1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 * e1000e_get_bus_info_pcie - Get PCIe bus information
26 * @hw: pointer to the HW structure
28 * Determines and stores the system bus information for a particular
29 * network interface. The following bus information is determined and stored:
30 * bus speed, bus width, type (PCIe), and PCIe function.
32 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
34 struct e1000_mac_info *mac = &hw->mac;
35 struct e1000_bus_info *bus = &hw->bus;
36 struct e1000_adapter *adapter = hw->adapter;
37 u16 pcie_link_status, cap_offset;
39 cap_offset = adapter->pdev->pcie_cap;
41 bus->width = e1000_bus_width_unknown;
43 pci_read_config_word(adapter->pdev,
44 cap_offset + PCIE_LINK_STATUS,
46 bus->width = (enum e1000_bus_width)((pcie_link_status &
47 PCIE_LINK_WIDTH_MASK) >>
48 PCIE_LINK_WIDTH_SHIFT);
51 mac->ops.set_lan_id(hw);
57 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
59 * @hw: pointer to the HW structure
61 * Determines the LAN function id by reading memory-mapped registers
62 * and swaps the port value if requested.
64 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
66 struct e1000_bus_info *bus = &hw->bus;
69 /* The status register reports the correct function number
70 * for the device regardless of function swap state.
73 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
77 * e1000_set_lan_id_single_port - Set LAN id for a single port device
78 * @hw: pointer to the HW structure
80 * Sets the LAN function id to zero for a single port device.
82 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
84 struct e1000_bus_info *bus = &hw->bus;
90 * e1000_clear_vfta_generic - Clear VLAN filter table
91 * @hw: pointer to the HW structure
93 * Clears the register array which contains the VLAN filter table by
94 * setting all the values to 0.
96 void e1000_clear_vfta_generic(struct e1000_hw *hw)
100 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
101 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
107 * e1000_write_vfta_generic - Write value to VLAN filter table
108 * @hw: pointer to the HW structure
109 * @offset: register offset in VLAN filter table
110 * @value: register value written to VLAN filter table
112 * Writes value at the given offset in the register array which stores
113 * the VLAN filter table.
115 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
117 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
122 * e1000e_init_rx_addrs - Initialize receive address's
123 * @hw: pointer to the HW structure
124 * @rar_count: receive address registers
126 * Setup the receive address registers by setting the base receive address
127 * register to the devices MAC address and clearing all the other receive
128 * address registers to 0.
130 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
133 u8 mac_addr[ETH_ALEN] = { 0 };
135 /* Setup the receive address */
136 e_dbg("Programming MAC Address into RAR[0]\n");
138 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
140 /* Zero out the other (rar_entry_count - 1) receive addresses */
141 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
142 for (i = 1; i < rar_count; i++)
143 hw->mac.ops.rar_set(hw, mac_addr, i);
147 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
148 * @hw: pointer to the HW structure
150 * Checks the nvm for an alternate MAC address. An alternate MAC address
151 * can be setup by pre-boot software and must be treated like a permanent
152 * address and must override the actual permanent MAC address. If an
153 * alternate MAC address is found it is programmed into RAR0, replacing
154 * the permanent address that was installed into RAR0 by the Si on reset.
155 * This function will return SUCCESS unless it encounters an error while
156 * reading the EEPROM.
158 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
162 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
163 u8 alt_mac_addr[ETH_ALEN];
165 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
169 /* not supported on 82573 */
170 if (hw->mac.type == e1000_82573)
173 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
174 &nvm_alt_mac_addr_offset);
176 e_dbg("NVM Read Error\n");
180 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
181 (nvm_alt_mac_addr_offset == 0x0000))
182 /* There is no Alternate MAC Address */
185 if (hw->bus.func == E1000_FUNC_1)
186 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
187 for (i = 0; i < ETH_ALEN; i += 2) {
188 offset = nvm_alt_mac_addr_offset + (i >> 1);
189 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
191 e_dbg("NVM Read Error\n");
195 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
196 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
199 /* if multicast bit is set, the alternate address will not be used */
200 if (is_multicast_ether_addr(alt_mac_addr)) {
201 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
205 /* We have a valid alternate MAC address, and we want to treat it the
206 * same as the normal permanent MAC address stored by the HW into the
207 * RAR. Do this by mapping this address into RAR0.
209 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
214 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
216 return hw->mac.rar_entry_count;
220 * e1000e_rar_set_generic - Set receive address register
221 * @hw: pointer to the HW structure
222 * @addr: pointer to the receive address
223 * @index: receive address array register
225 * Sets the receive address array register at index to the address passed
228 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
230 u32 rar_low, rar_high;
232 /* HW expects these in little endian so we reverse the byte order
233 * from network order (big endian) to little endian
235 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
236 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
238 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
240 /* If MAC address zero, no need to set the AV bit */
241 if (rar_low || rar_high)
242 rar_high |= E1000_RAH_AV;
244 /* Some bridges will combine consecutive 32-bit writes into
245 * a single burst write, which will malfunction on some parts.
246 * The flushes avoid this.
