GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46         struct ich8_hsfsts {
47                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
48                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
49                 u16 dael:1;     /* bit 2 Direct Access error Log */
50                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
52                 u16 reserved1:2;        /* bit 13:6 Reserved */
53                 u16 reserved2:6;        /* bit 13:6 Reserved */
54                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
55                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
56         } hsf_status;
57         u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63         struct ich8_hsflctl {
64                 u16 flcgo:1;    /* 0 Flash Cycle Go */
65                 u16 flcycle:2;  /* 2:1 Flash Cycle */
66                 u16 reserved:5; /* 7:3 Reserved  */
67                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
68                 u16 flockdn:6;  /* 15:10 Reserved */
69         } hsf_ctrl;
70         u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75         struct ich8_flracc {
76                 u32 grra:8;     /* 0:7 GbE region Read Access */
77                 u32 grwa:8;     /* 8:15 GbE region Write Access */
78                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
79                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
80         } hsf_flregacc;
81         u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86         struct ich8_pr {
87                 u32 base:13;    /* 0:12 Protected Range Base */
88                 u32 reserved1:2;        /* 13:14 Reserved */
89                 u32 rpe:1;      /* 15 Read Protection Enable */
90                 u32 limit:13;   /* 16:28 Protected Range Limit */
91                 u32 reserved2:2;        /* 29:30 Reserved */
92                 u32 wpe:1;      /* 31 Write Protection Enable */
93         } range;
94         u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101                                                 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103                                          u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105                                          u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107                                          u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109                                            u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111                                           u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113                                             u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115                                                  u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143         return readw(hw->flash_address + reg);
144 }
145
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readl(hw->flash_address + reg);
149 }
150
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153         writew(val, hw->flash_address + reg);
154 }
155
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158         writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg)          __er16flash(hw, (reg))
162 #define er32flash(reg)          __er32flash(hw, (reg))
163 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
165
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178         u16 phy_reg = 0;
179         u32 phy_id = 0;
180         s32 ret_val = 0;
181         u16 retry_count;
182         u32 mac_reg = 0;
183
184         for (retry_count = 0; retry_count < 2; retry_count++) {
185                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186                 if (ret_val || (phy_reg == 0xFFFF))
187                         continue;
188                 phy_id = (u32)(phy_reg << 16);
189
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF)) {
192                         phy_id = 0;
193                         continue;
194                 }
195                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196                 break;
197         }
198
199         if (hw->phy.id) {
200                 if (hw->phy.id == phy_id)
201                         goto out;
202         } else if (phy_id) {
203                 hw->phy.id = phy_id;
204                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205                 goto out;
206         }
207
208         /* In case the PHY needs to be in mdio slow mode,
209          * set slow mode and try to get the PHY id again.
210          */
211         if (hw->mac.type < e1000_pch_lpt) {
212                 hw->phy.ops.release(hw);
213                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214                 if (!ret_val)
215                         ret_val = e1000e_get_phy_id(hw);
216                 hw->phy.ops.acquire(hw);
217         }
218
219         if (ret_val)
220                 return false;
221 out:
222         if (hw->mac.type >= e1000_pch_lpt) {
223                 /* Only unforce SMBus if ME is not active */
224                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225                         /* Unforce SMBus mode in PHY */
226                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230                         /* Unforce SMBus mode in MAC */
231                         mac_reg = er32(CTRL_EXT);
232                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233                         ew32(CTRL_EXT, mac_reg);
234                 }
235         }
236
237         return true;
238 }
239
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249         u32 mac_reg;
250
251         /* Set Phy Config Counter to 50msec */
252         mac_reg = er32(FEXTNVM3);
253         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255         ew32(FEXTNVM3, mac_reg);
256
257         /* Toggle LANPHYPC Value bit */
258         mac_reg = er32(CTRL);
259         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261         ew32(CTRL, mac_reg);
262         e1e_flush();
263         usleep_range(10, 20);
264         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267
268         if (hw->mac.type < e1000_pch_lpt) {
269                 msleep(50);
270         } else {
271                 u16 count = 20;
272
273                 do {
274                         usleep_range(5000, 6000);
275                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277                 msleep(30);
278         }
279 }
280
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290         struct e1000_adapter *adapter = hw->adapter;
291         u32 mac_reg, fwsm = er32(FWSM);
292         s32 ret_val;
293
294         /* Gate automatic PHY configuration by hardware on managed and
295          * non-managed 82579 and newer adapters.
296          */
297         e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299         /* It is not possible to be certain of the current state of ULP
300          * so forcibly disable it.
301          */
302         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303         ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304         if (ret_val)
305                 e_warn("Failed to disable ULP\n");
306
307         ret_val = hw->phy.ops.acquire(hw);
308         if (ret_val) {
309                 e_dbg("Failed to initialize PHY flow\n");
310                 goto out;
311         }
312
313         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314          * inaccessible and resetting the PHY is not blocked, toggle the
315          * LANPHYPC Value bit to force the interconnect to PCIe mode.
316          */
317         switch (hw->mac.type) {
318         case e1000_pch_lpt:
319         case e1000_pch_spt:
320         case e1000_pch_cnp:
321         case e1000_pch_tgp:
322         case e1000_pch_adp:
323         case e1000_pch_mtp:
324                 if (e1000_phy_is_accessible_pchlan(hw))
325                         break;
326
327                 /* Before toggling LANPHYPC, see if PHY is accessible by
328                  * forcing MAC to SMBus mode first.
329                  */
330                 mac_reg = er32(CTRL_EXT);
331                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332                 ew32(CTRL_EXT, mac_reg);
333
334                 /* Wait 50 milliseconds for MAC to finish any retries
335                  * that it might be trying to perform from previous
336                  * attempts to acknowledge any phy read requests.
337                  */
338                 msleep(50);
339
340                 fallthrough;
341         case e1000_pch2lan:
342                 if (e1000_phy_is_accessible_pchlan(hw))
343                         break;
344
345                 fallthrough;
346         case e1000_pchlan:
347                 if ((hw->mac.type == e1000_pchlan) &&
348                     (fwsm & E1000_ICH_FWSM_FW_VALID))
349                         break;
350
351                 if (hw->phy.ops.check_reset_block(hw)) {
352                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
353                         ret_val = -E1000_ERR_PHY;
354                         break;
355                 }
356
357                 /* Toggle LANPHYPC Value bit */
358                 e1000_toggle_lanphypc_pch_lpt(hw);
359                 if (hw->mac.type >= e1000_pch_lpt) {
360                         if (e1000_phy_is_accessible_pchlan(hw))
361                                 break;
362
363                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
364                          * so ensure that the MAC is also out of SMBus mode
365                          */
366                         mac_reg = er32(CTRL_EXT);
367                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368                         ew32(CTRL_EXT, mac_reg);
369
370                         if (e1000_phy_is_accessible_pchlan(hw))
371                                 break;
372
373                         ret_val = -E1000_ERR_PHY;
374                 }
375                 break;
376         default:
377                 break;
378         }
379
380         hw->phy.ops.release(hw);
381         if (!ret_val) {
382
383                 /* Check to see if able to reset PHY.  Print error if not */
384                 if (hw->phy.ops.check_reset_block(hw)) {
385                         e_err("Reset blocked by ME\n");
386                         goto out;
387                 }
388
389                 /* Reset the PHY before any access to it.  Doing so, ensures
390                  * that the PHY is in a known good state before we read/write
391                  * PHY registers.  The generic reset is sufficient here,
392                  * because we haven't determined the PHY type yet.
393                  */
394                 ret_val = e1000e_phy_hw_reset_generic(hw);
395                 if (ret_val)
396                         goto out;
397
398                 /* On a successful reset, possibly need to wait for the PHY
399                  * to quiesce to an accessible state before returning control
400                  * to the calling function.  If the PHY does not quiesce, then
401                  * return E1000E_BLK_PHY_RESET, as this is the condition that
402                  *  the PHY is in.
403                  */
404                 ret_val = hw->phy.ops.check_reset_block(hw);
405                 if (ret_val)
406                         e_err("ME blocked access to PHY after reset\n");
407         }
408
409 out:
410         /* Ungate automatic PHY configuration on non-managed 82579 */
411         if ((hw->mac.type == e1000_pch2lan) &&
412             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413                 usleep_range(10000, 11000);
414                 e1000_gate_hw_phy_config_ich8lan(hw, false);
415         }
416
417         return ret_val;
418 }
419
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428         struct e1000_phy_info *phy = &hw->phy;
429         s32 ret_val;
430
431         phy->addr = 1;
432         phy->reset_delay_us = 100;
433
434         phy->ops.set_page = e1000_set_page_igp;
435         phy->ops.read_reg = e1000_read_phy_reg_hv;
436         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440         phy->ops.write_reg = e1000_write_phy_reg_hv;
441         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443         phy->ops.power_up = e1000_power_up_phy_copper;
444         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446
447         phy->id = e1000_phy_unknown;
448
449         ret_val = e1000_init_phy_workarounds_pchlan(hw);
450         if (ret_val)
451                 return ret_val;
452
453         if (phy->id == e1000_phy_unknown)
454                 switch (hw->mac.type) {
455                 default:
456                         ret_val = e1000e_get_phy_id(hw);
457                         if (ret_val)
458                                 return ret_val;
459                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460                                 break;
461                         fallthrough;
462                 case e1000_pch2lan:
463                 case e1000_pch_lpt:
464                 case e1000_pch_spt:
465                 case e1000_pch_cnp:
466                 case e1000_pch_tgp:
467                 case e1000_pch_adp:
468                 case e1000_pch_mtp:
469                         /* In case the PHY needs to be in mdio slow mode,
470                          * set slow mode and try to get the PHY id again.
471                          */
472                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
473                         if (ret_val)
474                                 return ret_val;
475                         ret_val = e1000e_get_phy_id(hw);
476                         if (ret_val)
477                                 return ret_val;
478                         break;
479                 }
480         phy->type = e1000e_get_phy_type_from_id(phy->id);
481
482         switch (phy->type) {
483         case e1000_phy_82577:
484         case e1000_phy_82579:
485         case e1000_phy_i217:
486                 phy->ops.check_polarity = e1000_check_polarity_82577;
487                 phy->ops.force_speed_duplex =
488                     e1000_phy_force_speed_duplex_82577;
489                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
490                 phy->ops.get_info = e1000_get_phy_info_82577;
491                 phy->ops.commit = e1000e_phy_sw_reset;
492                 break;
493         case e1000_phy_82578:
494                 phy->ops.check_polarity = e1000_check_polarity_m88;
495                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497                 phy->ops.get_info = e1000e_get_phy_info_m88;
498                 break;
499         default:
500                 ret_val = -E1000_ERR_PHY;
501                 break;
502         }
503
504         return ret_val;
505 }
506
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515         struct e1000_phy_info *phy = &hw->phy;
516         s32 ret_val;
517         u16 i = 0;
518
519         phy->addr = 1;
520         phy->reset_delay_us = 100;
521
522         phy->ops.power_up = e1000_power_up_phy_copper;
523         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524
525         /* We may need to do this twice - once for IGP and if that fails,
526          * we'll set BM func pointers and try again
527          */
528         ret_val = e1000e_determine_phy_address(hw);
529         if (ret_val) {
530                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
531                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
532                 ret_val = e1000e_determine_phy_address(hw);
533                 if (ret_val) {
534                         e_dbg("Cannot determine PHY addr. Erroring out\n");
535                         return ret_val;
536                 }
537         }
538
539         phy->id = 0;
540         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541                (i++ < 100)) {
542                 usleep_range(1000, 1100);
543                 ret_val = e1000e_get_phy_id(hw);
544                 if (ret_val)
545                         return ret_val;
546         }
547
548         /* Verify phy id */
549         switch (phy->id) {
550         case IGP03E1000_E_PHY_ID:
551                 phy->type = e1000_phy_igp_3;
552                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555                 phy->ops.get_info = e1000e_get_phy_info_igp;
556                 phy->ops.check_polarity = e1000_check_polarity_igp;
557                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558                 break;
559         case IFE_E_PHY_ID:
560         case IFE_PLUS_E_PHY_ID:
561         case IFE_C_E_PHY_ID:
562                 phy->type = e1000_phy_ife;
563                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
564                 phy->ops.get_info = e1000_get_phy_info_ife;
565                 phy->ops.check_polarity = e1000_check_polarity_ife;
566                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567                 break;
568         case BME1000_E_PHY_ID:
569                 phy->type = e1000_phy_bm;
570                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
572                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
573                 phy->ops.commit = e1000e_phy_sw_reset;
574                 phy->ops.get_info = e1000e_get_phy_info_m88;
575                 phy->ops.check_polarity = e1000_check_polarity_m88;
576                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577                 break;
578         default:
579                 return -E1000_ERR_PHY;
580         }
581
582         return 0;
583 }
584
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594         struct e1000_nvm_info *nvm = &hw->nvm;
595         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596         u32 gfpreg, sector_base_addr, sector_end_addr;
597         u16 i;
598         u32 nvm_size;
599
600         nvm->type = e1000_nvm_flash_sw;
601
602         if (hw->mac.type >= e1000_pch_spt) {
603                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
604                  * STRAP register. This is because in SPT the GbE Flash region
605                  * is no longer accessed through the flash registers. Instead,
606                  * the mechanism has changed, and the Flash region access
607                  * registers are now implemented in GbE memory space.
608                  */
609                 nvm->flash_base_addr = 0;
610                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611                     * NVM_SIZE_MULTIPLIER;
612                 nvm->flash_bank_size = nvm_size / 2;
613                 /* Adjust to word count */
614                 nvm->flash_bank_size /= sizeof(u16);
615                 /* Set the base address for flash register access */
616                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617         } else {
618                 /* Can't read flash registers if register set isn't mapped. */
619                 if (!hw->flash_address) {
620                         e_dbg("ERROR: Flash registers not mapped\n");
621                         return -E1000_ERR_CONFIG;
622                 }
623
624                 gfpreg = er32flash(ICH_FLASH_GFPREG);
625
626                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
627                  * Add 1 to sector_end_addr since this sector is included in
628                  * the overall size.
629                  */
630                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632
633                 /* flash_base_addr is byte-aligned */
634                 nvm->flash_base_addr = sector_base_addr
635                     << FLASH_SECTOR_ADDR_SHIFT;
636
637                 /* find total size of the NVM, then cut in half since the total
638                  * size represents two separate NVM banks.
639                  */
640                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641                                         << FLASH_SECTOR_ADDR_SHIFT);
642                 nvm->flash_bank_size /= 2;
643                 /* Adjust to word count */
644                 nvm->flash_bank_size /= sizeof(u16);
645         }
646
647         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648
649         /* Clear shadow ram */
650         for (i = 0; i < nvm->word_size; i++) {
651                 dev_spec->shadow_ram[i].modified = false;
652                 dev_spec->shadow_ram[i].value = 0xFFFF;
653         }
654
655         return 0;
656 }
657
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667         struct e1000_mac_info *mac = &hw->mac;
668
669         /* Set media type function pointer */
670         hw->phy.media_type = e1000_media_type_copper;
671
672         /* Set mta register count */
673         mac->mta_reg_count = 32;
674         /* Set rar entry count */
675         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676         if (mac->type == e1000_ich8lan)
677                 mac->rar_entry_count--;
678         /* FWSM register */
679         mac->has_fwsm = true;
680         /* ARC subsystem not supported */
681         mac->arc_subsystem_valid = false;
682         /* Adaptive IFS supported */
683         mac->adaptive_ifs = true;
684
685         /* LED and other operations */
686         switch (mac->type) {
687         case e1000_ich8lan:
688         case e1000_ich9lan:
689         case e1000_ich10lan:
690                 /* check management mode */
691                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692                 /* ID LED init */
693                 mac->ops.id_led_init = e1000e_id_led_init_generic;
694                 /* blink LED */
695                 mac->ops.blink_led = e1000e_blink_led_generic;
696                 /* setup LED */
697                 mac->ops.setup_led = e1000e_setup_led_generic;
698                 /* cleanup LED */
699                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700                 /* turn on/off LED */
701                 mac->ops.led_on = e1000_led_on_ich8lan;
702                 mac->ops.led_off = e1000_led_off_ich8lan;
703                 break;
704         case e1000_pch2lan:
705                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706                 mac->ops.rar_set = e1000_rar_set_pch2lan;
707                 fallthrough;
708         case e1000_pch_lpt:
709         case e1000_pch_spt:
710         case e1000_pch_cnp:
711         case e1000_pch_tgp:
712         case e1000_pch_adp:
713         case e1000_pch_mtp:
714         case e1000_pchlan:
715                 /* check management mode */
716                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717                 /* ID LED init */
718                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
719                 /* setup LED */
720                 mac->ops.setup_led = e1000_setup_led_pchlan;
721                 /* cleanup LED */
722                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723                 /* turn on/off LED */
724                 mac->ops.led_on = e1000_led_on_pchlan;
725                 mac->ops.led_off = e1000_led_off_pchlan;
726                 break;
727         default:
728                 break;
729         }
730
731         if (mac->type >= e1000_pch_lpt) {
732                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
734                 mac->ops.setup_physical_interface =
735                     e1000_setup_copper_link_pch_lpt;
736                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737         }
738
739         /* Enable PCS Lock-loss workaround for ICH8 */
740         if (mac->type == e1000_ich8lan)
741                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742
743         return 0;
744 }
745
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756                                          u16 *data, bool read)
757 {
758         s32 ret_val;
759
760         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761         if (ret_val)
762                 return ret_val;
763
764         if (read)
765                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766         else
767                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768
769         return ret_val;
770 }
771
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782         return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815         s32 ret_val;
816         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817
818         switch (hw->phy.type) {
819         case e1000_phy_82579:
820                 lpa = I82579_EEE_LP_ABILITY;
821                 pcs_status = I82579_EEE_PCS_STATUS;
822                 adv_addr = I82579_EEE_ADVERTISEMENT;
823                 break;
824         case e1000_phy_i217:
825                 lpa = I217_EEE_LP_ABILITY;
826                 pcs_status = I217_EEE_PCS_STATUS;
827                 adv_addr = I217_EEE_ADVERTISEMENT;
828                 break;
829         default:
830                 return 0;
831         }
832
833         ret_val = hw->phy.ops.acquire(hw);
834         if (ret_val)
835                 return ret_val;
836
837         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838         if (ret_val)
839                 goto release;
840
841         /* Clear bits that enable EEE in various speeds */
842         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843
844         /* Enable EEE if not disabled by user */
845         if (!dev_spec->eee_disable) {
846                 /* Save off link partner's EEE ability */
847                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
848                                                     &dev_spec->eee_lp_ability);
849                 if (ret_val)
850                         goto release;
851
852                 /* Read EEE advertisement */
853                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854                 if (ret_val)
855                         goto release;
856
857                 /* Enable EEE only for speeds in which the link partner is
858                  * EEE capable and for which we advertise EEE.
859                  */
860                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862
863                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864                         e1e_rphy_locked(hw, MII_LPA, &data);
865                         if (data & LPA_100FULL)
866                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867                         else
868                                 /* EEE is not supported in 100Half, so ignore
869                                  * partner's EEE in 100 ability if full-duplex
870                                  * is not advertised.
871                                  */
872                                 dev_spec->eee_lp_ability &=
873                                     ~I82579_EEE_100_SUPPORTED;
874                 }
875         }
876
877         if (hw->phy.type == e1000_phy_82579) {
878                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879                                                     &data);
880                 if (ret_val)
881                         goto release;
882
883                 data &= ~I82579_LPI_100_PLL_SHUT;
884                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885                                                      data);
886         }
887
888         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890         if (ret_val)
891                 goto release;
892
893         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895         hw->phy.ops.release(hw);
896
897         return ret_val;
898 }
899
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913         u32 fextnvm6 = er32(FEXTNVM6);
914         u32 status = er32(STATUS);
915         s32 ret_val = 0;
916         u16 reg;
917
918         if (link && (status & E1000_STATUS_SPEED_1000)) {
919                 ret_val = hw->phy.ops.acquire(hw);
920                 if (ret_val)
921                         return ret_val;
922
923                 ret_val =
924                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925                                                 &reg);
926                 if (ret_val)
927                         goto release;
928
929                 ret_val =
930                     e1000e_write_kmrn_reg_locked(hw,
931                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
932                                                  reg &
933                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
934                 if (ret_val)
935                         goto release;
936
937                 usleep_range(10, 20);
938
939                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940
941                 ret_val =
942                     e1000e_write_kmrn_reg_locked(hw,
943                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
944                                                  reg);
945 release:
946                 hw->phy.ops.release(hw);
947         } else {
948                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
949                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950
951                 if ((hw->phy.revision > 5) || !link ||
952                     ((status & E1000_STATUS_SPEED_100) &&
953                      (status & E1000_STATUS_FD)))
954                         goto update_fextnvm6;
955
956                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957                 if (ret_val)
958                         return ret_val;
959
960                 /* Clear link status transmit timeout */
961                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962
963                 if (status & E1000_STATUS_SPEED_100) {
964                         /* Set inband Tx timeout to 5x10us for 100Half */
965                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966
967                         /* Do not extend the K1 entry latency for 100Half */
968                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969                 } else {
970                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
971                         reg |= 50 <<
972                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974                         /* Extend the K1 entry latency for 10 Mbps */
975                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976                 }
977
978                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979                 if (ret_val)
980                         return ret_val;
981
982 update_fextnvm6:
983                 ew32(FEXTNVM6, fextnvm6);
984         }
985
986         return ret_val;
987 }
988
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009         u32 max_ltr_enc_d = 0;  /* maximum LTR decoded by platform */
1010         u32 lat_enc_d = 0;      /* latency decoded */
1011         u16 lat_enc = 0;        /* latency encoded */
1012
1013         if (link) {
1014                 u16 speed, duplex, scale = 0;
1015                 u16 max_snoop, max_nosnoop;
1016                 u16 max_ltr_enc;        /* max LTR latency encoded */
1017                 u64 value;
1018                 u32 rxa;
1019
1020                 if (!hw->adapter->max_frame_size) {
1021                         e_dbg("max_frame_size not set.\n");
1022                         return -E1000_ERR_CONFIG;
1023                 }
1024
1025                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1026                 if (!speed) {
1027                         e_dbg("Speed not set.\n");
1028                         return -E1000_ERR_CONFIG;
1029                 }
1030
1031                 /* Rx Packet Buffer Allocation size (KB) */
1032                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1033
1034                 /* Determine the maximum latency tolerated by the device.
