GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13         char stat_string[ETH_GSTRING_LEN];
14         int type;
15         int sizeof_stat;
16         int stat_offset;
17 };
18
19 #define E1000_STAT(m)           E1000_STATS, \
20                                 sizeof(((struct e1000_adapter *)0)->m), \
21                                 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
23                                 sizeof(((struct net_device *)0)->m), \
24                                 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27         { "rx_packets", E1000_STAT(stats.gprc) },
28         { "tx_packets", E1000_STAT(stats.gptc) },
29         { "rx_bytes", E1000_STAT(stats.gorcl) },
30         { "tx_bytes", E1000_STAT(stats.gotcl) },
31         { "rx_broadcast", E1000_STAT(stats.bprc) },
32         { "tx_broadcast", E1000_STAT(stats.bptc) },
33         { "rx_multicast", E1000_STAT(stats.mprc) },
34         { "tx_multicast", E1000_STAT(stats.mptc) },
35         { "rx_errors", E1000_STAT(stats.rxerrc) },
36         { "tx_errors", E1000_STAT(stats.txerrc) },
37         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38         { "multicast", E1000_STAT(stats.mprc) },
39         { "collisions", E1000_STAT(stats.colc) },
40         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45         { "rx_missed_errors", E1000_STAT(stats.mpc) },
46         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50         { "tx_window_errors", E1000_STAT(stats.latecol) },
51         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52         { "tx_deferred_ok", E1000_STAT(stats.dc) },
53         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56         { "tx_restart_queue", E1000_STAT(restart_queue) },
57         { "rx_long_length_errors", E1000_STAT(stats.roc) },
58         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70         { "tx_smbus", E1000_STAT(stats.mgptc) },
71         { "rx_smbus", E1000_STAT(stats.mgprc) },
72         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79         "Register test  (offline)", "Eeprom test    (offline)",
80         "Interrupt test (offline)", "Loopback test  (offline)",
81         "Link test   (on/offline)"
82 };
83
84 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
85
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87                                     struct ethtool_link_ksettings *cmd)
88 {
89         struct e1000_adapter *adapter = netdev_priv(netdev);
90         struct e1000_hw *hw = &adapter->hw;
91         u32 supported, advertising;
92
93         if (hw->media_type == e1000_media_type_copper) {
94                 supported = (SUPPORTED_10baseT_Half |
95                              SUPPORTED_10baseT_Full |
96                              SUPPORTED_100baseT_Half |
97                              SUPPORTED_100baseT_Full |
98                              SUPPORTED_1000baseT_Full|
99                              SUPPORTED_Autoneg |
100                              SUPPORTED_TP);
101                 advertising = ADVERTISED_TP;
102
103                 if (hw->autoneg == 1) {
104                         advertising |= ADVERTISED_Autoneg;
105                         /* the e1000 autoneg seems to match ethtool nicely */
106                         advertising |= hw->autoneg_advertised;
107                 }
108
109                 cmd->base.port = PORT_TP;
110                 cmd->base.phy_address = hw->phy_addr;
111         } else {
112                 supported   = (SUPPORTED_1000baseT_Full |
113                                SUPPORTED_FIBRE |
114                                SUPPORTED_Autoneg);
115
116                 advertising = (ADVERTISED_1000baseT_Full |
117                                ADVERTISED_FIBRE |
118                                ADVERTISED_Autoneg);
119
120                 cmd->base.port = PORT_FIBRE;
121         }
122
123         if (er32(STATUS) & E1000_STATUS_LU) {
124                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125                                            &adapter->link_duplex);
126                 cmd->base.speed = adapter->link_speed;
127
128                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129                  * and HALF_DUPLEX != DUPLEX_HALF
130                  */
131                 if (adapter->link_duplex == FULL_DUPLEX)
132                         cmd->base.duplex = DUPLEX_FULL;
133                 else
134                         cmd->base.duplex = DUPLEX_HALF;
135         } else {
136                 cmd->base.speed = SPEED_UNKNOWN;
137                 cmd->base.duplex = DUPLEX_UNKNOWN;
138         }
139
140         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143         /* MDI-X => 1; MDI => 0 */
144         if ((hw->media_type == e1000_media_type_copper) &&
145             netif_carrier_ok(netdev))
146                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147                                      ETH_TP_MDI_X : ETH_TP_MDI);
148         else
149                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151         if (hw->mdix == AUTO_ALL_MODES)
152                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153         else
154                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157                                                 supported);
158         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159                                                 advertising);
160
161         return 0;
162 }
163
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165                                     const struct ethtool_link_ksettings *cmd)
166 {
167         struct e1000_adapter *adapter = netdev_priv(netdev);
168         struct e1000_hw *hw = &adapter->hw;
169         u32 advertising;
170
171         ethtool_convert_link_mode_to_legacy_u32(&advertising,
172                                                 cmd->link_modes.advertising);
173
174         /* MDI setting is only allowed when autoneg enabled because
175          * some hardware doesn't allow MDI setting when speed or
176          * duplex is forced.
177          */
178         if (cmd->base.eth_tp_mdix_ctrl) {
179                 if (hw->media_type != e1000_media_type_copper)
180                         return -EOPNOTSUPP;
181
182                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
184                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185                         return -EINVAL;
186                 }
187         }
188
189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190                 msleep(1);
191
192         if (cmd->base.autoneg == AUTONEG_ENABLE) {
193                 hw->autoneg = 1;
194                 if (hw->media_type == e1000_media_type_fiber)
195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                                  ADVERTISED_FIBRE |
197                                                  ADVERTISED_Autoneg;
198                 else
199                         hw->autoneg_advertised = advertising |
200                                                  ADVERTISED_TP |
201                                                  ADVERTISED_Autoneg;
202         } else {
203                 u32 speed = cmd->base.speed;
204                 /* calling this overrides forced MDI setting */
205                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206                         clear_bit(__E1000_RESETTING, &adapter->flags);
207                         return -EINVAL;
208                 }
209         }
210
211         /* MDI-X => 2; MDI => 1; Auto => 3 */
212         if (cmd->base.eth_tp_mdix_ctrl) {
213                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214                         hw->mdix = AUTO_ALL_MODES;
215                 else
216                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217         }
218
219         /* reset the link */
220
221         if (netif_running(adapter->netdev)) {
222                 e1000_down(adapter);
223                 e1000_up(adapter);
224         } else {
225                 e1000_reset(adapter);
226         }
227         clear_bit(__E1000_RESETTING, &adapter->flags);
228         return 0;
229 }
230
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234
235         /* If the link is not reported up to netdev, interrupts are disabled,
236          * and so the physical link state may have changed since we last
237          * looked. Set get_link_status to make sure that the true link
238          * state is interrogated, rather than pulling a cached and possibly
239          * stale link state from the driver.