248 ew32(RAL(index), rar_low);
250 ew32(RAH(index), rar_high);
257 * e1000_hash_mc_addr - Generate a multicast hash value
258 * @hw: pointer to the HW structure
259 * @mc_addr: pointer to a multicast address
261 * Generates a multicast address hash value which is used to determine
262 * the multicast filter table array address and new table value.
264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
266 u32 hash_value, hash_mask;
269 /* Register count multiplied by bits per register */
270 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
272 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 * where 0xFF would still fall within the hash mask.
275 while (hash_mask >> bit_shift != 0xFF)
278 /* The portion of the address that is used for the hash table
279 * is determined by the mc_filter_type setting.
280 * The algorithm is such that there is a total of 8 bits of shifting.
281 * The bit_shift for a mc_filter_type of 0 represents the number of
282 * left-shifts where the MSB of mc_addr[5] would still fall within
283 * the hash_mask. Case 0 does this exactly. Since there are a total
284 * of 8 bits of shifting, then mc_addr[4] will shift right the
285 * remaining number of bits. Thus 8 - bit_shift. The rest of the
286 * cases are a variation of this algorithm...essentially raising the
287 * number of bits to shift mc_addr[5] left, while still keeping the
288 * 8-bit shifting total.
290 * For example, given the following Destination MAC Address and an
291 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292 * we can see that the bit_shift for case 0 is 4. These are the hash
293 * values resulting from each mc_filter_type...
294 * [0] [1] [2] [3] [4] [5]
298 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
303 switch (hw->mac.mc_filter_type) {
318 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319 (((u16)mc_addr[5]) << bit_shift)));
325 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 * @hw: pointer to the HW structure
327 * @mc_addr_list: array of multicast addresses to program
328 * @mc_addr_count: number of multicast addresses to program
330 * Updates entire Multicast Table Array.
331 * The caller must have a packed mc_addr_list of multicast addresses.
333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334 u8 *mc_addr_list, u32 mc_addr_count)
336 u32 hash_value, hash_bit, hash_reg;
339 /* clear mta_shadow */
340 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
342 /* update mta_shadow from mc_addr_list */
343 for (i = 0; (u32)i < mc_addr_count; i++) {
344 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
346 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347 hash_bit = hash_value & 0x1F;
349 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
350 mc_addr_list += (ETH_ALEN);
353 /* replace the entire MTA table */
354 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
360 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
361 * @hw: pointer to the HW structure
363 * Clears the base hardware counters by reading the counter registers.
365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
407 * e1000e_check_for_copper_link - Check for link (Copper)
408 * @hw: pointer to the HW structure
410 * Checks to see of the link status of the hardware has changed. If a
411 * change in link status has been detected, then we read the PHY registers
412 * to get the current speed/duplex if link exists.
414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
416 struct e1000_mac_info *mac = &hw->mac;
420 /* We only want to go out to the PHY registers to see if Auto-Neg
421 * has completed and/or if our link status has changed. The
422 * get_link_status flag is set upon receiving a Link Status
423 * Change or Rx Sequence Error interrupt.
425 if (!mac->get_link_status)
427 mac->get_link_status = false;
429 /* First we want to see if the MII Status Register reports
430 * link. If so, then we want to get the current speed/duplex
433 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
434 if (ret_val || !link)
437 /* Check if there was DownShift, must be checked
438 * immediately after link-up
440 e1000e_check_downshift(hw);
442 /* If we are forcing speed/duplex, then we simply return since
443 * we have already determined whether we have link or not.
446 return -E1000_ERR_CONFIG;
448 /* Auto-Neg is enabled. Auto Speed Detection takes care
449 * of MAC speed/duplex configuration. So we only need to
450 * configure Collision Distance in the MAC.
452 mac->ops.config_collision_dist(hw);
454 /* Configure Flow Control now that Auto-Neg has completed.
455 * First, we need to restore the desired flow control
456 * settings because we may have had to re-autoneg with a
457 * different link partner.
459 ret_val = e1000e_config_fc_after_link_up(hw);
461 e_dbg("Error configuring flow control\n");
466 mac->get_link_status = true;
471 * e1000e_check_for_fiber_link - Check for link (Fiber)
472 * @hw: pointer to the HW structure
474 * Checks for link up on the hardware. If link is not up and we have
475 * a signal, then we need to force link up.
477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
479 struct e1000_mac_info *mac = &hw->mac;
486 status = er32(STATUS);
489 /* If we don't have link (auto-negotiation failed or link partner
490 * cannot auto-negotiate), the cable is plugged in (we have signal),
491 * and our link partner is not trying to auto-negotiate with us (we
492 * are receiving idles or data), we need to force link up. We also
493 * need to give auto-negotiation time to complete, in case the cable
494 * was just plugged in. The autoneg_failed flag does this.
496 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
498 !(rxcw & E1000_RXCW_C)) {
499 if (!mac->autoneg_failed) {
500 mac->autoneg_failed = true;
503 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
505 /* Disable auto-negotiation in the TXCW register */
506 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
508 /* Force link-up and also force full-duplex. */
510 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
513 /* Configure Flow Control after forcing link up. */
514 ret_val = e1000e_config_fc_after_link_up(hw);
516 e_dbg("Error configuring flow control\n");
519 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
520 /* If we are forcing link and we are receiving /C/ ordered
521 * sets, re-enable auto-negotiation in the TXCW register
522 * and disable forced link in the Device Control register
523 * in an attempt to auto-negotiate with our link partner.