1035                  *
1036                  * Per the PCIe spec, the tolerated latencies are encoded as
1037                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1038                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1039                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1040                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1041                  */
1042                 rxa *= 512;
1043                 value = (rxa > hw->adapter->max_frame_size) ?
1044                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1045                         0;
1046
1047                 while (value > PCI_LTR_VALUE_MASK) {
1048                         scale++;
1049                         value = DIV_ROUND_UP(value, BIT(5));
1050                 }
1051                 if (scale > E1000_LTRV_SCALE_MAX) {
1052                         e_dbg("Invalid LTR latency scale %d\n", scale);
1053                         return -E1000_ERR_CONFIG;
1054                 }
1055                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1056
1057                 /* Determine the maximum latency tolerated by the platform */
1058                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1059                                      &max_snoop);
1060                 pci_read_config_word(hw->adapter->pdev,
1061                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1062                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1063
1064                 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1065                              (1U << (E1000_LTRV_SCALE_FACTOR *
1066                              ((lat_enc & E1000_LTRV_SCALE_MASK)
1067                              >> E1000_LTRV_SCALE_SHIFT)));
1068
1069                 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1070                                  (1U << (E1000_LTRV_SCALE_FACTOR *
1071                                  ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1072                                  >> E1000_LTRV_SCALE_SHIFT)));
1073
1074                 if (lat_enc_d > max_ltr_enc_d)
1075                         lat_enc = max_ltr_enc;
1076         }
1077
1078         /* Set Snoop and No-Snoop latencies the same */
1079         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1080         ew32(LTRV, reg);
1081
1082         return 0;
1083 }
1084
1085 /**
1086  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1087  *  @hw: pointer to the HW structure
1088  *  @to_sx: boolean indicating a system power state transition to Sx
1089  *
1090  *  When link is down, configure ULP mode to significantly reduce the power
1091  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1092  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1093  *  system, configure the ULP mode by software.
1094  */
1095 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1096 {
1097         u32 mac_reg;
1098         s32 ret_val = 0;
1099         u16 phy_reg;
1100         u16 oem_reg = 0;
1101
1102         if ((hw->mac.type < e1000_pch_lpt) ||
1103             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1104             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1105             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1106             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1107             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1108                 return 0;
1109
1110         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1111                 /* Request ME configure ULP mode in the PHY */
1112                 mac_reg = er32(H2ME);
1113                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1114                 ew32(H2ME, mac_reg);
1115
1116                 goto out;
1117         }
1118
1119         if (!to_sx) {
1120                 int i = 0;
1121
1122                 /* Poll up to 5 seconds for Cable Disconnected indication */
1123                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1124                         /* Bail if link is re-acquired */
1125                         if (er32(STATUS) & E1000_STATUS_LU)
1126                                 return -E1000_ERR_PHY;
1127
1128                         if (i++ == 100)
1129                                 break;
1130
1131                         msleep(50);
1132                 }
1133                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1134                       (er32(FEXT) &
1135                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1136         }
1137
1138         ret_val = hw->phy.ops.acquire(hw);
1139         if (ret_val)
1140                 goto out;
1141
1142         /* Force SMBus mode in PHY */
1143         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1144         if (ret_val)
1145                 goto release;
1146         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1147         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1148
1149         /* Force SMBus mode in MAC */
1150         mac_reg = er32(CTRL_EXT);
1151         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1152         ew32(CTRL_EXT, mac_reg);
1153
1154         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1155          * LPLU and disable Gig speed when entering ULP
1156          */
1157         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1158                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159                                                        &oem_reg);
1160                 if (ret_val)
1161                         goto release;
1162
1163                 phy_reg = oem_reg;
1164                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1165
1166                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1167                                                         phy_reg);
1168
1169                 if (ret_val)
1170                         goto release;
1171         }
1172
1173         /* Set Inband ULP Exit, Reset to SMBus mode and
1174          * Disable SMBus Release on PERST# in PHY
1175          */
1176         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1177         if (ret_val)
1178                 goto release;
1179         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1180                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1181         if (to_sx) {
1182                 if (er32(WUFC) & E1000_WUFC_LNKC)
1183                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1184                 else
1185                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1186
1187                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1188                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1189         } else {
1190                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1191                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1192                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193         }
1194         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1195
1196         /* Set Disable SMBus Release on PERST# in MAC */
1197         mac_reg = er32(FEXTNVM7);
1198         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1199         ew32(FEXTNVM7, mac_reg);
1200
1201         /* Commit ULP changes in PHY by starting auto ULP configuration */
1202         phy_reg |= I218_ULP_CONFIG1_START;
1203         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204
1205         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1206             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1207                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1208                                                         oem_reg);
1209                 if (ret_val)
1210                         goto release;
1211         }
1212
1213 release:
1214         hw->phy.ops.release(hw);
1215 out:
1216         if (ret_val)
1217                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1218         else
1219                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1220
1221         return ret_val;
1222 }
1223
1224 /**
1225  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1226  *  @hw: pointer to the HW structure
1227  *  @force: boolean indicating whether or not to force disabling ULP
1228  *
1229  *  Un-configure ULP mode when link is up, the system is transitioned from
1230  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1231  *  system, poll for an indication from ME that ULP has been un-configured.
1232  *  If not on an ME enabled system, un-configure the ULP mode by software.
1233  *
1234  *  During nominal operation, this function is called when link is acquired
1235  *  to disable ULP mode (force=false); otherwise, for example when unloading
1236  *  the driver or during Sx->S0 transitions, this is called with force=true
1237  *  to forcibly disable ULP.
1238  */
1239 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1240 {
1241         s32 ret_val = 0;
1242         u32 mac_reg;
1243         u16 phy_reg;
1244         int i = 0;
1245
1246         if ((hw->mac.type < e1000_pch_lpt) ||
1247             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1248             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1249             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1250             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1251             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1252                 return 0;
1253
1254         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1255                 struct e1000_adapter *adapter = hw->adapter;
1256                 bool firmware_bug = false;
1257
1258                 if (force) {
1259                         /* Request ME un-configure ULP mode in the PHY */
1260                         mac_reg = er32(H2ME);
1261                         mac_reg &= ~E1000_H2ME_ULP;
1262                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1263                         ew32(H2ME, mac_reg);
1264                 }
1265
1266                 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1267                  * If this takes more than 1 second, show a warning indicating a
1268                  * firmware bug
1269                  */
1270                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1271                         if (i++ == 250) {
1272                                 ret_val = -E1000_ERR_PHY;
1273                                 goto out;
1274                         }
1275                         if (i > 100 && !firmware_bug)
1276                                 firmware_bug = true;
1277
1278                         usleep_range(10000, 11000);
1279                 }
1280                 if (firmware_bug)
1281                         e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
1282                 else
1283                         e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1284
1285                 if (force) {
1286                         mac_reg = er32(H2ME);
1287                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1288                         ew32(H2ME, mac_reg);
1289                 } else {
1290                         /* Clear H2ME.ULP after ME ULP configuration */
1291                         mac_reg = er32(H2ME);
1292                         mac_reg &= ~E1000_H2ME_ULP;
1293                         ew32(H2ME, mac_reg);
1294                 }
1295
1296                 goto out;
1297         }
1298
1299         ret_val = hw->phy.ops.acquire(hw);
1300         if (ret_val)
1301                 goto out;
1302
1303         if (force)
1304                 /* Toggle LANPHYPC Value bit */
1305                 e1000_toggle_lanphypc_pch_lpt(hw);
1306
1307         /* Unforce SMBus mode in PHY */
1308         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309         if (ret_val) {
1310                 /* The MAC might be in PCIe mode, so temporarily force to
1311                  * SMBus mode in order to access the PHY.
1312                  */
1313                 mac_reg = er32(CTRL_EXT);
1314                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1315                 ew32(CTRL_EXT, mac_reg);
1316
1317                 msleep(50);
1318
1319                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1320                                                        &phy_reg);
1321                 if (ret_val)
1322                         goto release;
1323         }
1324         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1325         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326
1327         /* Unforce SMBus mode in MAC */
1328         mac_reg = er32(CTRL_EXT);
1329         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1330         ew32(CTRL_EXT, mac_reg);
1331
1332         /* When ULP mode was previously entered, K1 was disabled by the
1333          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1334          */
1335         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1336         if (ret_val)
1337                 goto release;
1338         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1339         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1340
1341         /* Clear ULP enabled configuration */
1342         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1343         if (ret_val)
1344                 goto release;
1345         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1346                      I218_ULP_CONFIG1_STICKY_ULP |
1347                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1348                      I218_ULP_CONFIG1_WOL_HOST |
1349                      I218_ULP_CONFIG1_INBAND_EXIT |
1350                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1351                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1352                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1353         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1354
1355         /* Commit ULP changes by starting auto ULP configuration */
1356         phy_reg |= I218_ULP_CONFIG1_START;
1357         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1358
1359         /* Clear Disable SMBus Release on PERST# in MAC */
1360         mac_reg = er32(FEXTNVM7);
1361         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1362         ew32(FEXTNVM7, mac_reg);
1363
1364 release:
1365         hw->phy.ops.release(hw);
1366         if (force) {
1367                 e1000_phy_hw_reset(hw);
1368                 msleep(50);
1369         }
1370 out:
1371         if (ret_val)
1372                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1373         else
1374                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1375
1376         return ret_val;
1377 }
1378
1379 /**
1380  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  Checks to see of the link status of the hardware has changed.  If a
1384  *  change in link status has been detected, then we read the PHY registers
1385  *  to get the current speed/duplex if link exists.
1386  **/
1387 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1388 {
1389         struct e1000_mac_info *mac = &hw->mac;
1390         s32 ret_val, tipg_reg = 0;
1391         u16 emi_addr, emi_val = 0;
1392         bool link;
1393         u16 phy_reg;
1394
1395         /* We only want to go out to the PHY registers to see if Auto-Neg
1396          * has completed and/or if our link status has changed.  The
1397          * get_link_status flag is set upon receiving a Link Status
1398          * Change or Rx Sequence Error interrupt.
1399          */
1400         if (!mac->get_link_status)
1401                 return 0;
1402         mac->get_link_status = false;
1403
1404         /* First we want to see if the MII Status Register reports
1405          * link.  If so, then we want to get the current speed/duplex
1406          * of the PHY.
1407          */
1408         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1409         if (ret_val)
1410                 goto out;
1411
1412         if (hw->mac.type == e1000_pchlan) {
1413                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1414                 if (ret_val)
1415                         goto out;
1416         }
1417
1418         /* When connected at 10Mbps half-duplex, some parts are excessively
1419          * aggressive resulting in many collisions. To avoid this, increase
1420          * the IPG and reduce Rx latency in the PHY.
1421          */
1422         if ((hw->mac.type >= e1000_pch2lan) && link) {
1423                 u16 speed, duplex;
1424
1425                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1426                 tipg_reg = er32(TIPG);
1427                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1428
1429                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1430                         tipg_reg |= 0xFF;
1431                         /* Reduce Rx latency in analog PHY */
1432                         emi_val = 0;
1433                 } else if (hw->mac.type >= e1000_pch_spt &&
1434                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1435                         tipg_reg |= 0xC;
1436                         emi_val = 1;
1437                 } else {
1438
1439                         /* Roll back the default values */
1440                         tipg_reg |= 0x08;
1441                         emi_val = 1;
1442                 }
1443
1444                 ew32(TIPG, tipg_reg);
1445
1446                 ret_val = hw->phy.ops.acquire(hw);
1447                 if (ret_val)
1448                         goto out;
1449
1450                 if (hw->mac.type == e1000_pch2lan)
1451                         emi_addr = I82579_RX_CONFIG;
1452                 else
1453                         emi_addr = I217_RX_CONFIG;
1454                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1455
1456                 if (hw->mac.type >= e1000_pch_lpt) {
1457                         u16 phy_reg;
1458
1459                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1460                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1461                         if (speed == SPEED_100 || speed == SPEED_10)
1462                                 phy_reg |= 0x3E8;
1463                         else
1464                                 phy_reg |= 0xFA;
1465                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1466
1467                         if (speed == SPEED_1000) {
1468                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1469                                                             &phy_reg);
1470
1471                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1472
1473                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1474                                                              phy_reg);
1475                         }
1476                 }
1477                 hw->phy.ops.release(hw);
1478
1479                 if (ret_val)
1480                         goto out;
1481
1482                 if (hw->mac.type >= e1000_pch_spt) {
1483                         u16 data;
1484                         u16 ptr_gap;
1485
1486                         if (speed == SPEED_1000) {
1487                                 ret_val = hw->phy.ops.acquire(hw);
1488                                 if (ret_val)
1489                                         goto out;
1490
1491                                 ret_val = e1e_rphy_locked(hw,
1492                                                           PHY_REG(776, 20),
1493                                                           &data);
1494                                 if (ret_val) {
1495                                         hw->phy.ops.release(hw);
1496                                         goto out;
1497                                 }
1498
1499                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1500                                 if (ptr_gap < 0x18) {
1501                                         data &= ~(0x3FF << 2);
1502                                         data |= (0x18 << 2);
1503                                         ret_val =
1504                                             e1e_wphy_locked(hw,
1505                                                             PHY_REG(776, 20),
1506                                                             data);
1507                                 }
1508                                 hw->phy.ops.release(hw);
1509                                 if (ret_val)
1510                                         goto out;
1511                         } else {
1512                                 ret_val = hw->phy.ops.acquire(hw);
1513                                 if (ret_val)
1514                                         goto out;
1515
1516                                 ret_val = e1e_wphy_locked(hw,
1517                                                           PHY_REG(776, 20),
1518                                                           0xC023);
1519                                 hw->phy.ops.release(hw);
1520                                 if (ret_val)
1521                                         goto out;
1522
1523                         }
1524                 }
1525         }
1526
1527         /* I217 Packet Loss issue:
1528          * ensure that FEXTNVM4 Beacon Duration is set correctly
1529          * on power up.
1530          * Set the Beacon Duration for I217 to 8 usec
1531          */
1532         if (hw->mac.type >= e1000_pch_lpt) {
1533                 u32 mac_reg;
1534
1535                 mac_reg = er32(FEXTNVM4);
1536                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1537                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1538                 ew32(FEXTNVM4, mac_reg);
1539         }
1540
1541         /* Work-around I218 hang issue */
1542         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1543             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1544             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1545             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1546                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1547                 if (ret_val)
1548                         goto out;
1549         }
1550         if (hw->mac.type >= e1000_pch_lpt) {
1551                 /* Set platform power management values for
1552                  * Latency Tolerance Reporting (LTR)
1553                  */
1554                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1555                 if (ret_val)
1556                         goto out;
1557         }
1558
1559         /* Clear link partner's EEE ability */
1560         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1561
1562         if (hw->mac.type >= e1000_pch_lpt) {
1563                 u32 fextnvm6 = er32(FEXTNVM6);
1564
1565                 if (hw->mac.type == e1000_pch_spt) {
1566                         /* FEXTNVM6 K1-off workaround - for SPT only */
1567                         u32 pcieanacfg = er32(PCIEANACFG);
1568
1569                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1570                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1571                         else
1572                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1573                 }
1574
1575                 ew32(FEXTNVM6, fextnvm6);
1576         }
1577
1578         if (!link)
1579                 goto out;
1580
1581         switch (hw->mac.type) {
1582         case e1000_pch2lan:
1583                 ret_val = e1000_k1_workaround_lv(hw);
1584                 if (ret_val)
1585                         return ret_val;
1586                 fallthrough;
1587         case e1000_pchlan:
1588                 if (hw->phy.type == e1000_phy_82578) {
1589                         ret_val = e1000_link_stall_workaround_hv(hw);
1590                         if (ret_val)
1591                                 return ret_val;
1592                 }
1593
1594                 /* Workaround for PCHx parts in half-duplex:
1595                  * Set the number of preambles removed from the packet
1596                  * when it is passed from the PHY to the MAC to prevent
1597                  * the MAC from misinterpreting the packet type.
1598                  */
1599                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1600                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1601
1602                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1603                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1604
1605                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1606                 break;
1607         default:
1608                 break;
1609         }
1610
1611         /* Check if there was DownShift, must be checked
1612          * immediately after link-up
1613          */
1614         e1000e_check_downshift(hw);
1615
1616         /* Enable/Disable EEE after link up */
1617         if (hw->phy.type > e1000_phy_82579) {
1618                 ret_val = e1000_set_eee_pchlan(hw);
1619                 if (ret_val)
1620                         return ret_val;
1621         }
1622
1623         /* If we are forcing speed/duplex, then we simply return since
1624          * we have already determined whether we have link or not.
1625          */
1626         if (!mac->autoneg)
1627                 return -E1000_ERR_CONFIG;
1628
1629         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1630          * of MAC speed/duplex configuration.  So we only need to
1631          * configure Collision Distance in the MAC.
1632          */
1633         mac->ops.config_collision_dist(hw);
1634
1635         /* Configure Flow Control now that Auto-Neg has completed.
1636          * First, we need to restore the desired flow control
1637          * settings because we may have had to re-autoneg with a
1638          * different link partner.
1639          */
1640         ret_val = e1000e_config_fc_after_link_up(hw);
1641         if (ret_val)
1642                 e_dbg("Error configuring flow control\n");
1643
1644         return ret_val;
1645
1646 out:
1647         mac->get_link_status = true;
1648         return ret_val;
1649 }
1650
1651 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1652 {
1653         struct e1000_hw *hw = &adapter->hw;
1654         s32 rc;
1655
1656         rc = e1000_init_mac_params_ich8lan(hw);
1657         if (rc)
1658                 return rc;
1659
1660         rc = e1000_init_nvm_params_ich8lan(hw);
1661         if (rc)
1662                 return rc;
1663
1664         switch (hw->mac.type) {
1665         case e1000_ich8lan:
1666         case e1000_ich9lan:
1667         case e1000_ich10lan:
1668                 rc = e1000_init_phy_params_ich8lan(hw);
1669                 break;
1670         case e1000_pchlan:
1671         case e1000_pch2lan:
1672         case e1000_pch_lpt:
1673         case e1000_pch_spt:
1674         case e1000_pch_cnp:
1675         case e1000_pch_tgp:
1676         case e1000_pch_adp:
1677         case e1000_pch_mtp:
1678                 rc = e1000_init_phy_params_pchlan(hw);
1679                 break;
1680         default:
1681                 break;
1682         }
1683         if (rc)
1684                 return rc;
1685
1686         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1687          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1688          */
1689         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1690             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1691              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1692                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1693                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1694
1695                 hw->mac.ops.blink_led = NULL;
1696         }
1697
1698         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1699             (adapter->hw.phy.type != e1000_phy_ife))
1700                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1701
1702         /* Enable workaround for 82579 w/ ME enabled */
1703         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1704             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1705                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1706
1707         return 0;
1708 }
1709
1710 static DEFINE_MUTEX(nvm_mutex);
1711
1712 /**
1713  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1714  *  @hw: pointer to the HW structure
1715  *
1716  *  Acquires the mutex for performing NVM operations.
1717  **/
1718 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1719 {
1720         mutex_lock(&nvm_mutex);
1721
1722         return 0;
1723 }
1724
1725 /**
1726  *  e1000_release_nvm_ich8lan - Release NVM mutex
1727  *  @hw: pointer to the HW structure
1728  *
1729  *  Releases the mutex used while performing NVM operations.
1730  **/
1731 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1732 {
1733         mutex_unlock(&nvm_mutex);
1734 }
1735
1736 /**
1737  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1738  *  @hw: pointer to the HW structure
1739  *
1740  *  Acquires the software control flag for performing PHY and select
1741  *  MAC CSR accesses.