240          */
241         if (!netif_carrier_ok(netdev))
242                 adapter->hw.get_link_status = 1;
243
244         return e1000_has_link(adapter);
245 }
246
247 static void e1000_get_pauseparam(struct net_device *netdev,
248                                  struct ethtool_pauseparam *pause)
249 {
250         struct e1000_adapter *adapter = netdev_priv(netdev);
251         struct e1000_hw *hw = &adapter->hw;
252
253         pause->autoneg =
254                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256         if (hw->fc == E1000_FC_RX_PAUSE) {
257                 pause->rx_pause = 1;
258         } else if (hw->fc == E1000_FC_TX_PAUSE) {
259                 pause->tx_pause = 1;
260         } else if (hw->fc == E1000_FC_FULL) {
261                 pause->rx_pause = 1;
262                 pause->tx_pause = 1;
263         }
264 }
265
266 static int e1000_set_pauseparam(struct net_device *netdev,
267                                 struct ethtool_pauseparam *pause)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         struct e1000_hw *hw = &adapter->hw;
271         int retval = 0;
272
273         adapter->fc_autoneg = pause->autoneg;
274
275         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276                 msleep(1);
277
278         if (pause->rx_pause && pause->tx_pause)
279                 hw->fc = E1000_FC_FULL;
280         else if (pause->rx_pause && !pause->tx_pause)
281                 hw->fc = E1000_FC_RX_PAUSE;
282         else if (!pause->rx_pause && pause->tx_pause)
283                 hw->fc = E1000_FC_TX_PAUSE;
284         else if (!pause->rx_pause && !pause->tx_pause)
285                 hw->fc = E1000_FC_NONE;
286
287         hw->original_fc = hw->fc;
288
289         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290                 if (netif_running(adapter->netdev)) {
291                         e1000_down(adapter);
292                         e1000_up(adapter);
293                 } else {
294                         e1000_reset(adapter);
295                 }
296         } else
297                 retval = ((hw->media_type == e1000_media_type_fiber) ?
298                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300         clear_bit(__E1000_RESETTING, &adapter->flags);
301         return retval;
302 }
303
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307
308         return adapter->msg_enable;
309 }
310
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314
315         adapter->msg_enable = data;
316 }
317
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321         return E1000_REGS_LEN * sizeof(u32);
322 }
323
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325                            void *p)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328         struct e1000_hw *hw = &adapter->hw;
329         u32 *regs_buff = p;
330         u16 phy_data;
331
332         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336         regs_buff[0]  = er32(CTRL);
337         regs_buff[1]  = er32(STATUS);
338
339         regs_buff[2]  = er32(RCTL);
340         regs_buff[3]  = er32(RDLEN);
341         regs_buff[4]  = er32(RDH);
342         regs_buff[5]  = er32(RDT);
343         regs_buff[6]  = er32(RDTR);
344
345         regs_buff[7]  = er32(TCTL);
346         regs_buff[8]  = er32(TDLEN);
347         regs_buff[9]  = er32(TDH);
348         regs_buff[10] = er32(TDT);
349         regs_buff[11] = er32(TIDV);
350
351         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352         if (hw->phy_type == e1000_phy_igp) {
353                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354                                     IGP01E1000_PHY_AGC_A);
355                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357                 regs_buff[13] = (u32)phy_data; /* cable length */
358                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359                                     IGP01E1000_PHY_AGC_B);
360                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362                 regs_buff[14] = (u32)phy_data; /* cable length */
363                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364                                     IGP01E1000_PHY_AGC_C);
365                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367                 regs_buff[15] = (u32)phy_data; /* cable length */
368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369                                     IGP01E1000_PHY_AGC_D);
370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372                 regs_buff[16] = (u32)phy_data; /* cable length */
373                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[18] = (u32)phy_data; /* cable polarity */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_PCS_INIT_REG);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[19] = (u32)phy_data; /* cable polarity */
383                 regs_buff[20] = 0; /* polarity correction enabled (always) */
384                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385                 regs_buff[23] = regs_buff[18]; /* mdix mode */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387         } else {
388                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389                 regs_buff[13] = (u32)phy_data; /* cable length */
390                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395                 regs_buff[18] = regs_buff[13]; /* cable polarity */
396                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397                 regs_buff[20] = regs_buff[17]; /* polarity correction */
398                 /* phy receive errors */
399                 regs_buff[22] = adapter->phy_stats.receive_errors;
400                 regs_buff[23] = regs_buff[13]; /* mdix mode */
401         }
402         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406         if (hw->mac_type >= e1000_82540 &&
407             hw->media_type == e1000_media_type_copper) {
408                 regs_buff[26] = er32(MANC);
409         }
410 }
411
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414         struct e1000_adapter *adapter = netdev_priv(netdev);
415         struct e1000_hw *hw = &adapter->hw;
416
417         return hw->eeprom.word_size * 2;
418 }
419
420 static int e1000_get_eeprom(struct net_device *netdev,
421                             struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423         struct e1000_adapter *adapter = netdev_priv(netdev);
424         struct e1000_hw *hw = &adapter->hw;
425         u16 *eeprom_buff;
426         int first_word, last_word;
427         int ret_val = 0;
428         u16 i;
429
430         if (eeprom->len == 0)
431                 return -EINVAL;
432
433         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435         first_word = eeprom->offset >> 1;
436         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439                                     GFP_KERNEL);
440         if (!eeprom_buff)
441                 return -ENOMEM;
442
443         if (hw->eeprom.type == e1000_eeprom_spi)
444                 ret_val = e1000_read_eeprom(hw, first_word,
445                                             last_word - first_word + 1,
446                                             eeprom_buff);
447         else {
448                 for (i = 0; i < last_word - first_word + 1; i++) {
449                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450                                                     &eeprom_buff[i]);
451                         if (ret_val)
452                                 break;
453                 }
454         }
455
456         /* Device's eeprom is always little-endian, word addressable */
457         for (i = 0; i < last_word - first_word + 1; i++)
458                 le16_to_cpus(&eeprom_buff[i]);
459
460         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461                eeprom->len);
462         kfree(eeprom_buff);
463
464         return ret_val;
465 }
466
467 static int e1000_set_eeprom(struct net_device *netdev,
468                             struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470         struct e1000_adapter *adapter = netdev_priv(netdev);
471         struct e1000_hw *hw = &adapter->hw;
472         u16 *eeprom_buff;
473         void *ptr;
474         int max_len, first_word, last_word, ret_val = 0;
475         u16 i;
476
477         if (eeprom->len == 0)
478                 return -EOPNOTSUPP;
479
480         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481                 return -EFAULT;
482
483         max_len = hw->eeprom.word_size * 2;
484
485         first_word = eeprom->offset >> 1;
486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488         if (!eeprom_buff)
489                 return -ENOMEM;
490
491         ptr = (void *)eeprom_buff;
492
493         if (eeprom->offset & 1) {
494                 /* need read/modify/write of first changed EEPROM word
495                  * only the second byte of the word is being modified
496                  */