525 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526 ew32(TXCW, mac->txcw);
527 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
529 mac->serdes_has_link = true;
536 * e1000e_check_for_serdes_link - Check for link (Serdes)
537 * @hw: pointer to the HW structure
539 * Checks for link up on the hardware. If link is not up and we have
540 * a signal, then we need to force link up.
542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
544 struct e1000_mac_info *mac = &hw->mac;
551 status = er32(STATUS);
554 /* If we don't have link (auto-negotiation failed or link partner
555 * cannot auto-negotiate), and our link partner is not trying to
556 * auto-negotiate with us (we are receiving idles or data),
557 * we need to force link up. We also need to give auto-negotiation
560 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562 if (!mac->autoneg_failed) {
563 mac->autoneg_failed = true;
566 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
568 /* Disable auto-negotiation in the TXCW register */
569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
571 /* Force link-up and also force full-duplex. */
573 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
576 /* Configure Flow Control after forcing link up. */
577 ret_val = e1000e_config_fc_after_link_up(hw);
579 e_dbg("Error configuring flow control\n");
582 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
583 /* If we are forcing link and we are receiving /C/ ordered
584 * sets, re-enable auto-negotiation in the TXCW register
585 * and disable forced link in the Device Control register
586 * in an attempt to auto-negotiate with our link partner.
588 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589 ew32(TXCW, mac->txcw);
590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
592 mac->serdes_has_link = true;
593 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
594 /* If we force link for non-auto-negotiation switch, check
595 * link status based on MAC synchronization for internal
598 /* SYNCH bit and IV bit are sticky. */
599 usleep_range(10, 20);
601 if (rxcw & E1000_RXCW_SYNCH) {
602 if (!(rxcw & E1000_RXCW_IV)) {
603 mac->serdes_has_link = true;
604 e_dbg("SERDES: Link up - forced.\n");
607 mac->serdes_has_link = false;
608 e_dbg("SERDES: Link down - force failed.\n");
612 if (E1000_TXCW_ANE & er32(TXCW)) {
613 status = er32(STATUS);
614 if (status & E1000_STATUS_LU) {
615 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
616 usleep_range(10, 20);
618 if (rxcw & E1000_RXCW_SYNCH) {
619 if (!(rxcw & E1000_RXCW_IV)) {
620 mac->serdes_has_link = true;
621 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
623 mac->serdes_has_link = false;
624 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
627 mac->serdes_has_link = false;
628 e_dbg("SERDES: Link down - no sync.\n");
631 mac->serdes_has_link = false;
632 e_dbg("SERDES: Link down - autoneg failed\n");
640 * e1000_set_default_fc_generic - Set flow control default values
641 * @hw: pointer to the HW structure
643 * Read the EEPROM for the default values for flow control and store the
646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
651 /* Read and store word 0x0F of the EEPROM. This word contains bits
652 * that determine the hardware's default PAUSE (flow control) mode,
653 * a bit that determines whether the HW defaults to enabling or
654 * disabling auto-negotiation, and the direction of the
655 * SW defined pins. If there is no SW over-ride of the flow
656 * control setting, then the variable hw->fc will
657 * be initialized based on a value in the EEPROM.
659 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
662 e_dbg("NVM Read Error\n");
666 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667 hw->fc.requested_mode = e1000_fc_none;
668 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669 hw->fc.requested_mode = e1000_fc_tx_pause;
671 hw->fc.requested_mode = e1000_fc_full;
677 * e1000e_setup_link_generic - Setup flow control and link settings
678 * @hw: pointer to the HW structure
680 * Determines which flow control settings to use, then configures flow
681 * control. Calls the appropriate media-specific link configuration
682 * function. Assuming the adapter has a valid link partner, a valid link
683 * should be established. Assumes the hardware has previously been reset
684 * and the transmitter and receiver are not enabled.
686 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
690 /* In the case of the phy reset being blocked, we already have a link.
691 * We do not need to set it up again.
693 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
696 /* If requested flow control is set to default, set flow control
697 * based on the EEPROM flow control settings.
699 if (hw->fc.requested_mode == e1000_fc_default) {
700 ret_val = e1000_set_default_fc_generic(hw);
705 /* Save off the requested flow control mode for use later. Depending
706 * on the link partner's capabilities, we may or may not use this mode.
708 hw->fc.current_mode = hw->fc.requested_mode;
710 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
712 /* Call the necessary media_type subroutine to configure the link. */
713 ret_val = hw->mac.ops.setup_physical_interface(hw);
717 /* Initialize the flow control address, type, and PAUSE timer
718 * registers to their default values. This is done even if flow
719 * control is disabled, because it does not hurt anything to
720 * initialize these registers.
722 e_dbg("Initializing the Flow Control address, type and timer regs\n");
723 ew32(FCT, FLOW_CONTROL_TYPE);
724 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
725 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
727 ew32(FCTTV, hw->fc.pause_time);
729 return e1000e_set_fc_watermarks(hw);
733 * e1000_commit_fc_settings_generic - Configure flow control
734 * @hw: pointer to the HW structure
736 * Write the flow control settings to the Transmit Config Word Register (TXCW)
737 * base on the flow control settings in e1000_mac_info.