1742  **/
1743 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1744 {
1745         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1746         s32 ret_val = 0;
1747
1748         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1749                              &hw->adapter->state)) {
1750                 e_dbg("contention for Phy access\n");
1751                 return -E1000_ERR_PHY;
1752         }
1753
1754         while (timeout) {
1755                 extcnf_ctrl = er32(EXTCNF_CTRL);
1756                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1757                         break;
1758
1759                 mdelay(1);
1760                 timeout--;
1761         }
1762
1763         if (!timeout) {
1764                 e_dbg("SW has already locked the resource.\n");
1765                 ret_val = -E1000_ERR_CONFIG;
1766                 goto out;
1767         }
1768
1769         timeout = SW_FLAG_TIMEOUT;
1770
1771         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1772         ew32(EXTCNF_CTRL, extcnf_ctrl);
1773
1774         while (timeout) {
1775                 extcnf_ctrl = er32(EXTCNF_CTRL);
1776                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1777                         break;
1778
1779                 mdelay(1);
1780                 timeout--;
1781         }
1782
1783         if (!timeout) {
1784                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1785                       er32(FWSM), extcnf_ctrl);
1786                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1788                 ret_val = -E1000_ERR_CONFIG;
1789                 goto out;
1790         }
1791
1792 out:
1793         if (ret_val)
1794                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1795
1796         return ret_val;
1797 }
1798
1799 /**
1800  *  e1000_release_swflag_ich8lan - Release software control flag
1801  *  @hw: pointer to the HW structure
1802  *
1803  *  Releases the software control flag for performing PHY and select
1804  *  MAC CSR accesses.
1805  **/
1806 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1807 {
1808         u32 extcnf_ctrl;
1809
1810         extcnf_ctrl = er32(EXTCNF_CTRL);
1811
1812         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1813                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1814                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1815         } else {
1816                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1817         }
1818
1819         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1820 }
1821
1822 /**
1823  *  e1000_check_mng_mode_ich8lan - Checks management mode
1824  *  @hw: pointer to the HW structure
1825  *
1826  *  This checks if the adapter has any manageability enabled.
1827  *  This is a function pointer entry point only called by read/write
1828  *  routines for the PHY and NVM parts.
1829  **/
1830 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1831 {
1832         u32 fwsm;
1833
1834         fwsm = er32(FWSM);
1835         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1836                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1837                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1838 }
1839
1840 /**
1841  *  e1000_check_mng_mode_pchlan - Checks management mode
1842  *  @hw: pointer to the HW structure
1843  *
1844  *  This checks if the adapter has iAMT enabled.
1845  *  This is a function pointer entry point only called by read/write
1846  *  routines for the PHY and NVM parts.
1847  **/
1848 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1849 {
1850         u32 fwsm;
1851
1852         fwsm = er32(FWSM);
1853         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1854             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1855 }
1856
1857 /**
1858  *  e1000_rar_set_pch2lan - Set receive address register
1859  *  @hw: pointer to the HW structure
1860  *  @addr: pointer to the receive address
1861  *  @index: receive address array register
1862  *
1863  *  Sets the receive address array register at index to the address passed
1864  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1865  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1866  *  Use SHRA[0-3] in place of those reserved for ME.
1867  **/
1868 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1869 {
1870         u32 rar_low, rar_high;
1871
1872         /* HW expects these in little endian so we reverse the byte order
1873          * from network order (big endian) to little endian
1874          */
1875         rar_low = ((u32)addr[0] |
1876                    ((u32)addr[1] << 8) |
1877                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1878
1879         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1880
1881         /* If MAC address zero, no need to set the AV bit */
1882         if (rar_low || rar_high)
1883                 rar_high |= E1000_RAH_AV;
1884
1885         if (index == 0) {
1886                 ew32(RAL(index), rar_low);
1887                 e1e_flush();
1888                 ew32(RAH(index), rar_high);
1889                 e1e_flush();
1890                 return 0;
1891         }
1892
1893         /* RAR[1-6] are owned by manageability.  Skip those and program the
1894          * next address into the SHRA register array.
1895          */
1896         if (index < (u32)(hw->mac.rar_entry_count)) {
1897                 s32 ret_val;
1898
1899                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1900                 if (ret_val)
1901                         goto out;
1902
1903                 ew32(SHRAL(index - 1), rar_low);
1904                 e1e_flush();
1905                 ew32(SHRAH(index - 1), rar_high);
1906                 e1e_flush();
1907
1908                 e1000_release_swflag_ich8lan(hw);
1909
1910                 /* verify the register updates */
1911                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1912                     (er32(SHRAH(index - 1)) == rar_high))
1913                         return 0;
1914
1915                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1916                       (index - 1), er32(FWSM));
1917         }
1918
1919 out:
1920         e_dbg("Failed to write receive address at index %d\n", index);
1921         return -E1000_ERR_CONFIG;
1922 }
1923
1924 /**
1925  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1926  *  @hw: pointer to the HW structure
1927  *
1928  *  Get the number of available receive registers that the Host can
1929  *  program. SHRA[0-10] are the shared receive address registers
1930  *  that are shared between the Host and manageability engine (ME).
1931  *  ME can reserve any number of addresses and the host needs to be
1932  *  able to tell how many available registers it has access to.
1933  **/
1934 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1935 {
1936         u32 wlock_mac;
1937         u32 num_entries;
1938
1939         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941
1942         switch (wlock_mac) {
1943         case 0:
1944                 /* All SHRA[0..10] and RAR[0] available */
1945                 num_entries = hw->mac.rar_entry_count;
1946                 break;
1947         case 1:
1948                 /* Only RAR[0] available */
1949                 num_entries = 1;
1950                 break;
1951         default:
1952                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1953                 num_entries = wlock_mac + 1;
1954                 break;
1955         }
1956
1957         return num_entries;
1958 }
1959
1960 /**
1961  *  e1000_rar_set_pch_lpt - Set receive address registers
1962  *  @hw: pointer to the HW structure
1963  *  @addr: pointer to the receive address
1964  *  @index: receive address array register
1965  *
1966  *  Sets the receive address register array at index to the address passed
1967  *  in by addr. For LPT, RAR[0] is the base address register that is to
1968  *  contain the MAC address. SHRA[0-10] are the shared receive address
1969  *  registers that are shared between the Host and manageability engine (ME).
1970  **/
1971 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1972 {
1973         u32 rar_low, rar_high;
1974         u32 wlock_mac;
1975
1976         /* HW expects these in little endian so we reverse the byte order
1977          * from network order (big endian) to little endian
1978          */
1979         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1980                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1981
1982         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1983
1984         /* If MAC address zero, no need to set the AV bit */
1985         if (rar_low || rar_high)
1986                 rar_high |= E1000_RAH_AV;
1987
1988         if (index == 0) {
1989                 ew32(RAL(index), rar_low);
1990                 e1e_flush();
1991                 ew32(RAH(index), rar_high);
1992                 e1e_flush();
1993                 return 0;
1994         }
1995
1996         /* The manageability engine (ME) can lock certain SHRAR registers that
1997          * it is using - those registers are unavailable for use.
1998          */
1999         if (index < hw->mac.rar_entry_count) {
2000                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2001                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2002
2003                 /* Check if all SHRAR registers are locked */
2004                 if (wlock_mac == 1)
2005                         goto out;
2006
2007                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2008                         s32 ret_val;
2009
2010                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2011
2012                         if (ret_val)
2013                                 goto out;
2014
2015                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2016                         e1e_flush();
2017                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2018                         e1e_flush();
2019
2020                         e1000_release_swflag_ich8lan(hw);
2021
2022                         /* verify the register updates */
2023                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2024                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2025                                 return 0;
2026                 }
2027         }
2028
2029 out:
2030         e_dbg("Failed to write receive address at index %d\n", index);
2031         return -E1000_ERR_CONFIG;
2032 }
2033
2034 /**
2035  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2036  *  @hw: pointer to the HW structure
2037  *
2038  *  Checks if firmware is blocking the reset of the PHY.
2039  *  This is a function pointer entry point only called by
2040  *  reset routines.
2041  **/
2042 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2043 {
2044         bool blocked = false;
2045         int i = 0;
2046
2047         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2048                (i++ < 30))
2049                 usleep_range(10000, 11000);
2050         return blocked ? E1000_BLK_PHY_RESET : 0;
2051 }
2052
2053 /**
2054  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2055  *  @hw: pointer to the HW structure
2056  *
2057  *  Assumes semaphore already acquired.
2058  *
2059  **/
2060 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2061 {
2062         u16 phy_data;
2063         u32 strap = er32(STRAP);
2064         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2065             E1000_STRAP_SMT_FREQ_SHIFT;
2066         s32 ret_val;
2067
2068         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2069
2070         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2071         if (ret_val)
2072                 return ret_val;
2073
2074         phy_data &= ~HV_SMB_ADDR_MASK;
2075         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2076         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2077
2078         if (hw->phy.type == e1000_phy_i217) {
2079                 /* Restore SMBus frequency */
2080                 if (freq--) {
2081                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2082                         phy_data |= (freq & BIT(0)) <<
2083                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2084                         phy_data |= (freq & BIT(1)) <<
2085                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2086                 } else {
2087                         e_dbg("Unsupported SMB frequency in PHY\n");
2088                 }
2089         }
2090
2091         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2092 }
2093
2094 /**
2095  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2096  *  @hw:   pointer to the HW structure
2097  *
2098  *  SW should configure the LCD from the NVM extended configuration region
2099  *  as a workaround for certain parts.
2100  **/
2101 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2102 {
2103         struct e1000_phy_info *phy = &hw->phy;
2104         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2105         s32 ret_val = 0;
2106         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2107
2108         /* Initialize the PHY from the NVM on ICH platforms.  This
2109          * is needed due to an issue where the NVM configuration is
2110          * not properly autoloaded after power transitions.
2111          * Therefore, after each PHY reset, we will load the
2112          * configuration data out of the NVM manually.
2113          */
2114         switch (hw->mac.type) {
2115         case e1000_ich8lan:
2116                 if (phy->type != e1000_phy_igp_3)
2117                         return ret_val;
2118
2119                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2120                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2121                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2122                         break;
2123                 }
2124                 fallthrough;
2125         case e1000_pchlan:
2126         case e1000_pch2lan:
2127         case e1000_pch_lpt:
2128         case e1000_pch_spt:
2129         case e1000_pch_cnp:
2130         case e1000_pch_tgp:
2131         case e1000_pch_adp:
2132         case e1000_pch_mtp:
2133                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2134                 break;
2135         default:
2136                 return ret_val;
2137         }
2138
2139         ret_val = hw->phy.ops.acquire(hw);
2140         if (ret_val)
2141                 return ret_val;
2142
2143         data = er32(FEXTNVM);
2144         if (!(data & sw_cfg_mask))
2145                 goto release;
2146
2147         /* Make sure HW does not configure LCD from PHY
2148          * extended configuration before SW configuration
2149          */
2150         data = er32(EXTCNF_CTRL);
2151         if ((hw->mac.type < e1000_pch2lan) &&
2152             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2153                 goto release;
2154
2155         cnf_size = er32(EXTCNF_SIZE);
2156         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2157         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2158         if (!cnf_size)
2159                 goto release;
2160
2161         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2162         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2163
2164         if (((hw->mac.type == e1000_pchlan) &&
2165              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2166             (hw->mac.type > e1000_pchlan)) {
2167                 /* HW configures the SMBus address and LEDs when the
2168                  * OEM and LCD Write Enable bits are set in the NVM.
2169                  * When both NVM bits are cleared, SW will configure
2170                  * them instead.
2171                  */
2172                 ret_val = e1000_write_smbus_addr(hw);
2173                 if (ret_val)
2174                         goto release;
2175
2176                 data = er32(LEDCTL);
2177                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2178                                                         (u16)data);
2179                 if (ret_val)
2180                         goto release;
2181         }
2182
2183         /* Configure LCD from extended configuration region. */
2184
2185         /* cnf_base_addr is in DWORD */
2186         word_addr = (u16)(cnf_base_addr << 1);
2187
2188         for (i = 0; i < cnf_size; i++) {
2189                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2190                 if (ret_val)
2191                         goto release;
2192
2193                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2194                                          1, &reg_addr);
2195                 if (ret_val)
2196                         goto release;
2197
2198                 /* Save off the PHY page for future writes. */
2199                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2200                         phy_page = reg_data;
2201                         continue;
2202                 }
2203
2204                 reg_addr &= PHY_REG_MASK;
2205                 reg_addr |= phy_page;
2206
2207                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2208                 if (ret_val)
2209                         goto release;
2210         }
2211
2212 release:
2213         hw->phy.ops.release(hw);
2214         return ret_val;
2215 }
2216
2217 /**
2218  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2219  *  @hw:   pointer to the HW structure
2220  *  @link: link up bool flag
2221  *
2222  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2223  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2224  *  If link is down, the function will restore the default K1 setting located
2225  *  in the NVM.
2226  **/
2227 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2228 {
2229         s32 ret_val = 0;
2230         u16 status_reg = 0;
2231         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2232
2233         if (hw->mac.type != e1000_pchlan)
2234                 return 0;
2235
2236         /* Wrap the whole flow with the sw flag */
2237         ret_val = hw->phy.ops.acquire(hw);
2238         if (ret_val)
2239                 return ret_val;
2240
2241         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2242         if (link) {
2243                 if (hw->phy.type == e1000_phy_82578) {
2244                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2245                                                   &status_reg);
2246                         if (ret_val)
2247                                 goto release;
2248
2249                         status_reg &= (BM_CS_STATUS_LINK_UP |
2250                                        BM_CS_STATUS_RESOLVED |
2251                                        BM_CS_STATUS_SPEED_MASK);
2252
2253                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2254                                            BM_CS_STATUS_RESOLVED |
2255                                            BM_CS_STATUS_SPEED_1000))
2256                                 k1_enable = false;
2257                 }
2258
2259                 if (hw->phy.type == e1000_phy_82577) {
2260                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2261                         if (ret_val)
2262                                 goto release;
2263
2264                         status_reg &= (HV_M_STATUS_LINK_UP |
2265                                        HV_M_STATUS_AUTONEG_COMPLETE |
2266                                        HV_M_STATUS_SPEED_MASK);
2267
2268                         if (status_reg == (HV_M_STATUS_LINK_UP |
2269                                            HV_M_STATUS_AUTONEG_COMPLETE |
2270                                            HV_M_STATUS_SPEED_1000))
2271                                 k1_enable = false;
2272                 }
2273
2274                 /* Link stall fix for link up */
2275                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2276                 if (ret_val)
2277                         goto release;
2278
2279         } else {
2280                 /* Link stall fix for link down */
2281                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2282                 if (ret_val)
2283                         goto release;
2284         }
2285
2286         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2287
2288 release:
2289         hw->phy.ops.release(hw);
2290
2291         return ret_val;
2292 }
2293
2294 /**
2295  *  e1000_configure_k1_ich8lan - Configure K1 power state
2296  *  @hw: pointer to the HW structure
2297  *  @k1_enable: K1 state to configure
2298  *
2299  *  Configure the K1 power state based on the provided parameter.
2300  *  Assumes semaphore already acquired.
2301  *
2302  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2303  **/
2304 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2305 {
2306         s32 ret_val;
2307         u32 ctrl_reg = 0;
2308         u32 ctrl_ext = 0;
2309         u32 reg = 0;
2310         u16 kmrn_reg = 0;
2311
2312         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2313                                               &kmrn_reg);
2314         if (ret_val)
2315                 return ret_val;
2316
2317         if (k1_enable)
2318                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2319         else
2320                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2321
2322         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2323                                                kmrn_reg);
2324         if (ret_val)
2325                 return ret_val;
2326
2327         usleep_range(20, 40);
2328         ctrl_ext = er32(CTRL_EXT);
2329         ctrl_reg = er32(CTRL);
2330
2331         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2332         reg |= E1000_CTRL_FRCSPD;
2333         ew32(CTRL, reg);
2334
2335         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2336         e1e_flush();
2337         usleep_range(20, 40);
2338         ew32(CTRL, ctrl_reg);
2339         ew32(CTRL_EXT, ctrl_ext);
2340         e1e_flush();
2341         usleep_range(20, 40);
2342
2343         return 0;
2344 }
2345
2346 /**
2347  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2348  *  @hw:       pointer to the HW structure
2349  *  @d0_state: boolean if entering d0 or d3 device state
2350  *
2351  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2352  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2353  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2354  **/
2355 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2356 {
2357         s32 ret_val = 0;
2358         u32 mac_reg;
2359         u16 oem_reg;
2360
2361         if (hw->mac.type < e1000_pchlan)
2362                 return ret_val;
2363
2364         ret_val = hw->phy.ops.acquire(hw);
2365         if (ret_val)
2366                 return ret_val;
2367
2368         if (hw->mac.type == e1000_pchlan) {
2369                 mac_reg = er32(EXTCNF_CTRL);
2370                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2371                         goto release;
2372         }
2373
2374         mac_reg = er32(FEXTNVM);
2375         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2376                 goto release;
2377
2378         mac_reg = er32(PHY_CTRL);
2379
2380         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2381         if (ret_val)
2382                 goto release;
2383
2384         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2385
2386         if (d0_state) {
2387                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2388                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2389
2390                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2391                         oem_reg |= HV_OEM_BITS_LPLU;
2392         } else {
2393                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2394                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2395                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2396
2397                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2398                                E1000_PHY_CTRL_NOND0A_LPLU))
2399                         oem_reg |= HV_OEM_BITS_LPLU;
2400         }
2401
2402         /* Set Restart auto-neg to activate the bits */
2403         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2404             !hw->phy.ops.check_reset_block(hw))
2405                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2406
2407         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2408
2409 release:
2410         hw->phy.ops.release(hw);
2411
2412         return ret_val;
2413 }
2414
2415 /**
2416  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2417  *  @hw:   pointer to the HW structure
2418  **/
2419 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2420 {
2421         s32 ret_val;
2422         u16 data;
2423
2424         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2425         if (ret_val)
2426                 return ret_val;
2427
2428         data |= HV_KMRN_MDIO_SLOW;
2429
2430         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2431
2432         return ret_val;
2433 }
2434
2435 /**
2436  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2437  *  @hw: pointer to the HW structure
2438  *
2439  *  A series of PHY workarounds to be done after every PHY reset.
2440  **/
2441 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2442 {
2443         s32 ret_val = 0;
2444         u16 phy_data;
2445
2446         if (hw->mac.type != e1000_pchlan)
2447                 return 0;
2448
2449         /* Set MDIO slow mode before any other MDIO access */
2450         if (hw->phy.type == e1000_phy_82577) {
2451                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2452                 if (ret_val)
2453                         return ret_val;
2454         }
2455
2456         if (((hw->phy.type == e1000_phy_82577) &&
2457              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2458             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2459                 /* Disable generation of early preamble */
2460                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2461                 if (ret_val)
2462                         return ret_val;
2463
2464                 /* Preamble tuning for SSC */
2465                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2466                 if (ret_val)
2467                         return ret_val;
2468         }
2469
2470         if (hw->phy.type == e1000_phy_82578) {
2471                 /* Return registers to default by doing a soft reset then
2472                  * writing 0x3140 to the control register.
2473                  */
2474                 if (hw->phy.revision < 2) {
2475                         e1000e_phy_sw_reset(hw);
2476                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2477                         if (ret_val)
2478                                 return ret_val;
2479                 }
2480         }
2481
2482         /* Select page 0 */
2483         ret_val = hw->phy.ops.acquire(hw);
2484         if (ret_val)
2485                 return ret_val;
2486
2487         hw->phy.addr = 1;
2488         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2489         hw->phy.ops.release(hw);
2490         if (ret_val)
2491                 return ret_val;
2492
2493         /* Configure the K1 Si workaround during phy reset assuming there is
2494          * link so that it disables K1 if link is in 1Gbps.
