GNU Linux-libre 4.4.282-gnu1
[releases.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT      (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120                                 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159
160         bdp->bufPtr = cpu_to_be32(buf);
161
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166         gfar_wmb();
167
168         bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar __iomem *regs = priv->gfargrp[0].regs;
175         struct gfar_priv_tx_q *tx_queue = NULL;
176         struct gfar_priv_rx_q *rx_queue = NULL;
177         struct txbd8 *txbdp;
178         u32 __iomem *rfbptr;
179         int i, j;
180
181         for (i = 0; i < priv->num_tx_queues; i++) {
182                 tx_queue = priv->tx_queue[i];
183                 /* Initialize some variables in our dev structure */
184                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186                 tx_queue->cur_tx = tx_queue->tx_bd_base;
187                 tx_queue->skb_curtx = 0;
188                 tx_queue->skb_dirtytx = 0;
189
190                 /* Initialize Transmit Descriptor Ring */
191                 txbdp = tx_queue->tx_bd_base;
192                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193                         txbdp->lstatus = 0;
194                         txbdp->bufPtr = 0;
195                         txbdp++;
196                 }
197
198                 /* Set the last descriptor in the ring to indicate wrap */
199                 txbdp--;
200                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201                                             TXBD_WRAP);
202         }
203
204         rfbptr = &regs->rfbptr0;
205         for (i = 0; i < priv->num_rx_queues; i++) {
206                 rx_queue = priv->rx_queue[i];
207
208                 rx_queue->next_to_clean = 0;
209                 rx_queue->next_to_use = 0;
210                 rx_queue->next_to_alloc = 0;
211
212                 /* make sure next_to_clean != next_to_use after this
213                  * by leaving at least 1 unused descriptor
214                  */
215                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217                 rx_queue->rfbptr = rfbptr;
218                 rfbptr += 2;
219         }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224         void *vaddr;
225         dma_addr_t addr;
226         int i, j;
227         struct gfar_private *priv = netdev_priv(ndev);
228         struct device *dev = priv->dev;
229         struct gfar_priv_tx_q *tx_queue = NULL;
230         struct gfar_priv_rx_q *rx_queue = NULL;
231
232         priv->total_tx_ring_size = 0;
233         for (i = 0; i < priv->num_tx_queues; i++)
234                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236         priv->total_rx_ring_size = 0;
237         for (i = 0; i < priv->num_rx_queues; i++)
238                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240         /* Allocate memory for the buffer descriptors */
241         vaddr = dma_alloc_coherent(dev,
242                                    (priv->total_tx_ring_size *
243                                     sizeof(struct txbd8)) +
244                                    (priv->total_rx_ring_size *
245                                     sizeof(struct rxbd8)),
246                                    &addr, GFP_KERNEL);
247         if (!vaddr)
248                 return -ENOMEM;
249
250         for (i = 0; i < priv->num_tx_queues; i++) {
251                 tx_queue = priv->tx_queue[i];
252                 tx_queue->tx_bd_base = vaddr;
253                 tx_queue->tx_bd_dma_base = addr;
254                 tx_queue->dev = ndev;
255                 /* enet DMA only understands physical addresses */
256                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258         }
259
260         /* Start the rx descriptor ring where the tx ring leaves off */
261         for (i = 0; i < priv->num_rx_queues; i++) {
262                 rx_queue = priv->rx_queue[i];
263                 rx_queue->rx_bd_base = vaddr;
264                 rx_queue->rx_bd_dma_base = addr;
265                 rx_queue->ndev = ndev;
266                 rx_queue->dev = dev;
267                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269         }
270
271         /* Setup the skbuff rings */
272         for (i = 0; i < priv->num_tx_queues; i++) {
273                 tx_queue = priv->tx_queue[i];
274                 tx_queue->tx_skbuff =
275                         kmalloc_array(tx_queue->tx_ring_size,
276                                       sizeof(*tx_queue->tx_skbuff),
277                                       GFP_KERNEL);
278                 if (!tx_queue->tx_skbuff)
279                         goto cleanup;
280
281                 for (j = 0; j < tx_queue->tx_ring_size; j++)
282                         tx_queue->tx_skbuff[j] = NULL;
283         }
284
285         for (i = 0; i < priv->num_rx_queues; i++) {
286                 rx_queue = priv->rx_queue[i];
287                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288                                             sizeof(*rx_queue->rx_buff),
289                                             GFP_KERNEL);
290                 if (!rx_queue->rx_buff)
291                         goto cleanup;
292         }
293
294         gfar_init_bds(ndev);
295
296         return 0;
297
298 cleanup:
299         free_skb_resources(priv);
300         return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305         struct gfar __iomem *regs = priv->gfargrp[0].regs;
306         u32 __iomem *baddr;
307         int i;
308
309         baddr = &regs->tbase0;
310         for (i = 0; i < priv->num_tx_queues; i++) {
311                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312                 baddr += 2;
313         }
314
315         baddr = &regs->rbase0;
316         for (i = 0; i < priv->num_rx_queues; i++) {
317                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318                 baddr += 2;
319         }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324         struct gfar __iomem *regs = priv->gfargrp[0].regs;
325         u32 __iomem *baddr;
326         int i;
327
328         baddr = &regs->rqprm0;
329         for (i = 0; i < priv->num_rx_queues; i++) {
330                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332                 baddr++;
333         }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338         /* set this when rx hw offload (TOE) functions are being used */
339         priv->uses_rxfcb = 0;
340
341         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342                 priv->uses_rxfcb = 1;
343
344         if (priv->hwts_rx_en || priv->rx_filer_enable)
345                 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350         struct gfar __iomem *regs = priv->gfargrp[0].regs;
351         u32 rctrl = 0;
352
353         if (priv->rx_filer_enable) {
354                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355                 /* Program the RIR0 reg with the required distribution */
356                 if (priv->poll_mode == GFAR_SQ_POLLING)
357                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358                 else /* GFAR_MQ_POLLING */
359                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360         }
361
362         /* Restore PROMISC mode */
363         if (priv->ndev->flags & IFF_PROMISC)
364                 rctrl |= RCTRL_PROM;
365
366         if (priv->ndev->features & NETIF_F_RXCSUM)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash)
370                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Enable HW time stamping if requested from user space */
378         if (priv->hwts_rx_en)
379                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384         /* Clear the LFC bit */
385         gfar_write(&regs->rctrl, rctrl);
386         /* Init flow control threshold values */
387         gfar_init_rqprm(priv);
388         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389         rctrl |= RCTRL_LFC;
390
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397         struct gfar __iomem *regs = priv->gfargrp[0].regs;
398         u32 tctrl = 0;
399
400         if (priv->ndev->features & NETIF_F_IP_CSUM)
401                 tctrl |= TCTRL_INIT_CSUM;
402
403         if (priv->prio_sched_en)
404                 tctrl |= TCTRL_TXSCHED_PRIO;
405         else {
406                 tctrl |= TCTRL_TXSCHED_WRRS;
407                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409         }
410
411         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412                 tctrl |= TCTRL_VLINS;
413
414         gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418                                unsigned long tx_mask, unsigned long rx_mask)
419 {
420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
421         u32 __iomem *baddr;
422
423         if (priv->mode == MQ_MG_MODE) {
424                 int i = 0;
425
426                 baddr = &regs->txic0;
427                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428                         gfar_write(baddr + i, 0);
429                         if (likely(priv->tx_queue[i]->txcoalescing))
430                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431                 }
432
433                 baddr = &regs->rxic0;
434                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435                         gfar_write(baddr + i, 0);
436                         if (likely(priv->rx_queue[i]->rxcoalescing))
437                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438                 }
439         } else {
440                 /* Backward compatible case -- even if we enable
441                  * multiple queues, there's only single reg to program
442                  */
443                 gfar_write(&regs->txic, 0);
444                 if (likely(priv->tx_queue[0]->txcoalescing))
445                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447                 gfar_write(&regs->rxic, 0);
448                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450         }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455         gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460         struct gfar_private *priv = netdev_priv(dev);
461         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462         unsigned long tx_packets = 0, tx_bytes = 0;
463         int i;
464
465         for (i = 0; i < priv->num_rx_queues; i++) {
466                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469         }
470
471         dev->stats.rx_packets = rx_packets;
472         dev->stats.rx_bytes   = rx_bytes;
473         dev->stats.rx_dropped = rx_dropped;
474
475         for (i = 0; i < priv->num_tx_queues; i++) {
476                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478         }
479
480         dev->stats.tx_bytes   = tx_bytes;
481         dev->stats.tx_packets = tx_packets;
482
483         return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488         int ret;
489
490         ret = eth_mac_addr(dev, p);
491         if (ret)
492                 return ret;
493
494         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
495
496         return 0;
497 }
498
499 static const struct net_device_ops gfar_netdev_ops = {
500         .ndo_open = gfar_enet_open,
501         .ndo_start_xmit = gfar_start_xmit,
502         .ndo_stop = gfar_close,
503         .ndo_change_mtu = gfar_change_mtu,
504         .ndo_set_features = gfar_set_features,
505         .ndo_set_rx_mode = gfar_set_multi,
506         .ndo_tx_timeout = gfar_timeout,
507         .ndo_do_ioctl = gfar_ioctl,
508         .ndo_get_stats = gfar_get_stats,
509         .ndo_set_mac_address = gfar_set_mac_addr,
510         .ndo_validate_addr = eth_validate_addr,
511 #ifdef CONFIG_NET_POLL_CONTROLLER
512         .ndo_poll_controller = gfar_netpoll,
513 #endif
514 };
515
516 static void gfar_ints_disable(struct gfar_private *priv)
517 {
518         int i;
519         for (i = 0; i < priv->num_grps; i++) {
520                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
521                 /* Clear IEVENT */
522                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
523
524                 /* Initialize IMASK */
525                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
526         }
527 }
528
529 static void gfar_ints_enable(struct gfar_private *priv)
530 {
531         int i;
532         for (i = 0; i < priv->num_grps; i++) {
533                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
534                 /* Unmask the interrupts we look for */
535                 gfar_write(&regs->imask, IMASK_DEFAULT);
536         }
537 }
538
539 static int gfar_alloc_tx_queues(struct gfar_private *priv)
540 {
541         int i;
542
543         for (i = 0; i < priv->num_tx_queues; i++) {
544                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
545                                             GFP_KERNEL);
546                 if (!priv->tx_queue[i])
547                         return -ENOMEM;
548
549                 priv->tx_queue[i]->tx_skbuff = NULL;
550                 priv->tx_queue[i]->qindex = i;
551                 priv->tx_queue[i]->dev = priv->ndev;
552                 spin_lock_init(&(priv->tx_queue[i]->txlock));
553         }
554         return 0;
555 }
556
557 static int gfar_alloc_rx_queues(struct gfar_private *priv)
558 {
559         int i;
560
561         for (i = 0; i < priv->num_rx_queues; i++) {
562                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
563                                             GFP_KERNEL);
564                 if (!priv->rx_queue[i])
565                         return -ENOMEM;
566
567                 priv->rx_queue[i]->qindex = i;
568                 priv->rx_queue[i]->ndev = priv->ndev;
569         }
570         return 0;
571 }
572
573 static void gfar_free_tx_queues(struct gfar_private *priv)
574 {
575         int i;
576
577         for (i = 0; i < priv->num_tx_queues; i++)
578                 kfree(priv->tx_queue[i]);
579 }
580
581 static void gfar_free_rx_queues(struct gfar_private *priv)
582 {
583         int i;
584
585         for (i = 0; i < priv->num_rx_queues; i++)
586                 kfree(priv->rx_queue[i]);
587 }
588
589 static void unmap_group_regs(struct gfar_private *priv)
590 {
591         int i;
592
593         for (i = 0; i < MAXGROUPS; i++)
594                 if (priv->gfargrp[i].regs)
595                         iounmap(priv->gfargrp[i].regs);
596 }
597
598 static void free_gfar_dev(struct gfar_private *priv)
599 {
600         int i, j;
601
602         for (i = 0; i < priv->num_grps; i++)
603                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
604                         kfree(priv->gfargrp[i].irqinfo[j]);
605                         priv->gfargrp[i].irqinfo[j] = NULL;
606                 }
607
608         free_netdev(priv->ndev);
609 }
610
611 static void disable_napi(struct gfar_private *priv)
612 {
613         int i;
614
615         for (i = 0; i < priv->num_grps; i++) {
616                 napi_disable(&priv->gfargrp[i].napi_rx);
617                 napi_disable(&priv->gfargrp[i].napi_tx);
618         }
619 }
620
621 static void enable_napi(struct gfar_private *priv)
622 {
623         int i;
624
625         for (i = 0; i < priv->num_grps; i++) {
626                 napi_enable(&priv->gfargrp[i].napi_rx);
627                 napi_enable(&priv->gfargrp[i].napi_tx);
628         }
629 }
630
631 static int gfar_parse_group(struct device_node *np,
632                             struct gfar_private *priv, const char *model)
633 {
634         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
635         int i;
636
637         for (i = 0; i < GFAR_NUM_IRQS; i++) {
638                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
639                                           GFP_KERNEL);
640                 if (!grp->irqinfo[i])
641                         return -ENOMEM;
642         }
643
644         grp->regs = of_iomap(np, 0);
645         if (!grp->regs)
646                 return -ENOMEM;
647
648         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
649
650         /* If we aren't the FEC we have multiple interrupts */
651         if (model && strcasecmp(model, "FEC")) {
652                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
653                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
654                 if (!gfar_irq(grp, TX)->irq ||
655                     !gfar_irq(grp, RX)->irq ||
656                     !gfar_irq(grp, ER)->irq)
657                         return -EINVAL;
658         }
659
660         grp->priv = priv;
661         spin_lock_init(&grp->grplock);
662         if (priv->mode == MQ_MG_MODE) {
663                 u32 rxq_mask, txq_mask;
664                 int ret;
665
666                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
667                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
668
669                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
670                 if (!ret) {
671                         grp->rx_bit_map = rxq_mask ?