497                 ret_val = e1000_read_eeprom(hw, first_word, 1,
498                                             &eeprom_buff[0]);
499                 ptr++;
500         }
501         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502                 /* need read/modify/write of last changed EEPROM word
503                  * only the first byte of the word is being modified
504                  */
505                 ret_val = e1000_read_eeprom(hw, last_word, 1,
506                                             &eeprom_buff[last_word - first_word]);
507         }
508
509         /* Device's eeprom is always little-endian, word addressable */
510         for (i = 0; i < last_word - first_word + 1; i++)
511                 le16_to_cpus(&eeprom_buff[i]);
512
513         memcpy(ptr, bytes, eeprom->len);
514
515         for (i = 0; i < last_word - first_word + 1; i++)
516                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518         ret_val = e1000_write_eeprom(hw, first_word,
519                                      last_word - first_word + 1, eeprom_buff);
520
521         /* Update the checksum over the first part of the EEPROM if needed */
522         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523                 e1000_update_eeprom_checksum(hw);
524
525         kfree(eeprom_buff);
526         return ret_val;
527 }
528
529 static void e1000_get_drvinfo(struct net_device *netdev,
530                               struct ethtool_drvinfo *drvinfo)
531 {
532         struct e1000_adapter *adapter = netdev_priv(netdev);
533
534         strlcpy(drvinfo->driver,  e1000_driver_name,
535                 sizeof(drvinfo->driver));
536
537         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
538                 sizeof(drvinfo->bus_info));
539 }
540
541 static void e1000_get_ringparam(struct net_device *netdev,
542                                 struct ethtool_ringparam *ring)
543 {
544         struct e1000_adapter *adapter = netdev_priv(netdev);
545         struct e1000_hw *hw = &adapter->hw;
546         e1000_mac_type mac_type = hw->mac_type;
547         struct e1000_tx_ring *txdr = adapter->tx_ring;
548         struct e1000_rx_ring *rxdr = adapter->rx_ring;
549
550         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
551                 E1000_MAX_82544_RXD;
552         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
553                 E1000_MAX_82544_TXD;
554         ring->rx_pending = rxdr->count;
555         ring->tx_pending = txdr->count;
556 }
557
558 static int e1000_set_ringparam(struct net_device *netdev,
559                                struct ethtool_ringparam *ring)
560 {
561         struct e1000_adapter *adapter = netdev_priv(netdev);
562         struct e1000_hw *hw = &adapter->hw;
563         e1000_mac_type mac_type = hw->mac_type;
564         struct e1000_tx_ring *txdr, *tx_old;
565         struct e1000_rx_ring *rxdr, *rx_old;
566         int i, err;
567
568         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
569                 return -EINVAL;
570
571         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
572                 msleep(1);
573
574         if (netif_running(adapter->netdev))
575                 e1000_down(adapter);
576
577         tx_old = adapter->tx_ring;
578         rx_old = adapter->rx_ring;
579
580         err = -ENOMEM;
581         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
582                        GFP_KERNEL);
583         if (!txdr)
584                 goto err_alloc_tx;
585
586         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
587                        GFP_KERNEL);
588         if (!rxdr)
589                 goto err_alloc_rx;
590
591         adapter->tx_ring = txdr;
592         adapter->rx_ring = rxdr;
593
594         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
595         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
596                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
597         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
598         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
599         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
600                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
601         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
602
603         for (i = 0; i < adapter->num_tx_queues; i++)
604                 txdr[i].count = txdr->count;
605         for (i = 0; i < adapter->num_rx_queues; i++)
606                 rxdr[i].count = rxdr->count;
607
608         err = 0;
609         if (netif_running(adapter->netdev)) {
610                 /* Try to get new resources before deleting old */
611                 err = e1000_setup_all_rx_resources(adapter);
612                 if (err)
613                         goto err_setup_rx;
614                 err = e1000_setup_all_tx_resources(adapter);
615                 if (err)
616                         goto err_setup_tx;
617
618                 /* save the new, restore the old in order to free it,
619                  * then restore the new back again
620                  */
621
622                 adapter->rx_ring = rx_old;
623                 adapter->tx_ring = tx_old;
624                 e1000_free_all_rx_resources(adapter);
625                 e1000_free_all_tx_resources(adapter);
626                 adapter->rx_ring = rxdr;
627                 adapter->tx_ring = txdr;
628                 err = e1000_up(adapter);
629         }
630         kfree(tx_old);
631         kfree(rx_old);
632
633         clear_bit(__E1000_RESETTING, &adapter->flags);
634         return err;
635
636 err_setup_tx:
637         e1000_free_all_rx_resources(adapter);
638 err_setup_rx:
639         adapter->rx_ring = rx_old;
640         adapter->tx_ring = tx_old;
641         kfree(rxdr);
642 err_alloc_rx:
643         kfree(txdr);
644 err_alloc_tx:
645         if (netif_running(adapter->netdev))
646                 e1000_up(adapter);
647         clear_bit(__E1000_RESETTING, &adapter->flags);
648         return err;
649 }
650
651 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
652                              u32 mask, u32 write)
653 {
654         struct e1000_hw *hw = &adapter->hw;
655         static const u32 test[] = {
656                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
657         };
658         u8 __iomem *address = hw->hw_addr + reg;
659         u32 read;
660         int i;
661
662         for (i = 0; i < ARRAY_SIZE(test); i++) {
663                 writel(write & test[i], address);
664                 read = readl(address);
665                 if (read != (write & test[i] & mask)) {
666                         e_err(drv, "pattern test reg %04X failed: "
667                               "got 0x%08X expected 0x%08X\n",
668                               reg, read, (write & test[i] & mask));
669                         *data = reg;
670                         return true;
671                 }
672         }
673         return false;
674 }
675
676 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
677                               u32 mask, u32 write)
678 {
679         struct e1000_hw *hw = &adapter->hw;
680         u8 __iomem *address = hw->hw_addr + reg;
681         u32 read;
682
683         writel(write & mask, address);
684         read = readl(address);
685         if ((read & mask) != (write & mask)) {
686                 e_err(drv, "set/check reg %04X test failed: "
687                       "got 0x%08X expected 0x%08X\n",
688                       reg, (read & mask), (write & mask));
689                 *data = reg;
690                 return true;
691         }
692         return false;
693 }
694
695 #define REG_PATTERN_TEST(reg, mask, write)                           \
696         do {                                                         \
697                 if (reg_pattern_test(adapter, data,                  \
698                              (hw->mac_type >= e1000_82543)   \
699                              ? E1000_##reg : E1000_82542_##reg,      \
700                              mask, write))                           \
701                         return 1;                                    \
702         } while (0)
703
704 #define REG_SET_AND_CHECK(reg, mask, write)                          \
705         do {                                                         \
706                 if (reg_set_and_check(adapter, data,                 \
707                               (hw->mac_type >= e1000_82543)  \
708                               ? E1000_##reg : E1000_82542_##reg,     \
709                               mask, write))                          \
710                         return 1;                                    \
711         } while (0)
712
713 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
714 {
715         u32 value, before, after;
716         u32 i, toggle;
717         struct e1000_hw *hw = &adapter->hw;
718
719         /* The status register is Read Only, so a write should fail.
720          * Some bits that get toggled are ignored.
