GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / ethernet / freescale / fec_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4  *
5  * Copyright (C) 2012 Freescale Semiconductor, Inc.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/ptrace.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/spinlock.h>
24 #include <linux/workqueue.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/clk.h>
29 #include <linux/platform_device.h>
30 #include <linux/phy.h>
31 #include <linux/fec.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_net.h>
35
36 #include "fec.h"
37
38 /* FEC 1588 register bits */
39 #define FEC_T_CTRL_SLAVE                0x00002000
40 #define FEC_T_CTRL_CAPTURE              0x00000800
41 #define FEC_T_CTRL_RESTART              0x00000200
42 #define FEC_T_CTRL_PERIOD_RST           0x00000030
43 #define FEC_T_CTRL_PERIOD_EN            0x00000010
44 #define FEC_T_CTRL_ENABLE               0x00000001
45
46 #define FEC_T_INC_MASK                  0x0000007f
47 #define FEC_T_INC_OFFSET                0
48 #define FEC_T_INC_CORR_MASK             0x00007f00
49 #define FEC_T_INC_CORR_OFFSET           8
50
51 #define FEC_T_CTRL_PINPER               0x00000080
52 #define FEC_T_TF0_MASK                  0x00000001
53 #define FEC_T_TF0_OFFSET                0
54 #define FEC_T_TF1_MASK                  0x00000002
55 #define FEC_T_TF1_OFFSET                1
56 #define FEC_T_TF2_MASK                  0x00000004
57 #define FEC_T_TF2_OFFSET                2
58 #define FEC_T_TF3_MASK                  0x00000008
59 #define FEC_T_TF3_OFFSET                3
60 #define FEC_T_TDRE_MASK                 0x00000001
61 #define FEC_T_TDRE_OFFSET               0
62 #define FEC_T_TMODE_MASK                0x0000003C
63 #define FEC_T_TMODE_OFFSET              2
64 #define FEC_T_TIE_MASK                  0x00000040
65 #define FEC_T_TIE_OFFSET                6
66 #define FEC_T_TF_MASK                   0x00000080
67 #define FEC_T_TF_OFFSET                 7
68
69 #define FEC_ATIME_CTRL          0x400
70 #define FEC_ATIME               0x404
71 #define FEC_ATIME_EVT_OFFSET    0x408
72 #define FEC_ATIME_EVT_PERIOD    0x40c
73 #define FEC_ATIME_CORR          0x410
74 #define FEC_ATIME_INC           0x414
75 #define FEC_TS_TIMESTAMP        0x418
76
77 #define FEC_TGSR                0x604
78 #define FEC_TCSR(n)             (0x608 + n * 0x08)
79 #define FEC_TCCR(n)             (0x60C + n * 0x08)
80 #define MAX_TIMER_CHANNEL       3
81 #define FEC_TMODE_TOGGLE        0x05
82 #define FEC_HIGH_PULSE          0x0F
83
84 #define FEC_CC_MULT     (1 << 31)
85 #define FEC_COUNTER_PERIOD      (1 << 31)
86 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
87 #define FEC_CHANNLE_0           0
88 #define DEFAULT_PPS_CHANNEL     FEC_CHANNLE_0
89
90 #define FEC_PTP_MAX_NSEC_PERIOD         4000000000ULL
91 #define FEC_PTP_MAX_NSEC_COUNTER        0x80000000ULL
92
93 /**
94  * fec_ptp_enable_pps
95  * @fep: the fec_enet_private structure handle
96  * @enable: enable the channel pps output
97  *
98  * This function enble the PPS ouput on the timer channel.
99  */
100 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
101 {
102         unsigned long flags;
103         u32 val, tempval;
104         struct timespec64 ts;
105         u64 ns;
106
107         if (fep->pps_enable == enable)
108                 return 0;
109
110         fep->pps_channel = DEFAULT_PPS_CHANNEL;
111         fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
112
113         spin_lock_irqsave(&fep->tmreg_lock, flags);
114
115         if (enable) {
116                 /* clear capture or output compare interrupt status if have.
117                  */
118                 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
119
120                 /* It is recommended to double check the TMODE field in the
121                  * TCSR register to be cleared before the first compare counter
122                  * is written into TCCR register. Just add a double check.
