adapter;
2357         struct e1000_buffer *buffer_info;
2358         int i, size, desc_len, err = -ENOMEM;
2359
2360         size = sizeof(struct e1000_buffer) * rx_ring->count;
2361         rx_ring->buffer_info = vzalloc(size);
2362         if (!rx_ring->buffer_info)
2363                 goto err;
2364
2365         for (i = 0; i < rx_ring->count; i++) {
2366                 buffer_info = &rx_ring->buffer_info[i];
2367                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2368                                                 sizeof(struct e1000_ps_page),
2369                                                 GFP_KERNEL);
2370                 if (!buffer_info->ps_pages)
2371                         goto err_pages;
2372         }
2373
2374         desc_len = sizeof(union e1000_rx_desc_packet_split);
2375
2376         /* Round up to nearest 4K */
2377         rx_ring->size = rx_ring->count * desc_len;
2378         rx_ring->size = ALIGN(rx_ring->size, 4096);
2379
2380         err = e1000_alloc_ring_dma(adapter, rx_ring);
2381         if (err)
2382                 goto err_pages;
2383
2384         rx_ring->next_to_clean = 0;
2385         rx_ring->next_to_use = 0;
2386         rx_ring->rx_skb_top = NULL;
2387
2388         return 0;
2389
2390 err_pages:
2391         for (i = 0; i < rx_ring->count; i++) {
2392                 buffer_info = &rx_ring->buffer_info[i];
2393                 kfree(buffer_info->ps_pages);
2394         }
2395 err:
2396         vfree(rx_ring->buffer_info);
2397         e_err("Unable to allocate memory for the receive descriptor ring\n");
2398         return err;
2399 }
2400
2401 /**
2402  * e1000_clean_tx_ring - Free Tx Buffers
2403  * @tx_ring: Tx descriptor ring
2404  **/
2405 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2406 {
2407         struct e1000_adapter *adapter = tx_ring->adapter;
2408         struct e1000_buffer *buffer_info;
2409         unsigned long size;
2410         unsigned int i;
2411
2412         for (i = 0; i < tx_ring->count; i++) {
2413                 buffer_info = &tx_ring->buffer_info[i];
2414                 e1000_put_txbuf(tx_ring, buffer_info, false);
2415         }
2416
2417         netdev_reset_queue(adapter->netdev);
2418         size = sizeof(struct e1000_buffer) * tx_ring->count;
2419         memset(tx_ring->buffer_info, 0, size);
2420
2421         memset(tx_ring->desc, 0, tx_ring->size);
2422
2423         tx_ring->next_to_use = 0;
2424         tx_ring->next_to_clean = 0;
2425 }
2426
2427 /**
2428  * e1000e_free_tx_resources - Free Tx Resources per Queue
2429  * @tx_ring: Tx descriptor ring
2430  *
2431  * Free all transmit software resources
2432  **/
2433 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2434 {
2435         struct e1000_adapter *adapter = tx_ring->adapter;
2436         struct pci_dev *pdev = adapter->pdev;
2437
2438         e1000_clean_tx_ring(tx_ring);
2439
2440         vfree(tx_ring->buffer_info);
2441         tx_ring->buffer_info = NULL;
2442
2443         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2444                           tx_ring->dma);
2445         tx_ring->desc = NULL;
2446 }
2447
2448 /**
2449  * e1000e_free_rx_resources - Free Rx Resources
2450  * @rx_ring: Rx descriptor ring
2451  *
2452  * Free all receive software resources
2453  **/
2454 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2455 {
2456         struct e1000_adapter *adapter = rx_ring->adapter;
2457         struct pci_dev *pdev = adapter->pdev;
2458         int i;
2459
2460         e1000_clean_rx_ring(rx_ring);
2461
2462         for (i = 0; i < rx_ring->count; i++)
2463                 kfree(rx_ring->buffer_info[i].ps_pages);
2464
2465         vfree(rx_ring->buffer_info);
2466         rx_ring->buffer_info = NULL;
2467
2468         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2469                           rx_ring->dma);
2470         rx_ring->desc = NULL;
2471 }
2472
2473 /**
2474  * e1000_update_itr - update the dynamic ITR value based on statistics
2475  * @adapter: pointer to adapter
2476  * @itr_setting: current adapter->itr
2477  * @packets: the number of packets during this measurement interval
2478  * @bytes: the number of bytes during this measurement interval
2479  *
2480  *      Stores a new ITR value based on packets and byte
2481  *      counts during the last interrupt.  The advantage of per interrupt
2482  *      computation is faster updates and more accurate ITR for the current
2483  *      traffic pattern.  Constants in this function were computed
2484  *      based on theoretical maximum wire speed and thresholds were set based
2485  *      on testing data as well as attempting to minimize response time
2486  *      while increasing bulk throughput.  This functionality is controlled
2487  *      by the InterruptThrottleRate module parameter.
2488  **/
2489 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2490 {
2491         unsigned int retval = itr_setting;
2492
2493         if (packets == 0)
2494                 return itr_setting;
2495
2496         switch (itr_setting) {
2497         case lowest_latency:
2498                 /* handle TSO and jumbo frames */
2499                 if (bytes / packets > 8000)
2500                         retval = bulk_latency;
2501                 else if ((packets < 5) && (bytes > 512))
2502                         retval = low_latency;
2503                 break;
2504         case low_latency:       /* 50 usec aka 20000 ints/s */
2505                 if (bytes > 10000) {
2506                         /* this if handles the TSO accounting */
2507                         if (bytes / packets > 8000)
2508                                 retval = bulk_latency;
2509                         else if ((packets < 10) || ((bytes / packets) > 1200))
2510                                 retval = bulk_latency;
2511                         else if ((packets > 35))
2512                                 retval = lowest_latency;
2513                 } else if (bytes / packets > 2000) {
2514                         retval = bulk_latency;
2515                 } else if (packets <= 2 && bytes < 512) {
2516                         retval = lowest_latency;
2517                 }
2518                 break;
2519         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2520                 if (bytes > 25000) {
2521                         if (packets > 35)
2522                                 retval = low_latency;
2523                 } else if (bytes < 6000) {
2524                         retval = low_latency;
2525                 }
2526                 break;
2527         }
2528
2529         return retval;
2530 }
2531
2532 static void e1000_set_itr(struct e1000_adapter *adapter)
2533 {
2534         u16 current_itr;
2535         u32 new_itr = adapter->itr;
2536
2537         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2538         if (adapter->link_speed != SPEED_1000) {
2539                 current_itr = 0;
2540                 new_itr = 4000;
2541                 goto set_itr_now;
2542         }
2543
2544         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2545                 new_itr = 0;
2546                 goto set_itr_now;
2547         }
2548
2549         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2550                                            adapter->total_tx_packets,
2551                                            adapter->total_tx_bytes);
2552         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2553         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2554                 adapter->tx_itr = low_latency;
2555
2556         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2557                                            adapter->total_rx_packets,
2558                                            adapter->total_rx_bytes);
2559         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2560         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2561                 adapter->rx_itr = low_latency;
2562
2563         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2564
2565         /* counts and packets in update_itr are dependent on these numbers */
2566         switch (current_itr) {
2567         case lowest_latency:
2568                 new_itr = 70000;
2569                 break;
2570         case low_latency:
2571                 new_itr = 20000;        /* aka hwitr = ~200 */
2572                 break;
2573         case bulk_latency:
2574                 new_itr = 4000;
2575                 break;
2576         default:
2577                 break;
2578         }
2579
2580 set_itr_now:
2581         if (new_itr != adapter->itr) {
2582                 /* this attempts to bias the interrupt rate towards Bulk
2583                  * by adding intermediate steps when interrupt rate is
2584                  * increasing
2585                  */
2586                 new_itr = new_itr > adapter->itr ?
2587                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2588                 adapter->itr = new_itr;
2589                 adapter->rx_ring->itr_val = new_itr;
2590                 if (adapter->msix_entries)
2591                         adapter->rx_ring->set_itr = 1;
2592                 else
2593                         e1000e_write_itr(adapter, new_itr);
2594         }
2595 }
2596
2597 /**
2598  * e1000e_write_itr - write the ITR value to the appropriate registers
2599  * @adapter: address of board private structure
2600  * @itr: new ITR value to program
2601  *
2602  * e1000e_write_itr determines if the adapter is in MSI-X mode
2603  * and, if so, writes the EITR registers with the ITR value.
2604  * Otherwise, it writes the ITR value into the ITR register.
2605  **/
2606 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2607 {
2608         struct e1000_hw *hw = &adapter->hw;
2609         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2610
2611         if (adapter->msix_entries) {
2612                 int vector;
2613
2614                 for (vector = 0; vector < adapter->num_vectors; vector++)
2615                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2616         } else {
2617                 ew32(ITR, new_itr);
2618         }
2619 }
2620
2621 /**
2622  * e1000_alloc_queues - Allocate memory for all rings
2623  * @adapter: board private structure to initialize
2624  **/
2625 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2626 {
2627         int size = sizeof(struct e1000_ring);
2628
2629         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2630         if (!adapter->tx_ring)
2631                 goto err;
2632         adapter->tx_ring->count = adapter->tx_ring_count;
2633         adapter->tx_ring->adapter = adapter;
2634
2635         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2636         if (!adapter->rx_ring)
2637                 goto err;
2638         adapter->rx_ring->count = adapter->rx_ring_count;
2639         adapter->rx_ring->adapter = adapter;
2640
2641         return 0;
2642 err:
2643         e_err("Unable to allocate memory for queues\n");
2644         kfree(adapter->rx_ring);
2645         kfree(adapter->tx_ring);
2646         return -ENOMEM;
2647 }
2648
2649 /**
2650  * e1000e_poll - NAPI Rx polling callback
2651  * @napi: struct associated with this polling callback
2652  * @weight: number of packets driver is allowed to process this poll
2653  **/
2654 static int e1000e_poll(struct napi_struct *napi, int weight)
2655 {
2656         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2657                                                      napi);
2658         struct e1000_hw *hw = &adapter->hw;
2659         struct net_device *poll_dev = adapter->netdev;
2660         int tx_cleaned = 1, work_done = 0;
2661
2662         adapter = netdev_priv(poll_dev);
2663
2664         if (!adapter->msix_entries ||
2665             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2666                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2667
2668         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2669
2670         if (!tx_cleaned)
2671                 work_done = weight;
2672
2673         /* If weight not fully consumed, exit the polling mode */
2674         if (work_done < weight) {
2675                 if (adapter->itr_setting & 3)
2676                         e1000_set_itr(adapter);
2677                 napi_complete_done(napi, work_done);
2678                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2679                         if (adapter->msix_entries)
2680                                 ew32(IMS, adapter->rx_ring->ims_val);
2681                         else
2682                                 e1000_irq_enable(adapter);
2683                 }
2684         }
2685
2686         return work_done;
2687 }
2688
2689 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2690                                  __always_unused __be16 proto, u16 vid)
2691 {
2692         struct e1000_adapter *adapter = netdev_priv(netdev);
2693         struct e1000_hw *hw = &adapter->hw;
2694         u32 vfta, index;
2695
2696         /* don't update vlan cookie if already programmed */
2697         if ((adapter->hw.mng_cookie.status &
2698              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2699             (vid == adapter->mng_vlan_id))
2700                 return 0;
2701
2702         /* add VID to filter table */
2703         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2704                 index = (vid >> 5) & 0x7F;
2705                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2706                 vfta |= BIT((vid & 0x1F));
2707                 hw->mac.ops.write_vfta(hw, index, vfta);
2708         }
2709
2710         set_bit(vid, adapter->active_vlans);
2711
2712         return 0;
2713 }
2714
2715 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2716                                   __always_unused __be16 proto, u16 vid)
2717 {
2718         struct e1000_adapter *adapter = netdev_priv(netdev);
2719         struct e1000_hw *hw = &adapter->hw;
2720         u32 vfta, index;
2721
2722         if ((adapter->hw.mng_cookie.status &
2723              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2724             (vid == adapter->mng_vlan_id)) {
2725                 /* release control to f/w */
2726                 e1000e_release_hw_control(adapter);
2727                 return 0;
2728         }
2729
2730         /* remove VID from filter table */
2731         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2732                 index = (vid >> 5) & 0x7F;
2733                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2734                 vfta &= ~BIT((vid & 0x1F));
2735                 hw->mac.ops.write_vfta(hw, index, vfta);
2736         }
2737
2738         clear_bit(vid, adapter->active_vlans);
2739
2740         return 0;
2741 }
2742
2743 /**
2744  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2745  * @adapter: board private structure to initialize
2746  **/
2747 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2748 {
2749         struct net_device *netdev = adapter->netdev;
2750         struct e1000_hw *hw = &adapter->hw;
2751         u32 rctl;
2752
2753         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2754                 /* disable VLAN receive filtering */
2755                 rctl = er32(RCTL);
2756                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2757                 ew32(RCTL, rctl);
2758
2759                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2760                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2761                                                adapter->mng_vlan_id);
2762                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2763                 }
2764         }
2765 }
2766
2767 /**
2768  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2769  * @adapter: board private structure to initialize
2770  **/
2771 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2772 {
2773         struct e1000_hw *hw = &adapter->hw;
2774         u32 rctl;
2775
2776         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2777                 /* enable VLAN receive filtering */
2778                 rctl = er32(RCTL);
2779                 rctl |= E1000_RCTL_VFE;
2780                 rctl &= ~E1000_RCTL_CFIEN;
2781                 ew32(RCTL, rctl);
2782         }
2783 }
2784
2785 /**
2786  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2787  * @adapter: board private structure to initialize
2788  **/
2789 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2790 {
2791         struct e1000_hw *hw = &adapter->hw;
2792         u32 ctrl;
2793
2794         /* disable VLAN tag insert/strip */
2795         ctrl = er32(CTRL);
2796         ctrl &= ~E1000_CTRL_VME;
2797         ew32(CTRL, ctrl);
2798 }
2799
2800 /**
2801  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2802  * @adapter: board private structure to initialize
2803  **/
2804 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2805 {
2806         struct e1000_hw *hw = &adapter->hw;
2807         u32 ctrl;
2808
2809         /* enable VLAN tag insert/strip */
2810         ctrl = er32(CTRL);
2811         ctrl |= E1000_CTRL_VME;
2812         ew32(CTRL, ctrl);
2813 }
2814
2815 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2816 {
2817         struct net_device *netdev = adapter->netdev;
2818         u16 vid = adapter->hw.mng_cookie.vlan_id;
2819         u16 old_vid = adapter->mng_vlan_id;
2820
2821         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2822                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2823                 adapter->mng_vlan_id = vid;
2824         }
2825
2826         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2827                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2828 }
2829
2830 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2831 {
2832         u16 vid;
2833
2834         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2835
2836         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2837             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2838 }
2839
2840 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2841 {
2842         struct e1000_hw *hw = &adapter->hw;
2843         u32 manc, manc2h, mdef, i, j;
2844
2845         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2846                 return;
2847
2848         manc = er32(MANC);
2849
2850         /* enable receiving management packets to the host. this will probably
2851          * generate destination unreachable messages from the host OS, but
2852          * the packets will be handled on SMBUS
2853          */
2854         manc |= E1000_MANC_EN_MNG2HOST;
2855         manc2h = er32(MANC2H);
2856
2857         switch (hw->mac.type) {
2858         default:
2859                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2860                 break;
2861         case e1000_82574:
2862         case e1000_82583:
2863                 /* Check if IPMI pass-through decision filter already exists;
2864                  * if so, enable it.
2865                  */
2866                 for (i = 0, j = 0; i < 8; i++) {
2867                         mdef = er32(MDEF(i));
2868
2869                         /* Ignore filters with anything other than IPMI ports */
2870                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2871                                 continue;
2872
2873                         /* Enable this decision filter in MANC2H */
2874                         if (mdef)
2875                                 manc2h |= BIT(i);
2876
2877                         j |= mdef;
2878                 }
2879
2880                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2881                         break;
2882
2883                 /* Create new decision filter in an empty filter */
2884                 for (i = 0, j = 0; i < 8; i++)
2885                         if (er32(MDEF(i)) == 0) {
2886                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2887                                                E1000_MDEF_PORT_664));
2888                                 manc2h |= BIT(1);
2889                                 j++;
2890                                 break;
2891                         }
2892
2893                 if (!j)
2894                         e_warn("Unable to create IPMI pass-through filter\n");
2895                 break;
2896         }
2897
2898         ew32(MANC2H, manc2h);
2899         ew32(MANC, manc);
2900 }
2901
2902 /**
2903  * e1000_configure_tx - Configure Transmit Unit after Reset
2904  * @adapter: board private structure
2905  *
2906  * Configure the Tx unit of the MAC after a reset.
2907  **/
2908 static void e1000_configure_tx(struct e1000_adapter *adapter)
2909 {
2910         struct e1000_hw *hw = &adapter->hw;
2911         struct e1000_ring *tx_ring = adapter->tx_ring;
2912         u64 tdba;
2913         u32 tdlen, tctl, tarc;
2914
2915         /* Setup the HW Tx Head and Tail descriptor pointers */
2916         tdba = tx_ring->dma;
2917         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2918         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2919         ew32(TDBAH(0), (tdba >> 32));
2920         ew32(TDLEN(0), tdlen);
2921         ew32(TDH(0), 0);
2922         ew32(TDT(0), 0);
2923         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2924         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2925
2926         writel(0, tx_ring->head);
2927         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2928                 e1000e_update_tdt_wa(tx_ring, 0);
2929         else
2930                 writel(0, tx_ring->tail);
2931
2932         /* Set the Tx Interrupt Delay register */
2933         ew32(TIDV, adapter->tx_int_delay);
2934         /* Tx irq moderation */
2935         ew32(TADV, adapter->tx_abs_int_delay);
2936
2937         if (adapter->flags2 & FLAG2_DMA_BURST) {
2938                 u32 txdctl = er32(TXDCTL(0));
2939
2940                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2941                             E1000_TXDCTL_WTHRESH);
2942                 /* set up some performance related parameters to encourage the
2943                  * hardware to use the bus more efficiently in bursts, depends
2944                  * on the tx_int_delay to be enabled,
2945                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2946                  * hthresh = 1 ==> prefetch when one or more available
2947                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2948                  * BEWARE: this seems to work but should be considered first if
2949                  * there are Tx hangs or other Tx related bugs
2950                  */
2951                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2952                 ew32(TXDCTL(0), txdctl);
2953         }
2954         /* erratum work around: set txdctl the same for both queues */
2955         ew32(TXDCTL(1), er32(TXDCTL(0)));
2956
2957         /* Program the Transmit Control Register */
2958         tctl = er32(TCTL);
2959         tctl &= ~E1000_TCTL_CT;
2960         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2961                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2962
2963         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2964                 tarc = er32(TARC(0));
2965                 /* set the speed mode bit, we'll clear it if we're not at
2966                  * gigabit link later
2967                  */
2968 #define SPEED_MODE_BIT BIT(21)
2969                 tarc |= SPEED_MODE_BIT;
2970                 ew32(TARC(0), tarc);
2971         }
2972
2973         /* errata: program both queues to unweighted RR */
2974         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2975                 tarc = er32(TARC(0));
2976                 tarc |= 1;
2977                 ew32(TARC(0), tarc);
2978                 tarc = er32(TARC(1));
2979                 tarc |= 1;
2980                 ew32(TARC(1), tarc);
2981         }
2982
2983         /* Setup Transmit Descriptor Settings for eop descriptor */
2984         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2985
2986         /* only set IDE if we are delaying interrupts using the timers */
2987         if (adapter->tx_int_delay)
2988                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2989
2990         /* enable Report Status bit */
2991         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2992
2993         ew32(TCTL, tctl);
2994
2995         hw->mac.ops.config_collision_dist(hw);
2996
2997         /* SPT and KBL Si errata workaround to avoid data corruption */
2998         if (hw->mac.type == e1000_pch_spt) {
2999                 u32 reg_val;
3000
3001                 reg_val = er32(IOSFPC);
3002                 reg_val |= E1000_RCTL_RDMTS_HEX;
3003                 ew32(IOSFPC, reg_val);
3004
3005                 reg_val = er32(TARC(0));
3006                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3007                  * Dropping the number of outstanding requests from
3008                  * 3 to 2 in order to avoid a buffer overrun.