2495          */
2496         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2497         if (ret_val)
2498                 return ret_val;
2499
2500         /* Workaround for link disconnects on a busy hub in half duplex */
2501         ret_val = hw->phy.ops.acquire(hw);
2502         if (ret_val)
2503                 return ret_val;
2504         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2505         if (ret_val)
2506                 goto release;
2507         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2508         if (ret_val)
2509                 goto release;
2510
2511         /* set MSE higher to enable link to stay up when noise is high */
2512         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2513 release:
2514         hw->phy.ops.release(hw);
2515
2516         return ret_val;
2517 }
2518
2519 /**
2520  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2521  *  @hw:   pointer to the HW structure
2522  **/
2523 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2524 {
2525         u32 mac_reg;
2526         u16 i, phy_reg = 0;
2527         s32 ret_val;
2528
2529         ret_val = hw->phy.ops.acquire(hw);
2530         if (ret_val)
2531                 return;
2532         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2533         if (ret_val)
2534                 goto release;
2535
2536         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2537         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2538                 mac_reg = er32(RAL(i));
2539                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2540                                            (u16)(mac_reg & 0xFFFF));
2541                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2542                                            (u16)((mac_reg >> 16) & 0xFFFF));
2543
2544                 mac_reg = er32(RAH(i));
2545                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2546                                            (u16)(mac_reg & 0xFFFF));
2547                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2548                                            (u16)((mac_reg & E1000_RAH_AV)
2549                                                  >> 16));
2550         }
2551
2552         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2553
2554 release:
2555         hw->phy.ops.release(hw);
2556 }
2557
2558 /**
2559  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2560  *  with 82579 PHY
2561  *  @hw: pointer to the HW structure
2562  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2563  **/
2564 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2565 {
2566         s32 ret_val = 0;
2567         u16 phy_reg, data;
2568         u32 mac_reg;
2569         u16 i;
2570
2571         if (hw->mac.type < e1000_pch2lan)
2572                 return 0;
2573
2574         /* disable Rx path while enabling/disabling workaround */
2575         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2576         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2577         if (ret_val)
2578                 return ret_val;
2579
2580         if (enable) {
2581                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2582                  * SHRAL/H) and initial CRC values to the MAC
2583                  */
2584                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2585                         u8 mac_addr[ETH_ALEN] = { 0 };
2586                         u32 addr_high, addr_low;
2587
2588                         addr_high = er32(RAH(i));
2589                         if (!(addr_high & E1000_RAH_AV))
2590                                 continue;
2591                         addr_low = er32(RAL(i));
2592                         mac_addr[0] = (addr_low & 0xFF);
2593                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2594                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2595                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2596                         mac_addr[4] = (addr_high & 0xFF);
2597                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2598
2599                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2600                 }
2601
2602                 /* Write Rx addresses to the PHY */
2603                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2604
2605                 /* Enable jumbo frame workaround in the MAC */
2606                 mac_reg = er32(FFLT_DBG);
2607                 mac_reg &= ~BIT(14);
2608                 mac_reg |= (7 << 15);
2609                 ew32(FFLT_DBG, mac_reg);
2610
2611                 mac_reg = er32(RCTL);
2612                 mac_reg |= E1000_RCTL_SECRC;
2613                 ew32(RCTL, mac_reg);
2614
2615                 ret_val = e1000e_read_kmrn_reg(hw,
2616                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2617                                                &data);
2618                 if (ret_val)
2619                         return ret_val;
2620                 ret_val = e1000e_write_kmrn_reg(hw,
2621                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2622                                                 data | BIT(0));
2623                 if (ret_val)
2624                         return ret_val;
2625                 ret_val = e1000e_read_kmrn_reg(hw,
2626                                                E1000_KMRNCTRLSTA_HD_CTRL,
2627                                                &data);
2628                 if (ret_val)
2629                         return ret_val;
2630                 data &= ~(0xF << 8);
2631                 data |= (0xB << 8);
2632                 ret_val = e1000e_write_kmrn_reg(hw,
2633                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2634                                                 data);
2635                 if (ret_val)
2636                         return ret_val;
2637
2638                 /* Enable jumbo frame workaround in the PHY */
2639                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2640                 data &= ~(0x7F << 5);
2641                 data |= (0x37 << 5);
2642                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2643                 if (ret_val)
2644                         return ret_val;
2645                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2646                 data &= ~BIT(13);
2647                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2648                 if (ret_val)
2649                         return ret_val;
2650                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2651                 data &= ~(0x3FF << 2);
2652                 data |= (E1000_TX_PTR_GAP << 2);
2653                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2654                 if (ret_val)
2655                         return ret_val;
2656                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2657                 if (ret_val)
2658                         return ret_val;
2659                 e1e_rphy(hw, HV_PM_CTRL, &data);
2660                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2661                 if (ret_val)
2662                         return ret_val;
2663         } else {
2664                 /* Write MAC register values back to h/w defaults */
2665                 mac_reg = er32(FFLT_DBG);
2666                 mac_reg &= ~(0xF << 14);
2667                 ew32(FFLT_DBG, mac_reg);
2668
2669                 mac_reg = er32(RCTL);
2670                 mac_reg &= ~E1000_RCTL_SECRC;
2671                 ew32(RCTL, mac_reg);
2672
2673                 ret_val = e1000e_read_kmrn_reg(hw,
2674                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2675                                                &data);
2676                 if (ret_val)
2677                         return ret_val;
2678                 ret_val = e1000e_write_kmrn_reg(hw,
2679                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2680                                                 data & ~BIT(0));
2681                 if (ret_val)
2682                         return ret_val;
2683                 ret_val = e1000e_read_kmrn_reg(hw,
2684                                                E1000_KMRNCTRLSTA_HD_CTRL,
2685                                                &data);
2686                 if (ret_val)
2687                         return ret_val;
2688                 data &= ~(0xF << 8);
2689                 data |= (0xB << 8);
2690                 ret_val = e1000e_write_kmrn_reg(hw,
2691                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2692                                                 data);
2693                 if (ret_val)
2694                         return ret_val;
2695
2696                 /* Write PHY register values back to h/w defaults */
2697                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2698                 data &= ~(0x7F << 5);
2699                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2700                 if (ret_val)
2701                         return ret_val;
2702                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2703                 data |= BIT(13);
2704                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2705                 if (ret_val)
2706                         return ret_val;
2707                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2708                 data &= ~(0x3FF << 2);
2709                 data |= (0x8 << 2);
2710                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2711                 if (ret_val)
2712                         return ret_val;
2713                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2714                 if (ret_val)
2715                         return ret_val;
2716                 e1e_rphy(hw, HV_PM_CTRL, &data);
2717                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2718                 if (ret_val)
2719                         return ret_val;
2720         }
2721
2722         /* re-enable Rx path after enabling/disabling workaround */
2723         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2724 }
2725
2726 /**
2727  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2728  *  @hw: pointer to the HW structure
2729  *
2730  *  A series of PHY workarounds to be done after every PHY reset.
2731  **/
2732 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2733 {
2734         s32 ret_val = 0;
2735
2736         if (hw->mac.type != e1000_pch2lan)
2737                 return 0;
2738
2739         /* Set MDIO slow mode before any other MDIO access */
2740         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2741         if (ret_val)
2742                 return ret_val;
2743
2744         ret_val = hw->phy.ops.acquire(hw);
2745         if (ret_val)
2746                 return ret_val;
2747         /* set MSE higher to enable link to stay up when noise is high */
2748         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2749         if (ret_val)
2750                 goto release;
2751         /* drop link after 5 times MSE threshold was reached */
2752         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2753 release:
2754         hw->phy.ops.release(hw);
2755
2756         return ret_val;
2757 }
2758
2759 /**
2760  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2761  *  @hw:   pointer to the HW structure
2762  *
2763  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2764  *  Disable K1 in 1000Mbps and 100Mbps
2765  **/
2766 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2767 {
2768         s32 ret_val = 0;
2769         u16 status_reg = 0;
2770
2771         if (hw->mac.type != e1000_pch2lan)
2772                 return 0;
2773
2774         /* Set K1 beacon duration based on 10Mbs speed */
2775         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2776         if (ret_val)
2777                 return ret_val;
2778
2779         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2780             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2781                 if (status_reg &
2782                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2783                         u16 pm_phy_reg;
2784
2785                         /* LV 1G/100 Packet drop issue wa  */
2786                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2787                         if (ret_val)
2788                                 return ret_val;
2789                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2790                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2791                         if (ret_val)
2792                                 return ret_val;
2793                 } else {
2794                         u32 mac_reg;
2795
2796                         mac_reg = er32(FEXTNVM4);
2797                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2798                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2799                         ew32(FEXTNVM4, mac_reg);
2800                 }
2801         }
2802
2803         return ret_val;
2804 }
2805
2806 /**
2807  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2808  *  @hw:   pointer to the HW structure
2809  *  @gate: boolean set to true to gate, false to ungate
2810  *
2811  *  Gate/ungate the automatic PHY configuration via hardware; perform
2812  *  the configuration via software instead.
2813  **/
2814 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2815 {
2816         u32 extcnf_ctrl;
2817
2818         if (hw->mac.type < e1000_pch2lan)
2819                 return;
2820
2821         extcnf_ctrl = er32(EXTCNF_CTRL);
2822
2823         if (gate)
2824                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2825         else
2826                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2827
2828         ew32(EXTCNF_CTRL, extcnf_ctrl);
2829 }
2830
2831 /**
2832  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2833  *  @hw: pointer to the HW structure
2834  *
2835  *  Check the appropriate indication the MAC has finished configuring the
2836  *  PHY after a software reset.
2837  **/
2838 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2839 {
2840         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2841
2842         /* Wait for basic configuration completes before proceeding */
2843         do {
2844                 data = er32(STATUS);
2845                 data &= E1000_STATUS_LAN_INIT_DONE;
2846                 usleep_range(100, 200);
2847         } while ((!data) && --loop);
2848
2849         /* If basic configuration is incomplete before the above loop
2850          * count reaches 0, loading the configuration from NVM will
2851          * leave the PHY in a bad state possibly resulting in no link.
2852          */
2853         if (loop == 0)
2854                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2855
2856         /* Clear the Init Done bit for the next init event */
2857         data = er32(STATUS);
2858         data &= ~E1000_STATUS_LAN_INIT_DONE;
2859         ew32(STATUS, data);
2860 }
2861
2862 /**
2863  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2864  *  @hw: pointer to the HW structure
2865  **/
2866 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2867 {
2868         s32 ret_val = 0;
2869         u16 reg;
2870
2871         if (hw->phy.ops.check_reset_block(hw))
2872                 return 0;
2873
2874         /* Allow time for h/w to get to quiescent state after reset */
2875         usleep_range(10000, 11000);
2876
2877         /* Perform any necessary post-reset workarounds */
2878         switch (hw->mac.type) {
2879         case e1000_pchlan:
2880                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2881                 if (ret_val)
2882                         return ret_val;
2883                 break;
2884         case e1000_pch2lan:
2885                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2886                 if (ret_val)
2887                         return ret_val;
2888                 break;
2889         default:
2890                 break;
2891         }
2892
2893         /* Clear the host wakeup bit after lcd reset */
2894         if (hw->mac.type >= e1000_pchlan) {
2895                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2896                 reg &= ~BM_WUC_HOST_WU_BIT;
2897                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2898         }
2899
2900         /* Configure the LCD with the extended configuration region in NVM */
2901         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2902         if (ret_val)
2903                 return ret_val;
2904
2905         /* Configure the LCD with the OEM bits in NVM */
2906         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2907
2908         if (hw->mac.type == e1000_pch2lan) {
2909                 /* Ungate automatic PHY configuration on non-managed 82579 */
2910                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2911                         usleep_range(10000, 11000);
2912                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2913                 }
2914
2915                 /* Set EEE LPI Update Timer to 200usec */
2916                 ret_val = hw->phy.ops.acquire(hw);
2917                 if (ret_val)
2918                         return ret_val;
2919                 ret_val = e1000_write_emi_reg_locked(hw,
2920                                                      I82579_LPI_UPDATE_TIMER,
2921                                                      0x1387);
2922                 hw->phy.ops.release(hw);
2923         }
2924
2925         return ret_val;
2926 }
2927
2928 /**
2929  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2930  *  @hw: pointer to the HW structure
2931  *
2932  *  Resets the PHY
2933  *  This is a function pointer entry point called by drivers
2934  *  or other shared routines.
2935  **/
2936 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2937 {
2938         s32 ret_val = 0;
2939
2940         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2941         if ((hw->mac.type == e1000_pch2lan) &&
2942             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2943                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2944
2945         ret_val = e1000e_phy_hw_reset_generic(hw);
2946         if (ret_val)
2947                 return ret_val;
2948
2949         return e1000_post_phy_reset_ich8lan(hw);
2950 }
2951
2952 /**
2953  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2954  *  @hw: pointer to the HW structure
2955  *  @active: true to enable LPLU, false to disable
2956  *
2957  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2958  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2959  *  the phy speed. This function will manually set the LPLU bit and restart
2960  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2961  *  since it configures the same bit.
2962  **/
2963 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2964 {
2965         s32 ret_val;
2966         u16 oem_reg;
2967
2968         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2969         if (ret_val)
2970                 return ret_val;
2971
2972         if (active)
2973                 oem_reg |= HV_OEM_BITS_LPLU;
2974         else
2975                 oem_reg &= ~HV_OEM_BITS_LPLU;
2976
2977         if (!hw->phy.ops.check_reset_block(hw))
2978                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2979
2980         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2981 }
2982
2983 /**
2984  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2985  *  @hw: pointer to the HW structure
2986  *  @active: true to enable LPLU, false to disable
2987  *
2988  *  Sets the LPLU D0 state according to the active flag.  When
2989  *  activating LPLU this function also disables smart speed
2990  *  and vice versa.  LPLU will not be activated unless the
2991  *  device autonegotiation advertisement meets standards of
2992  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2993  *  This is a function pointer entry point only called by
2994  *  PHY setup routines.
2995  **/
2996 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2997 {
2998         struct e1000_phy_info *phy = &hw->phy;
2999         u32 phy_ctrl;
3000         s32 ret_val = 0;
3001         u16 data;
3002
3003         if (phy->type == e1000_phy_ife)
3004                 return 0;
3005
3006         phy_ctrl = er32(PHY_CTRL);
3007
3008         if (active) {
3009                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3010                 ew32(PHY_CTRL, phy_ctrl);
3011
3012                 if (phy->type != e1000_phy_igp_3)
3013                         return 0;
3014
3015                 /* Call gig speed drop workaround on LPLU before accessing
3016                  * any PHY registers
3017                  */
3018                 if (hw->mac.type == e1000_ich8lan)
3019                         e1000e_gig_downshift_workaround_ich8lan(hw);
3020
3021                 /* When LPLU is enabled, we should disable SmartSpeed */
3022                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3023                 if (ret_val)
3024                         return ret_val;
3025                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3026                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3027                 if (ret_val)
3028                         return ret_val;
3029         } else {
3030                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3031                 ew32(PHY_CTRL, phy_ctrl);
3032
3033                 if (phy->type != e1000_phy_igp_3)
3034                         return 0;
3035
3036                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3037                  * during Dx states where the power conservation is most
3038                  * important.  During driver activity we should enable
3039                  * SmartSpeed, so performance is maintained.
3040                  */
3041                 if (phy->smart_speed == e1000_smart_speed_on) {
3042                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3043                                            &data);
3044                         if (ret_val)
3045                                 return ret_val;
3046
3047                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3048                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3049                                            data);
3050                         if (ret_val)
3051                                 return ret_val;
3052                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3053                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3054                                            &data);
3055                         if (ret_val)
3056                                 return ret_val;
3057
3058                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3059                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060                                            data);
3061                         if (ret_val)
3062                                 return ret_val;
3063                 }
3064         }
3065
3066         return 0;
3067 }
3068
3069 /**
3070  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3071  *  @hw: pointer to the HW structure
3072  *  @active: true to enable LPLU, false to disable
3073  *
3074  *  Sets the LPLU D3 state according to the active flag.  When
3075  *  activating LPLU this function also disables smart speed
3076  *  and vice versa.  LPLU will not be activated unless the
3077  *  device autonegotiation advertisement meets standards of
3078  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3079  *  This is a function pointer entry point only called by
3080  *  PHY setup routines.
3081  **/
3082 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3083 {
3084         struct e1000_phy_info *phy = &hw->phy;
3085         u32 phy_ctrl;
3086         s32 ret_val = 0;
3087         u16 data;
3088
3089         phy_ctrl = er32(PHY_CTRL);
3090
3091         if (!active) {
3092                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3093                 ew32(PHY_CTRL, phy_ctrl);
3094
3095                 if (phy->type != e1000_phy_igp_3)
3096                         return 0;
3097
3098                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3099                  * during Dx states where the power conservation is most
3100                  * important.  During driver activity we should enable
3101                  * SmartSpeed, so performance is maintained.
3102                  */
3103                 if (phy->smart_speed == e1000_smart_speed_on) {
3104                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3105                                            &data);
3106                         if (ret_val)
3107                                 return ret_val;
3108
3109                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3110                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3111                                            data);
3112                         if (ret_val)
3113                                 return ret_val;
3114                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3115                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116                                            &data);
3117                         if (ret_val)
3118                                 return ret_val;
3119
3120                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3121                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122                                            data);
3123                         if (ret_val)
3124                                 return ret_val;
3125                 }
3126         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3127                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3128                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3129                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3130                 ew32(PHY_CTRL, phy_ctrl);
3131
3132                 if (phy->type != e1000_phy_igp_3)
3133                         return 0;
3134
3135                 /* Call gig speed drop workaround on LPLU before accessing
3136                  * any PHY registers
3137                  */
3138                 if (hw->mac.type == e1000_ich8lan)
3139                         e1000e_gig_downshift_workaround_ich8lan(hw);
3140
3141                 /* When LPLU is enabled, we should disable SmartSpeed */
3142                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3143                 if (ret_val)
3144                         return ret_val;
3145
3146                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3147                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3148         }
3149
3150         return ret_val;
3151 }
3152
3153 /**
3154  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3155  *  @hw: pointer to the HW structure
3156  *  @bank:  pointer to the variable that returns the active bank
3157  *
3158  *  Reads signature byte from the NVM using the flash access registers.
3159  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3160  **/
3161 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3162 {
3163         u32 eecd;
3164         struct e1000_nvm_info *nvm = &hw->nvm;
3165         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3166         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3167         u32 nvm_dword = 0;
3168         u8 sig_byte = 0;
3169         s32 ret_val;
3170
3171         switch (hw->mac.type) {
3172         case e1000_pch_spt:
3173         case e1000_pch_cnp:
3174         case e1000_pch_tgp:
3175         case e1000_pch_adp:
3176         case e1000_pch_mtp:
3177                 bank1_offset = nvm->flash_bank_size;
3178                 act_offset = E1000_ICH_NVM_SIG_WORD;
3179
3180                 /* set bank to 0 in case flash read fails */
3181                 *bank = 0;
3182
3183                 /* Check bank 0 */
3184                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3185                                                          &nvm_dword);
3186                 if (ret_val)
3187                         return ret_val;
3188                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3189                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3190                     E1000_ICH_NVM_SIG_VALUE) {
3191                         *bank = 0;
3192                         return 0;
3193                 }
3194
3195                 /* Check bank 1 */
3196                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3197                                                          bank1_offset,
3198                                                          &nvm_dword);
3199                 if (ret_val)
3200                         return ret_val;
3201                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3202                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3203                     E1000_ICH_NVM_SIG_VALUE) {
3204                         *bank = 1;
3205                         return 0;
3206                 }
3207
3208                 e_dbg("ERROR: No valid NVM bank present\n");
3209                 return -E1000_ERR_NVM;
3210         case e1000_ich8lan:
3211         case e1000_ich9lan:
3212                 eecd = er32(EECD);
3213                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3214                     E1000_EECD_SEC1VAL_VALID_MASK) {
3215                         if (eecd & E1000_EECD_SEC1VAL)
3216                                 *bank = 1;
3217                         else
3218                                 *bank = 0;
3219
3220                         return 0;
3221                 }
3222                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3223                 fallthrough;
3224         default:
3225                 /* set bank to 0 in case flash read fails */
3226                 *bank = 0;
3227
3228                 /* Check bank 0 */
3229                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3230                                                         &sig_byte);
3231                 if (ret_val)
3232                         return ret_val;
3233                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234                     E1000_ICH_NVM_SIG_VALUE) {
3235                         *bank = 0;
3236                         return 0;
3237                 }
3238
3239                 /* Check bank 1 */
3240                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3241                                                         bank1_offset,
3242                                                         &sig_byte);
3243                 if (ret_val)
3244                         return ret_val;
3245                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3246                     E1000_ICH_NVM_SIG_VALUE) {
3247                         *bank = 1;
3248                         return 0;
3249                 }
3250
3251                 e_dbg("ERROR: No valid NVM bank present\n");
3252                 return -E1000_ERR_NVM;
3253         }
3254 }
3255
3256 /**
3257  *  e1000_read_nvm_spt - NVM access for SPT
3258  *  @hw: pointer to the HW structure
3259  *  @offset: The offset (in bytes) of the word(s) to read.
3260  *  @words: Size of data to read in words.
3261  *  @data: pointer to the word(s) to read at offset.
