GNU Linux-libre 4.9.318-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* ethtool support for e1000 */
23
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32
33 #include "e1000.h"
34
35 enum { NETDEV_STATS, E1000_STATS };
36
37 struct e1000_stats {
38         char stat_string[ETH_GSTRING_LEN];
39         int type;
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(str, m) { \
45                 .stat_string = str, \
46                 .type = E1000_STATS, \
47                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48                 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50                 .stat_string = str, \
51                 .type = NETDEV_STATS, \
52                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         E1000_STAT("rx_packets", stats.gprc),
57         E1000_STAT("tx_packets", stats.gptc),
58         E1000_STAT("rx_bytes", stats.gorc),
59         E1000_STAT("tx_bytes", stats.gotc),
60         E1000_STAT("rx_broadcast", stats.bprc),
61         E1000_STAT("tx_broadcast", stats.bptc),
62         E1000_STAT("rx_multicast", stats.mprc),
63         E1000_STAT("tx_multicast", stats.mptc),
64         E1000_NETDEV_STAT("rx_errors", rx_errors),
65         E1000_NETDEV_STAT("tx_errors", tx_errors),
66         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67         E1000_STAT("multicast", stats.mprc),
68         E1000_STAT("collisions", stats.colc),
69         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71         E1000_STAT("rx_crc_errors", stats.crcerrs),
72         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73         E1000_STAT("rx_no_buffer_count", stats.rnbc),
74         E1000_STAT("rx_missed_errors", stats.mpc),
75         E1000_STAT("tx_aborted_errors", stats.ecol),
76         E1000_STAT("tx_carrier_errors", stats.tncrs),
77         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79         E1000_STAT("tx_window_errors", stats.latecol),
80         E1000_STAT("tx_abort_late_coll", stats.latecol),
81         E1000_STAT("tx_deferred_ok", stats.dc),
82         E1000_STAT("tx_single_coll_ok", stats.scc),
83         E1000_STAT("tx_multi_coll_ok", stats.mcc),
84         E1000_STAT("tx_timeout_count", tx_timeout_count),
85         E1000_STAT("tx_restart_queue", restart_queue),
86         E1000_STAT("rx_long_length_errors", stats.roc),
87         E1000_STAT("rx_short_length_errors", stats.ruc),
88         E1000_STAT("rx_align_errors", stats.algnerrc),
89         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93         E1000_STAT("tx_flow_control_xon", stats.xontxc),
94         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95         E1000_STAT("rx_csum_offload_good", hw_csum_good),
96         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97         E1000_STAT("rx_header_split", rx_hdr_split),
98         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99         E1000_STAT("tx_smbus", stats.mgptc),
100         E1000_STAT("rx_smbus", stats.mgprc),
101         E1000_STAT("dropped_smbus", stats.mgpdc),
102         E1000_STAT("rx_dma_failed", rx_dma_failed),
103         E1000_STAT("tx_dma_failed", tx_dma_failed),
104         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106         E1000_STAT("corr_ecc_errors", corr_errors),
107         E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109
110 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113         "Register test  (offline)", "Eeprom test    (offline)",
114         "Interrupt test (offline)", "Loopback test  (offline)",
115         "Link test   (on/offline)"
116 };
117
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121                               struct ethtool_cmd *ecmd)
122 {
123         struct e1000_adapter *adapter = netdev_priv(netdev);
124         struct e1000_hw *hw = &adapter->hw;
125         u32 speed;
126
127         if (hw->phy.media_type == e1000_media_type_copper) {
128                 ecmd->supported = (SUPPORTED_10baseT_Half |
129                                    SUPPORTED_10baseT_Full |
130                                    SUPPORTED_100baseT_Half |
131                                    SUPPORTED_100baseT_Full |
132                                    SUPPORTED_1000baseT_Full |
133                                    SUPPORTED_Autoneg |
134                                    SUPPORTED_TP);
135                 if (hw->phy.type == e1000_phy_ife)
136                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137                 ecmd->advertising = ADVERTISED_TP;
138
139                 if (hw->mac.autoneg == 1) {
140                         ecmd->advertising |= ADVERTISED_Autoneg;
141                         /* the e1000 autoneg seems to match ethtool nicely */
142                         ecmd->advertising |= hw->phy.autoneg_advertised;
143                 }
144
145                 ecmd->port = PORT_TP;
146                 ecmd->phy_address = hw->phy.addr;
147                 ecmd->transceiver = XCVR_INTERNAL;
148
149         } else {
150                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
151                                      SUPPORTED_FIBRE |
152                                      SUPPORTED_Autoneg);
153
154                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155                                      ADVERTISED_FIBRE |
156                                      ADVERTISED_Autoneg);
157
158                 ecmd->port = PORT_FIBRE;
159                 ecmd->transceiver = XCVR_EXTERNAL;
160         }
161
162         speed = SPEED_UNKNOWN;
163         ecmd->duplex = DUPLEX_UNKNOWN;
164
165         if (netif_running(netdev)) {
166                 if (netif_carrier_ok(netdev)) {
167                         speed = adapter->link_speed;
168                         ecmd->duplex = adapter->link_duplex - 1;
169                 }
170         } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171                 u32 status = er32(STATUS);
172
173                 if (status & E1000_STATUS_LU) {
174                         if (status & E1000_STATUS_SPEED_1000)
175                                 speed = SPEED_1000;
176                         else if (status & E1000_STATUS_SPEED_100)
177                                 speed = SPEED_100;
178                         else
179                                 speed = SPEED_10;
180
181                         if (status & E1000_STATUS_FD)
182                                 ecmd->duplex = DUPLEX_FULL;
183                         else
184                                 ecmd->duplex = DUPLEX_HALF;
185                 }
186         }
187
188         ethtool_cmd_speed_set(ecmd, speed);
189         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192         /* MDI-X => 2; MDI =>1; Invalid =>0 */
193         if ((hw->phy.media_type == e1000_media_type_copper) &&
194             netif_carrier_ok(netdev))
195                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196         else
197                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199         if (hw->phy.mdix == AUTO_ALL_MODES)
200                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201         else
202                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204         if (hw->phy.media_type != e1000_media_type_copper)
205                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207         return 0;
208 }
209
210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211 {
212         struct e1000_mac_info *mac = &adapter->hw.mac;
213
214         mac->autoneg = 0;
215
216         /* Make sure dplx is at most 1 bit and lsb of speed is not set
217          * for the switch() below to work
218          */
219         if ((spd & 1) || (dplx & ~1))
220                 goto err_inval;
221
222         /* Fiber NICs only allow 1000 gbps Full duplex */
223         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
225                 goto err_inval;
226         }
227
228         switch (spd + dplx) {
229         case SPEED_10 + DUPLEX_HALF:
230                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
231                 break;
232         case SPEED_10 + DUPLEX_FULL:
233                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
234                 break;
235         case SPEED_100 + DUPLEX_HALF:
236                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
237                 break;
238         case SPEED_100 + DUPLEX_FULL:
239                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
240                 break;
241         case SPEED_1000 + DUPLEX_FULL:
242                 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
243                         mac->autoneg = 1;
244                         adapter->hw.phy.autoneg_advertised =
245                                 ADVERTISE_1000_FULL;
246                 } else {
247                         mac->forced_speed_duplex = ADVERTISE_1000_FULL;
248                 }
249                 break;
250         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
251         default:
252                 goto err_inval;
253         }
254
255         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
256         adapter->hw.phy.mdix = AUTO_ALL_MODES;
257
258         return 0;
259
260 err_inval:
261         e_err("Unsupported Speed/Duplex configuration\n");
262         return -EINVAL;
263 }
264
265 static int e1000_set_settings(struct net_device *netdev,
266                               struct ethtool_cmd *ecmd)
267 {
268         struct e1000_adapter *adapter = netdev_priv(netdev);
269         struct e1000_hw *hw = &adapter->hw;
270         int ret_val = 0;
271
272         pm_runtime_get_sync(netdev->dev.parent);
273
274         /* When SoL/IDER sessions are active, autoneg/speed/duplex
275          * cannot be changed
276          */
277         if (hw->phy.ops.check_reset_block &&
278             hw->phy.ops.check_reset_block(hw)) {
279                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
280                 ret_val = -EINVAL;
281                 goto out;
282         }
283
284         /* MDI setting is only allowed when autoneg enabled because
285          * some hardware doesn't allow MDI setting when speed or
286          * duplex is forced.
