1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
161 return readw(hw->flash_address + reg);
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
166 return readl(hw->flash_address + reg);
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
171 writew(val, hw->flash_address + reg);
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
176 writel(val, hw->flash_address + reg);
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
192 * Assumes the sw/fw/hw semaphore is already acquired.
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
206 phy_id = (u32)(phy_reg << 16);
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
218 if (hw->phy.id == phy_id)
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
286 if (hw->mac.type < e1000_pch_lpt) {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
303 * Workarounds/flow necessary for PHY initialization during driver load
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
323 ret_val = hw->phy.ops.acquire(hw);
325 e_dbg("Failed to initialize PHY flow\n");
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
333 switch (hw->mac.type) {
336 if (e1000_phy_is_accessible_pchlan(hw))
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
342 mac_reg = er32(CTRL_EXT);
343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 ew32(CTRL_EXT, mac_reg);
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
354 if (e1000_phy_is_accessible_pchlan(hw))
359 if ((hw->mac.type == e1000_pchlan) &&
360 (fwsm & E1000_ICH_FWSM_FW_VALID))
363 if (hw->phy.ops.check_reset_block(hw)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val = -E1000_ERR_PHY;
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw);
371 if (hw->mac.type >= e1000_pch_lpt) {
372 if (e1000_phy_is_accessible_pchlan(hw))
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
378 mac_reg = er32(CTRL_EXT);
379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 ew32(CTRL_EXT, mac_reg);
382 if (e1000_phy_is_accessible_pchlan(hw))
385 ret_val = -E1000_ERR_PHY;
392 hw->phy.ops.release(hw);
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw->phy.ops.check_reset_block(hw)) {
397 e_err("Reset blocked by ME\n");
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
406 ret_val = e1000e_phy_hw_reset_generic(hw);
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
416 ret_val = hw->phy.ops.check_reset_block(hw);
418 e_err("ME blocked access to PHY after reset\n");
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw->mac.type == e1000_pch2lan) &&
424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw, false);
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
436 * Initialize family-specific PHY parameters and function pointers.
438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 struct e1000_phy_info *phy = &hw->phy;
444 phy->reset_delay_us = 100;
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.write_reg = e1000_write_phy_reg_hv;
453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 phy->ops.power_up = e1000_power_up_phy_copper;
456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 phy->id = e1000_phy_unknown;
461 ret_val = e1000_init_phy_workarounds_pchlan(hw);
465 if (phy->id == e1000_phy_unknown)
466 switch (hw->mac.type) {
468 ret_val = e1000e_get_phy_id(hw);
471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
480 ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 ret_val = e1000e_get_phy_id(hw);
488 phy->type = e1000e_get_phy_type_from_id(phy->id);
491 case e1000_phy_82577:
492 case e1000_phy_82579:
494 phy->ops.check_polarity = e1000_check_polarity_82577;
495 phy->ops.force_speed_duplex =
496 e1000_phy_force_speed_duplex_82577;
497 phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 phy->ops.get_info = e1000_get_phy_info_82577;
499 phy->ops.commit = e1000e_phy_sw_reset;
501 case e1000_phy_82578:
502 phy->ops.check_polarity = e1000_check_polarity_m88;
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 phy->ops.get_info = e1000e_get_phy_info_m88;
508 ret_val = -E1000_ERR_PHY;
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
519 * Initialize family-specific PHY parameters and function pointers.
521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 struct e1000_phy_info *phy = &hw->phy;
528 phy->reset_delay_us = 100;
530 phy->ops.power_up = e1000_power_up_phy_copper;
531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
536 ret_val = e1000e_determine_phy_address(hw);
538 phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 ret_val = e1000e_determine_phy_address(hw);
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
550 usleep_range(1000, 2000);
551 ret_val = e1000e_get_phy_id(hw);
558 case IGP03E1000_E_PHY_ID:
559 phy->type = e1000_phy_igp_3;
560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 phy->ops.get_info = e1000e_get_phy_info_igp;
564 phy->ops.check_polarity = e1000_check_polarity_igp;
565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 case IFE_PLUS_E_PHY_ID:
570 phy->type = e1000_phy_ife;
571 phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 phy->ops.get_info = e1000_get_phy_info_ife;
573 phy->ops.check_polarity = e1000_check_polarity_ife;
574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
576 case BME1000_E_PHY_ID:
577 phy->type = e1000_phy_bm;
578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.commit = e1000e_phy_sw_reset;
582 phy->ops.get_info = e1000e_get_phy_info_m88;
583 phy->ops.check_polarity = e1000_check_polarity_m88;
584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 return -E1000_ERR_PHY;
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
597 * Initialize family-specific NVM parameters and function
600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
602 struct e1000_nvm_info *nvm = &hw->nvm;
603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 u32 gfpreg, sector_base_addr, sector_end_addr;
608 nvm->type = e1000_nvm_flash_sw;
610 if (hw->mac.type == e1000_pch_spt) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
617 nvm->flash_base_addr = 0;
618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER;
620 nvm->flash_bank_size = nvm_size / 2;
621 /* Adjust to word count */
622 nvm->flash_bank_size /= sizeof(u16);
623 /* Set the base address for flash register access */
624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw->flash_address) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG;
632 gfpreg = er32flash(ICH_FLASH_GFPREG);
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
641 /* flash_base_addr is byte-aligned */
642 nvm->flash_base_addr = sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT;
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 << FLASH_SECTOR_ADDR_SHIFT);
650 nvm->flash_bank_size /= 2;
651 /* Adjust to word count */
652 nvm->flash_bank_size /= sizeof(u16);
655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
657 /* Clear shadow ram */
658 for (i = 0; i < nvm->word_size; i++) {
659 dev_spec->shadow_ram[i].modified = false;
660 dev_spec->shadow_ram[i].value = 0xFFFF;
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
670 * Initialize family-specific MAC parameters and function
673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
675 struct e1000_mac_info *mac = &hw->mac;
677 /* Set media type function pointer */
678 hw->phy.media_type = e1000_media_type_copper;
680 /* Set mta register count */
681 mac->mta_reg_count = 32;
682 /* Set rar entry count */
683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 if (mac->type == e1000_ich8lan)
685 mac->rar_entry_count--;
687 mac->has_fwsm = true;
688 /* ARC subsystem not supported */
689 mac->arc_subsystem_valid = false;
690 /* Adaptive IFS supported */
691 mac->adaptive_ifs = true;
693 /* LED and other operations */
698 /* check management mode */
699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
701 mac->ops.id_led_init = e1000e_id_led_init_generic;
703 mac->ops.blink_led = e1000e_blink_led_generic;
705 mac->ops.setup_led = e1000e_setup_led_generic;
707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 /* turn on/off LED */
709 mac->ops.led_on = e1000_led_on_ich8lan;
710 mac->ops.led_off = e1000_led_off_ich8lan;
713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 mac->ops.rar_set = e1000_rar_set_pch2lan;
719 /* check management mode */
720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
722 mac->ops.id_led_init = e1000_id_led_init_pchlan;
724 mac->ops.setup_led = e1000_setup_led_pchlan;
726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 /* turn on/off LED */
728 mac->ops.led_on = e1000_led_on_pchlan;
729 mac->ops.led_off = e1000_led_off_pchlan;
735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 mac->ops.setup_physical_interface =
739 e1000_setup_copper_link_pch_lpt;
740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac->type == e1000_ich8lan)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 u16 *data, bool read)
764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
782 * Assumes the SW/FW/HW Semaphore is already acquired.
784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
786 return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
795 * Assumes the SW/FW/HW Semaphore is already acquired.
797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
799 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
822 switch (hw->phy.type) {
823 case e1000_phy_82579:
824 lpa = I82579_EEE_LP_ABILITY;
825 pcs_status = I82579_EEE_PCS_STATUS;
826 adv_addr = I82579_EEE_ADVERTISEMENT;
829 lpa = I217_EEE_LP_ABILITY;
830 pcs_status = I217_EEE_PCS_STATUS;
831 adv_addr = I217_EEE_ADVERTISEMENT;
837 ret_val = hw->phy.ops.acquire(hw);
841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec->eee_disable) {
850 /* Save off link partner's EEE ability */
851 ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 &dev_spec->eee_lp_ability);
856 /* Read EEE advertisement */
857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 e1e_rphy_locked(hw, MII_LPA, &data);
869 if (data & LPA_100FULL)
870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
876 dev_spec->eee_lp_ability &=
877 ~I82579_EEE_100_SUPPORTED;
881 if (hw->phy.type == e1000_phy_82579) {
882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887 data &= ~I82579_LPI_100_PLL_SHUT;
888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
899 hw->phy.ops.release(hw);
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
917 u32 fextnvm6 = er32(FEXTNVM6);
918 u32 status = er32(STATUS);
922 if (link && (status & E1000_STATUS_SPEED_1000)) {
923 ret_val = hw->phy.ops.acquire(hw);
928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934 e1000e_write_kmrn_reg_locked(hw,
935 E1000_KMRNCTRLSTA_K1_CONFIG,
937 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 usleep_range(10, 20);
943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
946 e1000e_write_kmrn_reg_locked(hw,
947 E1000_KMRNCTRLSTA_K1_CONFIG,
950 hw->phy.ops.release(hw);
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
955 if ((hw->phy.revision > 5) || !link ||
956 ((status & E1000_STATUS_SPEED_100) &&
957 (status & E1000_STATUS_FD)))
958 goto update_fextnvm6;
960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
964 /* Clear link status transmit timeout */
965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
967 if (status & E1000_STATUS_SPEED_100) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
987 ew32(FEXTNVM6, fextnvm6);
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1014 u32 lat_enc_d = 0; /* latency decoded */
1015 u16 lat_enc = 0; /* latency encoded */
1018 u16 speed, duplex, scale = 0;
1019 u16 max_snoop, max_nosnoop;
1020 u16 max_ltr_enc; /* max LTR latency encoded */
1024 if (!hw->adapter->max_frame_size) {
1025 e_dbg("max_frame_size not set.\n");
1026 return -E1000_ERR_CONFIG;
1029 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 e_dbg("Speed not set.\n");
1032 return -E1000_ERR_CONFIG;
1035 /* Rx Packet Buffer Allocation size (KB) */
1036 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038 /* Determine the maximum latency tolerated by the device.
1040 * Per the PCIe spec, the tolerated latencies are encoded as
1041 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1042 * a 10-bit value (0-1023) to provide a range from 1 ns to
1043 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1044 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047 value = (rxa > hw->adapter->max_frame_size) ?
1048 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051 while (value > PCI_LTR_VALUE_MASK) {
1053 value = DIV_ROUND_UP(value, BIT(5));
1055 if (scale > E1000_LTRV_SCALE_MAX) {
1056 e_dbg("Invalid LTR latency scale %d\n", scale);
1057 return -E1000_ERR_CONFIG;
1059 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061 /* Determine the maximum latency tolerated by the platform */
1062 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 pci_read_config_word(hw->adapter->pdev,
1065 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1069 (1U << (E1000_LTRV_SCALE_FACTOR *
1070 ((lat_enc & E1000_LTRV_SCALE_MASK)
1071 >> E1000_LTRV_SCALE_SHIFT)));
1073 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1074 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1076 >> E1000_LTRV_SCALE_SHIFT)));
1078 if (lat_enc_d > max_ltr_enc_d)
1079 lat_enc = max_ltr_enc;
1082 /* Set Snoop and No-Snoop latencies the same */
1083 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1090 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1091 * @hw: pointer to the HW structure
1092 * @to_sx: boolean indicating a system power state transition to Sx
1094 * When link is down, configure ULP mode to significantly reduce the power
1095 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1096 * ME firmware to start the ULP configuration. If not on an ME enabled
1097 * system, configure the ULP mode by software.
1099 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1106 if ((hw->mac.type < e1000_pch_lpt) ||
1107 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1108 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1109 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1111 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1114 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1115 /* Request ME configure ULP mode in the PHY */
1116 mac_reg = er32(H2ME);
1117 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1118 ew32(H2ME, mac_reg);
1126 /* Poll up to 5 seconds for Cable Disconnected indication */
1127 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1128 /* Bail if link is re-acquired */
1129 if (er32(STATUS) & E1000_STATUS_LU)
1130 return -E1000_ERR_PHY;
1137 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1139 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1142 ret_val = hw->phy.ops.acquire(hw);
1146 /* Force SMBus mode in PHY */
1147 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1150 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1151 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1153 /* Force SMBus mode in MAC */
1154 mac_reg = er32(CTRL_EXT);
1155 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1156 ew32(CTRL_EXT, mac_reg);
1158 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1159 * LPLU and disable Gig speed when entering ULP
1161 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1162 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1168 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1170 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1177 /* Set Inband ULP Exit, Reset to SMBus mode and
1178 * Disable SMBus Release on PERST# in PHY
1180 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1184 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1186 if (er32(WUFC) & E1000_WUFC_LNKC)
1187 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1189 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1191 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1192 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1194 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1195 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1196 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1198 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200 /* Set Disable SMBus Release on PERST# in MAC */
1201 mac_reg = er32(FEXTNVM7);
1202 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1203 ew32(FEXTNVM7, mac_reg);
1205 /* Commit ULP changes in PHY by starting auto ULP configuration */
1206 phy_reg |= I218_ULP_CONFIG1_START;
1207 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1210 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1211 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1218 hw->phy.ops.release(hw);
1221 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1223 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1229 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1230 * @hw: pointer to the HW structure
1231 * @force: boolean indicating whether or not to force disabling ULP
1233 * Un-configure ULP mode when link is up, the system is transitioned from
1234 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1235 * system, poll for an indication from ME that ULP has been un-configured.
1236 * If not on an ME enabled system, un-configure the ULP mode by software.