721          */
722
723         /* there are several bits on newer hardware that are r/w */
724         toggle = 0xFFFFF833;
725
726         before = er32(STATUS);
727         value = (er32(STATUS) & toggle);
728         ew32(STATUS, toggle);
729         after = er32(STATUS) & toggle;
730         if (value != after) {
731                 e_err(drv, "failed STATUS register test got: "
732                       "0x%08X expected: 0x%08X\n", after, value);
733                 *data = 1;
734                 return 1;
735         }
736         /* restore previous status */
737         ew32(STATUS, before);
738
739         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
740         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
741         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
742         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
743
744         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
745         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
746         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
747         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
748         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
749         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
750         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
751         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
752         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
753         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
754
755         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
756
757         before = 0x06DFB3FE;
758         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
759         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
760
761         if (hw->mac_type >= e1000_82543) {
762                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
763                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
764                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
765                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
767                 value = E1000_RAR_ENTRIES;
768                 for (i = 0; i < value; i++) {
769                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
770                                          0x8003FFFF, 0xFFFFFFFF);
771                 }
772         } else {
773                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
774                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
775                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
776                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
777         }
778
779         value = E1000_MC_TBL_SIZE;
780         for (i = 0; i < value; i++)
781                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
782
783         *data = 0;
784         return 0;
785 }
786
787 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
788 {
789         struct e1000_hw *hw = &adapter->hw;
790         u16 temp;
791         u16 checksum = 0;
792         u16 i;
793
794         *data = 0;
795         /* Read and add up the contents of the EEPROM */
796         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
797                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
798                         *data = 1;
799                         break;
800                 }
801                 checksum += temp;
802         }
803
804         /* If Checksum is not Correct return error else test passed */
805         if ((checksum != (u16)EEPROM_SUM) && !(*data))
806                 *data = 2;
807
808         return *data;
809 }
810
811 static irqreturn_t e1000_test_intr(int irq, void *data)
812 {
813         struct net_device *netdev = (struct net_device *)data;
814         struct e1000_adapter *adapter = netdev_priv(netdev);
815         struct e1000_hw *hw = &adapter->hw;
816
817         adapter->test_icr |= er32(ICR);
818
819         return IRQ_HANDLED;
820 }
821
822 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
823 {
824         struct net_device *netdev = adapter->netdev;
825         u32 mask, i = 0;
826         bool shared_int = true;
827         u32 irq = adapter->pdev->irq;
828         struct e1000_hw *hw = &adapter->hw;
829
830         *data = 0;
831
832         /* NOTE: we don't test MSI interrupts here, yet
833          * Hook up test interrupt handler just for this test
834          */
835         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
836                          netdev))
837                 shared_int = false;
838         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
839                              netdev->name, netdev)) {
840                 *data = 1;
841                 return -1;
842         }
843         e_info(hw, "testing %s interrupt\n", (shared_int ?
844                "shared" : "unshared"));
845
846         /* Disable all the interrupts */
847         ew32(IMC, 0xFFFFFFFF);
848         E1000_WRITE_FLUSH();
849         msleep(10);
850
851         /* Test each interrupt */
852         for (; i < 10; i++) {
853                 /* Interrupt to test */
854                 mask = 1 << i;
855
856                 if (!shared_int) {
857                         /* Disable the interrupt to be reported in
858                          * the cause register and then force the same
859                          * interrupt and see if one gets posted.  If
860                          * an interrupt was posted to the bus, the
861                          * test failed.
862                          */
863                         adapter->test_icr = 0;
864                         ew32(IMC, mask);
865                         ew32(ICS, mask);
866                         E1000_WRITE_FLUSH();
867                         msleep(10);
868
869                         if (adapter->test_icr & mask) {
870                                 *data = 3;
871                                 break;
872                         }
873                 }
874
875                 /* Enable the interrupt to be reported in
876                  * the cause register and then force the same
877                  * interrupt and see if one gets posted.  If
878                  * an interrupt was not posted to the bus, the
879                  * test failed.
880                  */
881                 adapter->test_icr = 0;
882                 ew32(IMS, mask);
883                 ew32(ICS, mask);
884                 E1000_WRITE_FLUSH();
885                 msleep(10);
886
887                 if (!(adapter->test_icr & mask)) {
888                         *data = 4;
889                         break;
890                 }
891
892                 if (!shared_int) {
893                         /* Disable the other interrupts to be reported in
894                          * the cause register and then force the other
895                          * interrupts and see if any get posted.  If
896                          * an interrupt was posted to the bus, the
897                          * test failed.
898                          */
899                         adapter->test_icr = 0;
900                         ew32(IMC, ~mask & 0x00007FFF);
901                         ew32(ICS, ~mask & 0x00007FFF);
902                         E1000_WRITE_FLUSH();
903                         msleep(10);
904
905                         if (adapter->test_icr) {
906                                 *data = 5;
907                                 break;
908                         }
909                 }
910         }
911
912         /* Disable all the interrupts */
913         ew32(IMC, 0xFFFFFFFF);
914         E1000_WRITE_FLUSH();
915         msleep(10);
916
917         /* Unhook test interrupt handler */
918         free_irq(irq, netdev);
919
920         return *data;
921 }
922
923 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
924 {
925         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
926         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
927         struct pci_dev *pdev = adapter->pdev;
928         int i;
929
930         if (txdr->desc && txdr->buffer_info) {
931                 for (i = 0; i < txdr->count; i++) {
932                         if (txdr->buffer_info[i].dma)
933                                 dma_unmap_single(&pdev->dev,
934                                                  txdr->buffer_info[i].dma,
935                                                  txdr->buffer_info[i].length,
936                                                  DMA_TO_DEVICE);
937                         dev_kfree_skb(txdr->buffer_info[i].skb);
938                 }
939         }
940
941         if (rxdr->desc && rxdr->buffer_info) {
942                 for (i = 0; i < rxdr->count; i++) {
943                         if (rxdr->buffer_info[i].dma)
944                                 dma_unmap_single(&pdev->dev,
945                                                  rxdr->buffer_info[i].dma,
946                                                  E1000_RXBUFFER_2048,
947                                                  DMA_FROM_DEVICE);
948                         kfree(rxdr->buffer_info[i].rxbuf.data);
949                 }
950         }
951
952         if (txdr->desc) {
953                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
954                                   txdr->dma);
955                 txdr->desc = NULL;
956         }
957         if (rxdr->desc) {
958                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
959                                   rxdr->dma);
960                 rxdr->desc = NULL;
961         }
962
963         kfree(txdr->buffer_info);
964         txdr->buffer_info = NULL;
965         kfree(rxdr->buffer_info);
966         rxdr->buffer_info = NULL;
967 }
968
969 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
970 {
971         struct e1000_hw *hw = &adapter->hw;
972         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
973         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
974         struct pci_dev *pdev = adapter->pdev;
975         u32 rctl;
976         int i, ret_val;
977
978         /* Setup Tx descriptor ring and Tx buffers */
979
980         if (!txdr->count)
981                 txdr->count = E1000_DEFAULT_TXD;
982
983         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