287          */
288         if (ecmd->eth_tp_mdix_ctrl) {
289                 if (hw->phy.media_type != e1000_media_type_copper) {
290                         ret_val = -EOPNOTSUPP;
291                         goto out;
292                 }
293
294                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295                     (ecmd->autoneg != AUTONEG_ENABLE)) {
296                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297                         ret_val = -EINVAL;
298                         goto out;
299                 }
300         }
301
302         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
303                 usleep_range(1000, 2000);
304
305         if (ecmd->autoneg == AUTONEG_ENABLE) {
306                 hw->mac.autoneg = 1;
307                 if (hw->phy.media_type == e1000_media_type_fiber)
308                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
309                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
310                 else
311                         hw->phy.autoneg_advertised = ecmd->advertising |
312                             ADVERTISED_TP | ADVERTISED_Autoneg;
313                 ecmd->advertising = hw->phy.autoneg_advertised;
314                 if (adapter->fc_autoneg)
315                         hw->fc.requested_mode = e1000_fc_default;
316         } else {
317                 u32 speed = ethtool_cmd_speed(ecmd);
318                 /* calling this overrides forced MDI setting */
319                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
320                         ret_val = -EINVAL;
321                         goto out;
322                 }
323         }
324
325         /* MDI-X => 2; MDI => 1; Auto => 3 */
326         if (ecmd->eth_tp_mdix_ctrl) {
327                 /* fix up the value for auto (3 => 0) as zero is mapped
328                  * internally to auto
329                  */
330                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
331                         hw->phy.mdix = AUTO_ALL_MODES;
332                 else
333                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
334         }
335
336         /* reset the link */
337         if (netif_running(adapter->netdev)) {
338                 e1000e_down(adapter, true);
339                 e1000e_up(adapter);
340         } else {
341                 e1000e_reset(adapter);
342         }
343
344 out:
345         pm_runtime_put_sync(netdev->dev.parent);
346         clear_bit(__E1000_RESETTING, &adapter->state);
347         return ret_val;
348 }
349
350 static void e1000_get_pauseparam(struct net_device *netdev,
351                                  struct ethtool_pauseparam *pause)
352 {
353         struct e1000_adapter *adapter = netdev_priv(netdev);
354         struct e1000_hw *hw = &adapter->hw;
355
356         pause->autoneg =
357             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
358
359         if (hw->fc.current_mode == e1000_fc_rx_pause) {
360                 pause->rx_pause = 1;
361         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
362                 pause->tx_pause = 1;
363         } else if (hw->fc.current_mode == e1000_fc_full) {
364                 pause->rx_pause = 1;
365                 pause->tx_pause = 1;
366         }
367 }
368
369 static int e1000_set_pauseparam(struct net_device *netdev,
370                                 struct ethtool_pauseparam *pause)
371 {
372         struct e1000_adapter *adapter = netdev_priv(netdev);
373         struct e1000_hw *hw = &adapter->hw;
374         int retval = 0;
375
376         adapter->fc_autoneg = pause->autoneg;
377
378         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
379                 usleep_range(1000, 2000);
380
381         pm_runtime_get_sync(netdev->dev.parent);
382
383         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
384                 hw->fc.requested_mode = e1000_fc_default;
385                 if (netif_running(adapter->netdev)) {
386                         e1000e_down(adapter, true);
387                         e1000e_up(adapter);
388                 } else {
389                         e1000e_reset(adapter);
390                 }
391         } else {
392                 if (pause->rx_pause && pause->tx_pause)
393                         hw->fc.requested_mode = e1000_fc_full;
394                 else if (pause->rx_pause && !pause->tx_pause)
395                         hw->fc.requested_mode = e1000_fc_rx_pause;
396                 else if (!pause->rx_pause && pause->tx_pause)
397                         hw->fc.requested_mode = e1000_fc_tx_pause;
398                 else if (!pause->rx_pause && !pause->tx_pause)
399                         hw->fc.requested_mode = e1000_fc_none;
400
401                 hw->fc.current_mode = hw->fc.requested_mode;
402
403                 if (hw->phy.media_type == e1000_media_type_fiber) {
404                         retval = hw->mac.ops.setup_link(hw);
405                         /* implicit goto out */
406                 } else {
407                         retval = e1000e_force_mac_fc(hw);
408                         if (retval)
409                                 goto out;
410                         e1000e_set_fc_watermarks(hw);
411                 }
412         }
413
414 out:
415         pm_runtime_put_sync(netdev->dev.parent);
416         clear_bit(__E1000_RESETTING, &adapter->state);
417         return retval;
418 }
419
420 static u32 e1000_get_msglevel(struct net_device *netdev)
421 {
422         struct e1000_adapter *adapter = netdev_priv(netdev);
423         return adapter->msg_enable;
424 }
425
426 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
427 {
428         struct e1000_adapter *adapter = netdev_priv(netdev);
429         adapter->msg_enable = data;
430 }
431
432 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
433 {
434 #define E1000_REGS_LEN 32       /* overestimate */
435         return E1000_REGS_LEN * sizeof(u32);
436 }
437
438 static void e1000_get_regs(struct net_device *netdev,
439                            struct ethtool_regs *regs, void *p)
440 {
441         struct e1000_adapter *adapter = netdev_priv(netdev);
442         struct e1000_hw *hw = &adapter->hw;
443         u32 *regs_buff = p;
444         u16 phy_data;
445
446         pm_runtime_get_sync(netdev->dev.parent);
447
448         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450         regs->version = (1u << 24) |
451                         (adapter->pdev->revision << 16) |
452                         adapter->pdev->device;
453
454         regs_buff[0] = er32(CTRL);
455         regs_buff[1] = er32(STATUS);
456
457         regs_buff[2] = er32(RCTL);
458         regs_buff[3] = er32(RDLEN(0));
459         regs_buff[4] = er32(RDH(0));
460         regs_buff[5] = er32(RDT(0));
461         regs_buff[6] = er32(RDTR);
462
463         regs_buff[7] = er32(TCTL);
464         regs_buff[8] = er32(TDLEN(0));
465         regs_buff[9] = er32(TDH(0));
466         regs_buff[10] = er32(TDT(0));
467         regs_buff[11] = er32(TIDV);
468
469         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
470
471         /* ethtool doesn't use anything past this point, so all this
472          * code is likely legacy junk for apps that may or may not exist
473          */
474         if (hw->phy.type == e1000_phy_m88) {
475                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
476                 regs_buff[13] = (u32)phy_data; /* cable length */
477                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
480                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
481                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
482                 regs_buff[18] = regs_buff[13]; /* cable polarity */
483                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484                 regs_buff[20] = regs_buff[17]; /* polarity correction */
485                 /* phy receive errors */
486                 regs_buff[22] = adapter->phy_stats.receive_errors;
487                 regs_buff[23] = regs_buff[13]; /* mdix mode */
488         }
489         regs_buff[21] = 0;      /* was idle_errors */
490         e1e_rphy(hw, MII_STAT1000, &phy_data);
491         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
492         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
493
494         pm_runtime_put_sync(netdev->dev.parent);
495 }
496
497 static int e1000_get_eeprom_len(struct net_device *netdev)
498 {
499         struct e1000_adapter *adapter = netdev_priv(netdev);
500         return adapter->hw.nvm.word_size * 2;
501 }
502
503 static int e1000_get_eeprom(struct net_device *netdev,
504                             struct ethtool_eeprom *eeprom, u8 *bytes)
505 {
506         struct e1000_adapter *adapter = netdev_priv(netdev);
507         struct e1000_hw *hw = &adapter->hw;
508         u16 *eeprom_buff;
509         int first_word;
510         int last_word;
511         int ret_val = 0;
512         u16 i;
513
514         if (eeprom->len == 0)
515                 return -EINVAL;
516
517         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
518
519         first_word = eeprom->offset >> 1;
520         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
521
522         eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
523                               GFP_KERNEL);
524         if (!eeprom_buff)
525                 return -ENOMEM;
526
527         pm_runtime_get_sync(netdev->dev.parent);
528
529         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
530                 ret_val = e1000_read_nvm(hw, first_word,
531                                          last_word - first_word + 1,
532                                          eeprom_buff);
533         } else {
534                 for (i = 0; i < last_word - first_word + 1; i++) {
535                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
536                                                  &eeprom_buff[i]);
537                         if (ret_val)
538                                 break;
539                 }
540         }
541
542         pm_runtime_put_sync(netdev->dev.parent);
543
544         if (ret_val) {
545                 /* a read error occurred, throw away the result */
546                 memset(eeprom_buff, 0xff, sizeof(u16) *
547                        (last_word - first_word + 1));
548         } else {
549                 /* Device's eeprom is always little-endian, word addressable */
550                 for (i = 0; i < last_word - first_word + 1; i++)
551                         le16_to_cpus(&eeprom_buff[i]);
552         }
553
554         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
555         kfree(eeprom_buff);
556
557         return ret_val;
558 }
559
560 static int e1000_set_eeprom(struct net_device *netdev,
561                             struct ethtool_eeprom *eeprom, u8 *bytes)
562 {
563         struct e1000_adapter *adapter = netdev_priv(netdev);