1238 * During nominal operation, this function is called when link is acquired
1239 * to disable ULP mode (force=false); otherwise, for example when unloading
1240 * the driver or during Sx->S0 transitions, this is called with force=true
1241 * to forcibly disable ULP.
1243 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1250 if ((hw->mac.type < e1000_pch_lpt) ||
1251 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1252 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1253 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1255 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1258 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1260 /* Request ME un-configure ULP mode in the PHY */
1261 mac_reg = er32(H2ME);
1262 mac_reg &= ~E1000_H2ME_ULP;
1263 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1264 ew32(H2ME, mac_reg);
1267 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1268 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1270 ret_val = -E1000_ERR_PHY;
1274 usleep_range(10000, 20000);
1276 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1279 mac_reg = er32(H2ME);
1280 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1281 ew32(H2ME, mac_reg);
1283 /* Clear H2ME.ULP after ME ULP configuration */
1284 mac_reg = er32(H2ME);
1285 mac_reg &= ~E1000_H2ME_ULP;
1286 ew32(H2ME, mac_reg);
1292 ret_val = hw->phy.ops.acquire(hw);
1297 /* Toggle LANPHYPC Value bit */
1298 e1000_toggle_lanphypc_pch_lpt(hw);
1300 /* Unforce SMBus mode in PHY */
1301 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1303 /* The MAC might be in PCIe mode, so temporarily force to
1304 * SMBus mode in order to access the PHY.
1306 mac_reg = er32(CTRL_EXT);
1307 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1308 ew32(CTRL_EXT, mac_reg);
1312 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1317 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1318 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1320 /* Unforce SMBus mode in MAC */
1321 mac_reg = er32(CTRL_EXT);
1322 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1323 ew32(CTRL_EXT, mac_reg);
1325 /* When ULP mode was previously entered, K1 was disabled by the
1326 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1328 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1331 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1332 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1334 /* Clear ULP enabled configuration */
1335 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1338 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1339 I218_ULP_CONFIG1_STICKY_ULP |
1340 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1341 I218_ULP_CONFIG1_WOL_HOST |
1342 I218_ULP_CONFIG1_INBAND_EXIT |
1343 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1344 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1345 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1346 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1348 /* Commit ULP changes by starting auto ULP configuration */
1349 phy_reg |= I218_ULP_CONFIG1_START;
1350 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1352 /* Clear Disable SMBus Release on PERST# in MAC */
1353 mac_reg = er32(FEXTNVM7);
1354 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1355 ew32(FEXTNVM7, mac_reg);
1358 hw->phy.ops.release(hw);
1360 e1000_phy_hw_reset(hw);
1365 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1367 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1373 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1374 * @hw: pointer to the HW structure
1376 * Checks to see of the link status of the hardware has changed. If a
1377 * change in link status has been detected, then we read the PHY registers
1378 * to get the current speed/duplex if link exists.
1380 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1382 struct e1000_mac_info *mac = &hw->mac;
1383 s32 ret_val, tipg_reg = 0;
1384 u16 emi_addr, emi_val = 0;
1388 /* We only want to go out to the PHY registers to see if Auto-Neg
1389 * has completed and/or if our link status has changed. The
1390 * get_link_status flag is set upon receiving a Link Status
1391 * Change or Rx Sequence Error interrupt.
1393 if (!mac->get_link_status)
1395 mac->get_link_status = false;
1397 /* First we want to see if the MII Status Register reports
1398 * link. If so, then we want to get the current speed/duplex
1401 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1405 if (hw->mac.type == e1000_pchlan) {
1406 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1411 /* When connected at 10Mbps half-duplex, some parts are excessively
1412 * aggressive resulting in many collisions. To avoid this, increase
1413 * the IPG and reduce Rx latency in the PHY.
1415 if (((hw->mac.type == e1000_pch2lan) ||
1416 (hw->mac.type == e1000_pch_lpt) ||
1417 (hw->mac.type == e1000_pch_spt)) && link) {
1420 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1421 tipg_reg = er32(TIPG);
1422 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1424 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1426 /* Reduce Rx latency in analog PHY */
1428 } else if (hw->mac.type == e1000_pch_spt &&
1429 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1434 /* Roll back the default values */
1439 ew32(TIPG, tipg_reg);
1441 ret_val = hw->phy.ops.acquire(hw);
1445 if (hw->mac.type == e1000_pch2lan)
1446 emi_addr = I82579_RX_CONFIG;
1448 emi_addr = I217_RX_CONFIG;
1449 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1451 if (hw->mac.type == e1000_pch_lpt ||
1452 hw->mac.type == e1000_pch_spt) {
1455 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1456 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1457 if (speed == SPEED_100 || speed == SPEED_10)
1461 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1463 if (speed == SPEED_1000) {
1464 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1467 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1469 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1473 hw->phy.ops.release(hw);
1478 if (hw->mac.type == e1000_pch_spt) {
1482 if (speed == SPEED_1000) {
1483 ret_val = hw->phy.ops.acquire(hw);
1487 ret_val = e1e_rphy_locked(hw,
1491 hw->phy.ops.release(hw);
1495 ptr_gap = (data & (0x3FF << 2)) >> 2;
1496 if (ptr_gap < 0x18) {
1497 data &= ~(0x3FF << 2);
1498 data |= (0x18 << 2);
1504 hw->phy.ops.release(hw);
1508 ret_val = hw->phy.ops.acquire(hw);
1512 ret_val = e1e_wphy_locked(hw,
1515 hw->phy.ops.release(hw);
1523 /* I217 Packet Loss issue:
1524 * ensure that FEXTNVM4 Beacon Duration is set correctly
1526 * Set the Beacon Duration for I217 to 8 usec
1528 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1531 mac_reg = er32(FEXTNVM4);
1532 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1533 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1534 ew32(FEXTNVM4, mac_reg);
1537 /* Work-around I218 hang issue */
1538 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1539 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1540 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1541 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1542 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1546 if ((hw->mac.type == e1000_pch_lpt) ||
1547 (hw->mac.type == e1000_pch_spt)) {
1548 /* Set platform power management values for
1549 * Latency Tolerance Reporting (LTR)
1551 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1556 /* Clear link partner's EEE ability */
1557 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1559 /* FEXTNVM6 K1-off workaround */
1560 if (hw->mac.type == e1000_pch_spt) {
1561 u32 pcieanacfg = er32(PCIEANACFG);
1562 u32 fextnvm6 = er32(FEXTNVM6);
1564 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1565 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1567 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1569 ew32(FEXTNVM6, fextnvm6);
1575 switch (hw->mac.type) {
1577 ret_val = e1000_k1_workaround_lv(hw);
1582 if (hw->phy.type == e1000_phy_82578) {
1583 ret_val = e1000_link_stall_workaround_hv(hw);
1588 /* Workaround for PCHx parts in half-duplex:
1589 * Set the number of preambles removed from the packet
1590 * when it is passed from the PHY to the MAC to prevent
1591 * the MAC from misinterpreting the packet type.
1593 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1594 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1596 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1597 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1599 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1605 /* Check if there was DownShift, must be checked
1606 * immediately after link-up
1608 e1000e_check_downshift(hw);
1610 /* Enable/Disable EEE after link up */
1611 if (hw->phy.type > e1000_phy_82579) {
1612 ret_val = e1000_set_eee_pchlan(hw);
1617 /* If we are forcing speed/duplex, then we simply return since
1618 * we have already determined whether we have link or not.
1621 return -E1000_ERR_CONFIG;
1623 /* Auto-Neg is enabled. Auto Speed Detection takes care
1624 * of MAC speed/duplex configuration. So we only need to
1625 * configure Collision Distance in the MAC.
1627 mac->ops.config_collision_dist(hw);
1629 /* Configure Flow Control now that Auto-Neg has completed.
1630 * First, we need to restore the desired flow control
1631 * settings because we may have had to re-autoneg with a
1632 * different link partner.
1634 ret_val = e1000e_config_fc_after_link_up(hw);
1636 e_dbg("Error configuring flow control\n");
1641 mac->get_link_status = true;
1645 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1647 struct e1000_hw *hw = &adapter->hw;
1650 rc = e1000_init_mac_params_ich8lan(hw);
1654 rc = e1000_init_nvm_params_ich8lan(hw);
1658 switch (hw->mac.type) {
1661 case e1000_ich10lan:
1662 rc = e1000_init_phy_params_ich8lan(hw);
1668 rc = e1000_init_phy_params_pchlan(hw);
1676 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1677 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1679 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1680 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1681 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1682 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1683 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1685 hw->mac.ops.blink_led = NULL;
1688 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1689 (adapter->hw.phy.type != e1000_phy_ife))
1690 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1692 /* Enable workaround for 82579 w/ ME enabled */
1693 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1694 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1695 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1700 static DEFINE_MUTEX(nvm_mutex);
1703 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1704 * @hw: pointer to the HW structure
1706 * Acquires the mutex for performing NVM operations.
1708 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1710 mutex_lock(&nvm_mutex);
1716 * e1000_release_nvm_ich8lan - Release NVM mutex
1717 * @hw: pointer to the HW structure
1719 * Releases the mutex used while performing NVM operations.
1721 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1723 mutex_unlock(&nvm_mutex);
1727 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1728 * @hw: pointer to the HW structure
1730 * Acquires the software control flag for performing PHY and select
1733 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1735 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1738 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1739 &hw->adapter->state)) {
1740 e_dbg("contention for Phy access\n");
1741 return -E1000_ERR_PHY;
1745 extcnf_ctrl = er32(EXTCNF_CTRL);
1746 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1754 e_dbg("SW has already locked the resource.\n");
1755 ret_val = -E1000_ERR_CONFIG;
1759 timeout = SW_FLAG_TIMEOUT;
1761 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1762 ew32(EXTCNF_CTRL, extcnf_ctrl);
1765 extcnf_ctrl = er32(EXTCNF_CTRL);
1766 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1774 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1775 er32(FWSM), extcnf_ctrl);
1776 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777 ew32(EXTCNF_CTRL, extcnf_ctrl);
1778 ret_val = -E1000_ERR_CONFIG;
1784 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1790 * e1000_release_swflag_ich8lan - Release software control flag
1791 * @hw: pointer to the HW structure
1793 * Releases the software control flag for performing PHY and select
1796 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1800 extcnf_ctrl = er32(EXTCNF_CTRL);
1802 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1803 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1804 ew32(EXTCNF_CTRL, extcnf_ctrl);
1806 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1809 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1813 * e1000_check_mng_mode_ich8lan - Checks management mode
1814 * @hw: pointer to the HW structure
1816 * This checks if the adapter has any manageability enabled.
1817 * This is a function pointer entry point only called by read/write
1818 * routines for the PHY and NVM parts.
1820 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1825 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826 ((fwsm & E1000_FWSM_MODE_MASK) ==
1827 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1831 * e1000_check_mng_mode_pchlan - Checks management mode
1832 * @hw: pointer to the HW structure
1834 * This checks if the adapter has iAMT enabled.
1835 * This is a function pointer entry point only called by read/write
1836 * routines for the PHY and NVM parts.
1838 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1843 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1844 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1848 * e1000_rar_set_pch2lan - Set receive address register
1849 * @hw: pointer to the HW structure
1850 * @addr: pointer to the receive address
1851 * @index: receive address array register
1853 * Sets the receive address array register at index to the address passed
1854 * in by addr. For 82579, RAR[0] is the base address register that is to
1855 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1856 * Use SHRA[0-3] in place of those reserved for ME.
1858 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1860 u32 rar_low, rar_high;
1862 /* HW expects these in little endian so we reverse the byte order
1863 * from network order (big endian) to little endian
1865 rar_low = ((u32)addr[0] |
1866 ((u32)addr[1] << 8) |
1867 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1869 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1871 /* If MAC address zero, no need to set the AV bit */
1872 if (rar_low || rar_high)
1873 rar_high |= E1000_RAH_AV;
1876 ew32(RAL(index), rar_low);
1878 ew32(RAH(index), rar_high);
1883 /* RAR[1-6] are owned by manageability. Skip those and program the
1884 * next address into the SHRA register array.
1886 if (index < (u32)(hw->mac.rar_entry_count)) {
1889 ret_val = e1000_acquire_swflag_ich8lan(hw);
1893 ew32(SHRAL(index - 1), rar_low);
1895 ew32(SHRAH(index - 1), rar_high);
1898 e1000_release_swflag_ich8lan(hw);
1900 /* verify the register updates */
1901 if ((er32(SHRAL(index - 1)) == rar_low) &&
1902 (er32(SHRAH(index - 1)) == rar_high))
1905 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1906 (index - 1), er32(FWSM));
1910 e_dbg("Failed to write receive address at index %d\n", index);
1911 return -E1000_ERR_CONFIG;
1915 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1916 * @hw: pointer to the HW structure
1918 * Get the number of available receive registers that the Host can
1919 * program. SHRA[0-10] are the shared receive address registers
1920 * that are shared between the Host and manageability engine (ME).
1921 * ME can reserve any number of addresses and the host needs to be
1922 * able to tell how many available registers it has access to.
1924 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1929 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1930 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1932 switch (wlock_mac) {
1934 /* All SHRA[0..10] and RAR[0] available */
1935 num_entries = hw->mac.rar_entry_count;
1938 /* Only RAR[0] available */
1942 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1943 num_entries = wlock_mac + 1;
1951 * e1000_rar_set_pch_lpt - Set receive address registers
1952 * @hw: pointer to the HW structure
1953 * @addr: pointer to the receive address
1954 * @index: receive address array register
1956 * Sets the receive address register array at index to the address passed
1957 * in by addr. For LPT, RAR[0] is the base address register that is to
1958 * contain the MAC address. SHRA[0-10] are the shared receive address
1959 * registers that are shared between the Host and manageability engine (ME).