123                  */
124                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
125                 do {
126                         val &= ~(FEC_T_TMODE_MASK);
127                         writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
128                         val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129                 } while (val & FEC_T_TMODE_MASK);
130
131                 /* Dummy read counter to update the counter */
132                 timecounter_read(&fep->tc);
133                 /* We want to find the first compare event in the next
134                  * second point. So we need to know what the ptp time
135                  * is now and how many nanoseconds is ahead to get next second.
136                  * The remaining nanosecond ahead before the next second would be
137                  * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
138                  * to current timer would be next second.
139                  */
140                 tempval = fep->cc.read(&fep->cc);
141                 /* Convert the ptp local counter to 1588 timestamp */
142                 ns = timecounter_cyc2time(&fep->tc, tempval);
143                 ts = ns_to_timespec64(ns);
144
145                 /* The tempval is  less than 3 seconds, and  so val is less than
146                  * 4 seconds. No overflow for 32bit calculation.
147                  */
148                 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
149
150                 /* Need to consider the situation that the current time is
151                  * very close to the second point, which means NSEC_PER_SEC
152                  * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
153                  * is still running when we calculate the first compare event, it is
154                  * possible that the remaining nanoseonds run out before the compare
155                  * counter is calculated and written into TCCR register. To avoid
156                  * this possibility, we will set the compare event to be the next
157                  * of next second. The current setting is 31-bit timer and wrap
158                  * around over 2 seconds. So it is okay to set the next of next
159                  * seond for the timer.
160                  */
161                 val += NSEC_PER_SEC;
162
163                 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
164                  * ptp counter, which maybe cause 32-bit wrap. Since the
165                  * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
166                  * We can ensure the wrap will not cause issue. If the offset
167                  * is bigger than fep->cc.mask would be a error.
168                  */
169                 val &= fep->cc.mask;
170                 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
171
172                 /* Calculate the second the compare event timestamp */
173                 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
174
175                 /* * Enable compare event when overflow */
176                 val = readl(fep->hwp + FEC_ATIME_CTRL);
177                 val |= FEC_T_CTRL_PINPER;
178                 writel(val, fep->hwp + FEC_ATIME_CTRL);
179
180                 /* Compare channel setting. */
181                 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
182                 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
183                 val &= ~(1 << FEC_T_TDRE_OFFSET);
184                 val &= ~(FEC_T_TMODE_MASK);
185                 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
186                 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
187
188                 /* Write the second compare event timestamp and calculate
189                  * the third timestamp. Refer the TCCR register detail in the spec.
190                  */
191                 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
192                 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
193         } else {
194                 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
195         }
196
197         fep->pps_enable = enable;
198         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
199
200         return 0;
201 }
202
203 static int fec_ptp_pps_perout(struct fec_enet_private *fep)
204 {
205         u32 compare_val, ptp_hc, temp_val;
206         u64 curr_time;
207         unsigned long flags;
208
209         spin_lock_irqsave(&fep->tmreg_lock, flags);
210
211         /* Update time counter */
212         timecounter_read(&fep->tc);
213
214         /* Get the current ptp hardware time counter */
215         temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
216         temp_val |= FEC_T_CTRL_CAPTURE;
217         writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
218         if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
219                 udelay(1);
220
221         ptp_hc = readl(fep->hwp + FEC_ATIME);
222
223         /* Convert the ptp local counter to 1588 timestamp */
224         curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
225
226         /* If the pps start time less than current time add 100ms, just return.
227          * Because the software might not able to set the comparison time into
228          * the FEC_TCCR register in time and missed the start time.
229          */
230         if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
231                 dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
232                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
233                 return -1;
234         }
235
236         compare_val = fep->perout_stime - curr_time + ptp_hc;
237         compare_val &= fep->cc.mask;
238
239         writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
240         fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
241
242         /* Enable compare event when overflow */
243         temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
244         temp_val |= FEC_T_CTRL_PINPER;
245         writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
246
247         /* Compare channel setting. */
248         temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
249         temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
250         temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
251         temp_val &= ~(FEC_T_TMODE_MASK);
252         temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
253         writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
254
255         /* Write the second compare event timestamp and calculate
256          * the third timestamp. Refer the TCCR register detail in the spec.
