GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  *      Copyright (C) 1997  Sten Wang
4  *
5  *      This program is free software; you can redistribute it and/or
6  *      modify it under the terms of the GNU General Public License
7  *      as published by the Free Software Foundation; either version 2
8  *      of the License, or (at your option) any later version.
9  *
10  *      This program is distributed in the hope that it will be useful,
11  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *      GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *      Ben Dooks <ben@simtec.co.uk>
19  *      Sascha Hauer <s.hauer@pengutronix.de>
20  */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 #include <linux/regulator/consumer.h>
40 #include <linux/gpio.h>
41 #include <linux/of_gpio.h>
42
43 #include <asm/delay.h>
44 #include <asm/irq.h>
45 #include <asm/io.h>
46
47 #include "dm9000.h"
48
49 /* Board/System/Debug information/definition ---------------- */
50
51 #define DM9000_PHY              0x40    /* PHY address 0x01 */
52
53 #define CARDNAME        "dm9000"
54 #define DRV_VERSION     "1.31"
55
56 /*
57  * Transmit timeout, default 5 seconds.
58  */
59 static int watchdog = 5000;
60 module_param(watchdog, int, 0400);
61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
62
63 /*
64  * Debug messages level
65  */
66 static int debug;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
69
70 /* DM9000 register address locking.
71  *
72  * The DM9000 uses an address register to control where data written
73  * to the data register goes. This means that the address register
74  * must be preserved over interrupts or similar calls.
75  *
76  * During interrupt and other critical calls, a spinlock is used to
77  * protect the system, but the calls themselves save the address
78  * in the address register in case they are interrupting another
79  * access to the device.
80  *
81  * For general accesses a lock is provided so that calls which are
82  * allowed to sleep are serialised so that the address register does
83  * not need to be saved. This lock also serves to serialise access
84  * to the EEPROM and PHY access registers which are shared between
85  * these two devices.
86  */
87
88 /* The driver supports the original DM9000E, and now the two newer
89  * devices, DM9000A and DM9000B.
90  */
91
92 enum dm9000_type {
93         TYPE_DM9000E,   /* original DM9000 */
94         TYPE_DM9000A,
95         TYPE_DM9000B
96 };
97
98 /* Structure/enum declaration ------------------------------- */
99 struct board_info {
100
101         void __iomem    *io_addr;       /* Register I/O base address */
102         void __iomem    *io_data;       /* Data I/O address */
103         u16              irq;           /* IRQ */
104
105         u16             tx_pkt_cnt;
106         u16             queue_pkt_len;
107         u16             queue_start_addr;
108         u16             queue_ip_summed;
109         u16             dbug_cnt;
110         u8              io_mode;                /* 0:word, 2:byte */
111         u8              phy_addr;
112         u8              imr_all;
113
114         unsigned int    flags;
115         unsigned int    in_timeout:1;
116         unsigned int    in_suspend:1;
117         unsigned int    wake_supported:1;
118
119         enum dm9000_type type;
120
121         void (*inblk)(void __iomem *port, void *data, int length);
122         void (*outblk)(void __iomem *port, void *data, int length);
123         void (*dumpblk)(void __iomem *port, int length);
124
125         struct device   *dev;        /* parent device */
126
127         struct resource *addr_res;   /* resources found */
128         struct resource *data_res;
129         struct resource *addr_req;   /* resources requested */
130         struct resource *data_req;
131
132         int              irq_wake;
133
134         struct mutex     addr_lock;     /* phy and eeprom access lock */
135
136         struct delayed_work phy_poll;
137         struct net_device  *ndev;
138
139         spinlock_t      lock;
140
141         struct mii_if_info mii;
142         u32             msg_enable;
143         u32             wake_state;
144
145         int             ip_summed;
146
147         struct regulator *power_supply;
148 };
149
150 /* debug code */
151
152 #define dm9000_dbg(db, lev, msg...) do {                \
153         if ((lev) < debug) {                            \
154                 dev_dbg(db->dev, msg);                  \
155         }                                               \
156 } while (0)
157
158 static inline struct board_info *to_dm9000_board(struct net_device *dev)
159 {
160         return netdev_priv(dev);
161 }
162
163 /* DM9000 network board routine ---------------------------- */
164
165 /*
166  *   Read a byte from I/O port
167  */
168 static u8
169 ior(struct board_info *db, int reg)
170 {
171         writeb(reg, db->io_addr);
172         return readb(db->io_data);
173 }
174
175 /*
176  *   Write a byte to I/O port
177  */
178
179 static void
180 iow(struct board_info *db, int reg, int value)
181 {
182         writeb(reg, db->io_addr);
183         writeb(value, db->io_data);
184 }
185
186 static void
187 dm9000_reset(struct board_info *db)
188 {
189         dev_dbg(db->dev, "resetting device\n");
190
191         /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
192          * The essential point is that we have to do a double reset, and the
193          * instruction is to set LBK into MAC internal loopback mode.