1961 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1963 u32 rar_low, rar_high;
1966 /* HW expects these in little endian so we reverse the byte order
1967 * from network order (big endian) to little endian
1969 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1970 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1972 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1974 /* If MAC address zero, no need to set the AV bit */
1975 if (rar_low || rar_high)
1976 rar_high |= E1000_RAH_AV;
1979 ew32(RAL(index), rar_low);
1981 ew32(RAH(index), rar_high);
1986 /* The manageability engine (ME) can lock certain SHRAR registers that
1987 * it is using - those registers are unavailable for use.
1989 if (index < hw->mac.rar_entry_count) {
1990 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1991 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1993 /* Check if all SHRAR registers are locked */
1997 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2000 ret_val = e1000_acquire_swflag_ich8lan(hw);
2005 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2007 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2010 e1000_release_swflag_ich8lan(hw);
2012 /* verify the register updates */
2013 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2014 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2020 e_dbg("Failed to write receive address at index %d\n", index);
2021 return -E1000_ERR_CONFIG;
2025 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2026 * @hw: pointer to the HW structure
2028 * Checks if firmware is blocking the reset of the PHY.
2029 * This is a function pointer entry point only called by
2032 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2034 bool blocked = false;
2037 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2039 usleep_range(10000, 20000);
2040 return blocked ? E1000_BLK_PHY_RESET : 0;
2044 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2045 * @hw: pointer to the HW structure
2047 * Assumes semaphore already acquired.
2050 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2053 u32 strap = er32(STRAP);
2054 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2055 E1000_STRAP_SMT_FREQ_SHIFT;
2058 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2060 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2064 phy_data &= ~HV_SMB_ADDR_MASK;
2065 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2066 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2068 if (hw->phy.type == e1000_phy_i217) {
2069 /* Restore SMBus frequency */
2071 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2072 phy_data |= (freq & BIT(0)) <<
2073 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2074 phy_data |= (freq & BIT(1)) <<
2075 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2077 e_dbg("Unsupported SMB frequency in PHY\n");
2081 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2085 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2086 * @hw: pointer to the HW structure
2088 * SW should configure the LCD from the NVM extended configuration region
2089 * as a workaround for certain parts.
2091 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2093 struct e1000_phy_info *phy = &hw->phy;
2094 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2096 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2098 /* Initialize the PHY from the NVM on ICH platforms. This
2099 * is needed due to an issue where the NVM configuration is
2100 * not properly autoloaded after power transitions.
2101 * Therefore, after each PHY reset, we will load the
2102 * configuration data out of the NVM manually.
2104 switch (hw->mac.type) {
2106 if (phy->type != e1000_phy_igp_3)
2109 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2110 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2111 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2119 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2125 ret_val = hw->phy.ops.acquire(hw);
2129 data = er32(FEXTNVM);
2130 if (!(data & sw_cfg_mask))
2133 /* Make sure HW does not configure LCD from PHY
2134 * extended configuration before SW configuration
2136 data = er32(EXTCNF_CTRL);
2137 if ((hw->mac.type < e1000_pch2lan) &&
2138 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2141 cnf_size = er32(EXTCNF_SIZE);
2142 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2143 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2147 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2148 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2150 if (((hw->mac.type == e1000_pchlan) &&
2151 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2152 (hw->mac.type > e1000_pchlan)) {
2153 /* HW configures the SMBus address and LEDs when the
2154 * OEM and LCD Write Enable bits are set in the NVM.
2155 * When both NVM bits are cleared, SW will configure
2158 ret_val = e1000_write_smbus_addr(hw);
2162 data = er32(LEDCTL);
2163 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2169 /* Configure LCD from extended configuration region. */
2171 /* cnf_base_addr is in DWORD */
2172 word_addr = (u16)(cnf_base_addr << 1);
2174 for (i = 0; i < cnf_size; i++) {
2175 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2179 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2184 /* Save off the PHY page for future writes. */
2185 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2186 phy_page = reg_data;
2190 reg_addr &= PHY_REG_MASK;
2191 reg_addr |= phy_page;
2193 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2199 hw->phy.ops.release(hw);
2204 * e1000_k1_gig_workaround_hv - K1 Si workaround
2205 * @hw: pointer to the HW structure
2206 * @link: link up bool flag
2208 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2209 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2210 * If link is down, the function will restore the default K1 setting located
2213 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2217 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2219 if (hw->mac.type != e1000_pchlan)
2222 /* Wrap the whole flow with the sw flag */
2223 ret_val = hw->phy.ops.acquire(hw);
2227 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2229 if (hw->phy.type == e1000_phy_82578) {
2230 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2235 status_reg &= (BM_CS_STATUS_LINK_UP |
2236 BM_CS_STATUS_RESOLVED |
2237 BM_CS_STATUS_SPEED_MASK);
2239 if (status_reg == (BM_CS_STATUS_LINK_UP |
2240 BM_CS_STATUS_RESOLVED |
2241 BM_CS_STATUS_SPEED_1000))
2245 if (hw->phy.type == e1000_phy_82577) {
2246 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2250 status_reg &= (HV_M_STATUS_LINK_UP |
2251 HV_M_STATUS_AUTONEG_COMPLETE |
2252 HV_M_STATUS_SPEED_MASK);
2254 if (status_reg == (HV_M_STATUS_LINK_UP |
2255 HV_M_STATUS_AUTONEG_COMPLETE |
2256 HV_M_STATUS_SPEED_1000))
2260 /* Link stall fix for link up */
2261 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2266 /* Link stall fix for link down */
2267 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2272 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2275 hw->phy.ops.release(hw);
2281 * e1000_configure_k1_ich8lan - Configure K1 power state
2282 * @hw: pointer to the HW structure
2283 * @enable: K1 state to configure
2285 * Configure the K1 power state based on the provided parameter.
2286 * Assumes semaphore already acquired.
2288 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2290 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2298 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2304 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2306 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2308 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2313 usleep_range(20, 40);
2314 ctrl_ext = er32(CTRL_EXT);
2315 ctrl_reg = er32(CTRL);
2317 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318 reg |= E1000_CTRL_FRCSPD;
2321 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2323 usleep_range(20, 40);
2324 ew32(CTRL, ctrl_reg);
2325 ew32(CTRL_EXT, ctrl_ext);
2327 usleep_range(20, 40);
2333 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334 * @hw: pointer to the HW structure
2335 * @d0_state: boolean if entering d0 or d3 device state
2337 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2339 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2341 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2347 if (hw->mac.type < e1000_pchlan)
2350 ret_val = hw->phy.ops.acquire(hw);
2354 if (hw->mac.type == e1000_pchlan) {
2355 mac_reg = er32(EXTCNF_CTRL);
2356 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2360 mac_reg = er32(FEXTNVM);
2361 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 mac_reg = er32(PHY_CTRL);
2366 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2370 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2374 oem_reg |= HV_OEM_BITS_GBE_DIS;
2376 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2377 oem_reg |= HV_OEM_BITS_LPLU;
2379 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2380 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2381 oem_reg |= HV_OEM_BITS_GBE_DIS;
2383 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2384 E1000_PHY_CTRL_NOND0A_LPLU))
2385 oem_reg |= HV_OEM_BITS_LPLU;
2388 /* Set Restart auto-neg to activate the bits */
2389 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2390 !hw->phy.ops.check_reset_block(hw))
2391 oem_reg |= HV_OEM_BITS_RESTART_AN;
2393 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2396 hw->phy.ops.release(hw);
2402 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2403 * @hw: pointer to the HW structure
2405 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2410 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2414 data |= HV_KMRN_MDIO_SLOW;
2416 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2422 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2423 * done after every PHY reset.
2425 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2430 if (hw->mac.type != e1000_pchlan)
2433 /* Set MDIO slow mode before any other MDIO access */
2434 if (hw->phy.type == e1000_phy_82577) {
2435 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2440 if (((hw->phy.type == e1000_phy_82577) &&
2441 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2442 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2443 /* Disable generation of early preamble */
2444 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2448 /* Preamble tuning for SSC */
2449 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2454 if (hw->phy.type == e1000_phy_82578) {
2455 /* Return registers to default by doing a soft reset then
2456 * writing 0x3140 to the control register.
2458 if (hw->phy.revision < 2) {
2459 e1000e_phy_sw_reset(hw);
2460 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2465 ret_val = hw->phy.ops.acquire(hw);
2470 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2471 hw->phy.ops.release(hw);
2475 /* Configure the K1 Si workaround during phy reset assuming there is
2476 * link so that it disables K1 if link is in 1Gbps.
2478 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2482 /* Workaround for link disconnects on a busy hub in half duplex */
2483 ret_val = hw->phy.ops.acquire(hw);
2486 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2489 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2493 /* set MSE higher to enable link to stay up when noise is high */
2494 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2496 hw->phy.ops.release(hw);
2502 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2503 * @hw: pointer to the HW structure
2505 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2511 ret_val = hw->phy.ops.acquire(hw);
2514 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2518 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2519 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2520 mac_reg = er32(RAL(i));
2521 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2522 (u16)(mac_reg & 0xFFFF));
2523 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2524 (u16)((mac_reg >> 16) & 0xFFFF));
2526 mac_reg = er32(RAH(i));
2527 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2528 (u16)(mac_reg & 0xFFFF));
2529 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2530 (u16)((mac_reg & E1000_RAH_AV)
2534 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2537 hw->phy.ops.release(hw);
2541 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2543 * @hw: pointer to the HW structure
2544 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2546 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2553 if (hw->mac.type < e1000_pch2lan)
2556 /* disable Rx path while enabling/disabling workaround */
2557 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2558 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2563 /* Write Rx addresses (rar_entry_count for RAL/H, and
2564 * SHRAL/H) and initial CRC values to the MAC
2566 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2567 u8 mac_addr[ETH_ALEN] = { 0 };
2568 u32 addr_high, addr_low;
2570 addr_high = er32(RAH(i));
2571 if (!(addr_high & E1000_RAH_AV))
2573 addr_low = er32(RAL(i));
2574 mac_addr[0] = (addr_low & 0xFF);
2575 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2576 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2577 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2578 mac_addr[4] = (addr_high & 0xFF);
2579 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2581 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2584 /* Write Rx addresses to the PHY */
2585 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2587 /* Enable jumbo frame workaround in the MAC */
2588 mac_reg = er32(FFLT_DBG);
2589 mac_reg &= ~BIT(14);
2590 mac_reg |= (7 << 15);
2591 ew32(FFLT_DBG, mac_reg);
2593 mac_reg = er32(RCTL);
2594 mac_reg |= E1000_RCTL_SECRC;
2595 ew32(RCTL, mac_reg);
2597 ret_val = e1000e_read_kmrn_reg(hw,
2598 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2602 ret_val = e1000e_write_kmrn_reg(hw,
2603 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2607 ret_val = e1000e_read_kmrn_reg(hw,
2608 E1000_KMRNCTRLSTA_HD_CTRL,
2612 data &= ~(0xF << 8);
2614 ret_val = e1000e_write_kmrn_reg(hw,
2615 E1000_KMRNCTRLSTA_HD_CTRL,
2620 /* Enable jumbo frame workaround in the PHY */
2621 e1e_rphy(hw, PHY_REG(769, 23), &data);
2622 data &= ~(0x7F << 5);
2623 data |= (0x37 << 5);
2624 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2627 e1e_rphy(hw, PHY_REG(769, 16), &data);
2629 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2632 e1e_rphy(hw, PHY_REG(776, 20), &data);
2633 data &= ~(0x3FF << 2);
2634 data |= (E1000_TX_PTR_GAP << 2);
2635 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2638 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2641 e1e_rphy(hw, HV_PM_CTRL, &data);
2642 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2646 /* Write MAC register values back to h/w defaults */
2647 mac_reg = er32(FFLT_DBG);
2648 mac_reg &= ~(0xF << 14);
2649 ew32(FFLT_DBG, mac_reg);
2651 mac_reg = er32(RCTL);
2652 mac_reg &= ~E1000_RCTL_SECRC;
2653 ew32(RCTL, mac_reg);
2655 ret_val = e1000e_read_kmrn_reg(hw,
2656 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2660 ret_val = e1000e_write_kmrn_reg(hw,
2661 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2665 ret_val = e1000e_read_kmrn_reg(hw,
2666 E1000_KMRNCTRLSTA_HD_CTRL,
2670 data &= ~(0xF << 8);
2672 ret_val = e1000e_write_kmrn_reg(hw,
2673 E1000_KMRNCTRLSTA_HD_CTRL,
2678 /* Write PHY register values back to h/w defaults */
2679 e1e_rphy(hw, PHY_REG(769, 23), &data);
2680 data &= ~(0x7F << 5);
2681 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2684 e1e_rphy(hw, PHY_REG(769, 16), &data);
2686 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2689 e1e_rphy(hw, PHY_REG(776, 20), &data);
2690 data &= ~(0x3FF << 2);
2692 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2695 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2698 e1e_rphy(hw, HV_PM_CTRL, &data);
2699 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2704 /* re-enable Rx path after enabling/disabling workaround */
2705 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2709 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2710 * done after every PHY reset.