564         struct e1000_hw *hw = &adapter->hw;
565         u16 *eeprom_buff;
566         void *ptr;
567         int max_len;
568         int first_word;
569         int last_word;
570         int ret_val = 0;
571         u16 i;
572
573         if (eeprom->len == 0)
574                 return -EOPNOTSUPP;
575
576         if (eeprom->magic !=
577             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
578                 return -EFAULT;
579
580         if (adapter->flags & FLAG_READ_ONLY_NVM)
581                 return -EINVAL;
582
583         max_len = hw->nvm.word_size * 2;
584
585         first_word = eeprom->offset >> 1;
586         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
588         if (!eeprom_buff)
589                 return -ENOMEM;
590
591         ptr = (void *)eeprom_buff;
592
593         pm_runtime_get_sync(netdev->dev.parent);
594
595         if (eeprom->offset & 1) {
596                 /* need read/modify/write of first changed EEPROM word */
597                 /* only the second byte of the word is being modified */
598                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
599                 ptr++;
600         }
601         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
602                 /* need read/modify/write of last changed EEPROM word */
603                 /* only the first byte of the word is being modified */
604                 ret_val = e1000_read_nvm(hw, last_word, 1,
605                                          &eeprom_buff[last_word - first_word]);
606
607         if (ret_val)
608                 goto out;
609
610         /* Device's eeprom is always little-endian, word addressable */
611         for (i = 0; i < last_word - first_word + 1; i++)
612                 le16_to_cpus(&eeprom_buff[i]);
613
614         memcpy(ptr, bytes, eeprom->len);
615
616         for (i = 0; i < last_word - first_word + 1; i++)
617                 cpu_to_le16s(&eeprom_buff[i]);
618
619         ret_val = e1000_write_nvm(hw, first_word,
620                                   last_word - first_word + 1, eeprom_buff);
621
622         if (ret_val)
623                 goto out;
624
625         /* Update the checksum over the first part of the EEPROM if needed
626          * and flush shadow RAM for applicable controllers
627          */
628         if ((first_word <= NVM_CHECKSUM_REG) ||
629             (hw->mac.type == e1000_82583) ||
630             (hw->mac.type == e1000_82574) ||
631             (hw->mac.type == e1000_82573))
632                 ret_val = e1000e_update_nvm_checksum(hw);
633
634 out:
635         pm_runtime_put_sync(netdev->dev.parent);
636         kfree(eeprom_buff);
637         return ret_val;
638 }
639
640 static void e1000_get_drvinfo(struct net_device *netdev,
641                               struct ethtool_drvinfo *drvinfo)
642 {
643         struct e1000_adapter *adapter = netdev_priv(netdev);
644
645         strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
646         strlcpy(drvinfo->version, e1000e_driver_version,
647                 sizeof(drvinfo->version));
648
649         /* EEPROM image version # is reported as firmware version # for
650          * PCI-E controllers
651          */
652         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
653                  "%d.%d-%d",
654                  (adapter->eeprom_vers & 0xF000) >> 12,
655                  (adapter->eeprom_vers & 0x0FF0) >> 4,
656                  (adapter->eeprom_vers & 0x000F));
657
658         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
659                 sizeof(drvinfo->bus_info));
660 }
661
662 static void e1000_get_ringparam(struct net_device *netdev,
663                                 struct ethtool_ringparam *ring)
664 {
665         struct e1000_adapter *adapter = netdev_priv(netdev);
666
667         ring->rx_max_pending = E1000_MAX_RXD;
668         ring->tx_max_pending = E1000_MAX_TXD;
669         ring->rx_pending = adapter->rx_ring_count;
670         ring->tx_pending = adapter->tx_ring_count;
671 }
672
673 static int e1000_set_ringparam(struct net_device *netdev,
674                                struct ethtool_ringparam *ring)
675 {
676         struct e1000_adapter *adapter = netdev_priv(netdev);
677         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
678         int err = 0, size = sizeof(struct e1000_ring);
679         bool set_tx = false, set_rx = false;
680         u16 new_rx_count, new_tx_count;
681
682         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
683                 return -EINVAL;
684
685         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
686                                E1000_MAX_RXD);
687         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
688
689         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
690                                E1000_MAX_TXD);
691         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
692
693         if ((new_tx_count == adapter->tx_ring_count) &&
694             (new_rx_count == adapter->rx_ring_count))
695                 /* nothing to do */
696                 return 0;
697
698         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
699                 usleep_range(1000, 2000);
700
701         if (!netif_running(adapter->netdev)) {
702                 /* Set counts now and allocate resources during open() */
703                 adapter->tx_ring->count = new_tx_count;
704                 adapter->rx_ring->count = new_rx_count;
705                 adapter->tx_ring_count = new_tx_count;
706                 adapter->rx_ring_count = new_rx_count;
707                 goto clear_reset;
708         }
709
710         set_tx = (new_tx_count != adapter->tx_ring_count);
711         set_rx = (new_rx_count != adapter->rx_ring_count);
712
713         /* Allocate temporary storage for ring updates */
714         if (set_tx) {
715                 temp_tx = vmalloc(size);
716                 if (!temp_tx) {
717                         err = -ENOMEM;
718                         goto free_temp;
719                 }
720         }
721         if (set_rx) {
722                 temp_rx = vmalloc(size);
723                 if (!temp_rx) {
724                         err = -ENOMEM;
725                         goto free_temp;
726                 }
727         }
728
729         pm_runtime_get_sync(netdev->dev.parent);
730
731         e1000e_down(adapter, true);
732
733         /* We can't just free everything and then setup again, because the
734          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
735          * structs.  First, attempt to allocate new resources...
736          */
737         if (set_tx) {
738                 memcpy(temp_tx, adapter->tx_ring, size);
739                 temp_tx->count = new_tx_count;
740                 err = e1000e_setup_tx_resources(temp_tx);
741                 if (err)
742                         goto err_setup;
743         }
744         if (set_rx) {
745                 memcpy(temp_rx, adapter->rx_ring, size);
746                 temp_rx->count = new_rx_count;
747                 err = e1000e_setup_rx_resources(temp_rx);
748                 if (err)
749                         goto err_setup_rx;
750         }
751
752         /* ...then free the old resources and copy back any new ring data */
753         if (set_tx) {
754                 e1000e_free_tx_resources(adapter->tx_ring);
755                 memcpy(adapter->tx_ring, temp_tx, size);
756                 adapter->tx_ring_count = new_tx_count;
757         }
758         if (set_rx) {
759                 e1000e_free_rx_resources(adapter->rx_ring);
760                 memcpy(adapter->rx_ring, temp_rx, size);
761                 adapter->rx_ring_count = new_rx_count;
762         }
763
764 err_setup_rx:
765         if (err && set_tx)
766                 e1000e_free_tx_resources(temp_tx);
767 err_setup:
768         e1000e_up(adapter);
769         pm_runtime_put_sync(netdev->dev.parent);
770 free_temp:
771         vfree(temp_tx);
772         vfree(temp_rx);
773 clear_reset:
774         clear_bit(__E1000_RESETTING, &adapter->state);
775         return err;
776 }
777
778 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
779                              int reg, int offset, u32 mask, u32 write)
780 {
781         u32 pat, val;
782         static const u32 test[] = {
783                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
784         };
785         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
786                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
787                                       (test[pat] & write));
788                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
789                 if (val != (test[pat] & write & mask)) {
790                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
791                               reg + (offset << 2), val,
792                               (test[pat] & write & mask));
793                         *data = reg;
794                         return true;
795                 }
796         }
797         return false;
798 }
799
800 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
801                               int reg, u32 mask, u32 write)
802 {
803         u32 val;
804
805         __ew32(&adapter->hw, reg, write & mask);
806         val = __er32(&adapter->hw, reg);
807         if ((write & mask) != (val & mask)) {
808                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
809                       reg, (val & mask), (write & mask));
810                 *data = reg;
811                 return true;
812         }
813         return false;
814 }
815
816 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
817         do {                                                                   \
818                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
819                         return 1;                                              \
820         } while (0)
821 #define REG_PATTERN_TEST(reg, mask, write)                                     \
822         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
823
824 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
825         do {                                                                   \
826                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
827                         return 1;                                              \
828         } while (0)
829
830 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
831 {
832         struct e1000_hw *hw = &adapter->hw;
833         struct e1000_mac_info *mac = &adapter->hw.mac;
834         u32 value;
835         u32 before;
836         u32 after;
837         u32 i;
838         u32 toggle;
839         u32 mask;
840         u32 wlock_mac = 0;
841
842         /* The status register is Read Only, so a write should fail.
843          * Some bits that get toggled are ignored.  There are several bits
844          * on newer hardware that are r/w.