672                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
673                 }
674
675                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
676                 if (!ret) {
677                         grp->tx_bit_map = txq_mask ?
678                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
679                 }
680
681                 if (priv->poll_mode == GFAR_SQ_POLLING) {
682                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
683                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
684                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
685                 }
686         } else {
687                 grp->rx_bit_map = 0xFF;
688                 grp->tx_bit_map = 0xFF;
689         }
690
691         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
692          * right to left, so we need to revert the 8 bits to get the q index
693          */
694         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
695         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
696
697         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
698          * also assign queues to groups
699          */
700         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
701                 if (!grp->rx_queue)
702                         grp->rx_queue = priv->rx_queue[i];
703                 grp->num_rx_queues++;
704                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
705                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
706                 priv->rx_queue[i]->grp = grp;
707         }
708
709         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
710                 if (!grp->tx_queue)
711                         grp->tx_queue = priv->tx_queue[i];
712                 grp->num_tx_queues++;
713                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
714                 priv->tqueue |= (TQUEUE_EN0 >> i);
715                 priv->tx_queue[i]->grp = grp;
716         }
717
718         priv->num_grps++;
719
720         return 0;
721 }
722
723 static int gfar_of_group_count(struct device_node *np)
724 {
725         struct device_node *child;
726         int num = 0;
727
728         for_each_available_child_of_node(np, child)
729                 if (!of_node_cmp(child->name, "queue-group"))
730                         num++;
731
732         return num;
733 }
734
735 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
736 {
737         const char *model;
738         const char *ctype;
739         const void *mac_addr;
740         int err = 0, i;
741         struct net_device *dev = NULL;
742         struct gfar_private *priv = NULL;
743         struct device_node *np = ofdev->dev.of_node;
744         struct device_node *child = NULL;
745         struct property *stash;
746         u32 stash_len = 0;
747         u32 stash_idx = 0;
748         unsigned int num_tx_qs, num_rx_qs;
749         unsigned short mode, poll_mode;
750
751         if (!np)
752                 return -ENODEV;
753
754         if (of_device_is_compatible(np, "fsl,etsec2")) {
755                 mode = MQ_MG_MODE;
756                 poll_mode = GFAR_SQ_POLLING;
757         } else {
758                 mode = SQ_SG_MODE;
759                 poll_mode = GFAR_SQ_POLLING;
760         }
761
762         if (mode == SQ_SG_MODE) {
763                 num_tx_qs = 1;
764                 num_rx_qs = 1;
765         } else { /* MQ_MG_MODE */
766                 /* get the actual number of supported groups */
767                 unsigned int num_grps = gfar_of_group_count(np);
768
769                 if (num_grps == 0 || num_grps > MAXGROUPS) {
770                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
771                                 num_grps);
772                         pr_err("Cannot do alloc_etherdev, aborting\n");
773                         return -EINVAL;
774                 }
775
776                 if (poll_mode == GFAR_SQ_POLLING) {
777                         num_tx_qs = num_grps; /* one txq per int group */
778                         num_rx_qs = num_grps; /* one rxq per int group */
779                 } else { /* GFAR_MQ_POLLING */
780                         u32 tx_queues, rx_queues;
781                         int ret;
782
783                         /* parse the num of HW tx and rx queues */
784                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
785                                                    &tx_queues);
786                         num_tx_qs = ret ? 1 : tx_queues;
787
788                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
789                                                    &rx_queues);
790                         num_rx_qs = ret ? 1 : rx_queues;
791                 }
792         }
793
794         if (num_tx_qs > MAX_TX_QS) {
795                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
796                        num_tx_qs, MAX_TX_QS);
797                 pr_err("Cannot do alloc_etherdev, aborting\n");
798                 return -EINVAL;
799         }
800
801         if (num_rx_qs > MAX_RX_QS) {
802                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
803                        num_rx_qs, MAX_RX_QS);
804                 pr_err("Cannot do alloc_etherdev, aborting\n");
805                 return -EINVAL;
806         }
807
808         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
809         dev = *pdev;
810         if (NULL == dev)
811                 return -ENOMEM;
812
813         priv = netdev_priv(dev);
814         priv->ndev = dev;
815
816         priv->mode = mode;
817         priv->poll_mode = poll_mode;
818
819         priv->num_tx_queues = num_tx_qs;
820         netif_set_real_num_rx_queues(dev, num_rx_qs);
821         priv->num_rx_queues = num_rx_qs;
822
823         err = gfar_alloc_tx_queues(priv);
824         if (err)
825                 goto tx_alloc_failed;
826
827         err = gfar_alloc_rx_queues(priv);
828         if (err)
829                 goto rx_alloc_failed;
830
831         err = of_property_read_string(np, "model", &model);
832         if (err) {
833                 pr_err("Device model property missing, aborting\n");
834                 goto rx_alloc_failed;
835         }
836
837         /* Init Rx queue filer rule set linked list */
838         INIT_LIST_HEAD(&priv->rx_list.list);
839         priv->rx_list.count = 0;
840         mutex_init(&priv->rx_queue_access);
841
842         for (i = 0; i < MAXGROUPS; i++)
843                 priv->gfargrp[i].regs = NULL;
844
845         /* Parse and initialize group specific information */
846         if (priv->mode == MQ_MG_MODE) {
847                 for_each_available_child_of_node(np, child) {
848                         if (of_node_cmp(child->name, "queue-group"))
849                                 continue;
850
851                         err = gfar_parse_group(child, priv, model);
852                         if (err) {
853                                 of_node_put(child);
854                                 goto err_grp_init;
855                         }
856                 }
857         } else { /* SQ_SG_MODE */
858                 err = gfar_parse_group(np, priv, model);
859                 if (err)
860                         goto err_grp_init;
861         }
862
863         stash = of_find_property(np, "bd-stash", NULL);
864
865         if (stash) {
866                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
867                 priv->bd_stash_en = 1;
868         }
869
870         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
871
872         if (err == 0)
873                 priv->rx_stash_size = stash_len;
874
875         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
876
877         if (err == 0)
878                 priv->rx_stash_index = stash_idx;
879
880         if (stash_len || stash_idx)
881                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
882
883         mac_addr = of_get_mac_address(np);
884
885         if (mac_addr)
886                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
887
888         if (model && !strcasecmp(model, "TSEC"))
889                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890                                      FSL_GIANFAR_DEV_HAS_COALESCE |
891                                      FSL_GIANFAR_DEV_HAS_RMON |
892                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
893
894         if (model && !strcasecmp(model, "eTSEC"))
895                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
896                                      FSL_GIANFAR_DEV_HAS_COALESCE |
897                                      FSL_GIANFAR_DEV_HAS_RMON |
898                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
899                                      FSL_GIANFAR_DEV_HAS_CSUM |
900                                      FSL_GIANFAR_DEV_HAS_VLAN |
901                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
902                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
903                                      FSL_GIANFAR_DEV_HAS_TIMER |
904                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
905
906         err = of_property_read_string(np, "phy-connection-type", &ctype);
907
908         /* We only care about rgmii-id.  The rest are autodetected */
909         if (err == 0 && !strcmp(ctype, "rgmii-id"))
910                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
911         else
912                 priv->interface = PHY_INTERFACE_MODE_MII;
913
914         if (of_find_property(np, "fsl,magic-packet", NULL))
915                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
916
917         if (of_get_property(np, "fsl,wake-on-filer", NULL))
918                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
919
920         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
921
922         /* In the case of a fixed PHY, the DT node associated
923          * to the PHY is the Ethernet MAC DT node.
924          */
925         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
926                 err = of_phy_register_fixed_link(np);
927                 if (err)
928                         goto err_grp_init;
929
930                 priv->phy_node = of_node_get(np);
931         }
932
933         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
934         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
935
936         return 0;
937
938 err_grp_init:
939         unmap_group_regs(priv);
940 rx_alloc_failed:
941         gfar_free_rx_queues(priv);
942 tx_alloc_failed:
943         gfar_free_tx_queues(priv);
944         free_gfar_dev(priv);
945         return err;
946 }
947
948 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
949 {
950         struct hwtstamp_config config;
951         struct gfar_private *priv = netdev_priv(netdev);
952
953         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
954                 return -EFAULT;
955
956         /* reserved for future extensions */
957         if (config.flags)
958                 return -EINVAL;
959
960         switch (config.tx_type) {
961         case HWTSTAMP_TX_OFF:
962                 priv->hwts_tx_en = 0;
963                 break;
964         case HWTSTAMP_TX_ON:
965                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
966                         return -ERANGE;
967                 priv->hwts_tx_en = 1;
968                 break;
969         default:
970                 return -ERANGE;
971         }
972
973         switch (config.rx_filter) {
974         case HWTSTAMP_FILTER_NONE:
975                 if (priv->hwts_rx_en) {
976                         priv->hwts_rx_en = 0;
977                         reset_gfar(netdev);
978                 }
979                 break;
980         default:
981                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
982                         return -ERANGE;
983                 if (!priv->hwts_rx_en) {
984                         priv->hwts_rx_en = 1;
985                         reset_gfar(netdev);
986                 }
987                 config.rx_filter = HWTSTAMP_FILTER_ALL;
988                 break;
989         }
990
991         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
992                 -EFAULT : 0;
993 }
994
995 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
996 {
997         struct hwtstamp_config config;
998         struct gfar_private *priv = netdev_priv(netdev);
999
1000         config.flags = 0;
1001         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1002         config.rx_filter = (priv->hwts_rx_en ?
1003                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1004
1005         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1006                 -EFAULT : 0;
1007 }
1008
1009 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1010 {
1011         struct gfar_private *priv = netdev_priv(dev);
1012
1013         if (!netif_running(dev))
1014                 return -EINVAL;
1015
1016         if (cmd == SIOCSHWTSTAMP)
1017                 return gfar_hwtstamp_set(dev, rq);
1018         if (cmd == SIOCGHWTSTAMP)
1019                 return gfar_hwtstamp_get(dev, rq);
1020
1021         if (!priv->phydev)
1022                 return -ENODEV;
1023
1024         return phy_mii_ioctl(priv->phydev, rq, cmd);
1025 }
1026
1027 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1028                                    u32 class)
1029 {
1030         u32 rqfpr = FPR_FILER_MASK;
1031         u32 rqfcr = 0x0;
1032
1033         rqfar--;
1034         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1035         priv->ftp_rqfpr[rqfar] = rqfpr;
1036         priv->ftp_rqfcr[rqfar] = rqfcr;
1037         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1038
1039         rqfar--;
1040         rqfcr = RQFCR_CMP_NOMATCH;
1041         priv->ftp_rqfpr[rqfar] = rqfpr;
1042         priv->ftp_rqfcr[rqfar] = rqfcr;
1043         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044
1045         rqfar--;
1046         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1047         rqfpr = class;
1048         priv->ftp_rqfcr[rqfar] = rqfcr;
1049         priv->ftp_rqfpr[rqfar] = rqfpr;
1050         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051
1052         rqfar--;
1053         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1054         rqfpr = class;
1055         priv->ftp_rqfcr[rqfar] = rqfcr;
1056         priv->ftp_rqfpr[rqfar] = rqfpr;
1057         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1058
1059         return rqfar;
1060 }
1061
1062 static void gfar_init_filer_table(struct gfar_private *priv)
1063 {
1064         int i = 0x0;
1065         u32 rqfar = MAX_FILER_IDX;
1066         u32 rqfcr = 0x0;
1067         u32 rqfpr = FPR_FILER_MASK;
1068
1069         /* Default rule */
1070         rqfcr = RQFCR_CMP_MATCH;
1071         priv->ftp_rqfcr[rqfar] = rqfcr;
1072         priv->ftp_rqfpr[rqfar] = rqfpr;
1073         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1074
1075         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1076         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1077         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1078         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1079         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1080         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1081
1082         /* cur_filer_idx indicated the first non-masked rule */
1083         priv->cur_filer_idx = rqfar;
1084
1085         /* Rest are masked rules */
1086         rqfcr = RQFCR_CMP_NOMATCH;
1087         for (i = 0; i < rqfar; i++) {
1088                 priv->ftp_rqfcr[i] = rqfcr;
1089                 priv->ftp_rqfpr[i] = rqfpr;
1090                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1091         }
1092 }
1093
1094 #ifdef CONFIG_PPC
1095 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1096 {
1097         unsigned int pvr = mfspr(SPRN_PVR);
1098         unsigned int svr = mfspr(SPRN_SVR);
1099         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1100         unsigned int rev = svr & 0xffff;
1101
1102         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1103         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1104             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1105                 priv->errata |= GFAR_ERRATA_74;
1106
1107         /* MPC8313 and MPC837x all rev */
1108         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1109             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1110                 priv->errata |= GFAR_ERRATA_76;
1111
1112         /* MPC8313 Rev < 2.0 */
1113         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1114                 priv->errata |= GFAR_ERRATA_12;
1115 }
1116
1117 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1118 {
1119         unsigned int svr = mfspr(SPRN_SVR);
1120
1121         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1122                 priv->errata |= GFAR_ERRATA_12;
1123         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1124             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1125                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1126 }
1127 #endif
1128
1129 static void gfar_detect_errata(struct gfar_private *priv)
1130 {
1131         struct device *dev = &priv->ofdev->dev;
1132
1133         /* no plans to fix */
1134         priv->errata |= GFAR_ERRATA_A002;
1135
1136 #ifdef CONFIG_PPC
1137         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1138                 __gfar_detect_errata_85xx(priv);
1139         else /* non-mpc85xx parts, i.e. e300 core based */
1140                 __gfar_detect_errata_83xx(priv);
1141 #endif
1142
1143         if (priv->errata)
1144                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1145                          priv->errata);
1146 }
1147
1148 void gfar_mac_reset(struct gfar_private *priv)
1149 {
1150         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1151         u32 tempval;
1152
1153         /* Reset MAC layer */
1154         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1155
1156         /* We need to delay at least 3 TX clocks */
1157         udelay(3);
1158
1159         /* the soft reset bit is not self-resetting, so we need to
1160          * clear it before resuming normal operation
1161          */
1162         gfar_write(&regs->maccfg1, 0);
1163
1164         udelay(3);
1165
1166         gfar_rx_offload_en(priv);
1167
1168         /* Initialize the max receive frame/buffer lengths */
1169         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1170         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1171
1172         /* Initialize the Minimum Frame Length Register */
1173         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1174
1175         /* Initialize MACCFG2. */
1176         tempval = MACCFG2_INIT_SETTINGS;
1177
1178         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1179          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1180          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1181          */
1182         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1183                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1184
1185         gfar_write(&regs->maccfg2, tempval);
1186
1187         /* Clear mac addr hash registers */
1188         gfar_write(&regs->igaddr0, 0);
1189         gfar_write(&regs->igaddr1, 0);
1190         gfar_write(&regs->igaddr2, 0);
1191         gfar_write(&regs->igaddr3, 0);
1192         gfar_write(&regs->igaddr4, 0);
1193         gfar_write(&regs->igaddr5, 0);
1194         gfar_write(&regs->igaddr6, 0);
1195         gfar_write(&regs->igaddr7, 0);
1196
1197         gfar_write(&regs->gaddr0, 0);
1198         gfar_write(&regs->gaddr1, 0);
1199         gfar_write(&regs->gaddr2, 0);
1200         gfar_write(&regs->gaddr3, 0);
1201         gfar_write(&regs->gaddr4, 0);
1202         gfar_write(&regs->gaddr5, 0);
1203         gfar_write(&regs->gaddr6, 0);
1204         gfar_write(&regs->gaddr7, 0);
1205
1206         if (priv->extended_hash)
1207                 gfar_clear_exact_match(priv->ndev);
1208
1209         gfar_mac_rx_config(priv);
1210
1211         gfar_mac_tx_config(priv);
1212
1213         gfar_set_mac_address(priv->ndev);
1214
1215         gfar_set_multi(priv->ndev);
1216
1217         /* clear ievent and imask before configuring coalescing */
1218         gfar_ints_disable(priv);
1219
1220         /* Configure the coalescing support */
1221         gfar_configure_coalescing_all(priv);
1222 }
1223
1224 static void gfar_hw_init(struct gfar_private *priv)
1225 {
1226         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1227         u32 attrs;
1228
1229         /* Stop the DMA engine now, in case it was running before
1230          * (The firmware could have used it, and left it running).