194          */
195         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
196         udelay(100); /* Application note says at least 20 us */
197         if (ior(db, DM9000_NCR) & 1)
198                 dev_err(db->dev, "dm9000 did not respond to first reset\n");
199
200         iow(db, DM9000_NCR, 0);
201         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
202         udelay(100);
203         if (ior(db, DM9000_NCR) & 1)
204                 dev_err(db->dev, "dm9000 did not respond to second reset\n");
205 }
206
207 /* routines for sending block to chip */
208
209 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
210 {
211         iowrite8_rep(reg, data, count);
212 }
213
214 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
215 {
216         iowrite16_rep(reg, data, (count+1) >> 1);
217 }
218
219 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
220 {
221         iowrite32_rep(reg, data, (count+3) >> 2);
222 }
223
224 /* input block from chip to memory */
225
226 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
227 {
228         ioread8_rep(reg, data, count);
229 }
230
231
232 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
233 {
234         ioread16_rep(reg, data, (count+1) >> 1);
235 }
236
237 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
238 {
239         ioread32_rep(reg, data, (count+3) >> 2);
240 }
241
242 /* dump block from chip to null */
243
244 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
245 {
246         int i;
247         int tmp;
248
249         for (i = 0; i < count; i++)
250                 tmp = readb(reg);
251 }
252
253 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
254 {
255         int i;
256         int tmp;
257
258         count = (count + 1) >> 1;
259
260         for (i = 0; i < count; i++)
261                 tmp = readw(reg);
262 }
263
264 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
265 {
266         int i;
267         int tmp;
268
269         count = (count + 3) >> 2;
270
271         for (i = 0; i < count; i++)
272                 tmp = readl(reg);
273 }
274
275 /*
276  * Sleep, either by using msleep() or if we are suspending, then
277  * use mdelay() to sleep.
278  */
279 static void dm9000_msleep(struct board_info *db, unsigned int ms)
280 {
281         if (db->in_suspend || db->in_timeout)
282                 mdelay(ms);
283         else
284                 msleep(ms);
285 }
286
287 /* Read a word from phyxcer */
288 static int
289 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
290 {
291         struct board_info *db = netdev_priv(dev);
292         unsigned long flags;
293         unsigned int reg_save;
294         int ret;
295
296         mutex_lock(&db->addr_lock);
297
298         spin_lock_irqsave(&db->lock, flags);
299
300         /* Save previous register address */
301         reg_save = readb(db->io_addr);
302
303         /* Fill the phyxcer register into REG_0C */
304         iow(db, DM9000_EPAR, DM9000_PHY | reg);
305
306         /* Issue phyxcer read command */
307         iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
308
309         writeb(reg_save, db->io_addr);
310         spin_unlock_irqrestore(&db->lock, flags);
311
312         dm9000_msleep(db, 1);           /* Wait read complete */
313
314         spin_lock_irqsave(&db->lock, flags);
315         reg_save = readb(db->io_addr);
316
317         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
318
319         /* The read data keeps on REG_0D & REG_0E */
320         ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
321
322         /* restore the previous address */
323         writeb(reg_save, db->io_addr);
324         spin_unlock_irqrestore(&db->lock, flags);
325
326         mutex_unlock(&db->addr_lock);
327
328         dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
329         return ret;
330 }
331
332 /* Write a word to phyxcer */
333 static void
334 dm9000_phy_write(struct net_device *dev,