2712 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2716 if (hw->mac.type != e1000_pch2lan)
2719 /* Set MDIO slow mode before any other MDIO access */
2720 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2724 ret_val = hw->phy.ops.acquire(hw);
2727 /* set MSE higher to enable link to stay up when noise is high */
2728 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2731 /* drop link after 5 times MSE threshold was reached */
2732 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2734 hw->phy.ops.release(hw);
2740 * e1000_k1_gig_workaround_lv - K1 Si workaround
2741 * @hw: pointer to the HW structure
2743 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2744 * Disable K1 in 1000Mbps and 100Mbps
2746 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2751 if (hw->mac.type != e1000_pch2lan)
2754 /* Set K1 beacon duration based on 10Mbs speed */
2755 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2759 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2760 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2762 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2765 /* LV 1G/100 Packet drop issue wa */
2766 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2769 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2770 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2776 mac_reg = er32(FEXTNVM4);
2777 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2778 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2779 ew32(FEXTNVM4, mac_reg);
2787 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2788 * @hw: pointer to the HW structure
2789 * @gate: boolean set to true to gate, false to ungate
2791 * Gate/ungate the automatic PHY configuration via hardware; perform
2792 * the configuration via software instead.
2794 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2798 if (hw->mac.type < e1000_pch2lan)
2801 extcnf_ctrl = er32(EXTCNF_CTRL);
2804 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2806 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2808 ew32(EXTCNF_CTRL, extcnf_ctrl);
2812 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2813 * @hw: pointer to the HW structure
2815 * Check the appropriate indication the MAC has finished configuring the
2816 * PHY after a software reset.
2818 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2820 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2822 /* Wait for basic configuration completes before proceeding */
2824 data = er32(STATUS);
2825 data &= E1000_STATUS_LAN_INIT_DONE;
2826 usleep_range(100, 200);
2827 } while ((!data) && --loop);
2829 /* If basic configuration is incomplete before the above loop
2830 * count reaches 0, loading the configuration from NVM will
2831 * leave the PHY in a bad state possibly resulting in no link.
2834 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2836 /* Clear the Init Done bit for the next init event */
2837 data = er32(STATUS);
2838 data &= ~E1000_STATUS_LAN_INIT_DONE;
2843 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2844 * @hw: pointer to the HW structure
2846 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2851 if (hw->phy.ops.check_reset_block(hw))
2854 /* Allow time for h/w to get to quiescent state after reset */
2855 usleep_range(10000, 20000);
2857 /* Perform any necessary post-reset workarounds */
2858 switch (hw->mac.type) {
2860 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2865 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2873 /* Clear the host wakeup bit after lcd reset */
2874 if (hw->mac.type >= e1000_pchlan) {
2875 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2876 reg &= ~BM_WUC_HOST_WU_BIT;
2877 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2880 /* Configure the LCD with the extended configuration region in NVM */
2881 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2885 /* Configure the LCD with the OEM bits in NVM */
2886 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2888 if (hw->mac.type == e1000_pch2lan) {
2889 /* Ungate automatic PHY configuration on non-managed 82579 */
2890 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2891 usleep_range(10000, 20000);
2892 e1000_gate_hw_phy_config_ich8lan(hw, false);
2895 /* Set EEE LPI Update Timer to 200usec */
2896 ret_val = hw->phy.ops.acquire(hw);
2899 ret_val = e1000_write_emi_reg_locked(hw,
2900 I82579_LPI_UPDATE_TIMER,
2902 hw->phy.ops.release(hw);
2909 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2910 * @hw: pointer to the HW structure
2913 * This is a function pointer entry point called by drivers
2914 * or other shared routines.
2916 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2920 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2921 if ((hw->mac.type == e1000_pch2lan) &&
2922 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2923 e1000_gate_hw_phy_config_ich8lan(hw, true);
2925 ret_val = e1000e_phy_hw_reset_generic(hw);
2929 return e1000_post_phy_reset_ich8lan(hw);
2933 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2934 * @hw: pointer to the HW structure
2935 * @active: true to enable LPLU, false to disable
2937 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2938 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2939 * the phy speed. This function will manually set the LPLU bit and restart
2940 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2941 * since it configures the same bit.
2943 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2948 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2953 oem_reg |= HV_OEM_BITS_LPLU;
2955 oem_reg &= ~HV_OEM_BITS_LPLU;
2957 if (!hw->phy.ops.check_reset_block(hw))
2958 oem_reg |= HV_OEM_BITS_RESTART_AN;
2960 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2964 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2965 * @hw: pointer to the HW structure
2966 * @active: true to enable LPLU, false to disable
2968 * Sets the LPLU D0 state according to the active flag. When
2969 * activating LPLU this function also disables smart speed
2970 * and vice versa. LPLU will not be activated unless the
2971 * device autonegotiation advertisement meets standards of
2972 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2973 * This is a function pointer entry point only called by
2974 * PHY setup routines.
2976 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2978 struct e1000_phy_info *phy = &hw->phy;
2983 if (phy->type == e1000_phy_ife)
2986 phy_ctrl = er32(PHY_CTRL);
2989 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2990 ew32(PHY_CTRL, phy_ctrl);
2992 if (phy->type != e1000_phy_igp_3)
2995 /* Call gig speed drop workaround on LPLU before accessing
2998 if (hw->mac.type == e1000_ich8lan)
2999 e1000e_gig_downshift_workaround_ich8lan(hw);
3001 /* When LPLU is enabled, we should disable SmartSpeed */
3002 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3005 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3006 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3010 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3011 ew32(PHY_CTRL, phy_ctrl);
3013 if (phy->type != e1000_phy_igp_3)
3016 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3017 * during Dx states where the power conservation is most
3018 * important. During driver activity we should enable
3019 * SmartSpeed, so performance is maintained.
3021 if (phy->smart_speed == e1000_smart_speed_on) {
3022 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3027 data |= IGP01E1000_PSCFR_SMART_SPEED;
3028 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3032 } else if (phy->smart_speed == e1000_smart_speed_off) {
3033 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3038 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3050 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3051 * @hw: pointer to the HW structure
3052 * @active: true to enable LPLU, false to disable
3054 * Sets the LPLU D3 state according to the active flag. When
3055 * activating LPLU this function also disables smart speed
3056 * and vice versa. LPLU will not be activated unless the
3057 * device autonegotiation advertisement meets standards of
3058 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3059 * This is a function pointer entry point only called by
3060 * PHY setup routines.
3062 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3064 struct e1000_phy_info *phy = &hw->phy;
3069 phy_ctrl = er32(PHY_CTRL);
3072 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3073 ew32(PHY_CTRL, phy_ctrl);
3075 if (phy->type != e1000_phy_igp_3)
3078 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3079 * during Dx states where the power conservation is most
3080 * important. During driver activity we should enable
3081 * SmartSpeed, so performance is maintained.
3083 if (phy->smart_speed == e1000_smart_speed_on) {
3084 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3089 data |= IGP01E1000_PSCFR_SMART_SPEED;
3090 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3094 } else if (phy->smart_speed == e1000_smart_speed_off) {
3095 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3100 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3101 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3106 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3107 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3108 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3109 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3110 ew32(PHY_CTRL, phy_ctrl);
3112 if (phy->type != e1000_phy_igp_3)
3115 /* Call gig speed drop workaround on LPLU before accessing
3118 if (hw->mac.type == e1000_ich8lan)
3119 e1000e_gig_downshift_workaround_ich8lan(hw);
3121 /* When LPLU is enabled, we should disable SmartSpeed */
3122 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3126 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3127 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3134 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3135 * @hw: pointer to the HW structure
3136 * @bank: pointer to the variable that returns the active bank
3138 * Reads signature byte from the NVM using the flash access registers.
3139 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3141 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3144 struct e1000_nvm_info *nvm = &hw->nvm;
3145 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3146 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3151 switch (hw->mac.type) {
3153 bank1_offset = nvm->flash_bank_size;
3154 act_offset = E1000_ICH_NVM_SIG_WORD;
3156 /* set bank to 0 in case flash read fails */
3160 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3164 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3165 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3166 E1000_ICH_NVM_SIG_VALUE) {
3172 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3177 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3178 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3179 E1000_ICH_NVM_SIG_VALUE) {
3184 e_dbg("ERROR: No valid NVM bank present\n");
3185 return -E1000_ERR_NVM;
3189 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3190 E1000_EECD_SEC1VAL_VALID_MASK) {
3191 if (eecd & E1000_EECD_SEC1VAL)
3198 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3201 /* set bank to 0 in case flash read fails */
3205 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3209 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3210 E1000_ICH_NVM_SIG_VALUE) {
3216 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3221 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3222 E1000_ICH_NVM_SIG_VALUE) {
3227 e_dbg("ERROR: No valid NVM bank present\n");
3228 return -E1000_ERR_NVM;
3233 * e1000_read_nvm_spt - NVM access for SPT
3234 * @hw: pointer to the HW structure
3235 * @offset: The offset (in bytes) of the word(s) to read.
3236 * @words: Size of data to read in words.
3237 * @data: pointer to the word(s) to read at offset.
3239 * Reads a word(s) from the NVM
3241 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3244 struct e1000_nvm_info *nvm = &hw->nvm;
3245 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3253 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3255 e_dbg("nvm parameter(s) out of bounds\n");
3256 ret_val = -E1000_ERR_NVM;
3260 nvm->ops.acquire(hw);
3262 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3264 e_dbg("Could not detect valid bank, assuming bank 0\n");
3268 act_offset = (bank) ? nvm->flash_bank_size : 0;
3269 act_offset += offset;
3273 for (i = 0; i < words; i += 2) {
3274 if (words - i == 1) {
3275 if (dev_spec->shadow_ram[offset + i].modified) {
3277 dev_spec->shadow_ram[offset + i].value;
3279 offset_to_read = act_offset + i -
3280 ((act_offset + i) % 2);
3282 e1000_read_flash_dword_ich8lan(hw,
3287 if ((act_offset + i) % 2 == 0)
3288 data[i] = (u16)(dword & 0xFFFF);
3290 data[i] = (u16)((dword >> 16) & 0xFFFF);
3293 offset_to_read = act_offset + i;
3294 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3295 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3297 e1000_read_flash_dword_ich8lan(hw,
3303 if (dev_spec->shadow_ram[offset + i].modified)
3305 dev_spec->shadow_ram[offset + i].value;
3307 data[i] = (u16)(dword & 0xFFFF);
3308 if (dev_spec->shadow_ram[offset + i].modified)
3310 dev_spec->shadow_ram[offset + i + 1].value;
3312 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3316 nvm->ops.release(hw);
3320 e_dbg("NVM read error: %d\n", ret_val);
3326 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3327 * @hw: pointer to the HW structure
3328 * @offset: The offset (in bytes) of the word(s) to read.
3329 * @words: Size of data to read in words
3330 * @data: Pointer to the word(s) to read at offset.
3332 * Reads a word(s) from the NVM using the flash access registers.
3334 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3337 struct e1000_nvm_info *nvm = &hw->nvm;
3338 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3344 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3346 e_dbg("nvm parameter(s) out of bounds\n");
3347 ret_val = -E1000_ERR_NVM;
3351 nvm->ops.acquire(hw);
3353 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3355 e_dbg("Could not detect valid bank, assuming bank 0\n");
3359 act_offset = (bank) ? nvm->flash_bank_size : 0;
3360 act_offset += offset;
3363 for (i = 0; i < words; i++) {
3364 if (dev_spec->shadow_ram[offset + i].modified) {
3365 data[i] = dev_spec->shadow_ram[offset + i].value;
3367 ret_val = e1000_read_flash_word_ich8lan(hw,
3376 nvm->ops.release(hw);
3380 e_dbg("NVM read error: %d\n", ret_val);
3386 * e1000_flash_cycle_init_ich8lan - Initialize flash
3387 * @hw: pointer to the HW structure
3389 * This function does initial flash setup so that a new read/write/erase cycle
3392 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3394 union ich8_hws_flash_status hsfsts;
3395 s32 ret_val = -E1000_ERR_NVM;
3397 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3399 /* Check if the flash descriptor is valid */
3400 if (!hsfsts.hsf_status.fldesvalid) {
3401 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3402 return -E1000_ERR_NVM;
3405 /* Clear FCERR and DAEL in hw status by writing 1 */
3406 hsfsts.hsf_status.flcerr = 1;
3407 hsfsts.hsf_status.dael = 1;
3408 if (hw->mac.type == e1000_pch_spt)
3409 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413 /* Either we should have a hardware SPI cycle in progress
3414 * bit to check against, in order to start a new cycle or
3415 * FDONE bit should be changed in the hardware so that it
3416 * is 1 after hardware reset, which can then be used as an
3417 * indication whether a cycle is in progress or has been
3421 if (!hsfsts.hsf_status.flcinprog) {
3422 /* There is no cycle running at present,
3423 * so we can start a cycle.
3424 * Begin by setting Flash Cycle Done.
3426 hsfsts.hsf_status.flcdone = 1;
3427 if (hw->mac.type == e1000_pch_spt)
3428 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3430 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3435 /* Otherwise poll for sometime so the current
3436 * cycle has a chance to end before giving up.
3438 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3439 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3440 if (!hsfsts.hsf_status.flcinprog) {
3447 /* Successful in waiting for previous cycle to timeout,
3448 * now set the Flash Cycle Done.
3450 hsfsts.hsf_status.flcdone = 1;
3451 if (hw->mac.type == e1000_pch_spt)
3452 ew32flash(ICH_FLASH_HSFSTS,
3453 hsfsts.regval & 0xFFFF);
3455 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3457 e_dbg("Flash controller busy, cannot get access\n");
3465 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3466 * @hw: pointer to the HW structure
3467 * @timeout: maximum time to wait for completion
3469 * This function starts a flash cycle and waits for its completion.
3471 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3473 union ich8_hws_flash_ctrl hsflctl;
3474 union ich8_hws_flash_status hsfsts;
3477 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3478 if (hw->mac.type == e1000_pch_spt)
3479 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3481 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3482 hsflctl.hsf_ctrl.flcgo = 1;
3484 if (hw->mac.type == e1000_pch_spt)
3485 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3487 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3489 /* wait till FDONE bit is set to 1 */
3491 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3492 if (hsfsts.hsf_status.flcdone)
3495 } while (i++ < timeout);
3497 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3500 return -E1000_ERR_NVM;
3504 * e1000_read_flash_dword_ich8lan - Read dword from flash
3505 * @hw: pointer to the HW structure
3506 * @offset: offset to data location
3507 * @data: pointer to the location for storing the data
3509 * Reads the flash dword at offset into data. Offset is converted
3510 * to bytes before read.