1231          */
1232         gfar_halt(priv);
1233
1234         gfar_mac_reset(priv);
1235
1236         /* Zero out the rmon mib registers if it has them */
1237         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1238                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1239
1240                 /* Mask off the CAM interrupts */
1241                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1242                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1243         }
1244
1245         /* Initialize ECNTRL */
1246         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1247
1248         /* Set the extraction length and index */
1249         attrs = ATTRELI_EL(priv->rx_stash_size) |
1250                 ATTRELI_EI(priv->rx_stash_index);
1251
1252         gfar_write(&regs->attreli, attrs);
1253
1254         /* Start with defaults, and add stashing
1255          * depending on driver parameters
1256          */
1257         attrs = ATTR_INIT_SETTINGS;
1258
1259         if (priv->bd_stash_en)
1260                 attrs |= ATTR_BDSTASH;
1261
1262         if (priv->rx_stash_size != 0)
1263                 attrs |= ATTR_BUFSTASH;
1264
1265         gfar_write(&regs->attr, attrs);
1266
1267         /* FIFO configs */
1268         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1269         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1270         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1271
1272         /* Program the interrupt steering regs, only for MG devices */
1273         if (priv->num_grps > 1)
1274                 gfar_write_isrg(priv);
1275 }
1276
1277 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1278 {
1279         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1280
1281         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1282                 priv->extended_hash = 1;
1283                 priv->hash_width = 9;
1284
1285                 priv->hash_regs[0] = &regs->igaddr0;
1286                 priv->hash_regs[1] = &regs->igaddr1;
1287                 priv->hash_regs[2] = &regs->igaddr2;
1288                 priv->hash_regs[3] = &regs->igaddr3;
1289                 priv->hash_regs[4] = &regs->igaddr4;
1290                 priv->hash_regs[5] = &regs->igaddr5;
1291                 priv->hash_regs[6] = &regs->igaddr6;
1292                 priv->hash_regs[7] = &regs->igaddr7;
1293                 priv->hash_regs[8] = &regs->gaddr0;
1294                 priv->hash_regs[9] = &regs->gaddr1;
1295                 priv->hash_regs[10] = &regs->gaddr2;
1296                 priv->hash_regs[11] = &regs->gaddr3;
1297                 priv->hash_regs[12] = &regs->gaddr4;
1298                 priv->hash_regs[13] = &regs->gaddr5;
1299                 priv->hash_regs[14] = &regs->gaddr6;
1300                 priv->hash_regs[15] = &regs->gaddr7;
1301
1302         } else {
1303                 priv->extended_hash = 0;
1304                 priv->hash_width = 8;
1305
1306                 priv->hash_regs[0] = &regs->gaddr0;
1307                 priv->hash_regs[1] = &regs->gaddr1;
1308                 priv->hash_regs[2] = &regs->gaddr2;
1309                 priv->hash_regs[3] = &regs->gaddr3;
1310                 priv->hash_regs[4] = &regs->gaddr4;
1311                 priv->hash_regs[5] = &regs->gaddr5;
1312                 priv->hash_regs[6] = &regs->gaddr6;
1313                 priv->hash_regs[7] = &regs->gaddr7;
1314         }
1315 }
1316
1317 /* Set up the ethernet device structure, private data,
1318  * and anything else we need before we start
1319  */
1320 static int gfar_probe(struct platform_device *ofdev)
1321 {
1322         struct net_device *dev = NULL;
1323         struct gfar_private *priv = NULL;
1324         int err = 0, i;
1325
1326         err = gfar_of_init(ofdev, &dev);
1327
1328         if (err)
1329                 return err;
1330
1331         priv = netdev_priv(dev);
1332         priv->ndev = dev;
1333         priv->ofdev = ofdev;
1334         priv->dev = &ofdev->dev;
1335         SET_NETDEV_DEV(dev, &ofdev->dev);
1336
1337         INIT_WORK(&priv->reset_task, gfar_reset_task);
1338
1339         platform_set_drvdata(ofdev, priv);
1340
1341         gfar_detect_errata(priv);
1342
1343         /* Set the dev->base_addr to the gfar reg region */
1344         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1345
1346         /* Fill in the dev structure */
1347         dev->watchdog_timeo = TX_TIMEOUT;
1348         dev->mtu = 1500;
1349         dev->netdev_ops = &gfar_netdev_ops;
1350         dev->ethtool_ops = &gfar_ethtool_ops;
1351
1352         /* Register for napi ...We are registering NAPI for each grp */
1353         for (i = 0; i < priv->num_grps; i++) {
1354                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1355                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1356                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1357                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1358                                        gfar_poll_tx_sq, 2);
1359                 } else {
1360                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1361                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1362                         netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1363                                        gfar_poll_tx, 2);
1364                 }
1365         }
1366
1367         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1368                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1369                                    NETIF_F_RXCSUM;
1370                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1371                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1372         }
1373
1374         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1375                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1376                                     NETIF_F_HW_VLAN_CTAG_RX;
1377                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1378         }
1379
1380         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1381
1382         gfar_init_addr_hash_table(priv);
1383
1384         /* Insert receive time stamps into padding alignment bytes, and
1385          * plus 2 bytes padding to ensure the cpu alignment.
1386          */
1387         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1388                 priv->padding = 8 + DEFAULT_PADDING;
1389
1390         if (dev->features & NETIF_F_IP_CSUM ||
1391             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1392                 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1393
1394         /* Initializing some of the rx/tx queue level parameters */
1395         for (i = 0; i < priv->num_tx_queues; i++) {
1396                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1397                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1398                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1399                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1400         }
1401
1402         for (i = 0; i < priv->num_rx_queues; i++) {
1403                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1404                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1405                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1406         }
1407
1408         /* Always enable rx filer if available */
1409         priv->rx_filer_enable =
1410             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1411         /* Enable most messages by default */
1412         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1413         /* use pritority h/w tx queue scheduling for single queue devices */
1414         if (priv->num_tx_queues == 1)
1415                 priv->prio_sched_en = 1;
1416
1417         set_bit(GFAR_DOWN, &priv->state);
1418
1419         gfar_hw_init(priv);
1420
1421         /* Carrier starts down, phylib will bring it up */
1422         netif_carrier_off(dev);
1423
1424         err = register_netdev(dev);
1425
1426         if (err) {
1427                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1428                 goto register_fail;
1429         }
1430
1431         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1432                 priv->wol_supported |= GFAR_WOL_MAGIC;
1433
1434         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1435             priv->rx_filer_enable)
1436                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1437
1438         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1439
1440         /* fill out IRQ number and name fields */
1441         for (i = 0; i < priv->num_grps; i++) {
1442                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1443                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1444                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1445                                 dev->name, "_g", '0' + i, "_tx");
1446                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1447                                 dev->name, "_g", '0' + i, "_rx");
1448                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1449                                 dev->name, "_g", '0' + i, "_er");
1450                 } else
1451                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1452         }
1453
1454         /* Initialize the filer table */
1455         gfar_init_filer_table(priv);
1456
1457         /* Print out the device info */
1458         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1459
1460         /* Even more device info helps when determining which kernel
1461          * provided which set of benchmarks.