335                  int phyaddr_unused, int reg, int value)
336 {
337         struct board_info *db = netdev_priv(dev);
338         unsigned long flags;
339         unsigned long reg_save;
340
341         dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
342         if (!db->in_timeout)
343                 mutex_lock(&db->addr_lock);
344
345         spin_lock_irqsave(&db->lock, flags);
346
347         /* Save previous register address */
348         reg_save = readb(db->io_addr);
349
350         /* Fill the phyxcer register into REG_0C */
351         iow(db, DM9000_EPAR, DM9000_PHY | reg);
352
353         /* Fill the written data into REG_0D & REG_0E */
354         iow(db, DM9000_EPDRL, value);
355         iow(db, DM9000_EPDRH, value >> 8);
356
357         /* Issue phyxcer write command */
358         iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
359
360         writeb(reg_save, db->io_addr);
361         spin_unlock_irqrestore(&db->lock, flags);
362
363         dm9000_msleep(db, 1);           /* Wait write complete */
364
365         spin_lock_irqsave(&db->lock, flags);
366         reg_save = readb(db->io_addr);
367
368         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
369
370         /* restore the previous address */
371         writeb(reg_save, db->io_addr);
372
373         spin_unlock_irqrestore(&db->lock, flags);
374         if (!db->in_timeout)
375                 mutex_unlock(&db->addr_lock);
376 }
377
378 /* dm9000_set_io
379  *
380  * select the specified set of io routines to use with the
381  * device
382  */
383
384 static void dm9000_set_io(struct board_info *db, int byte_width)
385 {
386         /* use the size of the data resource to work out what IO
387          * routines we want to use
388          */
389
390         switch (byte_width) {
391         case 1:
392                 db->dumpblk = dm9000_dumpblk_8bit;
393                 db->outblk  = dm9000_outblk_8bit;
394                 db->inblk   = dm9000_inblk_8bit;
395                 break;
396
397
398         case 3:
399                 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
400         case 2:
401                 db->dumpblk = dm9000_dumpblk_16bit;
402                 db->outblk  = dm9000_outblk_16bit;
403                 db->inblk   = dm9000_inblk_16bit;
404                 break;
405
406         case 4:
407         default:
408                 db->dumpblk = dm9000_dumpblk_32bit;
409                 db->outblk  = dm9000_outblk_32bit;
410                 db->inblk   = dm9000_inblk_32bit;
411                 break;
412         }
413 }
414
415 static void dm9000_schedule_poll(struct board_info *db)
416 {
417         if (db->type == TYPE_DM9000E)
418                 schedule_delayed_work(&db->phy_poll, HZ * 2);
419 }
420
421 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
422 {
423         struct board_info *dm = to_dm9000_board(dev);
424
425         if (!netif_running(dev))
426                 return -EINVAL;
427
428         return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
429 }
430
431 static unsigned int
432 dm9000_read_locked(struct board_info *db, int reg)
433 {
434         unsigned long flags;
435         unsigned int ret;
436
437         spin_lock_irqsave(&db->lock, flags);
438         ret = ior(db, reg);
439         spin_unlock_irqrestore(&db->lock, flags);
440
441         return ret;
442 }
443
444 static int dm9000_wait_eeprom(struct board_info *db)
445 {
446         unsigned int status;
447         int timeout = 8;        /* wait max 8msec */
448
449         /* The DM9000 data sheets say we should be able to
450          * poll the ERRE bit in EPCR to wait for the EEPROM
451          * operation. From testing several chips, this bit
452          * does not seem to work.
453          *
454          * We attempt to use the bit, but fall back to the
455          * timeout (which is why we do not return an error
456          * on expiry) to say that the EEPROM operation has
457          * completed.