739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
741 struct e1000_mac_info *mac = &hw->mac;
744 /* Check for a software override of the flow control settings, and
745 * setup the device accordingly. If auto-negotiation is enabled, then
746 * software will have to set the "PAUSE" bits to the correct value in
747 * the Transmit Config Word Register (TXCW) and re-start auto-
748 * negotiation. However, if auto-negotiation is disabled, then
749 * software will have to manually configure the two flow control enable
750 * bits in the CTRL register.
752 * The possible values of the "fc" parameter are:
753 * 0: Flow control is completely disabled
754 * 1: Rx flow control is enabled (we can receive pause frames,
755 * but not send pause frames).
756 * 2: Tx flow control is enabled (we can send pause frames but we
757 * do not support receiving pause frames).
758 * 3: Both Rx and Tx flow control (symmetric) are enabled.
760 switch (hw->fc.current_mode) {
762 /* Flow control completely disabled by a software over-ride. */
763 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
765 case e1000_fc_rx_pause:
766 /* Rx Flow control is enabled and Tx Flow control is disabled
767 * by a software over-ride. Since there really isn't a way to
768 * advertise that we are capable of Rx Pause ONLY, we will
769 * advertise that we support both symmetric and asymmetric Rx
770 * PAUSE. Later, we will disable the adapter's ability to send
773 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
775 case e1000_fc_tx_pause:
776 /* Tx Flow control is enabled, and Rx Flow control is disabled,
777 * by a software over-ride.
779 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
782 /* Flow control (both Rx and Tx) is enabled by a software
785 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
788 e_dbg("Flow control param set incorrectly\n");
789 return -E1000_ERR_CONFIG;
799 * e1000_poll_fiber_serdes_link_generic - Poll for link up
800 * @hw: pointer to the HW structure
802 * Polls for link up by reading the status register, if link fails to come
803 * up with auto-negotiation, then the link is forced if a signal is detected.
805 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
807 struct e1000_mac_info *mac = &hw->mac;
811 /* If we have a signal (the cable is plugged in, or assumed true for
812 * serdes media) then poll for a "Link-Up" indication in the Device
813 * Status Register. Time-out if a link isn't seen in 500 milliseconds
814 * seconds (Auto-negotiation should complete in less than 500
815 * milliseconds even if the other end is doing it in SW).
817 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
818 usleep_range(10000, 20000);
819 status = er32(STATUS);
820 if (status & E1000_STATUS_LU)
823 if (i == FIBER_LINK_UP_LIMIT) {
824 e_dbg("Never got a valid link from auto-neg!!!\n");
825 mac->autoneg_failed = true;
826 /* AutoNeg failed to achieve a link, so we'll call
827 * mac->check_for_link. This routine will force the
828 * link up if we detect a signal. This will allow us to
829 * communicate with non-autonegotiating link partners.
831 ret_val = mac->ops.check_for_link(hw);
833 e_dbg("Error while checking for link\n");
836 mac->autoneg_failed = false;
838 mac->autoneg_failed = false;
839 e_dbg("Valid Link Found\n");
846 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
847 * @hw: pointer to the HW structure
849 * Configures collision distance and flow control for fiber and serdes
850 * links. Upon successful setup, poll for link.
852 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
859 /* Take the link out of reset */
860 ctrl &= ~E1000_CTRL_LRST;
862 hw->mac.ops.config_collision_dist(hw);
864 ret_val = e1000_commit_fc_settings_generic(hw);
868 /* Since auto-negotiation is enabled, take the link out of reset (the
869 * link will be in reset, because we previously reset the chip). This
870 * will restart auto-negotiation. If auto-negotiation is successful
871 * then the link-up status bit will be set and the flow control enable
872 * bits (RFCE and TFCE) will be set according to their negotiated value.
874 e_dbg("Auto-negotiation enabled\n");
878 usleep_range(1000, 2000);
880 /* For these adapters, the SW definable pin 1 is set when the optics
881 * detect a signal. If we have a signal, then poll for a "Link-Up"
884 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
885 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
886 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
888 e_dbg("No signal detected\n");
895 * e1000e_config_collision_dist_generic - Configure collision distance
896 * @hw: pointer to the HW structure
898 * Configures the collision distance to the default value and is used
901 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
907 tctl &= ~E1000_TCTL_COLD;
908 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
915 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
916 * @hw: pointer to the HW structure
918 * Sets the flow control high/low threshold (watermark) registers. If
919 * flow control XON frame transmission is enabled, then set XON frame
920 * transmission as well.
922 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
924 u32 fcrtl = 0, fcrth = 0;
926 /* Set the flow control receive threshold registers. Normally,
927 * these registers will be set to a default threshold that may be
928 * adjusted later by the driver's runtime code. However, if the
929 * ability to transmit pause frames is not enabled, then these
930 * registers will be set to 0.