3009                  */
3010                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3011                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3012                 ew32(TARC(0), reg_val);
3013         }
3014 }
3015
3016 /**
3017  * e1000_setup_rctl - configure the receive control registers
3018  * @adapter: Board private structure
3019  **/
3020 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3021                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3022 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3023 {
3024         struct e1000_hw *hw = &adapter->hw;
3025         u32 rctl, rfctl;
3026         u32 pages = 0;
3027
3028         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3029          * If jumbo frames not set, program related MAC/PHY registers
3030          * to h/w defaults
3031          */
3032         if (hw->mac.type >= e1000_pch2lan) {
3033                 s32 ret_val;
3034
3035                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3036                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3037                 else
3038                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3039
3040                 if (ret_val)
3041                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3042         }
3043
3044         /* Program MC offset vector base */
3045         rctl = er32(RCTL);
3046         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3047         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3048             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3049             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3050
3051         /* Do not Store bad packets */
3052         rctl &= ~E1000_RCTL_SBP;
3053
3054         /* Enable Long Packet receive */
3055         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3056                 rctl &= ~E1000_RCTL_LPE;
3057         else
3058                 rctl |= E1000_RCTL_LPE;
3059
3060         /* Some systems expect that the CRC is included in SMBUS traffic. The
3061          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3062          * host memory when this is enabled
3063          */
3064         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3065                 rctl |= E1000_RCTL_SECRC;
3066
3067         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3068         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3069                 u16 phy_data;
3070
3071                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3072                 phy_data &= 0xfff8;
3073                 phy_data |= BIT(2);
3074                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3075
3076                 e1e_rphy(hw, 22, &phy_data);
3077                 phy_data &= 0x0fff;
3078                 phy_data |= BIT(14);
3079                 e1e_wphy(hw, 0x10, 0x2823);
3080                 e1e_wphy(hw, 0x11, 0x0003);
3081                 e1e_wphy(hw, 22, phy_data);
3082         }
3083
3084         /* Setup buffer sizes */
3085         rctl &= ~E1000_RCTL_SZ_4096;
3086         rctl |= E1000_RCTL_BSEX;
3087         switch (adapter->rx_buffer_len) {
3088         case 2048:
3089         default:
3090                 rctl |= E1000_RCTL_SZ_2048;
3091                 rctl &= ~E1000_RCTL_BSEX;
3092                 break;
3093         case 4096:
3094                 rctl |= E1000_RCTL_SZ_4096;
3095                 break;
3096         case 8192:
3097                 rctl |= E1000_RCTL_SZ_8192;
3098                 break;
3099         case 16384:
3100                 rctl |= E1000_RCTL_SZ_16384;
3101                 break;
3102         }
3103
3104         /* Enable Extended Status in all Receive Descriptors */
3105         rfctl = er32(RFCTL);
3106         rfctl |= E1000_RFCTL_EXTEN;
3107         ew32(RFCTL, rfctl);
3108
3109         /* 82571 and greater support packet-split where the protocol
3110          * header is placed in skb->data and the packet data is
3111          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3112          * In the case of a non-split, skb->data is linearly filled,
3113          * followed by the page buffers.  Therefore, skb->data is
3114          * sized to hold the largest protocol header.
3115          *
3116          * allocations using alloc_page take too long for regular MTU
3117          * so only enable packet split for jumbo frames
3118          *
3119          * Using pages when the page size is greater than 16k wastes
3120          * a lot of memory, since we allocate 3 pages at all times
3121          * per packet.
3122          */
3123         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3124         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3125                 adapter->rx_ps_pages = pages;
3126         else
3127                 adapter->rx_ps_pages = 0;
3128
3129         if (adapter->rx_ps_pages) {
3130                 u32 psrctl = 0;
3131
3132                 /* Enable Packet split descriptors */
3133                 rctl |= E1000_RCTL_DTYP_PS;
3134
3135                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3136
3137                 switch (adapter->rx_ps_pages) {
3138                 case 3:
3139                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3140                         /* fall-through */
3141                 case 2:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3143                         /* fall-through */
3144                 case 1:
3145                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3146                         break;
3147                 }
3148
3149                 ew32(PSRCTL, psrctl);
3150         }
3151
3152         /* This is useful for sniffing bad packets. */
3153         if (adapter->netdev->features & NETIF_F_RXALL) {
3154                 /* UPE and MPE will be handled by normal PROMISC logic
3155                  * in e1000e_set_rx_mode
3156                  */
3157                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3158                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3159                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3160
3161                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3162                           E1000_RCTL_DPF |      /* Allow filtered pause */
3163                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3164                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3165                  * and that breaks VLANs.
3166                  */
3167         }
3168
3169         ew32(RCTL, rctl);
3170         /* just started the receive unit, no need to restart */
3171         adapter->flags &= ~FLAG_RESTART_NOW;
3172 }
3173
3174 /**
3175  * e1000_configure_rx - Configure Receive Unit after Reset
3176  * @adapter: board private structure
3177  *
3178  * Configure the Rx unit of the MAC after a reset.
3179  **/
3180 static void e1000_configure_rx(struct e1000_adapter *adapter)
3181 {
3182         struct e1000_hw *hw = &adapter->hw;
3183         struct e1000_ring *rx_ring = adapter->rx_ring;
3184         u64 rdba;
3185         u32 rdlen, rctl, rxcsum, ctrl_ext;
3186
3187         if (adapter->rx_ps_pages) {
3188                 /* this is a 32 byte descriptor */
3189                 rdlen = rx_ring->count *
3190                     sizeof(union e1000_rx_desc_packet_split);
3191                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3192                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3193         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3194                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3195                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3196                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3197         } else {
3198                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3199                 adapter->clean_rx = e1000_clean_rx_irq;
3200                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3201         }
3202
3203         /* disable receives while setting up the descriptors */
3204         rctl = er32(RCTL);
3205         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3206                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3207         e1e_flush();
3208         usleep_range(10000, 20000);
3209
3210         if (adapter->flags2 & FLAG2_DMA_BURST) {
3211                 /* set the writeback threshold (only takes effect if the RDTR
3212                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3213                  * enable prefetching of 0x20 Rx descriptors
3214                  * granularity = 01
3215                  * wthresh = 04,
3216                  * hthresh = 04,
3217                  * pthresh = 0x20
3218                  */
3219                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3220                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3221         }
3222
3223         /* set the Receive Delay Timer Register */
3224         ew32(RDTR, adapter->rx_int_delay);
3225
3226         /* irq moderation */
3227         ew32(RADV, adapter->rx_abs_int_delay);
3228         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3229                 e1000e_write_itr(adapter, adapter->itr);
3230
3231         ctrl_ext = er32(CTRL_EXT);
3232         /* Auto-Mask interrupts upon ICR access */
3233         ctrl_ext |= E1000_CTRL_EXT_IAME;
3234         ew32(IAM, 0xffffffff);
3235         ew32(CTRL_EXT, ctrl_ext);
3236         e1e_flush();
3237
3238         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3239          * the Base and Length of the Rx Descriptor Ring
3240          */
3241         rdba = rx_ring->dma;
3242         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3243         ew32(RDBAH(0), (rdba >> 32));
3244         ew32(RDLEN(0), rdlen);
3245         ew32(RDH(0), 0);
3246         ew32(RDT(0), 0);
3247         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3248         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3249
3250         writel(0, rx_ring->head);
3251         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3252                 e1000e_update_rdt_wa(rx_ring, 0);
3253         else
3254                 writel(0, rx_ring->tail);
3255
3256         /* Enable Receive Checksum Offload for TCP and UDP */
3257         rxcsum = er32(RXCSUM);
3258         if (adapter->netdev->features & NETIF_F_RXCSUM)
3259                 rxcsum |= E1000_RXCSUM_TUOFL;
3260         else
3261                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3262         ew32(RXCSUM, rxcsum);
3263
3264         /* With jumbo frames, excessive C-state transition latencies result
3265          * in dropped transactions.
3266          */
3267         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268                 u32 lat =
3269                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270                      adapter->max_frame_size) * 8 / 1000;
3271
3272                 if (adapter->flags & FLAG_IS_ICH) {
3273                         u32 rxdctl = er32(RXDCTL(0));
3274
3275                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276                 }
3277
3278                 dev_info(&adapter->pdev->dev,
3279                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3281         } else {
3282                 pm_qos_update_request(&adapter->pm_qos_req,
3283                                       PM_QOS_DEFAULT_VALUE);
3284         }
3285
3286         /* Enable Receives */
3287         ew32(RCTL, rctl);
3288 }
3289
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301         struct e1000_adapter *adapter = netdev_priv(netdev);
3302         struct e1000_hw *hw = &adapter->hw;
3303         struct netdev_hw_addr *ha;
3304         u8 *mta_list;
3305         int i;
3306
3307         if (netdev_mc_empty(netdev)) {
3308                 /* nothing to program, so clear mc list */
3309                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310                 return 0;
3311         }
3312
3313         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314         if (!mta_list)
3315                 return -ENOMEM;
3316
3317         /* update_mc_addr_list expects a packed array of only addresses. */
3318         i = 0;
3319         netdev_for_each_mc_addr(ha, netdev)
3320             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323         kfree(mta_list);
3324
3325         return netdev_mc_count(netdev);
3326 }
3327
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339         struct e1000_adapter *adapter = netdev_priv(netdev);
3340         struct e1000_hw *hw = &adapter->hw;
3341         unsigned int rar_entries;
3342         int count = 0;
3343
3344         rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346         /* save a rar entry for our hardware address */
3347         rar_entries--;
3348
3349         /* save a rar entry for the LAA workaround */
3350         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351                 rar_entries--;
3352
3353         /* return ENOMEM indicating insufficient memory for addresses */
3354         if (netdev_uc_count(netdev) > rar_entries)
3355                 return -ENOMEM;
3356
3357         if (!netdev_uc_empty(netdev) && rar_entries) {
3358                 struct netdev_hw_addr *ha;
3359
3360                 /* write the addresses in reverse order to avoid write
3361                  * combining
3362                  */
3363                 netdev_for_each_uc_addr(ha, netdev) {
3364                         int ret_val;
3365
3366                         if (!rar_entries)
3367                                 break;
3368                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369                         if (ret_val < 0)
3370                                 return -ENOMEM;
3371                         count++;
3372                 }
3373         }
3374
3375         /* zero out the remaining RAR entries not used above */
3376         for (; rar_entries > 0; rar_entries--) {
3377                 ew32(RAH(rar_entries), 0);
3378                 ew32(RAL(rar_entries), 0);
3379         }
3380         e1e_flush();
3381
3382         return count;
3383 }
3384
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396         struct e1000_adapter *adapter = netdev_priv(netdev);
3397         struct e1000_hw *hw = &adapter->hw;
3398         u32 rctl;
3399
3400         if (pm_runtime_suspended(netdev->dev.parent))
3401                 return;
3402
3403         /* Check for Promiscuous and All Multicast modes */
3404         rctl = er32(RCTL);
3405
3406         /* clear the affected bits */
3407         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409         if (netdev->flags & IFF_PROMISC) {
3410                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411                 /* Do not hardware filter VLANs in promisc mode */
3412                 e1000e_vlan_filter_disable(adapter);
3413         } else {
3414                 int count;
3415
3416                 if (netdev->flags & IFF_ALLMULTI) {
3417                         rctl |= E1000_RCTL_MPE;
3418                 } else {
3419                         /* Write addresses to the MTA, if the attempt fails
3420                          * then we should just turn on promiscuous mode so
3421                          * that we can at least receive multicast traffic
3422                          */
3423                         count = e1000e_write_mc_addr_list(netdev);
3424                         if (count < 0)
3425                                 rctl |= E1000_RCTL_MPE;
3426                 }
3427                 e1000e_vlan_filter_enable(adapter);
3428                 /* Write addresses to available RAR registers, if there is not
3429                  * sufficient space to store all the addresses then enable
3430                  * unicast promiscuous mode
3431                  */
3432                 count = e1000e_write_uc_addr_list(netdev);
3433                 if (count < 0)
3434                         rctl |= E1000_RCTL_UPE;
3435         }
3436
3437         ew32(RCTL, rctl);
3438
3439         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440                 e1000e_vlan_strip_enable(adapter);
3441         else
3442                 e1000e_vlan_strip_disable(adapter);
3443 }
3444
3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447         struct e1000_hw *hw = &adapter->hw;
3448         u32 mrqc, rxcsum;
3449         u32 rss_key[10];
3450         int i;
3451
3452         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453         for (i = 0; i < 10; i++)
3454                 ew32(RSSRK(i), rss_key[i]);
3455
3456         /* Direct all traffic to queue 0 */
3457         for (i = 0; i < 32; i++)
3458                 ew32(RETA(i), 0);
3459
3460         /* Disable raw packet checksumming so that RSS hash is placed in
3461          * descriptor on writeback.
3462          */
3463         rxcsum = er32(RXCSUM);
3464         rxcsum |= E1000_RXCSUM_PCSD;
3465
3466         ew32(RXCSUM, rxcsum);
3467
3468         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470                 E1000_MRQC_RSS_FIELD_IPV6 |
3471                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474         ew32(MRQC, mrqc);
3475 }
3476
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487         struct e1000_hw *hw = &adapter->hw;
3488         u32 incvalue, incperiod, shift;
3489
3490         /* Make sure clock is enabled on I217/I218/I219  before checking
3491          * the frequency
3492          */
3493         if ((hw->mac.type >= e1000_pch_lpt) &&
3494             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496                 u32 fextnvm7 = er32(FEXTNVM7);
3497
3498                 if (!(fextnvm7 & BIT(0))) {
3499                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500                         e1e_flush();
3501                 }
3502         }
3503
3504         switch (hw->mac.type) {
3505         case e1000_pch2lan:
3506                 /* Stable 96MHz frequency */
3507                 incperiod = INCPERIOD_96MHZ;
3508                 incvalue = INCVALUE_96MHZ;
3509                 shift = INCVALUE_SHIFT_96MHZ;
3510                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511                 break;
3512         case e1000_pch_lpt:
3513                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514                         /* Stable 96MHz frequency */
3515                         incperiod = INCPERIOD_96MHZ;
3516                         incvalue = INCVALUE_96MHZ;
3517                         shift = INCVALUE_SHIFT_96MHZ;
3518                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519                 } else {
3520                         /* Stable 25MHz frequency */
3521                         incperiod = INCPERIOD_25MHZ;
3522                         incvalue = INCVALUE_25MHZ;
3523                         shift = INCVALUE_SHIFT_25MHZ;
3524                         adapter->cc.shift = shift;
3525                 }
3526                 break;
3527         case e1000_pch_spt:
3528                 /* Stable 24MHz frequency */
3529                 incperiod = INCPERIOD_24MHZ;
3530                 incvalue = INCVALUE_24MHZ;
3531                 shift = INCVALUE_SHIFT_24MHZ;
3532                 adapter->cc.shift = shift;
3533                 break;
3534         case e1000_pch_cnp:
3535                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3536                         /* Stable 24MHz frequency */
3537                         incperiod = INCPERIOD_24MHZ;
3538                         incvalue = INCVALUE_24MHZ;
3539                         shift = INCVALUE_SHIFT_24MHZ;
3540                         adapter->cc.shift = shift;
3541                 } else {
3542                         /* Stable 38400KHz frequency */
3543                         incperiod = INCPERIOD_38400KHZ;
3544                         incvalue = INCVALUE_38400KHZ;
3545                         shift = INCVALUE_SHIFT_38400KHZ;
3546                         adapter->cc.shift = shift;
3547                 }
3548                 break;
3549         case e1000_82574:
3550         case e1000_82583:
3551                 /* Stable 25MHz frequency */
3552                 incperiod = INCPERIOD_25MHZ;
3553                 incvalue = INCVALUE_25MHZ;
3554                 shift = INCVALUE_SHIFT_25MHZ;
3555                 adapter->cc.shift = shift;
3556                 break;
3557         default:
3558                 return -EINVAL;
3559         }
3560
3561         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3562                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3563
3564         return 0;
3565 }
3566
3567 /**
3568  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3569  * @adapter: board private structure
3570  *
3571  * Outgoing time stamping can be enabled and disabled. Play nice and
3572  * disable it when requested, although it shouldn't cause any overhead
3573  * when no packet needs it. At most one packet in the queue may be
3574  * marked for time stamping, otherwise it would be impossible to tell
3575  * for sure to which packet the hardware time stamp belongs.
3576  *
3577  * Incoming time stamping has to be configured via the hardware filters.
3578  * Not all combinations are supported, in particular event type has to be
3579  * specified. Matching the kind of event packet is not supported, with the
3580  * exception of "all V2 events regardless of level 2 or 4".
3581  **/
3582 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3583                                   struct hwtstamp_config *config)
3584 {
3585         struct e1000_hw *hw = &adapter->hw;
3586         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3587         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3588         u32 rxmtrl = 0;
3589         u16 rxudp = 0;
3590         bool is_l4 = false;
3591         bool is_l2 = false;
3592         u32 regval;
3593
3594         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3595                 return -EINVAL;
3596
3597         /* flags reserved for future extensions - must be zero */
3598         if (config->flags)
3599                 return -EINVAL;
3600
3601         switch (config->tx_type) {
3602         case HWTSTAMP_TX_OFF:
3603                 tsync_tx_ctl = 0;
3604                 break;
3605         case HWTSTAMP_TX_ON:
3606                 break;
3607         default:
3608                 return -ERANGE;
3609         }
3610
3611         switch (config->rx_filter) {
3612         case HWTSTAMP_FILTER_NONE:
3613                 tsync_rx_ctl = 0;
3614                 break;
3615         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3616                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3617                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3618                 is_l4 = true;
3619                 break;
3620         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3621                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3622                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3623                 is_l4 = true;
3624                 break;
3625         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3626                 /* Also time stamps V2 L2 Path Delay Request/Response */
3627                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3628                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3629                 is_l2 = true;
3630                 break;
3631         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3632                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3633                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3634                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3635                 is_l2 = true;
3636                 break;
3637         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3638                 /* Hardware cannot filter just V2 L4 Sync messages;
3639                  * fall-through to V2 (both L2 and L4) Sync.
3640                  */
3641         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3642                 /* Also time stamps V2 Path Delay Request/Response. */
3643                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3644                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3645                 is_l2 = true;
3646                 is_l4 = true;
3647                 break;
3648         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3649                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3650                  * fall-through to V2 (both L2 and L4) Delay Request.
3651                  */
3652         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3653                 /* Also time stamps V2 Path Delay Request/Response. */
3654                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3655                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3656                 is_l2 = true;
3657                 is_l4 = true;
3658                 break;
3659         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3660         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3661                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3662                  * fall-through to all V2 (both L2 and L4) Events.
3663                  */
3664         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667                 is_l2 = true;
3668                 is_l4 = true;
3669                 break;
3670         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671                 /* For V1, the hardware can only filter Sync messages or
3672                  * Delay Request messages but not both so fall-through to
3673                  * time stamp all packets.