3512 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3515 /* Must convert word offset into bytes. */
3517 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3521 * e1000_read_flash_word_ich8lan - Read word from flash
3522 * @hw: pointer to the HW structure
3523 * @offset: offset to data location
3524 * @data: pointer to the location for storing the data
3526 * Reads the flash word at offset into data. Offset is converted
3527 * to bytes before read.
3529 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3532 /* Must convert offset into bytes. */
3535 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3539 * e1000_read_flash_byte_ich8lan - Read byte from flash
3540 * @hw: pointer to the HW structure
3541 * @offset: The offset of the byte to read.
3542 * @data: Pointer to a byte to store the value read.
3544 * Reads a single byte from the NVM using the flash access registers.
3546 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3552 /* In SPT, only 32 bits access is supported,
3553 * so this function should not be called.
3555 if (hw->mac.type == e1000_pch_spt)
3556 return -E1000_ERR_NVM;
3558 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3569 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3570 * @hw: pointer to the HW structure
3571 * @offset: The offset (in bytes) of the byte or word to read.
3572 * @size: Size of data to read, 1=byte 2=word
3573 * @data: Pointer to the word to store the value read.
3575 * Reads a byte or word from the NVM using the flash access registers.
3577 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3580 union ich8_hws_flash_status hsfsts;
3581 union ich8_hws_flash_ctrl hsflctl;
3582 u32 flash_linear_addr;
3584 s32 ret_val = -E1000_ERR_NVM;
3587 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3588 return -E1000_ERR_NVM;
3590 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3591 hw->nvm.flash_base_addr);
3596 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3600 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3601 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3602 hsflctl.hsf_ctrl.fldbcount = size - 1;
3603 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3604 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3606 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3609 e1000_flash_cycle_ich8lan(hw,
3610 ICH_FLASH_READ_COMMAND_TIMEOUT);
3612 /* Check if FCERR is set to 1, if set to 1, clear it
3613 * and try the whole sequence a few more times, else
3614 * read in (shift in) the Flash Data0, the order is
3615 * least significant byte first msb to lsb
3618 flash_data = er32flash(ICH_FLASH_FDATA0);
3620 *data = (u8)(flash_data & 0x000000FF);
3622 *data = (u16)(flash_data & 0x0000FFFF);
3625 /* If we've gotten here, then things are probably
3626 * completely hosed, but if the error condition is
3627 * detected, it won't hurt to give it another try...
3628 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3630 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3631 if (hsfsts.hsf_status.flcerr) {
3632 /* Repeat for some time before giving up. */
3634 } else if (!hsfsts.hsf_status.flcdone) {
3635 e_dbg("Timeout error - flash cycle did not complete.\n");
3639 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3645 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3646 * @hw: pointer to the HW structure
3647 * @offset: The offset (in bytes) of the dword to read.
3648 * @data: Pointer to the dword to store the value read.
3650 * Reads a byte or word from the NVM using the flash access registers.
3653 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3656 union ich8_hws_flash_status hsfsts;
3657 union ich8_hws_flash_ctrl hsflctl;
3658 u32 flash_linear_addr;
3659 s32 ret_val = -E1000_ERR_NVM;
3662 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3663 hw->mac.type != e1000_pch_spt)
3664 return -E1000_ERR_NVM;
3665 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3666 hw->nvm.flash_base_addr);
3671 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3674 /* In SPT, This register is in Lan memory space, not flash.
3675 * Therefore, only 32 bit access is supported
3677 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3679 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3680 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3681 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3682 /* In SPT, This register is in Lan memory space, not flash.
3683 * Therefore, only 32 bit access is supported
3685 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3686 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3689 e1000_flash_cycle_ich8lan(hw,
3690 ICH_FLASH_READ_COMMAND_TIMEOUT);
3692 /* Check if FCERR is set to 1, if set to 1, clear it
3693 * and try the whole sequence a few more times, else
3694 * read in (shift in) the Flash Data0, the order is
3695 * least significant byte first msb to lsb
3698 *data = er32flash(ICH_FLASH_FDATA0);
3701 /* If we've gotten here, then things are probably
3702 * completely hosed, but if the error condition is
3703 * detected, it won't hurt to give it another try...
3704 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3706 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3707 if (hsfsts.hsf_status.flcerr) {
3708 /* Repeat for some time before giving up. */
3710 } else if (!hsfsts.hsf_status.flcdone) {
3711 e_dbg("Timeout error - flash cycle did not complete.\n");
3715 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3721 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3722 * @hw: pointer to the HW structure
3723 * @offset: The offset (in bytes) of the word(s) to write.
3724 * @words: Size of data to write in words
3725 * @data: Pointer to the word(s) to write at offset.
3727 * Writes a byte or word to the NVM using the flash access registers.
3729 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3732 struct e1000_nvm_info *nvm = &hw->nvm;
3733 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3736 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3738 e_dbg("nvm parameter(s) out of bounds\n");
3739 return -E1000_ERR_NVM;
3742 nvm->ops.acquire(hw);
3744 for (i = 0; i < words; i++) {
3745 dev_spec->shadow_ram[offset + i].modified = true;
3746 dev_spec->shadow_ram[offset + i].value = data[i];
3749 nvm->ops.release(hw);
3755 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3756 * @hw: pointer to the HW structure
3758 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3759 * which writes the checksum to the shadow ram. The changes in the shadow
3760 * ram are then committed to the EEPROM by processing each bank at a time
3761 * checking for the modified bit and writing only the pending changes.
3762 * After a successful commit, the shadow ram is cleared and is ready for
3765 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3767 struct e1000_nvm_info *nvm = &hw->nvm;
3768 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3769 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3773 ret_val = e1000e_update_nvm_checksum_generic(hw);
3777 if (nvm->type != e1000_nvm_flash_sw)
3780 nvm->ops.acquire(hw);
3782 /* We're writing to the opposite bank so if we're on bank 1,
3783 * write to bank 0 etc. We also need to erase the segment that
3784 * is going to be written
3786 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3788 e_dbg("Could not detect valid bank, assuming bank 0\n");
3793 new_bank_offset = nvm->flash_bank_size;
3794 old_bank_offset = 0;
3795 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3799 old_bank_offset = nvm->flash_bank_size;
3800 new_bank_offset = 0;
3801 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3805 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3806 /* Determine whether to write the value stored
3807 * in the other NVM bank or a modified value stored
3810 ret_val = e1000_read_flash_dword_ich8lan(hw,
3811 i + old_bank_offset,
3814 if (dev_spec->shadow_ram[i].modified) {
3815 dword &= 0xffff0000;
3816 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3818 if (dev_spec->shadow_ram[i + 1].modified) {
3819 dword &= 0x0000ffff;
3820 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3826 /* If the word is 0x13, then make sure the signature bits
3827 * (15:14) are 11b until the commit has completed.
3828 * This will allow us to write 10b which indicates the
3829 * signature is valid. We want to do this after the write
3830 * has completed so that we don't mark the segment valid
3831 * while the write is still in progress
3833 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3834 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3836 /* Convert offset to bytes. */
3837 act_offset = (i + new_bank_offset) << 1;
3839 usleep_range(100, 200);
3841 /* Write the data to the new bank. Offset in words */
3842 act_offset = i + new_bank_offset;
3843 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3849 /* Don't bother writing the segment valid bits if sector
3850 * programming failed.
3853 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3854 e_dbg("Flash commit failed.\n");
3858 /* Finally validate the new segment by setting bit 15:14
3859 * to 10b in word 0x13 , this can be done without an
3860 * erase as well since these bits are 11 to start with
3861 * and we need to change bit 14 to 0b
3863 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3865 /*offset in words but we read dword */
3867 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3872 dword &= 0xBFFFFFFF;
3873 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3878 /* And invalidate the previously valid segment by setting
3879 * its signature word (0x13) high_byte to 0b. This can be
3880 * done without an erase because flash erase sets all bits
3881 * to 1's. We can write 1's to 0's without an erase
3883 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3885 /* offset in words but we read dword */
3886 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3887 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3892 dword &= 0x00FFFFFF;
3893 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3898 /* Great! Everything worked, we can now clear the cached entries. */
3899 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3900 dev_spec->shadow_ram[i].modified = false;
3901 dev_spec->shadow_ram[i].value = 0xFFFF;
3905 nvm->ops.release(hw);
3907 /* Reload the EEPROM, or else modifications will not appear
3908 * until after the next adapter reset.
3911 nvm->ops.reload(hw);
3912 usleep_range(10000, 20000);
3917 e_dbg("NVM update error: %d\n", ret_val);
3923 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3924 * @hw: pointer to the HW structure
3926 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3927 * which writes the checksum to the shadow ram. The changes in the shadow
3928 * ram are then committed to the EEPROM by processing each bank at a time
3929 * checking for the modified bit and writing only the pending changes.
3930 * After a successful commit, the shadow ram is cleared and is ready for
3933 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3935 struct e1000_nvm_info *nvm = &hw->nvm;
3936 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3937 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3941 ret_val = e1000e_update_nvm_checksum_generic(hw);
3945 if (nvm->type != e1000_nvm_flash_sw)
3948 nvm->ops.acquire(hw);
3950 /* We're writing to the opposite bank so if we're on bank 1,
3951 * write to bank 0 etc. We also need to erase the segment that
3952 * is going to be written
3954 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3956 e_dbg("Could not detect valid bank, assuming bank 0\n");
3961 new_bank_offset = nvm->flash_bank_size;
3962 old_bank_offset = 0;
3963 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3967 old_bank_offset = nvm->flash_bank_size;
3968 new_bank_offset = 0;
3969 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3973 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3974 if (dev_spec->shadow_ram[i].modified) {
3975 data = dev_spec->shadow_ram[i].value;
3977 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3984 /* If the word is 0x13, then make sure the signature bits
3985 * (15:14) are 11b until the commit has completed.
3986 * This will allow us to write 10b which indicates the
3987 * signature is valid. We want to do this after the write
3988 * has completed so that we don't mark the segment valid
3989 * while the write is still in progress
3991 if (i == E1000_ICH_NVM_SIG_WORD)
3992 data |= E1000_ICH_NVM_SIG_MASK;
3994 /* Convert offset to bytes. */
3995 act_offset = (i + new_bank_offset) << 1;
3997 usleep_range(100, 200);
3998 /* Write the bytes to the new bank. */
3999 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4005 usleep_range(100, 200);
4006 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4013 /* Don't bother writing the segment valid bits if sector
4014 * programming failed.
4017 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4018 e_dbg("Flash commit failed.\n");
4022 /* Finally validate the new segment by setting bit 15:14
4023 * to 10b in word 0x13 , this can be done without an
4024 * erase as well since these bits are 11 to start with
4025 * and we need to change bit 14 to 0b
4027 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4028 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4033 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039 /* And invalidate the previously valid segment by setting
4040 * its signature word (0x13) high_byte to 0b. This can be
4041 * done without an erase because flash erase sets all bits
4042 * to 1's. We can write 1's to 0's without an erase
4044 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4045 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4049 /* Great! Everything worked, we can now clear the cached entries. */
4050 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4051 dev_spec->shadow_ram[i].modified = false;
4052 dev_spec->shadow_ram[i].value = 0xFFFF;
4056 nvm->ops.release(hw);
4058 /* Reload the EEPROM, or else modifications will not appear
4059 * until after the next adapter reset.
4062 nvm->ops.reload(hw);
4063 usleep_range(10000, 20000);
4068 e_dbg("NVM update error: %d\n", ret_val);
4074 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4075 * @hw: pointer to the HW structure
4077 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4078 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4079 * calculated, in which case we need to calculate the checksum and set bit 6.
4081 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4086 u16 valid_csum_mask;
4088 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4089 * the checksum needs to be fixed. This bit is an indication that
4090 * the NVM was prepared by OEM software and did not calculate
4091 * the checksum...a likely scenario.
4093 switch (hw->mac.type) {
4097 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4100 word = NVM_FUTURE_INIT_WORD1;
4101 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4105 ret_val = e1000_read_nvm(hw, word, 1, &data);
4109 if (!(data & valid_csum_mask)) {
4110 data |= valid_csum_mask;
4111 ret_val = e1000_write_nvm(hw, word, 1, &data);
4114 ret_val = e1000e_update_nvm_checksum(hw);
4119 return e1000e_validate_nvm_checksum_generic(hw);
4123 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4124 * @hw: pointer to the HW structure
4126 * To prevent malicious write/erase of the NVM, set it to be read-only
4127 * so that the hardware ignores all write/erase cycles of the NVM via
4128 * the flash control registers. The shadow-ram copy of the NVM will
4129 * still be updated, however any updates to this copy will not stick
4130 * across driver reloads.
4132 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4134 struct e1000_nvm_info *nvm = &hw->nvm;
4135 union ich8_flash_protected_range pr0;
4136 union ich8_hws_flash_status hsfsts;
4139 nvm->ops.acquire(hw);
4141 gfpreg = er32flash(ICH_FLASH_GFPREG);
4143 /* Write-protect GbE Sector of NVM */
4144 pr0.regval = er32flash(ICH_FLASH_PR0);
4145 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4146 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4147 pr0.range.wpe = true;
4148 ew32flash(ICH_FLASH_PR0, pr0.regval);
4150 /* Lock down a subset of GbE Flash Control Registers, e.g.
4151 * PR0 to prevent the write-protection from being lifted.