3262  *
3263  *  Reads a word(s) from the NVM
3264  **/
3265 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3266                               u16 *data)
3267 {
3268         struct e1000_nvm_info *nvm = &hw->nvm;
3269         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3270         u32 act_offset;
3271         s32 ret_val = 0;
3272         u32 bank = 0;
3273         u32 dword = 0;
3274         u16 offset_to_read;
3275         u16 i;
3276
3277         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3278             (words == 0)) {
3279                 e_dbg("nvm parameter(s) out of bounds\n");
3280                 ret_val = -E1000_ERR_NVM;
3281                 goto out;
3282         }
3283
3284         nvm->ops.acquire(hw);
3285
3286         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3287         if (ret_val) {
3288                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3289                 bank = 0;
3290         }
3291
3292         act_offset = (bank) ? nvm->flash_bank_size : 0;
3293         act_offset += offset;
3294
3295         ret_val = 0;
3296
3297         for (i = 0; i < words; i += 2) {
3298                 if (words - i == 1) {
3299                         if (dev_spec->shadow_ram[offset + i].modified) {
3300                                 data[i] =
3301                                     dev_spec->shadow_ram[offset + i].value;
3302                         } else {
3303                                 offset_to_read = act_offset + i -
3304                                     ((act_offset + i) % 2);
3305                                 ret_val =
3306                                   e1000_read_flash_dword_ich8lan(hw,
3307                                                                  offset_to_read,
3308                                                                  &dword);
3309                                 if (ret_val)
3310                                         break;
3311                                 if ((act_offset + i) % 2 == 0)
3312                                         data[i] = (u16)(dword & 0xFFFF);
3313                                 else
3314                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3315                         }
3316                 } else {
3317                         offset_to_read = act_offset + i;
3318                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3319                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3320                                 ret_val =
3321                                   e1000_read_flash_dword_ich8lan(hw,
3322                                                                  offset_to_read,
3323                                                                  &dword);
3324                                 if (ret_val)
3325                                         break;
3326                         }
3327                         if (dev_spec->shadow_ram[offset + i].modified)
3328                                 data[i] =
3329                                     dev_spec->shadow_ram[offset + i].value;
3330                         else
3331                                 data[i] = (u16)(dword & 0xFFFF);
3332                         if (dev_spec->shadow_ram[offset + i].modified)
3333                                 data[i + 1] =
3334                                     dev_spec->shadow_ram[offset + i + 1].value;
3335                         else
3336                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3337                 }
3338         }
3339
3340         nvm->ops.release(hw);
3341
3342 out:
3343         if (ret_val)
3344                 e_dbg("NVM read error: %d\n", ret_val);
3345
3346         return ret_val;
3347 }
3348
3349 /**
3350  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3351  *  @hw: pointer to the HW structure
3352  *  @offset: The offset (in bytes) of the word(s) to read.
3353  *  @words: Size of data to read in words
3354  *  @data: Pointer to the word(s) to read at offset.
3355  *
3356  *  Reads a word(s) from the NVM using the flash access registers.
3357  **/
3358 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3359                                   u16 *data)
3360 {
3361         struct e1000_nvm_info *nvm = &hw->nvm;
3362         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3363         u32 act_offset;
3364         s32 ret_val = 0;
3365         u32 bank = 0;
3366         u16 i, word;
3367
3368         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3369             (words == 0)) {
3370                 e_dbg("nvm parameter(s) out of bounds\n");
3371                 ret_val = -E1000_ERR_NVM;
3372                 goto out;
3373         }
3374
3375         nvm->ops.acquire(hw);
3376
3377         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3378         if (ret_val) {
3379                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3380                 bank = 0;
3381         }
3382
3383         act_offset = (bank) ? nvm->flash_bank_size : 0;
3384         act_offset += offset;
3385
3386         ret_val = 0;
3387         for (i = 0; i < words; i++) {
3388                 if (dev_spec->shadow_ram[offset + i].modified) {
3389                         data[i] = dev_spec->shadow_ram[offset + i].value;
3390                 } else {
3391                         ret_val = e1000_read_flash_word_ich8lan(hw,
3392                                                                 act_offset + i,
3393                                                                 &word);
3394                         if (ret_val)
3395                                 break;
3396                         data[i] = word;
3397                 }
3398         }
3399
3400         nvm->ops.release(hw);
3401
3402 out:
3403         if (ret_val)
3404                 e_dbg("NVM read error: %d\n", ret_val);
3405
3406         return ret_val;
3407 }
3408
3409 /**
3410  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3411  *  @hw: pointer to the HW structure
3412  *
3413  *  This function does initial flash setup so that a new read/write/erase cycle
3414  *  can be started.
3415  **/
3416 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3417 {
3418         union ich8_hws_flash_status hsfsts;
3419         s32 ret_val = -E1000_ERR_NVM;
3420
3421         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422
3423         /* Check if the flash descriptor is valid */
3424         if (!hsfsts.hsf_status.fldesvalid) {
3425                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3426                 return -E1000_ERR_NVM;
3427         }
3428
3429         /* Clear FCERR and DAEL in hw status by writing 1 */
3430         hsfsts.hsf_status.flcerr = 1;
3431         hsfsts.hsf_status.dael = 1;
3432         if (hw->mac.type >= e1000_pch_spt)
3433                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3434         else
3435                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3436
3437         /* Either we should have a hardware SPI cycle in progress
3438          * bit to check against, in order to start a new cycle or
3439          * FDONE bit should be changed in the hardware so that it
3440          * is 1 after hardware reset, which can then be used as an
3441          * indication whether a cycle is in progress or has been
3442          * completed.
3443          */
3444
3445         if (!hsfsts.hsf_status.flcinprog) {
3446                 /* There is no cycle running at present,
3447                  * so we can start a cycle.
3448                  * Begin by setting Flash Cycle Done.
3449                  */
3450                 hsfsts.hsf_status.flcdone = 1;
3451                 if (hw->mac.type >= e1000_pch_spt)
3452                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3453                 else
3454                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3455                 ret_val = 0;
3456         } else {
3457                 s32 i;
3458
3459                 /* Otherwise poll for sometime so the current
3460                  * cycle has a chance to end before giving up.
3461                  */
3462                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3463                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3464                         if (!hsfsts.hsf_status.flcinprog) {
3465                                 ret_val = 0;
3466                                 break;
3467                         }
3468                         udelay(1);
3469                 }
3470                 if (!ret_val) {
3471                         /* Successful in waiting for previous cycle to timeout,
3472                          * now set the Flash Cycle Done.
3473                          */
3474                         hsfsts.hsf_status.flcdone = 1;
3475                         if (hw->mac.type >= e1000_pch_spt)
3476                                 ew32flash(ICH_FLASH_HSFSTS,
3477                                           hsfsts.regval & 0xFFFF);
3478                         else
3479                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3480                 } else {
3481                         e_dbg("Flash controller busy, cannot get access\n");
3482                 }
3483         }
3484
3485         return ret_val;
3486 }
3487
3488 /**
3489  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3490  *  @hw: pointer to the HW structure
3491  *  @timeout: maximum time to wait for completion
3492  *
3493  *  This function starts a flash cycle and waits for its completion.
3494  **/
3495 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3496 {
3497         union ich8_hws_flash_ctrl hsflctl;
3498         union ich8_hws_flash_status hsfsts;
3499         u32 i = 0;
3500
3501         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3502         if (hw->mac.type >= e1000_pch_spt)
3503                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3504         else
3505                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3506         hsflctl.hsf_ctrl.flcgo = 1;
3507
3508         if (hw->mac.type >= e1000_pch_spt)
3509                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3510         else
3511                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3512
3513         /* wait till FDONE bit is set to 1 */
3514         do {
3515                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516                 if (hsfsts.hsf_status.flcdone)
3517                         break;
3518                 udelay(1);
3519         } while (i++ < timeout);
3520
3521         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3522                 return 0;
3523
3524         return -E1000_ERR_NVM;
3525 }
3526
3527 /**
3528  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3529  *  @hw: pointer to the HW structure
3530  *  @offset: offset to data location
3531  *  @data: pointer to the location for storing the data
3532  *
3533  *  Reads the flash dword at offset into data.  Offset is converted
3534  *  to bytes before read.
3535  **/
3536 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3537                                           u32 *data)
3538 {
3539         /* Must convert word offset into bytes. */
3540         offset <<= 1;
3541         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3542 }
3543
3544 /**
3545  *  e1000_read_flash_word_ich8lan - Read word from flash
3546  *  @hw: pointer to the HW structure
3547  *  @offset: offset to data location
3548  *  @data: pointer to the location for storing the data
3549  *
3550  *  Reads the flash word at offset into data.  Offset is converted
3551  *  to bytes before read.
3552  **/
3553 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3554                                          u16 *data)
3555 {
3556         /* Must convert offset into bytes. */
3557         offset <<= 1;
3558
3559         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3560 }
3561
3562 /**
3563  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3564  *  @hw: pointer to the HW structure
3565  *  @offset: The offset of the byte to read.
3566  *  @data: Pointer to a byte to store the value read.
3567  *
3568  *  Reads a single byte from the NVM using the flash access registers.
3569  **/
3570 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3571                                          u8 *data)
3572 {
3573         s32 ret_val;
3574         u16 word = 0;
3575
3576         /* In SPT, only 32 bits access is supported,
3577          * so this function should not be called.
3578          */
3579         if (hw->mac.type >= e1000_pch_spt)
3580                 return -E1000_ERR_NVM;
3581         else
3582                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3583
3584         if (ret_val)
3585                 return ret_val;
3586
3587         *data = (u8)word;
3588
3589         return 0;
3590 }
3591
3592 /**
3593  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3594  *  @hw: pointer to the HW structure
3595  *  @offset: The offset (in bytes) of the byte or word to read.
3596  *  @size: Size of data to read, 1=byte 2=word
3597  *  @data: Pointer to the word to store the value read.
3598  *
3599  *  Reads a byte or word from the NVM using the flash access registers.
3600  **/
3601 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3602                                          u8 size, u16 *data)
3603 {
3604         union ich8_hws_flash_status hsfsts;
3605         union ich8_hws_flash_ctrl hsflctl;
3606         u32 flash_linear_addr;
3607         u32 flash_data = 0;
3608         s32 ret_val = -E1000_ERR_NVM;
3609         u8 count = 0;
3610
3611         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3612                 return -E1000_ERR_NVM;
3613
3614         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3615                              hw->nvm.flash_base_addr);
3616
3617         do {
3618                 udelay(1);
3619                 /* Steps */
3620                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3621                 if (ret_val)
3622                         break;
3623
3624                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3625                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3626                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3627                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3628                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3629
3630                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3631
3632                 ret_val =
3633                     e1000_flash_cycle_ich8lan(hw,
3634                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3635
3636                 /* Check if FCERR is set to 1, if set to 1, clear it
3637                  * and try the whole sequence a few more times, else
3638                  * read in (shift in) the Flash Data0, the order is
3639                  * least significant byte first msb to lsb
3640                  */
3641                 if (!ret_val) {
3642                         flash_data = er32flash(ICH_FLASH_FDATA0);
3643                         if (size == 1)
3644                                 *data = (u8)(flash_data & 0x000000FF);
3645                         else if (size == 2)
3646                                 *data = (u16)(flash_data & 0x0000FFFF);
3647                         break;
3648                 } else {
3649                         /* If we've gotten here, then things are probably
3650                          * completely hosed, but if the error condition is
3651                          * detected, it won't hurt to give it another try...
3652                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3653                          */
3654                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3655                         if (hsfsts.hsf_status.flcerr) {
3656                                 /* Repeat for some time before giving up. */
3657                                 continue;
3658                         } else if (!hsfsts.hsf_status.flcdone) {
3659                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3660                                 break;
3661                         }
3662                 }
3663         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3664
3665         return ret_val;
3666 }
3667
3668 /**
3669  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3670  *  @hw: pointer to the HW structure
3671  *  @offset: The offset (in bytes) of the dword to read.
3672  *  @data: Pointer to the dword to store the value read.
3673  *
3674  *  Reads a byte or word from the NVM using the flash access registers.
3675  **/
3676
3677 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3678                                            u32 *data)
3679 {
3680         union ich8_hws_flash_status hsfsts;
3681         union ich8_hws_flash_ctrl hsflctl;
3682         u32 flash_linear_addr;
3683         s32 ret_val = -E1000_ERR_NVM;
3684         u8 count = 0;
3685
3686         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3687                 return -E1000_ERR_NVM;
3688         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3689                              hw->nvm.flash_base_addr);
3690
3691         do {
3692                 udelay(1);
3693                 /* Steps */
3694                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3695                 if (ret_val)
3696                         break;
3697                 /* In SPT, This register is in Lan memory space, not flash.
3698                  * Therefore, only 32 bit access is supported
3699                  */
3700                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3701
3702                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3703                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3704                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3705                 /* In SPT, This register is in Lan memory space, not flash.
3706                  * Therefore, only 32 bit access is supported
3707                  */
3708                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3709                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3710
3711                 ret_val =
3712                    e1000_flash_cycle_ich8lan(hw,
3713                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3714
3715                 /* Check if FCERR is set to 1, if set to 1, clear it
3716                  * and try the whole sequence a few more times, else
3717                  * read in (shift in) the Flash Data0, the order is
3718                  * least significant byte first msb to lsb
3719                  */
3720                 if (!ret_val) {
3721                         *data = er32flash(ICH_FLASH_FDATA0);
3722                         break;
3723                 } else {
3724                         /* If we've gotten here, then things are probably
3725                          * completely hosed, but if the error condition is
3726                          * detected, it won't hurt to give it another try...
3727                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3728                          */
3729                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3730                         if (hsfsts.hsf_status.flcerr) {
3731                                 /* Repeat for some time before giving up. */
3732                                 continue;
3733                         } else if (!hsfsts.hsf_status.flcdone) {
3734                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3735                                 break;
3736                         }
3737                 }
3738         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3739
3740         return ret_val;
3741 }
3742
3743 /**
3744  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3745  *  @hw: pointer to the HW structure
3746  *  @offset: The offset (in bytes) of the word(s) to write.
3747  *  @words: Size of data to write in words
3748  *  @data: Pointer to the word(s) to write at offset.
3749  *
3750  *  Writes a byte or word to the NVM using the flash access registers.
3751  **/
3752 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3753                                    u16 *data)
3754 {
3755         struct e1000_nvm_info *nvm = &hw->nvm;
3756         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3757         u16 i;
3758
3759         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3760             (words == 0)) {
3761                 e_dbg("nvm parameter(s) out of bounds\n");
3762                 return -E1000_ERR_NVM;
3763         }
3764
3765         nvm->ops.acquire(hw);
3766
3767         for (i = 0; i < words; i++) {
3768                 dev_spec->shadow_ram[offset + i].modified = true;
3769                 dev_spec->shadow_ram[offset + i].value = data[i];
3770         }
3771
3772         nvm->ops.release(hw);
3773
3774         return 0;
3775 }
3776
3777 /**
3778  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3779  *  @hw: pointer to the HW structure
3780  *
3781  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3782  *  which writes the checksum to the shadow ram.  The changes in the shadow
3783  *  ram are then committed to the EEPROM by processing each bank at a time
3784  *  checking for the modified bit and writing only the pending changes.
3785  *  After a successful commit, the shadow ram is cleared and is ready for
3786  *  future writes.
3787  **/
3788 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3789 {
3790         struct e1000_nvm_info *nvm = &hw->nvm;
3791         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3792         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3793         s32 ret_val;
3794         u32 dword = 0;
3795
3796         ret_val = e1000e_update_nvm_checksum_generic(hw);
3797         if (ret_val)
3798                 goto out;
3799
3800         if (nvm->type != e1000_nvm_flash_sw)
3801                 goto out;
3802
3803         nvm->ops.acquire(hw);
3804
3805         /* We're writing to the opposite bank so if we're on bank 1,
3806          * write to bank 0 etc.  We also need to erase the segment that
3807          * is going to be written
3808          */
3809         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3810         if (ret_val) {
3811                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3812                 bank = 0;
3813         }
3814
3815         if (bank == 0) {
3816                 new_bank_offset = nvm->flash_bank_size;
3817                 old_bank_offset = 0;
3818                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3819                 if (ret_val)
3820                         goto release;
3821         } else {
3822                 old_bank_offset = nvm->flash_bank_size;
3823                 new_bank_offset = 0;
3824                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3825                 if (ret_val)
3826                         goto release;
3827         }
3828         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3829                 /* Determine whether to write the value stored
3830                  * in the other NVM bank or a modified value stored
3831                  * in the shadow RAM
3832                  */
3833                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3834                                                          i + old_bank_offset,
3835                                                          &dword);
3836
3837                 if (dev_spec->shadow_ram[i].modified) {
3838                         dword &= 0xffff0000;
3839                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3840                 }
3841                 if (dev_spec->shadow_ram[i + 1].modified) {
3842                         dword &= 0x0000ffff;
3843                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3844                                   << 16);
3845                 }
3846                 if (ret_val)
3847                         break;
3848
3849                 /* If the word is 0x13, then make sure the signature bits
3850                  * (15:14) are 11b until the commit has completed.
3851                  * This will allow us to write 10b which indicates the
3852                  * signature is valid.  We want to do this after the write
3853                  * has completed so that we don't mark the segment valid
3854                  * while the write is still in progress
3855                  */
3856                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3857                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3858
3859                 /* Convert offset to bytes. */
3860                 act_offset = (i + new_bank_offset) << 1;
3861
3862                 usleep_range(100, 200);
3863
3864                 /* Write the data to the new bank. Offset in words */
3865                 act_offset = i + new_bank_offset;
3866                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3867                                                                 dword);
3868                 if (ret_val)
3869                         break;
3870         }
3871
3872         /* Don't bother writing the segment valid bits if sector
3873          * programming failed.
3874          */
3875         if (ret_val) {
3876                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3877                 e_dbg("Flash commit failed.\n");
3878                 goto release;
3879         }
3880
3881         /* Finally validate the new segment by setting bit 15:14
3882          * to 10b in word 0x13 , this can be done without an
3883          * erase as well since these bits are 11 to start with
3884          * and we need to change bit 14 to 0b
3885          */
3886         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3887
3888         /*offset in words but we read dword */
3889         --act_offset;
3890         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3891
3892         if (ret_val)
3893                 goto release;
3894
3895         dword &= 0xBFFFFFFF;
3896         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3897
3898         if (ret_val)
3899                 goto release;
3900
3901         /* And invalidate the previously valid segment by setting
3902          * its signature word (0x13) high_byte to 0b. This can be
3903          * done without an erase because flash erase sets all bits
3904          * to 1's. We can write 1's to 0's without an erase
3905          */
3906         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3907
3908         /* offset in words but we read dword */
3909         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3910         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3911
3912         if (ret_val)
3913                 goto release;
3914
3915         dword &= 0x00FFFFFF;
3916         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3917
3918         if (ret_val)
3919                 goto release;
3920
3921         /* Great!  Everything worked, we can now clear the cached entries. */
3922         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3923                 dev_spec->shadow_ram[i].modified = false;
3924                 dev_spec->shadow_ram[i].value = 0xFFFF;
3925         }
3926
3927 release:
3928         nvm->ops.release(hw);
3929
3930         /* Reload the EEPROM, or else modifications will not appear
3931          * until after the next adapter reset.
3932          */
3933         if (!ret_val) {
3934                 nvm->ops.reload(hw);
3935                 usleep_range(10000, 11000);
3936         }
3937
3938 out:
3939         if (ret_val)
3940                 e_dbg("NVM update error: %d\n", ret_val);
3941
3942         return ret_val;
3943 }
3944
3945 /**
3946  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3947  *  @hw: pointer to the HW structure
3948  *
3949  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3950  *  which writes the checksum to the shadow ram.  The changes in the shadow
3951  *  ram are then committed to the EEPROM by processing each bank at a time
3952  *  checking for the modified bit and writing only the pending changes.
3953  *  After a successful commit, the shadow ram is cleared and is ready for
3954  *  future writes.
3955  **/
3956 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3957 {
3958         struct e1000_nvm_info *nvm = &hw->nvm;
3959         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3960         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3961         s32 ret_val;
3962         u16 data = 0;
3963
3964         ret_val = e1000e_update_nvm_checksum_generic(hw);
3965         if (ret_val)
3966                 goto out;
3967
3968         if (nvm->type != e1000_nvm_flash_sw)
3969                 goto out;
3970
3971         nvm->ops.acquire(hw);
3972
3973         /* We're writing to the opposite bank so if we're on bank 1,
3974          * write to bank 0 etc.  We also need to erase the segment that
3975          * is going to be written
3976          */
3977         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3978         if (ret_val) {
3979                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3980                 bank = 0;
3981         }
3982
3983         if (bank == 0) {
3984                 new_bank_offset = nvm->flash_bank_size;
3985                 old_bank_offset = 0;
3986                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3987                 if (ret_val)
3988                         goto release;
3989         } else {
3990                 old_bank_offset = nvm->flash_bank_size;
3991                 new_bank_offset = 0;
3992                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3993                 if (ret_val)
3994                         goto release;
3995         }
3996         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3997                 if (dev_spec->shadow_ram[i].modified) {
3998                         data = dev_spec->shadow_ram[i].value;
3999                 } else {
4000                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4001                                                                 old_bank_offset,
4002                                                                 &data);
4003                         if (ret_val)
4004                                 break;
4005                 }
4006
4007                 /* If the word is 0x13, then make sure the signature bits
4008                  * (15:14) are 11b until the commit has completed.