3674                  */
3675         case HWTSTAMP_FILTER_NTP_ALL:
3676         case HWTSTAMP_FILTER_ALL:
3677                 is_l2 = true;
3678                 is_l4 = true;
3679                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3680                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3681                 break;
3682         default:
3683                 return -ERANGE;
3684         }
3685
3686         adapter->hwtstamp_config = *config;
3687
3688         /* enable/disable Tx h/w time stamping */
3689         regval = er32(TSYNCTXCTL);
3690         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3691         regval |= tsync_tx_ctl;
3692         ew32(TSYNCTXCTL, regval);
3693         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3694             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3695                 e_err("Timesync Tx Control register not set as expected\n");
3696                 return -EAGAIN;
3697         }
3698
3699         /* enable/disable Rx h/w time stamping */
3700         regval = er32(TSYNCRXCTL);
3701         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3702         regval |= tsync_rx_ctl;
3703         ew32(TSYNCRXCTL, regval);
3704         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3705                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3706             (regval & (E1000_TSYNCRXCTL_ENABLED |
3707                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3708                 e_err("Timesync Rx Control register not set as expected\n");
3709                 return -EAGAIN;
3710         }
3711
3712         /* L2: define ethertype filter for time stamped packets */
3713         if (is_l2)
3714                 rxmtrl |= ETH_P_1588;
3715
3716         /* define which PTP packets get time stamped */
3717         ew32(RXMTRL, rxmtrl);
3718
3719         /* Filter by destination port */
3720         if (is_l4) {
3721                 rxudp = PTP_EV_PORT;
3722                 cpu_to_be16s(&rxudp);
3723         }
3724         ew32(RXUDP, rxudp);
3725
3726         e1e_flush();
3727
3728         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3729         er32(RXSTMPH);
3730         er32(TXSTMPH);
3731
3732         return 0;
3733 }
3734
3735 /**
3736  * e1000_configure - configure the hardware for Rx and Tx
3737  * @adapter: private board structure
3738  **/
3739 static void e1000_configure(struct e1000_adapter *adapter)
3740 {
3741         struct e1000_ring *rx_ring = adapter->rx_ring;
3742
3743         e1000e_set_rx_mode(adapter->netdev);
3744
3745         e1000_restore_vlan(adapter);
3746         e1000_init_manageability_pt(adapter);
3747
3748         e1000_configure_tx(adapter);
3749
3750         if (adapter->netdev->features & NETIF_F_RXHASH)
3751                 e1000e_setup_rss_hash(adapter);
3752         e1000_setup_rctl(adapter);
3753         e1000_configure_rx(adapter);
3754         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755 }
3756
3757 /**
3758  * e1000e_power_up_phy - restore link in case the phy was powered down
3759  * @adapter: address of board private structure
3760  *
3761  * The phy may be powered down to save power and turn off link when the
3762  * driver is unloaded and wake on lan is not enabled (among others)
3763  * *** this routine MUST be followed by a call to e1000e_reset ***
3764  **/
3765 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766 {
3767         if (adapter->hw.phy.ops.power_up)
3768                 adapter->hw.phy.ops.power_up(&adapter->hw);
3769
3770         adapter->hw.mac.ops.setup_link(&adapter->hw);
3771 }
3772
3773 /**
3774  * e1000_power_down_phy - Power down the PHY
3775  *
3776  * Power down the PHY so no link is implied when interface is down.
3777  * The PHY cannot be powered down if management or WoL is active.
3778  */
3779 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780 {
3781         if (adapter->hw.phy.ops.power_down)
3782                 adapter->hw.phy.ops.power_down(&adapter->hw);
3783 }
3784
3785 /**
3786  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787  *
3788  * We want to clear all pending descriptors from the TX ring.
3789  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790  * the data of the next descriptor. We don't care about the data we are about
3791  * to reset the HW.
3792  */
3793 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794 {
3795         struct e1000_hw *hw = &adapter->hw;
3796         struct e1000_ring *tx_ring = adapter->tx_ring;
3797         struct e1000_tx_desc *tx_desc = NULL;
3798         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799         u16 size = 512;
3800
3801         tctl = er32(TCTL);
3802         ew32(TCTL, tctl | E1000_TCTL_EN);
3803         tdt = er32(TDT(0));
3804         BUG_ON(tdt != tx_ring->next_to_use);
3805         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806         tx_desc->buffer_addr = tx_ring->dma;
3807
3808         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809         tx_desc->upper.data = 0;
3810         /* flush descriptors to memory before notifying the HW */
3811         wmb();
3812         tx_ring->next_to_use++;
3813         if (tx_ring->next_to_use == tx_ring->count)
3814                 tx_ring->next_to_use = 0;
3815         ew32(TDT(0), tx_ring->next_to_use);
3816         mmiowb();
3817         usleep_range(200, 250);
3818 }
3819
3820 /**
3821  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822  *
3823  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824  */
3825 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826 {
3827         u32 rctl, rxdctl;
3828         struct e1000_hw *hw = &adapter->hw;
3829
3830         rctl = er32(RCTL);
3831         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832         e1e_flush();
3833         usleep_range(100, 150);
3834
3835         rxdctl = er32(RXDCTL(0));
3836         /* zero the lower 14 bits (prefetch and host thresholds) */
3837         rxdctl &= 0xffffc000;
3838
3839         /* update thresholds: prefetch threshold to 31, host threshold to 1
3840          * and make sure the granularity is "descriptors" and not "cache lines"
3841          */
3842         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843
3844         ew32(RXDCTL(0), rxdctl);
3845         /* momentarily enable the RX ring for the changes to take effect */
3846         ew32(RCTL, rctl | E1000_RCTL_EN);
3847         e1e_flush();
3848         usleep_range(100, 150);
3849         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 }
3851
3852 /**
3853  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854  *
3855  * In i219, the descriptor rings must be emptied before resetting the HW
3856  * or before changing the device state to D3 during runtime (runtime PM).
3857  *
3858  * Failure to do this will cause the HW to enter a unit hang state which can
3859  * only be released by PCI reset on the device
3860  *
3861  */
3862
3863 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864 {
3865         u16 hang_state;
3866         u32 fext_nvm11, tdlen;
3867         struct e1000_hw *hw = &adapter->hw;
3868
3869         /* First, disable MULR fix in FEXTNVM11 */
3870         fext_nvm11 = er32(FEXTNVM11);
3871         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872         ew32(FEXTNVM11, fext_nvm11);
3873         /* do nothing if we're not in faulty state, or if the queue is empty */
3874         tdlen = er32(TDLEN(0));
3875         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876                              &hang_state);
3877         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878                 return;
3879         e1000_flush_tx_ring(adapter);
3880         /* recheck, maybe the fault is caused by the rx ring */
3881         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882                              &hang_state);
3883         if (hang_state & FLUSH_DESC_REQUIRED)
3884                 e1000_flush_rx_ring(adapter);
3885 }
3886
3887 /**
3888  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3889  * @adapter: board private structure
3890  *
3891  * When the MAC is reset, all hardware bits for timesync will be reset to the
3892  * default values. This function will restore the settings last in place.
3893  * Since the clock SYSTIME registers are reset, we will simply restore the
3894  * cyclecounter to the kernel real clock time.
3895  **/
3896 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3897 {
3898         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3899         struct e1000_hw *hw = &adapter->hw;
3900         unsigned long flags;
3901         u32 timinca;
3902         s32 ret_val;
3903
3904         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3905                 return;
3906
3907         if (info->adjfreq) {
3908                 /* restore the previous ptp frequency delta */
3909                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3910         } else {
3911                 /* set the default base frequency if no adjustment possible */
3912                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3913                 if (!ret_val)
3914                         ew32(TIMINCA, timinca);
3915         }
3916
3917         if (ret_val) {
3918                 dev_warn(&adapter->pdev->dev,
3919                          "Failed to restore TIMINCA clock rate delta: %d\n",
3920                          ret_val);
3921                 return;
3922         }
3923
3924         /* reset the systim ns time counter */
3925         spin_lock_irqsave(&adapter->systim_lock, flags);
3926         timecounter_init(&adapter->tc, &adapter->cc,
3927                          ktime_to_ns(ktime_get_real()));
3928         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3929
3930         /* restore the previous hwtstamp configuration settings */
3931         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3932 }
3933
3934 /**
3935  * e1000e_reset - bring the hardware into a known good state
3936  *
3937  * This function boots the hardware and enables some settings that
3938  * require a configuration cycle of the hardware - those cannot be
3939  * set/changed during runtime. After reset the device needs to be
3940  * properly configured for Rx, Tx etc.
3941  */
3942 void e1000e_reset(struct e1000_adapter *adapter)
3943 {
3944         struct e1000_mac_info *mac = &adapter->hw.mac;
3945         struct e1000_fc_info *fc = &adapter->hw.fc;
3946         struct e1000_hw *hw = &adapter->hw;
3947         u32 tx_space, min_tx_space, min_rx_space;
3948         u32 pba = adapter->pba;
3949         u16 hwm;
3950
3951         /* reset Packet Buffer Allocation to default */
3952         ew32(PBA, pba);
3953
3954         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3955                 /* To maintain wire speed transmits, the Tx FIFO should be
3956                  * large enough to accommodate two full transmit packets,
3957                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3958                  * the Rx FIFO should be large enough to accommodate at least
3959                  * one full receive packet and is similarly rounded up and
3960                  * expressed in KB.
3961                  */
3962                 pba = er32(PBA);
3963                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3964                 tx_space = pba >> 16;
3965                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3966                 pba &= 0xffff;
3967                 /* the Tx fifo also stores 16 bytes of information about the Tx
3968                  * but don't include ethernet FCS because hardware appends it
3969                  */
3970                 min_tx_space = (adapter->max_frame_size +
3971                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3972                 min_tx_space = ALIGN(min_tx_space, 1024);
3973                 min_tx_space >>= 10;
3974                 /* software strips receive CRC, so leave room for it */
3975                 min_rx_space = adapter->max_frame_size;
3976                 min_rx_space = ALIGN(min_rx_space, 1024);
3977                 min_rx_space >>= 10;
3978
3979                 /* If current Tx allocation is less than the min Tx FIFO size,
3980                  * and the min Tx FIFO size is less than the current Rx FIFO
3981                  * allocation, take space away from current Rx allocation
3982                  */
3983                 if ((tx_space < min_tx_space) &&
3984                     ((min_tx_space - tx_space) < pba)) {
3985                         pba -= min_tx_space - tx_space;
3986
3987                         /* if short on Rx space, Rx wins and must trump Tx
3988                          * adjustment
3989                          */
3990                         if (pba < min_rx_space)
3991                                 pba = min_rx_space;
3992                 }
3993
3994                 ew32(PBA, pba);
3995         }
3996
3997         /* flow control settings
3998          *
3999          * The high water mark must be low enough to fit one full frame
4000          * (or the size used for early receive) above it in the Rx FIFO.
4001          * Set it to the lower of:
4002          * - 90% of the Rx FIFO size, and
4003          * - the full Rx FIFO size minus one full frame
4004          */
4005         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4006                 fc->pause_time = 0xFFFF;
4007         else
4008                 fc->pause_time = E1000_FC_PAUSE_TIME;
4009         fc->send_xon = true;
4010         fc->current_mode = fc->requested_mode;
4011
4012         switch (hw->mac.type) {
4013         case e1000_ich9lan:
4014         case e1000_ich10lan:
4015                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4016                         pba = 14;
4017                         ew32(PBA, pba);
4018                         fc->high_water = 0x2800;
4019                         fc->low_water = fc->high_water - 8;
4020                         break;
4021                 }
4022                 /* fall-through */
4023         default:
4024                 hwm = min(((pba << 10) * 9 / 10),
4025                           ((pba << 10) - adapter->max_frame_size));
4026
4027                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4028                 fc->low_water = fc->high_water - 8;
4029                 break;
4030         case e1000_pchlan:
4031                 /* Workaround PCH LOM adapter hangs with certain network
4032                  * loads.  If hangs persist, try disabling Tx flow control.
4033                  */
4034                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035                         fc->high_water = 0x3500;
4036                         fc->low_water = 0x1500;
4037                 } else {
4038                         fc->high_water = 0x5000;
4039                         fc->low_water = 0x3000;
4040                 }
4041                 fc->refresh_time = 0x1000;
4042                 break;
4043         case e1000_pch2lan:
4044         case e1000_pch_lpt:
4045         case e1000_pch_spt:
4046         case e1000_pch_cnp:
4047                 fc->refresh_time = 0x0400;
4048
4049                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4050                         fc->high_water = 0x05C20;
4051                         fc->low_water = 0x05048;
4052                         fc->pause_time = 0x0650;
4053                         break;
4054                 }
4055
4056                 pba = 14;
4057                 ew32(PBA, pba);
4058                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4059                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4060                 break;
4061         }
4062
4063         /* Alignment of Tx data is on an arbitrary byte boundary with the
4064          * maximum size per Tx descriptor limited only to the transmit
4065          * allocation of the packet buffer minus 96 bytes with an upper
4066          * limit of 24KB due to receive synchronization limitations.
4067          */
4068         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4069                                        24 << 10);
4070
4071         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4072          * fit in receive buffer.
4073          */
4074         if (adapter->itr_setting & 0x3) {
4075                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4076                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4077                                 dev_info(&adapter->pdev->dev,
4078                                          "Interrupt Throttle Rate off\n");
4079                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4080                                 e1000e_write_itr(adapter, 0);
4081                         }
4082                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4083                         dev_info(&adapter->pdev->dev,
4084                                  "Interrupt Throttle Rate on\n");
4085                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4086                         adapter->itr = 20000;
4087                         e1000e_write_itr(adapter, adapter->itr);
4088                 }
4089         }
4090
4091         if (hw->mac.type >= e1000_pch_spt)
4092                 e1000_flush_desc_rings(adapter);
4093         /* Allow time for pending master requests to run */
4094         mac->ops.reset_hw(hw);
4095
4096         /* For parts with AMT enabled, let the firmware know
4097          * that the network interface is in control
4098          */
4099         if (adapter->flags & FLAG_HAS_AMT)
4100                 e1000e_get_hw_control(adapter);
4101
4102         ew32(WUC, 0);
4103
4104         if (mac->ops.init_hw(hw))
4105                 e_err("Hardware Error\n");
4106
4107         e1000_update_mng_vlan(adapter);
4108
4109         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4110         ew32(VET, ETH_P_8021Q);
4111
4112         e1000e_reset_adaptive(hw);
4113
4114         /* restore systim and hwtstamp settings */
4115         e1000e_systim_reset(adapter);
4116
4117         /* Set EEE advertisement as appropriate */
4118         if (adapter->flags2 & FLAG2_HAS_EEE) {
4119                 s32 ret_val;
4120                 u16 adv_addr;
4121
4122                 switch (hw->phy.type) {
4123                 case e1000_phy_82579:
4124                         adv_addr = I82579_EEE_ADVERTISEMENT;
4125                         break;
4126                 case e1000_phy_i217:
4127                         adv_addr = I217_EEE_ADVERTISEMENT;
4128                         break;
4129                 default:
4130                         dev_err(&adapter->pdev->dev,
4131                                 "Invalid PHY type setting EEE advertisement\n");
4132                         return;
4133                 }
4134
4135                 ret_val = hw->phy.ops.acquire(hw);
4136                 if (ret_val) {
4137                         dev_err(&adapter->pdev->dev,
4138                                 "EEE advertisement - unable to acquire PHY\n");
4139                         return;
4140                 }
4141
4142                 e1000_write_emi_reg_locked(hw, adv_addr,
4143                                            hw->dev_spec.ich8lan.eee_disable ?
4144                                            0 : adapter->eee_advert);
4145
4146                 hw->phy.ops.release(hw);
4147         }
4148
4149         if (!netif_running(adapter->netdev) &&
4150             !test_bit(__E1000_TESTING, &adapter->state))
4151                 e1000_power_down_phy(adapter);
4152
4153         e1000_get_phy_info(hw);
4154
4155         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4156             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4157                 u16 phy_data = 0;
4158                 /* speed up time to link by disabling smart power down, ignore
4159                  * the return value of this function because there is nothing
4160                  * different we would do if it failed
4161                  */
4162                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4163                 phy_data &= ~IGP02E1000_PM_SPD;
4164                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4165         }
4166         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4167                 u32 reg;
4168
4169                 /* Fextnvm7 @ 0xe4[2] = 1 */
4170                 reg = er32(FEXTNVM7);
4171                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4172                 ew32(FEXTNVM7, reg);
4173                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4174                 reg = er32(FEXTNVM9);
4175                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4176                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4177                 ew32(FEXTNVM9, reg);
4178         }
4179
4180 }
4181
4182 /**
4183  * e1000e_trigger_lsc - trigger an LSC interrupt
4184  * @adapter: 
4185  *
4186  * Fire a link status change interrupt to start the watchdog.
4187  **/
4188 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4189 {
4190         struct e1000_hw *hw = &adapter->hw;
4191
4192         if (adapter->msix_entries)
4193                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4194         else
4195                 ew32(ICS, E1000_ICS_LSC);
4196 }
4197
4198 void e1000e_up(struct e1000_adapter *adapter)
4199 {
4200         /* hardware has been reset, we need to reload some things */
4201         e1000_configure(adapter);
4202
4203         clear_bit(__E1000_DOWN, &adapter->state);
4204
4205         if (adapter->msix_entries)
4206                 e1000_configure_msix(adapter);
4207         e1000_irq_enable(adapter);
4208
4209         /* Tx queue started by watchdog timer when link is up */
4210
4211         e1000e_trigger_lsc(adapter);
4212 }
4213
4214 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4215 {
4216         struct e1000_hw *hw = &adapter->hw;
4217
4218         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4219                 return;
4220
4221         /* flush pending descriptor writebacks to memory */
4222         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4223         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4224
4225         /* execute the writes immediately */
4226         e1e_flush();
4227
4228         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4229          * write is successful
4230          */
4231         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4232         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4233
4234         /* execute the writes immediately */
4235         e1e_flush();
4236 }
4237
4238 static void e1000e_update_stats(struct e1000_adapter *adapter);
4239
4240 /**
4241  * e1000e_down - quiesce the device and optionally reset the hardware
4242  * @adapter: board private structure
4243  * @reset: boolean flag to reset the hardware or not
4244  */
4245 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4246 {
4247         struct net_device *netdev = adapter->netdev;
4248         struct e1000_hw *hw = &adapter->hw;
4249         u32 tctl, rctl;
4250
4251         /* signal that we're down so the interrupt handler does not
4252          * reschedule our watchdog timer
4253          */
4254         set_bit(__E1000_DOWN, &adapter->state);
4255
4256         netif_carrier_off(netdev);
4257
4258         /* disable receives in the hardware */
4259         rctl = er32(RCTL);
4260         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4261                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4262         /* flush and sleep below */
4263
4264         netif_stop_queue(netdev);
4265
4266         /* disable transmits in the hardware */
4267         tctl = er32(TCTL);
4268         tctl &= ~E1000_TCTL_EN;
4269         ew32(TCTL, tctl);
4270
4271         /* flush both disables and wait for them to finish */
4272         e1e_flush();
4273         usleep_range(10000, 20000);
4274
4275         e1000_irq_disable(adapter);
4276
4277         napi_synchronize(&adapter->napi);
4278
4279         del_timer_sync(&adapter->watchdog_timer);
4280         del_timer_sync(&adapter->phy_info_timer);
4281
4282         spin_lock(&adapter->stats64_lock);
4283         e1000e_update_stats(adapter);
4284         spin_unlock(&adapter->stats64_lock);
4285
4286         e1000e_flush_descriptors(adapter);
4287
4288         adapter->link_speed = 0;
4289         adapter->link_duplex = 0;
4290
4291         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4292         if ((hw->mac.type >= e1000_pch2lan) &&
4293             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4294             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4295                 e_dbg("failed to disable jumbo frame workaround mode\n");
4296
4297         if (!pci_channel_offline(adapter->pdev)) {
4298                 if (reset)
4299                         e1000e_reset(adapter);
4300                 else if (hw->mac.type >= e1000_pch_spt)
4301                         e1000_flush_desc_rings(adapter);
4302         }
4303         e1000_clean_tx_ring(adapter->tx_ring);
4304         e1000_clean_rx_ring(adapter->rx_ring);
4305 }
4306
4307 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4308 {
4309         might_sleep();
4310         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4311                 usleep_range(1000, 2000);
4312         e1000e_down(adapter, true);
4313         e1000e_up(adapter);
4314         clear_bit(__E1000_RESETTING, &adapter->state);
4315 }
4316
4317 /**
4318  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4319  * @hw: pointer to the HW structure
4320  * @systim: time value read, sanitized and returned
4321  *
4322  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4323  * check to see that the time is incrementing at a reasonable
4324  * rate and is a multiple of incvalue.
4325  **/
4326 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4327 {
4328         u64 time_delta, rem, temp;
4329         u64 systim_next;
4330         u32 incvalue;
4331         int i;
4332
4333         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4334         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4335                 /* latch SYSTIMH on read of SYSTIML */
4336                 systim_next = (u64)er32(SYSTIML);
4337                 systim_next |= (u64)er32(SYSTIMH) << 32;
4338
4339                 time_delta = systim_next - systim;
4340                 temp = time_delta;
4341                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4342                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4343
4344                 systim = systim_next;
4345
4346                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4347                         break;
4348         }
4349
4350         return systim;
4351 }
4352
4353 /**
4354  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4355  * @cc: cyclecounter structure
4356  **/
4357 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4358 {
4359         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4360                                                      cc);
4361         struct e1000_hw *hw = &adapter->hw;
4362         u32 systimel, systimeh;
4363         u64 systim;
4364         /* SYSTIMH latching upon SYSTIML read does not work well.