984                                     GFP_KERNEL);
985         if (!txdr->buffer_info) {
986                 ret_val = 1;
987                 goto err_nomem;
988         }
989
990         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
991         txdr->size = ALIGN(txdr->size, 4096);
992         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
993                                         GFP_KERNEL);
994         if (!txdr->desc) {
995                 ret_val = 2;
996                 goto err_nomem;
997         }
998         txdr->next_to_use = txdr->next_to_clean = 0;
999
1000         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1001         ew32(TDBAH, ((u64)txdr->dma >> 32));
1002         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1003         ew32(TDH, 0);
1004         ew32(TDT, 0);
1005         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1006              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1007              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1008
1009         for (i = 0; i < txdr->count; i++) {
1010                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1011                 struct sk_buff *skb;
1012                 unsigned int size = 1024;
1013
1014                 skb = alloc_skb(size, GFP_KERNEL);
1015                 if (!skb) {
1016                         ret_val = 3;
1017                         goto err_nomem;
1018                 }
1019                 skb_put(skb, size);
1020                 txdr->buffer_info[i].skb = skb;
1021                 txdr->buffer_info[i].length = skb->len;
1022                 txdr->buffer_info[i].dma =
1023                         dma_map_single(&pdev->dev, skb->data, skb->len,
1024                                        DMA_TO_DEVICE);
1025                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1026                         ret_val = 4;
1027                         goto err_nomem;
1028                 }
1029                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1030                 tx_desc->lower.data = cpu_to_le32(skb->len);
1031                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1032                                                    E1000_TXD_CMD_IFCS |
1033                                                    E1000_TXD_CMD_RPS);
1034                 tx_desc->upper.data = 0;
1035         }
1036
1037         /* Setup Rx descriptor ring and Rx buffers */
1038
1039         if (!rxdr->count)
1040                 rxdr->count = E1000_DEFAULT_RXD;
1041
1042         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1043                                     GFP_KERNEL);
1044         if (!rxdr->buffer_info) {
1045                 ret_val = 5;
1046                 goto err_nomem;
1047         }
1048
1049         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1050         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1051                                         GFP_KERNEL);
1052         if (!rxdr->desc) {
1053                 ret_val = 6;
1054                 goto err_nomem;
1055         }
1056         rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058         rctl = er32(RCTL);
1059         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1060         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1061         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1062         ew32(RDLEN, rxdr->size);
1063         ew32(RDH, 0);
1064         ew32(RDT, 0);
1065         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1066                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1067                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1068         ew32(RCTL, rctl);
1069
1070         for (i = 0; i < rxdr->count; i++) {
1071                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1072                 u8 *buf;
1073
1074                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1075                               GFP_KERNEL);
1076                 if (!buf) {
1077                         ret_val = 7;
1078                         goto err_nomem;
1079                 }
1080                 rxdr->buffer_info[i].rxbuf.data = buf;
1081
1082                 rxdr->buffer_info[i].dma =
1083                         dma_map_single(&pdev->dev,
1084                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1085                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1086                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1087                         ret_val = 8;
1088                         goto err_nomem;
1089                 }
1090                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1091         }
1092
1093         return 0;
1094
1095 err_nomem:
1096         e1000_free_desc_rings(adapter);
1097         return ret_val;
1098 }
1099
1100 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1101 {
1102         struct e1000_hw *hw = &adapter->hw;
1103
1104         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1105         e1000_write_phy_reg(hw, 29, 0x001F);
1106         e1000_write_phy_reg(hw, 30, 0x8FFC);
1107         e1000_write_phy_reg(hw, 29, 0x001A);
1108         e1000_write_phy_reg(hw, 30, 0x8FF0);
1109 }
1110
1111 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1112 {
1113         struct e1000_hw *hw = &adapter->hw;
1114         u16 phy_reg;
1115
1116         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1117          * Extended PHY Specific Control Register to 25MHz clock.  This
1118          * value defaults back to a 2.5MHz clock when the PHY is reset.
1119          */
1120         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1121         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1122         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1123
1124         /* In addition, because of the s/w reset above, we need to enable
1125          * CRS on TX.  This must be set for both full and half duplex
1126          * operation.
1127          */
1128         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1129         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1130         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1131 }
1132
1133 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1134 {
1135         struct e1000_hw *hw = &adapter->hw;
1136         u32 ctrl_reg;
1137         u16 phy_reg;
1138
1139         /* Setup the Device Control Register for PHY loopback test. */
1140
1141         ctrl_reg = er32(CTRL);
1142         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1143                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1144                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1145                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1146                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1147
1148         ew32(CTRL, ctrl_reg);
1149
1150         /* Read the PHY Specific Control Register (0x10) */
1151         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152
1153         /* Clear Auto-Crossover bits in PHY Specific Control Register
1154          * (bits 6:5).
1155          */
1156         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1157         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1158
1159         /* Perform software reset on the PHY */
1160         e1000_phy_reset(hw);
1161
1162         /* Have to setup TX_CLK and TX_CRS after software reset */
1163         e1000_phy_reset_clk_and_crs(adapter);
1164
1165         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1166
1167         /* Wait for reset to complete. */
1168         udelay(500);
1169
1170         /* Have to setup TX_CLK and TX_CRS after software reset */
1171         e1000_phy_reset_clk_and_crs(adapter);
1172
1173         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1174         e1000_phy_disable_receiver(adapter);
1175
1176         /* Set the loopback bit in the PHY control register. */
1177         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178         phy_reg |= MII_CR_LOOPBACK;
1179         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1180
1181         /* Setup TX_CLK and TX_CRS one more time. */
1182         e1000_phy_reset_clk_and_crs(adapter);
1183
1184         /* Check Phy Configuration */
1185         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1186         if (phy_reg != 0x4100)
1187                 return 9;
1188
1189         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1190         if (phy_reg != 0x0070)
1191                 return 10;
1192
1193         e1000_read_phy_reg(hw, 29, &phy_reg);
1194         if (phy_reg != 0x001A)
1195                 return 11;
1196
1197         return 0;
1198 }
1199
1200 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1201 {
1202         struct e1000_hw *hw = &adapter->hw;
1203         u32 ctrl_reg = 0;
1204         u32 stat_reg = 0;
1205
1206         hw->autoneg = false;
1207
1208         if (hw->phy_type == e1000_phy_m88) {
1209                 /* Auto-MDI/MDIX Off */
1210                 e1000_write_phy_reg(hw,
1211                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1212                 /* reset to update Auto-MDI/MDIX */
1213                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1214                 /* autoneg off */
1215                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1216         }
1217
1218         ctrl_reg = er32(CTRL);
1219
1220         /* force 1000, set loopback */
1221         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1222
1223         /* Now set up the MAC to the same speed/duplex as the PHY. */
1224         ctrl_reg = er32(CTRL);
1225         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1226         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1227                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1228                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1229                         E1000_CTRL_FD); /* Force Duplex to FULL */
1230
1231         if (hw->media_type == e1000_media_type_copper &&
1232             hw->phy_type == e1000_phy_m88)
1233                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1234         else {
1235                 /* Set the ILOS bit on the fiber Nic is half
1236                  * duplex link is detected.