4009                  * This will allow us to write 10b which indicates the
4010                  * signature is valid.  We want to do this after the write
4011                  * has completed so that we don't mark the segment valid
4012                  * while the write is still in progress
4013                  */
4014                 if (i == E1000_ICH_NVM_SIG_WORD)
4015                         data |= E1000_ICH_NVM_SIG_MASK;
4016
4017                 /* Convert offset to bytes. */
4018                 act_offset = (i + new_bank_offset) << 1;
4019
4020                 usleep_range(100, 200);
4021                 /* Write the bytes to the new bank. */
4022                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4023                                                                act_offset,
4024                                                                (u8)data);
4025                 if (ret_val)
4026                         break;
4027
4028                 usleep_range(100, 200);
4029                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4030                                                                act_offset + 1,
4031                                                                (u8)(data >> 8));
4032                 if (ret_val)
4033                         break;
4034         }
4035
4036         /* Don't bother writing the segment valid bits if sector
4037          * programming failed.
4038          */
4039         if (ret_val) {
4040                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4041                 e_dbg("Flash commit failed.\n");
4042                 goto release;
4043         }
4044
4045         /* Finally validate the new segment by setting bit 15:14
4046          * to 10b in word 0x13 , this can be done without an
4047          * erase as well since these bits are 11 to start with
4048          * and we need to change bit 14 to 0b
4049          */
4050         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4051         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4052         if (ret_val)
4053                 goto release;
4054
4055         data &= 0xBFFF;
4056         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4057                                                        act_offset * 2 + 1,
4058                                                        (u8)(data >> 8));
4059         if (ret_val)
4060                 goto release;
4061
4062         /* And invalidate the previously valid segment by setting
4063          * its signature word (0x13) high_byte to 0b. This can be
4064          * done without an erase because flash erase sets all bits
4065          * to 1's. We can write 1's to 0's without an erase
4066          */
4067         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4068         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4069         if (ret_val)
4070                 goto release;
4071
4072         /* Great!  Everything worked, we can now clear the cached entries. */
4073         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4074                 dev_spec->shadow_ram[i].modified = false;
4075                 dev_spec->shadow_ram[i].value = 0xFFFF;
4076         }
4077
4078 release:
4079         nvm->ops.release(hw);
4080
4081         /* Reload the EEPROM, or else modifications will not appear
4082          * until after the next adapter reset.
4083          */
4084         if (!ret_val) {
4085                 nvm->ops.reload(hw);
4086                 usleep_range(10000, 11000);
4087         }
4088
4089 out:
4090         if (ret_val)
4091                 e_dbg("NVM update error: %d\n", ret_val);
4092
4093         return ret_val;
4094 }
4095
4096 /**
4097  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4098  *  @hw: pointer to the HW structure
4099  *
4100  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4101  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4102  *  calculated, in which case we need to calculate the checksum and set bit 6.
4103  **/
4104 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4105 {
4106         s32 ret_val;
4107         u16 data;
4108         u16 word;
4109         u16 valid_csum_mask;
4110
4111         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4112          * the checksum needs to be fixed.  This bit is an indication that
4113          * the NVM was prepared by OEM software and did not calculate
4114          * the checksum...a likely scenario.
4115          */
4116         switch (hw->mac.type) {
4117         case e1000_pch_lpt:
4118         case e1000_pch_spt:
4119         case e1000_pch_cnp:
4120         case e1000_pch_tgp:
4121         case e1000_pch_adp:
4122         case e1000_pch_mtp:
4123                 word = NVM_COMPAT;
4124                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4125                 break;
4126         default:
4127                 word = NVM_FUTURE_INIT_WORD1;
4128                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4129                 break;
4130         }
4131
4132         ret_val = e1000_read_nvm(hw, word, 1, &data);
4133         if (ret_val)
4134                 return ret_val;
4135
4136         if (!(data & valid_csum_mask)) {
4137                 e_dbg("NVM Checksum valid bit not set\n");
4138
4139                 if (hw->mac.type < e1000_pch_tgp) {
4140                         data |= valid_csum_mask;
4141                         ret_val = e1000_write_nvm(hw, word, 1, &data);
4142                         if (ret_val)
4143                                 return ret_val;
4144                         ret_val = e1000e_update_nvm_checksum(hw);
4145                         if (ret_val)
4146                                 return ret_val;
4147                 }
4148         }
4149
4150         return e1000e_validate_nvm_checksum_generic(hw);
4151 }
4152
4153 /**
4154  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4155  *  @hw: pointer to the HW structure
4156  *
4157  *  To prevent malicious write/erase of the NVM, set it to be read-only
4158  *  so that the hardware ignores all write/erase cycles of the NVM via
4159  *  the flash control registers.  The shadow-ram copy of the NVM will
4160  *  still be updated, however any updates to this copy will not stick
4161  *  across driver reloads.
4162  **/
4163 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4164 {
4165         struct e1000_nvm_info *nvm = &hw->nvm;
4166         union ich8_flash_protected_range pr0;
4167         union ich8_hws_flash_status hsfsts;
4168         u32 gfpreg;
4169
4170         nvm->ops.acquire(hw);
4171
4172         gfpreg = er32flash(ICH_FLASH_GFPREG);
4173
4174         /* Write-protect GbE Sector of NVM */
4175         pr0.regval = er32flash(ICH_FLASH_PR0);
4176         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4177         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4178         pr0.range.wpe = true;
4179         ew32flash(ICH_FLASH_PR0, pr0.regval);
4180
4181         /* Lock down a subset of GbE Flash Control Registers, e.g.
4182          * PR0 to prevent the write-protection from being lifted.
4183          * Once FLOCKDN is set, the registers protected by it cannot
4184          * be written until FLOCKDN is cleared by a hardware reset.
4185          */
4186         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187         hsfsts.hsf_status.flockdn = true;
4188         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4189
4190         nvm->ops.release(hw);
4191 }
4192
4193 /**
4194  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4195  *  @hw: pointer to the HW structure
4196  *  @offset: The offset (in bytes) of the byte/word to read.
4197  *  @size: Size of data to read, 1=byte 2=word
4198  *  @data: The byte(s) to write to the NVM.
4199  *
4200  *  Writes one/two bytes to the NVM using the flash access registers.
4201  **/
4202 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4203                                           u8 size, u16 data)
4204 {
4205         union ich8_hws_flash_status hsfsts;
4206         union ich8_hws_flash_ctrl hsflctl;
4207         u32 flash_linear_addr;
4208         u32 flash_data = 0;
4209         s32 ret_val;
4210         u8 count = 0;
4211
4212         if (hw->mac.type >= e1000_pch_spt) {
4213                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4214                         return -E1000_ERR_NVM;
4215         } else {
4216                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4217                         return -E1000_ERR_NVM;
4218         }
4219
4220         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4221                              hw->nvm.flash_base_addr);
4222
4223         do {
4224                 udelay(1);
4225                 /* Steps */
4226                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4227                 if (ret_val)
4228                         break;
4229                 /* In SPT, This register is in Lan memory space, not
4230                  * flash.  Therefore, only 32 bit access is supported
4231                  */
4232                 if (hw->mac.type >= e1000_pch_spt)
4233                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4234                 else
4235                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4236
4237                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4238                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4239                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4240                 /* In SPT, This register is in Lan memory space,
4241                  * not flash.  Therefore, only 32 bit access is
4242                  * supported
4243                  */
4244                 if (hw->mac.type >= e1000_pch_spt)
4245                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4246                 else
4247                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4248
4249                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4250
4251                 if (size == 1)
4252                         flash_data = (u32)data & 0x00FF;
4253                 else
4254                         flash_data = (u32)data;
4255
4256                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4257
4258                 /* check if FCERR is set to 1 , if set to 1, clear it
4259                  * and try the whole sequence a few more times else done
4260                  */
4261                 ret_val =
4262                     e1000_flash_cycle_ich8lan(hw,
4263                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4264                 if (!ret_val)
4265                         break;
4266
4267                 /* If we're here, then things are most likely
4268                  * completely hosed, but if the error condition
4269                  * is detected, it won't hurt to give it another
4270                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4271                  */
4272                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4273                 if (hsfsts.hsf_status.flcerr)
4274                         /* Repeat for some time before giving up. */
4275                         continue;
4276                 if (!hsfsts.hsf_status.flcdone) {
4277                         e_dbg("Timeout error - flash cycle did not complete.\n");
4278                         break;
4279                 }
4280         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4281
4282         return ret_val;
4283 }
4284
4285 /**
4286 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4287 *  @hw: pointer to the HW structure
4288 *  @offset: The offset (in bytes) of the dwords to read.
4289 *  @data: The 4 bytes to write to the NVM.
4290 *
4291 *  Writes one/two/four bytes to the NVM using the flash access registers.
4292 **/
4293 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4294                                             u32 data)
4295 {
4296         union ich8_hws_flash_status hsfsts;
4297         union ich8_hws_flash_ctrl hsflctl;
4298         u32 flash_linear_addr;
4299         s32 ret_val;
4300         u8 count = 0;
4301
4302         if (hw->mac.type >= e1000_pch_spt) {
4303                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4304                         return -E1000_ERR_NVM;
4305         }
4306         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4307                              hw->nvm.flash_base_addr);
4308         do {
4309                 udelay(1);
4310                 /* Steps */
4311                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4312                 if (ret_val)
4313                         break;
4314
4315                 /* In SPT, This register is in Lan memory space, not
4316                  * flash.  Therefore, only 32 bit access is supported
4317                  */
4318                 if (hw->mac.type >= e1000_pch_spt)
4319                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4320                             >> 16;
4321                 else
4322                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4323
4324                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4325                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4326
4327                 /* In SPT, This register is in Lan memory space,
4328                  * not flash.  Therefore, only 32 bit access is
4329                  * supported
4330                  */
4331                 if (hw->mac.type >= e1000_pch_spt)
4332                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4333                 else
4334                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4335
4336                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4337
4338                 ew32flash(ICH_FLASH_FDATA0, data);
4339
4340                 /* check if FCERR is set to 1 , if set to 1, clear it
4341                  * and try the whole sequence a few more times else done
4342                  */
4343                 ret_val =
4344                    e1000_flash_cycle_ich8lan(hw,
4345                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4346
4347                 if (!ret_val)
4348                         break;
4349
4350                 /* If we're here, then things are most likely
4351                  * completely hosed, but if the error condition
4352                  * is detected, it won't hurt to give it another
4353                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4354                  */
4355                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4356
4357                 if (hsfsts.hsf_status.flcerr)
4358                         /* Repeat for some time before giving up. */
4359                         continue;
4360                 if (!hsfsts.hsf_status.flcdone) {
4361                         e_dbg("Timeout error - flash cycle did not complete.\n");
4362                         break;
4363                 }
4364         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4365
4366         return ret_val;
4367 }
4368
4369 /**
4370  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4371  *  @hw: pointer to the HW structure
4372  *  @offset: The index of the byte to read.
4373  *  @data: The byte to write to the NVM.
4374  *
4375  *  Writes a single byte to the NVM using the flash access registers.
4376  **/
4377 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4378                                           u8 data)
4379 {
4380         u16 word = (u16)data;
4381
4382         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4383 }
4384
4385 /**
4386 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4387 *  @hw: pointer to the HW structure
4388 *  @offset: The offset of the word to write.
4389 *  @dword: The dword to write to the NVM.
4390 *
4391 *  Writes a single dword to the NVM using the flash access registers.
4392 *  Goes through a retry algorithm before giving up.
4393 **/
4394 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4395                                                  u32 offset, u32 dword)
4396 {
4397         s32 ret_val;
4398         u16 program_retries;
4399
4400         /* Must convert word offset into bytes. */
4401         offset <<= 1;
4402         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4403
4404         if (!ret_val)
4405                 return ret_val;
4406         for (program_retries = 0; program_retries < 100; program_retries++) {
4407                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4408                 usleep_range(100, 200);
4409                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4410                 if (!ret_val)
4411                         break;
4412         }
4413         if (program_retries == 100)
4414                 return -E1000_ERR_NVM;
4415
4416         return 0;
4417 }
4418
4419 /**
4420  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4421  *  @hw: pointer to the HW structure
4422  *  @offset: The offset of the byte to write.
4423  *  @byte: The byte to write to the NVM.
4424  *
4425  *  Writes a single byte to the NVM using the flash access registers.
4426  *  Goes through a retry algorithm before giving up.
4427  **/
4428 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4429                                                 u32 offset, u8 byte)
4430 {
4431         s32 ret_val;
4432         u16 program_retries;
4433
4434         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4435         if (!ret_val)
4436                 return ret_val;
4437
4438         for (program_retries = 0; program_retries < 100; program_retries++) {
4439                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4440                 usleep_range(100, 200);
4441                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4442                 if (!ret_val)
4443                         break;
4444         }
4445         if (program_retries == 100)
4446                 return -E1000_ERR_NVM;
4447
4448         return 0;
4449 }
4450
4451 /**
4452  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4453  *  @hw: pointer to the HW structure
4454  *  @bank: 0 for first bank, 1 for second bank, etc.
4455  *
4456  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4457  *  bank N is 4096 * N + flash_reg_addr.
4458  **/
4459 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4460 {
4461         struct e1000_nvm_info *nvm = &hw->nvm;
4462         union ich8_hws_flash_status hsfsts;
4463         union ich8_hws_flash_ctrl hsflctl;
4464         u32 flash_linear_addr;
4465         /* bank size is in 16bit words - adjust to bytes */
4466         u32 flash_bank_size = nvm->flash_bank_size * 2;
4467         s32 ret_val;
4468         s32 count = 0;
4469         s32 j, iteration, sector_size;
4470
4471         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4472
4473         /* Determine HW Sector size: Read BERASE bits of hw flash status
4474          * register
4475          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4476          *     consecutive sectors.  The start index for the nth Hw sector
4477          *     can be calculated as = bank * 4096 + n * 256
4478          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4479          *     The start index for the nth Hw sector can be calculated
4480          *     as = bank * 4096
4481          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4482          *     (ich9 only, otherwise error condition)
4483          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4484          */
4485         switch (hsfsts.hsf_status.berasesz) {
4486         case 0:
4487                 /* Hw sector size 256 */
4488                 sector_size = ICH_FLASH_SEG_SIZE_256;
4489                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4490                 break;
4491         case 1:
4492                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4493                 iteration = 1;
4494                 break;
4495         case 2:
4496                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4497                 iteration = 1;
4498                 break;
4499         case 3:
4500                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4501                 iteration = 1;
4502                 break;
4503         default:
4504                 return -E1000_ERR_NVM;
4505         }
4506
4507         /* Start with the base address, then add the sector offset. */
4508         flash_linear_addr = hw->nvm.flash_base_addr;
4509         flash_linear_addr += (bank) ? flash_bank_size : 0;
4510
4511         for (j = 0; j < iteration; j++) {
4512                 do {
4513                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4514
4515                         /* Steps */
4516                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4517                         if (ret_val)
4518                                 return ret_val;
4519
4520                         /* Write a value 11 (block Erase) in Flash
4521                          * Cycle field in hw flash control
4522                          */
4523                         if (hw->mac.type >= e1000_pch_spt)
4524                                 hsflctl.regval =
4525                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4526                         else
4527                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4528
4529                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4530                         if (hw->mac.type >= e1000_pch_spt)
4531                                 ew32flash(ICH_FLASH_HSFSTS,
4532                                           hsflctl.regval << 16);
4533                         else
4534                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4535
4536                         /* Write the last 24 bits of an index within the
4537                          * block into Flash Linear address field in Flash
4538                          * Address.
4539                          */
4540                         flash_linear_addr += (j * sector_size);
4541                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4542
4543                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4544                         if (!ret_val)
4545                                 break;
4546
4547                         /* Check if FCERR is set to 1.  If 1,
4548                          * clear it and try the whole sequence
4549                          * a few more times else Done
4550                          */
4551                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4552                         if (hsfsts.hsf_status.flcerr)
4553                                 /* repeat for some time before giving up */
4554                                 continue;
4555                         else if (!hsfsts.hsf_status.flcdone)
4556                                 return ret_val;
4557                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4558         }
4559
4560         return 0;
4561 }
4562
4563 /**
4564  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4565  *  @hw: pointer to the HW structure
4566  *  @data: Pointer to the LED settings
4567  *
4568  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4569  *  settings is all 0's or F's, set the LED default to a valid LED default
4570  *  setting.
4571  **/
4572 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4573 {
4574         s32 ret_val;
4575
4576         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4577         if (ret_val) {
4578                 e_dbg("NVM Read Error\n");
4579                 return ret_val;
4580         }
4581
4582         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4583                 *data = ID_LED_DEFAULT_ICH8LAN;
4584
4585         return 0;
4586 }
4587
4588 /**
4589  *  e1000_id_led_init_pchlan - store LED configurations
4590  *  @hw: pointer to the HW structure
4591  *
4592  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4593  *  the PHY LED configuration register.
4594  *
4595  *  PCH also does not have an "always on" or "always off" mode which
4596  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4597  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4598  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4599  *  link based on logic in e1000_led_[on|off]_pchlan().
4600  **/
4601 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4602 {
4603         struct e1000_mac_info *mac = &hw->mac;
4604         s32 ret_val;
4605         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4606         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4607         u16 data, i, temp, shift;
4608
4609         /* Get default ID LED modes */
4610         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4611         if (ret_val)
4612                 return ret_val;
4613
4614         mac->ledctl_default = er32(LEDCTL);
4615         mac->ledctl_mode1 = mac->ledctl_default;
4616         mac->ledctl_mode2 = mac->ledctl_default;
4617
4618         for (i = 0; i < 4; i++) {
4619                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4620                 shift = (i * 5);
4621                 switch (temp) {
4622                 case ID_LED_ON1_DEF2:
4623                 case ID_LED_ON1_ON2:
4624                 case ID_LED_ON1_OFF2:
4625                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4626                         mac->ledctl_mode1 |= (ledctl_on << shift);
4627                         break;
4628                 case ID_LED_OFF1_DEF2:
4629                 case ID_LED_OFF1_ON2:
4630                 case ID_LED_OFF1_OFF2:
4631                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4632                         mac->ledctl_mode1 |= (ledctl_off << shift);
4633                         break;
4634                 default:
4635                         /* Do nothing */
4636                         break;
4637                 }
4638                 switch (temp) {
4639                 case ID_LED_DEF1_ON2:
4640                 case ID_LED_ON1_ON2:
4641                 case ID_LED_OFF1_ON2:
4642                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4643                         mac->ledctl_mode2 |= (ledctl_on << shift);
4644                         break;
4645                 case ID_LED_DEF1_OFF2:
4646                 case ID_LED_ON1_OFF2:
4647                 case ID_LED_OFF1_OFF2:
4648                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4649                         mac->ledctl_mode2 |= (ledctl_off << shift);
4650                         break;
4651                 default:
4652                         /* Do nothing */
4653                         break;
4654                 }
4655         }
4656
4657         return 0;
4658 }
4659
4660 /**
4661  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4662  *  @hw: pointer to the HW structure
4663  *
4664  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4665  *  register, so the the bus width is hard coded.
4666  **/
4667 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4668 {
4669         struct e1000_bus_info *bus = &hw->bus;
4670         s32 ret_val;
4671
4672         ret_val = e1000e_get_bus_info_pcie(hw);
4673
4674         /* ICH devices are "PCI Express"-ish.  They have
4675          * a configuration space, but do not contain
4676          * PCI Express Capability registers, so bus width
4677          * must be hardcoded.
4678          */
4679         if (bus->width == e1000_bus_width_unknown)
4680                 bus->width = e1000_bus_width_pcie_x1;
4681
4682         return ret_val;
4683 }
4684
4685 /**
4686  *  e1000_reset_hw_ich8lan - Reset the hardware
4687  *  @hw: pointer to the HW structure
4688  *
4689  *  Does a full reset of the hardware which includes a reset of the PHY and
4690  *  MAC.
4691  **/
4692 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4693 {
4694         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4695         u16 kum_cfg;
4696         u32 ctrl, reg;
4697         s32 ret_val;
4698
4699         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4700          * on the last TLP read/write transaction when MAC is reset.
4701          */
4702         ret_val = e1000e_disable_pcie_master(hw);
4703         if (ret_val)
4704                 e_dbg("PCI-E Master disable polling has failed.\n");
4705
4706         e_dbg("Masking off all interrupts\n");
4707         ew32(IMC, 0xffffffff);
4708
4709         /* Disable the Transmit and Receive units.  Then delay to allow
4710          * any pending transactions to complete before we hit the MAC
4711          * with the global reset.
4712          */
4713         ew32(RCTL, 0);
4714         ew32(TCTL, E1000_TCTL_PSP);
4715         e1e_flush();
4716
4717         usleep_range(10000, 11000);
4718
4719         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4720         if (hw->mac.type == e1000_ich8lan) {
4721                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4722                 ew32(PBA, E1000_PBA_8K);
4723                 /* Set Packet Buffer Size to 16k. */
4724                 ew32(PBS, E1000_PBS_16K);
4725         }
4726
4727         if (hw->mac.type == e1000_pchlan) {
4728                 /* Save the NVM K1 bit setting */
4729                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4730                 if (ret_val)
4731                         return ret_val;
4732
4733                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4734                         dev_spec->nvm_k1_enabled = true;
4735                 else
4736                         dev_spec->nvm_k1_enabled = false;
4737         }
4738
4739         ctrl = er32(CTRL);
4740
4741         if (!hw->phy.ops.check_reset_block(hw)) {
4742                 /* Full-chip reset requires MAC and PHY reset at the same
4743                  * time to make sure the interface between MAC and the
4744                  * external PHY is reset.