257          */
258         writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
259         fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
260         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
261
262         return 0;
263 }
264
265 static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
266 {
267         struct fec_enet_private *fep = container_of(timer,
268                                         struct fec_enet_private, perout_timer);
269
270         fec_ptp_pps_perout(fep);
271
272         return HRTIMER_NORESTART;
273 }
274
275 /**
276  * fec_ptp_read - read raw cycle counter (to be used by time counter)
277  * @cc: the cyclecounter structure
278  *
279  * this function reads the cyclecounter registers and is called by the
280  * cyclecounter structure used to construct a ns counter from the
281  * arbitrary fixed point registers
282  */
283 static u64 fec_ptp_read(const struct cyclecounter *cc)
284 {
285         struct fec_enet_private *fep =
286                 container_of(cc, struct fec_enet_private, cc);
287         u32 tempval;
288
289         tempval = readl(fep->hwp + FEC_ATIME_CTRL);
290         tempval |= FEC_T_CTRL_CAPTURE;
291         writel(tempval, fep->hwp + FEC_ATIME_CTRL);
292
293         if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
294                 udelay(1);
295
296         return readl(fep->hwp + FEC_ATIME);
297 }
298
299 /**
300  * fec_ptp_start_cyclecounter - create the cycle counter from hw
301  * @ndev: network device
302  *
303  * this function initializes the timecounter and cyclecounter
304  * structures for use in generated a ns counter from the arbitrary
305  * fixed point cycles registers in the hardware.
306  */
307 void fec_ptp_start_cyclecounter(struct net_device *ndev)
308 {
309         struct fec_enet_private *fep = netdev_priv(ndev);
310         unsigned long flags;
311         int inc;
312
313         inc = 1000000000 / fep->cycle_speed;
314
315         /* grab the ptp lock */
316         spin_lock_irqsave(&fep->tmreg_lock, flags);
317
318         /* 1ns counter */
319         writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
320
321         /* use 31-bit timer counter */
322         writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
323
324         writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
325                 fep->hwp + FEC_ATIME_CTRL);
326
327         memset(&fep->cc, 0, sizeof(fep->cc));
328         fep->cc.read = fec_ptp_read;
329         fep->cc.mask = CLOCKSOURCE_MASK(31);
330         fep->cc.shift = 31;
331         fep->cc.mult = FEC_CC_MULT;
332
333         /* reset the ns time counter */
334         timecounter_init(&fep->tc, &fep->cc, 0);
335
336         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
337 }
338
339 /**
340  * fec_ptp_adjfine - adjust ptp cycle frequency
341  * @ptp: the ptp clock structure
342  * @scaled_ppm: scaled parts per million adjustment from base
343  *
344  * Adjust the frequency of the ptp cycle counter by the
345  * indicated amount from the base frequency.
346  *
347  * Scaled parts per million is ppm with a 16-bit binary fractional field.
348  *
349  * Because ENET hardware frequency adjust is complex,
350  * using software method to do that.
351  */
352 static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
353 {
354         s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
355         unsigned long flags;
356         int neg_adj = 0;
357         u32 i, tmp;
358         u32 corr_inc, corr_period;
359         u32 corr_ns;
360         u64 lhs, rhs;
361
362         struct fec_enet_private *fep =
363             container_of(ptp, struct fec_enet_private, ptp_caps);
364
365         if (ppb == 0)
366                 return 0;
367
368         if (ppb < 0) {
369                 ppb = -ppb;
370                 neg_adj = 1;
371         }
372
373         /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
374          * Try to find the corr_inc  between 1 to fep->ptp_inc to
375          * meet adjustment requirement.
376          */
377         lhs = NSEC_PER_SEC;
378         rhs = (u64)ppb * (u64)fep->ptp_inc;
379         for (i = 1; i <= fep->ptp_inc; i++) {
380                 if (lhs >= rhs) {
381                         corr_inc = i;
382                         corr_period = div_u64(lhs, rhs);
383                         break;
384                 }
385                 lhs += NSEC_PER_SEC;
386         }
387         /* Not found? Set it to high value - double speed
388          * correct in every clock step.
