GNU Linux-libre 4.14.302-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* ethtool support for e1000 */
23
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32
33 #include "e1000.h"
34
35 enum { NETDEV_STATS, E1000_STATS };
36
37 struct e1000_stats {
38         char stat_string[ETH_GSTRING_LEN];
39         int type;
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(str, m) { \
45                 .stat_string = str, \
46                 .type = E1000_STATS, \
47                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48                 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50                 .stat_string = str, \
51                 .type = NETDEV_STATS, \
52                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         E1000_STAT("rx_packets", stats.gprc),
57         E1000_STAT("tx_packets", stats.gptc),
58         E1000_STAT("rx_bytes", stats.gorc),
59         E1000_STAT("tx_bytes", stats.gotc),
60         E1000_STAT("rx_broadcast", stats.bprc),
61         E1000_STAT("tx_broadcast", stats.bptc),
62         E1000_STAT("rx_multicast", stats.mprc),
63         E1000_STAT("tx_multicast", stats.mptc),
64         E1000_NETDEV_STAT("rx_errors", rx_errors),
65         E1000_NETDEV_STAT("tx_errors", tx_errors),
66         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67         E1000_STAT("multicast", stats.mprc),
68         E1000_STAT("collisions", stats.colc),
69         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71         E1000_STAT("rx_crc_errors", stats.crcerrs),
72         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73         E1000_STAT("rx_no_buffer_count", stats.rnbc),
74         E1000_STAT("rx_missed_errors", stats.mpc),
75         E1000_STAT("tx_aborted_errors", stats.ecol),
76         E1000_STAT("tx_carrier_errors", stats.tncrs),
77         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79         E1000_STAT("tx_window_errors", stats.latecol),
80         E1000_STAT("tx_abort_late_coll", stats.latecol),
81         E1000_STAT("tx_deferred_ok", stats.dc),
82         E1000_STAT("tx_single_coll_ok", stats.scc),
83         E1000_STAT("tx_multi_coll_ok", stats.mcc),
84         E1000_STAT("tx_timeout_count", tx_timeout_count),
85         E1000_STAT("tx_restart_queue", restart_queue),
86         E1000_STAT("rx_long_length_errors", stats.roc),
87         E1000_STAT("rx_short_length_errors", stats.ruc),
88         E1000_STAT("rx_align_errors", stats.algnerrc),
89         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93         E1000_STAT("tx_flow_control_xon", stats.xontxc),
94         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95         E1000_STAT("rx_csum_offload_good", hw_csum_good),
96         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97         E1000_STAT("rx_header_split", rx_hdr_split),
98         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99         E1000_STAT("tx_smbus", stats.mgptc),
100         E1000_STAT("rx_smbus", stats.mgprc),
101         E1000_STAT("dropped_smbus", stats.mgpdc),
102         E1000_STAT("rx_dma_failed", rx_dma_failed),
103         E1000_STAT("tx_dma_failed", tx_dma_failed),
104         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106         E1000_STAT("corr_ecc_errors", corr_errors),
107         E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108         E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114         "Register test  (offline)", "Eeprom test    (offline)",
115         "Interrupt test (offline)", "Loopback test  (offline)",
116         "Link test   (on/offline)"
117 };
118
119 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
120
121 static int e1000_get_link_ksettings(struct net_device *netdev,
122                                     struct ethtool_link_ksettings *cmd)
123 {
124         struct e1000_adapter *adapter = netdev_priv(netdev);
125         struct e1000_hw *hw = &adapter->hw;
126         u32 speed, supported, advertising;
127
128         if (hw->phy.media_type == e1000_media_type_copper) {
129                 supported = (SUPPORTED_10baseT_Half |
130                              SUPPORTED_10baseT_Full |
131                              SUPPORTED_100baseT_Half |
132                              SUPPORTED_100baseT_Full |
133                              SUPPORTED_1000baseT_Full |
134                              SUPPORTED_Autoneg |
135                              SUPPORTED_TP);
136                 if (hw->phy.type == e1000_phy_ife)
137                         supported &= ~SUPPORTED_1000baseT_Full;
138                 advertising = ADVERTISED_TP;
139
140                 if (hw->mac.autoneg == 1) {
141                         advertising |= ADVERTISED_Autoneg;
142                         /* the e1000 autoneg seems to match ethtool nicely */
143                         advertising |= hw->phy.autoneg_advertised;
144                 }
145
146                 cmd->base.port = PORT_TP;
147                 cmd->base.phy_address = hw->phy.addr;
148         } else {
149                 supported   = (SUPPORTED_1000baseT_Full |
150                                SUPPORTED_FIBRE |
151                                SUPPORTED_Autoneg);
152
153                 advertising = (ADVERTISED_1000baseT_Full |
154                                ADVERTISED_FIBRE |
155                                ADVERTISED_Autoneg);
156
157                 cmd->base.port = PORT_FIBRE;
158         }
159
160         speed = SPEED_UNKNOWN;
161         cmd->base.duplex = DUPLEX_UNKNOWN;
162
163         if (netif_running(netdev)) {
164                 if (netif_carrier_ok(netdev)) {
165                         speed = adapter->link_speed;
166                         cmd->base.duplex = adapter->link_duplex - 1;
167                 }
168         } else if (!pm_runtime_suspended(netdev->dev.parent)) {
169                 u32 status = er32(STATUS);
170
171                 if (status & E1000_STATUS_LU) {
172                         if (status & E1000_STATUS_SPEED_1000)
173                                 speed = SPEED_1000;
174                         else if (status & E1000_STATUS_SPEED_100)
175                                 speed = SPEED_100;
176                         else
177                                 speed = SPEED_10;
178
179                         if (status & E1000_STATUS_FD)
180                                 cmd->base.duplex = DUPLEX_FULL;
181                         else
182                                 cmd->base.duplex = DUPLEX_HALF;
183                 }
184         }
185
186         cmd->base.speed = speed;
187         cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189
190         /* MDI-X => 2; MDI =>1; Invalid =>0 */
191         if ((hw->phy.media_type == e1000_media_type_copper) &&
192             netif_carrier_ok(netdev))
193                 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
194                         ETH_TP_MDI_X : ETH_TP_MDI;
195         else
196                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
197
198         if (hw->phy.mdix == AUTO_ALL_MODES)
199                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
200         else
201                 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
202
203         if (hw->phy.media_type != e1000_media_type_copper)
204                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
205
206         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
207                                                 supported);
208         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
209                                                 advertising);
210
211         return 0;
212 }
213
214 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
215 {
216         struct e1000_mac_info *mac = &adapter->hw.mac;
217
218         mac->autoneg = 0;
219
220         /* Make sure dplx is at most 1 bit and lsb of speed is not set
221          * for the switch() below to work
222          */
223         if ((spd & 1) || (dplx & ~1))
224                 goto err_inval;
225
226         /* Fiber NICs only allow 1000 gbps Full duplex */
227         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
228             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
229                 goto err_inval;
230         }
231
232         switch (spd + dplx) {
233         case SPEED_10 + DUPLEX_HALF:
234                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
235                 break;
236         case SPEED_10 + DUPLEX_FULL:
237                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
238                 break;
239         case SPEED_100 + DUPLEX_HALF:
240                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
241                 break;
242         case SPEED_100 + DUPLEX_FULL:
243                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
244                 break;
245         case SPEED_1000 + DUPLEX_FULL:
246                 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
247                         mac->autoneg = 1;
248                         adapter->hw.phy.autoneg_advertised =
249                                 ADVERTISE_1000_FULL;
250                 } else {
251                         mac->forced_speed_duplex = ADVERTISE_1000_FULL;
252                 }
253                 break;
254         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
255         default:
256                 goto err_inval;
257         }
258
259         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
260         adapter->hw.phy.mdix = AUTO_ALL_MODES;
261
262         return 0;
263
264 err_inval:
265         e_err("Unsupported Speed/Duplex configuration\n");
266         return -EINVAL;
267 }
268
269 static int e1000_set_link_ksettings(struct net_device *netdev,
270                                     const struct ethtool_link_ksettings *cmd)
271 {
272         struct e1000_adapter *adapter = netdev_priv(netdev);
273         struct e1000_hw *hw = &adapter->hw;
274         int ret_val = 0;
275         u32 advertising;
276
277         ethtool_convert_link_mode_to_legacy_u32(&advertising,
278                                                 cmd->link_modes.advertising);
279
280         pm_runtime_get_sync(netdev->dev.parent);
281
282         /* When SoL/IDER sessions are active, autoneg/speed/duplex
283          * cannot be changed
284          */
285         if (hw->phy.ops.check_reset_block &&
286             hw->phy.ops.check_reset_block(hw)) {
287                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
288                 ret_val = -EINVAL;
289                 goto out;
290         }
291
292         /* MDI setting is only allowed when autoneg enabled because
293          * some hardware doesn't allow MDI setting when speed or
294          * duplex is forced.