845          */
846         switch (mac->type) {
847         case e1000_82571:
848         case e1000_82572:
849         case e1000_80003es2lan:
850                 toggle = 0x7FFFF3FF;
851                 break;
852         default:
853                 toggle = 0x7FFFF033;
854                 break;
855         }
856
857         before = er32(STATUS);
858         value = (er32(STATUS) & toggle);
859         ew32(STATUS, toggle);
860         after = er32(STATUS) & toggle;
861         if (value != after) {
862                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
863                       after, value);
864                 *data = 1;
865                 return 1;
866         }
867         /* restore previous status */
868         ew32(STATUS, before);
869
870         if (!(adapter->flags & FLAG_IS_ICH)) {
871                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
872                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
873                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
874                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
875         }
876
877         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
878         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
880         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
881         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
882         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
883         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
884         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
885         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
887
888         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
889
890         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
891         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
892         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
893
894         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
895         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
896         if (!(adapter->flags & FLAG_IS_ICH))
897                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
898         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
899         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
900         mask = 0x8003FFFF;
901         switch (mac->type) {
902         case e1000_ich10lan:
903         case e1000_pchlan:
904         case e1000_pch2lan:
905         case e1000_pch_lpt:
906         case e1000_pch_spt:
907                 mask |= BIT(18);
908                 break;
909         default:
910                 break;
911         }
912
913         if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
914                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
915                     E1000_FWSM_WLOCK_MAC_SHIFT;
916
917         for (i = 0; i < mac->rar_entry_count; i++) {
918                 if ((mac->type == e1000_pch_lpt) ||
919                     (mac->type == e1000_pch_spt)) {
920                         /* Cannot test write-protected SHRAL[n] registers */
921                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
922                                 continue;
923
924                         /* SHRAH[9] different than the others */
925                         if (i == 10)
926                                 mask |= BIT(30);
927                         else
928                                 mask &= ~BIT(30);
929                 }
930                 if (mac->type == e1000_pch2lan) {
931                         /* SHRAH[0,1,2] different than previous */
932                         if (i == 1)
933                                 mask &= 0xFFF4FFFF;
934                         /* SHRAH[3] different than SHRAH[0,1,2] */
935                         if (i == 4)
936                                 mask |= BIT(30);
937                         /* RAR[1-6] owned by management engine - skipping */
938                         if (i > 0)
939                                 i += 6;
940                 }
941
942                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
943                                        0xFFFFFFFF);
944                 /* reset index to actual value */
945                 if ((mac->type == e1000_pch2lan) && (i > 6))
946                         i -= 6;
947         }
948
949         for (i = 0; i < mac->mta_reg_count; i++)
950                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
951
952         *data = 0;
953
954         return 0;
955 }
956
957 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
958 {
959         u16 temp;
960         u16 checksum = 0;
961         u16 i;
962
963         *data = 0;
964         /* Read and add up the contents of the EEPROM */
965         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
966                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
967                         *data = 1;
968                         return *data;
969                 }
970                 checksum += temp;
971         }
972
973         /* If Checksum is not Correct return error else test passed */
974         if ((checksum != (u16)NVM_SUM) && !(*data))
975                 *data = 2;
976
977         return *data;
978 }
979
980 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
981 {
982         struct net_device *netdev = (struct net_device *)data;
983         struct e1000_adapter *adapter = netdev_priv(netdev);
984         struct e1000_hw *hw = &adapter->hw;
985
986         adapter->test_icr |= er32(ICR);
987
988         return IRQ_HANDLED;
989 }
990
991 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
992 {
993         struct net_device *netdev = adapter->netdev;
994         struct e1000_hw *hw = &adapter->hw;
995         u32 mask;
996         u32 shared_int = 1;
997         u32 irq = adapter->pdev->irq;
998         int i;
999         int ret_val = 0;
1000         int int_mode = E1000E_INT_MODE_LEGACY;
1001
1002         *data = 0;
1003
1004         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1005         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1006                 int_mode = adapter->int_mode;
1007                 e1000e_reset_interrupt_capability(adapter);
1008                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1009                 e1000e_set_interrupt_capability(adapter);
1010         }
1011         /* Hook up test interrupt handler just for this test */
1012         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1013                          netdev)) {
1014                 shared_int = 0;
1015         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1016                                netdev)) {
1017                 *data = 1;
1018                 ret_val = -1;
1019                 goto out;
1020         }
1021         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1022
1023         /* Disable all the interrupts */
1024         ew32(IMC, 0xFFFFFFFF);
1025         e1e_flush();
1026         usleep_range(10000, 20000);
1027
1028         /* Test each interrupt */
1029         for (i = 0; i < 10; i++) {
1030                 /* Interrupt to test */
1031                 mask = BIT(i);
1032
1033                 if (adapter->flags & FLAG_IS_ICH) {
1034                         switch (mask) {
1035                         case E1000_ICR_RXSEQ:
1036                                 continue;
1037                         case 0x00000100:
1038                                 if (adapter->hw.mac.type == e1000_ich8lan ||
1039                                     adapter->hw.mac.type == e1000_ich9lan)
1040                                         continue;
1041                                 break;
1042                         default:
1043                                 break;
1044                         }
1045                 }
1046
1047                 if (!shared_int) {
1048                         /* Disable the interrupt to be reported in
1049                          * the cause register and then force the same
1050                          * interrupt and see if one gets posted.  If
1051                          * an interrupt was posted to the bus, the
1052                          * test failed.
1053                          */
1054                         adapter->test_icr = 0;
1055                         ew32(IMC, mask);
1056                         ew32(ICS, mask);
1057                         e1e_flush();
1058                         usleep_range(10000, 20000);
1059
1060                         if (adapter->test_icr & mask) {
1061                                 *data = 3;
1062                                 break;
1063                         }
1064                 }
1065
1066                 /* Enable the interrupt to be reported in
1067                  * the cause register and then force the same
1068                  * interrupt and see if one gets posted.  If
1069                  * an interrupt was not posted to the bus, the
1070                  * test failed.
1071                  */
1072                 adapter->test_icr = 0;
1073                 ew32(IMS, mask);
1074                 ew32(ICS, mask);
1075                 e1e_flush();
1076                 usleep_range(10000, 20000);
1077
1078                 if (!(adapter->test_icr & mask)) {
1079                         *data = 4;
1080                         break;
1081                 }
1082
1083                 if (!shared_int) {
1084                         /* Disable the other interrupts to be reported in
1085                          * the cause register and then force the other
1086                          * interrupts and see if any get posted.  If
1087                          * an interrupt was posted to the bus, the
1088                          * test failed.
1089                          */
1090                         adapter->test_icr = 0;
1091                         ew32(IMC, ~mask & 0x00007FFF);
1092                         ew32(ICS, ~mask & 0x00007FFF);
1093                         e1e_flush();
1094                         usleep_range(10000, 20000);
1095
1096                         if (adapter->test_icr) {
1097                                 *data = 5;
1098                                 break;
1099                         }
1100                 }
1101         }
1102
1103         /* Disable all the interrupts */
1104         ew32(IMC, 0xFFFFFFFF);
1105         e1e_flush();
1106         usleep_range(10000, 20000);
1107
1108         /* Unhook test interrupt handler */
1109         free_irq(irq, netdev);
1110
1111 out:
1112         if (int_mode == E1000E_INT_MODE_MSIX) {
1113                 e1000e_reset_interrupt_capability(adapter);
1114                 adapter->int_mode = int_mode;
1115                 e1000e_set_interrupt_capability(adapter);
1116         }
1117
1118         return ret_val;
1119 }
1120
1121 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1122 {
1123         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1124         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1125         struct pci_dev *pdev = adapter->pdev;
1126         struct e1000_buffer *buffer_info;
1127         int i;
1128
1129         if (tx_ring->desc && tx_ring->buffer_info) {
1130                 for (i = 0; i < tx_ring->count; i++) {
1131                         buffer_info = &tx_ring->buffer_info[i];
1132
1133                         if (buffer_info->dma)
1134                                 dma_unmap_single(&pdev->dev,
1135                                                  buffer_info->dma,
1136                                                  buffer_info->length,
1137                                                  DMA_TO_DEVICE);
1138                         if (buffer_info->skb)
1139                                 dev_kfree_skb(buffer_info->skb);
1140                 }
1141         }
1142
1143         if (rx_ring->desc && rx_ring->buffer_info) {
1144                 for (i = 0; i < rx_ring->count; i++) {
1145                         buffer_info = &rx_ring->buffer_info[i];
1146
1147                         if (buffer_info->dma)
1148                                 dma_unmap_single(&pdev->dev,
1149                                                  buffer_info->dma,
1150                                                  2048, DMA_FROM_DEVICE);