4365          * This means that if SYSTIML overflows after we read it but before
4366          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4367          * will experience a huge non linear increment in the systime value
4368          * to fix that we test for overflow and if true, we re-read systime.
4369          */
4370         systimel = er32(SYSTIML);
4371         systimeh = er32(SYSTIMH);
4372         /* Is systimel is so large that overflow is possible? */
4373         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4374                 u32 systimel_2 = er32(SYSTIML);
4375                 if (systimel > systimel_2) {
4376                         /* There was an overflow, read again SYSTIMH, and use
4377                          * systimel_2
4378                          */
4379                         systimeh = er32(SYSTIMH);
4380                         systimel = systimel_2;
4381                 }
4382         }
4383         systim = (u64)systimel;
4384         systim |= (u64)systimeh << 32;
4385
4386         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4387                 systim = e1000e_sanitize_systim(hw, systim);
4388
4389         return systim;
4390 }
4391
4392 /**
4393  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4394  * @adapter: board private structure to initialize
4395  *
4396  * e1000_sw_init initializes the Adapter private data structure.
4397  * Fields are initialized based on PCI device information and
4398  * OS network device settings (MTU size).
4399  **/
4400 static int e1000_sw_init(struct e1000_adapter *adapter)
4401 {
4402         struct net_device *netdev = adapter->netdev;
4403
4404         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4405         adapter->rx_ps_bsize0 = 128;
4406         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4407         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4408         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4409         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4410
4411         spin_lock_init(&adapter->stats64_lock);
4412
4413         e1000e_set_interrupt_capability(adapter);
4414
4415         if (e1000_alloc_queues(adapter))
4416                 return -ENOMEM;
4417
4418         /* Setup hardware time stamping cyclecounter */
4419         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4420                 adapter->cc.read = e1000e_cyclecounter_read;
4421                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4422                 adapter->cc.mult = 1;
4423                 /* cc.shift set in e1000e_get_base_tininca() */
4424
4425                 spin_lock_init(&adapter->systim_lock);
4426                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4427         }
4428
4429         /* Explicitly disable IRQ since the NIC can be in any state. */
4430         e1000_irq_disable(adapter);
4431
4432         set_bit(__E1000_DOWN, &adapter->state);
4433         return 0;
4434 }
4435
4436 /**
4437  * e1000_intr_msi_test - Interrupt Handler
4438  * @irq: interrupt number
4439  * @data: pointer to a network interface device structure
4440  **/
4441 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4442 {
4443         struct net_device *netdev = data;
4444         struct e1000_adapter *adapter = netdev_priv(netdev);
4445         struct e1000_hw *hw = &adapter->hw;
4446         u32 icr = er32(ICR);
4447
4448         e_dbg("icr is %08X\n", icr);
4449         if (icr & E1000_ICR_RXSEQ) {
4450                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4451                 /* Force memory writes to complete before acknowledging the
4452                  * interrupt is handled.
4453                  */
4454                 wmb();
4455         }
4456
4457         return IRQ_HANDLED;
4458 }
4459
4460 /**
4461  * e1000_test_msi_interrupt - Returns 0 for successful test
4462  * @adapter: board private struct
4463  *
4464  * code flow taken from tg3.c
4465  **/
4466 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4467 {
4468         struct net_device *netdev = adapter->netdev;
4469         struct e1000_hw *hw = &adapter->hw;
4470         int err;
4471
4472         /* poll_enable hasn't been called yet, so don't need disable */
4473         /* clear any pending events */
4474         er32(ICR);
4475
4476         /* free the real vector and request a test handler */
4477         e1000_free_irq(adapter);
4478         e1000e_reset_interrupt_capability(adapter);
4479
4480         /* Assume that the test fails, if it succeeds then the test
4481          * MSI irq handler will unset this flag
4482          */
4483         adapter->flags |= FLAG_MSI_TEST_FAILED;
4484
4485         err = pci_enable_msi(adapter->pdev);
4486         if (err)
4487                 goto msi_test_failed;
4488
4489         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4490                           netdev->name, netdev);
4491         if (err) {
4492                 pci_disable_msi(adapter->pdev);
4493                 goto msi_test_failed;
4494         }
4495
4496         /* Force memory writes to complete before enabling and firing an
4497          * interrupt.
4498          */
4499         wmb();
4500
4501         e1000_irq_enable(adapter);
4502
4503         /* fire an unusual interrupt on the test handler */
4504         ew32(ICS, E1000_ICS_RXSEQ);
4505         e1e_flush();
4506         msleep(100);
4507
4508         e1000_irq_disable(adapter);
4509
4510         rmb();                  /* read flags after interrupt has been fired */
4511
4512         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4513                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4514                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4515         } else {
4516                 e_dbg("MSI interrupt test succeeded!\n");
4517         }
4518
4519         free_irq(adapter->pdev->irq, netdev);
4520         pci_disable_msi(adapter->pdev);
4521
4522 msi_test_failed:
4523         e1000e_set_interrupt_capability(adapter);
4524         return e1000_request_irq(adapter);
4525 }
4526
4527 /**
4528  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4529  * @adapter: board private struct
4530  *
4531  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4532  **/
4533 static int e1000_test_msi(struct e1000_adapter *adapter)
4534 {
4535         int err;
4536         u16 pci_cmd;
4537
4538         if (!(adapter->flags & FLAG_MSI_ENABLED))
4539                 return 0;
4540
4541         /* disable SERR in case the MSI write causes a master abort */
4542         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4543         if (pci_cmd & PCI_COMMAND_SERR)
4544                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4545                                       pci_cmd & ~PCI_COMMAND_SERR);
4546
4547         err = e1000_test_msi_interrupt(adapter);
4548
4549         /* re-enable SERR */
4550         if (pci_cmd & PCI_COMMAND_SERR) {
4551                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4552                 pci_cmd |= PCI_COMMAND_SERR;
4553                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4554         }
4555
4556         return err;
4557 }
4558
4559 /**
4560  * e1000e_open - Called when a network interface is made active
4561  * @netdev: network interface device structure
4562  *
4563  * Returns 0 on success, negative value on failure
4564  *
4565  * The open entry point is called when a network interface is made
4566  * active by the system (IFF_UP).  At this point all resources needed
4567  * for transmit and receive operations are allocated, the interrupt
4568  * handler is registered with the OS, the watchdog timer is started,
4569  * and the stack is notified that the interface is ready.
4570  **/
4571 int e1000e_open(struct net_device *netdev)
4572 {
4573         struct e1000_adapter *adapter = netdev_priv(netdev);
4574         struct e1000_hw *hw = &adapter->hw;
4575         struct pci_dev *pdev = adapter->pdev;
4576         int err;
4577
4578         /* disallow open during test */
4579         if (test_bit(__E1000_TESTING, &adapter->state))
4580                 return -EBUSY;
4581
4582         pm_runtime_get_sync(&pdev->dev);
4583
4584         netif_carrier_off(netdev);
4585         netif_stop_queue(netdev);
4586
4587         /* allocate transmit descriptors */
4588         err = e1000e_setup_tx_resources(adapter->tx_ring);
4589         if (err)
4590                 goto err_setup_tx;
4591
4592         /* allocate receive descriptors */
4593         err = e1000e_setup_rx_resources(adapter->rx_ring);
4594         if (err)
4595                 goto err_setup_rx;
4596
4597         /* If AMT is enabled, let the firmware know that the network
4598          * interface is now open and reset the part to a known state.
4599          */
4600         if (adapter->flags & FLAG_HAS_AMT) {
4601                 e1000e_get_hw_control(adapter);
4602                 e1000e_reset(adapter);
4603         }
4604
4605         e1000e_power_up_phy(adapter);
4606
4607         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4608         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4609                 e1000_update_mng_vlan(adapter);
4610
4611         /* DMA latency requirement to workaround jumbo issue */
4612         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4613                            PM_QOS_DEFAULT_VALUE);
4614
4615         /* before we allocate an interrupt, we must be ready to handle it.
4616          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4617          * as soon as we call pci_request_irq, so we have to setup our
4618          * clean_rx handler before we do so.
4619          */
4620         e1000_configure(adapter);
4621
4622         err = e1000_request_irq(adapter);
4623         if (err)
4624                 goto err_req_irq;
4625
4626         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4627          * ignore e1000e MSI messages, which means we need to test our MSI
4628          * interrupt now
4629          */
4630         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4631                 err = e1000_test_msi(adapter);
4632                 if (err) {
4633                         e_err("Interrupt allocation failed\n");
4634                         goto err_req_irq;
4635                 }
4636         }
4637
4638         /* From here on the code is the same as e1000e_up() */
4639         clear_bit(__E1000_DOWN, &adapter->state);
4640
4641         napi_enable(&adapter->napi);
4642
4643         e1000_irq_enable(adapter);
4644
4645         adapter->tx_hang_recheck = false;
4646
4647         hw->mac.get_link_status = true;
4648         pm_runtime_put(&pdev->dev);
4649
4650         e1000e_trigger_lsc(adapter);
4651
4652         return 0;
4653
4654 err_req_irq:
4655         pm_qos_remove_request(&adapter->pm_qos_req);
4656         e1000e_release_hw_control(adapter);
4657         e1000_power_down_phy(adapter);
4658         e1000e_free_rx_resources(adapter->rx_ring);
4659 err_setup_rx:
4660         e1000e_free_tx_resources(adapter->tx_ring);
4661 err_setup_tx:
4662         e1000e_reset(adapter);
4663         pm_runtime_put_sync(&pdev->dev);
4664
4665         return err;
4666 }
4667
4668 /**
4669  * e1000e_close - Disables a network interface
4670  * @netdev: network interface device structure
4671  *
4672  * Returns 0, this is not allowed to fail
4673  *
4674  * The close entry point is called when an interface is de-activated
4675  * by the OS.  The hardware is still under the drivers control, but
4676  * needs to be disabled.  A global MAC reset is issued to stop the
4677  * hardware, and all transmit and receive resources are freed.
4678  **/
4679 int e1000e_close(struct net_device *netdev)
4680 {
4681         struct e1000_adapter *adapter = netdev_priv(netdev);
4682         struct pci_dev *pdev = adapter->pdev;
4683         int count = E1000_CHECK_RESET_COUNT;
4684
4685         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4686                 usleep_range(10000, 20000);
4687
4688         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4689
4690         pm_runtime_get_sync(&pdev->dev);
4691
4692         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4693                 e1000e_down(adapter, true);
4694                 e1000_free_irq(adapter);
4695
4696                 /* Link status message must follow this format */
4697                 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4698         }
4699
4700         napi_disable(&adapter->napi);
4701
4702         e1000e_free_tx_resources(adapter->tx_ring);
4703         e1000e_free_rx_resources(adapter->rx_ring);
4704
4705         /* kill manageability vlan ID if supported, but not if a vlan with
4706          * the same ID is registered on the host OS (let 8021q kill it)
4707          */
4708         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4709                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4710                                        adapter->mng_vlan_id);
4711
4712         /* If AMT is enabled, let the firmware know that the network
4713          * interface is now closed
4714          */
4715         if ((adapter->flags & FLAG_HAS_AMT) &&
4716             !test_bit(__E1000_TESTING, &adapter->state))
4717                 e1000e_release_hw_control(adapter);
4718
4719         pm_qos_remove_request(&adapter->pm_qos_req);
4720
4721         pm_runtime_put_sync(&pdev->dev);
4722
4723         return 0;
4724 }
4725
4726 /**
4727  * e1000_set_mac - Change the Ethernet Address of the NIC
4728  * @netdev: network interface device structure
4729  * @p: pointer to an address structure
4730  *
4731  * Returns 0 on success, negative on failure
4732  **/
4733 static int e1000_set_mac(struct net_device *netdev, void *p)
4734 {
4735         struct e1000_adapter *adapter = netdev_priv(netdev);
4736         struct e1000_hw *hw = &adapter->hw;
4737         struct sockaddr *addr = p;
4738
4739         if (!is_valid_ether_addr(addr->sa_data))
4740                 return -EADDRNOTAVAIL;
4741
4742         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4743         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4744
4745         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4746
4747         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4748                 /* activate the work around */
4749                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4750
4751                 /* Hold a copy of the LAA in RAR[14] This is done so that
4752                  * between the time RAR[0] gets clobbered  and the time it
4753                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4754                  * of the RARs and no incoming packets directed to this port
4755                  * are dropped. Eventually the LAA will be in RAR[0] and
4756                  * RAR[14]
4757                  */
4758                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4759                                     adapter->hw.mac.rar_entry_count - 1);
4760         }
4761
4762         return 0;
4763 }
4764
4765 /**
4766  * e1000e_update_phy_task - work thread to update phy
4767  * @work: pointer to our work struct
4768  *
4769  * this worker thread exists because we must acquire a
4770  * semaphore to read the phy, which we could msleep while
4771  * waiting for it, and we can't msleep in a timer.
4772  **/
4773 static void e1000e_update_phy_task(struct work_struct *work)
4774 {
4775         struct e1000_adapter *adapter = container_of(work,
4776                                                      struct e1000_adapter,
4777                                                      update_phy_task);
4778         struct e1000_hw *hw = &adapter->hw;
4779
4780         if (test_bit(__E1000_DOWN, &adapter->state))
4781                 return;
4782
4783         e1000_get_phy_info(hw);
4784
4785         /* Enable EEE on 82579 after link up */
4786         if (hw->phy.type >= e1000_phy_82579)
4787                 e1000_set_eee_pchlan(hw);
4788 }
4789
4790 /**
4791  * e1000_update_phy_info - timre call-back to update PHY info
4792  * @data: pointer to adapter cast into an unsigned long
4793  *
4794  * Need to wait a few seconds after link up to get diagnostic information from
4795  * the phy
4796  **/
4797 static void e1000_update_phy_info(struct timer_list *t)
4798 {
4799         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4800
4801         if (test_bit(__E1000_DOWN, &adapter->state))
4802                 return;
4803
4804         schedule_work(&adapter->update_phy_task);
4805 }
4806
4807 /**
4808  * e1000e_update_phy_stats - Update the PHY statistics counters
4809  * @adapter: board private structure
4810  *
4811  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4812  **/
4813 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4814 {
4815         struct e1000_hw *hw = &adapter->hw;
4816         s32 ret_val;
4817         u16 phy_data;
4818
4819         ret_val = hw->phy.ops.acquire(hw);
4820         if (ret_val)
4821                 return;
4822
4823         /* A page set is expensive so check if already on desired page.
4824          * If not, set to the page with the PHY status registers.
4825          */
4826         hw->phy.addr = 1;
4827         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4828                                            &phy_data);
4829         if (ret_val)
4830                 goto release;
4831         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4832                 ret_val = hw->phy.ops.set_page(hw,
4833                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4834                 if (ret_val)
4835                         goto release;
4836         }
4837
4838         /* Single Collision Count */
4839         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4840         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4841         if (!ret_val)
4842                 adapter->stats.scc += phy_data;
4843
4844         /* Excessive Collision Count */
4845         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4846         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4847         if (!ret_val)
4848                 adapter->stats.ecol += phy_data;
4849
4850         /* Multiple Collision Count */
4851         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4852         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4853         if (!ret_val)
4854                 adapter->stats.mcc += phy_data;
4855
4856         /* Late Collision Count */
4857         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4858         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4859         if (!ret_val)
4860                 adapter->stats.latecol += phy_data;
4861
4862         /* Collision Count - also used for adaptive IFS */
4863         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4864         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4865         if (!ret_val)
4866                 hw->mac.collision_delta = phy_data;
4867
4868         /* Defer Count */
4869         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4870         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4871         if (!ret_val)
4872                 adapter->stats.dc += phy_data;
4873
4874         /* Transmit with no CRS */
4875         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4876         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4877         if (!ret_val)
4878                 adapter->stats.tncrs += phy_data;
4879
4880 release:
4881         hw->phy.ops.release(hw);
4882 }
4883
4884 /**
4885  * e1000e_update_stats - Update the board statistics counters
4886  * @adapter: board private structure
4887  **/
4888 static void e1000e_update_stats(struct e1000_adapter *adapter)
4889 {
4890         struct net_device *netdev = adapter->netdev;
4891         struct e1000_hw *hw = &adapter->hw;
4892         struct pci_dev *pdev = adapter->pdev;
4893
4894         /* Prevent stats update while adapter is being reset, or if the pci
4895          * connection is down.