932 if (hw->fc.current_mode & e1000_fc_tx_pause) {
933 /* We need to set up the Receive Threshold high and low water
934 * marks as well as (optionally) enabling the transmission of
937 fcrtl = hw->fc.low_water;
939 fcrtl |= E1000_FCRTL_XONE;
941 fcrth = hw->fc.high_water;
950 * e1000e_force_mac_fc - Force the MAC's flow control settings
951 * @hw: pointer to the HW structure
953 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
954 * device control register to reflect the adapter settings. TFCE and RFCE
955 * need to be explicitly set by software when a copper PHY is used because
956 * autonegotiation is managed by the PHY rather than the MAC. Software must
957 * also configure these bits when link is forced on a fiber connection.
959 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
965 /* Because we didn't get link via the internal auto-negotiation
966 * mechanism (we either forced link or we got link via PHY
967 * auto-neg), we have to manually enable/disable transmit an
968 * receive flow control.
970 * The "Case" statement below enables/disable flow control
971 * according to the "hw->fc.current_mode" parameter.
973 * The possible values of the "fc" parameter are:
974 * 0: Flow control is completely disabled
975 * 1: Rx flow control is enabled (we can receive pause
976 * frames but not send pause frames).
977 * 2: Tx flow control is enabled (we can send pause frames
978 * frames but we do not receive pause frames).
979 * 3: Both Rx and Tx flow control (symmetric) is enabled.
980 * other: No other values should be possible at this point.
982 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
984 switch (hw->fc.current_mode) {
986 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
988 case e1000_fc_rx_pause:
989 ctrl &= (~E1000_CTRL_TFCE);
990 ctrl |= E1000_CTRL_RFCE;
992 case e1000_fc_tx_pause:
993 ctrl &= (~E1000_CTRL_RFCE);
994 ctrl |= E1000_CTRL_TFCE;
997 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1000 e_dbg("Flow control param set incorrectly\n");
1001 return -E1000_ERR_CONFIG;
1010 * e1000e_config_fc_after_link_up - Configures flow control after link
1011 * @hw: pointer to the HW structure
1013 * Checks the status of auto-negotiation after link up to ensure that the
1014 * speed and duplex were not forced. If the link needed to be forced, then
1015 * flow control needs to be forced also. If auto-negotiation is enabled
1016 * and did not fail, then we configure flow control based on our link
1019 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1021 struct e1000_mac_info *mac = &hw->mac;
1023 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1024 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1027 /* Check for the case where we have fiber media and auto-neg failed
1028 * so we had to force link. In this case, we need to force the
1029 * configuration of the MAC to match the "fc" parameter.
1031 if (mac->autoneg_failed) {
1032 if (hw->phy.media_type == e1000_media_type_fiber ||
1033 hw->phy.media_type == e1000_media_type_internal_serdes)
1034 ret_val = e1000e_force_mac_fc(hw);
1036 if (hw->phy.media_type == e1000_media_type_copper)
1037 ret_val = e1000e_force_mac_fc(hw);
1041 e_dbg("Error forcing flow control settings\n");
1045 /* Check for the case where we have copper media and auto-neg is
1046 * enabled. In this case, we need to check and see if Auto-Neg
1047 * has completed, and if so, how the PHY and link partner has
1048 * flow control configured.
1050 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1051 /* Read the MII Status Register and check to see if AutoNeg
1052 * has completed. We read this twice because this reg has
1053 * some "sticky" (latched) bits.
1055 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1058 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1062 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1063 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1067 /* The AutoNeg process has completed, so we now need to
1068 * read both the Auto Negotiation Advertisement
1069 * Register (Address 4) and the Auto_Negotiation Base
1070 * Page Ability Register (Address 5) to determine how
1071 * flow control was negotiated.
1073 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1076 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1080 /* Two bits in the Auto Negotiation Advertisement Register
1081 * (Address 4) and two bits in the Auto Negotiation Base
1082 * Page Ability Register (Address 5) determine flow control
1083 * for both the PHY and the link partner. The following
1084 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1085 * 1999, describes these PAUSE resolution bits and how flow
1086 * control is determined based upon these settings.
1087 * NOTE: DC = Don't Care
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1091 *-------|---------|-------|---------|--------------------
1092 * 0 | 0 | DC | DC | e1000_fc_none
1093 * 0 | 1 | 0 | DC | e1000_fc_none
1094 * 0 | 1 | 1 | 0 | e1000_fc_none
1095 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1096 * 1 | 0 | 0 | DC | e1000_fc_none
1097 * 1 | DC | 1 | DC | e1000_fc_full
1098 * 1 | 1 | 0 | 0 | e1000_fc_none
1099 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1101 * Are both PAUSE bits set to 1? If so, this implies
1102 * Symmetric Flow Control is enabled at both ends. The
1103 * ASM_DIR bits are irrelevant per the spec.
1105 * For Symmetric Flow Control:
1107 * LOCAL DEVICE | LINK PARTNER
1108 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1109 *-------|---------|-------|---------|--------------------
1110 * 1 | DC | 1 | DC | E1000_fc_full
1113 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1114 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1115 /* Now we need to check if the user selected Rx ONLY
1116 * of pause frames. In this case, we had to advertise
1117 * FULL flow control because we could not advertise Rx
1118 * ONLY. Hence, we must now check to see if we need to
1119 * turn OFF the TRANSMISSION of PAUSE frames.