4745                  */
4746                 ctrl |= E1000_CTRL_PHY_RST;
4747
4748                 /* Gate automatic PHY configuration by hardware on
4749                  * non-managed 82579
4750                  */
4751                 if ((hw->mac.type == e1000_pch2lan) &&
4752                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4753                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4754         }
4755         ret_val = e1000_acquire_swflag_ich8lan(hw);
4756         e_dbg("Issuing a global reset to ich8lan\n");
4757         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4758         /* cannot issue a flush here because it hangs the hardware */
4759         msleep(20);
4760
4761         /* Set Phy Config Counter to 50msec */
4762         if (hw->mac.type == e1000_pch2lan) {
4763                 reg = er32(FEXTNVM3);
4764                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4765                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4766                 ew32(FEXTNVM3, reg);
4767         }
4768
4769         if (!ret_val)
4770                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4771
4772         if (ctrl & E1000_CTRL_PHY_RST) {
4773                 ret_val = hw->phy.ops.get_cfg_done(hw);
4774                 if (ret_val)
4775                         return ret_val;
4776
4777                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4778                 if (ret_val)
4779                         return ret_val;
4780         }
4781
4782         /* For PCH, this write will make sure that any noise
4783          * will be detected as a CRC error and be dropped rather than show up
4784          * as a bad packet to the DMA engine.
4785          */
4786         if (hw->mac.type == e1000_pchlan)
4787                 ew32(CRC_OFFSET, 0x65656565);
4788
4789         ew32(IMC, 0xffffffff);
4790         er32(ICR);
4791
4792         reg = er32(KABGTXD);
4793         reg |= E1000_KABGTXD_BGSQLBIAS;
4794         ew32(KABGTXD, reg);
4795
4796         return 0;
4797 }
4798
4799 /**
4800  *  e1000_init_hw_ich8lan - Initialize the hardware
4801  *  @hw: pointer to the HW structure
4802  *
4803  *  Prepares the hardware for transmit and receive by doing the following:
4804  *   - initialize hardware bits
4805  *   - initialize LED identification
4806  *   - setup receive address registers
4807  *   - setup flow control
4808  *   - setup transmit descriptors
4809  *   - clear statistics
4810  **/
4811 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4812 {
4813         struct e1000_mac_info *mac = &hw->mac;
4814         u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4815         s32 ret_val;
4816         u16 i;
4817
4818         e1000_initialize_hw_bits_ich8lan(hw);
4819
4820         /* Initialize identification LED */
4821         ret_val = mac->ops.id_led_init(hw);
4822         /* An error is not fatal and we should not stop init due to this */
4823         if (ret_val)
4824                 e_dbg("Error initializing identification LED\n");
4825
4826         /* Setup the receive address. */
4827         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4828
4829         /* Zero out the Multicast HASH table */
4830         e_dbg("Zeroing the MTA\n");
4831         for (i = 0; i < mac->mta_reg_count; i++)
4832                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4833
4834         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4835          * the ME.  Disable wakeup by clearing the host wakeup bit.
4836          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4837          */
4838         if (hw->phy.type == e1000_phy_82578) {
4839                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4840                 i &= ~BM_WUC_HOST_WU_BIT;
4841                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4842                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4843                 if (ret_val)
4844                         return ret_val;
4845         }
4846
4847         /* Setup link and flow control */
4848         ret_val = mac->ops.setup_link(hw);
4849
4850         /* Set the transmit descriptor write-back policy for both queues */
4851         txdctl = er32(TXDCTL(0));
4852         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4853                   E1000_TXDCTL_FULL_TX_DESC_WB);
4854         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4855                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4856         ew32(TXDCTL(0), txdctl);
4857         txdctl = er32(TXDCTL(1));
4858         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4859                   E1000_TXDCTL_FULL_TX_DESC_WB);
4860         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4861                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4862         ew32(TXDCTL(1), txdctl);
4863
4864         /* ICH8 has opposite polarity of no_snoop bits.
4865          * By default, we should use snoop behavior.
4866          */
4867         if (mac->type == e1000_ich8lan)
4868                 snoop = PCIE_ICH8_SNOOP_ALL;
4869         else
4870                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4871         e1000e_set_pcie_no_snoop(hw, snoop);
4872
4873         /* Enable workaround for packet loss issue on TGP PCH
4874          * Do not gate DMA clock from the modPHY block
4875          */
4876         if (mac->type >= e1000_pch_tgp) {
4877                 fflt_dbg = er32(FFLT_DBG);
4878                 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4879                 ew32(FFLT_DBG, fflt_dbg);
4880         }
4881
4882         ctrl_ext = er32(CTRL_EXT);
4883         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4884         ew32(CTRL_EXT, ctrl_ext);
4885
4886         /* Clear all of the statistics registers (clear on read).  It is
4887          * important that we do this after we have tried to establish link
4888          * because the symbol error count will increment wildly if there
4889          * is no link.
4890          */
4891         e1000_clear_hw_cntrs_ich8lan(hw);
4892
4893         return ret_val;
4894 }
4895
4896 /**
4897  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4898  *  @hw: pointer to the HW structure
4899  *
4900  *  Sets/Clears required hardware bits necessary for correctly setting up the
4901  *  hardware for transmit and receive.
4902  **/
4903 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4904 {
4905         u32 reg;
4906
4907         /* Extended Device Control */
4908         reg = er32(CTRL_EXT);
4909         reg |= BIT(22);
4910         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4911         if (hw->mac.type >= e1000_pchlan)
4912                 reg |= E1000_CTRL_EXT_PHYPDEN;
4913         ew32(CTRL_EXT, reg);
4914
4915         /* Transmit Descriptor Control 0 */
4916         reg = er32(TXDCTL(0));
4917         reg |= BIT(22);
4918         ew32(TXDCTL(0), reg);
4919
4920         /* Transmit Descriptor Control 1 */
4921         reg = er32(TXDCTL(1));
4922         reg |= BIT(22);
4923         ew32(TXDCTL(1), reg);
4924
4925         /* Transmit Arbitration Control 0 */
4926         reg = er32(TARC(0));
4927         if (hw->mac.type == e1000_ich8lan)
4928                 reg |= BIT(28) | BIT(29);
4929         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4930         ew32(TARC(0), reg);
4931
4932         /* Transmit Arbitration Control 1 */
4933         reg = er32(TARC(1));
4934         if (er32(TCTL) & E1000_TCTL_MULR)
4935                 reg &= ~BIT(28);
4936         else
4937                 reg |= BIT(28);
4938         reg |= BIT(24) | BIT(26) | BIT(30);
4939         ew32(TARC(1), reg);
4940
4941         /* Device Status */
4942         if (hw->mac.type == e1000_ich8lan) {
4943                 reg = er32(STATUS);
4944                 reg &= ~BIT(31);
4945                 ew32(STATUS, reg);
4946         }
4947
4948         /* work-around descriptor data corruption issue during nfs v2 udp
4949          * traffic, just disable the nfs filtering capability
4950          */
4951         reg = er32(RFCTL);
4952         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4953
4954         /* Disable IPv6 extension header parsing because some malformed
4955          * IPv6 headers can hang the Rx.
4956          */
4957         if (hw->mac.type == e1000_ich8lan)
4958                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4959         ew32(RFCTL, reg);
4960
4961         /* Enable ECC on Lynxpoint */
4962         if (hw->mac.type >= e1000_pch_lpt) {
4963                 reg = er32(PBECCSTS);
4964                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4965                 ew32(PBECCSTS, reg);
4966
4967                 reg = er32(CTRL);
4968                 reg |= E1000_CTRL_MEHE;
4969                 ew32(CTRL, reg);
4970         }
4971 }
4972
4973 /**
4974  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4975  *  @hw: pointer to the HW structure
4976  *
4977  *  Determines which flow control settings to use, then configures flow
4978  *  control.  Calls the appropriate media-specific link configuration
4979  *  function.  Assuming the adapter has a valid link partner, a valid link
4980  *  should be established.  Assumes the hardware has previously been reset
4981  *  and the transmitter and receiver are not enabled.
4982  **/
4983 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4984 {
4985         s32 ret_val;
4986
4987         if (hw->phy.ops.check_reset_block(hw))
4988                 return 0;
4989
4990         /* ICH parts do not have a word in the NVM to determine
4991          * the default flow control setting, so we explicitly
4992          * set it to full.
4993          */
4994         if (hw->fc.requested_mode == e1000_fc_default) {
4995                 /* Workaround h/w hang when Tx flow control enabled */
4996                 if (hw->mac.type == e1000_pchlan)
4997                         hw->fc.requested_mode = e1000_fc_rx_pause;
4998                 else
4999                         hw->fc.requested_mode = e1000_fc_full;
5000         }
5001
5002         /* Save off the requested flow control mode for use later.  Depending
5003          * on the link partner's capabilities, we may or may not use this mode.
5004          */
5005         hw->fc.current_mode = hw->fc.requested_mode;
5006
5007         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5008
5009         /* Continue to configure the copper link. */
5010         ret_val = hw->mac.ops.setup_physical_interface(hw);
5011         if (ret_val)
5012                 return ret_val;
5013
5014         ew32(FCTTV, hw->fc.pause_time);
5015         if ((hw->phy.type == e1000_phy_82578) ||
5016             (hw->phy.type == e1000_phy_82579) ||
5017             (hw->phy.type == e1000_phy_i217) ||
5018             (hw->phy.type == e1000_phy_82577)) {
5019                 ew32(FCRTV_PCH, hw->fc.refresh_time);
5020
5021                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5022                                    hw->fc.pause_time);
5023                 if (ret_val)
5024                         return ret_val;
5025         }
5026
5027         return e1000e_set_fc_watermarks(hw);
5028 }
5029
5030 /**
5031  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5032  *  @hw: pointer to the HW structure
5033  *
5034  *  Configures the kumeran interface to the PHY to wait the appropriate time
5035  *  when polling the PHY, then call the generic setup_copper_link to finish
5036  *  configuring the copper link.
5037  **/
5038 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5039 {
5040         u32 ctrl;
5041         s32 ret_val;
5042         u16 reg_data;
5043
5044         ctrl = er32(CTRL);
5045         ctrl |= E1000_CTRL_SLU;
5046         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5047         ew32(CTRL, ctrl);
5048
5049         /* Set the mac to wait the maximum time between each iteration
5050          * and increase the max iterations when polling the phy;
5051          * this fixes erroneous timeouts at 10Mbps.
5052          */
5053         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5054         if (ret_val)
5055                 return ret_val;
5056         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5057                                        &reg_data);
5058         if (ret_val)
5059                 return ret_val;
5060         reg_data |= 0x3F;
5061         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5062                                         reg_data);
5063         if (ret_val)
5064                 return ret_val;
5065
5066         switch (hw->phy.type) {
5067         case e1000_phy_igp_3:
5068                 ret_val = e1000e_copper_link_setup_igp(hw);
5069                 if (ret_val)
5070                         return ret_val;
5071                 break;
5072         case e1000_phy_bm:
5073         case e1000_phy_82578:
5074                 ret_val = e1000e_copper_link_setup_m88(hw);
5075                 if (ret_val)
5076                         return ret_val;
5077                 break;
5078         case e1000_phy_82577:
5079         case e1000_phy_82579:
5080                 ret_val = e1000_copper_link_setup_82577(hw);
5081                 if (ret_val)
5082                         return ret_val;
5083                 break;
5084         case e1000_phy_ife:
5085                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5086                 if (ret_val)
5087                         return ret_val;
5088
5089                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5090
5091                 switch (hw->phy.mdix) {
5092                 case 1:
5093                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5094                         break;
5095                 case 2:
5096                         reg_data |= IFE_PMC_FORCE_MDIX;
5097                         break;
5098                 case 0:
5099                 default:
5100                         reg_data |= IFE_PMC_AUTO_MDIX;
5101                         break;
5102                 }
5103                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5104                 if (ret_val)
5105                         return ret_val;
5106                 break;
5107         default:
5108                 break;
5109         }
5110
5111         return e1000e_setup_copper_link(hw);
5112 }
5113
5114 /**
5115  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5116  *  @hw: pointer to the HW structure
5117  *
5118  *  Calls the PHY specific link setup function and then calls the
5119  *  generic setup_copper_link to finish configuring the link for
5120  *  Lynxpoint PCH devices
5121  **/
5122 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5123 {
5124         u32 ctrl;
5125         s32 ret_val;
5126
5127         ctrl = er32(CTRL);
5128         ctrl |= E1000_CTRL_SLU;
5129         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5130         ew32(CTRL, ctrl);
5131
5132         ret_val = e1000_copper_link_setup_82577(hw);
5133         if (ret_val)
5134                 return ret_val;
5135
5136         return e1000e_setup_copper_link(hw);
5137 }
5138
5139 /**
5140  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5141  *  @hw: pointer to the HW structure
5142  *  @speed: pointer to store current link speed
5143  *  @duplex: pointer to store the current link duplex
5144  *
5145  *  Calls the generic get_speed_and_duplex to retrieve the current link
5146  *  information and then calls the Kumeran lock loss workaround for links at
5147  *  gigabit speeds.
5148  **/
5149 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5150                                           u16 *duplex)
5151 {
5152         s32 ret_val;
5153
5154         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5155         if (ret_val)
5156                 return ret_val;
5157
5158         if ((hw->mac.type == e1000_ich8lan) &&
5159             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5160                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5161         }
5162
5163         return ret_val;
5164 }
5165
5166 /**
5167  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5168  *  @hw: pointer to the HW structure
5169  *
5170  *  Work-around for 82566 Kumeran PCS lock loss:
5171  *  On link status change (i.e. PCI reset, speed change) and link is up and
5172  *  speed is gigabit-
5173  *    0) if workaround is optionally disabled do nothing
5174  *    1) wait 1ms for Kumeran link to come up
5175  *    2) check Kumeran Diagnostic register PCS lock loss bit
5176  *    3) if not set the link is locked (all is good), otherwise...
5177  *    4) reset the PHY
5178  *    5) repeat up to 10 times
5179  *  Note: this is only called for IGP3 copper when speed is 1gb.
5180  **/
5181 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5182 {
5183         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5184         u32 phy_ctrl;
5185         s32 ret_val;
5186         u16 i, data;
5187         bool link;
5188
5189         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5190                 return 0;
5191
5192         /* Make sure link is up before proceeding.  If not just return.
5193          * Attempting this while link is negotiating fouled up link
5194          * stability
5195          */
5196         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5197         if (!link)
5198                 return 0;
5199
5200         for (i = 0; i < 10; i++) {
5201                 /* read once to clear */
5202                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5203                 if (ret_val)
5204                         return ret_val;
5205                 /* and again to get new status */
5206                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5207                 if (ret_val)
5208                         return ret_val;
5209
5210                 /* check for PCS lock */
5211                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5212                         return 0;
5213
5214                 /* Issue PHY reset */
5215                 e1000_phy_hw_reset(hw);
5216                 mdelay(5);
5217         }
5218         /* Disable GigE link negotiation */
5219         phy_ctrl = er32(PHY_CTRL);
5220         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5221                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5222         ew32(PHY_CTRL, phy_ctrl);
5223
5224         /* Call gig speed drop workaround on Gig disable before accessing
5225          * any PHY registers
5226          */
5227         e1000e_gig_downshift_workaround_ich8lan(hw);
5228
5229         /* unable to acquire PCS lock */
5230         return -E1000_ERR_PHY;
5231 }
5232
5233 /**
5234  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5235  *  @hw: pointer to the HW structure
5236  *  @state: boolean value used to set the current Kumeran workaround state
5237  *
5238  *  If ICH8, set the current Kumeran workaround state (enabled - true
5239  *  /disabled - false).
5240  **/
5241 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5242                                                   bool state)
5243 {
5244         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5245
5246         if (hw->mac.type != e1000_ich8lan) {
5247                 e_dbg("Workaround applies to ICH8 only.\n");
5248                 return;
5249         }
5250
5251         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5252 }
5253
5254 /**
5255  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5256  *  @hw: pointer to the HW structure
5257  *
5258  *  Workaround for 82566 power-down on D3 entry:
5259  *    1) disable gigabit link
5260  *    2) write VR power-down enable
5261  *    3) read it back
5262  *  Continue if successful, else issue LCD reset and repeat
5263  **/
5264 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5265 {
5266         u32 reg;
5267         u16 data;
5268         u8 retry = 0;
5269
5270         if (hw->phy.type != e1000_phy_igp_3)
5271                 return;
5272
5273         /* Try the workaround twice (if needed) */
5274         do {
5275                 /* Disable link */
5276                 reg = er32(PHY_CTRL);
5277                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5278                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5279                 ew32(PHY_CTRL, reg);
5280
5281                 /* Call gig speed drop workaround on Gig disable before
5282                  * accessing any PHY registers
5283                  */
5284                 if (hw->mac.type == e1000_ich8lan)
5285                         e1000e_gig_downshift_workaround_ich8lan(hw);
5286
5287                 /* Write VR power-down enable */
5288                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5289                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5290                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5291
5292                 /* Read it back and test */
5293                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5294                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5295                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5296                         break;
5297
5298                 /* Issue PHY reset and repeat at most one more time */
5299                 reg = er32(CTRL);
5300                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5301                 retry++;
5302         } while (retry);
5303 }
5304
5305 /**
5306  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5307  *  @hw: pointer to the HW structure
5308  *
5309  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5310  *  LPLU, Gig disable, MDIC PHY reset):
5311  *    1) Set Kumeran Near-end loopback
5312  *    2) Clear Kumeran Near-end loopback
5313  *  Should only be called for ICH8[m] devices with any 1G Phy.
5314  **/
5315 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5316 {
5317         s32 ret_val;
5318         u16 reg_data;
5319
5320         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5321                 return;
5322
5323         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5324                                        &reg_data);
5325         if (ret_val)
5326                 return;
5327         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5328         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5329                                         reg_data);
5330         if (ret_val)
5331                 return;
5332         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5333         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5334 }
5335
5336 /**
5337  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5338  *  @hw: pointer to the HW structure
5339  *
5340  *  During S0 to Sx transition, it is possible the link remains at gig
5341  *  instead of negotiating to a lower speed.  Before going to Sx, set
5342  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5343  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5344  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5345  *  needs to be written.
5346  *  Parts that support (and are linked to a partner which support) EEE in
5347  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5348  *  than 10Mbps w/o EEE.
5349  **/
5350 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5351 {
5352         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5353         u32 phy_ctrl;
5354         s32 ret_val;
5355
5356         phy_ctrl = er32(PHY_CTRL);
5357         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5358
5359         if (hw->phy.type == e1000_phy_i217) {
5360                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5361
5362                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5363                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5364                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5365                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5366                     (hw->mac.type >= e1000_pch_spt)) {
5367                         u32 fextnvm6 = er32(FEXTNVM6);
5368
5369                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5370                 }
5371
5372                 ret_val = hw->phy.ops.acquire(hw);
5373                 if (ret_val)
5374                         goto out;
5375
5376                 if (!dev_spec->eee_disable) {
5377                         u16 eee_advert;
5378
5379                         ret_val =
5380                             e1000_read_emi_reg_locked(hw,
5381                                                       I217_EEE_ADVERTISEMENT,
5382                                                       &eee_advert);
5383                         if (ret_val)
5384                                 goto release;
5385
5386                         /* Disable LPLU if both link partners support 100BaseT
5387                          * EEE and 100Full is advertised on both ends of the
5388                          * link, and enable Auto Enable LPI since there will
5389                          * be no driver to enable LPI while in Sx.
5390                          */
5391                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5392                             (dev_spec->eee_lp_ability &
5393                              I82579_EEE_100_SUPPORTED) &&
5394                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5395                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5396                                               E1000_PHY_CTRL_NOND0A_LPLU);
5397
5398                                 /* Set Auto Enable LPI after link up */
5399                                 e1e_rphy_locked(hw,
5400                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5401                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5402                                 e1e_wphy_locked(hw,
5403                                                 I217_LPI_GPIO_CTRL, phy_reg);
5404                         }
5405                 }
5406
5407                 /* For i217 Intel Rapid Start Technology support,
5408                  * when the system is going into Sx and no manageability engine
5409                  * is present, the driver must configure proxy to reset only on
5410                  * power good.  LPI (Low Power Idle) state must also reset only
5411                  * on power good, as well as the MTA (Multicast table array).
5412                  * The SMBus release must also be disabled on LCD reset.
5413                  */
5414                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5415                         /* Enable proxy to reset only on power good. */
5416                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5417                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5418                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5419
5420                         /* Set bit enable LPI (EEE) to reset only on
5421                          * power good.