4896          */
4897         if (adapter->link_speed == 0)
4898                 return;
4899         if (pci_channel_offline(pdev))
4900                 return;
4901
4902         adapter->stats.crcerrs += er32(CRCERRS);
4903         adapter->stats.gprc += er32(GPRC);
4904         adapter->stats.gorc += er32(GORCL);
4905         er32(GORCH);            /* Clear gorc */
4906         adapter->stats.bprc += er32(BPRC);
4907         adapter->stats.mprc += er32(MPRC);
4908         adapter->stats.roc += er32(ROC);
4909
4910         adapter->stats.mpc += er32(MPC);
4911
4912         /* Half-duplex statistics */
4913         if (adapter->link_duplex == HALF_DUPLEX) {
4914                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4915                         e1000e_update_phy_stats(adapter);
4916                 } else {
4917                         adapter->stats.scc += er32(SCC);
4918                         adapter->stats.ecol += er32(ECOL);
4919                         adapter->stats.mcc += er32(MCC);
4920                         adapter->stats.latecol += er32(LATECOL);
4921                         adapter->stats.dc += er32(DC);
4922
4923                         hw->mac.collision_delta = er32(COLC);
4924
4925                         if ((hw->mac.type != e1000_82574) &&
4926                             (hw->mac.type != e1000_82583))
4927                                 adapter->stats.tncrs += er32(TNCRS);
4928                 }
4929                 adapter->stats.colc += hw->mac.collision_delta;
4930         }
4931
4932         adapter->stats.xonrxc += er32(XONRXC);
4933         adapter->stats.xontxc += er32(XONTXC);
4934         adapter->stats.xoffrxc += er32(XOFFRXC);
4935         adapter->stats.xofftxc += er32(XOFFTXC);
4936         adapter->stats.gptc += er32(GPTC);
4937         adapter->stats.gotc += er32(GOTCL);
4938         er32(GOTCH);            /* Clear gotc */
4939         adapter->stats.rnbc += er32(RNBC);
4940         adapter->stats.ruc += er32(RUC);
4941
4942         adapter->stats.mptc += er32(MPTC);
4943         adapter->stats.bptc += er32(BPTC);
4944
4945         /* used for adaptive IFS */
4946
4947         hw->mac.tx_packet_delta = er32(TPT);
4948         adapter->stats.tpt += hw->mac.tx_packet_delta;
4949
4950         adapter->stats.algnerrc += er32(ALGNERRC);
4951         adapter->stats.rxerrc += er32(RXERRC);
4952         adapter->stats.cexterr += er32(CEXTERR);
4953         adapter->stats.tsctc += er32(TSCTC);
4954         adapter->stats.tsctfc += er32(TSCTFC);
4955
4956         /* Fill out the OS statistics structure */
4957         netdev->stats.multicast = adapter->stats.mprc;
4958         netdev->stats.collisions = adapter->stats.colc;
4959
4960         /* Rx Errors */
4961
4962         /* RLEC on some newer hardware can be incorrect so build
4963          * our own version based on RUC and ROC
4964          */
4965         netdev->stats.rx_errors = adapter->stats.rxerrc +
4966             adapter->stats.crcerrs + adapter->stats.algnerrc +
4967             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4968         netdev->stats.rx_length_errors = adapter->stats.ruc +
4969             adapter->stats.roc;
4970         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4971         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4972         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4973
4974         /* Tx Errors */
4975         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4976         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4977         netdev->stats.tx_window_errors = adapter->stats.latecol;
4978         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4979
4980         /* Tx Dropped needs to be maintained elsewhere */
4981
4982         /* Management Stats */
4983         adapter->stats.mgptc += er32(MGTPTC);
4984         adapter->stats.mgprc += er32(MGTPRC);
4985         adapter->stats.mgpdc += er32(MGTPDC);
4986
4987         /* Correctable ECC Errors */
4988         if (hw->mac.type >= e1000_pch_lpt) {
4989                 u32 pbeccsts = er32(PBECCSTS);
4990
4991                 adapter->corr_errors +=
4992                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4993                 adapter->uncorr_errors +=
4994                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4995                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4996         }
4997 }
4998
4999 /**
5000  * e1000_phy_read_status - Update the PHY register status snapshot
5001  * @adapter: board private structure
5002  **/
5003 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5004 {
5005         struct e1000_hw *hw = &adapter->hw;
5006         struct e1000_phy_regs *phy = &adapter->phy_regs;
5007
5008         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5009             (er32(STATUS) & E1000_STATUS_LU) &&
5010             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5011                 int ret_val;
5012
5013                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5014                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5015                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5016                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5017                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5018                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5019                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5020                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5021                 if (ret_val)
5022                         e_warn("Error reading PHY register\n");
5023         } else {
5024                 /* Do not read PHY registers if link is not up
5025                  * Set values to typical power-on defaults
5026                  */
5027                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5028                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5029                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5030                              BMSR_ERCAP);
5031                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5032                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5033                 phy->lpa = 0;
5034                 phy->expansion = EXPANSION_ENABLENPAGE;
5035                 phy->ctrl1000 = ADVERTISE_1000FULL;
5036                 phy->stat1000 = 0;
5037                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5038         }
5039 }
5040
5041 static void e1000_print_link_info(struct e1000_adapter *adapter)
5042 {
5043         struct e1000_hw *hw = &adapter->hw;
5044         u32 ctrl = er32(CTRL);
5045
5046         /* Link status message must follow this format for user tools */
5047         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5048                 adapter->netdev->name, adapter->link_speed,
5049                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5050                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5051                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5052                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5053 }
5054
5055 static bool e1000e_has_link(struct e1000_adapter *adapter)
5056 {
5057         struct e1000_hw *hw = &adapter->hw;
5058         bool link_active = false;
5059         s32 ret_val = 0;
5060
5061         /* get_link_status is set on LSC (link status) interrupt or
5062          * Rx sequence error interrupt.  get_link_status will stay
5063          * true until the check_for_link establishes link
5064          * for copper adapters ONLY
5065          */
5066         switch (hw->phy.media_type) {
5067         case e1000_media_type_copper:
5068                 if (hw->mac.get_link_status) {
5069                         ret_val = hw->mac.ops.check_for_link(hw);
5070                         link_active = !hw->mac.get_link_status;
5071                 } else {
5072                         link_active = true;
5073                 }
5074                 break;
5075         case e1000_media_type_fiber:
5076                 ret_val = hw->mac.ops.check_for_link(hw);
5077                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5078                 break;
5079         case e1000_media_type_internal_serdes:
5080                 ret_val = hw->mac.ops.check_for_link(hw);
5081                 link_active = hw->mac.serdes_has_link;
5082                 break;
5083         default:
5084         case e1000_media_type_unknown:
5085                 break;
5086         }
5087
5088         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5089             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5090                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5091                 e_info("Gigabit has been disabled, downgrading speed\n");
5092         }
5093
5094         return link_active;
5095 }
5096
5097 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5098 {
5099         /* make sure the receive unit is started */
5100         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5101             (adapter->flags & FLAG_RESTART_NOW)) {
5102                 struct e1000_hw *hw = &adapter->hw;
5103                 u32 rctl = er32(RCTL);
5104
5105                 ew32(RCTL, rctl | E1000_RCTL_EN);
5106                 adapter->flags &= ~FLAG_RESTART_NOW;
5107         }
5108 }
5109
5110 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5111 {
5112         struct e1000_hw *hw = &adapter->hw;
5113
5114         /* With 82574 controllers, PHY needs to be checked periodically
5115          * for hung state and reset, if two calls return true
5116          */
5117         if (e1000_check_phy_82574(hw))
5118                 adapter->phy_hang_count++;
5119         else
5120                 adapter->phy_hang_count = 0;
5121
5122         if (adapter->phy_hang_count > 1) {
5123                 adapter->phy_hang_count = 0;
5124                 e_dbg("PHY appears hung - resetting\n");
5125                 schedule_work(&adapter->reset_task);
5126         }
5127 }
5128
5129 /**
5130  * e1000_watchdog - Timer Call-back
5131  * @data: pointer to adapter cast into an unsigned long
5132  **/
5133 static void e1000_watchdog(struct timer_list *t)
5134 {
5135         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5136
5137         /* Do the rest outside of interrupt context */
5138         schedule_work(&adapter->watchdog_task);
5139
5140         /* TODO: make this use queue_delayed_work() */
5141 }
5142
5143 static void e1000_watchdog_task(struct work_struct *work)
5144 {
5145         struct e1000_adapter *adapter = container_of(work,
5146                                                      struct e1000_adapter,
5147                                                      watchdog_task);
5148         struct net_device *netdev = adapter->netdev;
5149         struct e1000_mac_info *mac = &adapter->hw.mac;
5150         struct e1000_phy_info *phy = &adapter->hw.phy;
5151         struct e1000_ring *tx_ring = adapter->tx_ring;
5152         struct e1000_hw *hw = &adapter->hw;
5153         u32 link, tctl;
5154
5155         if (test_bit(__E1000_DOWN, &adapter->state))
5156                 return;
5157
5158         link = e1000e_has_link(adapter);
5159         if ((netif_carrier_ok(netdev)) && link) {
5160                 /* Cancel scheduled suspend requests. */
5161                 pm_runtime_resume(netdev->dev.parent);
5162
5163                 e1000e_enable_receives(adapter);
5164                 goto link_up;
5165         }
5166
5167         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5168             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5169                 e1000_update_mng_vlan(adapter);
5170
5171         if (link) {
5172                 if (!netif_carrier_ok(netdev)) {
5173                         bool txb2b = true;
5174
5175                         /* Cancel scheduled suspend requests. */
5176                         pm_runtime_resume(netdev->dev.parent);
5177
5178                         /* update snapshot of PHY registers on LSC */
5179                         e1000_phy_read_status(adapter);
5180                         mac->ops.get_link_up_info(&adapter->hw,
5181                                                   &adapter->link_speed,
5182                                                   &adapter->link_duplex);
5183                         e1000_print_link_info(adapter);
5184
5185                         /* check if SmartSpeed worked */
5186                         e1000e_check_downshift(hw);
5187                         if (phy->speed_downgraded)
5188                                 netdev_warn(netdev,
5189                                             "Link Speed was downgraded by SmartSpeed\n");
5190
5191                         /* On supported PHYs, check for duplex mismatch only
5192                          * if link has autonegotiated at 10/100 half
5193                          */
5194                         if ((hw->phy.type == e1000_phy_igp_3 ||
5195                              hw->phy.type == e1000_phy_bm) &&
5196                             hw->mac.autoneg &&
5197                             (adapter->link_speed == SPEED_10 ||
5198                              adapter->link_speed == SPEED_100) &&
5199                             (adapter->link_duplex == HALF_DUPLEX)) {
5200                                 u16 autoneg_exp;
5201
5202                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5203
5204                                 if (!(autoneg_exp & EXPANSION_NWAY))
5205                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5206                         }
5207
5208                         /* adjust timeout factor according to speed/duplex */
5209                         adapter->tx_timeout_factor = 1;
5210                         switch (adapter->link_speed) {
5211                         case SPEED_10:
5212                                 txb2b = false;
5213                                 adapter->tx_timeout_factor = 16;
5214                                 break;
5215                         case SPEED_100:
5216                                 txb2b = false;
5217                                 adapter->tx_timeout_factor = 10;
5218                                 break;
5219                         }
5220
5221                         /* workaround: re-program speed mode bit after
5222                          * link-up event
5223                          */
5224                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5225                             !txb2b) {
5226                                 u32 tarc0;
5227
5228                                 tarc0 = er32(TARC(0));
5229                                 tarc0 &= ~SPEED_MODE_BIT;
5230                                 ew32(TARC(0), tarc0);
5231                         }
5232
5233                         /* disable TSO for pcie and 10/100 speeds, to avoid
5234                          * some hardware issues
5235                          */
5236                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5237                                 switch (adapter->link_speed) {
5238                                 case SPEED_10:
5239                                 case SPEED_100:
5240                                         e_info("10/100 speed: disabling TSO\n");
5241                                         netdev->features &= ~NETIF_F_TSO;
5242                                         netdev->features &= ~NETIF_F_TSO6;
5243                                         break;
5244                                 case SPEED_1000:
5245                                         netdev->features |= NETIF_F_TSO;
5246                                         netdev->features |= NETIF_F_TSO6;
5247                                         break;
5248                                 default:
5249                                         /* oops */
5250                                         break;
5251                                 }
5252                                 if (hw->mac.type == e1000_pch_spt) {
5253                                         netdev->features &= ~NETIF_F_TSO;
5254                                         netdev->features &= ~NETIF_F_TSO6;
5255                                 }
5256                         }
5257
5258                         /* enable transmits in the hardware, need to do this
5259                          * after setting TARC(0)
5260                          */
5261                         tctl = er32(TCTL);
5262                         tctl |= E1000_TCTL_EN;
5263                         ew32(TCTL, tctl);
5264
5265                         /* Perform any post-link-up configuration before
5266                          * reporting link up.
5267                          */
5268                         if (phy->ops.cfg_on_link_up)
5269                                 phy->ops.cfg_on_link_up(hw);
5270
5271                         netif_wake_queue(netdev);
5272                         netif_carrier_on(netdev);
5273
5274                         if (!test_bit(__E1000_DOWN, &adapter->state))
5275                                 mod_timer(&adapter->phy_info_timer,
5276                                           round_jiffies(jiffies + 2 * HZ));
5277                 }
5278         } else {
5279                 if (netif_carrier_ok(netdev)) {
5280                         adapter->link_speed = 0;
5281                         adapter->link_duplex = 0;
5282                         /* Link status message must follow this format */
5283                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5284                         netif_carrier_off(netdev);
5285                         netif_stop_queue(netdev);
5286                         if (!test_bit(__E1000_DOWN, &adapter->state))
5287                                 mod_timer(&adapter->phy_info_timer,
5288                                           round_jiffies(jiffies + 2 * HZ));
5289
5290                         /* 8000ES2LAN requires a Rx packet buffer work-around
5291                          * on link down event; reset the controller to flush
5292                          * the Rx packet buffer.
5293                          */
5294                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5295                                 adapter->flags |= FLAG_RESTART_NOW;
5296                         else
5297                                 pm_schedule_suspend(netdev->dev.parent,
5298                                                     LINK_TIMEOUT);
5299                 }
5300         }
5301
5302 link_up:
5303         spin_lock(&adapter->stats64_lock);
5304         e1000e_update_stats(adapter);
5305
5306         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5307         adapter->tpt_old = adapter->stats.tpt;
5308         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5309         adapter->colc_old = adapter->stats.colc;
5310
5311         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5312         adapter->gorc_old = adapter->stats.gorc;
5313         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5314         adapter->gotc_old = adapter->stats.gotc;
5315         spin_unlock(&adapter->stats64_lock);
5316
5317         /* If the link is lost the controller stops DMA, but
5318          * if there is queued Tx work it cannot be done.  So
5319          * reset the controller to flush the Tx packet buffers.
5320          */
5321         if (!netif_carrier_ok(netdev) &&
5322             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5323                 adapter->flags |= FLAG_RESTART_NOW;
5324
5325         /* If reset is necessary, do it outside of interrupt context. */
5326         if (adapter->flags & FLAG_RESTART_NOW) {
5327                 schedule_work(&adapter->reset_task);
5328                 /* return immediately since reset is imminent */
5329                 return;
5330         }
5331
5332         e1000e_update_adaptive(&adapter->hw);
5333
5334         /* Simple mode for Interrupt Throttle Rate (ITR) */
5335         if (adapter->itr_setting == 4) {
5336                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5337                  * Total asymmetrical Tx or Rx gets ITR=8000;
5338                  * everyone else is between 2000-8000.
5339                  */
5340                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5341                 u32 dif = (adapter->gotc > adapter->gorc ?
5342                            adapter->gotc - adapter->gorc :
5343                            adapter->gorc - adapter->gotc) / 10000;
5344                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5345
5346                 e1000e_write_itr(adapter, itr);
5347         }
5348
5349         /* Cause software interrupt to ensure Rx ring is cleaned */
5350         if (adapter->msix_entries)
5351                 ew32(ICS, adapter->rx_ring->ims_val);
5352         else
5353                 ew32(ICS, E1000_ICS_RXDMT0);
5354
5355         /* flush pending descriptors to memory before detecting Tx hang */
5356         e1000e_flush_descriptors(adapter);
5357
5358         /* Force detection of hung controller every watchdog period */
5359         adapter->detect_tx_hung = true;
5360
5361         /* With 82571 controllers, LAA may be overwritten due to controller
5362          * reset from the other port. Set the appropriate LAA in RAR[0]
5363          */
5364         if (e1000e_get_laa_state_82571(hw))
5365                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5366
5367         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5368                 e1000e_check_82574_phy_workaround(adapter);
5369
5370         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5371         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5372                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5373                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5374                         er32(RXSTMPH);
5375                         adapter->rx_hwtstamp_cleared++;
5376                 } else {
5377                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5378                 }
5379         }
5380
5381         /* Reset the timer */
5382         if (!test_bit(__E1000_DOWN, &adapter->state))
5383                 mod_timer(&adapter->watchdog_timer,
5384                           round_jiffies(jiffies + 2 * HZ));
5385 }
5386
5387 #define E1000_TX_FLAGS_CSUM             0x00000001
5388 #define E1000_TX_FLAGS_VLAN             0x00000002
5389 #define E1000_TX_FLAGS_TSO              0x00000004
5390 #define E1000_TX_FLAGS_IPV4             0x00000008
5391 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5392 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5393 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5394 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5395
5396 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5397                      __be16 protocol)
5398 {
5399         struct e1000_context_desc *context_desc;
5400         struct e1000_buffer *buffer_info;
5401         unsigned int i;
5402         u32 cmd_length = 0;
5403         u16 ipcse = 0, mss;
5404         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5405         int err;
5406
5407         if (!skb_is_gso(skb))
5408                 return 0;
5409
5410         err = skb_cow_head(skb, 0);
5411         if (err < 0)
5412                 return err;
5413
5414         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5415         mss = skb_shinfo(skb)->gso_size;
5416         if (protocol == htons(ETH_P_IP)) {
5417                 struct iphdr *iph = ip_hdr(skb);
5418                 iph->tot_len = 0;
5419                 iph->check = 0;
5420                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5421                                                          0, IPPROTO_TCP, 0);
5422                 cmd_length = E1000_TXD_CMD_IP;
5423                 ipcse = skb_transport_offset(skb) - 1;
5424         } else if (skb_is_gso_v6(skb)) {
5425                 ipv6_hdr(skb)->payload_len = 0;
5426                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5427                                                        &ipv6_hdr(skb)->daddr,
5428                                                        0, IPPROTO_TCP, 0);
5429                 ipcse = 0;
5430         }
5431         ipcss = skb_network_offset(skb);
5432         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5433         tucss = skb_transport_offset(skb);
5434         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5435
5436         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5437                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5438
5439         i = tx_ring->next_to_use;
5440         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5441         buffer_info = &tx_ring->buffer_info[i];
5442
5443         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5444         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5445         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5446         context_desc->upper_setup.tcp_fields.tucss = tucss;
5447         context_desc->upper_setup.tcp_fields.tucso = tucso;
5448         context_desc->upper_setup.tcp_fields.tucse = 0;
5449         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5450         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5451         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5452
5453         buffer_info->time_stamp = jiffies;
5454         buffer_info->next_to_watch = i;
5455
5456         i++;
5457         if (i == tx_ring->count)
5458                 i = 0;
5459         tx_ring->next_to_use = i;
5460
5461         return 1;
5462 }
5463
5464 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5465                           __be16 protocol)
5466 {
5467         struct e1000_adapter *adapter = tx_ring->adapter;
5468         struct e1000_context_desc *context_desc;
5469         struct e1000_buffer *buffer_info;
5470         unsigned int i;
5471         u8 css;
5472         u32 cmd_len = E1000_TXD_CMD_DEXT;
5473
5474         if (skb->ip_summed != CHECKSUM_PARTIAL)
5475                 return false;
5476
5477         switch (protocol) {
5478         case cpu_to_be16(ETH_P_IP):
5479                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5480                         cmd_len |= E1000_TXD_CMD_TCP;
5481                 break;
5482         case cpu_to_be16(ETH_P_IPV6):
5483                 /* XXX not handling all IPV6 headers */
5484                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5485                         cmd_len |= E1000_TXD_CMD_TCP;
5486                 break;
5487         default:
5488                 if (unlikely(net_ratelimit()))
5489                         e_warn("checksum_partial proto=%x!\n",
5490                                be16_to_cpu(protocol));
5491                 break;
5492         }
5493
5494         css = skb_checksum_start_offset(skb);
5495
5496         i = tx_ring->next_to_use;
5497         buffer_info = &tx_ring->buffer_info[i];
5498         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5499
5500         context_desc->lower_setup.ip_config = 0;
5501         context_desc->upper_setup.tcp_fields.tucss = css;
5502         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5503         context_desc->upper_setup.tcp_fields.tucse = 0;
5504         context_desc->tcp_seg_setup.data = 0;
5505         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5506
5507         buffer_info->time_stamp = jiffies;
5508         buffer_info->next_to_watch = i;
5509
5510         i++;
5511         if (i == tx_ring->count)
5512                 i = 0;
5513         tx_ring->next_to_use = i;
5514
5515         return true;
5516 }
5517
5518 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5519                         unsigned int first, unsigned int max_per_txd,
5520                         unsigned int nr_frags)
5521 {
5522         struct e1000_adapter *adapter = tx_ring->adapter;
5523         struct pci_dev *pdev = adapter->pdev;
5524         struct e1000_buffer *buffer_info;
5525         unsigned int len = skb_headlen(skb);
5526         unsigned int offset = 0, size, count = 0, i;
5527         unsigned int f, bytecount, segs;
5528
5529         i = tx_ring->next_to_use;
5530
5531         while (len) {
5532                 buffer_info = &tx_ring->buffer_info[i];
5533                 size = min(len, max_per_txd);
5534
5535                 buffer_info->length = size;
5536                 buffer_info->time_stamp = jiffies;
5537                 buffer_info->next_to_watch = i;
5538                 buffer_info->dma = dma_map_single(&pdev->dev,
5539                                                   skb->data + offset,
5540                                                   size, DMA_TO_DEVICE);
5541                 buffer_info->mapped_as_page = false;
5542                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5543                         goto dma_error;
5544
5545                 len -= size;
5546                 offset += size;
5547                 count++;
5548
5549                 if (len) {
5550                         i++;
5551                         if (i == tx_ring->count)
5552                                 i = 0;
5553                 }
5554         }
5555
5556         for (f = 0; f < nr_frags; f++) {
5557                 const struct skb_frag_struct *frag;
5558
5559                 frag = &skb_shinfo(skb)->frags[f];
5560                 len = skb_frag_size(frag);
5561                 offset = 0;
5562
5563                 while (len) {
5564                         i++;
5565                         if (i == tx_ring->count)
5566                                 i = 0;
5567
5568                         buffer_info = &tx_ring->buffer_info[i];
5569                         size = min(len, max_per_txd);
5570
5571                         buffer_info->length = size;
5572                         buffer_info->time_stamp = jiffies;
5573                         buffer_info->next_to_watch = i;
5574                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5575                                                             offset, size,
5576                                                             DMA_TO_DEVICE);
5577                         buffer_info->mapped_as_page = true;
5578                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5579                                 goto dma_error;
5580
5581                         len -= size;
5582                         offset += size;
5583                         count++;
5584                 }
5585         }
5586
5587         segs = skb_shinfo(skb)->gso_segs ? : 1;
5588         /* multiply data chunks by size of headers */
5589         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5590
5591         tx_ring->buffer_info[i].skb = skb;
5592         tx_ring->buffer_info[i].segs = segs;
5593         tx_ring->buffer_info[i].bytecount = bytecount;
5594         tx_ring->buffer_info[first].next_to_watch = i;
5595
5596         return count;
5597
5598 dma_error:
5599         dev_err(&pdev->dev, "Tx DMA map failed\n");
5600         buffer_info->dma = 0;
5601         if (count)
5602                 count--;
5603
5604         while (count--) {
5605                 if (i == 0)
5606                         i += tx_ring->count;
5607                 i--;
5608                 buffer_info = &tx_ring->buffer_info[i];
5609                 e1000_put_txbuf(tx_ring, buffer_info, true);
5610         }
5611
5612         return 0;
5613 }
5614
5615 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5616 {
5617         struct e1000_adapter *adapter = tx_ring->adapter;
5618         struct e1000_tx_desc *tx_desc = NULL;
5619         struct e1000_buffer *buffer_info;
5620         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5621         unsigned int i;
5622
5623         if (tx_flags & E1000_TX_FLAGS_TSO) {
5624                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5625                     E1000_TXD_CMD_TSE;
5626                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5627
5628                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5629                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5630         }
5631
5632         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5633                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5634                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5635         }
5636
5637         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5638                 txd_lower |= E1000_TXD_CMD_VLE;
5639                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5640         }
5641
5642         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5643                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5644
5645         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5646                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5647                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5648         }
5649
5650         i = tx_ring->next_to_use;
5651
5652         do {
5653                 buffer_info = &tx_ring->buffer_info[i];
5654                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5655                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5656                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5657                                                   buffer_info->length);
5658                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5659
5660                 i++;
5661                 if (i == tx_ring->count)
5662                         i = 0;
5663         } while (--count > 0);
5664
5665         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5666
5667         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5668         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5669                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5670
5671         /* Force memory writes to complete before letting h/w
5672          * know there are new descriptors to fetch.  (Only
5673          * applicable for weak-ordered memory model archs,
5674          * such as IA-64).