389          */
390         if (i > fep->ptp_inc) {
391                 corr_inc = fep->ptp_inc;
392                 corr_period = 1;
393         }
394
395         if (neg_adj)
396                 corr_ns = fep->ptp_inc - corr_inc;
397         else
398                 corr_ns = fep->ptp_inc + corr_inc;
399
400         spin_lock_irqsave(&fep->tmreg_lock, flags);
401
402         tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
403         tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
404         writel(tmp, fep->hwp + FEC_ATIME_INC);
405         corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
406         writel(corr_period, fep->hwp + FEC_ATIME_CORR);
407         /* dummy read to update the timer. */
408         timecounter_read(&fep->tc);
409
410         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
411
412         return 0;
413 }
414
415 /**
416  * fec_ptp_adjtime
417  * @ptp: the ptp clock structure
418  * @delta: offset to adjust the cycle counter by
419  *
420  * adjust the timer by resetting the timecounter structure.
421  */
422 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
423 {
424         struct fec_enet_private *fep =
425             container_of(ptp, struct fec_enet_private, ptp_caps);
426         unsigned long flags;
427
428         spin_lock_irqsave(&fep->tmreg_lock, flags);
429         timecounter_adjtime(&fep->tc, delta);
430         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
431
432         return 0;
433 }
434
435 /**
436  * fec_ptp_gettime
437  * @ptp: the ptp clock structure
438  * @ts: timespec structure to hold the current time value
439  *
440  * read the timecounter and return the correct value on ns,
441  * after converting it into a struct timespec.
442  */
443 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
444 {
445         struct fec_enet_private *fep =
446             container_of(ptp, struct fec_enet_private, ptp_caps);
447         u64 ns;
448         unsigned long flags;
449
450         mutex_lock(&fep->ptp_clk_mutex);
451         /* Check the ptp clock */
452         if (!fep->ptp_clk_on) {
453                 mutex_unlock(&fep->ptp_clk_mutex);
454                 return -EINVAL;
455         }
456         spin_lock_irqsave(&fep->tmreg_lock, flags);
457         ns = timecounter_read(&fep->tc);
458         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
459         mutex_unlock(&fep->ptp_clk_mutex);
460
461         *ts = ns_to_timespec64(ns);
462
463         return 0;
464 }
465
466 /**
467  * fec_ptp_settime
468  * @ptp: the ptp clock structure
469  * @ts: the timespec containing the new time for the cycle counter
470  *
471  * reset the timecounter to use a new base value instead of the kernel
472  * wall timer value.
473  */
474 static int fec_ptp_settime(struct ptp_clock_info *ptp,
475                            const struct timespec64 *ts)
476 {
477         struct fec_enet_private *fep =
478             container_of(ptp, struct fec_enet_private, ptp_caps);
479
480         u64 ns;
481         unsigned long flags;
482         u32 counter;
483
484         mutex_lock(&fep->ptp_clk_mutex);
485         /* Check the ptp clock */
486         if (!fep->ptp_clk_on) {
487                 mutex_unlock(&fep->ptp_clk_mutex);
488                 return -EINVAL;
489         }
490
491         ns = timespec64_to_ns(ts);
492         /* Get the timer value based on timestamp.
493          * Update the counter with the masked value.
494          */
495         counter = ns & fep->cc.mask;
496
497         spin_lock_irqsave(&fep->tmreg_lock, flags);
498         writel(counter, fep->hwp + FEC_ATIME);
499         timecounter_init(&fep->tc, &fep->cc, ns);
500         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
501         mutex_unlock(&fep->ptp_clk_mutex);
502         return 0;
503 }
504
505 static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
506 {
507         unsigned long flags;
508
509         spin_lock_irqsave(&fep->tmreg_lock, flags);
510         writel(0, fep->hwp + FEC_TCSR(channel));
511         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
512
513         return 0;
514 }
515
516 /**
517  * fec_ptp_enable
518  * @ptp: the ptp clock structure
519  * @rq: the requested feature to change
520  * @on: whether to enable or disable the feature
521  *
522  */
523 static int fec_ptp_enable(struct ptp_clock_info *ptp,
524                           struct ptp_clock_request *rq, int on)
525 {
526         struct fec_enet_private *fep =
527             container_of(ptp, struct fec_enet_private, ptp_caps);
528         ktime_t timeout;
529         struct timespec64 start_time, period;
530         u64 curr_time, delta, period_ns;
531         unsigned long flags;
532         int ret = 0;
533
534         if (rq->type == PTP_CLK_REQ_PPS) {
535                 ret = fec_ptp_enable_pps(fep, on);
536
537                 return ret;
538         } else if (rq->type == PTP_CLK_REQ_PEROUT) {
539                 /* Reject requests with unsupported flags */
540                 if (rq->perout.flags)
541                         return -EOPNOTSUPP;
542
543                 if (rq->perout.index != DEFAULT_PPS_CHANNEL)
544                         return -EOPNOTSUPP;
545
546                 fep->pps_channel = DEFAULT_PPS_CHANNEL;
547                 period.tv_sec = rq->perout.period.sec;
548                 period.tv_nsec = rq->perout.period.nsec;
549                 period_ns = timespec64_to_ns(&period);
550
551                 /* FEC PTP timer only has 31 bits, so if the period exceed
552                  * 4s is not supported.