4152 * Once FLOCKDN is set, the registers protected by it cannot
4153 * be written until FLOCKDN is cleared by a hardware reset.
4155 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4156 hsfsts.hsf_status.flockdn = true;
4157 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4159 nvm->ops.release(hw);
4163 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4164 * @hw: pointer to the HW structure
4165 * @offset: The offset (in bytes) of the byte/word to read.
4166 * @size: Size of data to read, 1=byte 2=word
4167 * @data: The byte(s) to write to the NVM.
4169 * Writes one/two bytes to the NVM using the flash access registers.
4171 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4174 union ich8_hws_flash_status hsfsts;
4175 union ich8_hws_flash_ctrl hsflctl;
4176 u32 flash_linear_addr;
4181 if (hw->mac.type == e1000_pch_spt) {
4182 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4183 return -E1000_ERR_NVM;
4185 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4186 return -E1000_ERR_NVM;
4189 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4190 hw->nvm.flash_base_addr);
4195 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4198 /* In SPT, This register is in Lan memory space, not
4199 * flash. Therefore, only 32 bit access is supported
4201 if (hw->mac.type == e1000_pch_spt)
4202 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4204 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4206 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4207 hsflctl.hsf_ctrl.fldbcount = size - 1;
4208 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4209 /* In SPT, This register is in Lan memory space,
4210 * not flash. Therefore, only 32 bit access is
4213 if (hw->mac.type == e1000_pch_spt)
4214 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4216 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4218 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4221 flash_data = (u32)data & 0x00FF;
4223 flash_data = (u32)data;
4225 ew32flash(ICH_FLASH_FDATA0, flash_data);
4227 /* check if FCERR is set to 1 , if set to 1, clear it
4228 * and try the whole sequence a few more times else done
4231 e1000_flash_cycle_ich8lan(hw,
4232 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4236 /* If we're here, then things are most likely
4237 * completely hosed, but if the error condition
4238 * is detected, it won't hurt to give it another
4239 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4241 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4242 if (hsfsts.hsf_status.flcerr)
4243 /* Repeat for some time before giving up. */
4245 if (!hsfsts.hsf_status.flcdone) {
4246 e_dbg("Timeout error - flash cycle did not complete.\n");
4249 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4255 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4256 * @hw: pointer to the HW structure
4257 * @offset: The offset (in bytes) of the dwords to read.
4258 * @data: The 4 bytes to write to the NVM.
4260 * Writes one/two/four bytes to the NVM using the flash access registers.
4262 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4265 union ich8_hws_flash_status hsfsts;
4266 union ich8_hws_flash_ctrl hsflctl;
4267 u32 flash_linear_addr;
4271 if (hw->mac.type == e1000_pch_spt) {
4272 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4273 return -E1000_ERR_NVM;
4275 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4276 hw->nvm.flash_base_addr);
4280 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4284 /* In SPT, This register is in Lan memory space, not
4285 * flash. Therefore, only 32 bit access is supported
4287 if (hw->mac.type == e1000_pch_spt)
4288 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4291 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4293 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4294 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4296 /* In SPT, This register is in Lan memory space,
4297 * not flash. Therefore, only 32 bit access is
4300 if (hw->mac.type == e1000_pch_spt)
4301 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4303 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4305 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4307 ew32flash(ICH_FLASH_FDATA0, data);
4309 /* check if FCERR is set to 1 , if set to 1, clear it
4310 * and try the whole sequence a few more times else done
4313 e1000_flash_cycle_ich8lan(hw,
4314 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4319 /* If we're here, then things are most likely
4320 * completely hosed, but if the error condition
4321 * is detected, it won't hurt to give it another
4322 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4324 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4326 if (hsfsts.hsf_status.flcerr)
4327 /* Repeat for some time before giving up. */
4329 if (!hsfsts.hsf_status.flcdone) {
4330 e_dbg("Timeout error - flash cycle did not complete.\n");
4333 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4339 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4340 * @hw: pointer to the HW structure
4341 * @offset: The index of the byte to read.
4342 * @data: The byte to write to the NVM.
4344 * Writes a single byte to the NVM using the flash access registers.
4346 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4349 u16 word = (u16)data;
4351 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4355 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4356 * @hw: pointer to the HW structure
4357 * @offset: The offset of the word to write.
4358 * @dword: The dword to write to the NVM.
4360 * Writes a single dword to the NVM using the flash access registers.
4361 * Goes through a retry algorithm before giving up.
4363 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4364 u32 offset, u32 dword)
4367 u16 program_retries;
4369 /* Must convert word offset into bytes. */
4371 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4375 for (program_retries = 0; program_retries < 100; program_retries++) {
4376 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4377 usleep_range(100, 200);
4378 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4382 if (program_retries == 100)
4383 return -E1000_ERR_NVM;
4389 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4390 * @hw: pointer to the HW structure
4391 * @offset: The offset of the byte to write.
4392 * @byte: The byte to write to the NVM.
4394 * Writes a single byte to the NVM using the flash access registers.
4395 * Goes through a retry algorithm before giving up.
4397 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4398 u32 offset, u8 byte)
4401 u16 program_retries;
4403 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4407 for (program_retries = 0; program_retries < 100; program_retries++) {
4408 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4409 usleep_range(100, 200);
4410 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4414 if (program_retries == 100)
4415 return -E1000_ERR_NVM;
4421 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4422 * @hw: pointer to the HW structure
4423 * @bank: 0 for first bank, 1 for second bank, etc.
4425 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4426 * bank N is 4096 * N + flash_reg_addr.
4428 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4430 struct e1000_nvm_info *nvm = &hw->nvm;
4431 union ich8_hws_flash_status hsfsts;
4432 union ich8_hws_flash_ctrl hsflctl;
4433 u32 flash_linear_addr;
4434 /* bank size is in 16bit words - adjust to bytes */
4435 u32 flash_bank_size = nvm->flash_bank_size * 2;
4438 s32 j, iteration, sector_size;
4440 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4442 /* Determine HW Sector size: Read BERASE bits of hw flash status
4444 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4445 * consecutive sectors. The start index for the nth Hw sector
4446 * can be calculated as = bank * 4096 + n * 256
4447 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4448 * The start index for the nth Hw sector can be calculated
4450 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4451 * (ich9 only, otherwise error condition)
4452 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4454 switch (hsfsts.hsf_status.berasesz) {
4456 /* Hw sector size 256 */
4457 sector_size = ICH_FLASH_SEG_SIZE_256;
4458 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4461 sector_size = ICH_FLASH_SEG_SIZE_4K;
4465 sector_size = ICH_FLASH_SEG_SIZE_8K;
4469 sector_size = ICH_FLASH_SEG_SIZE_64K;
4473 return -E1000_ERR_NVM;
4476 /* Start with the base address, then add the sector offset. */
4477 flash_linear_addr = hw->nvm.flash_base_addr;
4478 flash_linear_addr += (bank) ? flash_bank_size : 0;
4480 for (j = 0; j < iteration; j++) {
4482 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4485 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4489 /* Write a value 11 (block Erase) in Flash
4490 * Cycle field in hw flash control
4492 if (hw->mac.type == e1000_pch_spt)
4494 er32flash(ICH_FLASH_HSFSTS) >> 16;
4496 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4498 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4499 if (hw->mac.type == e1000_pch_spt)
4500 ew32flash(ICH_FLASH_HSFSTS,
4501 hsflctl.regval << 16);
4503 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4505 /* Write the last 24 bits of an index within the
4506 * block into Flash Linear address field in Flash
4509 flash_linear_addr += (j * sector_size);
4510 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4512 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4516 /* Check if FCERR is set to 1. If 1,
4517 * clear it and try the whole sequence
4518 * a few more times else Done
4520 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4521 if (hsfsts.hsf_status.flcerr)
4522 /* repeat for some time before giving up */
4524 else if (!hsfsts.hsf_status.flcdone)
4526 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4533 * e1000_valid_led_default_ich8lan - Set the default LED settings
4534 * @hw: pointer to the HW structure
4535 * @data: Pointer to the LED settings
4537 * Reads the LED default settings from the NVM to data. If the NVM LED
4538 * settings is all 0's or F's, set the LED default to a valid LED default
4541 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4545 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4547 e_dbg("NVM Read Error\n");
4551 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4552 *data = ID_LED_DEFAULT_ICH8LAN;
4558 * e1000_id_led_init_pchlan - store LED configurations
4559 * @hw: pointer to the HW structure
4561 * PCH does not control LEDs via the LEDCTL register, rather it uses
4562 * the PHY LED configuration register.
4564 * PCH also does not have an "always on" or "always off" mode which
4565 * complicates the ID feature. Instead of using the "on" mode to indicate
4566 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4567 * use "link_up" mode. The LEDs will still ID on request if there is no
4568 * link based on logic in e1000_led_[on|off]_pchlan().
4570 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4572 struct e1000_mac_info *mac = &hw->mac;
4574 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4575 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4576 u16 data, i, temp, shift;
4578 /* Get default ID LED modes */
4579 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4583 mac->ledctl_default = er32(LEDCTL);
4584 mac->ledctl_mode1 = mac->ledctl_default;
4585 mac->ledctl_mode2 = mac->ledctl_default;
4587 for (i = 0; i < 4; i++) {
4588 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4591 case ID_LED_ON1_DEF2:
4592 case ID_LED_ON1_ON2:
4593 case ID_LED_ON1_OFF2:
4594 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4595 mac->ledctl_mode1 |= (ledctl_on << shift);
4597 case ID_LED_OFF1_DEF2:
4598 case ID_LED_OFF1_ON2:
4599 case ID_LED_OFF1_OFF2:
4600 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4601 mac->ledctl_mode1 |= (ledctl_off << shift);
4608 case ID_LED_DEF1_ON2:
4609 case ID_LED_ON1_ON2:
4610 case ID_LED_OFF1_ON2:
4611 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4612 mac->ledctl_mode2 |= (ledctl_on << shift);
4614 case ID_LED_DEF1_OFF2:
4615 case ID_LED_ON1_OFF2:
4616 case ID_LED_OFF1_OFF2:
4617 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4618 mac->ledctl_mode2 |= (ledctl_off << shift);
4630 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4631 * @hw: pointer to the HW structure
4633 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4634 * register, so the the bus width is hard coded.
4636 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4638 struct e1000_bus_info *bus = &hw->bus;
4641 ret_val = e1000e_get_bus_info_pcie(hw);
4643 /* ICH devices are "PCI Express"-ish. They have
4644 * a configuration space, but do not contain
4645 * PCI Express Capability registers, so bus width
4646 * must be hardcoded.
4648 if (bus->width == e1000_bus_width_unknown)
4649 bus->width = e1000_bus_width_pcie_x1;
4655 * e1000_reset_hw_ich8lan - Reset the hardware
4656 * @hw: pointer to the HW structure
4658 * Does a full reset of the hardware which includes a reset of the PHY and
4661 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4663 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4668 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4669 * on the last TLP read/write transaction when MAC is reset.
4671 ret_val = e1000e_disable_pcie_master(hw);
4673 e_dbg("PCI-E Master disable polling has failed.\n");
4675 e_dbg("Masking off all interrupts\n");
4676 ew32(IMC, 0xffffffff);
4678 /* Disable the Transmit and Receive units. Then delay to allow
4679 * any pending transactions to complete before we hit the MAC
4680 * with the global reset.
4683 ew32(TCTL, E1000_TCTL_PSP);
4686 usleep_range(10000, 20000);
4688 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4689 if (hw->mac.type == e1000_ich8lan) {
4690 /* Set Tx and Rx buffer allocation to 8k apiece. */
4691 ew32(PBA, E1000_PBA_8K);
4692 /* Set Packet Buffer Size to 16k. */
4693 ew32(PBS, E1000_PBS_16K);
4696 if (hw->mac.type == e1000_pchlan) {
4697 /* Save the NVM K1 bit setting */
4698 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4702 if (kum_cfg & E1000_NVM_K1_ENABLE)
4703 dev_spec->nvm_k1_enabled = true;
4705 dev_spec->nvm_k1_enabled = false;
4710 if (!hw->phy.ops.check_reset_block(hw)) {
4711 /* Full-chip reset requires MAC and PHY reset at the same
4712 * time to make sure the interface between MAC and the
4713 * external PHY is reset.
4715 ctrl |= E1000_CTRL_PHY_RST;
4717 /* Gate automatic PHY configuration by hardware on
4720 if ((hw->mac.type == e1000_pch2lan) &&
4721 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4722 e1000_gate_hw_phy_config_ich8lan(hw, true);
4724 ret_val = e1000_acquire_swflag_ich8lan(hw);
4725 e_dbg("Issuing a global reset to ich8lan\n");
4726 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4727 /* cannot issue a flush here because it hangs the hardware */
4730 /* Set Phy Config Counter to 50msec */
4731 if (hw->mac.type == e1000_pch2lan) {
4732 reg = er32(FEXTNVM3);
4733 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4734 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4735 ew32(FEXTNVM3, reg);
4739 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4741 if (ctrl & E1000_CTRL_PHY_RST) {
4742 ret_val = hw->phy.ops.get_cfg_done(hw);
4746 ret_val = e1000_post_phy_reset_ich8lan(hw);
4751 /* For PCH, this write will make sure that any noise
4752 * will be detected as a CRC error and be dropped rather than show up
4753 * as a bad packet to the DMA engine.