295          */
296         if (cmd->base.eth_tp_mdix_ctrl) {
297                 if (hw->phy.media_type != e1000_media_type_copper) {
298                         ret_val = -EOPNOTSUPP;
299                         goto out;
300                 }
301
302                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
303                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
304                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
305                         ret_val = -EINVAL;
306                         goto out;
307                 }
308         }
309
310         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
311                 usleep_range(1000, 2000);
312
313         if (cmd->base.autoneg == AUTONEG_ENABLE) {
314                 hw->mac.autoneg = 1;
315                 if (hw->phy.media_type == e1000_media_type_fiber)
316                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
317                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
318                 else
319                         hw->phy.autoneg_advertised = advertising |
320                             ADVERTISED_TP | ADVERTISED_Autoneg;
321                 advertising = hw->phy.autoneg_advertised;
322                 if (adapter->fc_autoneg)
323                         hw->fc.requested_mode = e1000_fc_default;
324         } else {
325                 u32 speed = cmd->base.speed;
326                 /* calling this overrides forced MDI setting */
327                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
328                         ret_val = -EINVAL;
329                         goto out;
330                 }
331         }
332
333         /* MDI-X => 2; MDI => 1; Auto => 3 */
334         if (cmd->base.eth_tp_mdix_ctrl) {
335                 /* fix up the value for auto (3 => 0) as zero is mapped
336                  * internally to auto
337                  */
338                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
339                         hw->phy.mdix = AUTO_ALL_MODES;
340                 else
341                         hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
342         }
343
344         /* reset the link */
345         if (netif_running(adapter->netdev)) {
346                 e1000e_down(adapter, true);
347                 e1000e_up(adapter);
348         } else {
349                 e1000e_reset(adapter);
350         }
351
352 out:
353         pm_runtime_put_sync(netdev->dev.parent);
354         clear_bit(__E1000_RESETTING, &adapter->state);
355         return ret_val;
356 }
357
358 static void e1000_get_pauseparam(struct net_device *netdev,
359                                  struct ethtool_pauseparam *pause)
360 {
361         struct e1000_adapter *adapter = netdev_priv(netdev);
362         struct e1000_hw *hw = &adapter->hw;
363
364         pause->autoneg =
365             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
366
367         if (hw->fc.current_mode == e1000_fc_rx_pause) {
368                 pause->rx_pause = 1;
369         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
370                 pause->tx_pause = 1;
371         } else if (hw->fc.current_mode == e1000_fc_full) {
372                 pause->rx_pause = 1;
373                 pause->tx_pause = 1;
374         }
375 }
376
377 static int e1000_set_pauseparam(struct net_device *netdev,
378                                 struct ethtool_pauseparam *pause)
379 {
380         struct e1000_adapter *adapter = netdev_priv(netdev);
381         struct e1000_hw *hw = &adapter->hw;
382         int retval = 0;
383
384         adapter->fc_autoneg = pause->autoneg;
385
386         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
387                 usleep_range(1000, 2000);
388
389         pm_runtime_get_sync(netdev->dev.parent);
390
391         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
392                 hw->fc.requested_mode = e1000_fc_default;
393                 if (netif_running(adapter->netdev)) {
394                         e1000e_down(adapter, true);
395                         e1000e_up(adapter);
396                 } else {
397                         e1000e_reset(adapter);
398                 }
399         } else {
400                 if (pause->rx_pause && pause->tx_pause)
401                         hw->fc.requested_mode = e1000_fc_full;
402                 else if (pause->rx_pause && !pause->tx_pause)
403                         hw->fc.requested_mode = e1000_fc_rx_pause;
404                 else if (!pause->rx_pause && pause->tx_pause)
405                         hw->fc.requested_mode = e1000_fc_tx_pause;
406                 else if (!pause->rx_pause && !pause->tx_pause)
407                         hw->fc.requested_mode = e1000_fc_none;
408
409                 hw->fc.current_mode = hw->fc.requested_mode;
410
411                 if (hw->phy.media_type == e1000_media_type_fiber) {
412                         retval = hw->mac.ops.setup_link(hw);
413                         /* implicit goto out */
414                 } else {
415                         retval = e1000e_force_mac_fc(hw);
416                         if (retval)
417                                 goto out;
418                         e1000e_set_fc_watermarks(hw);
419                 }
420         }
421
422 out:
423         pm_runtime_put_sync(netdev->dev.parent);
424         clear_bit(__E1000_RESETTING, &adapter->state);
425         return retval;
426 }
427
428 static u32 e1000_get_msglevel(struct net_device *netdev)
429 {
430         struct e1000_adapter *adapter = netdev_priv(netdev);
431         return adapter->msg_enable;
432 }
433
434 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
435 {
436         struct e1000_adapter *adapter = netdev_priv(netdev);
437         adapter->msg_enable = data;
438 }
439
440 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
441 {
442 #define E1000_REGS_LEN 32       /* overestimate */
443         return E1000_REGS_LEN * sizeof(u32);
444 }
445
446 static void e1000_get_regs(struct net_device *netdev,
447                            struct ethtool_regs *regs, void *p)
448 {
449         struct e1000_adapter *adapter = netdev_priv(netdev);
450         struct e1000_hw *hw = &adapter->hw;
451         u32 *regs_buff = p;
452         u16 phy_data;
453
454         pm_runtime_get_sync(netdev->dev.parent);
455
456         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
457
458         regs->version = (1u << 24) |
459                         (adapter->pdev->revision << 16) |
460                         adapter->pdev->device;
461
462         regs_buff[0] = er32(CTRL);
463         regs_buff[1] = er32(STATUS);
464
465         regs_buff[2] = er32(RCTL);
466         regs_buff[3] = er32(RDLEN(0));
467         regs_buff[4] = er32(RDH(0));
468         regs_buff[5] = er32(RDT(0));
469         regs_buff[6] = er32(RDTR);
470
471         regs_buff[7] = er32(TCTL);
472         regs_buff[8] = er32(TDLEN(0));
473         regs_buff[9] = er32(TDH(0));
474         regs_buff[10] = er32(TDT(0));
475         regs_buff[11] = er32(TIDV);
476
477         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
478
479         /* ethtool doesn't use anything past this point, so all this
480          * code is likely legacy junk for apps that may or may not exist
481          */
482         if (hw->phy.type == e1000_phy_m88) {
483                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
484                 regs_buff[13] = (u32)phy_data; /* cable length */
485                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
486                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
487                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
488                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
489                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
490                 regs_buff[18] = regs_buff[13]; /* cable polarity */
491                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
492                 regs_buff[20] = regs_buff[17]; /* polarity correction */
493                 /* phy receive errors */
494                 regs_buff[22] = adapter->phy_stats.receive_errors;
495                 regs_buff[23] = regs_buff[13]; /* mdix mode */
496         }
497         regs_buff[21] = 0;      /* was idle_errors */
498         e1e_rphy(hw, MII_STAT1000, &phy_data);
499         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
500         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
501
502         pm_runtime_put_sync(netdev->dev.parent);
503 }
504
505 static int e1000_get_eeprom_len(struct net_device *netdev)
506 {
507         struct e1000_adapter *adapter = netdev_priv(netdev);
508         return adapter->hw.nvm.word_size * 2;
509 }
510
511 static int e1000_get_eeprom(struct net_device *netdev,
512                             struct ethtool_eeprom *eeprom, u8 *bytes)
513 {
514         struct e1000_adapter *adapter = netdev_priv(netdev);
515         struct e1000_hw *hw = &adapter->hw;
516         u16 *eeprom_buff;
517         int first_word;
518         int last_word;
519         int ret_val = 0;
520         u16 i;
521
522         if (eeprom->len == 0)
523                 return -EINVAL;
524
525         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
526
527         first_word = eeprom->offset >> 1;
528         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
529
530         eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
531                               GFP_KERNEL);
532         if (!eeprom_buff)
533                 return -ENOMEM;
534
535         pm_runtime_get_sync(netdev->dev.parent);
536
537         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
538                 ret_val = e1000_read_nvm(hw, first_word,
539                                          last_word - first_word + 1,
540                                          eeprom_buff);
541         } else {
542                 for (i = 0; i < last_word - first_word + 1; i++) {
543                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
544                                                  &eeprom_buff[i]);
545                         if (ret_val)
546                                 break;
547                 }
548         }
549
550         pm_runtime_put_sync(netdev->dev.parent);
551
552         if (ret_val) {
553                 /* a read error occurred, throw away the result */
554                 memset(eeprom_buff, 0xff, sizeof(u16) *
555                        (last_word - first_word + 1));
556         } else {
557                 /* Device's eeprom is always little-endian, word addressable */
558                 for (i = 0; i < last_word - first_word + 1; i++)
559                         le16_to_cpus(&eeprom_buff[i]);
560         }
561
562         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
563         kfree(eeprom_buff);
564
565         return ret_val;
566 }
567
568 static int e1000_set_eeprom(struct net_device *netdev,
569                             struct ethtool_eeprom *eeprom, u8 *bytes)
570 {