553                  */
554                 if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
555                         dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
556                         return -EOPNOTSUPP;
557                 }
558
559                 fep->reload_period = div_u64(period_ns, 2);
560                 if (on && fep->reload_period) {
561                         /* Convert 1588 timestamp to ns*/
562                         start_time.tv_sec = rq->perout.start.sec;
563                         start_time.tv_nsec = rq->perout.start.nsec;
564                         fep->perout_stime = timespec64_to_ns(&start_time);
565
566                         mutex_lock(&fep->ptp_clk_mutex);
567                         if (!fep->ptp_clk_on) {
568                                 dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
569                                 mutex_unlock(&fep->ptp_clk_mutex);
570                                 return -EOPNOTSUPP;
571                         }
572                         spin_lock_irqsave(&fep->tmreg_lock, flags);
573                         /* Read current timestamp */
574                         curr_time = timecounter_read(&fep->tc);
575                         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
576                         mutex_unlock(&fep->ptp_clk_mutex);
577
578                         /* Calculate time difference */
579                         delta = fep->perout_stime - curr_time;
580
581                         if (fep->perout_stime <= curr_time) {
582                                 dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
583                                 return -EINVAL;
584                         }
585
586                         /* Because the timer counter of FEC only has 31-bits, correspondingly,
587                          * the time comparison register FEC_TCCR also only low 31 bits can be
588                          * set. If the start time of pps signal exceeds current time more than
589                          * 0x80000000 ns, a software timer is used and the timer expires about
590                          * 1 second before the start time to be able to set FEC_TCCR.
591                          */
592                         if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
593                                 timeout = ns_to_ktime(delta - NSEC_PER_SEC);
594                                 hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
595                         } else {
596                                 return fec_ptp_pps_perout(fep);
597                         }
598                 } else {
599                         fec_ptp_pps_disable(fep, fep->pps_channel);
600                 }
601
602                 return 0;
603         } else {
604                 return -EOPNOTSUPP;
605         }
606 }
607
608 int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
609                 struct netlink_ext_ack *extack)
610 {
611         struct fec_enet_private *fep = netdev_priv(ndev);
612
613         switch (config->tx_type) {
614         case HWTSTAMP_TX_OFF:
615                 fep->hwts_tx_en = 0;
616                 break;
617         case HWTSTAMP_TX_ON:
618                 fep->hwts_tx_en = 1;
619                 break;
620         default:
621                 return -ERANGE;
622         }
623
624         switch (config->rx_filter) {
625         case HWTSTAMP_FILTER_NONE:
626                 fep->hwts_rx_en = 0;
627                 break;
628
629         default:
630                 fep->hwts_rx_en = 1;
631                 config->rx_filter = HWTSTAMP_FILTER_ALL;
632                 break;
633         }
634
635         return 0;
636 }
637
638 void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
639 {
640         struct fec_enet_private *fep = netdev_priv(ndev);
641
642         config->flags = 0;
643         config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
644         config->rx_filter = (fep->hwts_rx_en ?