1237                  */
1238                 stat_reg = er32(STATUS);
1239                 if ((stat_reg & E1000_STATUS_FD) == 0)
1240                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1241         }
1242
1243         ew32(CTRL, ctrl_reg);
1244
1245         /* Disable the receiver on the PHY so when a cable is plugged in, the
1246          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1247          */
1248         if (hw->phy_type == e1000_phy_m88)
1249                 e1000_phy_disable_receiver(adapter);
1250
1251         udelay(500);
1252
1253         return 0;
1254 }
1255
1256 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1257 {
1258         struct e1000_hw *hw = &adapter->hw;
1259         u16 phy_reg = 0;
1260         u16 count = 0;
1261
1262         switch (hw->mac_type) {
1263         case e1000_82543:
1264                 if (hw->media_type == e1000_media_type_copper) {
1265                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1266                          * Some PHY registers get corrupted at random, so
1267                          * attempt this 10 times.
1268                          */
1269                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1270                                count++ < 10);
1271                         if (count < 11)
1272                                 return 0;
1273                 }
1274                 break;
1275
1276         case e1000_82544:
1277         case e1000_82540:
1278         case e1000_82545:
1279         case e1000_82545_rev_3:
1280         case e1000_82546:
1281         case e1000_82546_rev_3:
1282         case e1000_82541:
1283         case e1000_82541_rev_2:
1284         case e1000_82547:
1285         case e1000_82547_rev_2:
1286                 return e1000_integrated_phy_loopback(adapter);
1287         default:
1288                 /* Default PHY loopback work is to read the MII
1289                  * control register and assert bit 14 (loopback mode).
1290                  */
1291                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1292                 phy_reg |= MII_CR_LOOPBACK;
1293                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1294                 return 0;
1295         }
1296
1297         return 8;
1298 }
1299
1300 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1301 {
1302         struct e1000_hw *hw = &adapter->hw;
1303         u32 rctl;
1304
1305         if (hw->media_type == e1000_media_type_fiber ||
1306             hw->media_type == e1000_media_type_internal_serdes) {
1307                 switch (hw->mac_type) {
1308                 case e1000_82545:
1309                 case e1000_82546:
1310                 case e1000_82545_rev_3:
1311                 case e1000_82546_rev_3:
1312                         return e1000_set_phy_loopback(adapter);
1313                 default:
1314                         rctl = er32(RCTL);
1315                         rctl |= E1000_RCTL_LBM_TCVR;
1316                         ew32(RCTL, rctl);
1317                         return 0;
1318                 }
1319         } else if (hw->media_type == e1000_media_type_copper) {
1320                 return e1000_set_phy_loopback(adapter);
1321         }
1322
1323         return 7;
1324 }
1325
1326 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         u32 rctl;
1330         u16 phy_reg;
1331
1332         rctl = er32(RCTL);
1333         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1334         ew32(RCTL, rctl);
1335
1336         switch (hw->mac_type) {
1337         case e1000_82545:
1338         case e1000_82546:
1339         case e1000_82545_rev_3:
1340         case e1000_82546_rev_3:
1341         default:
1342                 hw->autoneg = true;
1343                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1344                 if (phy_reg & MII_CR_LOOPBACK) {
1345                         phy_reg &= ~MII_CR_LOOPBACK;
1346                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1347                         e1000_phy_reset(hw);
1348                 }
1349                 break;
1350         }
1351 }
1352
1353 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1354                                       unsigned int frame_size)
1355 {
1356         memset(skb->data, 0xFF, frame_size);
1357         frame_size &= ~1;
1358         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1359         skb->data[frame_size / 2 + 10] = 0xBE;
1360         skb->data[frame_size / 2 + 12] = 0xAF;
1361 }
1362
1363 static int e1000_check_lbtest_frame(const unsigned char *data,
1364                                     unsigned int frame_size)
1365 {
1366         frame_size &= ~1;
1367         if (*(data + 3) == 0xFF) {
1368                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1369                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1370                         return 0;
1371                 }
1372         }
1373         return 13;
1374 }
1375
1376 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1377 {
1378         struct e1000_hw *hw = &adapter->hw;
1379         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1380         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1381         struct pci_dev *pdev = adapter->pdev;
1382         int i, j, k, l, lc, good_cnt, ret_val = 0;
1383         unsigned long time;
1384
1385         ew32(RDT, rxdr->count - 1);
1386
1387         /* Calculate the loop count based on the largest descriptor ring
1388          * The idea is to wrap the largest ring a number of times using 64
1389          * send/receive pairs during each loop
1390          */
1391
1392         if (rxdr->count <= txdr->count)
1393                 lc = ((txdr->count / 64) * 2) + 1;
1394         else
1395                 lc = ((rxdr->count / 64) * 2) + 1;
1396
1397         k = l = 0;
1398         for (j = 0; j <= lc; j++) { /* loop count loop */
1399                 for (i = 0; i < 64; i++) { /* send the packets */
1400                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1401                                                   1024);
1402                         dma_sync_single_for_device(&pdev->dev,
1403                                                    txdr->buffer_info[k].dma,
1404                                                    txdr->buffer_info[k].length,
1405                                                    DMA_TO_DEVICE);
1406                         if (unlikely(++k == txdr->count))
1407                                 k = 0;
1408                 }
1409                 ew32(TDT, k);
1410                 E1000_WRITE_FLUSH();
1411                 msleep(200);
1412                 time = jiffies; /* set the start time for the receive */
1413                 good_cnt = 0;
1414                 do { /* receive the sent packets */
1415                         dma_sync_single_for_cpu(&pdev->dev,
1416                                                 rxdr->buffer_info[l].dma,
1417                                                 E1000_RXBUFFER_2048,
1418                                                 DMA_FROM_DEVICE);
1419
1420                         ret_val = e1000_check_lbtest_frame(
1421                                         rxdr->buffer_info[l].rxbuf.data +
1422                                         NET_SKB_PAD + NET_IP_ALIGN,
1423                                         1024);
1424                         if (!ret_val)
1425                                 good_cnt++;
1426                         if (unlikely(++l == rxdr->count))
1427                                 l = 0;
1428                         /* time + 20 msecs (200 msecs on 2.4) is more than
1429                          * enough time to complete the receives, if it's
1430                          * exceeded, break and error off
1431                          */
1432                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1433
1434                 if (good_cnt != 64) {
1435                         ret_val = 13; /* ret_val is the same as mis-compare */
1436                         break;
1437                 }
1438                 if (time_after_eq(jiffies, time + 2)) {
1439                         ret_val = 14; /* error code for time out error */
1440                         break;
1441                 }
1442         } /* end loop count loop */
1443         return ret_val;
1444 }
1445
1446 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1447 {
1448         *data = e1000_setup_desc_rings(adapter);
1449         if (*data)
1450                 goto out;