458          */
459
460         while (1) {
461                 status = dm9000_read_locked(db, DM9000_EPCR);
462
463                 if ((status & EPCR_ERRE) == 0)
464                         break;
465
466                 msleep(1);
467
468                 if (timeout-- < 0) {
469                         dev_dbg(db->dev, "timeout waiting EEPROM\n");
470                         break;
471                 }
472         }
473
474         return 0;
475 }
476
477 /*
478  *  Read a word data from EEPROM
479  */
480 static void
481 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
482 {
483         unsigned long flags;
484
485         if (db->flags & DM9000_PLATF_NO_EEPROM) {
486                 to[0] = 0xff;
487                 to[1] = 0xff;
488                 return;
489         }
490
491         mutex_lock(&db->addr_lock);
492
493         spin_lock_irqsave(&db->lock, flags);
494
495         iow(db, DM9000_EPAR, offset);
496         iow(db, DM9000_EPCR, EPCR_ERPRR);
497
498         spin_unlock_irqrestore(&db->lock, flags);
499
500         dm9000_wait_eeprom(db);
501
502         /* delay for at-least 150uS */
503         msleep(1);
504
505         spin_lock_irqsave(&db->lock, flags);
506
507         iow(db, DM9000_EPCR, 0x0);
508
509         to[0] = ior(db, DM9000_EPDRL);
510         to[1] = ior(db, DM9000_EPDRH);
511
512         spin_unlock_irqrestore(&db->lock, flags);
513
514         mutex_unlock(&db->addr_lock);
515 }
516
517 /*
518  * Write a word data to SROM
519  */
520 static void
521 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
522 {
523         unsigned long flags;
524
525         if (db->flags & DM9000_PLATF_NO_EEPROM)
526                 return;
527
528         mutex_lock(&db->addr_lock);
529
530         spin_lock_irqsave(&db->lock, flags);
531         iow(db, DM9000_EPAR, offset);
532         iow(db, DM9000_EPDRH, data[1]);
533         iow(db, DM9000_EPDRL, data[0]);
534         iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
535         spin_unlock_irqrestore(&db->lock, flags);
536
537         dm9000_wait_eeprom(db);
538
539         mdelay(1);      /* wait at least 150uS to clear */
540
541         spin_lock_irqsave(&db->lock, flags);
542         iow(db, DM9000_EPCR, 0);
543         spin_unlock_irqrestore(&db->lock, flags);
544
545         mutex_unlock(&db->addr_lock);
546 }
547
548 /* ethtool ops */
549
550 static void dm9000_get_drvinfo(struct net_device *dev,
551                                struct ethtool_drvinfo *info)
552 {
553         struct board_info *dm = to_dm9000_board(dev);
554
555         strlcpy(info->driver, CARDNAME, sizeof(info->driver));
556         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
557         strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
558                 sizeof(info->bus_info));
559 }
560
561 static u32 dm9000_get_msglevel(struct net_device *dev)
562 {
563         struct board_info *dm = to_dm9000_board(dev);
564
565         return dm->msg_enable;
566 }
567
568 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
569 {
570         struct board_info *dm = to_dm9000_board(dev);
571
572         dm->msg_enable = value;
573 }
574
575 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
576 {
577         struct board_info *dm = to_dm9000_board(dev);
578
579         mii_ethtool_gset(&dm->mii, cmd);
580         return 0;
581 }
582
583 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
584 {
585         struct board_info *dm = to_dm9000_board(dev);
586
587         return mii_ethtool_sset(&dm->mii, cmd);
588 }
589
590 static int dm9000_nway_reset(struct net_device *dev)
591 {
592         struct board_info *dm = to_dm9000_board(dev);
593         return mii_nway_restart(&dm->mii);
594 }
595
596 static int dm9000_set_features(struct net_device *dev,
597         netdev_features_t features)
598 {
599         struct board_info *dm = to_dm9000_board(dev);
600         netdev_features_t changed = dev->features ^ features;
601         unsigned long flags;
602
603         if (!(changed & NETIF_F_RXCSUM))
604                 return 0;
605
606         spin_lock_irqsave(&dm->lock, flags);
607         iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
608         spin_unlock_irqrestore(&dm->lock, flags);
609
610         return 0;
611 }
612
613 static u32 dm9000_get_link(struct net_device *dev)
614 {
615         struct board_info *dm = to_dm9000_board(dev);
616         u32 ret;
617
618         if (dm->flags & DM9000_PLATF_EXT_PHY)
619                 ret = mii_link_ok(&dm->mii);
620         else
621                 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
622
623         return ret;
624 }
625
626 #define DM_EEPROM_MAGIC         (0x444D394B)
627
628 static int dm9000_get_eeprom_len(struct net_device *dev)
629 {