5675          */
5676         wmb();
5677
5678         tx_ring->next_to_use = i;
5679 }
5680
5681 #define MINIMUM_DHCP_PACKET_SIZE 282
5682 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5683                                     struct sk_buff *skb)
5684 {
5685         struct e1000_hw *hw = &adapter->hw;
5686         u16 length, offset;
5687
5688         if (skb_vlan_tag_present(skb) &&
5689             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5690               (adapter->hw.mng_cookie.status &
5691                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5692                 return 0;
5693
5694         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5695                 return 0;
5696
5697         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5698                 return 0;
5699
5700         {
5701                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5702                 struct udphdr *udp;
5703
5704                 if (ip->protocol != IPPROTO_UDP)
5705                         return 0;
5706
5707                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5708                 if (ntohs(udp->dest) != 67)
5709                         return 0;
5710
5711                 offset = (u8 *)udp + 8 - skb->data;
5712                 length = skb->len - offset;
5713                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5714         }
5715
5716         return 0;
5717 }
5718
5719 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5720 {
5721         struct e1000_adapter *adapter = tx_ring->adapter;
5722
5723         netif_stop_queue(adapter->netdev);
5724         /* Herbert's original patch had:
5725          *  smp_mb__after_netif_stop_queue();
5726          * but since that doesn't exist yet, just open code it.
5727          */
5728         smp_mb();
5729
5730         /* We need to check again in a case another CPU has just
5731          * made room available.
5732          */
5733         if (e1000_desc_unused(tx_ring) < size)
5734                 return -EBUSY;
5735
5736         /* A reprieve! */
5737         netif_start_queue(adapter->netdev);
5738         ++adapter->restart_queue;
5739         return 0;
5740 }
5741
5742 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5743 {
5744         BUG_ON(size > tx_ring->count);
5745
5746         if (e1000_desc_unused(tx_ring) >= size)
5747                 return 0;
5748         return __e1000_maybe_stop_tx(tx_ring, size);
5749 }
5750
5751 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5752                                     struct net_device *netdev)
5753 {
5754         struct e1000_adapter *adapter = netdev_priv(netdev);
5755         struct e1000_ring *tx_ring = adapter->tx_ring;
5756         unsigned int first;
5757         unsigned int tx_flags = 0;
5758         unsigned int len = skb_headlen(skb);
5759         unsigned int nr_frags;
5760         unsigned int mss;
5761         int count = 0;
5762         int tso;
5763         unsigned int f;
5764         __be16 protocol = vlan_get_protocol(skb);
5765
5766         if (test_bit(__E1000_DOWN, &adapter->state)) {
5767                 dev_kfree_skb_any(skb);
5768                 return NETDEV_TX_OK;
5769         }
5770
5771         if (skb->len <= 0) {
5772                 dev_kfree_skb_any(skb);
5773                 return NETDEV_TX_OK;
5774         }
5775
5776         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5777          * pad skb in order to meet this minimum size requirement
5778          */
5779         if (skb_put_padto(skb, 17))
5780                 return NETDEV_TX_OK;
5781
5782         mss = skb_shinfo(skb)->gso_size;
5783         if (mss) {
5784                 u8 hdr_len;
5785
5786                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5787                  * points to just header, pull a few bytes of payload from
5788                  * frags into skb->data
5789                  */
5790                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5791                 /* we do this workaround for ES2LAN, but it is un-necessary,
5792                  * avoiding it could save a lot of cycles
5793                  */
5794                 if (skb->data_len && (hdr_len == len)) {
5795                         unsigned int pull_size;
5796
5797                         pull_size = min_t(unsigned int, 4, skb->data_len);
5798                         if (!__pskb_pull_tail(skb, pull_size)) {
5799                                 e_err("__pskb_pull_tail failed.\n");
5800                                 dev_kfree_skb_any(skb);
5801                                 return NETDEV_TX_OK;
5802                         }
5803                         len = skb_headlen(skb);
5804                 }
5805         }
5806
5807         /* reserve a descriptor for the offload context */
5808         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5809                 count++;
5810         count++;
5811
5812         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5813
5814         nr_frags = skb_shinfo(skb)->nr_frags;
5815         for (f = 0; f < nr_frags; f++)
5816                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5817                                       adapter->tx_fifo_limit);
5818
5819         if (adapter->hw.mac.tx_pkt_filtering)
5820                 e1000_transfer_dhcp_info(adapter, skb);
5821
5822         /* need: count + 2 desc gap to keep tail from touching
5823          * head, otherwise try next time
5824          */
5825         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5826                 return NETDEV_TX_BUSY;
5827
5828         if (skb_vlan_tag_present(skb)) {
5829                 tx_flags |= E1000_TX_FLAGS_VLAN;
5830                 tx_flags |= (skb_vlan_tag_get(skb) <<
5831                              E1000_TX_FLAGS_VLAN_SHIFT);
5832         }
5833
5834         first = tx_ring->next_to_use;
5835
5836         tso = e1000_tso(tx_ring, skb, protocol);
5837         if (tso < 0) {
5838                 dev_kfree_skb_any(skb);
5839                 return NETDEV_TX_OK;
5840         }
5841
5842         if (tso)
5843                 tx_flags |= E1000_TX_FLAGS_TSO;
5844         else if (e1000_tx_csum(tx_ring, skb, protocol))
5845                 tx_flags |= E1000_TX_FLAGS_CSUM;
5846
5847         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5848          * 82571 hardware supports TSO capabilities for IPv6 as well...
5849          * no longer assume, we must.
5850          */
5851         if (protocol == htons(ETH_P_IP))
5852                 tx_flags |= E1000_TX_FLAGS_IPV4;
5853
5854         if (unlikely(skb->no_fcs))
5855                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5856
5857         /* if count is 0 then mapping error has occurred */
5858         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5859                              nr_frags);
5860         if (count) {
5861                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5862                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5863                         if (!adapter->tx_hwtstamp_skb) {
5864                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5865                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5866                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5867                                 adapter->tx_hwtstamp_start = jiffies;
5868                                 schedule_work(&adapter->tx_hwtstamp_work);
5869                         } else {
5870                                 adapter->tx_hwtstamp_skipped++;
5871                         }
5872                 }
5873
5874                 skb_tx_timestamp(skb);
5875
5876                 netdev_sent_queue(netdev, skb->len);
5877                 e1000_tx_queue(tx_ring, tx_flags, count);
5878                 /* Make sure there is space in the ring for the next send. */
5879                 e1000_maybe_stop_tx(tx_ring,
5880                                     (MAX_SKB_FRAGS *
5881                                      DIV_ROUND_UP(PAGE_SIZE,
5882                                                   adapter->tx_fifo_limit) + 2));
5883
5884                 if (!skb->xmit_more ||
5885                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5886                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5887                                 e1000e_update_tdt_wa(tx_ring,
5888                                                      tx_ring->next_to_use);
5889                         else
5890                                 writel(tx_ring->next_to_use, tx_ring->tail);
5891
5892                         /* we need this if more than one processor can write
5893                          * to our tail at a time, it synchronizes IO on
5894                          *IA64/Altix systems
5895                          */
5896                         mmiowb();
5897                 }
5898         } else {
5899                 dev_kfree_skb_any(skb);
5900                 tx_ring->buffer_info[first].time_stamp = 0;
5901                 tx_ring->next_to_use = first;
5902         }
5903
5904         return NETDEV_TX_OK;
5905 }
5906
5907 /**
5908  * e1000_tx_timeout - Respond to a Tx Hang
5909  * @netdev: network interface device structure
5910  **/
5911 static void e1000_tx_timeout(struct net_device *netdev)
5912 {
5913         struct e1000_adapter *adapter = netdev_priv(netdev);
5914
5915         /* Do the reset outside of interrupt context */
5916         adapter->tx_timeout_count++;
5917         schedule_work(&adapter->reset_task);
5918 }
5919
5920 static void e1000_reset_task(struct work_struct *work)
5921 {
5922         struct e1000_adapter *adapter;
5923         adapter = container_of(work, struct e1000_adapter, reset_task);
5924
5925         rtnl_lock();
5926         /* don't run the task if already down */
5927         if (test_bit(__E1000_DOWN, &adapter->state)) {
5928                 rtnl_unlock();
5929                 return;
5930         }
5931
5932         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5933                 e1000e_dump(adapter);
5934                 e_err("Reset adapter unexpectedly\n");
5935         }
5936         e1000e_reinit_locked(adapter);
5937         rtnl_unlock();
5938 }
5939
5940 /**
5941  * e1000_get_stats64 - Get System Network Statistics
5942  * @netdev: network interface device structure
5943  * @stats: rtnl_link_stats64 pointer
5944  *
5945  * Returns the address of the device statistics structure.
5946  **/
5947 void e1000e_get_stats64(struct net_device *netdev,
5948                         struct rtnl_link_stats64 *stats)
5949 {
5950         struct e1000_adapter *adapter = netdev_priv(netdev);
5951
5952         spin_lock(&adapter->stats64_lock);
5953         e1000e_update_stats(adapter);
5954         /* Fill out the OS statistics structure */
5955         stats->rx_bytes = adapter->stats.gorc;
5956         stats->rx_packets = adapter->stats.gprc;
5957         stats->tx_bytes = adapter->stats.gotc;
5958         stats->tx_packets = adapter->stats.gptc;
5959         stats->multicast = adapter->stats.mprc;
5960         stats->collisions = adapter->stats.colc;
5961
5962         /* Rx Errors */
5963
5964         /* RLEC on some newer hardware can be incorrect so build
5965          * our own version based on RUC and ROC
5966          */
5967         stats->rx_errors = adapter->stats.rxerrc +
5968             adapter->stats.crcerrs + adapter->stats.algnerrc +
5969             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5970         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5971         stats->rx_crc_errors = adapter->stats.crcerrs;
5972         stats->rx_frame_errors = adapter->stats.algnerrc;
5973         stats->rx_missed_errors = adapter->stats.mpc;
5974
5975         /* Tx Errors */
5976         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5977         stats->tx_aborted_errors = adapter->stats.ecol;
5978         stats->tx_window_errors = adapter->stats.latecol;
5979         stats->tx_carrier_errors = adapter->stats.tncrs;
5980
5981         /* Tx Dropped needs to be maintained elsewhere */
5982
5983         spin_unlock(&adapter->stats64_lock);
5984 }
5985
5986 /**
5987  * e1000_change_mtu - Change the Maximum Transfer Unit
5988  * @netdev: network interface device structure
5989  * @new_mtu: new value for maximum frame size
5990  *
5991  * Returns 0 on success, negative on failure
5992  **/
5993 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5994 {
5995         struct e1000_adapter *adapter = netdev_priv(netdev);
5996         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5997
5998         /* Jumbo frame support */
5999         if ((new_mtu > ETH_DATA_LEN) &&
6000             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6001                 e_err("Jumbo Frames not supported.\n");
6002                 return -EINVAL;
6003         }
6004
6005         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6006         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6007             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6008             (new_mtu > ETH_DATA_LEN)) {
6009                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6010                 return -EINVAL;
6011         }
6012
6013         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6014                 usleep_range(1000, 2000);
6015         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6016         adapter->max_frame_size = max_frame;
6017         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6018         netdev->mtu = new_mtu;
6019
6020         pm_runtime_get_sync(netdev->dev.parent);
6021
6022         if (netif_running(netdev))
6023                 e1000e_down(adapter, true);
6024
6025         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6026          * means we reserve 2 more, this pushes us to allocate from the next
6027          * larger slab size.
6028          * i.e. RXBUFFER_2048 --> size-4096 slab
6029          * However with the new *_jumbo_rx* routines, jumbo receives will use
6030          * fragmented skbs
6031          */
6032
6033         if (max_frame <= 2048)
6034                 adapter->rx_buffer_len = 2048;
6035         else
6036                 adapter->rx_buffer_len = 4096;
6037
6038         /* adjust allocation if LPE protects us, and we aren't using SBP */
6039         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6040                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6041
6042         if (netif_running(netdev))
6043                 e1000e_up(adapter);
6044         else
6045                 e1000e_reset(adapter);
6046
6047         pm_runtime_put_sync(netdev->dev.parent);
6048
6049         clear_bit(__E1000_RESETTING, &adapter->state);
6050
6051         return 0;
6052 }
6053
6054 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6055                            int cmd)
6056 {
6057         struct e1000_adapter *adapter = netdev_priv(netdev);
6058         struct mii_ioctl_data *data = if_mii(ifr);
6059
6060         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6061                 return -EOPNOTSUPP;
6062
6063         switch (cmd) {
6064         case SIOCGMIIPHY:
6065                 data->phy_id = adapter->hw.phy.addr;
6066                 break;
6067         case SIOCGMIIREG:
6068                 e1000_phy_read_status(adapter);
6069
6070                 switch (data->reg_num & 0x1F) {
6071                 case MII_BMCR:
6072                         data->val_out = adapter->phy_regs.bmcr;
6073                         break;
6074                 case MII_BMSR:
6075                         data->val_out = adapter->phy_regs.bmsr;
6076                         break;
6077                 case MII_PHYSID1:
6078                         data->val_out = (adapter->hw.phy.id >> 16);
6079                         break;
6080                 case MII_PHYSID2:
6081                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6082                         break;
6083                 case MII_ADVERTISE:
6084                         data->val_out = adapter->phy_regs.advertise;
6085                         break;
6086                 case MII_LPA:
6087                         data->val_out = adapter->phy_regs.lpa;
6088                         break;
6089                 case MII_EXPANSION:
6090                         data->val_out = adapter->phy_regs.expansion;
6091                         break;
6092                 case MII_CTRL1000:
6093                         data->val_out = adapter->phy_regs.ctrl1000;
6094                         break;
6095                 case MII_STAT1000:
6096                         data->val_out = adapter->phy_regs.stat1000;
6097                         break;
6098                 case MII_ESTATUS:
6099                         data->val_out = adapter->phy_regs.estatus;
6100                         break;
6101                 default:
6102                         return -EIO;
6103                 }
6104                 break;
6105         case SIOCSMIIREG:
6106         default:
6107                 return -EOPNOTSUPP;
6108         }
6109         return 0;
6110 }
6111
6112 /**
6113  * e1000e_hwtstamp_ioctl - control hardware time stamping
6114  * @netdev: network interface device structure
6115  * @ifreq: interface request
6116  *
6117  * Outgoing time stamping can be enabled and disabled. Play nice and
6118  * disable it when requested, although it shouldn't cause any overhead
6119  * when no packet needs it. At most one packet in the queue may be
6120  * marked for time stamping, otherwise it would be impossible to tell
6121  * for sure to which packet the hardware time stamp belongs.
6122  *
6123  * Incoming time stamping has to be configured via the hardware filters.
6124  * Not all combinations are supported, in particular event type has to be
6125  * specified. Matching the kind of event packet is not supported, with the
6126  * exception of "all V2 events regardless of level 2 or 4".
6127  **/
6128 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6129 {
6130         struct e1000_adapter *adapter = netdev_priv(netdev);
6131         struct hwtstamp_config config;
6132         int ret_val;
6133
6134         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6135                 return -EFAULT;
6136
6137         ret_val = e1000e_config_hwtstamp(adapter, &config);
6138         if (ret_val)
6139                 return ret_val;
6140
6141         switch (config.rx_filter) {
6142         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6143         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6144         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6145         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6146         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6147         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6148                 /* With V2 type filters which specify a Sync or Delay Request,
6149                  * Path Delay Request/Response messages are also time stamped
6150                  * by hardware so notify the caller the requested packets plus
6151                  * some others are time stamped.