1151                         if (buffer_info->skb)
1152                                 dev_kfree_skb(buffer_info->skb);
1153                 }
1154         }
1155
1156         if (tx_ring->desc) {
1157                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1158                                   tx_ring->dma);
1159                 tx_ring->desc = NULL;
1160         }
1161         if (rx_ring->desc) {
1162                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1163                                   rx_ring->dma);
1164                 rx_ring->desc = NULL;
1165         }
1166
1167         kfree(tx_ring->buffer_info);
1168         tx_ring->buffer_info = NULL;
1169         kfree(rx_ring->buffer_info);
1170         rx_ring->buffer_info = NULL;
1171 }
1172
1173 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1174 {
1175         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1176         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1177         struct pci_dev *pdev = adapter->pdev;
1178         struct e1000_hw *hw = &adapter->hw;
1179         u32 rctl;
1180         int i;
1181         int ret_val;
1182
1183         /* Setup Tx descriptor ring and Tx buffers */
1184
1185         if (!tx_ring->count)
1186                 tx_ring->count = E1000_DEFAULT_TXD;
1187
1188         tx_ring->buffer_info = kcalloc(tx_ring->count,
1189                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1190         if (!tx_ring->buffer_info) {
1191                 ret_val = 1;
1192                 goto err_nomem;
1193         }
1194
1195         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1196         tx_ring->size = ALIGN(tx_ring->size, 4096);
1197         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1198                                            &tx_ring->dma, GFP_KERNEL);
1199         if (!tx_ring->desc) {
1200                 ret_val = 2;
1201                 goto err_nomem;
1202         }
1203         tx_ring->next_to_use = 0;
1204         tx_ring->next_to_clean = 0;
1205
1206         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1207         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1208         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1209         ew32(TDH(0), 0);
1210         ew32(TDT(0), 0);
1211         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1212              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1213              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1214
1215         for (i = 0; i < tx_ring->count; i++) {
1216                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1217                 struct sk_buff *skb;
1218                 unsigned int skb_size = 1024;
1219
1220                 skb = alloc_skb(skb_size, GFP_KERNEL);
1221                 if (!skb) {
1222                         ret_val = 3;
1223                         goto err_nomem;
1224                 }
1225                 skb_put(skb, skb_size);
1226                 tx_ring->buffer_info[i].skb = skb;
1227                 tx_ring->buffer_info[i].length = skb->len;
1228                 tx_ring->buffer_info[i].dma =
1229                     dma_map_single(&pdev->dev, skb->data, skb->len,
1230                                    DMA_TO_DEVICE);
1231                 if (dma_mapping_error(&pdev->dev,
1232                                       tx_ring->buffer_info[i].dma)) {
1233                         ret_val = 4;
1234                         goto err_nomem;
1235                 }
1236                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1237                 tx_desc->lower.data = cpu_to_le32(skb->len);
1238                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1239                                                    E1000_TXD_CMD_IFCS |
1240                                                    E1000_TXD_CMD_RS);
1241                 tx_desc->upper.data = 0;
1242         }
1243
1244         /* Setup Rx descriptor ring and Rx buffers */
1245
1246         if (!rx_ring->count)
1247                 rx_ring->count = E1000_DEFAULT_RXD;
1248
1249         rx_ring->buffer_info = kcalloc(rx_ring->count,
1250                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1251         if (!rx_ring->buffer_info) {
1252                 ret_val = 5;
1253                 goto err_nomem;
1254         }
1255
1256         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1257         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1258                                            &rx_ring->dma, GFP_KERNEL);
1259         if (!rx_ring->desc) {
1260                 ret_val = 6;
1261                 goto err_nomem;
1262         }
1263         rx_ring->next_to_use = 0;
1264         rx_ring->next_to_clean = 0;
1265
1266         rctl = er32(RCTL);
1267         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1268                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1269         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1270         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1271         ew32(RDLEN(0), rx_ring->size);
1272         ew32(RDH(0), 0);
1273         ew32(RDT(0), 0);
1274         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1275             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1276             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1277             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1278             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1279         ew32(RCTL, rctl);
1280
1281         for (i = 0; i < rx_ring->count; i++) {
1282                 union e1000_rx_desc_extended *rx_desc;
1283                 struct sk_buff *skb;
1284
1285                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1286                 if (!skb) {
1287                         ret_val = 7;
1288                         goto err_nomem;
1289                 }
1290                 skb_reserve(skb, NET_IP_ALIGN);
1291                 rx_ring->buffer_info[i].skb = skb;
1292                 rx_ring->buffer_info[i].dma =
1293                     dma_map_single(&pdev->dev, skb->data, 2048,
1294                                    DMA_FROM_DEVICE);
1295                 if (dma_mapping_error(&pdev->dev,
1296                                       rx_ring->buffer_info[i].dma)) {
1297                         ret_val = 8;
1298                         goto err_nomem;
1299                 }
1300                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1301                 rx_desc->read.buffer_addr =
1302                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1303                 memset(skb->data, 0x00, skb->len);
1304         }
1305
1306         return 0;
1307
1308 err_nomem:
1309         e1000_free_desc_rings(adapter);
1310         return ret_val;
1311 }
1312
1313 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1314 {
1315         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1316         e1e_wphy(&adapter->hw, 29, 0x001F);
1317         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1318         e1e_wphy(&adapter->hw, 29, 0x001A);
1319         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1320 }
1321
1322 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1323 {
1324         struct e1000_hw *hw = &adapter->hw;
1325         u32 ctrl_reg = 0;
1326         u16 phy_reg = 0;
1327         s32 ret_val = 0;
1328
1329         hw->mac.autoneg = 0;
1330
1331         if (hw->phy.type == e1000_phy_ife) {
1332                 /* force 100, set loopback */
1333                 e1e_wphy(hw, MII_BMCR, 0x6100);
1334
1335                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1336                 ctrl_reg = er32(CTRL);
1337                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1338                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1339                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1340                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1341                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1342
1343                 ew32(CTRL, ctrl_reg);
1344                 e1e_flush();
1345                 usleep_range(500, 1000);
1346
1347                 return 0;
1348         }
1349
1350         /* Specific PHY configuration for loopback */
1351         switch (hw->phy.type) {
1352         case e1000_phy_m88:
1353                 /* Auto-MDI/MDIX Off */
1354                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1355                 /* reset to update Auto-MDI/MDIX */
1356                 e1e_wphy(hw, MII_BMCR, 0x9140);
1357                 /* autoneg off */
1358                 e1e_wphy(hw, MII_BMCR, 0x8140);
1359                 break;
1360         case e1000_phy_gg82563:
1361                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1362                 break;
1363         case e1000_phy_bm:
1364                 /* Set Default MAC Interface speed to 1GB */
1365                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1366                 phy_reg &= ~0x0007;
1367                 phy_reg |= 0x006;
1368                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1369                 /* Assert SW reset for above settings to take effect */
1370                 hw->phy.ops.commit(hw);
1371                 usleep_range(1000, 2000);
1372                 /* Force Full Duplex */
1373                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1374                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1375                 /* Set Link Up (in force link) */
1376                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1377                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1378                 /* Force Link */
1379                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1380                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1381                 /* Set Early Link Enable */
1382                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1383                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1384                 break;
1385         case e1000_phy_82577:
1386         case e1000_phy_82578:
1387                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1388                 ret_val = hw->phy.ops.acquire(hw);
1389                 if (ret_val) {
1390                         e_err("Cannot setup 1Gbps loopback.\n");
1391                         return ret_val;
1392                 }
1393                 e1000_configure_k1_ich8lan(hw, false);
1394                 hw->phy.ops.release(hw);
1395                 break;
1396         case e1000_phy_82579:
1397                 /* Disable PHY energy detect power down */
1398                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1399                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1400                 /* Disable full chip energy detect */
1401                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1402                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1403                 /* Enable loopback on the PHY */
1404                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1405                 break;
1406         default:
1407                 break;
1408         }
1409
1410         /* force 1000, set loopback */
1411         e1e_wphy(hw, MII_BMCR, 0x4140);
1412         msleep(250);
1413
1414         /* Now set up the MAC to the same speed/duplex as the PHY. */
1415         ctrl_reg = er32(CTRL);
1416         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1417         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1418                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1419                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1420                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1421
1422         if (adapter->flags & FLAG_IS_ICH)
1423                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1424
1425         if (hw->phy.media_type == e1000_media_type_copper &&
1426             hw->phy.type == e1000_phy_m88) {
1427                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1428         } else {
1429                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1430                  * detected.