571         struct e1000_adapter *adapter = netdev_priv(netdev);
572         struct e1000_hw *hw = &adapter->hw;
573         u16 *eeprom_buff;
574         void *ptr;
575         int max_len;
576         int first_word;
577         int last_word;
578         int ret_val = 0;
579         u16 i;
580
581         if (eeprom->len == 0)
582                 return -EOPNOTSUPP;
583
584         if (eeprom->magic !=
585             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
586                 return -EFAULT;
587
588         if (adapter->flags & FLAG_READ_ONLY_NVM)
589                 return -EINVAL;
590
591         max_len = hw->nvm.word_size * 2;
592
593         first_word = eeprom->offset >> 1;
594         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
595         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
596         if (!eeprom_buff)
597                 return -ENOMEM;
598
599         ptr = (void *)eeprom_buff;
600
601         pm_runtime_get_sync(netdev->dev.parent);
602
603         if (eeprom->offset & 1) {
604                 /* need read/modify/write of first changed EEPROM word */
605                 /* only the second byte of the word is being modified */
606                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
607                 ptr++;
608         }
609         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
610                 /* need read/modify/write of last changed EEPROM word */
611                 /* only the first byte of the word is being modified */
612                 ret_val = e1000_read_nvm(hw, last_word, 1,
613                                          &eeprom_buff[last_word - first_word]);
614
615         if (ret_val)
616                 goto out;
617
618         /* Device's eeprom is always little-endian, word addressable */
619         for (i = 0; i < last_word - first_word + 1; i++)
620                 le16_to_cpus(&eeprom_buff[i]);
621
622         memcpy(ptr, bytes, eeprom->len);
623
624         for (i = 0; i < last_word - first_word + 1; i++)
625                 cpu_to_le16s(&eeprom_buff[i]);
626
627         ret_val = e1000_write_nvm(hw, first_word,
628                                   last_word - first_word + 1, eeprom_buff);
629
630         if (ret_val)
631                 goto out;
632
633         /* Update the checksum over the first part of the EEPROM if needed
634          * and flush shadow RAM for applicable controllers
635          */
636         if ((first_word <= NVM_CHECKSUM_REG) ||
637             (hw->mac.type == e1000_82583) ||
638             (hw->mac.type == e1000_82574) ||
639             (hw->mac.type == e1000_82573))
640                 ret_val = e1000e_update_nvm_checksum(hw);
641
642 out:
643         pm_runtime_put_sync(netdev->dev.parent);
644         kfree(eeprom_buff);
645         return ret_val;
646 }
647
648 static void e1000_get_drvinfo(struct net_device *netdev,
649                               struct ethtool_drvinfo *drvinfo)
650 {
651         struct e1000_adapter *adapter = netdev_priv(netdev);
652
653         strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
654         strlcpy(drvinfo->version, e1000e_driver_version,
655                 sizeof(drvinfo->version));
656
657         /* EEPROM image version # is reported as firmware version # for
658          * PCI-E controllers
659          */
660         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
661                  "%d.%d-%d",
662                  (adapter->eeprom_vers & 0xF000) >> 12,
663                  (adapter->eeprom_vers & 0x0FF0) >> 4,
664                  (adapter->eeprom_vers & 0x000F));
665
666         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
667                 sizeof(drvinfo->bus_info));
668 }
669
670 static void e1000_get_ringparam(struct net_device *netdev,
671                                 struct ethtool_ringparam *ring)
672 {
673         struct e1000_adapter *adapter = netdev_priv(netdev);
674
675         ring->rx_max_pending = E1000_MAX_RXD;
676         ring->tx_max_pending = E1000_MAX_TXD;
677         ring->rx_pending = adapter->rx_ring_count;
678         ring->tx_pending = adapter->tx_ring_count;
679 }
680
681 static int e1000_set_ringparam(struct net_device *netdev,
682                                struct ethtool_ringparam *ring)
683 {
684         struct e1000_adapter *adapter = netdev_priv(netdev);
685         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
686         int err = 0, size = sizeof(struct e1000_ring);
687         bool set_tx = false, set_rx = false;
688         u16 new_rx_count, new_tx_count;
689
690         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
691                 return -EINVAL;
692
693         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
694                                E1000_MAX_RXD);
695         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
696
697         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
698                                E1000_MAX_TXD);
699         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
700
701         if ((new_tx_count == adapter->tx_ring_count) &&
702             (new_rx_count == adapter->rx_ring_count))
703                 /* nothing to do */
704                 return 0;
705
706         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
707                 usleep_range(1000, 2000);
708
709         if (!netif_running(adapter->netdev)) {
710                 /* Set counts now and allocate resources during open() */
711                 adapter->tx_ring->count = new_tx_count;
712                 adapter->rx_ring->count = new_rx_count;
713                 adapter->tx_ring_count = new_tx_count;
714                 adapter->rx_ring_count = new_rx_count;
715                 goto clear_reset;
716         }
717
718         set_tx = (new_tx_count != adapter->tx_ring_count);
719         set_rx = (new_rx_count != adapter->rx_ring_count);
720
721         /* Allocate temporary storage for ring updates */
722         if (set_tx) {
723                 temp_tx = vmalloc(size);
724                 if (!temp_tx) {
725                         err = -ENOMEM;
726                         goto free_temp;
727                 }
728         }
729         if (set_rx) {
730                 temp_rx = vmalloc(size);
731                 if (!temp_rx) {
732                         err = -ENOMEM;
733                         goto free_temp;
734                 }
735         }
736
737         pm_runtime_get_sync(netdev->dev.parent);
738
739         e1000e_down(adapter, true);
740
741         /* We can't just free everything and then setup again, because the
742          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
743          * structs.  First, attempt to allocate new resources...
744          */
745         if (set_tx) {
746                 memcpy(temp_tx, adapter->tx_ring, size);
747                 temp_tx->count = new_tx_count;
748                 err = e1000e_setup_tx_resources(temp_tx);
749                 if (err)
750                         goto err_setup;
751         }
752         if (set_rx) {
753                 memcpy(temp_rx, adapter->rx_ring, size);
754                 temp_rx->count = new_rx_count;
755                 err = e1000e_setup_rx_resources(temp_rx);
756                 if (err)
757                         goto err_setup_rx;
758         }
759
760         /* ...then free the old resources and copy back any new ring data */
761         if (set_tx) {
762                 e1000e_free_tx_resources(adapter->tx_ring);
763                 memcpy(adapter->tx_ring, temp_tx, size);
764                 adapter->tx_ring_count = new_tx_count;
765         }
766         if (set_rx) {
767                 e1000e_free_rx_resources(adapter->rx_ring);
768                 memcpy(adapter->rx_ring, temp_rx, size);
769                 adapter->rx_ring_count = new_rx_count;
770         }
771
772 err_setup_rx:
773         if (err && set_tx)
774                 e1000e_free_tx_resources(temp_tx);
775 err_setup:
776         e1000e_up(adapter);
777         pm_runtime_put_sync(netdev->dev.parent);
778 free_temp:
779         vfree(temp_tx);
780         vfree(temp_rx);
781 clear_reset:
782         clear_bit(__E1000_RESETTING, &adapter->state);
783         return err;
784 }
785
786 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
787                              int reg, int offset, u32 mask, u32 write)
788 {
789         u32 pat, val;
790         static const u32 test[] = {
791                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
792         };
793         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
794                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
795                                       (test[pat] & write));
796                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
797                 if (val != (test[pat] & write & mask)) {
798                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799                               reg + (offset << 2), val,
800                               (test[pat] & write & mask));
801                         *data = reg;
802                         return true;
803                 }
804         }
805         return false;
806 }
807
808 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
809                               int reg, u32 mask, u32 write)
810 {
811         u32 val;
812
813         __ew32(&adapter->hw, reg, write & mask);
814         val = __er32(&adapter->hw, reg);
815         if ((write & mask) != (val & mask)) {
816                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
817                       reg, (val & mask), (write & mask));
818                 *data = reg;
819                 return true;
820         }
821         return false;
822 }
823
824 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
825         do {                                                                   \
826                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
827                         return 1;                                              \
828         } while (0)
829 #define REG_PATTERN_TEST(reg, mask, write)                                     \
830         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
831
832 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
833         do {                                                                   \
834                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
835                         return 1;                                              \
836         } while (0)
837
838 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
839 {
840         struct e1000_hw *hw = &adapter->hw;
841         struct e1000_mac_info *mac = &adapter->hw.mac;
842         u32 value;
843         u32 before;
844         u32 after;
845         u32 i;
846         u32 toggle;
847         u32 mask;
848         u32 wlock_mac = 0;
849
850         /* The status register is Read Only, so a write should fail.
851          * Some bits that get toggled are ignored.  There are several bits
852          * on newer hardware that are r/w.