6152                  */
6153                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6154                 break;
6155         default:
6156                 break;
6157         }
6158
6159         return copy_to_user(ifr->ifr_data, &config,
6160                             sizeof(config)) ? -EFAULT : 0;
6161 }
6162
6163 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6164 {
6165         struct e1000_adapter *adapter = netdev_priv(netdev);
6166
6167         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6168                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6169 }
6170
6171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6172 {
6173         switch (cmd) {
6174         case SIOCGMIIPHY:
6175         case SIOCGMIIREG:
6176         case SIOCSMIIREG:
6177                 return e1000_mii_ioctl(netdev, ifr, cmd);
6178         case SIOCSHWTSTAMP:
6179                 return e1000e_hwtstamp_set(netdev, ifr);
6180         case SIOCGHWTSTAMP:
6181                 return e1000e_hwtstamp_get(netdev, ifr);
6182         default:
6183                 return -EOPNOTSUPP;
6184         }
6185 }
6186
6187 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6188 {
6189         struct e1000_hw *hw = &adapter->hw;
6190         u32 i, mac_reg, wuc;
6191         u16 phy_reg, wuc_enable;
6192         int retval;
6193
6194         /* copy MAC RARs to PHY RARs */
6195         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6196
6197         retval = hw->phy.ops.acquire(hw);
6198         if (retval) {
6199                 e_err("Could not acquire PHY\n");
6200                 return retval;
6201         }
6202
6203         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6204         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6205         if (retval)
6206                 goto release;
6207
6208         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6209         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6210                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6211                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6212                                            (u16)(mac_reg & 0xFFFF));
6213                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6214                                            (u16)((mac_reg >> 16) & 0xFFFF));
6215         }
6216
6217         /* configure PHY Rx Control register */
6218         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6219         mac_reg = er32(RCTL);
6220         if (mac_reg & E1000_RCTL_UPE)
6221                 phy_reg |= BM_RCTL_UPE;
6222         if (mac_reg & E1000_RCTL_MPE)
6223                 phy_reg |= BM_RCTL_MPE;
6224         phy_reg &= ~(BM_RCTL_MO_MASK);
6225         if (mac_reg & E1000_RCTL_MO_3)
6226                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6227                             << BM_RCTL_MO_SHIFT);
6228         if (mac_reg & E1000_RCTL_BAM)
6229                 phy_reg |= BM_RCTL_BAM;
6230         if (mac_reg & E1000_RCTL_PMCF)
6231                 phy_reg |= BM_RCTL_PMCF;
6232         mac_reg = er32(CTRL);
6233         if (mac_reg & E1000_CTRL_RFCE)
6234                 phy_reg |= BM_RCTL_RFCE;
6235         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6236
6237         wuc = E1000_WUC_PME_EN;
6238         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6239                 wuc |= E1000_WUC_APME;
6240
6241         /* enable PHY wakeup in MAC register */
6242         ew32(WUFC, wufc);
6243         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6244                    E1000_WUC_PME_STATUS | wuc));
6245
6246         /* configure and enable PHY wakeup in PHY registers */
6247         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6248         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6249
6250         /* activate PHY wakeup */
6251         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6252         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6253         if (retval)
6254                 e_err("Could not set PHY Host Wakeup bit\n");
6255 release:
6256         hw->phy.ops.release(hw);
6257
6258         return retval;
6259 }
6260
6261 static void e1000e_flush_lpic(struct pci_dev *pdev)
6262 {
6263         struct net_device *netdev = pci_get_drvdata(pdev);
6264         struct e1000_adapter *adapter = netdev_priv(netdev);
6265         struct e1000_hw *hw = &adapter->hw;
6266         u32 ret_val;
6267
6268         pm_runtime_get_sync(netdev->dev.parent);
6269
6270         ret_val = hw->phy.ops.acquire(hw);
6271         if (ret_val)
6272                 goto fl_out;
6273
6274         pr_info("EEE TX LPI TIMER: %08X\n",
6275                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6276
6277         hw->phy.ops.release(hw);
6278
6279 fl_out:
6280         pm_runtime_put_sync(netdev->dev.parent);
6281 }
6282
6283 static int e1000e_pm_freeze(struct device *dev)
6284 {
6285         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6286         struct e1000_adapter *adapter = netdev_priv(netdev);
6287
6288         netif_device_detach(netdev);
6289
6290         if (netif_running(netdev)) {
6291                 int count = E1000_CHECK_RESET_COUNT;
6292
6293                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6294                         usleep_range(10000, 20000);
6295
6296                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6297
6298                 /* Quiesce the device without resetting the hardware */
6299                 e1000e_down(adapter, false);
6300                 e1000_free_irq(adapter);
6301         }
6302         e1000e_reset_interrupt_capability(adapter);
6303
6304         /* Allow time for pending master requests to run */
6305         e1000e_disable_pcie_master(&adapter->hw);
6306
6307         return 0;
6308 }
6309
6310 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6311 {
6312         struct net_device *netdev = pci_get_drvdata(pdev);
6313         struct e1000_adapter *adapter = netdev_priv(netdev);
6314         struct e1000_hw *hw = &adapter->hw;
6315         u32 ctrl, ctrl_ext, rctl, status, wufc;
6316         int retval = 0;
6317
6318         /* Runtime suspend should only enable wakeup for link changes */
6319         if (runtime)
6320                 wufc = E1000_WUFC_LNKC;
6321         else if (device_may_wakeup(&pdev->dev))
6322                 wufc = adapter->wol;
6323         else
6324                 wufc = 0;
6325
6326         status = er32(STATUS);
6327         if (status & E1000_STATUS_LU)
6328                 wufc &= ~E1000_WUFC_LNKC;
6329
6330         if (wufc) {
6331                 e1000_setup_rctl(adapter);
6332                 e1000e_set_rx_mode(netdev);
6333
6334                 /* turn on all-multi mode if wake on multicast is enabled */
6335                 if (wufc & E1000_WUFC_MC) {
6336                         rctl = er32(RCTL);
6337                         rctl |= E1000_RCTL_MPE;
6338                         ew32(RCTL, rctl);
6339                 }
6340
6341                 ctrl = er32(CTRL);
6342                 ctrl |= E1000_CTRL_ADVD3WUC;
6343                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6344                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6345                 ew32(CTRL, ctrl);
6346
6347                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6348                     adapter->hw.phy.media_type ==
6349                     e1000_media_type_internal_serdes) {
6350                         /* keep the laser running in D3 */
6351                         ctrl_ext = er32(CTRL_EXT);
6352                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6353                         ew32(CTRL_EXT, ctrl_ext);
6354                 }
6355
6356                 if (!runtime)
6357                         e1000e_power_up_phy(adapter);
6358
6359                 if (adapter->flags & FLAG_IS_ICH)
6360                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6361
6362                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6363                         /* enable wakeup by the PHY */
6364                         retval = e1000_init_phy_wakeup(adapter, wufc);
6365                         if (retval)
6366                                 return retval;
6367                 } else {
6368                         /* enable wakeup by the MAC */
6369                         ew32(WUFC, wufc);
6370                         ew32(WUC, E1000_WUC_PME_EN);
6371                 }
6372         } else {
6373                 ew32(WUC, 0);
6374                 ew32(WUFC, 0);
6375
6376                 e1000_power_down_phy(adapter);
6377         }
6378
6379         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6380                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6381         } else if (hw->mac.type >= e1000_pch_lpt) {
6382                 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6383                         /* ULP does not support wake from unicast, multicast
6384                          * or broadcast.
6385                          */
6386                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6387
6388                 if (retval)
6389                         return retval;
6390         }
6391
6392         /* Ensure that the appropriate bits are set in LPI_CTRL
6393          * for EEE in Sx
6394          */
6395         if ((hw->phy.type >= e1000_phy_i217) &&
6396             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6397                 u16 lpi_ctrl = 0;
6398
6399                 retval = hw->phy.ops.acquire(hw);
6400                 if (!retval) {
6401                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6402                                                  &lpi_ctrl);
6403                         if (!retval) {
6404                                 if (adapter->eee_advert &
6405                                     hw->dev_spec.ich8lan.eee_lp_ability &
6406                                     I82579_EEE_100_SUPPORTED)
6407                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6408                                 if (adapter->eee_advert &
6409                                     hw->dev_spec.ich8lan.eee_lp_ability &
6410                                     I82579_EEE_1000_SUPPORTED)
6411                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6412
6413                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6414                                                          lpi_ctrl);
6415                         }
6416                 }
6417                 hw->phy.ops.release(hw);
6418         }
6419
6420         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6421          * would have already happened in close and is redundant.
6422          */
6423         e1000e_release_hw_control(adapter);
6424
6425         pci_clear_master(pdev);
6426
6427         /* The pci-e switch on some quad port adapters will report a
6428          * correctable error when the MAC transitions from D0 to D3.  To
6429          * prevent this we need to mask off the correctable errors on the
6430          * downstream port of the pci-e switch.
6431          *
6432          * We don't have the associated upstream bridge while assigning
6433          * the PCI device into guest. For example, the KVM on power is
6434          * one of the cases.
6435          */
6436         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6437                 struct pci_dev *us_dev = pdev->bus->self;
6438                 u16 devctl;
6439
6440                 if (!us_dev)
6441                         return 0;
6442
6443                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6444                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6445                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6446
6447                 pci_save_state(pdev);
6448                 pci_prepare_to_sleep(pdev);
6449
6450                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6451         }
6452
6453         return 0;
6454 }
6455
6456 /**
6457  * __e1000e_disable_aspm - Disable ASPM states
6458  * @pdev: pointer to PCI device struct
6459  * @state: bit-mask of ASPM states to disable
6460  * @locked: indication if this context holds pci_bus_sem locked.
6461  *
6462  * Some devices *must* have certain ASPM states disabled per hardware errata.
6463  **/
6464 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6465 {
6466         struct pci_dev *parent = pdev->bus->self;
6467         u16 aspm_dis_mask = 0;
6468         u16 pdev_aspmc, parent_aspmc;
6469
6470         switch (state) {
6471         case PCIE_LINK_STATE_L0S:
6472         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6473                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6474                 /* fall-through - can't have L1 without L0s */
6475         case PCIE_LINK_STATE_L1:
6476                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6477                 break;
6478         default:
6479                 return;
6480         }
6481
6482         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6483         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6484
6485         if (parent) {
6486                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6487                                           &parent_aspmc);
6488                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6489         }
6490
6491         /* Nothing to do if the ASPM states to be disabled already are */
6492         if (!(pdev_aspmc & aspm_dis_mask) &&
6493             (!parent || !(parent_aspmc & aspm_dis_mask)))
6494                 return;
6495
6496         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6497                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6498                  "L0s" : "",
6499                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6500                  "L1" : "");
6501
6502 #ifdef CONFIG_PCIEASPM
6503         if (locked)
6504                 pci_disable_link_state_locked(pdev, state);
6505         else
6506                 pci_disable_link_state(pdev, state);
6507
6508         /* Double-check ASPM control.  If not disabled by the above, the
6509          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6510          * not enabled); override by writing PCI config space directly.
6511          */
6512         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6513         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6514
6515         if (!(aspm_dis_mask & pdev_aspmc))
6516                 return;
6517 #endif
6518
6519         /* Both device and parent should have the same ASPM setting.
6520          * Disable ASPM in downstream component first and then upstream.
6521          */
6522         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6523
6524         if (parent)
6525                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6526                                            aspm_dis_mask);
6527 }
6528
6529 /**
6530  * e1000e_disable_aspm - Disable ASPM states.
6531  * @pdev: pointer to PCI device struct
6532  * @state: bit-mask of ASPM states to disable
6533  *
6534  * This function acquires the pci_bus_sem!
6535  * Some devices *must* have certain ASPM states disabled per hardware errata.
6536  **/
6537 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6538 {
6539         __e1000e_disable_aspm(pdev, state, 0);
6540 }
6541
6542 /**
6543  * e1000e_disable_aspm_locked   Disable ASPM states.
6544  * @pdev: pointer to PCI device struct
6545  * @state: bit-mask of ASPM states to disable
6546  *
6547  * This function must be called with pci_bus_sem acquired!
6548  * Some devices *must* have certain ASPM states disabled per hardware errata.
6549  **/
6550 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6551 {
6552         __e1000e_disable_aspm(pdev, state, 1);
6553 }
6554
6555 #ifdef CONFIG_PM
6556 static int __e1000_resume(struct pci_dev *pdev)
6557 {
6558         struct net_device *netdev = pci_get_drvdata(pdev);
6559         struct e1000_adapter *adapter = netdev_priv(netdev);
6560         struct e1000_hw *hw = &adapter->hw;
6561         u16 aspm_disable_flag = 0;
6562
6563         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6564                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6565         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6566                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6567         if (aspm_disable_flag)
6568                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6569
6570         pci_set_master(pdev);
6571
6572         if (hw->mac.type >= e1000_pch2lan)
6573                 e1000_resume_workarounds_pchlan(&adapter->hw);
6574
6575         e1000e_power_up_phy(adapter);
6576
6577         /* report the system wakeup cause from S3/S4 */
6578         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6579                 u16 phy_data;
6580
6581                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6582                 if (phy_data) {
6583                         e_info("PHY Wakeup cause - %s\n",
6584                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6585                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6586                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6587                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6588                                phy_data & E1000_WUS_LNKC ?
6589                                "Link Status Change" : "other");
6590                 }
6591                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6592         } else {
6593                 u32 wus = er32(WUS);
6594
6595                 if (wus) {
6596                         e_info("MAC Wakeup cause - %s\n",
6597                                wus & E1000_WUS_EX ? "Unicast Packet" :
6598                                wus & E1000_WUS_MC ? "Multicast Packet" :
6599                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6600                                wus & E1000_WUS_MAG ? "Magic Packet" :
6601                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6602                                "other");
6603                 }
6604                 ew32(WUS, ~0);
6605         }
6606
6607         e1000e_reset(adapter);
6608
6609         e1000_init_manageability_pt(adapter);
6610
6611         /* If the controller has AMT, do not set DRV_LOAD until the interface
6612          * is up.  For all other cases, let the f/w know that the h/w is now
6613          * under the control of the driver.
6614          */
6615         if (!(adapter->flags & FLAG_HAS_AMT))
6616                 e1000e_get_hw_control(adapter);
6617
6618         return 0;
6619 }
6620
6621 #ifdef CONFIG_PM_SLEEP
6622 static int e1000e_pm_thaw(struct device *dev)
6623 {
6624         struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6625         struct e1000_adapter *adapter = netdev_priv(netdev);
6626
6627         e1000e_set_interrupt_capability(adapter);
6628         if (netif_running(netdev)) {
6629                 u32 err = e1000_request_irq(adapter);
6630
6631                 if (err)
6632                         return err;
6633
6634                 e1000e_up(adapter);
6635         }
6636
6637         netif_device_attach(netdev);
6638
6639         return 0;
6640 }
6641
6642 static int e1000e_pm_suspend(struct device *dev)
6643 {
6644         struct pci_dev *pdev = to_pci_dev(dev);
6645         int rc;
6646
6647         e1000e_flush_lpic(pdev);
6648
6649         e1000e_pm_freeze(dev);
6650
6651         rc = __e1000_shutdown(pdev, false);
6652         if (rc)
6653                 e1000e_pm_thaw(dev);
6654
6655         return rc;
6656 }
6657
6658 static int e1000e_pm_resume(struct device *dev)
6659 {
6660         struct pci_dev *pdev = to_pci_dev(dev);
6661         int rc;
6662
6663         rc = __e1000_resume(pdev);
6664         if (rc)
6665                 return rc;
6666
6667         return e1000e_pm_thaw(dev);
6668 }
6669 #endif /* CONFIG_PM_SLEEP */
6670
6671 static int e1000e_pm_runtime_idle(struct device *dev)
6672 {
6673         struct pci_dev *pdev = to_pci_dev(dev);
6674         struct net_device *netdev = pci_get_drvdata(pdev);
6675         struct e1000_adapter *adapter = netdev_priv(netdev);
6676         u16 eee_lp;
6677
6678         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6679
6680         if (!e1000e_has_link(adapter)) {
6681                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6682                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6683         }
6684
6685         return -EBUSY;
6686 }
6687
6688 static int e1000e_pm_runtime_resume(struct device *dev)
6689 {
6690         struct pci_dev *pdev = to_pci_dev(dev);
6691         struct net_device *netdev = pci_get_drvdata(pdev);
6692         struct e1000_adapter *adapter = netdev_priv(netdev);
6693         int rc;
6694
6695         rc = __e1000_resume(pdev);
6696         if (rc)
6697                 return rc;
6698
6699         if (netdev->flags & IFF_UP)
6700                 e1000e_up(adapter);
6701
6702         return rc;
6703 }
6704
6705 static int e1000e_pm_runtime_suspend(struct device *dev)
6706 {
6707         struct pci_dev *pdev = to_pci_dev(dev);
6708         struct net_device *netdev = pci_get_drvdata(pdev);
6709         struct e1000_adapter *adapter = netdev_priv(netdev);
6710
6711         if (netdev->flags & IFF_UP) {
6712                 int count = E1000_CHECK_RESET_COUNT;
6713
6714                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6715                         usleep_range(10000, 20000);
6716
6717                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6718
6719                 /* Down the device without resetting the hardware */
6720                 e1000e_down(adapter, false);
6721         }
6722
6723         if (__e1000_shutdown(pdev, true)) {
6724                 e1000e_pm_runtime_resume(dev);
6725                 return -EBUSY;
6726         }
6727
6728         return 0;
6729 }
6730 #endif /* CONFIG_PM */
6731
6732 static void e1000_shutdown(struct pci_dev *pdev)
6733 {
6734         e1000e_flush_lpic(pdev);
6735
6736         e1000e_pm_freeze(&pdev->dev);
6737
6738         __e1000_shutdown(pdev, false);
6739 }
6740
6741 #ifdef CONFIG_NET_POLL_CONTROLLER
6742
6743 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6744 {
6745         struct net_device *netdev = data;
6746         struct e1000_adapter *adapter = netdev_priv(netdev);
6747
6748         if (adapter->msix_entries) {
6749                 int vector, msix_irq;
6750
6751                 vector = 0;
6752                 msix_irq = adapter->msix_entries[vector].vector;
6753                 if (disable_hardirq(msix_irq))
6754                         e1000_intr_msix_rx(msix_irq, netdev);
6755                 enable_irq(msix_irq);
6756
6757                 vector++;
6758                 msix_irq = adapter->msix_entries[vector].vector;
6759                 if (disable_hardirq(msix_irq))
6760                         e1000_intr_msix_tx(msix_irq, netdev);
6761                 enable_irq(msix_irq);
6762
6763                 vector++;
6764                 msix_irq = adapter->msix_entries[vector].vector;
6765                 if (disable_hardirq(msix_irq))
6766                         e1000_msix_other(msix_irq, netdev);
6767                 enable_irq(msix_irq);
6768         }
6769
6770         return IRQ_HANDLED;
6771 }
6772
6773 /**
6774  * e1000_netpoll
6775  * @netdev: network interface device structure
6776  *
6777  * Polling 'interrupt' - used by things like netconsole to send skbs
6778  * without having to re-enable interrupts. It's not called while
6779  * the interrupt routine is executing.
6780  */
6781 static void e1000_netpoll(struct net_device *netdev)
6782 {
6783         struct e1000_adapter *adapter = netdev_priv(netdev);
6784
6785         switch (adapter->int_mode) {
6786         case E1000E_INT_MODE_MSIX:
6787                 e1000_intr_msix(adapter->pdev->irq, netdev);
6788                 break;
6789         case E1000E_INT_MODE_MSI:
6790                 if (disable_hardirq(adapter->pdev->irq))
6791                         e1000_intr_msi(adapter->pdev->irq, netdev);
6792                 enable_irq(adapter->pdev->irq);
6793                 break;
6794         default:                /* E1000E_INT_MODE_LEGACY */
6795                 if (disable_hardirq(adapter->pdev->irq))
6796                         e1000_intr(adapter->pdev->irq, netdev);
6797                 enable_irq(adapter->pdev->irq);
6798                 break;
6799         }
6800 }
6801 #endif
6802
6803 /**
6804  * e1000_io_error_detected - called when PCI error is detected
6805  * @pdev: Pointer to PCI device
6806  * @state: The current pci connection state
6807  *
6808  * This function is called after a PCI bus error affecting
6809  * this device has been detected.
6810  */
6811 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6812                                                 pci_channel_state_t state)
6813 {
6814         struct net_device *netdev = pci_get_drvdata(pdev);
6815         struct e1000_adapter *adapter = netdev_priv(netdev);
6816
6817         netif_device_detach(netdev);
6818
6819         if (state == pci_channel_io_perm_failure)
6820                 return PCI_ERS_RESULT_DISCONNECT;
6821
6822         if (netif_running(netdev))
6823                 e1000e_down(adapter, true);
6824         pci_disable_device(pdev);
6825
6826         /* Request a slot slot reset. */
6827         return PCI_ERS_RESULT_NEED_RESET;
6828 }
6829
6830 /**
6831  * e1000_io_slot_reset - called after the pci bus has been reset.
6832  * @pdev: Pointer to PCI device
6833  *
6834  * Restart the card from scratch, as if from a cold-boot. Implementation
6835  * resembles the first-half of the e1000e_pm_resume routine.
6836  */
6837 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6838 {
6839         struct net_device *netdev = pci_get_drvdata(pdev);
6840         struct e1000_adapter *adapter = netdev_priv(netdev);
6841         struct e1000_hw *hw = &adapter->hw;
6842         u16 aspm_disable_flag = 0;
6843         int err;
6844         pci_ers_result_t result;
6845
6846         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6847                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6848         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6849                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6850         if (aspm_disable_flag)
6851                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6852
6853         err = pci_enable_device_mem(pdev);
6854         if (err) {
6855                 dev_err(&pdev->dev,
6856                         "Cannot re-enable PCI device after reset.\n");
6857                 result = PCI_ERS_RESULT_DISCONNECT;
6858         } else {
6859                 pdev->state_saved = true;
6860                 pci_restore_state(pdev);
6861                 pci_set_master(pdev);
6862
6863                 pci_enable_wake(pdev, PCI_D3hot, 0);
6864                 pci_enable_wake(pdev, PCI_D3cold, 0);
6865
6866                 e1000e_reset(adapter);
6867                 ew32(WUS, ~0);
6868                 result = PCI_ERS_RESULT_RECOVERED;
6869         }
6870
6871         pci_cleanup_aer_uncorrect_error_status(pdev);
6872
6873         return result;
6874 }
6875
6876 /**
6877  * e1000_io_resume - called when traffic can start flowing again.
6878  * @pdev: Pointer to PCI device
6879  *
6880  * This callback is called when the error recovery driver tells us that
6881  * its OK to resume normal operation. Implementation resembles the
6882  * second-half of the e1000e_pm_resume routine.
6883  */
6884 static void e1000_io_resume(struct pci_dev *pdev)
6885 {
6886         struct net_device *netdev = pci_get_drvdata(pdev);
6887         struct e1000_adapter *adapter = netdev_priv(netdev);
6888
6889         e1000_init_manageability_pt(adapter);
6890
6891         if (netif_running(netdev))
6892                 e1000e_up(adapter);
6893
6894         netif_device_attach(netdev);
6895
6896         /* If the controller has AMT, do not set DRV_LOAD until the interface
6897          * is up.  For all other cases, let the f/w know that the h/w is now
6898          * under the control of the driver.