645                              HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
646 }
647
648 /*
649  * fec_time_keep - call timecounter_read every second to avoid timer overrun
650  *                 because ENET just support 32bit counter, will timeout in 4s
651  */
652 static void fec_time_keep(struct work_struct *work)
653 {
654         struct delayed_work *dwork = to_delayed_work(work);
655         struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
656         unsigned long flags;
657
658         mutex_lock(&fep->ptp_clk_mutex);
659         if (fep->ptp_clk_on) {
660                 spin_lock_irqsave(&fep->tmreg_lock, flags);
661                 timecounter_read(&fep->tc);
662                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
663         }
664         mutex_unlock(&fep->ptp_clk_mutex);
665
666         schedule_delayed_work(&fep->time_keep, HZ);
667 }
668
669 /* This function checks the pps event and reloads the timer compare counter. */
670 static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
671 {
672         struct net_device *ndev = dev_id;
673         struct fec_enet_private *fep = netdev_priv(ndev);
674         u32 val;
675         u8 channel = fep->pps_channel;
676         struct ptp_clock_event event;
677
678         val = readl(fep->hwp + FEC_TCSR(channel));
679         if (val & FEC_T_TF_MASK) {
680                 /* Write the next next compare(not the next according the spec)
681                  * value to the register
682                  */
683                 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
684                 do {
685                         writel(val, fep->hwp + FEC_TCSR(channel));
686                 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
687
688                 /* Update the counter; */
689                 fep->next_counter = (fep->next_counter + fep->reload_period) &
690                                 fep->cc.mask;
691
692                 event.type = PTP_CLOCK_PPS;
693                 ptp_clock_event(fep->ptp_clock, &event);
694                 return IRQ_HANDLED;
695         }
696
697         return IRQ_NONE;
698 }
699
700 /**
701  * fec_ptp_init
702  * @pdev: The FEC network adapter
703  * @irq_idx: the interrupt index
704  *
705  * This function performs the required steps for enabling ptp
706  * support. If ptp support has already been loaded it simply calls the
707  * cyclecounter init routine and exits.
708  */
709
710 void fec_ptp_init(struct platform_device *pdev, int irq_idx)
711 {
712         struct net_device *ndev = platform_get_drvdata(pdev);
713         struct fec_enet_private *fep = netdev_priv(ndev);
714         int irq;
715         int ret;
716
717         fep->ptp_caps.owner = THIS_MODULE;
718         strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
719
720         fep->ptp_caps.max_adj = 250000000;
721         fep->ptp_caps.n_alarm = 0;
722         fep->ptp_caps.n_ext_ts = 0;
723         fep->ptp_caps.n_per_out = 1;
724         fep->ptp_caps.n_pins = 0;
725         fep->ptp_caps.pps = 1;
726         fep->ptp_caps.adjfine = fec_ptp_adjfine;
727         fep->ptp_caps.adjtime = fec_ptp_adjtime;
728         fep->ptp_caps.gettime64 = fec_ptp_gettime;
729         fep->ptp_caps.settime64 = fec_ptp_settime;
730         fep->ptp_caps.enable = fec_ptp_enable;
731
732         fep->cycle_speed = clk_get_rate(fep->clk_ptp);
733         if (!fep->cycle_speed) {
734                 fep->cycle_speed = NSEC_PER_SEC;
735                 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
736         }
737         fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
738
739         spin_lock_init(&fep->tmreg_lock);
740
741         fec_ptp_start_cyclecounter(ndev);
742
743         INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
744
745         hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
746         fep->perout_timer.function = fec_ptp_pps_perout_handler;
747
748         irq = platform_get_irq_byname_optional(pdev, "pps");
749         if (irq < 0)
750                 irq = platform_get_irq_optional(pdev, irq_idx);
751         /* Failure to get an irq is not fatal,
752          * only the PTP_CLOCK_PPS clock events should stop
753          */
754         if (irq >= 0) {
755                 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
756                                        0, pdev->name, ndev);
757                 if (ret < 0)
758                         dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
759                                  ret);
760         }
761
762         fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
763         if (IS_ERR(fep->ptp_clock)) {
764                 fep->ptp_clock = NULL;
765                 dev_err(&pdev->dev, "ptp_clock_register failed\n");
766         }
767
768         schedule_delayed_work(&fep->time_keep, HZ);
769 }
770
771 void fec_ptp_stop(struct platform_device *pdev)
772 {
773         struct net_device *ndev = platform_get_drvdata(pdev);
774         struct fec_enet_private *fep = netdev_priv(ndev);
775
776         cancel_delayed_work_sync(&fep->time_keep);
777         hrtimer_cancel(&fep->perout_timer);
778         if (fep->ptp_clock)
779                 ptp_clock_unregister(fep->ptp_clock);
780 }