4755 if (hw->mac.type == e1000_pchlan)
4756 ew32(CRC_OFFSET, 0x65656565);
4758 ew32(IMC, 0xffffffff);
4761 reg = er32(KABGTXD);
4762 reg |= E1000_KABGTXD_BGSQLBIAS;
4769 * e1000_init_hw_ich8lan - Initialize the hardware
4770 * @hw: pointer to the HW structure
4772 * Prepares the hardware for transmit and receive by doing the following:
4773 * - initialize hardware bits
4774 * - initialize LED identification
4775 * - setup receive address registers
4776 * - setup flow control
4777 * - setup transmit descriptors
4778 * - clear statistics
4780 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4782 struct e1000_mac_info *mac = &hw->mac;
4783 u32 ctrl_ext, txdctl, snoop;
4787 e1000_initialize_hw_bits_ich8lan(hw);
4789 /* Initialize identification LED */
4790 ret_val = mac->ops.id_led_init(hw);
4791 /* An error is not fatal and we should not stop init due to this */
4793 e_dbg("Error initializing identification LED\n");
4795 /* Setup the receive address. */
4796 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4798 /* Zero out the Multicast HASH table */
4799 e_dbg("Zeroing the MTA\n");
4800 for (i = 0; i < mac->mta_reg_count; i++)
4801 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4803 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4804 * the ME. Disable wakeup by clearing the host wakeup bit.
4805 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4807 if (hw->phy.type == e1000_phy_82578) {
4808 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4809 i &= ~BM_WUC_HOST_WU_BIT;
4810 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4811 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4816 /* Setup link and flow control */
4817 ret_val = mac->ops.setup_link(hw);
4819 /* Set the transmit descriptor write-back policy for both queues */
4820 txdctl = er32(TXDCTL(0));
4821 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4822 E1000_TXDCTL_FULL_TX_DESC_WB);
4823 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4824 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4825 ew32(TXDCTL(0), txdctl);
4826 txdctl = er32(TXDCTL(1));
4827 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4828 E1000_TXDCTL_FULL_TX_DESC_WB);
4829 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4830 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4831 ew32(TXDCTL(1), txdctl);
4833 /* ICH8 has opposite polarity of no_snoop bits.
4834 * By default, we should use snoop behavior.
4836 if (mac->type == e1000_ich8lan)
4837 snoop = PCIE_ICH8_SNOOP_ALL;
4839 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4840 e1000e_set_pcie_no_snoop(hw, snoop);
4842 ctrl_ext = er32(CTRL_EXT);
4843 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4844 ew32(CTRL_EXT, ctrl_ext);
4846 /* Clear all of the statistics registers (clear on read). It is
4847 * important that we do this after we have tried to establish link
4848 * because the symbol error count will increment wildly if there
4851 e1000_clear_hw_cntrs_ich8lan(hw);
4857 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4858 * @hw: pointer to the HW structure
4860 * Sets/Clears required hardware bits necessary for correctly setting up the
4861 * hardware for transmit and receive.
4863 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4867 /* Extended Device Control */
4868 reg = er32(CTRL_EXT);
4870 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4871 if (hw->mac.type >= e1000_pchlan)
4872 reg |= E1000_CTRL_EXT_PHYPDEN;
4873 ew32(CTRL_EXT, reg);
4875 /* Transmit Descriptor Control 0 */
4876 reg = er32(TXDCTL(0));
4878 ew32(TXDCTL(0), reg);
4880 /* Transmit Descriptor Control 1 */
4881 reg = er32(TXDCTL(1));
4883 ew32(TXDCTL(1), reg);
4885 /* Transmit Arbitration Control 0 */
4886 reg = er32(TARC(0));
4887 if (hw->mac.type == e1000_ich8lan)
4888 reg |= BIT(28) | BIT(29);
4889 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4892 /* Transmit Arbitration Control 1 */
4893 reg = er32(TARC(1));
4894 if (er32(TCTL) & E1000_TCTL_MULR)
4898 reg |= BIT(24) | BIT(26) | BIT(30);
4902 if (hw->mac.type == e1000_ich8lan) {
4908 /* work-around descriptor data corruption issue during nfs v2 udp
4909 * traffic, just disable the nfs filtering capability
4912 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4914 /* Disable IPv6 extension header parsing because some malformed
4915 * IPv6 headers can hang the Rx.
4917 if (hw->mac.type == e1000_ich8lan)
4918 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4921 /* Enable ECC on Lynxpoint */
4922 if ((hw->mac.type == e1000_pch_lpt) ||
4923 (hw->mac.type == e1000_pch_spt)) {
4924 reg = er32(PBECCSTS);
4925 reg |= E1000_PBECCSTS_ECC_ENABLE;
4926 ew32(PBECCSTS, reg);
4929 reg |= E1000_CTRL_MEHE;
4935 * e1000_setup_link_ich8lan - Setup flow control and link settings
4936 * @hw: pointer to the HW structure
4938 * Determines which flow control settings to use, then configures flow
4939 * control. Calls the appropriate media-specific link configuration
4940 * function. Assuming the adapter has a valid link partner, a valid link
4941 * should be established. Assumes the hardware has previously been reset
4942 * and the transmitter and receiver are not enabled.
4944 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4948 if (hw->phy.ops.check_reset_block(hw))
4951 /* ICH parts do not have a word in the NVM to determine
4952 * the default flow control setting, so we explicitly
4955 if (hw->fc.requested_mode == e1000_fc_default) {
4956 /* Workaround h/w hang when Tx flow control enabled */
4957 if (hw->mac.type == e1000_pchlan)
4958 hw->fc.requested_mode = e1000_fc_rx_pause;
4960 hw->fc.requested_mode = e1000_fc_full;
4963 /* Save off the requested flow control mode for use later. Depending
4964 * on the link partner's capabilities, we may or may not use this mode.
4966 hw->fc.current_mode = hw->fc.requested_mode;
4968 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4970 /* Continue to configure the copper link. */
4971 ret_val = hw->mac.ops.setup_physical_interface(hw);
4975 ew32(FCTTV, hw->fc.pause_time);
4976 if ((hw->phy.type == e1000_phy_82578) ||
4977 (hw->phy.type == e1000_phy_82579) ||
4978 (hw->phy.type == e1000_phy_i217) ||
4979 (hw->phy.type == e1000_phy_82577)) {
4980 ew32(FCRTV_PCH, hw->fc.refresh_time);
4982 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4988 return e1000e_set_fc_watermarks(hw);
4992 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4993 * @hw: pointer to the HW structure
4995 * Configures the kumeran interface to the PHY to wait the appropriate time
4996 * when polling the PHY, then call the generic setup_copper_link to finish
4997 * configuring the copper link.
4999 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5006 ctrl |= E1000_CTRL_SLU;
5007 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5010 /* Set the mac to wait the maximum time between each iteration
5011 * and increase the max iterations when polling the phy;
5012 * this fixes erroneous timeouts at 10Mbps.
5014 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5017 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5022 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5027 switch (hw->phy.type) {
5028 case e1000_phy_igp_3:
5029 ret_val = e1000e_copper_link_setup_igp(hw);
5034 case e1000_phy_82578:
5035 ret_val = e1000e_copper_link_setup_m88(hw);
5039 case e1000_phy_82577:
5040 case e1000_phy_82579:
5041 ret_val = e1000_copper_link_setup_82577(hw);
5046 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5050 reg_data &= ~IFE_PMC_AUTO_MDIX;
5052 switch (hw->phy.mdix) {
5054 reg_data &= ~IFE_PMC_FORCE_MDIX;
5057 reg_data |= IFE_PMC_FORCE_MDIX;
5061 reg_data |= IFE_PMC_AUTO_MDIX;
5064 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5072 return e1000e_setup_copper_link(hw);
5076 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5077 * @hw: pointer to the HW structure
5079 * Calls the PHY specific link setup function and then calls the
5080 * generic setup_copper_link to finish configuring the link for
5081 * Lynxpoint PCH devices
5083 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5089 ctrl |= E1000_CTRL_SLU;
5090 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5093 ret_val = e1000_copper_link_setup_82577(hw);
5097 return e1000e_setup_copper_link(hw);
5101 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5102 * @hw: pointer to the HW structure
5103 * @speed: pointer to store current link speed
5104 * @duplex: pointer to store the current link duplex
5106 * Calls the generic get_speed_and_duplex to retrieve the current link
5107 * information and then calls the Kumeran lock loss workaround for links at
5110 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5115 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5119 if ((hw->mac.type == e1000_ich8lan) &&
5120 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5121 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5128 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5129 * @hw: pointer to the HW structure
5131 * Work-around for 82566 Kumeran PCS lock loss:
5132 * On link status change (i.e. PCI reset, speed change) and link is up and
5134 * 0) if workaround is optionally disabled do nothing
5135 * 1) wait 1ms for Kumeran link to come up
5136 * 2) check Kumeran Diagnostic register PCS lock loss bit
5137 * 3) if not set the link is locked (all is good), otherwise...
5139 * 5) repeat up to 10 times
5140 * Note: this is only called for IGP3 copper when speed is 1gb.
5142 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5144 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5150 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5153 /* Make sure link is up before proceeding. If not just return.
5154 * Attempting this while link is negotiating fouled up link
5157 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5161 for (i = 0; i < 10; i++) {
5162 /* read once to clear */
5163 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5166 /* and again to get new status */
5167 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171 /* check for PCS lock */
5172 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5175 /* Issue PHY reset */
5176 e1000_phy_hw_reset(hw);
5179 /* Disable GigE link negotiation */
5180 phy_ctrl = er32(PHY_CTRL);
5181 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5182 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5183 ew32(PHY_CTRL, phy_ctrl);
5185 /* Call gig speed drop workaround on Gig disable before accessing
5188 e1000e_gig_downshift_workaround_ich8lan(hw);
5190 /* unable to acquire PCS lock */
5191 return -E1000_ERR_PHY;
5195 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5196 * @hw: pointer to the HW structure
5197 * @state: boolean value used to set the current Kumeran workaround state
5199 * If ICH8, set the current Kumeran workaround state (enabled - true
5200 * /disabled - false).
5202 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5205 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5207 if (hw->mac.type != e1000_ich8lan) {
5208 e_dbg("Workaround applies to ICH8 only.\n");
5212 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5216 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5217 * @hw: pointer to the HW structure
5219 * Workaround for 82566 power-down on D3 entry:
5220 * 1) disable gigabit link
5221 * 2) write VR power-down enable
5223 * Continue if successful, else issue LCD reset and repeat
5225 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5231 if (hw->phy.type != e1000_phy_igp_3)
5234 /* Try the workaround twice (if needed) */
5237 reg = er32(PHY_CTRL);
5238 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5239 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5240 ew32(PHY_CTRL, reg);
5242 /* Call gig speed drop workaround on Gig disable before
5243 * accessing any PHY registers
5245 if (hw->mac.type == e1000_ich8lan)
5246 e1000e_gig_downshift_workaround_ich8lan(hw);
5248 /* Write VR power-down enable */
5249 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5250 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5251 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5253 /* Read it back and test */
5254 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5255 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5256 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5259 /* Issue PHY reset and repeat at most one more time */
5261 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5267 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5268 * @hw: pointer to the HW structure
5270 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5271 * LPLU, Gig disable, MDIC PHY reset):
5272 * 1) Set Kumeran Near-end loopback
5273 * 2) Clear Kumeran Near-end loopback
5274 * Should only be called for ICH8[m] devices with any 1G Phy.
5276 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5281 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5284 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5288 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5289 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5293 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5294 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5298 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5299 * @hw: pointer to the HW structure
5301 * During S0 to Sx transition, it is possible the link remains at gig
5302 * instead of negotiating to a lower speed. Before going to Sx, set
5303 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5304 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5305 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5306 * needs to be written.
5307 * Parts that support (and are linked to a partner which support) EEE in
5308 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5309 * than 10Mbps w/o EEE.
5311 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5313 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317 phy_ctrl = er32(PHY_CTRL);
5318 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5320 if (hw->phy.type == e1000_phy_i217) {
5321 u16 phy_reg, device_id = hw->adapter->pdev->device;
5323 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5324 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5325 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5326 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5327 (hw->mac.type == e1000_pch_spt)) {
5328 u32 fextnvm6 = er32(FEXTNVM6);
5330 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5333 ret_val = hw->phy.ops.acquire(hw);
5337 if (!dev_spec->eee_disable) {
5341 e1000_read_emi_reg_locked(hw,
5342 I217_EEE_ADVERTISEMENT,
5347 /* Disable LPLU if both link partners support 100BaseT
5348 * EEE and 100Full is advertised on both ends of the
5349 * link, and enable Auto Enable LPI since there will
5350 * be no driver to enable LPI while in Sx.
5352 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5353 (dev_spec->eee_lp_ability &
5354 I82579_EEE_100_SUPPORTED) &&
5355 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5356 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5357 E1000_PHY_CTRL_NOND0A_LPLU);
5359 /* Set Auto Enable LPI after link up */
5361 I217_LPI_GPIO_CTRL, &phy_reg);
5362 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5364 I217_LPI_GPIO_CTRL, phy_reg);
5368 /* For i217 Intel Rapid Start Technology support,
5369 * when the system is going into Sx and no manageability engine
5370 * is present, the driver must configure proxy to reset only on
5371 * power good. LPI (Low Power Idle) state must also reset only
5372 * on power good, as well as the MTA (Multicast table array).
5373 * The SMBus release must also be disabled on LCD reset.
5375 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5376 /* Enable proxy to reset only on power good. */
5377 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5378 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5379 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5381 /* Set bit enable LPI (EEE) to reset only on
5384 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5385 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5386 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5388 /* Disable the SMB release on LCD reset. */
5389 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5390 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5391 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5394 /* Enable MTA to reset for Intel Rapid Start Technology
5397 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5398 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5399 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5402 hw->phy.ops.release(hw);
5405 ew32(PHY_CTRL, phy_ctrl);
5407 if (hw->mac.type == e1000_ich8lan)
5408 e1000e_gig_downshift_workaround_ich8lan(hw);
5410 if (hw->mac.type >= e1000_pchlan) {
5411 e1000_oem_bits_config_ich8lan(hw, false);
5413 /* Reset PHY to activate OEM bits on 82577/8 */
5414 if (hw->mac.type == e1000_pchlan)
5415 e1000e_phy_hw_reset_generic(hw);
5417 ret_val = hw->phy.ops.acquire(hw);
5420 e1000_write_smbus_addr(hw);
5421 hw->phy.ops.release(hw);
5426 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5427 * @hw: pointer to the HW structure
5429 * During Sx to S0 transitions on non-managed devices or managed devices
5430 * on which PHY resets are not blocked, if the PHY registers cannot be
5431 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5433 * On i217, setup Intel Rapid Start Technology.