6899          */
6900         if (!(adapter->flags & FLAG_HAS_AMT))
6901                 e1000e_get_hw_control(adapter);
6902 }
6903
6904 static void e1000_print_device_info(struct e1000_adapter *adapter)
6905 {
6906         struct e1000_hw *hw = &adapter->hw;
6907         struct net_device *netdev = adapter->netdev;
6908         u32 ret_val;
6909         u8 pba_str[E1000_PBANUM_LENGTH];
6910
6911         /* print bus type/speed/width info */
6912         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6913                /* bus width */
6914                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6915                 "Width x1"),
6916                /* MAC address */
6917                netdev->dev_addr);
6918         e_info("Intel(R) PRO/%s Network Connection\n",
6919                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6920         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6921                                                 E1000_PBANUM_LENGTH);
6922         if (ret_val)
6923                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6924         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6925                hw->mac.type, hw->phy.type, pba_str);
6926 }
6927
6928 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6929 {
6930         struct e1000_hw *hw = &adapter->hw;
6931         int ret_val;
6932         u16 buf = 0;
6933
6934         if (hw->mac.type != e1000_82573)
6935                 return;
6936
6937         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6938         le16_to_cpus(&buf);
6939         if (!ret_val && (!(buf & BIT(0)))) {
6940                 /* Deep Smart Power Down (DSPD) */
6941                 dev_warn(&adapter->pdev->dev,
6942                          "Warning: detected DSPD enabled in EEPROM\n");
6943         }
6944 }
6945
6946 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6947                                             netdev_features_t features)
6948 {
6949         struct e1000_adapter *adapter = netdev_priv(netdev);
6950         struct e1000_hw *hw = &adapter->hw;
6951
6952         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6953         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6954                 features &= ~NETIF_F_RXFCS;
6955
6956         /* Since there is no support for separate Rx/Tx vlan accel
6957          * enable/disable make sure Tx flag is always in same state as Rx.
6958          */
6959         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6960                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6961         else
6962                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6963
6964         return features;
6965 }
6966
6967 static int e1000_set_features(struct net_device *netdev,
6968                               netdev_features_t features)
6969 {
6970         struct e1000_adapter *adapter = netdev_priv(netdev);
6971         netdev_features_t changed = features ^ netdev->features;
6972
6973         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6974                 adapter->flags |= FLAG_TSO_FORCE;
6975
6976         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6977                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6978                          NETIF_F_RXALL)))
6979                 return 0;
6980
6981         if (changed & NETIF_F_RXFCS) {
6982                 if (features & NETIF_F_RXFCS) {
6983                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6984                 } else {
6985                         /* We need to take it back to defaults, which might mean
6986                          * stripping is still disabled at the adapter level.
6987                          */
6988                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6989                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6990                         else
6991                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6992                 }
6993         }
6994
6995         netdev->features = features;
6996
6997         if (netif_running(netdev))
6998                 e1000e_reinit_locked(adapter);
6999         else
7000                 e1000e_reset(adapter);
7001
7002         return 0;
7003 }
7004
7005 static const struct net_device_ops e1000e_netdev_ops = {
7006         .ndo_open               = e1000e_open,
7007         .ndo_stop               = e1000e_close,
7008         .ndo_start_xmit         = e1000_xmit_frame,
7009         .ndo_get_stats64        = e1000e_get_stats64,
7010         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7011         .ndo_set_mac_address    = e1000_set_mac,
7012         .ndo_change_mtu         = e1000_change_mtu,
7013         .ndo_do_ioctl           = e1000_ioctl,
7014         .ndo_tx_timeout         = e1000_tx_timeout,
7015         .ndo_validate_addr      = eth_validate_addr,
7016
7017         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7018         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7019 #ifdef CONFIG_NET_POLL_CONTROLLER
7020         .ndo_poll_controller    = e1000_netpoll,
7021 #endif
7022         .ndo_set_features = e1000_set_features,
7023         .ndo_fix_features = e1000_fix_features,
7024         .ndo_features_check     = passthru_features_check,
7025 };
7026
7027 /**
7028  * e1000_probe - Device Initialization Routine
7029  * @pdev: PCI device information struct
7030  * @ent: entry in e1000_pci_tbl
7031  *
7032  * Returns 0 on success, negative on failure
7033  *
7034  * e1000_probe initializes an adapter identified by a pci_dev structure.
7035  * The OS initialization, configuring of the adapter private structure,
7036  * and a hardware reset occur.
7037  **/
7038 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7039 {
7040         struct net_device *netdev;
7041         struct e1000_adapter *adapter;
7042         struct e1000_hw *hw;
7043         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7044         resource_size_t mmio_start, mmio_len;
7045         resource_size_t flash_start, flash_len;
7046         static int cards_found;
7047         u16 aspm_disable_flag = 0;
7048         int bars, i, err, pci_using_dac;
7049         u16 eeprom_data = 0;
7050         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7051         s32 ret_val = 0;
7052
7053         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7054                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7055         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7056                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7057         if (aspm_disable_flag)
7058                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7059
7060         err = pci_enable_device_mem(pdev);
7061         if (err)
7062                 return err;
7063
7064         pci_using_dac = 0;
7065         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7066         if (!err) {
7067                 pci_using_dac = 1;
7068         } else {
7069                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7070                 if (err) {
7071                         dev_err(&pdev->dev,
7072                                 "No usable DMA configuration, aborting\n");
7073                         goto err_dma;
7074                 }
7075         }
7076
7077         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7078         err = pci_request_selected_regions_exclusive(pdev, bars,
7079                                                      e1000e_driver_name);
7080         if (err)
7081                 goto err_pci_reg;
7082
7083         /* AER (Advanced Error Reporting) hooks */
7084         pci_enable_pcie_error_reporting(pdev);
7085
7086         pci_set_master(pdev);
7087         /* PCI config space info */
7088         err = pci_save_state(pdev);
7089         if (err)
7090                 goto err_alloc_etherdev;
7091
7092         err = -ENOMEM;
7093         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7094         if (!netdev)
7095                 goto err_alloc_etherdev;
7096
7097         SET_NETDEV_DEV(netdev, &pdev->dev);
7098
7099         netdev->irq = pdev->irq;
7100
7101         pci_set_drvdata(pdev, netdev);
7102         adapter = netdev_priv(netdev);
7103         hw = &adapter->hw;
7104         adapter->netdev = netdev;
7105         adapter->pdev = pdev;
7106         adapter->ei = ei;
7107         adapter->pba = ei->pba;
7108         adapter->flags = ei->flags;
7109         adapter->flags2 = ei->flags2;
7110         adapter->hw.adapter = adapter;
7111         adapter->hw.mac.type = ei->mac;
7112         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7113         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7114
7115         mmio_start = pci_resource_start(pdev, 0);
7116         mmio_len = pci_resource_len(pdev, 0);
7117
7118         err = -EIO;
7119         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7120         if (!adapter->hw.hw_addr)
7121                 goto err_ioremap;
7122
7123         if ((adapter->flags & FLAG_HAS_FLASH) &&
7124             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7125             (hw->mac.type < e1000_pch_spt)) {
7126                 flash_start = pci_resource_start(pdev, 1);
7127                 flash_len = pci_resource_len(pdev, 1);
7128                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7129                 if (!adapter->hw.flash_address)
7130                         goto err_flashmap;
7131         }
7132
7133         /* Set default EEE advertisement */
7134         if (adapter->flags2 & FLAG2_HAS_EEE)
7135                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7136
7137         /* construct the net_device struct */
7138         netdev->netdev_ops = &e1000e_netdev_ops;
7139         e1000e_set_ethtool_ops(netdev);
7140         netdev->watchdog_timeo = 5 * HZ;
7141         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7142         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7143
7144         netdev->mem_start = mmio_start;
7145         netdev->mem_end = mmio_start + mmio_len;
7146
7147         adapter->bd_number = cards_found++;
7148
7149         e1000e_check_options(adapter);
7150
7151         /* setup adapter struct */
7152         err = e1000_sw_init(adapter);
7153         if (err)
7154                 goto err_sw_init;
7155
7156         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7157         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7158         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7159
7160         err = ei->get_variants(adapter);
7161         if (err)
7162                 goto err_hw_init;
7163
7164         if ((adapter->flags & FLAG_IS_ICH) &&
7165             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7166             (hw->mac.type < e1000_pch_spt))
7167                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7168
7169         hw->mac.ops.get_bus_info(&adapter->hw);
7170
7171         adapter->hw.phy.autoneg_wait_to_complete = 0;
7172
7173         /* Copper options */
7174         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7175                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7176                 adapter->hw.phy.disable_polarity_correction = 0;
7177                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7178         }
7179
7180         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7181                 dev_info(&pdev->dev,
7182                          "PHY reset is blocked due to SOL/IDER session.\n");
7183
7184         /* Set initial default active device features */
7185         netdev->features = (NETIF_F_SG |
7186                             NETIF_F_HW_VLAN_CTAG_RX |
7187                             NETIF_F_HW_VLAN_CTAG_TX |
7188                             NETIF_F_TSO |
7189                             NETIF_F_TSO6 |
7190                             NETIF_F_RXHASH |
7191                             NETIF_F_RXCSUM |
7192                             NETIF_F_HW_CSUM);
7193
7194         /* Set user-changeable features (subset of all device features) */
7195         netdev->hw_features = netdev->features;
7196         netdev->hw_features |= NETIF_F_RXFCS;
7197         netdev->priv_flags |= IFF_SUPP_NOFCS;
7198         netdev->hw_features |= NETIF_F_RXALL;
7199
7200         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7201                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7202
7203         netdev->vlan_features |= (NETIF_F_SG |
7204                                   NETIF_F_TSO |
7205                                   NETIF_F_TSO6 |
7206                                   NETIF_F_HW_CSUM);
7207
7208         netdev->priv_flags |= IFF_UNICAST_FLT;
7209
7210         if (pci_using_dac) {
7211                 netdev->features |= NETIF_F_HIGHDMA;
7212                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7213         }
7214
7215         /* MTU range: 68 - max_hw_frame_size */
7216         netdev->min_mtu = ETH_MIN_MTU;
7217         netdev->max_mtu = adapter->max_hw_frame_size -
7218                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7219
7220         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7221                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7222
7223         /* before reading the NVM, reset the controller to
7224          * put the device in a known good starting state
7225          */
7226         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7227
7228         /* systems with ASPM and others may see the checksum fail on the first
7229          * attempt. Let's give it a few tries
7230          */
7231         for (i = 0;; i++) {
7232                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7233                         break;
7234                 if (i == 2) {
7235                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7236                         err = -EIO;
7237                         goto err_eeprom;
7238                 }
7239         }
7240
7241         e1000_eeprom_checks(adapter);
7242
7243         /* copy the MAC address */
7244         if (e1000e_read_mac_addr(&adapter->hw))
7245                 dev_err(&pdev->dev,
7246                         "NVM Read Error while reading MAC address\n");
7247
7248         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7249
7250         if (!is_valid_ether_addr(netdev->dev_addr)) {
7251                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7252                         netdev->dev_addr);
7253                 err = -EIO;
7254                 goto err_eeprom;
7255         }
7256
7257         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7258         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7259
7260         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7261         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7262         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7263         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7264         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7265
7266         /* Initialize link parameters. User can change them with ethtool */
7267         adapter->hw.mac.autoneg = 1;
7268         adapter->fc_autoneg = true;
7269         adapter->hw.fc.requested_mode = e1000_fc_default;
7270         adapter->hw.fc.current_mode = e1000_fc_default;
7271         adapter->hw.phy.autoneg_advertised = 0x2f;
7272
7273         /* Initial Wake on LAN setting - If APM wake is enabled in
7274          * the EEPROM, enable the ACPI Magic Packet filter
7275          */
7276         if (adapter->flags & FLAG_APME_IN_WUC) {
7277                 /* APME bit in EEPROM is mapped to WUC.APME */
7278                 eeprom_data = er32(WUC);
7279                 eeprom_apme_mask = E1000_WUC_APME;
7280                 if ((hw->mac.type > e1000_ich10lan) &&
7281                     (eeprom_data & E1000_WUC_PHY_WAKE))
7282                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7283         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7284                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7285                     (adapter->hw.bus.func == 1))
7286                         ret_val = e1000_read_nvm(&adapter->hw,
7287                                               NVM_INIT_CONTROL3_PORT_B,
7288                                               1, &eeprom_data);
7289                 else
7290                         ret_val = e1000_read_nvm(&adapter->hw,
7291                                               NVM_INIT_CONTROL3_PORT_A,
7292                                               1, &eeprom_data);
7293         }
7294
7295         /* fetch WoL from EEPROM */
7296         if (ret_val)
7297                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7298         else if (eeprom_data & eeprom_apme_mask)
7299                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7300
7301         /* now that we have the eeprom settings, apply the special cases
7302          * where the eeprom may be wrong or the board simply won't support
7303          * wake on lan on a particular port
7304          */
7305         if (!(adapter->flags & FLAG_HAS_WOL))
7306                 adapter->eeprom_wol = 0;
7307
7308         /* initialize the wol settings based on the eeprom settings */
7309         adapter->wol = adapter->eeprom_wol;
7310
7311         /* make sure adapter isn't asleep if manageability is enabled */
7312         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7313             (hw->mac.ops.check_mng_mode(hw)))
7314                 device_wakeup_enable(&pdev->dev);
7315
7316         /* save off EEPROM version number */
7317         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7318
7319         if (ret_val) {
7320                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7321                 adapter->eeprom_vers = 0;
7322         }
7323
7324         /* init PTP hardware clock */
7325         e1000e_ptp_init(adapter);
7326
7327         /* reset the hardware with the new settings */
7328         e1000e_reset(adapter);
7329
7330         /* If the controller has AMT, do not set DRV_LOAD until the interface
7331          * is up.  For all other cases, let the f/w know that the h/w is now
7332          * under the control of the driver.
7333          */
7334         if (!(adapter->flags & FLAG_HAS_AMT))
7335                 e1000e_get_hw_control(adapter);
7336
7337         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7338         err = register_netdev(netdev);
7339         if (err)
7340                 goto err_register;
7341
7342         /* carrier off reporting is important to ethtool even BEFORE open */
7343         netif_carrier_off(netdev);
7344
7345         e1000_print_device_info(adapter);
7346
7347         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7348
7349         if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7350                 pm_runtime_put_noidle(&pdev->dev);
7351
7352         return 0;
7353
7354 err_register:
7355         if (!(adapter->flags & FLAG_HAS_AMT))
7356                 e1000e_release_hw_control(adapter);
7357 err_eeprom:
7358         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7359                 e1000_phy_hw_reset(&adapter->hw);
7360 err_hw_init:
7361         kfree(adapter->tx_ring);
7362         kfree(adapter->rx_ring);
7363 err_sw_init:
7364         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7365                 iounmap(adapter->hw.flash_address);
7366         e1000e_reset_interrupt_capability(adapter);
7367 err_flashmap:
7368         iounmap(adapter->hw.hw_addr);
7369 err_ioremap:
7370         free_netdev(netdev);
7371 err_alloc_etherdev:
7372         pci_disable_pcie_error_reporting(pdev);
7373         pci_release_mem_regions(pdev);
7374 err_pci_reg:
7375 err_dma:
7376         pci_disable_device(pdev);
7377         return err;
7378 }
7379
7380 /**
7381  * e1000_remove - Device Removal Routine
7382  * @pdev: PCI device information struct
7383  *
7384  * e1000_remove is called by the PCI subsystem to alert the driver
7385  * that it should release a PCI device.  The could be caused by a
7386  * Hot-Plug event, or because the driver is going to be removed from
7387  * memory.
7388  **/
7389 static void e1000_remove(struct pci_dev *pdev)
7390 {
7391         struct net_device *netdev = pci_get_drvdata(pdev);
7392         struct e1000_adapter *adapter = netdev_priv(netdev);
7393         bool down = test_bit(__E1000_DOWN, &adapter->state);
7394
7395         e1000e_ptp_remove(adapter);
7396
7397         /* The timers may be rescheduled, so explicitly disable them
7398          * from being rescheduled.
7399          */
7400         if (!down)
7401                 set_bit(__E1000_DOWN, &adapter->state);
7402         del_timer_sync(&adapter->watchdog_timer);
7403         del_timer_sync(&adapter->phy_info_timer);
7404
7405         cancel_work_sync(&adapter->reset_task);
7406         cancel_work_sync(&adapter->watchdog_task);
7407         cancel_work_sync(&adapter->downshift_task);
7408         cancel_work_sync(&adapter->update_phy_task);
7409         cancel_work_sync(&adapter->print_hang_task);
7410
7411         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7412                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7413                 if (adapter->tx_hwtstamp_skb) {
7414                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7415                         adapter->tx_hwtstamp_skb = NULL;
7416                 }
7417         }
7418
7419         /* Don't lie to e1000_close() down the road. */
7420         if (!down)
7421                 clear_bit(__E1000_DOWN, &adapter->state);
7422         unregister_netdev(netdev);
7423
7424         if (pci_dev_run_wake(pdev))
7425                 pm_runtime_get_noresume(&pdev->dev);
7426
7427         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7428          * would have already happened in close and is redundant.
7429          */
7430         e1000e_release_hw_control(adapter);
7431
7432         e1000e_reset_interrupt_capability(adapter);
7433         kfree(adapter->tx_ring);
7434         kfree(adapter->rx_ring);
7435
7436         iounmap(adapter->hw.hw_addr);
7437         if ((adapter->hw.flash_address) &&
7438             (adapter->hw.mac.type < e1000_pch_spt))
7439                 iounmap(adapter->hw.flash_address);
7440         pci_release_mem_regions(pdev);
7441
7442         free_netdev(netdev);
7443
7444         /* AER disable */
7445         pci_disable_pcie_error_reporting(pdev);
7446
7447         pci_disable_device(pdev);
7448 }
7449
7450 /* PCI Error Recovery (ERS) */
7451 static const struct pci_error_handlers e1000_err_handler = {
7452         .error_detected = e1000_io_error_detected,
7453         .slot_reset = e1000_io_slot_reset,
7454         .resume = e1000_io_resume,
7455 };
7456
7457 static const struct pci_device_id e1000_pci_tbl[] = {
7458         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7459         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7460         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7461         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7462           board_82571 },
7463         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7464         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7465         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7466         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7467         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7468
7469         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7473
7474         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7477
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7480         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7481
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7483           board_80003es2lan },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7485           board_80003es2lan },
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7487           board_80003es2lan },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7489           board_80003es2lan },
7490
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7499
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7509
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7513
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7517
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7522
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7525
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7551
7552         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7553 };
7554 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7555
7556 static const struct dev_pm_ops e1000_pm_ops = {
7557 #ifdef CONFIG_PM_SLEEP
7558         .suspend        = e1000e_pm_suspend,
7559         .resume         = e1000e_pm_resume,
7560         .freeze         = e1000e_pm_freeze,
7561         .thaw           = e1000e_pm_thaw,
7562         .poweroff       = e1000e_pm_suspend,
7563         .restore        = e1000e_pm_resume,
7564 #endif
7565         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7566                            e1000e_pm_runtime_idle)
7567 };
7568
7569 /* PCI Device API Driver */
7570 static struct pci_driver e1000_driver = {
7571         .name     = e1000e_driver_name,
7572         .id_table = e1000_pci_tbl,
7573         .probe    = e1000_probe,
7574         .remove   = e1000_remove,
7575         .driver   = {
7576                 .pm = &e1000_pm_ops,
7577         },
7578         .shutdown = e1000_shutdown,
7579         .err_handler = &e1000_err_handler
7580 };
7581
7582 /**
7583  * e1000_init_module - Driver Registration Routine
7584  *
7585  * e1000_init_module is the first routine called when the driver is
7586  * loaded. All it does is register with the PCI subsystem.
7587  **/
7588 static int __init e1000_init_module(void)
7589 {
7590         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7591                 e1000e_driver_version);
7592         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7593
7594         return pci_register_driver(&e1000_driver);
7595 }
7596 module_init(e1000_init_module);
7597
7598 /**
7599  * e1000_exit_module - Driver Exit Cleanup Routine
7600  *
7601  * e1000_exit_module is called just before the driver is removed
7602  * from memory.
7603  **/
7604 static void __exit e1000_exit_module(void)
7605 {
7606         pci_unregister_driver(&e1000_driver);
7607 }
7608 module_exit(e1000_exit_module);
7609
7610 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7611 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7612 MODULE_LICENSE("GPL");
7613 MODULE_VERSION(DRV_VERSION);
7614
7615 /* netdev.c */