853          */
854         switch (mac->type) {
855         case e1000_82571:
856         case e1000_82572:
857         case e1000_80003es2lan:
858                 toggle = 0x7FFFF3FF;
859                 break;
860         default:
861                 toggle = 0x7FFFF033;
862                 break;
863         }
864
865         before = er32(STATUS);
866         value = (er32(STATUS) & toggle);
867         ew32(STATUS, toggle);
868         after = er32(STATUS) & toggle;
869         if (value != after) {
870                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
871                       after, value);
872                 *data = 1;
873                 return 1;
874         }
875         /* restore previous status */
876         ew32(STATUS, before);
877
878         if (!(adapter->flags & FLAG_IS_ICH)) {
879                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
880                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
881                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
882                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
883         }
884
885         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
886         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
887         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
888         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
889         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
890         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
891         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
892         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
893         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
894         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
895
896         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
897
898         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
899         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
900         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
901
902         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
903         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
904         if (!(adapter->flags & FLAG_IS_ICH))
905                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
906         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
907         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
908         mask = 0x8003FFFF;
909         switch (mac->type) {
910         case e1000_ich10lan:
911         case e1000_pchlan:
912         case e1000_pch2lan:
913         case e1000_pch_lpt:
914         case e1000_pch_spt:
915                 /* fall through */
916         case e1000_pch_cnp:
917                 mask |= BIT(18);
918                 break;
919         default:
920                 break;
921         }
922
923         if (mac->type >= e1000_pch_lpt)
924                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
925                     E1000_FWSM_WLOCK_MAC_SHIFT;
926
927         for (i = 0; i < mac->rar_entry_count; i++) {
928                 if (mac->type >= e1000_pch_lpt) {
929                         /* Cannot test write-protected SHRAL[n] registers */
930                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
931                                 continue;
932
933                         /* SHRAH[9] different than the others */
934                         if (i == 10)
935                                 mask |= BIT(30);
936                         else
937                                 mask &= ~BIT(30);
938                 }
939                 if (mac->type == e1000_pch2lan) {
940                         /* SHRAH[0,1,2] different than previous */
941                         if (i == 1)
942                                 mask &= 0xFFF4FFFF;
943                         /* SHRAH[3] different than SHRAH[0,1,2] */
944                         if (i == 4)
945                                 mask |= BIT(30);
946                         /* RAR[1-6] owned by management engine - skipping */
947                         if (i > 0)
948                                 i += 6;
949                 }
950
951                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
952                                        0xFFFFFFFF);
953                 /* reset index to actual value */
954                 if ((mac->type == e1000_pch2lan) && (i > 6))
955                         i -= 6;
956         }
957
958         for (i = 0; i < mac->mta_reg_count; i++)
959                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
960
961         *data = 0;
962
963         return 0;
964 }
965
966 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
967 {
968         u16 temp;
969         u16 checksum = 0;
970         u16 i;
971
972         *data = 0;
973         /* Read and add up the contents of the EEPROM */
974         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
975                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
976                         *data = 1;
977                         return *data;
978                 }
979                 checksum += temp;
980         }
981
982         /* If Checksum is not Correct return error else test passed */
983         if ((checksum != (u16)NVM_SUM) && !(*data))
984                 *data = 2;
985
986         return *data;
987 }
988
989 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
990 {
991         struct net_device *netdev = (struct net_device *)data;
992         struct e1000_adapter *adapter = netdev_priv(netdev);
993         struct e1000_hw *hw = &adapter->hw;
994
995         adapter->test_icr |= er32(ICR);
996
997         return IRQ_HANDLED;
998 }
999
1000 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1001 {
1002         struct net_device *netdev = adapter->netdev;
1003         struct e1000_hw *hw = &adapter->hw;
1004         u32 mask;
1005         u32 shared_int = 1;
1006         u32 irq = adapter->pdev->irq;
1007         int i;
1008         int ret_val = 0;
1009         int int_mode = E1000E_INT_MODE_LEGACY;
1010
1011         *data = 0;
1012
1013         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1014         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1015                 int_mode = adapter->int_mode;
1016                 e1000e_reset_interrupt_capability(adapter);
1017                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1018                 e1000e_set_interrupt_capability(adapter);
1019         }
1020         /* Hook up test interrupt handler just for this test */
1021         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1022                          netdev)) {
1023                 shared_int = 0;
1024         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1025                                netdev)) {
1026                 *data = 1;
1027                 ret_val = -1;
1028                 goto out;
1029         }
1030         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1031
1032         /* Disable all the interrupts */
1033         ew32(IMC, 0xFFFFFFFF);
1034         e1e_flush();
1035         usleep_range(10000, 20000);
1036
1037         /* Test each interrupt */
1038         for (i = 0; i < 10; i++) {
1039                 /* Interrupt to test */
1040                 mask = BIT(i);
1041
1042                 if (adapter->flags & FLAG_IS_ICH) {
1043                         switch (mask) {
1044                         case E1000_ICR_RXSEQ:
1045                                 continue;
1046                         case 0x00000100:
1047                                 if (adapter->hw.mac.type == e1000_ich8lan ||
1048                                     adapter->hw.mac.type == e1000_ich9lan)
1049                                         continue;
1050                                 break;
1051                         default:
1052                                 break;
1053                         }
1054                 }
1055
1056                 if (!shared_int) {
1057                         /* Disable the interrupt to be reported in
1058                          * the cause register and then force the same
1059                          * interrupt and see if one gets posted.  If
1060                          * an interrupt was posted to the bus, the
1061                          * test failed.
1062                          */
1063                         adapter->test_icr = 0;
1064                         ew32(IMC, mask);
1065                         ew32(ICS, mask);
1066                         e1e_flush();
1067                         usleep_range(10000, 20000);
1068
1069                         if (adapter->test_icr & mask) {
1070                                 *data = 3;
1071                                 break;
1072                         }
1073                 }
1074
1075                 /* Enable the interrupt to be reported in
1076                  * the cause register and then force the same
1077                  * interrupt and see if one gets posted.  If
1078                  * an interrupt was not posted to the bus, the
1079                  * test failed.
1080                  */
1081                 adapter->test_icr = 0;
1082                 ew32(IMS, mask);
1083                 ew32(ICS, mask);
1084                 e1e_flush();
1085                 usleep_range(10000, 20000);
1086
1087                 if (!(adapter->test_icr & mask)) {
1088                         *data = 4;
1089                         break;
1090                 }
1091
1092                 if (!shared_int) {
1093                         /* Disable the other interrupts to be reported in
1094                          * the cause register and then force the other
1095                          * interrupts and see if any get posted.  If
1096                          * an interrupt was posted to the bus, the
1097                          * test failed.
1098                          */
1099                         adapter->test_icr = 0;
1100                         ew32(IMC, ~mask & 0x00007FFF);
1101                         ew32(ICS, ~mask & 0x00007FFF);
1102                         e1e_flush();
1103                         usleep_range(10000, 20000);
1104
1105                         if (adapter->test_icr) {
1106                                 *data = 5;
1107                                 break;
1108                         }
1109                 }
1110         }
1111
1112         /* Disable all the interrupts */
1113         ew32(IMC, 0xFFFFFFFF);
1114         e1e_flush();
1115         usleep_range(10000, 20000);
1116
1117         /* Unhook test interrupt handler */
1118         free_irq(irq, netdev);
1119
1120 out:
1121         if (int_mode == E1000E_INT_MODE_MSIX) {
1122                 e1000e_reset_interrupt_capability(adapter);
1123                 adapter->int_mode = int_mode;
1124                 e1000e_set_interrupt_capability(adapter);
1125         }
1126
1127         return ret_val;
1128 }
1129
1130 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1131 {
1132         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1133         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1134         struct pci_dev *pdev = adapter->pdev;
1135         struct e1000_buffer *buffer_info;
1136         int i;
1137
1138         if (tx_ring->desc && tx_ring->buffer_info) {
1139                 for (i = 0; i < tx_ring->count; i++) {
1140                         buffer_info = &tx_ring->buffer_info[i];
1141
1142                         if (buffer_info->dma)
1143                                 dma_unmap_single(&pdev->dev,
1144                                                  buffer_info->dma,
1145                                                  buffer_info->length,
1146                                                  DMA_TO_DEVICE);
1147                         if (buffer_info->skb)
1148                                 dev_kfree_skb(buffer_info->skb);
1149                 }
1150         }
1151
1152         if (rx_ring->desc && rx_ring->buffer_info) {
1153                 for (i = 0; i < rx_ring->count; i++) {
1154                         buffer_info = &rx_ring->buffer_info[i];
1155
1156                         if (buffer_info->dma)
1157                                 dma_unmap_single(&pdev->dev,
1158                                                  buffer_info->dma,