1431                  */
1432                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1433                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1434         }
1435
1436         ew32(CTRL, ctrl_reg);
1437
1438         /* Disable the receiver on the PHY so when a cable is plugged in, the
1439          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1440          */
1441         if (hw->phy.type == e1000_phy_m88)
1442                 e1000_phy_disable_receiver(adapter);
1443
1444         usleep_range(500, 1000);
1445
1446         return 0;
1447 }
1448
1449 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1450 {
1451         struct e1000_hw *hw = &adapter->hw;
1452         u32 ctrl = er32(CTRL);
1453         int link;
1454
1455         /* special requirements for 82571/82572 fiber adapters */
1456
1457         /* jump through hoops to make sure link is up because serdes
1458          * link is hardwired up
1459          */
1460         ctrl |= E1000_CTRL_SLU;
1461         ew32(CTRL, ctrl);
1462
1463         /* disable autoneg */
1464         ctrl = er32(TXCW);
1465         ctrl &= ~BIT(31);
1466         ew32(TXCW, ctrl);
1467
1468         link = (er32(STATUS) & E1000_STATUS_LU);
1469
1470         if (!link) {
1471                 /* set invert loss of signal */
1472                 ctrl = er32(CTRL);
1473                 ctrl |= E1000_CTRL_ILOS;
1474                 ew32(CTRL, ctrl);
1475         }
1476
1477         /* special write to serdes control register to enable SerDes analog
1478          * loopback
1479          */
1480         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1481         e1e_flush();
1482         usleep_range(10000, 20000);
1483
1484         return 0;
1485 }
1486
1487 /* only call this for fiber/serdes connections to es2lan */
1488 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1489 {
1490         struct e1000_hw *hw = &adapter->hw;
1491         u32 ctrlext = er32(CTRL_EXT);
1492         u32 ctrl = er32(CTRL);
1493
1494         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1495          * on mac_type 80003es2lan)
1496          */
1497         adapter->tx_fifo_head = ctrlext;
1498
1499         /* clear the serdes mode bits, putting the device into mac loopback */
1500         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1501         ew32(CTRL_EXT, ctrlext);
1502
1503         /* force speed to 1000/FD, link up */
1504         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1506                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1507         ew32(CTRL, ctrl);
1508
1509         /* set mac loopback */
1510         ctrl = er32(RCTL);
1511         ctrl |= E1000_RCTL_LBM_MAC;
1512         ew32(RCTL, ctrl);
1513
1514         /* set testing mode parameters (no need to reset later) */
1515 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1516 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1517         ew32(KMRNCTRLSTA,
1518              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1519
1520         return 0;
1521 }
1522
1523 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1524 {
1525         struct e1000_hw *hw = &adapter->hw;
1526         u32 rctl, fext_nvm11, tarc0;
1527
1528         if (hw->mac.type == e1000_pch_spt) {
1529                 fext_nvm11 = er32(FEXTNVM11);
1530                 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1531                 ew32(FEXTNVM11, fext_nvm11);
1532                 tarc0 = er32(TARC(0));
1533                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1534                 tarc0 &= 0xcfffffff;
1535                 /* set bit 29 (value of MULR requests is now 2) */
1536                 tarc0 |= 0x20000000;
1537                 ew32(TARC(0), tarc0);
1538         }
1539         if (hw->phy.media_type == e1000_media_type_fiber ||
1540             hw->phy.media_type == e1000_media_type_internal_serdes) {
1541                 switch (hw->mac.type) {
1542                 case e1000_80003es2lan:
1543                         return e1000_set_es2lan_mac_loopback(adapter);
1544                 case e1000_82571:
1545                 case e1000_82572:
1546                         return e1000_set_82571_fiber_loopback(adapter);
1547                 default:
1548                         rctl = er32(RCTL);
1549                         rctl |= E1000_RCTL_LBM_TCVR;
1550                         ew32(RCTL, rctl);
1551                         return 0;
1552                 }
1553         } else if (hw->phy.media_type == e1000_media_type_copper) {
1554                 return e1000_integrated_phy_loopback(adapter);
1555         }
1556
1557         return 7;
1558 }
1559
1560 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1561 {
1562         struct e1000_hw *hw = &adapter->hw;
1563         u32 rctl, fext_nvm11, tarc0;
1564         u16 phy_reg;
1565
1566         rctl = er32(RCTL);
1567         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1568         ew32(RCTL, rctl);
1569
1570         switch (hw->mac.type) {
1571         case e1000_pch_spt:
1572                 fext_nvm11 = er32(FEXTNVM11);
1573                 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574                 ew32(FEXTNVM11, fext_nvm11);
1575                 tarc0 = er32(TARC(0));
1576                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1577                 /* set bit 29 (value of MULR requests is now 0) */
1578                 tarc0 &= 0xcfffffff;
1579                 ew32(TARC(0), tarc0);
1580                 /* fall through */
1581         case e1000_80003es2lan:
1582                 if (hw->phy.media_type == e1000_media_type_fiber ||
1583                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1584                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1585                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1586                         adapter->tx_fifo_head = 0;
1587                 }
1588                 /* fall through */
1589         case e1000_82571:
1590         case e1000_82572:
1591                 if (hw->phy.media_type == e1000_media_type_fiber ||
1592                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1593                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594                         e1e_flush();
1595                         usleep_range(10000, 20000);
1596                         break;
1597                 }
1598                 /* Fall Through */
1599         default:
1600                 hw->mac.autoneg = 1;
1601                 if (hw->phy.type == e1000_phy_gg82563)
1602                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1604                 if (phy_reg & BMCR_LOOPBACK) {
1605                         phy_reg &= ~BMCR_LOOPBACK;
1606                         e1e_wphy(hw, MII_BMCR, phy_reg);
1607                         if (hw->phy.ops.commit)
1608                                 hw->phy.ops.commit(hw);
1609                 }
1610                 break;
1611         }
1612 }
1613
1614 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615                                       unsigned int frame_size)
1616 {
1617         memset(skb->data, 0xFF, frame_size);
1618         frame_size &= ~1;
1619         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1621         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1622 }
1623
1624 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625                                     unsigned int frame_size)
1626 {
1627         frame_size &= ~1;
1628         if (*(skb->data + 3) == 0xFF)
1629                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631                         return 0;
1632         return 13;
1633 }
1634
1635 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636 {
1637         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639         struct pci_dev *pdev = adapter->pdev;
1640         struct e1000_hw *hw = &adapter->hw;
1641         struct e1000_buffer *buffer_info;
1642         int i, j, k, l;
1643         int lc;
1644         int good_cnt;
1645         int ret_val = 0;
1646         unsigned long time;
1647
1648         ew32(RDT(0), rx_ring->count - 1);
1649
1650         /* Calculate the loop count based on the largest descriptor ring
1651          * The idea is to wrap the largest ring a number of times using 64
1652          * send/receive pairs during each loop
1653          */
1654
1655         if (rx_ring->count <= tx_ring->count)
1656                 lc = ((tx_ring->count / 64) * 2) + 1;
1657         else
1658                 lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660         k = 0;
1661         l = 0;
1662         /* loop count loop */
1663         for (j = 0; j <= lc; j++) {
1664                 /* send the packets */
1665                 for (i = 0; i < 64; i++) {
1666                         buffer_info = &tx_ring->buffer_info[k];
1667
1668                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669                         dma_sync_single_for_device(&pdev->dev,
1670                                                    buffer_info->dma,
1671                                                    buffer_info->length,
1672                                                    DMA_TO_DEVICE);
1673                         k++;
1674                         if (k == tx_ring->count)
1675                                 k = 0;
1676                 }
1677                 ew32(TDT(0), k);
1678                 e1e_flush();
1679                 msleep(200);
1680                 time = jiffies; /* set the start time for the receive */
1681                 good_cnt = 0;
1682                 /* receive the sent packets */
1683                 do {
1684                         buffer_info = &rx_ring->buffer_info[l];
1685
1686                         dma_sync_single_for_cpu(&pdev->dev,
1687                                                 buffer_info->dma, 2048,
1688                                                 DMA_FROM_DEVICE);
1689
1690                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691                                                            1024);
1692                         if (!ret_val)
1693                                 good_cnt++;
1694                         l++;
1695                         if (l == rx_ring->count)
1696                                 l = 0;
1697                         /* time + 20 msecs (200 msecs on 2.4) is more than
1698                          * enough time to complete the receives, if it's
1699                          * exceeded, break and error off
1700                          */
1701                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702                 if (good_cnt != 64) {
1703                         ret_val = 13;   /* ret_val is the same as mis-compare */
1704                         break;
1705                 }
1706                 if (time_after(jiffies, time + 20)) {
1707                         ret_val = 14;   /* error code for time out error */
1708                         break;
1709                 }
1710         }
1711         return ret_val;
1712 }
1713
1714 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715 {
1716         struct e1000_hw *hw = &adapter->hw;
1717
1718         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719         if (hw->phy.ops.check_reset_block &&
1720             hw->phy.ops.check_reset_block(hw)) {
1721                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722                 *data = 0;
1723                 goto out;
1724         }
1725
1726         *data = e1000_setup_desc_rings(adapter);
1727         if (*data)
1728                 goto out;
1729
1730         *data = e1000_setup_loopback_test(adapter);
1731         if (*data)
1732                 goto err_loopback;
1733
1734         *data = e1000_run_loopback_test(adapter);
1735         e1000_loopback_cleanup(adapter);
1736
1737 err_loopback:
1738         e1000_free_desc_rings(adapter);
1739 out:
1740         return *data;
1741 }
1742
1743 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744 {
1745         struct e1000_hw *hw = &adapter->hw;
1746
1747         *data = 0;
1748         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749                 int i = 0;
1750
1751                 hw->mac.serdes_has_link = false;
1752
1753                 /* On some blade server designs, link establishment
1754                  * could take as long as 2-3 minutes
1755                  */
1756                 do {
1757                         hw->mac.ops.check_for_link(hw);
1758                         if (hw->mac.serdes_has_link)
1759                                 return *data;
1760                         msleep(20);
1761                 } while (i++ < 3750);
1762
1763                 *data = 1;
1764         } else {
1765                 hw->mac.ops.check_for_link(hw);
1766                 if (hw->mac.autoneg)
1767                         /* On some Phy/switch combinations, link establishment
1768                          * can take a few seconds more than expected.