1121 if (hw->fc.requested_mode == e1000_fc_full) {
1122 hw->fc.current_mode = e1000_fc_full;
1123 e_dbg("Flow Control = FULL.\n");
1125 hw->fc.current_mode = e1000_fc_rx_pause;
1126 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1129 /* For receiving PAUSE frames ONLY.
1131 * LOCAL DEVICE | LINK PARTNER
1132 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1133 *-------|---------|-------|---------|--------------------
1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1136 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1137 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1138 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1139 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1140 hw->fc.current_mode = e1000_fc_tx_pause;
1141 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143 /* For transmitting PAUSE frames ONLY.
1145 * LOCAL DEVICE | LINK PARTNER
1146 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1147 *-------|---------|-------|---------|--------------------
1148 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1150 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1151 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1152 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1153 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1154 hw->fc.current_mode = e1000_fc_rx_pause;
1155 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157 /* Per the IEEE spec, at this point flow control
1158 * should be disabled.
1160 hw->fc.current_mode = e1000_fc_none;
1161 e_dbg("Flow Control = NONE.\n");
1164 /* Now we need to do one last check... If we auto-
1165 * negotiated to HALF DUPLEX, flow control should not be
1166 * enabled per IEEE 802.3 spec.
1168 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1170 e_dbg("Error getting link speed and duplex\n");
1174 if (duplex == HALF_DUPLEX)
1175 hw->fc.current_mode = e1000_fc_none;
1177 /* Now we call a subroutine to actually force the MAC
1178 * controller to use the correct flow control settings.
1180 ret_val = e1000e_force_mac_fc(hw);
1182 e_dbg("Error forcing flow control settings\n");
1187 /* Check for the case where we have SerDes media and auto-neg is
1188 * enabled. In this case, we need to check and see if Auto-Neg
1189 * has completed, and if so, how the PHY and link partner has
1190 * flow control configured.
1192 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1194 /* Read the PCS_LSTS and check to see if AutoNeg
1197 pcs_status_reg = er32(PCS_LSTAT);
1199 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1200 e_dbg("PCS Auto Neg has not completed.\n");
1204 /* The AutoNeg process has completed, so we now need to
1205 * read both the Auto Negotiation Advertisement
1206 * Register (PCS_ANADV) and the Auto_Negotiation Base
1207 * Page Ability Register (PCS_LPAB) to determine how
1208 * flow control was negotiated.
1210 pcs_adv_reg = er32(PCS_ANADV);
1211 pcs_lp_ability_reg = er32(PCS_LPAB);
1213 /* Two bits in the Auto Negotiation Advertisement Register
1214 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1215 * Page Ability Register (PCS_LPAB) determine flow control
1216 * for both the PHY and the link partner. The following
1217 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1218 * 1999, describes these PAUSE resolution bits and how flow
1219 * control is determined based upon these settings.
1220 * NOTE: DC = Don't Care
1222 * LOCAL DEVICE | LINK PARTNER
1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1224 *-------|---------|-------|---------|--------------------
1225 * 0 | 0 | DC | DC | e1000_fc_none
1226 * 0 | 1 | 0 | DC | e1000_fc_none
1227 * 0 | 1 | 1 | 0 | e1000_fc_none
1228 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1229 * 1 | 0 | 0 | DC | e1000_fc_none
1230 * 1 | DC | 1 | DC | e1000_fc_full
1231 * 1 | 1 | 0 | 0 | e1000_fc_none
1232 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1234 * Are both PAUSE bits set to 1? If so, this implies
1235 * Symmetric Flow Control is enabled at both ends. The
1236 * ASM_DIR bits are irrelevant per the spec.
1238 * For Symmetric Flow Control:
1240 * LOCAL DEVICE | LINK PARTNER
1241 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1242 *-------|---------|-------|---------|--------------------
1243 * 1 | DC | 1 | DC | e1000_fc_full
1246 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1247 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1248 /* Now we need to check if the user selected Rx ONLY
1249 * of pause frames. In this case, we had to advertise
1250 * FULL flow control because we could not advertise Rx
1251 * ONLY. Hence, we must now check to see if we need to
1252 * turn OFF the TRANSMISSION of PAUSE frames.
1254 if (hw->fc.requested_mode == e1000_fc_full) {
1255 hw->fc.current_mode = e1000_fc_full;
1256 e_dbg("Flow Control = FULL.\n");
1258 hw->fc.current_mode = e1000_fc_rx_pause;
1259 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1262 /* For receiving PAUSE frames ONLY.
1264 * LOCAL DEVICE | LINK PARTNER
1265 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1266 *-------|---------|-------|---------|--------------------
1267 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1269 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1270 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1271 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1272 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1273 hw->fc.current_mode = e1000_fc_tx_pause;
1274 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1276 /* For transmitting PAUSE frames ONLY.
1278 * LOCAL DEVICE | LINK PARTNER
1279 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1280 *-------|---------|-------|---------|--------------------
1281 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1283 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1284 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1285 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1286 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1287 hw->fc.current_mode = e1000_fc_rx_pause;
1288 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1290 /* Per the IEEE spec, at this point flow control
1291 * should be disabled.