1159                                                  2048, DMA_FROM_DEVICE);
1160                         if (buffer_info->skb)
1161                                 dev_kfree_skb(buffer_info->skb);
1162                 }
1163         }
1164
1165         if (tx_ring->desc) {
1166                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1167                                   tx_ring->dma);
1168                 tx_ring->desc = NULL;
1169         }
1170         if (rx_ring->desc) {
1171                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1172                                   rx_ring->dma);
1173                 rx_ring->desc = NULL;
1174         }
1175
1176         kfree(tx_ring->buffer_info);
1177         tx_ring->buffer_info = NULL;
1178         kfree(rx_ring->buffer_info);
1179         rx_ring->buffer_info = NULL;
1180 }
1181
1182 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1183 {
1184         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1185         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1186         struct pci_dev *pdev = adapter->pdev;
1187         struct e1000_hw *hw = &adapter->hw;
1188         u32 rctl;
1189         int i;
1190         int ret_val;
1191
1192         /* Setup Tx descriptor ring and Tx buffers */
1193
1194         if (!tx_ring->count)
1195                 tx_ring->count = E1000_DEFAULT_TXD;
1196
1197         tx_ring->buffer_info = kcalloc(tx_ring->count,
1198                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1199         if (!tx_ring->buffer_info) {
1200                 ret_val = 1;
1201                 goto err_nomem;
1202         }
1203
1204         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1205         tx_ring->size = ALIGN(tx_ring->size, 4096);
1206         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1207                                            &tx_ring->dma, GFP_KERNEL);
1208         if (!tx_ring->desc) {
1209                 ret_val = 2;
1210                 goto err_nomem;
1211         }
1212         tx_ring->next_to_use = 0;
1213         tx_ring->next_to_clean = 0;
1214
1215         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1216         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1217         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1218         ew32(TDH(0), 0);
1219         ew32(TDT(0), 0);
1220         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1221              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1222              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1223
1224         for (i = 0; i < tx_ring->count; i++) {
1225                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1226                 struct sk_buff *skb;
1227                 unsigned int skb_size = 1024;
1228
1229                 skb = alloc_skb(skb_size, GFP_KERNEL);
1230                 if (!skb) {
1231                         ret_val = 3;
1232                         goto err_nomem;
1233                 }
1234                 skb_put(skb, skb_size);
1235                 tx_ring->buffer_info[i].skb = skb;
1236                 tx_ring->buffer_info[i].length = skb->len;
1237                 tx_ring->buffer_info[i].dma =
1238                     dma_map_single(&pdev->dev, skb->data, skb->len,
1239                                    DMA_TO_DEVICE);
1240                 if (dma_mapping_error(&pdev->dev,
1241                                       tx_ring->buffer_info[i].dma)) {
1242                         ret_val = 4;
1243                         goto err_nomem;
1244                 }
1245                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1246                 tx_desc->lower.data = cpu_to_le32(skb->len);
1247                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1248                                                    E1000_TXD_CMD_IFCS |
1249                                                    E1000_TXD_CMD_RS);
1250                 tx_desc->upper.data = 0;
1251         }
1252
1253         /* Setup Rx descriptor ring and Rx buffers */
1254
1255         if (!rx_ring->count)
1256                 rx_ring->count = E1000_DEFAULT_RXD;
1257
1258         rx_ring->buffer_info = kcalloc(rx_ring->count,
1259                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1260         if (!rx_ring->buffer_info) {
1261                 ret_val = 5;
1262                 goto err_nomem;
1263         }
1264
1265         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1266         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1267                                            &rx_ring->dma, GFP_KERNEL);
1268         if (!rx_ring->desc) {
1269                 ret_val = 6;
1270                 goto err_nomem;
1271         }
1272         rx_ring->next_to_use = 0;
1273         rx_ring->next_to_clean = 0;
1274
1275         rctl = er32(RCTL);
1276         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1277                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1278         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1279         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1280         ew32(RDLEN(0), rx_ring->size);
1281         ew32(RDH(0), 0);
1282         ew32(RDT(0), 0);
1283         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1284             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1285             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1286             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1287             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1288         ew32(RCTL, rctl);
1289
1290         for (i = 0; i < rx_ring->count; i++) {
1291                 union e1000_rx_desc_extended *rx_desc;
1292                 struct sk_buff *skb;
1293
1294                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1295                 if (!skb) {
1296                         ret_val = 7;
1297                         goto err_nomem;
1298                 }
1299                 skb_reserve(skb, NET_IP_ALIGN);
1300                 rx_ring->buffer_info[i].skb = skb;
1301                 rx_ring->buffer_info[i].dma =
1302                     dma_map_single(&pdev->dev, skb->data, 2048,
1303                                    DMA_FROM_DEVICE);
1304                 if (dma_mapping_error(&pdev->dev,
1305                                       rx_ring->buffer_info[i].dma)) {
1306                         ret_val = 8;
1307                         goto err_nomem;
1308                 }
1309                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1310                 rx_desc->read.buffer_addr =
1311                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1312                 memset(skb->data, 0x00, skb->len);
1313         }
1314
1315         return 0;
1316
1317 err_nomem:
1318         e1000_free_desc_rings(adapter);
1319         return ret_val;
1320 }
1321
1322 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1323 {
1324         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1325         e1e_wphy(&adapter->hw, 29, 0x001F);
1326         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1327         e1e_wphy(&adapter->hw, 29, 0x001A);
1328         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1329 }
1330
1331 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1332 {
1333         struct e1000_hw *hw = &adapter->hw;
1334         u32 ctrl_reg = 0;
1335         u16 phy_reg = 0;
1336         s32 ret_val = 0;
1337
1338         hw->mac.autoneg = 0;
1339
1340         if (hw->phy.type == e1000_phy_ife) {
1341                 /* force 100, set loopback */
1342                 e1e_wphy(hw, MII_BMCR, 0x6100);
1343
1344                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1345                 ctrl_reg = er32(CTRL);
1346                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1347                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1348                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1349                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1350                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1351
1352                 ew32(CTRL, ctrl_reg);
1353                 e1e_flush();
1354                 usleep_range(500, 1000);
1355
1356                 return 0;
1357         }
1358
1359         /* Specific PHY configuration for loopback */
1360         switch (hw->phy.type) {
1361         case e1000_phy_m88:
1362                 /* Auto-MDI/MDIX Off */
1363                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1364                 /* reset to update Auto-MDI/MDIX */
1365                 e1e_wphy(hw, MII_BMCR, 0x9140);
1366                 /* autoneg off */
1367                 e1e_wphy(hw, MII_BMCR, 0x8140);
1368                 break;
1369         case e1000_phy_gg82563:
1370                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1371                 break;
1372         case e1000_phy_bm:
1373                 /* Set Default MAC Interface speed to 1GB */
1374                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1375                 phy_reg &= ~0x0007;
1376                 phy_reg |= 0x006;
1377                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1378                 /* Assert SW reset for above settings to take effect */
1379                 hw->phy.ops.commit(hw);
1380                 usleep_range(1000, 2000);
1381                 /* Force Full Duplex */
1382                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1383                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1384                 /* Set Link Up (in force link) */
1385                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1386                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1387                 /* Force Link */
1388                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1389                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1390                 /* Set Early Link Enable */
1391                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1392                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1393                 break;
1394         case e1000_phy_82577:
1395         case e1000_phy_82578:
1396                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1397                 ret_val = hw->phy.ops.acquire(hw);
1398                 if (ret_val) {
1399                         e_err("Cannot setup 1Gbps loopback.\n");
1400                         return ret_val;
1401                 }
1402                 e1000_configure_k1_ich8lan(hw, false);
1403                 hw->phy.ops.release(hw);
1404                 break;
1405         case e1000_phy_82579:
1406                 /* Disable PHY energy detect power down */
1407                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1408                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1409                 /* Disable full chip energy detect */
1410                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1411                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1412                 /* Enable loopback on the PHY */
1413                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1414                 break;
1415         default:
1416                 break;
1417         }
1418
1419         /* force 1000, set loopback */
1420         e1e_wphy(hw, MII_BMCR, 0x4140);
1421         msleep(250);
1422
1423         /* Now set up the MAC to the same speed/duplex as the PHY. */
1424         ctrl_reg = er32(CTRL);
1425         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1426         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1427                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1428                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1429                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1430
1431         if (adapter->flags & FLAG_IS_ICH)
1432                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1433
1434         if (hw->phy.media_type == e1000_media_type_copper &&
1435             hw->phy.type == e1000_phy_m88) {
1436                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1437         } else {
1438                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1439                  * detected.