1462          */
1463         netdev_info(dev, "Running with NAPI enabled\n");
1464         for (i = 0; i < priv->num_rx_queues; i++)
1465                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1466                             i, priv->rx_queue[i]->rx_ring_size);
1467         for (i = 0; i < priv->num_tx_queues; i++)
1468                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1469                             i, priv->tx_queue[i]->tx_ring_size);
1470
1471         return 0;
1472
1473 register_fail:
1474         unmap_group_regs(priv);
1475         gfar_free_rx_queues(priv);
1476         gfar_free_tx_queues(priv);
1477         of_node_put(priv->phy_node);
1478         of_node_put(priv->tbi_node);
1479         free_gfar_dev(priv);
1480         return err;
1481 }
1482
1483 static int gfar_remove(struct platform_device *ofdev)
1484 {
1485         struct gfar_private *priv = platform_get_drvdata(ofdev);
1486
1487         of_node_put(priv->phy_node);
1488         of_node_put(priv->tbi_node);
1489
1490         unregister_netdev(priv->ndev);
1491         unmap_group_regs(priv);
1492         gfar_free_rx_queues(priv);
1493         gfar_free_tx_queues(priv);
1494         free_gfar_dev(priv);
1495
1496         return 0;
1497 }
1498
1499 #ifdef CONFIG_PM
1500
1501 static void __gfar_filer_disable(struct gfar_private *priv)
1502 {
1503         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1504         u32 temp;
1505
1506         temp = gfar_read(&regs->rctrl);
1507         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1508         gfar_write(&regs->rctrl, temp);
1509 }
1510
1511 static void __gfar_filer_enable(struct gfar_private *priv)
1512 {
1513         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1514         u32 temp;
1515
1516         temp = gfar_read(&regs->rctrl);
1517         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1518         gfar_write(&regs->rctrl, temp);
1519 }
1520
1521 /* Filer rules implementing wol capabilities */
1522 static void gfar_filer_config_wol(struct gfar_private *priv)
1523 {
1524         unsigned int i;
1525         u32 rqfcr;
1526
1527         __gfar_filer_disable(priv);
1528
1529         /* clear the filer table, reject any packet by default */
1530         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1531         for (i = 0; i <= MAX_FILER_IDX; i++)
1532                 gfar_write_filer(priv, i, rqfcr, 0);
1533
1534         i = 0;
1535         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1536                 /* unicast packet, accept it */
1537                 struct net_device *ndev = priv->ndev;
1538                 /* get the default rx queue index */
1539                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1540                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1541                                     (ndev->dev_addr[1] << 8) |
1542                                      ndev->dev_addr[2];
1543
1544                 rqfcr = (qindex << 10) | RQFCR_AND |
1545                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1546
1547                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1548
1549                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1550                                 (ndev->dev_addr[4] << 8) |
1551                                  ndev->dev_addr[5];
1552                 rqfcr = (qindex << 10) | RQFCR_GPI |
1553                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1554                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1555         }
1556
1557         __gfar_filer_enable(priv);
1558 }
1559
1560 static void gfar_filer_restore_table(struct gfar_private *priv)
1561 {
1562         u32 rqfcr, rqfpr;
1563         unsigned int i;
1564
1565         __gfar_filer_disable(priv);
1566
1567         for (i = 0; i <= MAX_FILER_IDX; i++) {
1568                 rqfcr = priv->ftp_rqfcr[i];
1569                 rqfpr = priv->ftp_rqfpr[i];
1570                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1571         }
1572
1573         __gfar_filer_enable(priv);
1574 }
1575
1576 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1577 static void gfar_start_wol_filer(struct gfar_private *priv)
1578 {
1579         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1580         u32 tempval;
1581         int i = 0;
1582
1583         /* Enable Rx hw queues */
1584         gfar_write(&regs->rqueue, priv->rqueue);
1585
1586         /* Initialize DMACTRL to have WWR and WOP */
1587         tempval = gfar_read(&regs->dmactrl);
1588         tempval |= DMACTRL_INIT_SETTINGS;
1589         gfar_write(&regs->dmactrl, tempval);
1590
1591         /* Make sure we aren't stopped */
1592         tempval = gfar_read(&regs->dmactrl);
1593         tempval &= ~DMACTRL_GRS;
1594         gfar_write(&regs->dmactrl, tempval);
1595
1596         for (i = 0; i < priv->num_grps; i++) {
1597                 regs = priv->gfargrp[i].regs;
1598                 /* Clear RHLT, so that the DMA starts polling now */
1599                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1600                 /* enable the Filer General Purpose Interrupt */
1601                 gfar_write(&regs->imask, IMASK_FGPI);
1602         }
1603
1604         /* Enable Rx DMA */
1605         tempval = gfar_read(&regs->maccfg1);
1606         tempval |= MACCFG1_RX_EN;
1607         gfar_write(&regs->maccfg1, tempval);
1608 }
1609
1610 static int gfar_suspend(struct device *dev)
1611 {
1612         struct gfar_private *priv = dev_get_drvdata(dev);
1613         struct net_device *ndev = priv->ndev;
1614         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1615         u32 tempval;
1616         u16 wol = priv->wol_opts;
1617
1618         if (!netif_running(ndev))
1619                 return 0;
1620
1621         disable_napi(priv);
1622         netif_tx_lock(ndev);
1623         netif_device_detach(ndev);
1624         netif_tx_unlock(ndev);
1625
1626         gfar_halt(priv);
1627
1628         if (wol & GFAR_WOL_MAGIC) {
1629                 /* Enable interrupt on Magic Packet */
1630                 gfar_write(&regs->imask, IMASK_MAG);
1631
1632                 /* Enable Magic Packet mode */
1633                 tempval = gfar_read(&regs->maccfg2);
1634                 tempval |= MACCFG2_MPEN;
1635                 gfar_write(&regs->maccfg2, tempval);
1636
1637                 /* re-enable the Rx block */
1638                 tempval = gfar_read(&regs->maccfg1);
1639                 tempval |= MACCFG1_RX_EN;
1640                 gfar_write(&regs->maccfg1, tempval);
1641
1642         } else if (wol & GFAR_WOL_FILER_UCAST) {
1643                 gfar_filer_config_wol(priv);
1644                 gfar_start_wol_filer(priv);
1645
1646         } else {
1647                 phy_stop(priv->phydev);
1648         }
1649
1650         return 0;
1651 }
1652
1653 static int gfar_resume(struct device *dev)
1654 {
1655         struct gfar_private *priv = dev_get_drvdata(dev);
1656         struct net_device *ndev = priv->ndev;
1657         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1658         u32 tempval;
1659         u16 wol = priv->wol_opts;
1660
1661         if (!netif_running(ndev))
1662                 return 0;
1663
1664         if (wol & GFAR_WOL_MAGIC) {
1665                 /* Disable Magic Packet mode */
1666                 tempval = gfar_read(&regs->maccfg2);
1667                 tempval &= ~MACCFG2_MPEN;
1668                 gfar_write(&regs->maccfg2, tempval);
1669
1670         } else if (wol & GFAR_WOL_FILER_UCAST) {
1671                 /* need to stop rx only, tx is already down */
1672                 gfar_halt(priv);
1673                 gfar_filer_restore_table(priv);
1674
1675         } else {
1676                 phy_start(priv->phydev);
1677         }
1678
1679         gfar_start(priv);
1680
1681         netif_device_attach(ndev);
1682         enable_napi(priv);
1683
1684         return 0;
1685 }
1686
1687 static int gfar_restore(struct device *dev)
1688 {
1689         struct gfar_private *priv = dev_get_drvdata(dev);
1690         struct net_device *ndev = priv->ndev;
1691
1692         if (!netif_running(ndev)) {
1693                 netif_device_attach(ndev);
1694
1695                 return 0;
1696         }
1697
1698         gfar_init_bds(ndev);
1699
1700         gfar_mac_reset(priv);
1701
1702         gfar_init_tx_rx_base(priv);
1703
1704         gfar_start(priv);
1705
1706         priv->oldlink = 0;
1707         priv->oldspeed = 0;
1708         priv->oldduplex = -1;
1709
1710         if (priv->phydev)
1711                 phy_start(priv->phydev);
1712
1713         netif_device_attach(ndev);
1714         enable_napi(priv);
1715
1716         return 0;
1717 }
1718
1719 static struct dev_pm_ops gfar_pm_ops = {
1720         .suspend = gfar_suspend,
1721         .resume = gfar_resume,
1722         .freeze = gfar_suspend,
1723         .thaw = gfar_resume,
1724         .restore = gfar_restore,
1725 };
1726
1727 #define GFAR_PM_OPS (&gfar_pm_ops)
1728
1729 #else
1730
1731 #define GFAR_PM_OPS NULL
1732
1733 #endif
1734
1735 /* Reads the controller's registers to determine what interface
1736  * connects it to the PHY.
1737  */
1738 static phy_interface_t gfar_get_interface(struct net_device *dev)
1739 {
1740         struct gfar_private *priv = netdev_priv(dev);
1741         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1742         u32 ecntrl;
1743
1744         ecntrl = gfar_read(&regs->ecntrl);
1745
1746         if (ecntrl & ECNTRL_SGMII_MODE)
1747                 return PHY_INTERFACE_MODE_SGMII;
1748
1749         if (ecntrl & ECNTRL_TBI_MODE) {
1750                 if (ecntrl & ECNTRL_REDUCED_MODE)
1751                         return PHY_INTERFACE_MODE_RTBI;
1752                 else
1753                         return PHY_INTERFACE_MODE_TBI;
1754         }
1755
1756         if (ecntrl & ECNTRL_REDUCED_MODE) {
1757                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1758                         return PHY_INTERFACE_MODE_RMII;
1759                 }
1760                 else {
1761                         phy_interface_t interface = priv->interface;
1762
1763                         /* This isn't autodetected right now, so it must
1764                          * be set by the device tree or platform code.
1765                          */
1766                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1767                                 return PHY_INTERFACE_MODE_RGMII_ID;
1768
1769                         return PHY_INTERFACE_MODE_RGMII;
1770                 }
1771         }
1772
1773         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1774                 return PHY_INTERFACE_MODE_GMII;
1775
1776         return PHY_INTERFACE_MODE_MII;
1777 }
1778
1779
1780 /* Initializes driver's PHY state, and attaches to the PHY.
1781  * Returns 0 on success.
1782  */
1783 static int init_phy(struct net_device *dev)
1784 {
1785         struct gfar_private *priv = netdev_priv(dev);
1786         uint gigabit_support =
1787                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1788                 GFAR_SUPPORTED_GBIT : 0;
1789         phy_interface_t interface;
1790
1791         priv->oldlink = 0;
1792         priv->oldspeed = 0;
1793         priv->oldduplex = -1;
1794
1795         interface = gfar_get_interface(dev);
1796
1797         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1798                                       interface);
1799         if (!priv->phydev) {
1800                 dev_err(&dev->dev, "could not attach to PHY\n");
1801                 return -ENODEV;
1802         }
1803
1804         if (interface == PHY_INTERFACE_MODE_SGMII)
1805                 gfar_configure_serdes(dev);
1806
1807         /* Remove any features not supported by the controller */
1808         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1809         priv->phydev->advertising = priv->phydev->supported;
1810
1811         /* Add support for flow control, but don't advertise it by default */
1812         priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1813
1814         return 0;
1815 }
1816
1817 /* Initialize TBI PHY interface for communicating with the
1818  * SERDES lynx PHY on the chip.  We communicate with this PHY
1819  * through the MDIO bus on each controller, treating it as a
1820  * "normal" PHY at the address found in the TBIPA register.  We assume
1821  * that the TBIPA register is valid.  Either the MDIO bus code will set
1822  * it to a value that doesn't conflict with other PHYs on the bus, or the
1823  * value doesn't matter, as there are no other PHYs on the bus.
1824  */
1825 static void gfar_configure_serdes(struct net_device *dev)
1826 {
1827         struct gfar_private *priv = netdev_priv(dev);
1828         struct phy_device *tbiphy;
1829
1830         if (!priv->tbi_node) {
1831                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1832                                     "device tree specify a tbi-handle\n");
1833                 return;
1834         }
1835
1836         tbiphy = of_phy_find_device(priv->tbi_node);
1837         if (!tbiphy) {
1838                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1839                 return;
1840         }
1841
1842         /* If the link is already up, we must already be ok, and don't need to
1843          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1844          * everything for us?  Resetting it takes the link down and requires
1845          * several seconds for it to come back.
1846          */
1847         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1848                 put_device(&tbiphy->dev);
1849                 return;
1850         }
1851
1852         /* Single clk mode, mii mode off(for serdes communication) */
1853         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1854
1855         phy_write(tbiphy, MII_ADVERTISE,
1856                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1857                   ADVERTISE_1000XPSE_ASYM);
1858
1859         phy_write(tbiphy, MII_BMCR,
1860                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1861                   BMCR_SPEED1000);
1862
1863         put_device(&tbiphy->dev);
1864 }
1865
1866 static int __gfar_is_rx_idle(struct gfar_private *priv)
1867 {
1868         u32 res;
1869
1870         /* Normaly TSEC should not hang on GRS commands, so we should
1871          * actually wait for IEVENT_GRSC flag.
1872          */
1873         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1874                 return 0;
1875
1876         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1877          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1878          * and the Rx can be safely reset.
1879          */
1880         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1881         res &= 0x7f807f80;
1882         if ((res & 0xffff) == (res >> 16))
1883                 return 1;
1884
1885         return 0;
1886 }
1887
1888 /* Halt the receive and transmit queues */
1889 static void gfar_halt_nodisable(struct gfar_private *priv)
1890 {
1891         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1892         u32 tempval;
1893         unsigned int timeout;
1894         int stopped;
1895
1896         gfar_ints_disable(priv);
1897
1898         if (gfar_is_dma_stopped(priv))
1899                 return;
1900
1901         /* Stop the DMA, and wait for it to stop */
1902         tempval = gfar_read(&regs->dmactrl);
1903         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1904         gfar_write(&regs->dmactrl, tempval);
1905
1906 retry:
1907         timeout = 1000;
1908         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1909                 cpu_relax();
1910                 timeout--;
1911         }
1912
1913         if (!timeout)
1914                 stopped = gfar_is_dma_stopped(priv);
1915
1916         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1917             !__gfar_is_rx_idle(priv))
1918                 goto retry;
1919 }
1920
1921 /* Halt the receive and transmit queues */
1922 void gfar_halt(struct gfar_private *priv)
1923 {
1924         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1925         u32 tempval;
1926
1927         /* Dissable the Rx/Tx hw queues */
1928         gfar_write(&regs->rqueue, 0);
1929         gfar_write(&regs->tqueue, 0);
1930
1931         mdelay(10);
1932
1933         gfar_halt_nodisable(priv);
1934
1935         /* Disable Rx/Tx DMA */
1936         tempval = gfar_read(&regs->maccfg1);
1937         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1938         gfar_write(&regs->maccfg1, tempval);
1939 }
1940
1941 void stop_gfar(struct net_device *dev)
1942 {
1943         struct gfar_private *priv = netdev_priv(dev);
1944
1945         netif_tx_stop_all_queues(dev);
1946
1947         smp_mb__before_atomic();
1948         set_bit(GFAR_DOWN, &priv->state);
1949         smp_mb__after_atomic();
1950
1951         disable_napi(priv);
1952
1953         /* disable ints and gracefully shut down Rx/Tx DMA */
1954         gfar_halt(priv);
1955
1956         phy_stop(priv->phydev);
1957
1958         free_skb_resources(priv);
1959 }
1960
1961 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1962 {
1963         struct txbd8 *txbdp;
1964         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1965         int i, j;
1966
1967         txbdp = tx_queue->tx_bd_base;
1968
1969         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1970                 if (!tx_queue->tx_skbuff[i])
1971                         continue;
1972
1973                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1974                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1975                 txbdp->lstatus = 0;
1976                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1977                      j++) {
1978                         txbdp++;
1979                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1980                                        be16_to_cpu(txbdp->length),
1981                                        DMA_TO_DEVICE);
1982                 }
1983                 txbdp++;
1984                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1985                 tx_queue->tx_skbuff[i] = NULL;
1986         }
1987         kfree(tx_queue->tx_skbuff);
1988         tx_queue->tx_skbuff = NULL;
1989 }
1990
1991 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1992 {
1993         int i;
1994
1995         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1996
1997         if (rx_queue->skb)
1998                 dev_kfree_skb(rx_queue->skb);
1999
2000         for (i = 0; i < rx_queue->rx_ring_size; i++) {
2001                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2002
2003                 rxbdp->lstatus = 0;
2004                 rxbdp->bufPtr = 0;
2005                 rxbdp++;
2006
2007                 if (!rxb->page)
2008                         continue;
2009
2010                 dma_unmap_page(rx_queue->dev, rxb->dma,
2011                                PAGE_SIZE, DMA_FROM_DEVICE);
2012                 __free_page(rxb->page);
2013
2014                 rxb->page = NULL;
2015         }
2016
2017         kfree(rx_queue->rx_buff);
2018         rx_queue->rx_buff = NULL;
2019 }
2020
2021 /* If there are any tx skbs or rx skbs still around, free them.