1293 hw->fc.current_mode = e1000_fc_none;
1294 e_dbg("Flow Control = NONE.\n");
1297 /* Now we call a subroutine to actually force the MAC
1298 * controller to use the correct flow control settings.
1300 pcs_ctrl_reg = er32(PCS_LCTL);
1301 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1302 ew32(PCS_LCTL, pcs_ctrl_reg);
1304 ret_val = e1000e_force_mac_fc(hw);
1306 e_dbg("Error forcing flow control settings\n");
1315 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1316 * @hw: pointer to the HW structure
1317 * @speed: stores the current speed
1318 * @duplex: stores the current duplex
1320 * Read the status register for the current speed/duplex and store the current
1321 * speed and duplex for copper connections.
1323 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1328 status = er32(STATUS);
1329 if (status & E1000_STATUS_SPEED_1000)
1330 *speed = SPEED_1000;
1331 else if (status & E1000_STATUS_SPEED_100)
1336 if (status & E1000_STATUS_FD)
1337 *duplex = FULL_DUPLEX;
1339 *duplex = HALF_DUPLEX;
1341 e_dbg("%u Mbps, %s Duplex\n",
1342 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1343 *duplex == FULL_DUPLEX ? "Full" : "Half");
1349 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1350 * @hw: pointer to the HW structure
1351 * @speed: stores the current speed
1352 * @duplex: stores the current duplex
1354 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1355 * for fiber/serdes links.
1357 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1358 *hw, u16 *speed, u16 *duplex)
1360 *speed = SPEED_1000;
1361 *duplex = FULL_DUPLEX;
1367 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1368 * @hw: pointer to the HW structure
1370 * Acquire the HW semaphore to access the PHY or NVM
1372 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1375 s32 timeout = hw->nvm.word_size + 1;
1378 /* Get the SW semaphore */
1379 while (i < timeout) {
1381 if (!(swsm & E1000_SWSM_SMBI))
1384 usleep_range(50, 100);
1389 e_dbg("Driver can't access device - SMBI bit is set.\n");
1390 return -E1000_ERR_NVM;
1393 /* Get the FW semaphore. */
1394 for (i = 0; i < timeout; i++) {
1396 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1398 /* Semaphore acquired if bit latched */
1399 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1402 usleep_range(50, 100);
1406 /* Release semaphores */
1407 e1000e_put_hw_semaphore(hw);
1408 e_dbg("Driver can't access the NVM\n");
1409 return -E1000_ERR_NVM;
1416 * e1000e_put_hw_semaphore - Release hardware semaphore
1417 * @hw: pointer to the HW structure
1419 * Release hardware semaphore used to access the PHY or NVM
1421 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1426 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1431 * e1000e_get_auto_rd_done - Check for auto read completion
1432 * @hw: pointer to the HW structure
1434 * Check EEPROM for Auto Read done bit.
1436 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1440 while (i < AUTO_READ_DONE_TIMEOUT) {
1441 if (er32(EECD) & E1000_EECD_AUTO_RD)
1443 usleep_range(1000, 2000);
1447 if (i == AUTO_READ_DONE_TIMEOUT) {
1448 e_dbg("Auto read by HW from NVM has not completed.\n");
1449 return -E1000_ERR_RESET;
1456 * e1000e_valid_led_default - Verify a valid default LED config
1457 * @hw: pointer to the HW structure
1458 * @data: pointer to the NVM (EEPROM)
1460 * Read the EEPROM for the current default LED configuration. If the
1461 * LED configuration is not valid, set to a valid LED configuration.
1463 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1467 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1469 e_dbg("NVM Read Error\n");
1473 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1474 *data = ID_LED_DEFAULT;
1480 * e1000e_id_led_init_generic -
1481 * @hw: pointer to the HW structure
1484 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1486 struct e1000_mac_info *mac = &hw->mac;
1488 const u32 ledctl_mask = 0x000000FF;
1489 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1490 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1492 const u16 led_mask = 0x0F;
1494 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1498 mac->ledctl_default = er32(LEDCTL);
1499 mac->ledctl_mode1 = mac->ledctl_default;
1500 mac->ledctl_mode2 = mac->ledctl_default;
1502 for (i = 0; i < 4; i++) {
1503 temp = (data >> (i << 2)) & led_mask;
1505 case ID_LED_ON1_DEF2:
1506 case ID_LED_ON1_ON2:
1507 case ID_LED_ON1_OFF2:
1508 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1509 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1511 case ID_LED_OFF1_DEF2:
1512 case ID_LED_OFF1_ON2:
1513 case ID_LED_OFF1_OFF2:
1514 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1515 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1522 case ID_LED_DEF1_ON2:
1523 case ID_LED_ON1_ON2:
1524 case ID_LED_OFF1_ON2:
1525 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1526 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1528 case ID_LED_DEF1_OFF2:
1529 case ID_LED_ON1_OFF2:
1530 case ID_LED_OFF1_OFF2:
1531 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1532 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1544 * e1000e_setup_led_generic - Configures SW controllable LED
1545 * @hw: pointer to the HW structure
1547 * This prepares the SW controllable LED for use and saves the current state
1548 * of the LED so it can be later restored.