5435 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5439 if (hw->mac.type < e1000_pch2lan)
5442 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5444 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5448 /* For i217 Intel Rapid Start Technology support when the system
5449 * is transitioning from Sx and no manageability engine is present
5450 * configure SMBus to restore on reset, disable proxy, and enable
5451 * the reset on MTA (Multicast table array).
5453 if (hw->phy.type == e1000_phy_i217) {
5456 ret_val = hw->phy.ops.acquire(hw);
5458 e_dbg("Failed to setup iRST\n");
5462 /* Clear Auto Enable LPI after link up */
5463 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5464 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5465 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5467 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5468 /* Restore clear on SMB if no manageability engine
5471 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5474 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5475 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5478 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5480 /* Enable reset on MTA */
5481 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5484 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5485 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5488 e_dbg("Error %d in resume workarounds\n", ret_val);
5489 hw->phy.ops.release(hw);
5494 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5495 * @hw: pointer to the HW structure
5497 * Return the LED back to the default configuration.
5499 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5501 if (hw->phy.type == e1000_phy_ife)
5502 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5504 ew32(LEDCTL, hw->mac.ledctl_default);
5509 * e1000_led_on_ich8lan - Turn LEDs on
5510 * @hw: pointer to the HW structure
5514 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5516 if (hw->phy.type == e1000_phy_ife)
5517 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5518 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5520 ew32(LEDCTL, hw->mac.ledctl_mode2);
5525 * e1000_led_off_ich8lan - Turn LEDs off
5526 * @hw: pointer to the HW structure
5528 * Turn off the LEDs.
5530 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5532 if (hw->phy.type == e1000_phy_ife)
5533 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5534 (IFE_PSCL_PROBE_MODE |
5535 IFE_PSCL_PROBE_LEDS_OFF));
5537 ew32(LEDCTL, hw->mac.ledctl_mode1);
5542 * e1000_setup_led_pchlan - Configures SW controllable LED
5543 * @hw: pointer to the HW structure
5545 * This prepares the SW controllable LED for use.
5547 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5549 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5553 * e1000_cleanup_led_pchlan - Restore the default LED operation
5554 * @hw: pointer to the HW structure
5556 * Return the LED back to the default configuration.
5558 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5560 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5564 * e1000_led_on_pchlan - Turn LEDs on
5565 * @hw: pointer to the HW structure
5569 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5571 u16 data = (u16)hw->mac.ledctl_mode2;
5574 /* If no link, then turn LED on by setting the invert bit
5575 * for each LED that's mode is "link_up" in ledctl_mode2.
5577 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5578 for (i = 0; i < 3; i++) {
5579 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5580 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5581 E1000_LEDCTL_MODE_LINK_UP)
5583 if (led & E1000_PHY_LED0_IVRT)
5584 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5586 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5590 return e1e_wphy(hw, HV_LED_CONFIG, data);
5594 * e1000_led_off_pchlan - Turn LEDs off
5595 * @hw: pointer to the HW structure
5597 * Turn off the LEDs.
5599 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5601 u16 data = (u16)hw->mac.ledctl_mode1;
5604 /* If no link, then turn LED off by clearing the invert bit
5605 * for each LED that's mode is "link_up" in ledctl_mode1.
5607 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5608 for (i = 0; i < 3; i++) {
5609 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5610 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5611 E1000_LEDCTL_MODE_LINK_UP)
5613 if (led & E1000_PHY_LED0_IVRT)
5614 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5616 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5620 return e1e_wphy(hw, HV_LED_CONFIG, data);
5624 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5625 * @hw: pointer to the HW structure
5627 * Read appropriate register for the config done bit for completion status
5628 * and configure the PHY through s/w for EEPROM-less parts.
5630 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5631 * config done bit, so only an error is logged and continues. If we were
5632 * to return with error, EEPROM-less silicon would not be able to be reset
5635 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5641 e1000e_get_cfg_done_generic(hw);
5643 /* Wait for indication from h/w that it has completed basic config */
5644 if (hw->mac.type >= e1000_ich10lan) {
5645 e1000_lan_init_done_ich8lan(hw);
5647 ret_val = e1000e_get_auto_rd_done(hw);
5649 /* When auto config read does not complete, do not
5650 * return with an error. This can happen in situations
5651 * where there is no eeprom and prevents getting link.
5653 e_dbg("Auto Read Done did not complete\n");
5658 /* Clear PHY Reset Asserted bit */
5659 status = er32(STATUS);
5660 if (status & E1000_STATUS_PHYRA)
5661 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5663 e_dbg("PHY Reset Asserted not set - needs delay\n");
5665 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5666 if (hw->mac.type <= e1000_ich9lan) {
5667 if (!(er32(EECD) & E1000_EECD_PRES) &&
5668 (hw->phy.type == e1000_phy_igp_3)) {
5669 e1000e_phy_init_script_igp3(hw);
5672 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5673 /* Maybe we should do a basic PHY config */
5674 e_dbg("EEPROM not present\n");
5675 ret_val = -E1000_ERR_CONFIG;
5683 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5684 * @hw: pointer to the HW structure
5686 * In the case of a PHY power down to save power, or to turn off link during a
5687 * driver unload, or wake on lan is not enabled, remove the link.
5689 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5691 /* If the management interface is not enabled, then power down */
5692 if (!(hw->mac.ops.check_mng_mode(hw) ||
5693 hw->phy.ops.check_reset_block(hw)))
5694 e1000_power_down_phy_copper(hw);
5698 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5699 * @hw: pointer to the HW structure
5701 * Clears hardware counters specific to the silicon family and calls
5702 * clear_hw_cntrs_generic to clear all general purpose counters.
5704 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5709 e1000e_clear_hw_cntrs_base(hw);
5725 /* Clear PHY statistics registers */
5726 if ((hw->phy.type == e1000_phy_82578) ||
5727 (hw->phy.type == e1000_phy_82579) ||
5728 (hw->phy.type == e1000_phy_i217) ||
5729 (hw->phy.type == e1000_phy_82577)) {
5730 ret_val = hw->phy.ops.acquire(hw);
5733 ret_val = hw->phy.ops.set_page(hw,
5734 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5737 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5738 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5739 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5740 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5741 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5742 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5743 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5744 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5745 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5746 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5747 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5748 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5749 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5750 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5752 hw->phy.ops.release(hw);
5756 static const struct e1000_mac_operations ich8_mac_ops = {
5757 /* check_mng_mode dependent on mac type */
5758 .check_for_link = e1000_check_for_copper_link_ich8lan,
5759 /* cleanup_led dependent on mac type */
5760 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5761 .get_bus_info = e1000_get_bus_info_ich8lan,
5762 .set_lan_id = e1000_set_lan_id_single_port,
5763 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5764 /* led_on dependent on mac type */
5765 /* led_off dependent on mac type */
5766 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5767 .reset_hw = e1000_reset_hw_ich8lan,
5768 .init_hw = e1000_init_hw_ich8lan,
5769 .setup_link = e1000_setup_link_ich8lan,
5770 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5771 /* id_led_init dependent on mac type */
5772 .config_collision_dist = e1000e_config_collision_dist_generic,
5773 .rar_set = e1000e_rar_set_generic,
5774 .rar_get_count = e1000e_rar_get_count_generic,
5777 static const struct e1000_phy_operations ich8_phy_ops = {
5778 .acquire = e1000_acquire_swflag_ich8lan,
5779 .check_reset_block = e1000_check_reset_block_ich8lan,
5781 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5782 .get_cable_length = e1000e_get_cable_length_igp_2,
5783 .read_reg = e1000e_read_phy_reg_igp,
5784 .release = e1000_release_swflag_ich8lan,
5785 .reset = e1000_phy_hw_reset_ich8lan,
5786 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5787 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5788 .write_reg = e1000e_write_phy_reg_igp,
5791 static const struct e1000_nvm_operations ich8_nvm_ops = {
5792 .acquire = e1000_acquire_nvm_ich8lan,
5793 .read = e1000_read_nvm_ich8lan,
5794 .release = e1000_release_nvm_ich8lan,
5795 .reload = e1000e_reload_nvm_generic,
5796 .update = e1000_update_nvm_checksum_ich8lan,
5797 .valid_led_default = e1000_valid_led_default_ich8lan,
5798 .validate = e1000_validate_nvm_checksum_ich8lan,
5799 .write = e1000_write_nvm_ich8lan,
5802 static const struct e1000_nvm_operations spt_nvm_ops = {
5803 .acquire = e1000_acquire_nvm_ich8lan,
5804 .release = e1000_release_nvm_ich8lan,
5805 .read = e1000_read_nvm_spt,
5806 .update = e1000_update_nvm_checksum_spt,
5807 .reload = e1000e_reload_nvm_generic,
5808 .valid_led_default = e1000_valid_led_default_ich8lan,
5809 .validate = e1000_validate_nvm_checksum_ich8lan,
5810 .write = e1000_write_nvm_ich8lan,
5813 const struct e1000_info e1000_ich8_info = {
5814 .mac = e1000_ich8lan,
5815 .flags = FLAG_HAS_WOL
5817 | FLAG_HAS_CTRLEXT_ON_LOAD
5822 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5823 .get_variants = e1000_get_variants_ich8lan,
5824 .mac_ops = &ich8_mac_ops,
5825 .phy_ops = &ich8_phy_ops,
5826 .nvm_ops = &ich8_nvm_ops,
5829 const struct e1000_info e1000_ich9_info = {
5830 .mac = e1000_ich9lan,
5831 .flags = FLAG_HAS_JUMBO_FRAMES
5834 | FLAG_HAS_CTRLEXT_ON_LOAD
5839 .max_hw_frame_size = DEFAULT_JUMBO,
5840 .get_variants = e1000_get_variants_ich8lan,
5841 .mac_ops = &ich8_mac_ops,
5842 .phy_ops = &ich8_phy_ops,
5843 .nvm_ops = &ich8_nvm_ops,
5846 const struct e1000_info e1000_ich10_info = {
5847 .mac = e1000_ich10lan,
5848 .flags = FLAG_HAS_JUMBO_FRAMES
5851 | FLAG_HAS_CTRLEXT_ON_LOAD
5856 .max_hw_frame_size = DEFAULT_JUMBO,
5857 .get_variants = e1000_get_variants_ich8lan,
5858 .mac_ops = &ich8_mac_ops,
5859 .phy_ops = &ich8_phy_ops,
5860 .nvm_ops = &ich8_nvm_ops,
5863 const struct e1000_info e1000_pch_info = {
5864 .mac = e1000_pchlan,
5865 .flags = FLAG_IS_ICH
5867 | FLAG_HAS_CTRLEXT_ON_LOAD
5870 | FLAG_HAS_JUMBO_FRAMES
5871 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5873 .flags2 = FLAG2_HAS_PHY_STATS,
5875 .max_hw_frame_size = 4096,
5876 .get_variants = e1000_get_variants_ich8lan,
5877 .mac_ops = &ich8_mac_ops,
5878 .phy_ops = &ich8_phy_ops,
5879 .nvm_ops = &ich8_nvm_ops,
5882 const struct e1000_info e1000_pch2_info = {
5883 .mac = e1000_pch2lan,
5884 .flags = FLAG_IS_ICH
5886 | FLAG_HAS_HW_TIMESTAMP
5887 | FLAG_HAS_CTRLEXT_ON_LOAD
5890 | FLAG_HAS_JUMBO_FRAMES
5892 .flags2 = FLAG2_HAS_PHY_STATS
5895 .max_hw_frame_size = 9022,
5896 .get_variants = e1000_get_variants_ich8lan,
5897 .mac_ops = &ich8_mac_ops,
5898 .phy_ops = &ich8_phy_ops,
5899 .nvm_ops = &ich8_nvm_ops,
5902 const struct e1000_info e1000_pch_lpt_info = {
5903 .mac = e1000_pch_lpt,
5904 .flags = FLAG_IS_ICH
5906 | FLAG_HAS_HW_TIMESTAMP
5907 | FLAG_HAS_CTRLEXT_ON_LOAD
5910 | FLAG_HAS_JUMBO_FRAMES
5912 .flags2 = FLAG2_HAS_PHY_STATS
5914 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5916 .max_hw_frame_size = 9022,
5917 .get_variants = e1000_get_variants_ich8lan,
5918 .mac_ops = &ich8_mac_ops,
5919 .phy_ops = &ich8_phy_ops,
5920 .nvm_ops = &ich8_nvm_ops,
5923 const struct e1000_info e1000_pch_spt_info = {
5924 .mac = e1000_pch_spt,
5925 .flags = FLAG_IS_ICH
5927 | FLAG_HAS_HW_TIMESTAMP
5928 | FLAG_HAS_CTRLEXT_ON_LOAD
5931 | FLAG_HAS_JUMBO_FRAMES
5933 .flags2 = FLAG2_HAS_PHY_STATS
5936 .max_hw_frame_size = 9022,
5937 .get_variants = e1000_get_variants_ich8lan,
5938 .mac_ops = &ich8_mac_ops,
5939 .phy_ops = &ich8_phy_ops,
5940 .nvm_ops = &spt_nvm_ops,