1440                  */
1441                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1442                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1443         }
1444
1445         ew32(CTRL, ctrl_reg);
1446
1447         /* Disable the receiver on the PHY so when a cable is plugged in, the
1448          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1449          */
1450         if (hw->phy.type == e1000_phy_m88)
1451                 e1000_phy_disable_receiver(adapter);
1452
1453         usleep_range(500, 1000);
1454
1455         return 0;
1456 }
1457
1458 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1459 {
1460         struct e1000_hw *hw = &adapter->hw;
1461         u32 ctrl = er32(CTRL);
1462         int link;
1463
1464         /* special requirements for 82571/82572 fiber adapters */
1465
1466         /* jump through hoops to make sure link is up because serdes
1467          * link is hardwired up
1468          */
1469         ctrl |= E1000_CTRL_SLU;
1470         ew32(CTRL, ctrl);
1471
1472         /* disable autoneg */
1473         ctrl = er32(TXCW);
1474         ctrl &= ~BIT(31);
1475         ew32(TXCW, ctrl);
1476
1477         link = (er32(STATUS) & E1000_STATUS_LU);
1478
1479         if (!link) {
1480                 /* set invert loss of signal */
1481                 ctrl = er32(CTRL);
1482                 ctrl |= E1000_CTRL_ILOS;
1483                 ew32(CTRL, ctrl);
1484         }
1485
1486         /* special write to serdes control register to enable SerDes analog
1487          * loopback
1488          */
1489         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1490         e1e_flush();
1491         usleep_range(10000, 20000);
1492
1493         return 0;
1494 }
1495
1496 /* only call this for fiber/serdes connections to es2lan */
1497 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1498 {
1499         struct e1000_hw *hw = &adapter->hw;
1500         u32 ctrlext = er32(CTRL_EXT);
1501         u32 ctrl = er32(CTRL);
1502
1503         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1504          * on mac_type 80003es2lan)
1505          */
1506         adapter->tx_fifo_head = ctrlext;
1507
1508         /* clear the serdes mode bits, putting the device into mac loopback */
1509         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1510         ew32(CTRL_EXT, ctrlext);
1511
1512         /* force speed to 1000/FD, link up */
1513         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1514         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1515                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1516         ew32(CTRL, ctrl);
1517
1518         /* set mac loopback */
1519         ctrl = er32(RCTL);
1520         ctrl |= E1000_RCTL_LBM_MAC;
1521         ew32(RCTL, ctrl);
1522
1523         /* set testing mode parameters (no need to reset later) */
1524 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1525 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1526         ew32(KMRNCTRLSTA,
1527              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1528
1529         return 0;
1530 }
1531
1532 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1533 {
1534         struct e1000_hw *hw = &adapter->hw;
1535         u32 rctl, fext_nvm11, tarc0;
1536
1537         if (hw->mac.type >= e1000_pch_spt) {
1538                 fext_nvm11 = er32(FEXTNVM11);
1539                 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1540                 ew32(FEXTNVM11, fext_nvm11);
1541                 tarc0 = er32(TARC(0));
1542                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1543                 tarc0 &= 0xcfffffff;
1544                 /* set bit 29 (value of MULR requests is now 2) */
1545                 tarc0 |= 0x20000000;
1546                 ew32(TARC(0), tarc0);
1547         }
1548         if (hw->phy.media_type == e1000_media_type_fiber ||
1549             hw->phy.media_type == e1000_media_type_internal_serdes) {
1550                 switch (hw->mac.type) {
1551                 case e1000_80003es2lan:
1552                         return e1000_set_es2lan_mac_loopback(adapter);
1553                 case e1000_82571:
1554                 case e1000_82572:
1555                         return e1000_set_82571_fiber_loopback(adapter);
1556                 default:
1557                         rctl = er32(RCTL);
1558                         rctl |= E1000_RCTL_LBM_TCVR;
1559                         ew32(RCTL, rctl);
1560                         return 0;
1561                 }
1562         } else if (hw->phy.media_type == e1000_media_type_copper) {
1563                 return e1000_integrated_phy_loopback(adapter);
1564         }
1565
1566         return 7;
1567 }
1568
1569 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1570 {
1571         struct e1000_hw *hw = &adapter->hw;
1572         u32 rctl, fext_nvm11, tarc0;
1573         u16 phy_reg;
1574
1575         rctl = er32(RCTL);
1576         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1577         ew32(RCTL, rctl);
1578
1579         switch (hw->mac.type) {
1580         case e1000_pch_spt:
1581         case e1000_pch_cnp:
1582                 fext_nvm11 = er32(FEXTNVM11);
1583                 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1584                 ew32(FEXTNVM11, fext_nvm11);
1585                 tarc0 = er32(TARC(0));
1586                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1587                 /* set bit 29 (value of MULR requests is now 0) */
1588                 tarc0 &= 0xcfffffff;
1589                 ew32(TARC(0), tarc0);
1590                 /* fall through */
1591         case e1000_80003es2lan:
1592                 if (hw->phy.media_type == e1000_media_type_fiber ||
1593                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1594                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1595                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1596                         adapter->tx_fifo_head = 0;
1597                 }
1598                 /* fall through */
1599         case e1000_82571:
1600         case e1000_82572:
1601                 if (hw->phy.media_type == e1000_media_type_fiber ||
1602                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1603                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1604                         e1e_flush();
1605                         usleep_range(10000, 20000);
1606                         break;
1607                 }
1608                 /* Fall Through */
1609         default:
1610                 hw->mac.autoneg = 1;
1611                 if (hw->phy.type == e1000_phy_gg82563)
1612                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1613                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1614                 if (phy_reg & BMCR_LOOPBACK) {
1615                         phy_reg &= ~BMCR_LOOPBACK;
1616                         e1e_wphy(hw, MII_BMCR, phy_reg);
1617                         if (hw->phy.ops.commit)
1618                                 hw->phy.ops.commit(hw);
1619                 }
1620                 break;
1621         }
1622 }
1623
1624 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1625                                       unsigned int frame_size)
1626 {
1627         memset(skb->data, 0xFF, frame_size);
1628         frame_size &= ~1;
1629         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1630         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1631         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1632 }
1633
1634 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1635                                     unsigned int frame_size)
1636 {
1637         frame_size &= ~1;
1638         if (*(skb->data + 3) == 0xFF)
1639                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1640                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1641                         return 0;
1642         return 13;
1643 }
1644
1645 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1646 {
1647         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1648         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1649         struct pci_dev *pdev = adapter->pdev;
1650         struct e1000_hw *hw = &adapter->hw;
1651         struct e1000_buffer *buffer_info;
1652         int i, j, k, l;
1653         int lc;
1654         int good_cnt;
1655         int ret_val = 0;
1656         unsigned long time;
1657
1658         ew32(RDT(0), rx_ring->count - 1);
1659
1660         /* Calculate the loop count based on the largest descriptor ring
1661          * The idea is to wrap the largest ring a number of times using 64
1662          * send/receive pairs during each loop
1663          */
1664
1665         if (rx_ring->count <= tx_ring->count)
1666                 lc = ((tx_ring->count / 64) * 2) + 1;
1667         else
1668                 lc = ((rx_ring->count / 64) * 2) + 1;
1669
1670         k = 0;
1671         l = 0;
1672         /* loop count loop */
1673         for (j = 0; j <= lc; j++) {
1674                 /* send the packets */
1675                 for (i = 0; i < 64; i++) {
1676                         buffer_info = &tx_ring->buffer_info[k];
1677
1678                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1679                         dma_sync_single_for_device(&pdev->dev,
1680                                                    buffer_info->dma,
1681                                                    buffer_info->length,
1682                                                    DMA_TO_DEVICE);
1683                         k++;
1684                         if (k == tx_ring->count)
1685                                 k = 0;
1686                 }
1687                 ew32(TDT(0), k);
1688                 e1e_flush();
1689                 msleep(200);
1690                 time = jiffies; /* set the start time for the receive */
1691                 good_cnt = 0;
1692                 /* receive the sent packets */
1693                 do {
1694                         buffer_info = &rx_ring->buffer_info[l];
1695
1696                         dma_sync_single_for_cpu(&pdev->dev,
1697                                                 buffer_info->dma, 2048,
1698                                                 DMA_FROM_DEVICE);
1699
1700                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1701                                                            1024);
1702                         if (!ret_val)
1703                                 good_cnt++;
1704                         l++;
1705                         if (l == rx_ring->count)
1706                                 l = 0;
1707                         /* time + 20 msecs (200 msecs on 2.4) is more than
1708                          * enough time to complete the receives, if it's
1709                          * exceeded, break and error off
1710                          */
1711                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1712                 if (good_cnt != 64) {
1713                         ret_val = 13;   /* ret_val is the same as mis-compare */
1714                         break;
1715                 }
1716                 if (time_after(jiffies, time + 20)) {
1717                         ret_val = 14;   /* error code for time out error */
1718                         break;
1719                 }
1720         }
1721         return ret_val;
1722 }
1723
1724 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1725 {
1726         struct e1000_hw *hw = &adapter->hw;
1727
1728         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1729         if (hw->phy.ops.check_reset_block &&
1730             hw->phy.ops.check_reset_block(hw)) {
1731                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1732                 *data = 0;
1733                 goto out;
1734         }
1735
1736         *data = e1000_setup_desc_rings(adapter);
1737         if (*data)
1738                 goto out;
1739
1740         *data = e1000_setup_loopback_test(adapter);
1741         if (*data)
1742                 goto err_loopback;
1743
1744         *data = e1000_run_loopback_test(adapter);
1745         e1000_loopback_cleanup(adapter);
1746
1747 err_loopback:
1748         e1000_free_desc_rings(adapter);
1749 out:
1750         return *data;
1751 }
1752
1753 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1754 {
1755         struct e1000_hw *hw = &adapter->hw;
1756
1757         *data = 0;
1758         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1759                 int i = 0;
1760
1761                 hw->mac.serdes_has_link = false;
1762
1763                 /* On some blade server designs, link establishment
1764                  * could take as long as 2-3 minutes
1765                  */
1766                 do {
1767                         hw->mac.ops.check_for_link(hw);
1768                         if (hw->mac.serdes_has_link)
1769                                 return *data;
1770                         msleep(20);
1771                 } while (i++ < 3750);
1772
1773                 *data = 1;
1774         } else {
1775                 hw->mac.ops.check_for_link(hw);
1776                 if (hw->mac.autoneg)
1777                         /* On some Phy/switch combinations, link establishment
1778                          * can take a few seconds more than expected.