1550 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1554 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1555 return -E1000_ERR_CONFIG;
1557 if (hw->phy.media_type == e1000_media_type_fiber) {
1558 ledctl = er32(LEDCTL);
1559 hw->mac.ledctl_default = ledctl;
1561 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1562 E1000_LEDCTL_LED0_MODE_MASK);
1563 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1564 E1000_LEDCTL_LED0_MODE_SHIFT);
1565 ew32(LEDCTL, ledctl);
1566 } else if (hw->phy.media_type == e1000_media_type_copper) {
1567 ew32(LEDCTL, hw->mac.ledctl_mode1);
1574 * e1000e_cleanup_led_generic - Set LED config to default operation
1575 * @hw: pointer to the HW structure
1577 * Remove the current LED configuration and set the LED configuration
1578 * to the default value, saved from the EEPROM.
1580 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1582 ew32(LEDCTL, hw->mac.ledctl_default);
1587 * e1000e_blink_led_generic - Blink LED
1588 * @hw: pointer to the HW structure
1590 * Blink the LEDs which are set to be on.
1592 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1594 u32 ledctl_blink = 0;
1597 if (hw->phy.media_type == e1000_media_type_fiber) {
1598 /* always blink LED0 for PCI-E fiber */
1599 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1600 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1602 /* Set the blink bit for each LED that's "on" (0x0E)
1603 * (or "off" if inverted) in ledctl_mode2. The blink
1604 * logic in hardware only works when mode is set to "on"
1605 * so it must be changed accordingly when the mode is
1606 * "off" and inverted.
1608 ledctl_blink = hw->mac.ledctl_mode2;
1609 for (i = 0; i < 32; i += 8) {
1610 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1611 E1000_LEDCTL_LED0_MODE_MASK;
1612 u32 led_default = hw->mac.ledctl_default >> i;
1614 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1615 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1616 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1617 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1619 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1620 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1621 E1000_LEDCTL_MODE_LED_ON) << i;
1626 ew32(LEDCTL, ledctl_blink);
1632 * e1000e_led_on_generic - Turn LED on
1633 * @hw: pointer to the HW structure
1637 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1641 switch (hw->phy.media_type) {
1642 case e1000_media_type_fiber:
1644 ctrl &= ~E1000_CTRL_SWDPIN0;
1645 ctrl |= E1000_CTRL_SWDPIO0;
1648 case e1000_media_type_copper:
1649 ew32(LEDCTL, hw->mac.ledctl_mode2);
1659 * e1000e_led_off_generic - Turn LED off
1660 * @hw: pointer to the HW structure
1664 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1668 switch (hw->phy.media_type) {
1669 case e1000_media_type_fiber:
1671 ctrl |= E1000_CTRL_SWDPIN0;
1672 ctrl |= E1000_CTRL_SWDPIO0;
1675 case e1000_media_type_copper:
1676 ew32(LEDCTL, hw->mac.ledctl_mode1);
1686 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1687 * @hw: pointer to the HW structure
1688 * @no_snoop: bitmap of snoop events
1690 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1692 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1698 gcr &= ~(PCIE_NO_SNOOP_ALL);
1705 * e1000e_disable_pcie_master - Disables PCI-express master access
1706 * @hw: pointer to the HW structure
1708 * Returns 0 if successful, else returns -10
1709 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1710 * the master requests to be disabled.
1712 * Disables PCI-Express master access and verifies there are no pending
1715 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1718 s32 timeout = MASTER_DISABLE_TIMEOUT;
1721 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1725 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1727 usleep_range(100, 200);
1732 e_dbg("Master requests are pending.\n");
1733 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1740 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1741 * @hw: pointer to the HW structure
1743 * Reset the Adaptive Interframe Spacing throttle to default values.
1745 void e1000e_reset_adaptive(struct e1000_hw *hw)
1747 struct e1000_mac_info *mac = &hw->mac;
1749 if (!mac->adaptive_ifs) {
1750 e_dbg("Not in Adaptive IFS mode!\n");
1754 mac->current_ifs_val = 0;
1755 mac->ifs_min_val = IFS_MIN;
1756 mac->ifs_max_val = IFS_MAX;
1757 mac->ifs_step_size = IFS_STEP;
1758 mac->ifs_ratio = IFS_RATIO;
1760 mac->in_ifs_mode = false;
1765 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1766 * @hw: pointer to the HW structure
1768 * Update the Adaptive Interframe Spacing Throttle value based on the
1769 * time between transmitted packets and time between collisions.
1771 void e1000e_update_adaptive(struct e1000_hw *hw)
1773 struct e1000_mac_info *mac = &hw->mac;
1775 if (!mac->adaptive_ifs) {
1776 e_dbg("Not in Adaptive IFS mode!\n");
1780 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1781 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1782 mac->in_ifs_mode = true;
1783 if (mac->current_ifs_val < mac->ifs_max_val) {
1784 if (!mac->current_ifs_val)
1785 mac->current_ifs_val = mac->ifs_min_val;
1787 mac->current_ifs_val +=
1789 ew32(AIT, mac->current_ifs_val);
1793 if (mac->in_ifs_mode &&
1794 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1795 mac->current_ifs_val = 0;
1796 mac->in_ifs_mode = false;