2022  * Then free tx_skbuff and rx_skbuff
2023  */
2024 static void free_skb_resources(struct gfar_private *priv)
2025 {
2026         struct gfar_priv_tx_q *tx_queue = NULL;
2027         struct gfar_priv_rx_q *rx_queue = NULL;
2028         int i;
2029
2030         /* Go through all the buffer descriptors and free their data buffers */
2031         for (i = 0; i < priv->num_tx_queues; i++) {
2032                 struct netdev_queue *txq;
2033
2034                 tx_queue = priv->tx_queue[i];
2035                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2036                 if (tx_queue->tx_skbuff)
2037                         free_skb_tx_queue(tx_queue);
2038                 netdev_tx_reset_queue(txq);
2039         }
2040
2041         for (i = 0; i < priv->num_rx_queues; i++) {
2042                 rx_queue = priv->rx_queue[i];
2043                 if (rx_queue->rx_buff)
2044                         free_skb_rx_queue(rx_queue);
2045         }
2046
2047         dma_free_coherent(priv->dev,
2048                           sizeof(struct txbd8) * priv->total_tx_ring_size +
2049                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
2050                           priv->tx_queue[0]->tx_bd_base,
2051                           priv->tx_queue[0]->tx_bd_dma_base);
2052 }
2053
2054 void gfar_start(struct gfar_private *priv)
2055 {
2056         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2057         u32 tempval;
2058         int i = 0;
2059
2060         /* Enable Rx/Tx hw queues */
2061         gfar_write(&regs->rqueue, priv->rqueue);
2062         gfar_write(&regs->tqueue, priv->tqueue);
2063
2064         /* Initialize DMACTRL to have WWR and WOP */
2065         tempval = gfar_read(&regs->dmactrl);
2066         tempval |= DMACTRL_INIT_SETTINGS;
2067         gfar_write(&regs->dmactrl, tempval);
2068
2069         /* Make sure we aren't stopped */
2070         tempval = gfar_read(&regs->dmactrl);
2071         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2072         gfar_write(&regs->dmactrl, tempval);
2073
2074         for (i = 0; i < priv->num_grps; i++) {
2075                 regs = priv->gfargrp[i].regs;
2076                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2077                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2078                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2079         }
2080
2081         /* Enable Rx/Tx DMA */
2082         tempval = gfar_read(&regs->maccfg1);
2083         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2084         gfar_write(&regs->maccfg1, tempval);
2085
2086         gfar_ints_enable(priv);
2087
2088         priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2089 }
2090
2091 static void free_grp_irqs(struct gfar_priv_grp *grp)
2092 {
2093         free_irq(gfar_irq(grp, TX)->irq, grp);
2094         free_irq(gfar_irq(grp, RX)->irq, grp);
2095         free_irq(gfar_irq(grp, ER)->irq, grp);
2096 }
2097
2098 static int register_grp_irqs(struct gfar_priv_grp *grp)
2099 {
2100         struct gfar_private *priv = grp->priv;
2101         struct net_device *dev = priv->ndev;
2102         int err;
2103
2104         /* If the device has multiple interrupts, register for
2105          * them.  Otherwise, only register for the one
2106          */
2107         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2108                 /* Install our interrupt handlers for Error,
2109                  * Transmit, and Receive
2110                  */
2111                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2112                                   gfar_irq(grp, ER)->name, grp);
2113                 if (err < 0) {
2114                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2115                                   gfar_irq(grp, ER)->irq);
2116
2117                         goto err_irq_fail;
2118                 }
2119                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2120
2121                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2122                                   gfar_irq(grp, TX)->name, grp);
2123                 if (err < 0) {
2124                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125                                   gfar_irq(grp, TX)->irq);
2126                         goto tx_irq_fail;
2127                 }
2128                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2129                                   gfar_irq(grp, RX)->name, grp);
2130                 if (err < 0) {
2131                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2132                                   gfar_irq(grp, RX)->irq);
2133                         goto rx_irq_fail;
2134                 }
2135                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2136
2137         } else {
2138                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2139                                   gfar_irq(grp, TX)->name, grp);
2140                 if (err < 0) {
2141                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142                                   gfar_irq(grp, TX)->irq);
2143                         goto err_irq_fail;
2144                 }
2145                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2146         }
2147
2148         return 0;
2149
2150 rx_irq_fail:
2151         free_irq(gfar_irq(grp, TX)->irq, grp);
2152 tx_irq_fail:
2153         free_irq(gfar_irq(grp, ER)->irq, grp);
2154 err_irq_fail:
2155         return err;
2156
2157 }
2158
2159 static void gfar_free_irq(struct gfar_private *priv)
2160 {
2161         int i;
2162
2163         /* Free the IRQs */
2164         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2165                 for (i = 0; i < priv->num_grps; i++)
2166                         free_grp_irqs(&priv->gfargrp[i]);
2167         } else {
2168                 for (i = 0; i < priv->num_grps; i++)
2169                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2170                                  &priv->gfargrp[i]);
2171         }
2172 }
2173
2174 static int gfar_request_irq(struct gfar_private *priv)
2175 {
2176         int err, i, j;
2177
2178         for (i = 0; i < priv->num_grps; i++) {
2179                 err = register_grp_irqs(&priv->gfargrp[i]);
2180                 if (err) {
2181                         for (j = 0; j < i; j++)
2182                                 free_grp_irqs(&priv->gfargrp[j]);
2183                         return err;
2184                 }
2185         }
2186
2187         return 0;
2188 }
2189
2190 /* Bring the controller up and running */
2191 int startup_gfar(struct net_device *ndev)
2192 {
2193         struct gfar_private *priv = netdev_priv(ndev);
2194         int err;
2195
2196         gfar_mac_reset(priv);
2197
2198         err = gfar_alloc_skb_resources(ndev);
2199         if (err)
2200                 return err;
2201
2202         gfar_init_tx_rx_base(priv);
2203
2204         smp_mb__before_atomic();
2205         clear_bit(GFAR_DOWN, &priv->state);
2206         smp_mb__after_atomic();
2207
2208         /* Start Rx/Tx DMA and enable the interrupts */
2209         gfar_start(priv);
2210
2211         /* force link state update after mac reset */
2212         priv->oldlink = 0;
2213         priv->oldspeed = 0;
2214         priv->oldduplex = -1;
2215
2216         phy_start(priv->phydev);
2217
2218         enable_napi(priv);
2219
2220         netif_tx_wake_all_queues(ndev);
2221
2222         return 0;
2223 }
2224
2225 /* Called when something needs to use the ethernet device
2226  * Returns 0 for success.
2227  */
2228 static int gfar_enet_open(struct net_device *dev)
2229 {
2230         struct gfar_private *priv = netdev_priv(dev);
2231         int err;
2232
2233         err = init_phy(dev);
2234         if (err)
2235                 return err;
2236
2237         err = gfar_request_irq(priv);
2238         if (err)
2239                 return err;
2240
2241         err = startup_gfar(dev);
2242         if (err)
2243                 return err;
2244
2245         return err;
2246 }
2247
2248 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2249 {
2250         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2251
2252         memset(fcb, 0, GMAC_FCB_LEN);
2253
2254         return fcb;
2255 }
2256
2257 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2258                                     int fcb_length)
2259 {
2260         /* If we're here, it's a IP packet with a TCP or UDP
2261          * payload.  We set it to checksum, using a pseudo-header
2262          * we provide
2263          */
2264         u8 flags = TXFCB_DEFAULT;
2265
2266         /* Tell the controller what the protocol is
2267          * And provide the already calculated phcs
2268          */
2269         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2270                 flags |= TXFCB_UDP;
2271                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2272         } else
2273                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2274
2275         /* l3os is the distance between the start of the
2276          * frame (skb->data) and the start of the IP hdr.
2277          * l4os is the distance between the start of the
2278          * l3 hdr and the l4 hdr
2279          */
2280         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2281         fcb->l4os = skb_network_header_len(skb);
2282
2283         fcb->flags = flags;
2284 }
2285
2286 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2287 {
2288         fcb->flags |= TXFCB_VLN;
2289         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2290 }
2291
2292 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2293                                       struct txbd8 *base, int ring_size)
2294 {
2295         struct txbd8 *new_bd = bdp + stride;
2296
2297         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2298 }
2299
2300 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2301                                       int ring_size)
2302 {
2303         return skip_txbd(bdp, 1, base, ring_size);
2304 }
2305
2306 /* eTSEC12: csum generation not supported for some fcb offsets */
2307 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2308                                        unsigned long fcb_addr)
2309 {
2310         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2311                (fcb_addr % 0x20) > 0x18);
2312 }
2313
2314 /* eTSEC76: csum generation for frames larger than 2500 may
2315  * cause excess delays before start of transmission
2316  */
2317 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2318                                        unsigned int len)
2319 {
2320         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2321                (len > 2500));
2322 }
2323
2324 /* This is called by the kernel when a frame is ready for transmission.
2325  * It is pointed to by the dev->hard_start_xmit function pointer
2326  */
2327 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2328 {
2329         struct gfar_private *priv = netdev_priv(dev);
2330         struct gfar_priv_tx_q *tx_queue = NULL;
2331         struct netdev_queue *txq;
2332         struct gfar __iomem *regs = NULL;
2333         struct txfcb *fcb = NULL;
2334         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2335         u32 lstatus;
2336         int i, rq = 0;
2337         int do_tstamp, do_csum, do_vlan;
2338         u32 bufaddr;
2339         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2340
2341         rq = skb->queue_mapping;
2342         tx_queue = priv->tx_queue[rq];
2343         txq = netdev_get_tx_queue(dev, rq);
2344         base = tx_queue->tx_bd_base;
2345         regs = tx_queue->grp->regs;
2346
2347         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2348         do_vlan = skb_vlan_tag_present(skb);
2349         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2350                     priv->hwts_tx_en;
2351
2352         if (do_csum || do_vlan)
2353                 fcb_len = GMAC_FCB_LEN;
2354
2355         /* check if time stamp should be generated */
2356         if (unlikely(do_tstamp))
2357                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2358
2359         /* make space for additional header when fcb is needed */
2360         if (fcb_len) {
2361                 if (unlikely(skb_cow_head(skb, fcb_len))) {
2362                         dev->stats.tx_errors++;
2363                         dev_kfree_skb_any(skb);
2364                         return NETDEV_TX_OK;
2365                 }
2366         }
2367
2368         /* total number of fragments in the SKB */
2369         nr_frags = skb_shinfo(skb)->nr_frags;
2370
2371         /* calculate the required number of TxBDs for this skb */
2372         if (unlikely(do_tstamp))
2373                 nr_txbds = nr_frags + 2;
2374         else
2375                 nr_txbds = nr_frags + 1;
2376
2377         /* check if there is space to queue this packet */
2378         if (nr_txbds > tx_queue->num_txbdfree) {
2379                 /* no space, stop the queue */
2380                 netif_tx_stop_queue(txq);
2381                 dev->stats.tx_fifo_errors++;
2382                 return NETDEV_TX_BUSY;
2383         }
2384
2385         /* Update transmit stats */
2386         bytes_sent = skb->len;
2387         tx_queue->stats.tx_bytes += bytes_sent;
2388         /* keep Tx bytes on wire for BQL accounting */
2389         GFAR_CB(skb)->bytes_sent = bytes_sent;
2390         tx_queue->stats.tx_packets++;
2391
2392         txbdp = txbdp_start = tx_queue->cur_tx;
2393         lstatus = be32_to_cpu(txbdp->lstatus);
2394
2395         /* Time stamp insertion requires one additional TxBD */
2396         if (unlikely(do_tstamp))
2397                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2398                                                  tx_queue->tx_ring_size);
2399
2400         if (nr_frags == 0) {
2401                 if (unlikely(do_tstamp)) {
2402                         u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2403
2404                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2405                         txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2406                 } else {
2407                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2408                 }
2409         } else {
2410                 /* Place the fragment addresses and lengths into the TxBDs */
2411                 for (i = 0; i < nr_frags; i++) {
2412                         unsigned int frag_len;
2413                         /* Point at the next BD, wrapping as needed */
2414                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2415
2416                         frag_len = skb_shinfo(skb)->frags[i].size;
2417
2418                         lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2419                                   BD_LFLAG(TXBD_READY);
2420
2421                         /* Handle the last BD specially */
2422                         if (i == nr_frags - 1)
2423                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2424
2425                         bufaddr = skb_frag_dma_map(priv->dev,
2426                                                    &skb_shinfo(skb)->frags[i],
2427                                                    0,
2428                                                    frag_len,
2429                                                    DMA_TO_DEVICE);
2430                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2431                                 goto dma_map_err;
2432
2433                         /* set the TxBD length and buffer pointer */
2434                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2435                         txbdp->lstatus = cpu_to_be32(lstatus);
2436                 }
2437
2438                 lstatus = be32_to_cpu(txbdp_start->lstatus);
2439         }
2440
2441         /* Add TxPAL between FCB and frame if required */
2442         if (unlikely(do_tstamp)) {
2443                 skb_push(skb, GMAC_TXPAL_LEN);
2444                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2445         }
2446
2447         /* Add TxFCB if required */
2448         if (fcb_len) {
2449                 fcb = gfar_add_fcb(skb);
2450                 lstatus |= BD_LFLAG(TXBD_TOE);
2451         }
2452
2453         /* Set up checksumming */
2454         if (do_csum) {
2455                 gfar_tx_checksum(skb, fcb, fcb_len);
2456
2457                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2458                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2459                         __skb_pull(skb, GMAC_FCB_LEN);
2460                         skb_checksum_help(skb);
2461                         if (do_vlan || do_tstamp) {
2462                                 /* put back a new fcb for vlan/tstamp TOE */
2463                                 fcb = gfar_add_fcb(skb);
2464                         } else {
2465                                 /* Tx TOE not used */
2466                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2467                                 fcb = NULL;
2468                         }
2469                 }
2470         }
2471
2472         if (do_vlan)
2473                 gfar_tx_vlan(skb, fcb);
2474
2475         /* Setup tx hardware time stamping if requested */
2476         if (unlikely(do_tstamp)) {
2477                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2478                 fcb->ptp = 1;
2479         }
2480
2481         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2482                                  DMA_TO_DEVICE);
2483         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2484                 goto dma_map_err;
2485
2486         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2487
2488         /* If time stamping is requested one additional TxBD must be set up. The
2489          * first TxBD points to the FCB and must have a data length of
2490          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2491          * the full frame length.