630         return 128;
631 }
632
633 static int dm9000_get_eeprom(struct net_device *dev,
634                              struct ethtool_eeprom *ee, u8 *data)
635 {
636         struct board_info *dm = to_dm9000_board(dev);
637         int offset = ee->offset;
638         int len = ee->len;
639         int i;
640
641         /* EEPROM access is aligned to two bytes */
642
643         if ((len & 1) != 0 || (offset & 1) != 0)
644                 return -EINVAL;
645
646         if (dm->flags & DM9000_PLATF_NO_EEPROM)
647                 return -ENOENT;
648
649         ee->magic = DM_EEPROM_MAGIC;
650
651         for (i = 0; i < len; i += 2)
652                 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
653
654         return 0;
655 }
656
657 static int dm9000_set_eeprom(struct net_device *dev,
658                              struct ethtool_eeprom *ee, u8 *data)
659 {
660         struct board_info *dm = to_dm9000_board(dev);
661         int offset = ee->offset;
662         int len = ee->len;
663         int done;
664
665         /* EEPROM access is aligned to two bytes */
666
667         if (dm->flags & DM9000_PLATF_NO_EEPROM)
668                 return -ENOENT;
669
670         if (ee->magic != DM_EEPROM_MAGIC)
671                 return -EINVAL;
672
673         while (len > 0) {
674                 if (len & 1 || offset & 1) {
675                         int which = offset & 1;
676                         u8 tmp[2];
677
678                         dm9000_read_eeprom(dm, offset / 2, tmp);
679                         tmp[which] = *data;
680                         dm9000_write_eeprom(dm, offset / 2, tmp);
681
682                         done = 1;
683                 } else {
684                         dm9000_write_eeprom(dm, offset / 2, data);
685                         done = 2;
686                 }
687
688                 data += done;
689                 offset += done;
690                 len -= done;
691         }
692
693         return 0;
694 }
695
696 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
697 {
698         struct board_info *dm = to_dm9000_board(dev);
699
700         memset(w, 0, sizeof(struct ethtool_wolinfo));
701
702         /* note, we could probably support wake-phy too */
703         w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
704         w->wolopts = dm->wake_state;
705 }
706
707 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
708 {
709         struct board_info *dm = to_dm9000_board(dev);
710         unsigned long flags;
711         u32 opts = w->wolopts;
712         u32 wcr = 0;
713
714         if (!dm->wake_supported)
715                 return -EOPNOTSUPP;
716
717         if (opts & ~WAKE_MAGIC)
718                 return -EINVAL;
719
720         if (opts & WAKE_MAGIC)
721                 wcr |= WCR_MAGICEN;
722
723         mutex_lock(&dm->addr_lock);
724
725         spin_lock_irqsave(&dm->lock, flags);
726         iow(dm, DM9000_WCR, wcr);
727         spin_unlock_irqrestore(&dm->lock, flags);
728
729         mutex_unlock(&dm->addr_lock);
730
731         if (dm->wake_state != opts) {
732                 /* change in wol state, update IRQ state */
733
734                 if (!dm->wake_state)
735                         irq_set_irq_wake(dm->irq_wake, 1);
736                 else if (dm->wake_state && !opts)
737                         irq_set_irq_wake(dm->irq_wake, 0);
738         }
739
740         dm->wake_state = opts;
741         return 0;
742 }
743
744 static const struct ethtool_ops dm9000_ethtool_ops = {
745         .get_drvinfo            = dm9000_get_drvinfo,
746         .get_settings           = dm9000_get_settings,
747         .set_settings           = dm9000_set_settings,
748         .get_msglevel           = dm9000_get_msglevel,
749         .set_msglevel           = dm9000_set_msglevel,
750         .nway_reset             = dm9000_nway_reset,
751         .get_link               = dm9000_get_link,
752         .get_wol                = dm9000_get_wol,
753         .set_wol                = dm9000_set_wol,
754         .get_eeprom_len         = dm9000_get_eeprom_len,
755         .get_eeprom             = dm9000_get_eeprom,
756         .set_eeprom             = dm9000_set_eeprom,
757 };
758
759 static void dm9000_show_carrier(struct board_info *db,
760                                 unsigned carrier, unsigned nsr)
761 {
762         int lpa;
763         struct net_device *ndev = db->ndev;
764         struct mii_if_info *mii = &db->mii;
765         unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
766
767         if (carrier) {
768                 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
769                 dev_info(db->dev,
770                          "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