5422                          */
5423                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5424                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5425                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5426
5427                         /* Disable the SMB release on LCD reset. */
5428                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5429                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5430                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5431                 }
5432
5433                 /* Enable MTA to reset for Intel Rapid Start Technology
5434                  * Support
5435                  */
5436                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5437                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5438                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5439
5440 release:
5441                 hw->phy.ops.release(hw);
5442         }
5443 out:
5444         ew32(PHY_CTRL, phy_ctrl);
5445
5446         if (hw->mac.type == e1000_ich8lan)
5447                 e1000e_gig_downshift_workaround_ich8lan(hw);
5448
5449         if (hw->mac.type >= e1000_pchlan) {
5450                 e1000_oem_bits_config_ich8lan(hw, false);
5451
5452                 /* Reset PHY to activate OEM bits on 82577/8 */
5453                 if (hw->mac.type == e1000_pchlan)
5454                         e1000e_phy_hw_reset_generic(hw);
5455
5456                 ret_val = hw->phy.ops.acquire(hw);
5457                 if (ret_val)
5458                         return;
5459                 e1000_write_smbus_addr(hw);
5460                 hw->phy.ops.release(hw);
5461         }
5462 }
5463
5464 /**
5465  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5466  *  @hw: pointer to the HW structure
5467  *
5468  *  During Sx to S0 transitions on non-managed devices or managed devices
5469  *  on which PHY resets are not blocked, if the PHY registers cannot be
5470  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5471  *  the PHY.
5472  *  On i217, setup Intel Rapid Start Technology.
5473  **/
5474 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5475 {
5476         s32 ret_val;
5477
5478         if (hw->mac.type < e1000_pch2lan)
5479                 return;
5480
5481         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5482         if (ret_val) {
5483                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5484                 return;
5485         }
5486
5487         /* For i217 Intel Rapid Start Technology support when the system
5488          * is transitioning from Sx and no manageability engine is present
5489          * configure SMBus to restore on reset, disable proxy, and enable
5490          * the reset on MTA (Multicast table array).
5491          */
5492         if (hw->phy.type == e1000_phy_i217) {
5493                 u16 phy_reg;
5494
5495                 ret_val = hw->phy.ops.acquire(hw);
5496                 if (ret_val) {
5497                         e_dbg("Failed to setup iRST\n");
5498                         return;
5499                 }
5500
5501                 /* Clear Auto Enable LPI after link up */
5502                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5503                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5504                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5505
5506                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5507                         /* Restore clear on SMB if no manageability engine
5508                          * is present
5509                          */
5510                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5511                         if (ret_val)
5512                                 goto release;
5513                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5514                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5515
5516                         /* Disable Proxy */
5517                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5518                 }
5519                 /* Enable reset on MTA */
5520                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5521                 if (ret_val)
5522                         goto release;
5523                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5524                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5525 release:
5526                 if (ret_val)
5527                         e_dbg("Error %d in resume workarounds\n", ret_val);
5528                 hw->phy.ops.release(hw);
5529         }
5530 }
5531
5532 /**
5533  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5534  *  @hw: pointer to the HW structure
5535  *
5536  *  Return the LED back to the default configuration.
5537  **/
5538 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5539 {
5540         if (hw->phy.type == e1000_phy_ife)
5541                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5542
5543         ew32(LEDCTL, hw->mac.ledctl_default);
5544         return 0;
5545 }
5546
5547 /**
5548  *  e1000_led_on_ich8lan - Turn LEDs on
5549  *  @hw: pointer to the HW structure
5550  *
5551  *  Turn on the LEDs.
5552  **/
5553 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5554 {
5555         if (hw->phy.type == e1000_phy_ife)
5556                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5557                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5558
5559         ew32(LEDCTL, hw->mac.ledctl_mode2);
5560         return 0;
5561 }
5562
5563 /**
5564  *  e1000_led_off_ich8lan - Turn LEDs off
5565  *  @hw: pointer to the HW structure
5566  *
5567  *  Turn off the LEDs.
5568  **/
5569 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5570 {
5571         if (hw->phy.type == e1000_phy_ife)
5572                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5573                                 (IFE_PSCL_PROBE_MODE |
5574                                  IFE_PSCL_PROBE_LEDS_OFF));
5575
5576         ew32(LEDCTL, hw->mac.ledctl_mode1);
5577         return 0;
5578 }
5579
5580 /**
5581  *  e1000_setup_led_pchlan - Configures SW controllable LED
5582  *  @hw: pointer to the HW structure
5583  *
5584  *  This prepares the SW controllable LED for use.
5585  **/
5586 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5587 {
5588         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5589 }
5590
5591 /**
5592  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5593  *  @hw: pointer to the HW structure
5594  *
5595  *  Return the LED back to the default configuration.
5596  **/
5597 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5598 {
5599         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5600 }
5601
5602 /**
5603  *  e1000_led_on_pchlan - Turn LEDs on
5604  *  @hw: pointer to the HW structure
5605  *
5606  *  Turn on the LEDs.
5607  **/
5608 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5609 {
5610         u16 data = (u16)hw->mac.ledctl_mode2;
5611         u32 i, led;
5612
5613         /* If no link, then turn LED on by setting the invert bit
5614          * for each LED that's mode is "link_up" in ledctl_mode2.
5615          */
5616         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5617                 for (i = 0; i < 3; i++) {
5618                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5619                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5620                             E1000_LEDCTL_MODE_LINK_UP)
5621                                 continue;
5622                         if (led & E1000_PHY_LED0_IVRT)
5623                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5624                         else
5625                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5626                 }
5627         }
5628
5629         return e1e_wphy(hw, HV_LED_CONFIG, data);
5630 }
5631
5632 /**
5633  *  e1000_led_off_pchlan - Turn LEDs off
5634  *  @hw: pointer to the HW structure
5635  *
5636  *  Turn off the LEDs.
5637  **/
5638 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5639 {
5640         u16 data = (u16)hw->mac.ledctl_mode1;
5641         u32 i, led;
5642
5643         /* If no link, then turn LED off by clearing the invert bit
5644          * for each LED that's mode is "link_up" in ledctl_mode1.
5645          */
5646         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5647                 for (i = 0; i < 3; i++) {
5648                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5649                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5650                             E1000_LEDCTL_MODE_LINK_UP)
5651                                 continue;
5652                         if (led & E1000_PHY_LED0_IVRT)
5653                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5654                         else
5655                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5656                 }
5657         }
5658
5659         return e1e_wphy(hw, HV_LED_CONFIG, data);
5660 }
5661
5662 /**
5663  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5664  *  @hw: pointer to the HW structure
5665  *
5666  *  Read appropriate register for the config done bit for completion status
5667  *  and configure the PHY through s/w for EEPROM-less parts.
5668  *
5669  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5670  *  config done bit, so only an error is logged and continues.  If we were
5671  *  to return with error, EEPROM-less silicon would not be able to be reset
5672  *  or change link.
5673  **/
5674 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5675 {
5676         s32 ret_val = 0;
5677         u32 bank = 0;
5678         u32 status;
5679
5680         e1000e_get_cfg_done_generic(hw);
5681
5682         /* Wait for indication from h/w that it has completed basic config */
5683         if (hw->mac.type >= e1000_ich10lan) {
5684                 e1000_lan_init_done_ich8lan(hw);
5685         } else {
5686                 ret_val = e1000e_get_auto_rd_done(hw);
5687                 if (ret_val) {
5688                         /* When auto config read does not complete, do not
5689                          * return with an error. This can happen in situations
5690                          * where there is no eeprom and prevents getting link.
5691                          */
5692                         e_dbg("Auto Read Done did not complete\n");
5693                         ret_val = 0;
5694                 }
5695         }
5696
5697         /* Clear PHY Reset Asserted bit */
5698         status = er32(STATUS);
5699         if (status & E1000_STATUS_PHYRA)
5700                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5701         else
5702                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5703
5704         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5705         if (hw->mac.type <= e1000_ich9lan) {
5706                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5707                     (hw->phy.type == e1000_phy_igp_3)) {
5708                         e1000e_phy_init_script_igp3(hw);
5709                 }
5710         } else {
5711                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5712                         /* Maybe we should do a basic PHY config */
5713                         e_dbg("EEPROM not present\n");
5714                         ret_val = -E1000_ERR_CONFIG;
5715                 }
5716         }
5717
5718         return ret_val;
5719 }
5720
5721 /**
5722  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5723  * @hw: pointer to the HW structure
5724  *
5725  * In the case of a PHY power down to save power, or to turn off link during a
5726  * driver unload, or wake on lan is not enabled, remove the link.
5727  **/
5728 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5729 {
5730         /* If the management interface is not enabled, then power down */
5731         if (!(hw->mac.ops.check_mng_mode(hw) ||
5732               hw->phy.ops.check_reset_block(hw)))
5733                 e1000_power_down_phy_copper(hw);
5734 }
5735
5736 /**
5737  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5738  *  @hw: pointer to the HW structure
5739  *
5740  *  Clears hardware counters specific to the silicon family and calls
5741  *  clear_hw_cntrs_generic to clear all general purpose counters.
5742  **/
5743 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5744 {
5745         u16 phy_data;
5746         s32 ret_val;
5747
5748         e1000e_clear_hw_cntrs_base(hw);
5749
5750         er32(ALGNERRC);
5751         er32(RXERRC);
5752         er32(TNCRS);
5753         er32(CEXTERR);
5754         er32(TSCTC);
5755         er32(TSCTFC);
5756
5757         er32(MGTPRC);
5758         er32(MGTPDC);
5759         er32(MGTPTC);
5760
5761         er32(IAC);
5762         er32(ICRXOC);
5763
5764         /* Clear PHY statistics registers */
5765         if ((hw->phy.type == e1000_phy_82578) ||
5766             (hw->phy.type == e1000_phy_82579) ||
5767             (hw->phy.type == e1000_phy_i217) ||
5768             (hw->phy.type == e1000_phy_82577)) {
5769                 ret_val = hw->phy.ops.acquire(hw);
5770                 if (ret_val)
5771                         return;
5772                 ret_val = hw->phy.ops.set_page(hw,
5773                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5774                 if (ret_val)
5775                         goto release;
5776                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5777                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5778                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5779                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5780                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5781                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5782                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5783                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5784                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5785                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5786                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5787                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5788                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5789                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5790 release:
5791                 hw->phy.ops.release(hw);
5792         }
5793 }
5794
5795 static const struct e1000_mac_operations ich8_mac_ops = {
5796         /* check_mng_mode dependent on mac type */
5797         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5798         /* cleanup_led dependent on mac type */
5799         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5800         .get_bus_info           = e1000_get_bus_info_ich8lan,
5801         .set_lan_id             = e1000_set_lan_id_single_port,
5802         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5803         /* led_on dependent on mac type */
5804         /* led_off dependent on mac type */
5805         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5806         .reset_hw               = e1000_reset_hw_ich8lan,
5807         .init_hw                = e1000_init_hw_ich8lan,
5808         .setup_link             = e1000_setup_link_ich8lan,
5809         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5810         /* id_led_init dependent on mac type */
5811         .config_collision_dist  = e1000e_config_collision_dist_generic,
5812         .rar_set                = e1000e_rar_set_generic,
5813         .rar_get_count          = e1000e_rar_get_count_generic,
5814 };
5815
5816 static const struct e1000_phy_operations ich8_phy_ops = {
5817         .acquire                = e1000_acquire_swflag_ich8lan,
5818         .check_reset_block      = e1000_check_reset_block_ich8lan,
5819         .commit                 = NULL,
5820         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5821         .get_cable_length       = e1000e_get_cable_length_igp_2,
5822         .read_reg               = e1000e_read_phy_reg_igp,
5823         .release                = e1000_release_swflag_ich8lan,
5824         .reset                  = e1000_phy_hw_reset_ich8lan,
5825         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5826         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5827         .write_reg              = e1000e_write_phy_reg_igp,
5828 };
5829
5830 static const struct e1000_nvm_operations ich8_nvm_ops = {
5831         .acquire                = e1000_acquire_nvm_ich8lan,
5832         .read                   = e1000_read_nvm_ich8lan,
5833         .release                = e1000_release_nvm_ich8lan,
5834         .reload                 = e1000e_reload_nvm_generic,
5835         .update                 = e1000_update_nvm_checksum_ich8lan,
5836         .valid_led_default      = e1000_valid_led_default_ich8lan,
5837         .validate               = e1000_validate_nvm_checksum_ich8lan,
5838         .write                  = e1000_write_nvm_ich8lan,
5839 };
5840
5841 static const struct e1000_nvm_operations spt_nvm_ops = {
5842         .acquire                = e1000_acquire_nvm_ich8lan,
5843         .release                = e1000_release_nvm_ich8lan,
5844         .read                   = e1000_read_nvm_spt,
5845         .update                 = e1000_update_nvm_checksum_spt,
5846         .reload                 = e1000e_reload_nvm_generic,
5847         .valid_led_default      = e1000_valid_led_default_ich8lan,
5848         .validate               = e1000_validate_nvm_checksum_ich8lan,
5849         .write                  = e1000_write_nvm_ich8lan,
5850 };
5851
5852 const struct e1000_info e1000_ich8_info = {
5853         .mac                    = e1000_ich8lan,
5854         .flags                  = FLAG_HAS_WOL
5855                                   | FLAG_IS_ICH
5856                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5857                                   | FLAG_HAS_AMT
5858                                   | FLAG_HAS_FLASH
5859                                   | FLAG_APME_IN_WUC,
5860         .pba                    = 8,
5861         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5862         .get_variants           = e1000_get_variants_ich8lan,
5863         .mac_ops                = &ich8_mac_ops,
5864         .phy_ops                = &ich8_phy_ops,
5865         .nvm_ops                = &ich8_nvm_ops,
5866 };
5867
5868 const struct e1000_info e1000_ich9_info = {
5869         .mac                    = e1000_ich9lan,
5870         .flags                  = FLAG_HAS_JUMBO_FRAMES
5871                                   | FLAG_IS_ICH
5872                                   | FLAG_HAS_WOL
5873                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5874                                   | FLAG_HAS_AMT
5875                                   | FLAG_HAS_FLASH
5876                                   | FLAG_APME_IN_WUC,
5877         .pba                    = 18,
5878         .max_hw_frame_size      = DEFAULT_JUMBO,
5879         .get_variants           = e1000_get_variants_ich8lan,
5880         .mac_ops                = &ich8_mac_ops,
5881         .phy_ops                = &ich8_phy_ops,
5882         .nvm_ops                = &ich8_nvm_ops,
5883 };
5884
5885 const struct e1000_info e1000_ich10_info = {
5886         .mac                    = e1000_ich10lan,
5887         .flags                  = FLAG_HAS_JUMBO_FRAMES
5888                                   | FLAG_IS_ICH
5889                                   | FLAG_HAS_WOL
5890                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5891                                   | FLAG_HAS_AMT
5892                                   | FLAG_HAS_FLASH
5893                                   | FLAG_APME_IN_WUC,
5894         .pba                    = 18,
5895         .max_hw_frame_size      = DEFAULT_JUMBO,
5896         .get_variants           = e1000_get_variants_ich8lan,
5897         .mac_ops                = &ich8_mac_ops,
5898         .phy_ops                = &ich8_phy_ops,
5899         .nvm_ops                = &ich8_nvm_ops,
5900 };
5901
5902 const struct e1000_info e1000_pch_info = {
5903         .mac                    = e1000_pchlan,
5904         .flags                  = FLAG_IS_ICH
5905                                   | FLAG_HAS_WOL
5906                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5907                                   | FLAG_HAS_AMT
5908                                   | FLAG_HAS_FLASH
5909                                   | FLAG_HAS_JUMBO_FRAMES
5910                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5911                                   | FLAG_APME_IN_WUC,
5912         .flags2                 = FLAG2_HAS_PHY_STATS,
5913         .pba                    = 26,
5914         .max_hw_frame_size      = 4096,
5915         .get_variants           = e1000_get_variants_ich8lan,
5916         .mac_ops                = &ich8_mac_ops,
5917         .phy_ops                = &ich8_phy_ops,
5918         .nvm_ops                = &ich8_nvm_ops,
5919 };
5920
5921 const struct e1000_info e1000_pch2_info = {
5922         .mac                    = e1000_pch2lan,
5923         .flags                  = FLAG_IS_ICH
5924                                   | FLAG_HAS_WOL
5925                                   | FLAG_HAS_HW_TIMESTAMP
5926                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5927                                   | FLAG_HAS_AMT
5928                                   | FLAG_HAS_FLASH
5929                                   | FLAG_HAS_JUMBO_FRAMES
5930                                   | FLAG_APME_IN_WUC,
5931         .flags2                 = FLAG2_HAS_PHY_STATS
5932                                   | FLAG2_HAS_EEE
5933                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5934         .pba                    = 26,
5935         .max_hw_frame_size      = 9022,
5936         .get_variants           = e1000_get_variants_ich8lan,
5937         .mac_ops                = &ich8_mac_ops,
5938         .phy_ops                = &ich8_phy_ops,
5939         .nvm_ops                = &ich8_nvm_ops,
5940 };
5941
5942 const struct e1000_info e1000_pch_lpt_info = {
5943         .mac                    = e1000_pch_lpt,
5944         .flags                  = FLAG_IS_ICH
5945                                   | FLAG_HAS_WOL
5946                                   | FLAG_HAS_HW_TIMESTAMP
5947                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5948                                   | FLAG_HAS_AMT
5949                                   | FLAG_HAS_FLASH
5950                                   | FLAG_HAS_JUMBO_FRAMES
5951                                   | FLAG_APME_IN_WUC,
5952         .flags2                 = FLAG2_HAS_PHY_STATS
5953                                   | FLAG2_HAS_EEE
5954                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5955         .pba                    = 26,
5956         .max_hw_frame_size      = 9022,
5957         .get_variants           = e1000_get_variants_ich8lan,
5958         .mac_ops                = &ich8_mac_ops,
5959         .phy_ops                = &ich8_phy_ops,
5960         .nvm_ops                = &ich8_nvm_ops,
5961 };
5962
5963 const struct e1000_info e1000_pch_spt_info = {
5964         .mac                    = e1000_pch_spt,
5965         .flags                  = FLAG_IS_ICH
5966                                   | FLAG_HAS_WOL
5967                                   | FLAG_HAS_HW_TIMESTAMP
5968                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5969                                   | FLAG_HAS_AMT
5970                                   | FLAG_HAS_FLASH
5971                                   | FLAG_HAS_JUMBO_FRAMES
5972                                   | FLAG_APME_IN_WUC,
5973         .flags2                 = FLAG2_HAS_PHY_STATS
5974                                   | FLAG2_HAS_EEE,
5975         .pba                    = 26,
5976         .max_hw_frame_size      = 9022,
5977         .get_variants           = e1000_get_variants_ich8lan,
5978         .mac_ops                = &ich8_mac_ops,
5979         .phy_ops                = &ich8_phy_ops,
5980         .nvm_ops                = &spt_nvm_ops,
5981 };
5982
5983 const struct e1000_info e1000_pch_cnp_info = {
5984         .mac                    = e1000_pch_cnp,
5985         .flags                  = FLAG_IS_ICH
5986                                   | FLAG_HAS_WOL
5987                                   | FLAG_HAS_HW_TIMESTAMP
5988                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5989                                   | FLAG_HAS_AMT
5990                                   | FLAG_HAS_FLASH
5991                                   | FLAG_HAS_JUMBO_FRAMES
5992                                   | FLAG_APME_IN_WUC,
5993         .flags2                 = FLAG2_HAS_PHY_STATS
5994                                   | FLAG2_HAS_EEE,
5995         .pba                    = 26,
5996         .max_hw_frame_size      = 9022,
5997         .get_variants           = e1000_get_variants_ich8lan,
5998         .mac_ops                = &ich8_mac_ops,
5999         .phy_ops                = &ich8_phy_ops,
6000         .nvm_ops                = &spt_nvm_ops,
6001 };
6002
6003 const struct e1000_info e1000_pch_tgp_info = {
6004         .mac                    = e1000_pch_tgp,
6005         .flags                  = FLAG_IS_ICH
6006                                   | FLAG_HAS_WOL
6007                                   | FLAG_HAS_HW_TIMESTAMP
6008                                   | FLAG_HAS_CTRLEXT_ON_LOAD
6009                                   | FLAG_HAS_AMT
6010                                   | FLAG_HAS_FLASH
6011                                   | FLAG_HAS_JUMBO_FRAMES
6012                                   | FLAG_APME_IN_WUC,
6013         .flags2                 = FLAG2_HAS_PHY_STATS
6014                                   | FLAG2_HAS_EEE,
6015         .pba                    = 26,
6016         .max_hw_frame_size      = 9022,
6017         .get_variants           = e1000_get_variants_ich8lan,
6018         .mac_ops                = &ich8_mac_ops,
6019         .phy_ops                = &ich8_phy_ops,
6020         .nvm_ops                = &spt_nvm_ops,
6021 };