2492          */
2493         if (unlikely(do_tstamp)) {
2494                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2495
2496                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2497                 bufaddr += fcb_len;
2498                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2499                               (skb_headlen(skb) - fcb_len);
2500
2501                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2502                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2503                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2504         } else {
2505                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2506         }
2507
2508         netdev_tx_sent_queue(txq, bytes_sent);
2509
2510         gfar_wmb();
2511
2512         txbdp_start->lstatus = cpu_to_be32(lstatus);
2513
2514         gfar_wmb(); /* force lstatus write before tx_skbuff */
2515
2516         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2517
2518         /* Update the current skb pointer to the next entry we will use
2519          * (wrapping if necessary)
2520          */
2521         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2522                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2523
2524         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2525
2526         /* We can work in parallel with gfar_clean_tx_ring(), except
2527          * when modifying num_txbdfree. Note that we didn't grab the lock
2528          * when we were reading the num_txbdfree and checking for available
2529          * space, that's because outside of this function it can only grow.
2530          */
2531         spin_lock_bh(&tx_queue->txlock);
2532         /* reduce TxBD free count */
2533         tx_queue->num_txbdfree -= (nr_txbds);
2534         spin_unlock_bh(&tx_queue->txlock);
2535
2536         /* If the next BD still needs to be cleaned up, then the bds
2537          * are full.  We need to tell the kernel to stop sending us stuff.
2538          */
2539         if (!tx_queue->num_txbdfree) {
2540                 netif_tx_stop_queue(txq);
2541
2542                 dev->stats.tx_fifo_errors++;
2543         }
2544
2545         /* Tell the DMA to go go go */
2546         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2547
2548         return NETDEV_TX_OK;
2549
2550 dma_map_err:
2551         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2552         if (do_tstamp)
2553                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2554         for (i = 0; i < nr_frags; i++) {
2555                 lstatus = be32_to_cpu(txbdp->lstatus);
2556                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2557                         break;
2558
2559                 lstatus &= ~BD_LFLAG(TXBD_READY);
2560                 txbdp->lstatus = cpu_to_be32(lstatus);
2561                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2562                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2563                                DMA_TO_DEVICE);
2564                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2565         }
2566         gfar_wmb();
2567         dev_kfree_skb_any(skb);
2568         return NETDEV_TX_OK;
2569 }
2570
2571 /* Stops the kernel queue, and halts the controller */
2572 static int gfar_close(struct net_device *dev)
2573 {
2574         struct gfar_private *priv = netdev_priv(dev);
2575
2576         cancel_work_sync(&priv->reset_task);
2577         stop_gfar(dev);
2578
2579         /* Disconnect from the PHY */
2580         phy_disconnect(priv->phydev);
2581         priv->phydev = NULL;
2582
2583         gfar_free_irq(priv);
2584
2585         return 0;
2586 }
2587
2588 /* Changes the mac address if the controller is not running. */
2589 static int gfar_set_mac_address(struct net_device *dev)
2590 {
2591         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2592
2593         return 0;
2594 }
2595
2596 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2597 {
2598         struct gfar_private *priv = netdev_priv(dev);
2599         int frame_size = new_mtu + ETH_HLEN;
2600
2601         if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2602                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2603                 return -EINVAL;
2604         }
2605
2606         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2607                 cpu_relax();
2608
2609         if (dev->flags & IFF_UP)
2610                 stop_gfar(dev);
2611
2612         dev->mtu = new_mtu;
2613
2614         if (dev->flags & IFF_UP)
2615                 startup_gfar(dev);
2616
2617         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2618
2619         return 0;
2620 }
2621
2622 void reset_gfar(struct net_device *ndev)
2623 {
2624         struct gfar_private *priv = netdev_priv(ndev);
2625
2626         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2627                 cpu_relax();
2628
2629         stop_gfar(ndev);
2630         startup_gfar(ndev);
2631
2632         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2633 }
2634
2635 /* gfar_reset_task gets scheduled when a packet has not been
2636  * transmitted after a set amount of time.
2637  * For now, assume that clearing out all the structures, and
2638  * starting over will fix the problem.
2639  */
2640 static void gfar_reset_task(struct work_struct *work)
2641 {
2642         struct gfar_private *priv = container_of(work, struct gfar_private,
2643                                                  reset_task);
2644         reset_gfar(priv->ndev);
2645 }
2646
2647 static void gfar_timeout(struct net_device *dev)
2648 {
2649         struct gfar_private *priv = netdev_priv(dev);
2650
2651         dev->stats.tx_errors++;
2652         schedule_work(&priv->reset_task);
2653 }
2654
2655 /* Interrupt Handler for Transmit complete */
2656 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2657 {
2658         struct net_device *dev = tx_queue->dev;
2659         struct netdev_queue *txq;
2660         struct gfar_private *priv = netdev_priv(dev);
2661         struct txbd8 *bdp, *next = NULL;
2662         struct txbd8 *lbdp = NULL;
2663         struct txbd8 *base = tx_queue->tx_bd_base;
2664         struct sk_buff *skb;
2665         int skb_dirtytx;
2666         int tx_ring_size = tx_queue->tx_ring_size;
2667         int frags = 0, nr_txbds = 0;
2668         int i;
2669         int howmany = 0;
2670         int tqi = tx_queue->qindex;
2671         unsigned int bytes_sent = 0;
2672         u32 lstatus;
2673         size_t buflen;
2674
2675         txq = netdev_get_tx_queue(dev, tqi);
2676         bdp = tx_queue->dirty_tx;
2677         skb_dirtytx = tx_queue->skb_dirtytx;
2678
2679         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2680                 bool do_tstamp;
2681
2682                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2683                             priv->hwts_tx_en;
2684
2685                 frags = skb_shinfo(skb)->nr_frags;
2686
2687                 /* When time stamping, one additional TxBD must be freed.
2688                  * Also, we need to dma_unmap_single() the TxPAL.
2689                  */
2690                 if (unlikely(do_tstamp))
2691                         nr_txbds = frags + 2;
2692                 else
2693                         nr_txbds = frags + 1;
2694
2695                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2696
2697                 lstatus = be32_to_cpu(lbdp->lstatus);
2698
2699                 /* Only clean completed frames */
2700                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2701                     (lstatus & BD_LENGTH_MASK))
2702                         break;
2703
2704                 if (unlikely(do_tstamp)) {
2705                         next = next_txbd(bdp, base, tx_ring_size);
2706                         buflen = be16_to_cpu(next->length) +
2707                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2708                 } else
2709                         buflen = be16_to_cpu(bdp->length);
2710
2711                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2712                                  buflen, DMA_TO_DEVICE);
2713
2714                 if (unlikely(do_tstamp)) {
2715                         struct skb_shared_hwtstamps shhwtstamps;
2716                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2717                                           ~0x7UL);
2718
2719                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2720                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2721                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2722                         skb_tstamp_tx(skb, &shhwtstamps);
2723                         gfar_clear_txbd_status(bdp);
2724                         bdp = next;
2725                 }
2726
2727                 gfar_clear_txbd_status(bdp);
2728                 bdp = next_txbd(bdp, base, tx_ring_size);
2729
2730                 for (i = 0; i < frags; i++) {
2731                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2732                                        be16_to_cpu(bdp->length),
2733                                        DMA_TO_DEVICE);
2734                         gfar_clear_txbd_status(bdp);
2735                         bdp = next_txbd(bdp, base, tx_ring_size);
2736                 }
2737
2738                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2739
2740                 dev_kfree_skb_any(skb);
2741
2742                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2743
2744                 skb_dirtytx = (skb_dirtytx + 1) &
2745                               TX_RING_MOD_MASK(tx_ring_size);
2746
2747                 howmany++;
2748                 spin_lock(&tx_queue->txlock);
2749                 tx_queue->num_txbdfree += nr_txbds;
2750                 spin_unlock(&tx_queue->txlock);
2751         }
2752
2753         /* If we freed a buffer, we can restart transmission, if necessary */
2754         if (tx_queue->num_txbdfree &&
2755             netif_tx_queue_stopped(txq) &&
2756             !(test_bit(GFAR_DOWN, &priv->state)))
2757                 netif_wake_subqueue(priv->ndev, tqi);
2758
2759         /* Update dirty indicators */
2760         tx_queue->skb_dirtytx = skb_dirtytx;
2761         tx_queue->dirty_tx = bdp;
2762
2763         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2764 }
2765
2766 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2767 {
2768         struct page *page;
2769         dma_addr_t addr;
2770
2771         page = dev_alloc_page();
2772         if (unlikely(!page))
2773                 return false;
2774
2775         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2776         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2777                 __free_page(page);
2778
2779                 return false;
2780         }
2781
2782         rxb->dma = addr;
2783         rxb->page = page;
2784         rxb->page_offset = 0;
2785
2786         return true;
2787 }
2788
2789 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2790 {
2791         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2792         struct gfar_extra_stats *estats = &priv->extra_stats;
2793
2794         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2795         atomic64_inc(&estats->rx_alloc_err);
2796 }
2797
2798 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2799                                 int alloc_cnt)
2800 {
2801         struct rxbd8 *bdp;
2802         struct gfar_rx_buff *rxb;
2803         int i;
2804
2805         i = rx_queue->next_to_use;
2806         bdp = &rx_queue->rx_bd_base[i];
2807         rxb = &rx_queue->rx_buff[i];
2808
2809         while (alloc_cnt--) {
2810                 /* try reuse page */
2811                 if (unlikely(!rxb->page)) {
2812                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2813                                 gfar_rx_alloc_err(rx_queue);
2814                                 break;
2815                         }
2816                 }
2817
2818                 /* Setup the new RxBD */
2819                 gfar_init_rxbdp(rx_queue, bdp,
2820                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2821
2822                 /* Update to the next pointer */
2823                 bdp++;
2824                 rxb++;
2825
2826                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2827                         i = 0;
2828                         bdp = rx_queue->rx_bd_base;
2829                         rxb = rx_queue->rx_buff;
2830                 }
2831         }
2832
2833         rx_queue->next_to_use = i;
2834         rx_queue->next_to_alloc = i;
2835 }
2836
2837 static void count_errors(u32 lstatus, struct net_device *ndev)
2838 {
2839         struct gfar_private *priv = netdev_priv(ndev);
2840         struct net_device_stats *stats = &ndev->stats;
2841         struct gfar_extra_stats *estats = &priv->extra_stats;
2842
2843         /* If the packet was truncated, none of the other errors matter */
2844         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2845                 stats->rx_length_errors++;
2846
2847                 atomic64_inc(&estats->rx_trunc);
2848
2849                 return;
2850         }
2851         /* Count the errors, if there were any */
2852         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2853                 stats->rx_length_errors++;
2854
2855                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2856                         atomic64_inc(&estats->rx_large);
2857                 else
2858                         atomic64_inc(&estats->rx_short);
2859         }
2860         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2861                 stats->rx_frame_errors++;
2862                 atomic64_inc(&estats->rx_nonoctet);
2863         }
2864         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2865                 atomic64_inc(&estats->rx_crcerr);
2866                 stats->rx_crc_errors++;
2867         }
2868         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2869                 atomic64_inc(&estats->rx_overrun);
2870                 stats->rx_over_errors++;
2871         }
2872 }
2873
2874 irqreturn_t gfar_receive(int irq, void *grp_id)
2875 {
2876         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2877         unsigned long flags;
2878         u32 imask, ievent;
2879
2880         ievent = gfar_read(&grp->regs->ievent);
2881
2882         if (unlikely(ievent & IEVENT_FGPI)) {
2883                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2884                 return IRQ_HANDLED;
2885         }
2886
2887         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2888                 spin_lock_irqsave(&grp->grplock, flags);
2889                 imask = gfar_read(&grp->regs->imask);
2890                 imask &= IMASK_RX_DISABLED;
2891                 gfar_write(&grp->regs->imask, imask);
2892                 spin_unlock_irqrestore(&grp->grplock, flags);
2893                 __napi_schedule(&grp->napi_rx);
2894         } else {
2895                 /* Clear IEVENT, so interrupts aren't called again
2896                  * because of the packets that have already arrived.
2897                  */
2898                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2899         }
2900
2901         return IRQ_HANDLED;
2902 }
2903
2904 /* Interrupt Handler for Transmit complete */
2905 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2906 {
2907         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2908         unsigned long flags;
2909         u32 imask;
2910
2911         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2912                 spin_lock_irqsave(&grp->grplock, flags);
2913                 imask = gfar_read(&grp->regs->imask);
2914                 imask &= IMASK_TX_DISABLED;
2915                 gfar_write(&grp->regs->imask, imask);
2916                 spin_unlock_irqrestore(&grp->grplock, flags);
2917                 __napi_schedule(&grp->napi_tx);
2918         } else {
2919                 /* Clear IEVENT, so interrupts aren't called again
2920                  * because of the packets that have already arrived.