1769                          */
1770                         msleep_interruptible(5000);
1771
1772                 if (!(er32(STATUS) & E1000_STATUS_LU))
1773                         *data = 1;
1774         }
1775         return *data;
1776 }
1777
1778 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779                                  int sset)
1780 {
1781         switch (sset) {
1782         case ETH_SS_TEST:
1783                 return E1000_TEST_LEN;
1784         case ETH_SS_STATS:
1785                 return E1000_STATS_LEN;
1786         default:
1787                 return -EOPNOTSUPP;
1788         }
1789 }
1790
1791 static void e1000_diag_test(struct net_device *netdev,
1792                             struct ethtool_test *eth_test, u64 *data)
1793 {
1794         struct e1000_adapter *adapter = netdev_priv(netdev);
1795         u16 autoneg_advertised;
1796         u8 forced_speed_duplex;
1797         u8 autoneg;
1798         bool if_running = netif_running(netdev);
1799
1800         pm_runtime_get_sync(netdev->dev.parent);
1801
1802         set_bit(__E1000_TESTING, &adapter->state);
1803
1804         if (!if_running) {
1805                 /* Get control of and reset hardware */
1806                 if (adapter->flags & FLAG_HAS_AMT)
1807                         e1000e_get_hw_control(adapter);
1808
1809                 e1000e_power_up_phy(adapter);
1810
1811                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1812                 e1000e_reset(adapter);
1813                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1814         }
1815
1816         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1817                 /* Offline tests */
1818
1819                 /* save speed, duplex, autoneg settings */
1820                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1821                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1822                 autoneg = adapter->hw.mac.autoneg;
1823
1824                 e_info("offline testing starting\n");
1825
1826                 if (if_running)
1827                         /* indicate we're in test mode */
1828                         e1000e_close(netdev);
1829
1830                 if (e1000_reg_test(adapter, &data[0]))
1831                         eth_test->flags |= ETH_TEST_FL_FAILED;
1832
1833                 e1000e_reset(adapter);
1834                 if (e1000_eeprom_test(adapter, &data[1]))
1835                         eth_test->flags |= ETH_TEST_FL_FAILED;
1836
1837                 e1000e_reset(adapter);
1838                 if (e1000_intr_test(adapter, &data[2]))
1839                         eth_test->flags |= ETH_TEST_FL_FAILED;
1840
1841                 e1000e_reset(adapter);
1842                 if (e1000_loopback_test(adapter, &data[3]))
1843                         eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845                 /* force this routine to wait until autoneg complete/timeout */
1846                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1847                 e1000e_reset(adapter);
1848                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1849
1850                 if (e1000_link_test(adapter, &data[4]))
1851                         eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853                 /* restore speed, duplex, autoneg settings */
1854                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1855                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1856                 adapter->hw.mac.autoneg = autoneg;
1857                 e1000e_reset(adapter);
1858
1859                 clear_bit(__E1000_TESTING, &adapter->state);
1860                 if (if_running)
1861                         e1000e_open(netdev);
1862         } else {
1863                 /* Online tests */
1864
1865                 e_info("online testing starting\n");
1866
1867                 /* register, eeprom, intr and loopback tests not run online */
1868                 data[0] = 0;
1869                 data[1] = 0;
1870                 data[2] = 0;
1871                 data[3] = 0;
1872
1873                 if (e1000_link_test(adapter, &data[4]))
1874                         eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876                 clear_bit(__E1000_TESTING, &adapter->state);
1877         }
1878
1879         if (!if_running) {
1880                 e1000e_reset(adapter);
1881
1882                 if (adapter->flags & FLAG_HAS_AMT)
1883                         e1000e_release_hw_control(adapter);
1884         }
1885
1886         msleep_interruptible(4 * 1000);
1887
1888         pm_runtime_put_sync(netdev->dev.parent);
1889 }
1890
1891 static void e1000_get_wol(struct net_device *netdev,
1892                           struct ethtool_wolinfo *wol)
1893 {
1894         struct e1000_adapter *adapter = netdev_priv(netdev);
1895
1896         wol->supported = 0;
1897         wol->wolopts = 0;
1898
1899         if (!(adapter->flags & FLAG_HAS_WOL) ||
1900             !device_can_wakeup(&adapter->pdev->dev))
1901                 return;
1902
1903         wol->supported = WAKE_UCAST | WAKE_MCAST |
1904             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1905
1906         /* apply any specific unsupported masks here */
1907         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1908                 wol->supported &= ~WAKE_UCAST;
1909
1910                 if (adapter->wol & E1000_WUFC_EX)
1911                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1912         }
1913
1914         if (adapter->wol & E1000_WUFC_EX)
1915                 wol->wolopts |= WAKE_UCAST;
1916         if (adapter->wol & E1000_WUFC_MC)
1917                 wol->wolopts |= WAKE_MCAST;
1918         if (adapter->wol & E1000_WUFC_BC)
1919                 wol->wolopts |= WAKE_BCAST;
1920         if (adapter->wol & E1000_WUFC_MAG)
1921                 wol->wolopts |= WAKE_MAGIC;
1922         if (adapter->wol & E1000_WUFC_LNKC)
1923                 wol->wolopts |= WAKE_PHY;
1924 }
1925
1926 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1927 {
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930         if (!(adapter->flags & FLAG_HAS_WOL) ||
1931             !device_can_wakeup(&adapter->pdev->dev) ||
1932             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1933                               WAKE_MAGIC | WAKE_PHY)))
1934                 return -EOPNOTSUPP;
1935
1936         /* these settings will always override what we currently have */
1937         adapter->wol = 0;
1938
1939         if (wol->wolopts & WAKE_UCAST)
1940                 adapter->wol |= E1000_WUFC_EX;
1941         if (wol->wolopts & WAKE_MCAST)
1942                 adapter->wol |= E1000_WUFC_MC;
1943         if (wol->wolopts & WAKE_BCAST)
1944                 adapter->wol |= E1000_WUFC_BC;
1945         if (wol->wolopts & WAKE_MAGIC)
1946                 adapter->wol |= E1000_WUFC_MAG;
1947         if (wol->wolopts & WAKE_PHY)
1948                 adapter->wol |= E1000_WUFC_LNKC;
1949
1950         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1951
1952         return 0;
1953 }
1954
1955 static int e1000_set_phys_id(struct net_device *netdev,
1956                              enum ethtool_phys_id_state state)
1957 {
1958         struct e1000_adapter *adapter = netdev_priv(netdev);
1959         struct e1000_hw *hw = &adapter->hw;
1960
1961         switch (state) {
1962         case ETHTOOL_ID_ACTIVE:
1963                 pm_runtime_get_sync(netdev->dev.parent);
1964
1965                 if (!hw->mac.ops.blink_led)
1966                         return 2;       /* cycle on/off twice per second */
1967
1968                 hw->mac.ops.blink_led(hw);
1969                 break;
1970
1971         case ETHTOOL_ID_INACTIVE:
1972                 if (hw->phy.type == e1000_phy_ife)
1973                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1974                 hw->mac.ops.led_off(hw);
1975                 hw->mac.ops.cleanup_led(hw);
1976                 pm_runtime_put_sync(netdev->dev.parent);
1977                 break;
1978
1979         case ETHTOOL_ID_ON:
1980                 hw->mac.ops.led_on(hw);
1981                 break;
1982
1983         case ETHTOOL_ID_OFF:
1984                 hw->mac.ops.led_off(hw);
1985                 break;
1986         }
1987
1988         return 0;
1989 }
1990
1991 static int e1000_get_coalesce(struct net_device *netdev,
1992                               struct ethtool_coalesce *ec)
1993 {
1994         struct e1000_adapter *adapter = netdev_priv(netdev);
1995
1996         if (adapter->itr_setting <= 4)
1997                 ec->rx_coalesce_usecs = adapter->itr_setting;
1998         else
1999                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2000
2001         return 0;
2002 }
2003
2004 static int e1000_set_coalesce(struct net_device *netdev,
2005                               struct ethtool_coalesce *ec)
2006 {
2007         struct e1000_adapter *adapter = netdev_priv(netdev);
2008
2009         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2010             ((ec->rx_coalesce_usecs > 4) &&
2011              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2012             (ec->rx_coalesce_usecs == 2))
2013                 return -EINVAL;
2014
2015         if (ec->rx_coalesce_usecs == 4) {
2016                 adapter->itr_setting = 4;
2017                 adapter->itr = adapter->itr_setting;
2018         } else if (ec->rx_coalesce_usecs <= 3) {
2019                 adapter->itr = 20000;
2020                 adapter->itr_setting = ec->rx_coalesce_usecs;
2021         } else {
2022                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2023                 adapter->itr_setting = adapter->itr & ~3;
2024         }
2025
2026         pm_runtime_get_sync(netdev->dev.parent);
2027
2028         if (adapter->itr_setting != 0)
2029                 e1000e_write_itr(adapter, adapter->itr);
2030         else
2031                 e1000e_write_itr(adapter, 0);
2032
2033         pm_runtime_put_sync(netdev->dev.parent);
2034
2035         return 0;
2036 }
2037
2038 static int e1000_nway_reset(struct net_device *netdev)
2039 {
2040         struct e1000_adapter *adapter = netdev_priv(netdev);
2041
2042         if (!netif_running(netdev))
2043                 return -EAGAIN;
2044
2045         if (!adapter->hw.mac.autoneg)
2046                 return -EINVAL;
2047
2048         pm_runtime_get_sync(netdev->dev.parent);
2049         e1000e_reinit_locked(adapter);
2050         pm_runtime_put_sync(netdev->dev.parent);
2051
2052         return 0;
2053 }
2054
2055 static void e1000_get_ethtool_stats(struct net_device *netdev,
2056                                     struct ethtool_stats __always_unused *stats,
2057                                     u64 *data)
2058 {
2059         struct e1000_adapter *adapter = netdev_priv(netdev);
2060         struct rtnl_link_stats64 net_stats;
2061         int i;
2062         char *p = NULL;
2063
2064         pm_runtime_get_sync(netdev->dev.parent);
2065
2066         e1000e_get_stats64(netdev, &net_stats);
2067
2068         pm_runtime_put_sync(netdev->dev.parent);
2069
2070         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071                 switch (e1000_gstrings_stats[i].type) {
2072                 case NETDEV_STATS:
2073                         p = (char *)&net_stats +
2074                             e1000_gstrings_stats[i].stat_offset;
2075                         break;
2076                 case E1000_STATS:
2077                         p = (char *)adapter +
2078                             e1000_gstrings_stats[i].stat_offset;
2079                         break;
2080                 default:
2081                         data[i] = 0;
2082                         continue;
2083                 }
2084
2085                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2086                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2087         }
2088 }
2089
2090 static void e1000_get_strings(struct net_device __always_unused *netdev,
2091                               u32 stringset, u8 *data)
2092 {
2093         u8 *p = data;
2094         int i;
2095
2096         switch (stringset) {
2097         case ETH_SS_TEST:
2098                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2099                 break;
2100         case ETH_SS_STATS:
2101                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2102                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2103                                ETH_GSTRING_LEN);
2104                         p += ETH_GSTRING_LEN;
2105                 }
2106                 break;
2107         }
2108 }
2109
2110 static int e1000_get_rxnfc(struct net_device *netdev,
2111                            struct ethtool_rxnfc *info,
2112                            u32 __always_unused *rule_locs)
2113 {
2114         info->data = 0;
2115
2116         switch (info->cmd) {
2117         case ETHTOOL_GRXFH: {
2118                 struct e1000_adapter *adapter = netdev_priv(netdev);
2119                 struct e1000_hw *hw = &adapter->hw;
2120                 u32 mrqc;
2121
2122                 pm_runtime_get_sync(netdev->dev.parent);
2123                 mrqc = er32(MRQC);
2124                 pm_runtime_put_sync(netdev->dev.parent);
2125
2126                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2127                         return 0;
2128
2129                 switch (info->flow_type) {
2130                 case TCP_V4_FLOW:
2131                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2132                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2133                         /* fall through */
2134                 case UDP_V4_FLOW:
2135                 case SCTP_V4_FLOW:
2136                 case AH_ESP_V4_FLOW:
2137                 case IPV4_FLOW:
2138                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2139                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2140                         break;
2141                 case TCP_V6_FLOW:
2142                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2143                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144                         /* fall through */
2145                 case UDP_V6_FLOW:
2146                 case SCTP_V6_FLOW:
2147                 case AH_ESP_V6_FLOW:
2148                 case IPV6_FLOW:
2149                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2150                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151                         break;
2152                 default:
2153                         break;
2154                 }
2155                 return 0;
2156         }
2157         default:
2158                 return -EOPNOTSUPP;
2159         }
2160 }
2161
2162 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2163 {
2164         struct e1000_adapter *adapter = netdev_priv(netdev);
2165         struct e1000_hw *hw = &adapter->hw;
2166         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2167         u32 ret_val;
2168
2169         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2170                 return -EOPNOTSUPP;
2171
2172         switch (hw->phy.type) {
2173         case e1000_phy_82579:
2174                 cap_addr = I82579_EEE_CAPABILITY;
2175                 lpa_addr = I82579_EEE_LP_ABILITY;
2176                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2177                 break;
2178         case e1000_phy_i217:
2179                 cap_addr = I217_EEE_CAPABILITY;
2180                 lpa_addr = I217_EEE_LP_ABILITY;
2181                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2182                 break;
2183         default:
2184                 return -EOPNOTSUPP;
2185         }
2186
2187         pm_runtime_get_sync(netdev->dev.parent);
2188
2189         ret_val = hw->phy.ops.acquire(hw);
2190         if (ret_val) {
2191                 pm_runtime_put_sync(netdev->dev.parent);
2192                 return -EBUSY;
2193         }
2194
2195         /* EEE Capability */
2196         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2197         if (ret_val)
2198                 goto release;
2199         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2200
2201         /* EEE Advertised */
2202         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2203
2204         /* EEE Link Partner Advertised */
2205         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2206         if (ret_val)
2207                 goto release;
2208         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2209
2210         /* EEE PCS Status */
2211         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2212         if (ret_val)
2213                 goto release;
2214         if (hw->phy.type == e1000_phy_82579)
2215                 phy_data <<= 8;
2216
2217         /* Result of the EEE auto negotiation - there is no register that
2218          * has the status of the EEE negotiation so do a best-guess based
2219          * on whether Tx or Rx LPI indications have been received.
2220          */
2221         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2222                 edata->eee_active = true;
2223
2224         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2225         edata->tx_lpi_enabled = true;
2226         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2227
2228 release:
2229         hw->phy.ops.release(hw);
2230         if (ret_val)
2231                 ret_val = -ENODATA;
2232
2233         pm_runtime_put_sync(netdev->dev.parent);
2234
2235         return ret_val;
2236 }
2237
2238 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2239 {
2240         struct e1000_adapter *adapter = netdev_priv(netdev);
2241         struct e1000_hw *hw = &adapter->hw;
2242         struct ethtool_eee eee_curr;
2243         s32 ret_val;
2244
2245         ret_val = e1000e_get_eee(netdev, &eee_curr);
2246         if (ret_val)
2247                 return ret_val;
2248
2249         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2250                 e_err("Setting EEE tx-lpi is not supported\n");
2251                 return -EINVAL;
2252         }
2253
2254         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2255                 e_err("Setting EEE Tx LPI timer is not supported\n");
2256                 return -EINVAL;
2257         }
2258
2259         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2260                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2261                 return -EINVAL;
2262         }
2263
2264         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2265
2266         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2267
2268         pm_runtime_get_sync(netdev->dev.parent);
2269
2270         /* reset the link */
2271         if (netif_running(netdev))
2272                 e1000e_reinit_locked(adapter);
2273         else
2274                 e1000e_reset(adapter);
2275
2276         pm_runtime_put_sync(netdev->dev.parent);
2277
2278         return 0;
2279 }
2280
2281 static int e1000e_get_ts_info(struct net_device *netdev,
2282                               struct ethtool_ts_info *info)
2283 {
2284         struct e1000_adapter *adapter = netdev_priv(netdev);
2285
2286         ethtool_op_get_ts_info(netdev, info);
2287
2288         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2289                 return 0;
2290
2291         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2292                                   SOF_TIMESTAMPING_RX_HARDWARE |
2293                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2294
2295         info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2296
2297         info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2298                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2299                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2300                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2301                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2302                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2303                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2304                             BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2305                             BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2306                             BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2307                             BIT(HWTSTAMP_FILTER_ALL));
2308
2309         if (adapter->ptp_clock)
2310                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2311
2312         return 0;
2313 }
2314
2315 static const struct ethtool_ops e1000_ethtool_ops = {
2316         .get_settings           = e1000_get_settings,
2317         .set_settings           = e1000_set_settings,
2318         .get_drvinfo            = e1000_get_drvinfo,
2319         .get_regs_len           = e1000_get_regs_len,
2320         .get_regs               = e1000_get_regs,
2321         .get_wol                = e1000_get_wol,
2322         .set_wol                = e1000_set_wol,
2323         .get_msglevel           = e1000_get_msglevel,
2324         .set_msglevel           = e1000_set_msglevel,
2325         .nway_reset             = e1000_nway_reset,
2326         .get_link               = ethtool_op_get_link,
2327         .get_eeprom_len         = e1000_get_eeprom_len,
2328         .get_eeprom             = e1000_get_eeprom,
2329         .set_eeprom             = e1000_set_eeprom,
2330         .get_ringparam          = e1000_get_ringparam,
2331         .set_ringparam          = e1000_set_ringparam,
2332         .get_pauseparam         = e1000_get_pauseparam,
2333         .set_pauseparam         = e1000_set_pauseparam,
2334         .self_test              = e1000_diag_test,
2335         .get_strings            = e1000_get_strings,
2336         .set_phys_id            = e1000_set_phys_id,
2337         .get_ethtool_stats      = e1000_get_ethtool_stats,
2338         .get_sset_count         = e1000e_get_sset_count,
2339         .get_coalesce           = e1000_get_coalesce,
2340         .set_coalesce           = e1000_set_coalesce,
2341         .get_rxnfc              = e1000_get_rxnfc,
2342         .get_ts_info            = e1000e_get_ts_info,
2343         .get_eee                = e1000e_get_eee,
2344         .set_eee                = e1000e_set_eee,
2345 };
2346
2347 void e1000e_set_ethtool_ops(struct net_device *netdev)
2348 {
2349         netdev->ethtool_ops = &e1000_ethtool_ops;
2350 }