1451         *data = e1000_setup_loopback_test(adapter);
1452         if (*data)
1453                 goto err_loopback;
1454         *data = e1000_run_loopback_test(adapter);
1455         e1000_loopback_cleanup(adapter);
1456
1457 err_loopback:
1458         e1000_free_desc_rings(adapter);
1459 out:
1460         return *data;
1461 }
1462
1463 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1464 {
1465         struct e1000_hw *hw = &adapter->hw;
1466         *data = 0;
1467         if (hw->media_type == e1000_media_type_internal_serdes) {
1468                 int i = 0;
1469
1470                 hw->serdes_has_link = false;
1471
1472                 /* On some blade server designs, link establishment
1473                  * could take as long as 2-3 minutes
1474                  */
1475                 do {
1476                         e1000_check_for_link(hw);
1477                         if (hw->serdes_has_link)
1478                                 return *data;
1479                         msleep(20);
1480                 } while (i++ < 3750);
1481
1482                 *data = 1;
1483         } else {
1484                 e1000_check_for_link(hw);
1485                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1486                         msleep(4000);
1487
1488                 if (!(er32(STATUS) & E1000_STATUS_LU))
1489                         *data = 1;
1490         }
1491         return *data;
1492 }
1493
1494 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1495 {
1496         switch (sset) {
1497         case ETH_SS_TEST:
1498                 return E1000_TEST_LEN;
1499         case ETH_SS_STATS:
1500                 return E1000_STATS_LEN;
1501         default:
1502                 return -EOPNOTSUPP;
1503         }
1504 }
1505
1506 static void e1000_diag_test(struct net_device *netdev,
1507                             struct ethtool_test *eth_test, u64 *data)
1508 {
1509         struct e1000_adapter *adapter = netdev_priv(netdev);
1510         struct e1000_hw *hw = &adapter->hw;
1511         bool if_running = netif_running(netdev);
1512
1513         set_bit(__E1000_TESTING, &adapter->flags);
1514         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1515                 /* Offline tests */
1516
1517                 /* save speed, duplex, autoneg settings */
1518                 u16 autoneg_advertised = hw->autoneg_advertised;
1519                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1520                 u8 autoneg = hw->autoneg;
1521
1522                 e_info(hw, "offline testing starting\n");
1523
1524                 /* Link test performed before hardware reset so autoneg doesn't
1525                  * interfere with test result
1526                  */
1527                 if (e1000_link_test(adapter, &data[4]))
1528                         eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530                 if (if_running)
1531                         /* indicate we're in test mode */
1532                         e1000_close(netdev);
1533                 else
1534                         e1000_reset(adapter);
1535
1536                 if (e1000_reg_test(adapter, &data[0]))
1537                         eth_test->flags |= ETH_TEST_FL_FAILED;
1538
1539                 e1000_reset(adapter);
1540                 if (e1000_eeprom_test(adapter, &data[1]))
1541                         eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543                 e1000_reset(adapter);
1544                 if (e1000_intr_test(adapter, &data[2]))
1545                         eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547                 e1000_reset(adapter);
1548                 /* make sure the phy is powered up */
1549                 e1000_power_up_phy(adapter);
1550                 if (e1000_loopback_test(adapter, &data[3]))
1551                         eth_test->flags |= ETH_TEST_FL_FAILED;
1552
1553                 /* restore speed, duplex, autoneg settings */
1554                 hw->autoneg_advertised = autoneg_advertised;
1555                 hw->forced_speed_duplex = forced_speed_duplex;
1556                 hw->autoneg = autoneg;
1557
1558                 e1000_reset(adapter);
1559                 clear_bit(__E1000_TESTING, &adapter->flags);
1560                 if (if_running)
1561                         e1000_open(netdev);
1562         } else {
1563                 e_info(hw, "online testing starting\n");
1564                 /* Online tests */
1565                 if (e1000_link_test(adapter, &data[4]))
1566                         eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568                 /* Online tests aren't run; pass by default */
1569                 data[0] = 0;
1570                 data[1] = 0;
1571                 data[2] = 0;
1572                 data[3] = 0;
1573
1574                 clear_bit(__E1000_TESTING, &adapter->flags);
1575         }
1576         msleep_interruptible(4 * 1000);
1577 }
1578
1579 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1580                                struct ethtool_wolinfo *wol)
1581 {
1582         struct e1000_hw *hw = &adapter->hw;
1583         int retval = 1; /* fail by default */
1584
1585         switch (hw->device_id) {
1586         case E1000_DEV_ID_82542:
1587         case E1000_DEV_ID_82543GC_FIBER:
1588         case E1000_DEV_ID_82543GC_COPPER:
1589         case E1000_DEV_ID_82544EI_FIBER:
1590         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1591         case E1000_DEV_ID_82545EM_FIBER:
1592         case E1000_DEV_ID_82545EM_COPPER:
1593         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1594         case E1000_DEV_ID_82546GB_PCIE:
1595                 /* these don't support WoL at all */
1596                 wol->supported = 0;
1597                 break;
1598         case E1000_DEV_ID_82546EB_FIBER:
1599         case E1000_DEV_ID_82546GB_FIBER:
1600                 /* Wake events not supported on port B */
1601                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1602                         wol->supported = 0;
1603                         break;
1604                 }
1605                 /* return success for non excluded adapter ports */
1606                 retval = 0;
1607                 break;
1608         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1609                 /* quad port adapters only support WoL on port A */
1610                 if (!adapter->quad_port_a) {
1611                         wol->supported = 0;
1612                         break;
1613                 }
1614                 /* return success for non excluded adapter ports */
1615                 retval = 0;
1616                 break;
1617         default:
1618                 /* dual port cards only support WoL on port A from now on
1619                  * unless it was enabled in the eeprom for port B
1620                  * so exclude FUNC_1 ports from having WoL enabled
1621                  */
1622                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1623                     !adapter->eeprom_wol) {
1624                         wol->supported = 0;
1625                         break;
1626                 }
1627
1628                 retval = 0;
1629         }
1630
1631         return retval;
1632 }
1633
1634 static void e1000_get_wol(struct net_device *netdev,
1635                           struct ethtool_wolinfo *wol)
1636 {
1637         struct e1000_adapter *adapter = netdev_priv(netdev);
1638         struct e1000_hw *hw = &adapter->hw;
1639
1640         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1641         wol->wolopts = 0;
1642
1643         /* this function will set ->supported = 0 and return 1 if wol is not
1644          * supported by this hardware
1645          */
1646         if (e1000_wol_exclusion(adapter, wol) ||
1647             !device_can_wakeup(&adapter->pdev->dev))
1648                 return;
1649
1650         /* apply any specific unsupported masks here */
1651         switch (hw->device_id) {
1652         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653                 /* KSP3 does not support UCAST wake-ups */
1654                 wol->supported &= ~WAKE_UCAST;
1655
1656                 if (adapter->wol & E1000_WUFC_EX)
1657                         e_err(drv, "Interface does not support directed "
1658                               "(unicast) frame wake-up packets\n");
1659                 break;
1660         default:
1661                 break;
1662         }
1663
1664         if (adapter->wol & E1000_WUFC_EX)