1779                          */
1780                         msleep_interruptible(5000);
1781
1782                 if (!(er32(STATUS) & E1000_STATUS_LU))
1783                         *data = 1;
1784         }
1785         return *data;
1786 }
1787
1788 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1789                                  int sset)
1790 {
1791         switch (sset) {
1792         case ETH_SS_TEST:
1793                 return E1000_TEST_LEN;
1794         case ETH_SS_STATS:
1795                 return E1000_STATS_LEN;
1796         default:
1797                 return -EOPNOTSUPP;
1798         }
1799 }
1800
1801 static void e1000_diag_test(struct net_device *netdev,
1802                             struct ethtool_test *eth_test, u64 *data)
1803 {
1804         struct e1000_adapter *adapter = netdev_priv(netdev);
1805         u16 autoneg_advertised;
1806         u8 forced_speed_duplex;
1807         u8 autoneg;
1808         bool if_running = netif_running(netdev);
1809
1810         pm_runtime_get_sync(netdev->dev.parent);
1811
1812         set_bit(__E1000_TESTING, &adapter->state);
1813
1814         if (!if_running) {
1815                 /* Get control of and reset hardware */
1816                 if (adapter->flags & FLAG_HAS_AMT)
1817                         e1000e_get_hw_control(adapter);
1818
1819                 e1000e_power_up_phy(adapter);
1820
1821                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1822                 e1000e_reset(adapter);
1823                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1824         }
1825
1826         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1827                 /* Offline tests */
1828
1829                 /* save speed, duplex, autoneg settings */
1830                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1831                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1832                 autoneg = adapter->hw.mac.autoneg;
1833
1834                 e_info("offline testing starting\n");
1835
1836                 if (if_running)
1837                         /* indicate we're in test mode */
1838                         e1000e_close(netdev);
1839
1840                 if (e1000_reg_test(adapter, &data[0]))
1841                         eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843                 e1000e_reset(adapter);
1844                 if (e1000_eeprom_test(adapter, &data[1]))
1845                         eth_test->flags |= ETH_TEST_FL_FAILED;
1846
1847                 e1000e_reset(adapter);
1848                 if (e1000_intr_test(adapter, &data[2]))
1849                         eth_test->flags |= ETH_TEST_FL_FAILED;
1850
1851                 e1000e_reset(adapter);
1852                 if (e1000_loopback_test(adapter, &data[3]))
1853                         eth_test->flags |= ETH_TEST_FL_FAILED;
1854
1855                 /* force this routine to wait until autoneg complete/timeout */
1856                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1857                 e1000e_reset(adapter);
1858                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1859
1860                 if (e1000_link_test(adapter, &data[4]))
1861                         eth_test->flags |= ETH_TEST_FL_FAILED;
1862
1863                 /* restore speed, duplex, autoneg settings */
1864                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1865                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1866                 adapter->hw.mac.autoneg = autoneg;
1867                 e1000e_reset(adapter);
1868
1869                 clear_bit(__E1000_TESTING, &adapter->state);
1870                 if (if_running)
1871                         e1000e_open(netdev);
1872         } else {
1873                 /* Online tests */
1874
1875                 e_info("online testing starting\n");
1876
1877                 /* register, eeprom, intr and loopback tests not run online */
1878                 data[0] = 0;
1879                 data[1] = 0;
1880                 data[2] = 0;
1881                 data[3] = 0;
1882
1883                 if (e1000_link_test(adapter, &data[4]))
1884                         eth_test->flags |= ETH_TEST_FL_FAILED;
1885
1886                 clear_bit(__E1000_TESTING, &adapter->state);
1887         }
1888
1889         if (!if_running) {
1890                 e1000e_reset(adapter);
1891
1892                 if (adapter->flags & FLAG_HAS_AMT)
1893                         e1000e_release_hw_control(adapter);
1894         }
1895
1896         msleep_interruptible(4 * 1000);
1897
1898         pm_runtime_put_sync(netdev->dev.parent);
1899 }
1900
1901 static void e1000_get_wol(struct net_device *netdev,
1902                           struct ethtool_wolinfo *wol)
1903 {
1904         struct e1000_adapter *adapter = netdev_priv(netdev);
1905
1906         wol->supported = 0;
1907         wol->wolopts = 0;
1908
1909         if (!(adapter->flags & FLAG_HAS_WOL) ||
1910             !device_can_wakeup(&adapter->pdev->dev))
1911                 return;
1912
1913         wol->supported = WAKE_UCAST | WAKE_MCAST |
1914             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1915
1916         /* apply any specific unsupported masks here */
1917         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1918                 wol->supported &= ~WAKE_UCAST;
1919
1920                 if (adapter->wol & E1000_WUFC_EX)
1921                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1922         }
1923
1924         if (adapter->wol & E1000_WUFC_EX)
1925                 wol->wolopts |= WAKE_UCAST;
1926         if (adapter->wol & E1000_WUFC_MC)
1927                 wol->wolopts |= WAKE_MCAST;
1928         if (adapter->wol & E1000_WUFC_BC)
1929                 wol->wolopts |= WAKE_BCAST;
1930         if (adapter->wol & E1000_WUFC_MAG)
1931                 wol->wolopts |= WAKE_MAGIC;
1932         if (adapter->wol & E1000_WUFC_LNKC)
1933                 wol->wolopts |= WAKE_PHY;
1934 }
1935
1936 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1937 {
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939
1940         if (!(adapter->flags & FLAG_HAS_WOL) ||
1941             !device_can_wakeup(&adapter->pdev->dev) ||
1942             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1943                               WAKE_MAGIC | WAKE_PHY)))
1944                 return -EOPNOTSUPP;
1945
1946         /* these settings will always override what we currently have */
1947         adapter->wol = 0;
1948
1949         if (wol->wolopts & WAKE_UCAST)
1950                 adapter->wol |= E1000_WUFC_EX;
1951         if (wol->wolopts & WAKE_MCAST)
1952                 adapter->wol |= E1000_WUFC_MC;
1953         if (wol->wolopts & WAKE_BCAST)
1954                 adapter->wol |= E1000_WUFC_BC;
1955         if (wol->wolopts & WAKE_MAGIC)
1956                 adapter->wol |= E1000_WUFC_MAG;
1957         if (wol->wolopts & WAKE_PHY)
1958                 adapter->wol |= E1000_WUFC_LNKC;
1959
1960         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1961
1962         return 0;
1963 }
1964
1965 static int e1000_set_phys_id(struct net_device *netdev,
1966                              enum ethtool_phys_id_state state)
1967 {
1968         struct e1000_adapter *adapter = netdev_priv(netdev);
1969         struct e1000_hw *hw = &adapter->hw;
1970
1971         switch (state) {
1972         case ETHTOOL_ID_ACTIVE:
1973                 pm_runtime_get_sync(netdev->dev.parent);
1974
1975                 if (!hw->mac.ops.blink_led)
1976                         return 2;       /* cycle on/off twice per second */
1977
1978                 hw->mac.ops.blink_led(hw);
1979                 break;
1980
1981         case ETHTOOL_ID_INACTIVE:
1982                 if (hw->phy.type == e1000_phy_ife)
1983                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1984                 hw->mac.ops.led_off(hw);
1985                 hw->mac.ops.cleanup_led(hw);
1986                 pm_runtime_put_sync(netdev->dev.parent);
1987                 break;
1988
1989         case ETHTOOL_ID_ON:
1990                 hw->mac.ops.led_on(hw);
1991                 break;
1992
1993         case ETHTOOL_ID_OFF:
1994                 hw->mac.ops.led_off(hw);
1995                 break;
1996         }
1997
1998         return 0;
1999 }
2000
2001 static int e1000_get_coalesce(struct net_device *netdev,
2002                               struct ethtool_coalesce *ec)
2003 {
2004         struct e1000_adapter *adapter = netdev_priv(netdev);
2005
2006         if (adapter->itr_setting <= 4)
2007                 ec->rx_coalesce_usecs = adapter->itr_setting;
2008         else
2009                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2010
2011         return 0;
2012 }
2013
2014 static int e1000_set_coalesce(struct net_device *netdev,
2015                               struct ethtool_coalesce *ec)
2016 {
2017         struct e1000_adapter *adapter = netdev_priv(netdev);
2018
2019         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2020             ((ec->rx_coalesce_usecs > 4) &&
2021              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2022             (ec->rx_coalesce_usecs == 2))
2023                 return -EINVAL;
2024
2025         if (ec->rx_coalesce_usecs == 4) {
2026                 adapter->itr_setting = 4;
2027                 adapter->itr = adapter->itr_setting;
2028         } else if (ec->rx_coalesce_usecs <= 3) {
2029                 adapter->itr = 20000;
2030                 adapter->itr_setting = ec->rx_coalesce_usecs;
2031         } else {
2032                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2033                 adapter->itr_setting = adapter->itr & ~3;
2034         }
2035
2036         pm_runtime_get_sync(netdev->dev.parent);
2037
2038         if (adapter->itr_setting != 0)
2039                 e1000e_write_itr(adapter, adapter->itr);
2040         else
2041                 e1000e_write_itr(adapter, 0);
2042
2043         pm_runtime_put_sync(netdev->dev.parent);
2044
2045         return 0;
2046 }
2047
2048 static int e1000_nway_reset(struct net_device *netdev)
2049 {
2050         struct e1000_adapter *adapter = netdev_priv(netdev);
2051
2052         if (!netif_running(netdev))
2053                 return -EAGAIN;
2054
2055         if (!adapter->hw.mac.autoneg)
2056                 return -EINVAL;
2057
2058         pm_runtime_get_sync(netdev->dev.parent);
2059         e1000e_reinit_locked(adapter);
2060         pm_runtime_put_sync(netdev->dev.parent);
2061
2062         return 0;
2063 }
2064
2065 static void e1000_get_ethtool_stats(struct net_device *netdev,
2066                                     struct ethtool_stats __always_unused *stats,
2067                                     u64 *data)
2068 {
2069         struct e1000_adapter *adapter = netdev_priv(netdev);
2070         struct rtnl_link_stats64 net_stats;
2071         int i;
2072         char *p = NULL;
2073
2074         pm_runtime_get_sync(netdev->dev.parent);
2075
2076         dev_get_stats(netdev, &net_stats);
2077
2078         pm_runtime_put_sync(netdev->dev.parent);
2079
2080         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2081                 switch (e1000_gstrings_stats[i].type) {
2082                 case NETDEV_STATS:
2083                         p = (char *)&net_stats +
2084                             e1000_gstrings_stats[i].stat_offset;
2085                         break;
2086                 case E1000_STATS:
2087                         p = (char *)adapter +
2088                             e1000_gstrings_stats[i].stat_offset;
2089                         break;
2090                 default:
2091                         data[i] = 0;
2092                         continue;
2093                 }
2094
2095                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2096                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2097         }
2098 }
2099
2100 static void e1000_get_strings(struct net_device __always_unused *netdev,
2101                               u32 stringset, u8 *data)
2102 {
2103         u8 *p = data;
2104         int i;
2105
2106         switch (stringset) {
2107         case ETH_SS_TEST:
2108                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2109                 break;
2110         case ETH_SS_STATS:
2111                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2112                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2113                                ETH_GSTRING_LEN);
2114                         p += ETH_GSTRING_LEN;
2115                 }
2116                 break;
2117         }
2118 }
2119
2120 static int e1000_get_rxnfc(struct net_device *netdev,
2121                            struct ethtool_rxnfc *info,
2122                            u32 __always_unused *rule_locs)
2123 {
2124         info->data = 0;
2125
2126         switch (info->cmd) {
2127         case ETHTOOL_GRXFH: {
2128                 struct e1000_adapter *adapter = netdev_priv(netdev);
2129                 struct e1000_hw *hw = &adapter->hw;
2130                 u32 mrqc;
2131
2132                 pm_runtime_get_sync(netdev->dev.parent);
2133                 mrqc = er32(MRQC);
2134                 pm_runtime_put_sync(netdev->dev.parent);
2135
2136                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2137                         return 0;
2138
2139                 switch (info->flow_type) {
2140                 case TCP_V4_FLOW:
2141                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2142                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2143                         /* fall through */
2144                 case UDP_V4_FLOW:
2145                 case SCTP_V4_FLOW:
2146                 case AH_ESP_V4_FLOW:
2147                 case IPV4_FLOW:
2148                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2149                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2150                         break;
2151                 case TCP_V6_FLOW:
2152                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2153                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2154                         /* fall through */
2155                 case UDP_V6_FLOW:
2156                 case SCTP_V6_FLOW:
2157                 case AH_ESP_V6_FLOW:
2158                 case IPV6_FLOW:
2159                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2160                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2161                         break;
2162                 default:
2163                         break;
2164                 }
2165                 return 0;
2166         }
2167         default:
2168                 return -EOPNOTSUPP;
2169         }
2170 }
2171
2172 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2173 {
2174         struct e1000_adapter *adapter = netdev_priv(netdev);
2175         struct e1000_hw *hw = &adapter->hw;
2176         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2177         u32 ret_val;
2178
2179         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2180                 return -EOPNOTSUPP;
2181
2182         switch (hw->phy.type) {
2183         case e1000_phy_82579:
2184                 cap_addr = I82579_EEE_CAPABILITY;
2185                 lpa_addr = I82579_EEE_LP_ABILITY;
2186                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2187                 break;
2188         case e1000_phy_i217:
2189                 cap_addr = I217_EEE_CAPABILITY;
2190                 lpa_addr = I217_EEE_LP_ABILITY;
2191                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2192                 break;
2193         default:
2194                 return -EOPNOTSUPP;
2195         }
2196
2197         pm_runtime_get_sync(netdev->dev.parent);
2198
2199         ret_val = hw->phy.ops.acquire(hw);
2200         if (ret_val) {
2201                 pm_runtime_put_sync(netdev->dev.parent);
2202                 return -EBUSY;
2203         }
2204
2205         /* EEE Capability */
2206         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2207         if (ret_val)
2208                 goto release;
2209         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2210
2211         /* EEE Advertised */
2212         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2213
2214         /* EEE Link Partner Advertised */
2215         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2216         if (ret_val)
2217                 goto release;
2218         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2219
2220         /* EEE PCS Status */
2221         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2222         if (ret_val)
2223                 goto release;
2224         if (hw->phy.type == e1000_phy_82579)
2225                 phy_data <<= 8;
2226
2227         /* Result of the EEE auto negotiation - there is no register that
2228          * has the status of the EEE negotiation so do a best-guess based
2229          * on whether Tx or Rx LPI indications have been received.
2230          */
2231         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2232                 edata->eee_active = true;
2233
2234         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2235         edata->tx_lpi_enabled = true;
2236         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2237
2238 release:
2239         hw->phy.ops.release(hw);
2240         if (ret_val)
2241                 ret_val = -ENODATA;
2242
2243         pm_runtime_put_sync(netdev->dev.parent);
2244
2245         return ret_val;
2246 }
2247
2248 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2249 {
2250         struct e1000_adapter *adapter = netdev_priv(netdev);
2251         struct e1000_hw *hw = &adapter->hw;
2252         struct ethtool_eee eee_curr;
2253         s32 ret_val;
2254
2255         ret_val = e1000e_get_eee(netdev, &eee_curr);
2256         if (ret_val)
2257                 return ret_val;
2258
2259         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2260                 e_err("Setting EEE tx-lpi is not supported\n");
2261                 return -EINVAL;
2262         }
2263
2264         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2265                 e_err("Setting EEE Tx LPI timer is not supported\n");
2266                 return -EINVAL;
2267         }
2268
2269         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2270                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2271                 return -EINVAL;
2272         }
2273
2274         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2275
2276         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2277
2278         pm_runtime_get_sync(netdev->dev.parent);
2279
2280         /* reset the link */
2281         if (netif_running(netdev))
2282                 e1000e_reinit_locked(adapter);
2283         else
2284                 e1000e_reset(adapter);
2285
2286         pm_runtime_put_sync(netdev->dev.parent);
2287
2288         return 0;
2289 }
2290
2291 static int e1000e_get_ts_info(struct net_device *netdev,
2292                               struct ethtool_ts_info *info)
2293 {
2294         struct e1000_adapter *adapter = netdev_priv(netdev);
2295
2296         ethtool_op_get_ts_info(netdev, info);
2297
2298         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2299                 return 0;
2300
2301         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2302                                   SOF_TIMESTAMPING_RX_HARDWARE |
2303                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2304
2305         info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2306
2307         info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2308                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2309                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2310                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2311                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2312                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2313                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2314                             BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2315                             BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2316                             BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2317                             BIT(HWTSTAMP_FILTER_ALL));
2318
2319         if (adapter->ptp_clock)
2320                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2321
2322         return 0;
2323 }
2324
2325 static const struct ethtool_ops e1000_ethtool_ops = {
2326         .get_drvinfo            = e1000_get_drvinfo,
2327         .get_regs_len           = e1000_get_regs_len,
2328         .get_regs               = e1000_get_regs,
2329         .get_wol                = e1000_get_wol,
2330         .set_wol                = e1000_set_wol,
2331         .get_msglevel           = e1000_get_msglevel,
2332         .set_msglevel           = e1000_set_msglevel,
2333         .nway_reset             = e1000_nway_reset,
2334         .get_link               = ethtool_op_get_link,
2335         .get_eeprom_len         = e1000_get_eeprom_len,
2336         .get_eeprom             = e1000_get_eeprom,
2337         .set_eeprom             = e1000_set_eeprom,
2338         .get_ringparam          = e1000_get_ringparam,
2339         .set_ringparam          = e1000_set_ringparam,
2340         .get_pauseparam         = e1000_get_pauseparam,
2341         .set_pauseparam         = e1000_set_pauseparam,
2342         .self_test              = e1000_diag_test,
2343         .get_strings            = e1000_get_strings,
2344         .set_phys_id            = e1000_set_phys_id,
2345         .get_ethtool_stats      = e1000_get_ethtool_stats,
2346         .get_sset_count         = e1000e_get_sset_count,
2347         .get_coalesce           = e1000_get_coalesce,
2348         .set_coalesce           = e1000_set_coalesce,
2349         .get_rxnfc              = e1000_get_rxnfc,
2350         .get_ts_info            = e1000e_get_ts_info,
2351         .get_eee                = e1000e_get_eee,
2352         .set_eee                = e1000e_set_eee,
2353         .get_link_ksettings     = e1000_get_link_ksettings,
2354         .set_link_ksettings     = e1000_set_link_ksettings,
2355 };
2356
2357 void e1000e_set_ethtool_ops(struct net_device *netdev)
2358 {
2359         netdev->ethtool_ops = &e1000_ethtool_ops;
2360 }