2921                  */
2922                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2923         }
2924
2925         return IRQ_HANDLED;
2926 }
2927
2928 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2929                              struct sk_buff *skb, bool first)
2930 {
2931         unsigned int size = lstatus & BD_LENGTH_MASK;
2932         struct page *page = rxb->page;
2933
2934         /* Remove the FCS from the packet length */
2935         if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2936                 size -= ETH_FCS_LEN;
2937
2938         if (likely(first))
2939                 skb_put(skb, size);
2940         else
2941                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2942                                 rxb->page_offset + RXBUF_ALIGNMENT,
2943                                 size, GFAR_RXB_TRUESIZE);
2944
2945         /* try reuse page */
2946         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2947                 return false;
2948
2949         /* change offset to the other half */
2950         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2951
2952         atomic_inc(&page->_count);
2953
2954         return true;
2955 }
2956
2957 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2958                                struct gfar_rx_buff *old_rxb)
2959 {
2960         struct gfar_rx_buff *new_rxb;
2961         u16 nta = rxq->next_to_alloc;
2962
2963         new_rxb = &rxq->rx_buff[nta];
2964
2965         /* find next buf that can reuse a page */
2966         nta++;
2967         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2968
2969         /* copy page reference */
2970         *new_rxb = *old_rxb;
2971
2972         /* sync for use by the device */
2973         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2974                                          old_rxb->page_offset,
2975                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2976 }
2977
2978 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2979                                             u32 lstatus, struct sk_buff *skb)
2980 {
2981         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2982         struct page *page = rxb->page;
2983         bool first = false;
2984
2985         if (likely(!skb)) {
2986                 void *buff_addr = page_address(page) + rxb->page_offset;
2987
2988                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2989                 if (unlikely(!skb)) {
2990                         gfar_rx_alloc_err(rx_queue);
2991                         return NULL;
2992                 }
2993                 skb_reserve(skb, RXBUF_ALIGNMENT);
2994                 first = true;
2995         }
2996
2997         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2998                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2999
3000         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3001                 /* reuse the free half of the page */
3002                 gfar_reuse_rx_page(rx_queue, rxb);
3003         } else {
3004                 /* page cannot be reused, unmap it */
3005                 dma_unmap_page(rx_queue->dev, rxb->dma,
3006                                PAGE_SIZE, DMA_FROM_DEVICE);
3007         }
3008
3009         /* clear rxb content */
3010         rxb->page = NULL;
3011
3012         return skb;
3013 }
3014
3015 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3016 {
3017         /* If valid headers were found, and valid sums
3018          * were verified, then we tell the kernel that no
3019          * checksumming is necessary.  Otherwise, it is [FIXME]
3020          */
3021         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3022             (RXFCB_CIP | RXFCB_CTU))
3023                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3024         else
3025                 skb_checksum_none_assert(skb);
3026 }
3027
3028 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3029 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3030 {
3031         struct gfar_private *priv = netdev_priv(ndev);
3032         struct rxfcb *fcb = NULL;
3033
3034         /* fcb is at the beginning if exists */
3035         fcb = (struct rxfcb *)skb->data;
3036
3037         /* Remove the FCB from the skb
3038          * Remove the padded bytes, if there are any
3039          */
3040         if (priv->uses_rxfcb)
3041                 skb_pull(skb, GMAC_FCB_LEN);
3042
3043         /* Get receive timestamp from the skb */
3044         if (priv->hwts_rx_en) {
3045                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3046                 u64 *ns = (u64 *) skb->data;
3047
3048                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3049                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3050         }
3051
3052         if (priv->padding)
3053                 skb_pull(skb, priv->padding);
3054
3055         if (ndev->features & NETIF_F_RXCSUM)
3056                 gfar_rx_checksum(skb, fcb);
3057
3058         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3059          * Even if vlan rx accel is disabled, on some chips
3060          * RXFCB_VLN is pseudo randomly set.
3061          */
3062         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3063             be16_to_cpu(fcb->flags) & RXFCB_VLN)
3064                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3065                                        be16_to_cpu(fcb->vlctl));
3066 }
3067
3068 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3069  * until the budget/quota has been reached. Returns the number
3070  * of frames handled
3071  */
3072 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3073 {
3074         struct net_device *ndev = rx_queue->ndev;
3075         struct gfar_private *priv = netdev_priv(ndev);
3076         struct rxbd8 *bdp;
3077         int i, howmany = 0;
3078         struct sk_buff *skb = rx_queue->skb;
3079         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3080         unsigned int total_bytes = 0, total_pkts = 0;
3081
3082         /* Get the first full descriptor */
3083         i = rx_queue->next_to_clean;
3084
3085         while (rx_work_limit--) {
3086                 u32 lstatus;
3087
3088                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3089                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3090                         cleaned_cnt = 0;
3091                 }
3092
3093                 bdp = &rx_queue->rx_bd_base[i];
3094                 lstatus = be32_to_cpu(bdp->lstatus);
3095                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3096                         break;
3097
3098                 /* order rx buffer descriptor reads */
3099                 rmb();
3100
3101                 /* fetch next to clean buffer from the ring */
3102                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3103                 if (unlikely(!skb))
3104                         break;
3105
3106                 cleaned_cnt++;
3107                 howmany++;
3108
3109                 if (unlikely(++i == rx_queue->rx_ring_size))
3110                         i = 0;
3111
3112                 rx_queue->next_to_clean = i;
3113
3114                 /* fetch next buffer if not the last in frame */
3115                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3116                         continue;
3117
3118                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3119                         count_errors(lstatus, ndev);
3120
3121                         /* discard faulty buffer */
3122                         dev_kfree_skb(skb);
3123                         skb = NULL;
3124                         rx_queue->stats.rx_dropped++;
3125                         continue;
3126                 }
3127
3128                 gfar_process_frame(ndev, skb);
3129
3130                 /* Increment the number of packets */
3131                 total_pkts++;
3132                 total_bytes += skb->len;
3133
3134                 skb_record_rx_queue(skb, rx_queue->qindex);
3135
3136                 skb->protocol = eth_type_trans(skb, ndev);
3137
3138                 /* Send the packet up the stack */
3139                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3140
3141                 skb = NULL;
3142         }
3143
3144         /* Store incomplete frames for completion */
3145         rx_queue->skb = skb;
3146
3147         rx_queue->stats.rx_packets += total_pkts;
3148         rx_queue->stats.rx_bytes += total_bytes;
3149
3150         if (cleaned_cnt)
3151                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3152
3153         /* Update Last Free RxBD pointer for LFC */
3154         if (unlikely(priv->tx_actual_en)) {
3155                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3156
3157                 gfar_write(rx_queue->rfbptr, bdp_dma);
3158         }
3159
3160         return howmany;
3161 }
3162
3163 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3164 {
3165         struct gfar_priv_grp *gfargrp =
3166                 container_of(napi, struct gfar_priv_grp, napi_rx);
3167         struct gfar __iomem *regs = gfargrp->regs;
3168         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3169         int work_done = 0;
3170
3171         /* Clear IEVENT, so interrupts aren't called again
3172          * because of the packets that have already arrived
3173          */
3174         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3175
3176         work_done = gfar_clean_rx_ring(rx_queue, budget);
3177
3178         if (work_done < budget) {
3179                 u32 imask;
3180                 napi_complete(napi);
3181                 /* Clear the halt bit in RSTAT */
3182                 gfar_write(&regs->rstat, gfargrp->rstat);
3183
3184                 spin_lock_irq(&gfargrp->grplock);
3185                 imask = gfar_read(&regs->imask);
3186                 imask |= IMASK_RX_DEFAULT;
3187                 gfar_write(&regs->imask, imask);
3188                 spin_unlock_irq(&gfargrp->grplock);
3189         }
3190
3191         return work_done;
3192 }
3193
3194 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3195 {
3196         struct gfar_priv_grp *gfargrp =
3197                 container_of(napi, struct gfar_priv_grp, napi_tx);
3198         struct gfar __iomem *regs = gfargrp->regs;
3199         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3200         u32 imask;
3201
3202         /* Clear IEVENT, so interrupts aren't called again
3203          * because of the packets that have already arrived
3204          */
3205         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3206
3207         /* run Tx cleanup to completion */
3208         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3209                 gfar_clean_tx_ring(tx_queue);
3210
3211         napi_complete(napi);
3212
3213         spin_lock_irq(&gfargrp->grplock);
3214         imask = gfar_read(&regs->imask);
3215         imask |= IMASK_TX_DEFAULT;
3216         gfar_write(&regs->imask, imask);
3217         spin_unlock_irq(&gfargrp->grplock);
3218
3219         return 0;
3220 }
3221
3222 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3223 {
3224         struct gfar_priv_grp *gfargrp =
3225                 container_of(napi, struct gfar_priv_grp, napi_rx);
3226         struct gfar_private *priv = gfargrp->priv;
3227         struct gfar __iomem *regs = gfargrp->regs;
3228         struct gfar_priv_rx_q *rx_queue = NULL;
3229         int work_done = 0, work_done_per_q = 0;
3230         int i, budget_per_q = 0;
3231         unsigned long rstat_rxf;
3232         int num_act_queues;
3233
3234         /* Clear IEVENT, so interrupts aren't called again
3235          * because of the packets that have already arrived
3236          */
3237         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3238
3239         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3240
3241         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3242         if (num_act_queues)
3243                 budget_per_q = budget/num_act_queues;
3244
3245         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3246                 /* skip queue if not active */
3247                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3248                         continue;
3249
3250                 rx_queue = priv->rx_queue[i];
3251                 work_done_per_q =
3252                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3253                 work_done += work_done_per_q;
3254
3255                 /* finished processing this queue */
3256                 if (work_done_per_q < budget_per_q) {
3257                         /* clear active queue hw indication */
3258                         gfar_write(&regs->rstat,
3259                                    RSTAT_CLEAR_RXF0 >> i);
3260                         num_act_queues--;
3261
3262                         if (!num_act_queues)
3263                                 break;
3264                 }
3265         }
3266
3267         if (!num_act_queues) {
3268                 u32 imask;
3269                 napi_complete(napi);
3270
3271                 /* Clear the halt bit in RSTAT */
3272                 gfar_write(&regs->rstat, gfargrp->rstat);
3273
3274                 spin_lock_irq(&gfargrp->grplock);
3275                 imask = gfar_read(&regs->imask);
3276                 imask |= IMASK_RX_DEFAULT;
3277                 gfar_write(&regs->imask, imask);
3278                 spin_unlock_irq(&gfargrp->grplock);
3279         }
3280
3281         return work_done;
3282 }
3283
3284 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3285 {
3286         struct gfar_priv_grp *gfargrp =
3287                 container_of(napi, struct gfar_priv_grp, napi_tx);
3288         struct gfar_private *priv = gfargrp->priv;
3289         struct gfar __iomem *regs = gfargrp->regs;
3290         struct gfar_priv_tx_q *tx_queue = NULL;
3291         int has_tx_work = 0;
3292         int i;
3293
3294         /* Clear IEVENT, so interrupts aren't called again
3295          * because of the packets that have already arrived
3296          */
3297         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3298
3299         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3300                 tx_queue = priv->tx_queue[i];
3301                 /* run Tx cleanup to completion */
3302                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3303                         gfar_clean_tx_ring(tx_queue);
3304                         has_tx_work = 1;
3305                 }
3306         }
3307
3308         if (!has_tx_work) {
3309                 u32 imask;
3310                 napi_complete(napi);
3311
3312                 spin_lock_irq(&gfargrp->grplock);
3313                 imask = gfar_read(&regs->imask);
3314                 imask |= IMASK_TX_DEFAULT;
3315                 gfar_write(&regs->imask, imask);
3316                 spin_unlock_irq(&gfargrp->grplock);
3317         }
3318
3319         return 0;
3320 }
3321
3322
3323 #ifdef CONFIG_NET_POLL_CONTROLLER
3324 /* Polling 'interrupt' - used by things like netconsole to send skbs
3325  * without having to re-enable interrupts. It's not called while
3326  * the interrupt routine is executing.
3327  */
3328 static void gfar_netpoll(struct net_device *dev)
3329 {
3330         struct gfar_private *priv = netdev_priv(dev);
3331         int i;
3332
3333         /* If the device has multiple interrupts, run tx/rx */
3334         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3335                 for (i = 0; i < priv->num_grps; i++) {
3336                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3337
3338                         disable_irq(gfar_irq(grp, TX)->irq);
3339                         disable_irq(gfar_irq(grp, RX)->irq);
3340                         disable_irq(gfar_irq(grp, ER)->irq);
3341                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3342                         enable_irq(gfar_irq(grp, ER)->irq);
3343                         enable_irq(gfar_irq(grp, RX)->irq);
3344                         enable_irq(gfar_irq(grp, TX)->irq);
3345                 }
3346         } else {
3347                 for (i = 0; i < priv->num_grps; i++) {
3348                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3349
3350                         disable_irq(gfar_irq(grp, TX)->irq);
3351                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3352                         enable_irq(gfar_irq(grp, TX)->irq);
3353                 }
3354         }
3355 }
3356 #endif
3357
3358 /* The interrupt handler for devices with one interrupt */
3359 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3360 {
3361         struct gfar_priv_grp *gfargrp = grp_id;
3362
3363         /* Save ievent for future reference */
3364         u32 events = gfar_read(&gfargrp->regs->ievent);
3365
3366         /* Check for reception */
3367         if (events & IEVENT_RX_MASK)
3368                 gfar_receive(irq, grp_id);
3369
3370         /* Check for transmit completion */
3371         if (events & IEVENT_TX_MASK)
3372                 gfar_transmit(irq, grp_id);
3373
3374         /* Check for errors */
3375         if (events & IEVENT_ERR_MASK)
3376                 gfar_error(irq, grp_id);
3377
3378         return IRQ_HANDLED;
3379 }
3380
3381 /* Called every time the controller might need to be made
3382  * aware of new link state.  The PHY code conveys this
3383  * information through variables in the phydev structure, and this
3384  * function converts those variables into the appropriate
3385  * register values, and can bring down the device if needed.