1665                 wol->wolopts |= WAKE_UCAST;
1666         if (adapter->wol & E1000_WUFC_MC)
1667                 wol->wolopts |= WAKE_MCAST;
1668         if (adapter->wol & E1000_WUFC_BC)
1669                 wol->wolopts |= WAKE_BCAST;
1670         if (adapter->wol & E1000_WUFC_MAG)
1671                 wol->wolopts |= WAKE_MAGIC;
1672 }
1673
1674 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1675 {
1676         struct e1000_adapter *adapter = netdev_priv(netdev);
1677         struct e1000_hw *hw = &adapter->hw;
1678
1679         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1680                 return -EOPNOTSUPP;
1681
1682         if (e1000_wol_exclusion(adapter, wol) ||
1683             !device_can_wakeup(&adapter->pdev->dev))
1684                 return wol->wolopts ? -EOPNOTSUPP : 0;
1685
1686         switch (hw->device_id) {
1687         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1688                 if (wol->wolopts & WAKE_UCAST) {
1689                         e_err(drv, "Interface does not support directed "
1690                               "(unicast) frame wake-up packets\n");
1691                         return -EOPNOTSUPP;
1692                 }
1693                 break;
1694         default:
1695                 break;
1696         }
1697
1698         /* these settings will always override what we currently have */
1699         adapter->wol = 0;
1700
1701         if (wol->wolopts & WAKE_UCAST)
1702                 adapter->wol |= E1000_WUFC_EX;
1703         if (wol->wolopts & WAKE_MCAST)
1704                 adapter->wol |= E1000_WUFC_MC;
1705         if (wol->wolopts & WAKE_BCAST)
1706                 adapter->wol |= E1000_WUFC_BC;
1707         if (wol->wolopts & WAKE_MAGIC)
1708                 adapter->wol |= E1000_WUFC_MAG;
1709
1710         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1711
1712         return 0;
1713 }
1714
1715 static int e1000_set_phys_id(struct net_device *netdev,
1716                              enum ethtool_phys_id_state state)
1717 {
1718         struct e1000_adapter *adapter = netdev_priv(netdev);
1719         struct e1000_hw *hw = &adapter->hw;
1720
1721         switch (state) {
1722         case ETHTOOL_ID_ACTIVE:
1723                 e1000_setup_led(hw);
1724                 return 2;
1725
1726         case ETHTOOL_ID_ON:
1727                 e1000_led_on(hw);
1728                 break;
1729
1730         case ETHTOOL_ID_OFF:
1731                 e1000_led_off(hw);
1732                 break;
1733
1734         case ETHTOOL_ID_INACTIVE:
1735                 e1000_cleanup_led(hw);
1736         }
1737
1738         return 0;
1739 }
1740
1741 static int e1000_get_coalesce(struct net_device *netdev,
1742                               struct ethtool_coalesce *ec)
1743 {
1744         struct e1000_adapter *adapter = netdev_priv(netdev);
1745
1746         if (adapter->hw.mac_type < e1000_82545)
1747                 return -EOPNOTSUPP;
1748
1749         if (adapter->itr_setting <= 4)
1750                 ec->rx_coalesce_usecs = adapter->itr_setting;
1751         else
1752                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1753
1754         return 0;
1755 }
1756
1757 static int e1000_set_coalesce(struct net_device *netdev,
1758                               struct ethtool_coalesce *ec)
1759 {
1760         struct e1000_adapter *adapter = netdev_priv(netdev);
1761         struct e1000_hw *hw = &adapter->hw;
1762
1763         if (hw->mac_type < e1000_82545)
1764                 return -EOPNOTSUPP;
1765
1766         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1767             ((ec->rx_coalesce_usecs > 4) &&
1768              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1769             (ec->rx_coalesce_usecs == 2))
1770                 return -EINVAL;
1771
1772         if (ec->rx_coalesce_usecs == 4) {
1773                 adapter->itr = adapter->itr_setting = 4;
1774         } else if (ec->rx_coalesce_usecs <= 3) {
1775                 adapter->itr = 20000;
1776                 adapter->itr_setting = ec->rx_coalesce_usecs;
1777         } else {
1778                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1779                 adapter->itr_setting = adapter->itr & ~3;
1780         }
1781
1782         if (adapter->itr_setting != 0)
1783                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1784         else
1785                 ew32(ITR, 0);
1786
1787         return 0;
1788 }
1789
1790 static int e1000_nway_reset(struct net_device *netdev)
1791 {
1792         struct e1000_adapter *adapter = netdev_priv(netdev);
1793
1794         if (netif_running(netdev))
1795                 e1000_reinit_locked(adapter);
1796         return 0;
1797 }
1798
1799 static void e1000_get_ethtool_stats(struct net_device *netdev,
1800                                     struct ethtool_stats *stats, u64 *data)
1801 {
1802         struct e1000_adapter *adapter = netdev_priv(netdev);
1803         int i;
1804         const struct e1000_stats *stat = e1000_gstrings_stats;
1805
1806         e1000_update_stats(adapter);
1807         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1808                 char *p;
1809
1810                 switch (stat->type) {
1811                 case NETDEV_STATS:
1812                         p = (char *)netdev + stat->stat_offset;
1813                         break;
1814                 case E1000_STATS:
1815                         p = (char *)adapter + stat->stat_offset;
1816                         break;
1817                 default:
1818                         netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1819                                          stat->type, i);
1820                         continue;
1821                 }
1822
1823                 if (stat->sizeof_stat == sizeof(u64))
1824                         data[i] = *(u64 *)p;
1825                 else
1826                         data[i] = *(u32 *)p;
1827         }
1828 /* BUG_ON(i != E1000_STATS_LEN); */
1829 }
1830
1831 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1832                               u8 *data)
1833 {
1834         u8 *p = data;
1835         int i;
1836
1837         switch (stringset) {
1838         case ETH_SS_TEST:
1839                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1840                 break;
1841         case ETH_SS_STATS:
1842                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1843                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1844                                ETH_GSTRING_LEN);
1845                         p += ETH_GSTRING_LEN;
1846                 }
1847                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1848                 break;
1849         }
1850 }
1851
1852 static const struct ethtool_ops e1000_ethtool_ops = {
1853         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1854         .get_drvinfo            = e1000_get_drvinfo,
1855         .get_regs_len           = e1000_get_regs_len,
1856         .get_regs               = e1000_get_regs,
1857         .get_wol                = e1000_get_wol,
1858         .set_wol                = e1000_set_wol,
1859         .get_msglevel           = e1000_get_msglevel,
1860         .set_msglevel           = e1000_set_msglevel,
1861         .nway_reset             = e1000_nway_reset,
1862         .get_link               = e1000_get_link,
1863         .get_eeprom_len         = e1000_get_eeprom_len,
1864         .get_eeprom             = e1000_get_eeprom,
1865         .set_eeprom             = e1000_set_eeprom,
1866         .get_ringparam          = e1000_get_ringparam,
1867         .set_ringparam          = e1000_set_ringparam,
1868         .get_pauseparam         = e1000_get_pauseparam,
1869         .set_pauseparam         = e1000_set_pauseparam,
1870         .self_test              = e1000_diag_test,
1871         .get_strings            = e1000_get_strings,
1872         .set_phys_id            = e1000_set_phys_id,
1873         .get_ethtool_stats      = e1000_get_ethtool_stats,
1874         .get_sset_count         = e1000_get_sset_count,
1875         .get_coalesce           = e1000_get_coalesce,
1876         .set_coalesce           = e1000_set_coalesce,
1877         .get_ts_info            = ethtool_op_get_ts_info,
1878         .get_link_ksettings     = e1000_get_link_ksettings,
1879         .set_link_ksettings     = e1000_set_link_ksettings,
1880 };
1881
1882 void e1000_set_ethtool_ops(struct net_device *netdev)
1883 {
1884         netdev->ethtool_ops = &e1000_ethtool_ops;
1885 }