3386  */
3387 static void adjust_link(struct net_device *dev)
3388 {
3389         struct gfar_private *priv = netdev_priv(dev);
3390         struct phy_device *phydev = priv->phydev;
3391
3392         if (unlikely(phydev->link != priv->oldlink ||
3393                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3394                                        phydev->speed != priv->oldspeed))))
3395                 gfar_update_link_state(priv);
3396 }
3397
3398 /* Update the hash table based on the current list of multicast
3399  * addresses we subscribe to.  Also, change the promiscuity of
3400  * the device based on the flags (this function is called
3401  * whenever dev->flags is changed
3402  */
3403 static void gfar_set_multi(struct net_device *dev)
3404 {
3405         struct netdev_hw_addr *ha;
3406         struct gfar_private *priv = netdev_priv(dev);
3407         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3408         u32 tempval;
3409
3410         if (dev->flags & IFF_PROMISC) {
3411                 /* Set RCTRL to PROM */
3412                 tempval = gfar_read(&regs->rctrl);
3413                 tempval |= RCTRL_PROM;
3414                 gfar_write(&regs->rctrl, tempval);
3415         } else {
3416                 /* Set RCTRL to not PROM */
3417                 tempval = gfar_read(&regs->rctrl);
3418                 tempval &= ~(RCTRL_PROM);
3419                 gfar_write(&regs->rctrl, tempval);
3420         }
3421
3422         if (dev->flags & IFF_ALLMULTI) {
3423                 /* Set the hash to rx all multicast frames */
3424                 gfar_write(&regs->igaddr0, 0xffffffff);
3425                 gfar_write(&regs->igaddr1, 0xffffffff);
3426                 gfar_write(&regs->igaddr2, 0xffffffff);
3427                 gfar_write(&regs->igaddr3, 0xffffffff);
3428                 gfar_write(&regs->igaddr4, 0xffffffff);
3429                 gfar_write(&regs->igaddr5, 0xffffffff);
3430                 gfar_write(&regs->igaddr6, 0xffffffff);
3431                 gfar_write(&regs->igaddr7, 0xffffffff);
3432                 gfar_write(&regs->gaddr0, 0xffffffff);
3433                 gfar_write(&regs->gaddr1, 0xffffffff);
3434                 gfar_write(&regs->gaddr2, 0xffffffff);
3435                 gfar_write(&regs->gaddr3, 0xffffffff);
3436                 gfar_write(&regs->gaddr4, 0xffffffff);
3437                 gfar_write(&regs->gaddr5, 0xffffffff);
3438                 gfar_write(&regs->gaddr6, 0xffffffff);
3439                 gfar_write(&regs->gaddr7, 0xffffffff);
3440         } else {
3441                 int em_num;
3442                 int idx;
3443
3444                 /* zero out the hash */
3445                 gfar_write(&regs->igaddr0, 0x0);
3446                 gfar_write(&regs->igaddr1, 0x0);
3447                 gfar_write(&regs->igaddr2, 0x0);
3448                 gfar_write(&regs->igaddr3, 0x0);
3449                 gfar_write(&regs->igaddr4, 0x0);
3450                 gfar_write(&regs->igaddr5, 0x0);
3451                 gfar_write(&regs->igaddr6, 0x0);
3452                 gfar_write(&regs->igaddr7, 0x0);
3453                 gfar_write(&regs->gaddr0, 0x0);
3454                 gfar_write(&regs->gaddr1, 0x0);
3455                 gfar_write(&regs->gaddr2, 0x0);
3456                 gfar_write(&regs->gaddr3, 0x0);
3457                 gfar_write(&regs->gaddr4, 0x0);
3458                 gfar_write(&regs->gaddr5, 0x0);
3459                 gfar_write(&regs->gaddr6, 0x0);
3460                 gfar_write(&regs->gaddr7, 0x0);
3461
3462                 /* If we have extended hash tables, we need to
3463                  * clear the exact match registers to prepare for
3464                  * setting them
3465                  */
3466                 if (priv->extended_hash) {
3467                         em_num = GFAR_EM_NUM + 1;
3468                         gfar_clear_exact_match(dev);
3469                         idx = 1;
3470                 } else {
3471                         idx = 0;
3472                         em_num = 0;
3473                 }
3474
3475                 if (netdev_mc_empty(dev))
3476                         return;
3477
3478                 /* Parse the list, and set the appropriate bits */
3479                 netdev_for_each_mc_addr(ha, dev) {
3480                         if (idx < em_num) {
3481                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3482                                 idx++;
3483                         } else
3484                                 gfar_set_hash_for_addr(dev, ha->addr);
3485                 }
3486         }
3487 }
3488
3489
3490 /* Clears each of the exact match registers to zero, so they
3491  * don't interfere with normal reception
3492  */
3493 static void gfar_clear_exact_match(struct net_device *dev)
3494 {
3495         int idx;
3496         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3497
3498         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3499                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3500 }
3501
3502 /* Set the appropriate hash bit for the given addr */
3503 /* The algorithm works like so:
3504  * 1) Take the Destination Address (ie the multicast address), and
3505  * do a CRC on it (little endian), and reverse the bits of the
3506  * result.
3507  * 2) Use the 8 most significant bits as a hash into a 256-entry
3508  * table.  The table is controlled through 8 32-bit registers:
3509  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3510  * gaddr7.  This means that the 3 most significant bits in the
3511  * hash index which gaddr register to use, and the 5 other bits
3512  * indicate which bit (assuming an IBM numbering scheme, which
3513  * for PowerPC (tm) is usually the case) in the register holds
3514  * the entry.
3515  */
3516 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3517 {
3518         u32 tempval;
3519         struct gfar_private *priv = netdev_priv(dev);
3520         u32 result = ether_crc(ETH_ALEN, addr);
3521         int width = priv->hash_width;
3522         u8 whichbit = (result >> (32 - width)) & 0x1f;
3523         u8 whichreg = result >> (32 - width + 5);
3524         u32 value = (1 << (31-whichbit));
3525
3526         tempval = gfar_read(priv->hash_regs[whichreg]);
3527         tempval |= value;
3528         gfar_write(priv->hash_regs[whichreg], tempval);
3529 }
3530
3531
3532 /* There are multiple MAC Address register pairs on some controllers
3533  * This function sets the numth pair to a given address
3534  */
3535 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3536                                   const u8 *addr)
3537 {
3538         struct gfar_private *priv = netdev_priv(dev);
3539         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3540         u32 tempval;
3541         u32 __iomem *macptr = &regs->macstnaddr1;
3542
3543         macptr += num*2;
3544
3545         /* For a station address of 0x12345678ABCD in transmission
3546          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3547          * MACnADDR2 is set to 0x34120000.
3548          */
3549         tempval = (addr[5] << 24) | (addr[4] << 16) |
3550                   (addr[3] << 8)  |  addr[2];
3551
3552         gfar_write(macptr, tempval);
3553
3554         tempval = (addr[1] << 24) | (addr[0] << 16);
3555
3556         gfar_write(macptr+1, tempval);
3557 }
3558
3559 /* GFAR error interrupt handler */
3560 static irqreturn_t gfar_error(int irq, void *grp_id)
3561 {
3562         struct gfar_priv_grp *gfargrp = grp_id;
3563         struct gfar __iomem *regs = gfargrp->regs;
3564         struct gfar_private *priv= gfargrp->priv;
3565         struct net_device *dev = priv->ndev;
3566
3567         /* Save ievent for future reference */
3568         u32 events = gfar_read(&regs->ievent);
3569
3570         /* Clear IEVENT */
3571         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3572
3573         /* Magic Packet is not an error. */
3574         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3575             (events & IEVENT_MAG))
3576                 events &= ~IEVENT_MAG;
3577
3578         /* Hmm... */
3579         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3580                 netdev_dbg(dev,
3581                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3582                            events, gfar_read(&regs->imask));
3583
3584         /* Update the error counters */
3585         if (events & IEVENT_TXE) {
3586                 dev->stats.tx_errors++;
3587
3588                 if (events & IEVENT_LC)
3589                         dev->stats.tx_window_errors++;
3590                 if (events & IEVENT_CRL)
3591                         dev->stats.tx_aborted_errors++;
3592                 if (events & IEVENT_XFUN) {
3593                         netif_dbg(priv, tx_err, dev,
3594                                   "TX FIFO underrun, packet dropped\n");
3595                         dev->stats.tx_dropped++;
3596                         atomic64_inc(&priv->extra_stats.tx_underrun);
3597
3598                         schedule_work(&priv->reset_task);
3599                 }
3600                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3601         }
3602         if (events & IEVENT_BSY) {
3603                 dev->stats.rx_over_errors++;
3604                 atomic64_inc(&priv->extra_stats.rx_bsy);
3605
3606                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3607                           gfar_read(&regs->rstat));
3608         }
3609         if (events & IEVENT_BABR) {
3610                 dev->stats.rx_errors++;
3611                 atomic64_inc(&priv->extra_stats.rx_babr);
3612
3613                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3614         }
3615         if (events & IEVENT_EBERR) {
3616                 atomic64_inc(&priv->extra_stats.eberr);
3617                 netif_dbg(priv, rx_err, dev, "bus error\n");
3618         }
3619         if (events & IEVENT_RXC)
3620                 netif_dbg(priv, rx_status, dev, "control frame\n");
3621
3622         if (events & IEVENT_BABT) {
3623                 atomic64_inc(&priv->extra_stats.tx_babt);
3624                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3625         }
3626         return IRQ_HANDLED;
3627 }
3628
3629 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3630 {
3631         struct phy_device *phydev = priv->phydev;
3632         u32 val = 0;
3633
3634         if (!phydev->duplex)
3635                 return val;
3636
3637         if (!priv->pause_aneg_en) {
3638                 if (priv->tx_pause_en)
3639                         val |= MACCFG1_TX_FLOW;
3640                 if (priv->rx_pause_en)
3641                         val |= MACCFG1_RX_FLOW;
3642         } else {
3643                 u16 lcl_adv, rmt_adv;
3644                 u8 flowctrl;
3645                 /* get link partner capabilities */
3646                 rmt_adv = 0;
3647                 if (phydev->pause)
3648                         rmt_adv = LPA_PAUSE_CAP;
3649                 if (phydev->asym_pause)
3650                         rmt_adv |= LPA_PAUSE_ASYM;
3651
3652                 lcl_adv = 0;
3653                 if (phydev->advertising & ADVERTISED_Pause)
3654                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3655                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3656                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3657
3658                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3659                 if (flowctrl & FLOW_CTRL_TX)
3660                         val |= MACCFG1_TX_FLOW;
3661                 if (flowctrl & FLOW_CTRL_RX)
3662                         val |= MACCFG1_RX_FLOW;
3663         }
3664
3665         return val;
3666 }
3667
3668 static noinline void gfar_update_link_state(struct gfar_private *priv)
3669 {
3670         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3671         struct phy_device *phydev = priv->phydev;
3672         struct gfar_priv_rx_q *rx_queue = NULL;
3673         int i;
3674
3675         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3676                 return;
3677
3678         if (phydev->link) {
3679                 u32 tempval1 = gfar_read(&regs->maccfg1);
3680                 u32 tempval = gfar_read(&regs->maccfg2);
3681                 u32 ecntrl = gfar_read(&regs->ecntrl);
3682                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3683
3684                 if (phydev->duplex != priv->oldduplex) {
3685                         if (!(phydev->duplex))
3686                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3687                         else
3688                                 tempval |= MACCFG2_FULL_DUPLEX;
3689
3690                         priv->oldduplex = phydev->duplex;
3691                 }
3692
3693                 if (phydev->speed != priv->oldspeed) {
3694                         switch (phydev->speed) {
3695                         case 1000:
3696                                 tempval =
3697                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3698
3699                                 ecntrl &= ~(ECNTRL_R100);
3700                                 break;
3701                         case 100:
3702                         case 10:
3703                                 tempval =
3704                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3705
3706                                 /* Reduced mode distinguishes
3707                                  * between 10 and 100
3708                                  */
3709                                 if (phydev->speed == SPEED_100)
3710                                         ecntrl |= ECNTRL_R100;
3711                                 else
3712                                         ecntrl &= ~(ECNTRL_R100);
3713                                 break;
3714                         default:
3715                                 netif_warn(priv, link, priv->ndev,
3716                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3717                                            phydev->speed);
3718                                 break;
3719                         }
3720
3721                         priv->oldspeed = phydev->speed;
3722                 }
3723
3724                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3725                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3726
3727                 /* Turn last free buffer recording on */
3728                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3729                         for (i = 0; i < priv->num_rx_queues; i++) {
3730                                 u32 bdp_dma;
3731
3732                                 rx_queue = priv->rx_queue[i];
3733                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3734                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3735                         }
3736
3737                         priv->tx_actual_en = 1;
3738                 }
3739
3740                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3741                         priv->tx_actual_en = 0;
3742
3743                 gfar_write(&regs->maccfg1, tempval1);
3744                 gfar_write(&regs->maccfg2, tempval);
3745                 gfar_write(&regs->ecntrl, ecntrl);
3746
3747                 if (!priv->oldlink)
3748                         priv->oldlink = 1;
3749
3750         } else if (priv->oldlink) {
3751                 priv->oldlink = 0;
3752                 priv->oldspeed = 0;
3753                 priv->oldduplex = -1;
3754         }
3755
3756         if (netif_msg_link(priv))
3757                 phy_print_status(phydev);
3758 }
3759
3760 static const struct of_device_id gfar_match[] =
3761 {
3762         {
3763                 .type = "network",
3764                 .compatible = "gianfar",
3765         },
3766         {
3767                 .compatible = "fsl,etsec2",
3768         },
3769         {},
3770 };
3771 MODULE_DEVICE_TABLE(of, gfar_match);
3772
3773 /* Structure for a device driver */
3774 static struct platform_driver gfar_driver = {
3775         .driver = {
3776                 .name = "fsl-gianfar",
3777                 .pm = GFAR_PM_OPS,
3778                 .of_match_table = gfar_match,
3779         },
3780         .probe = gfar_probe,
3781         .remove = gfar_remove,
3782 };
3783
3784 module_platform_driver(gfar_driver);