771                          ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
772                          (ncr & NCR_FDX) ? "full" : "half", lpa);
773         } else {
774                 dev_info(db->dev, "%s: link down\n", ndev->name);
775         }
776 }
777
778 static void
779 dm9000_poll_work(struct work_struct *w)
780 {
781         struct delayed_work *dw = to_delayed_work(w);
782         struct board_info *db = container_of(dw, struct board_info, phy_poll);
783         struct net_device *ndev = db->ndev;
784
785         if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
786             !(db->flags & DM9000_PLATF_EXT_PHY)) {
787                 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
788                 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
789                 unsigned new_carrier;
790
791                 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
792
793                 if (old_carrier != new_carrier) {
794                         if (netif_msg_link(db))
795                                 dm9000_show_carrier(db, new_carrier, nsr);
796
797                         if (!new_carrier)
798                                 netif_carrier_off(ndev);
799                         else
800                                 netif_carrier_on(ndev);
801                 }
802         } else
803                 mii_check_media(&db->mii, netif_msg_link(db), 0);
804
805         if (netif_running(ndev))
806                 dm9000_schedule_poll(db);
807 }
808
809 /* dm9000_release_board
810  *
811  * release a board, and any mapped resources
812  */
813
814 static void
815 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
816 {
817         /* unmap our resources */
818
819         iounmap(db->io_addr);
820         iounmap(db->io_data);
821
822         /* release the resources */
823
824         if (db->data_req)
825                 release_resource(db->data_req);
826         kfree(db->data_req);
827
828         if (db->addr_req)
829                 release_resource(db->addr_req);
830         kfree(db->addr_req);
831 }
832
833 static unsigned char dm9000_type_to_char(enum dm9000_type type)
834 {
835         switch (type) {
836         case TYPE_DM9000E: return 'e';
837         case TYPE_DM9000A: return 'a';
838         case TYPE_DM9000B: return 'b';
839         }
840
841         return '?';
842 }
843
844 /*
845  *  Set DM9000 multicast address
846  */
847 static void
848 dm9000_hash_table_unlocked(struct net_device *dev)
849 {
850         struct board_info *db = netdev_priv(dev);
851         struct netdev_hw_addr *ha;
852         int i, oft;
853         u32 hash_val;
854         u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
855         u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
856
857         dm9000_dbg(db, 1, "entering %s\n", __func__);
858
859         for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
860                 iow(db, oft, dev->dev_addr[i]);
861
862         if (dev->flags & IFF_PROMISC)
863                 rcr |= RCR_PRMSC;
864
865         if (dev->flags & IFF_ALLMULTI)
866                 rcr |= RCR_ALL;
867
868         /* the multicast address in Hash Table : 64 bits */
869         netdev_for_each_mc_addr(ha, dev) {
870                 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
871                 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
872         }
873
874         /* Write the hash table to MAC MD table */
875         for (i = 0, oft = DM9000_MAR; i < 4; i++) {
876                 iow(db, oft++, hash_table[i]);
877                 iow(db, oft++, hash_table[i] >> 8);
878         }
879
880         iow(db, DM9000_RCR, rcr);
881 }
882
883 static void
884 dm9000_hash_table(struct net_device *dev)
885 {
886         struct board_info *db = netdev_priv(dev);
887         unsigned long flags;
888
889         spin_lock_irqsave(&db->lock, flags);
890         dm9000_hash_table_unlocked(dev);
891         spin_unlock_irqrestore(&db->lock, flags);
892 }
893
894 static void
895 dm9000_mask_interrupts(struct board_info *db)
896 {
897         iow(db, DM9000_IMR, IMR_PAR);
898 }
899
900 static void
901 dm9000_unmask_interrupts(struct board_info *db)
902 {
903         iow(db, DM9000_IMR, db->imr_all);
904 }
905
906 /*
907  * Initialize dm9000 board
908  */
909 static void
910 dm9000_init_dm9000(struct net_device *dev)
911 {
912         struct board_info *db = netdev_priv(dev);
913         unsigned int imr;
914         unsigned int ncr;
915
916         dm9000_dbg(db, 1, "entering %s\n", __func__);
917
918         dm9000_reset(db);
919         dm9000_mask_interrupts(db);
920
921         /* I/O mode */
922         db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
923
924         /* Checksum mode */
925         if (dev->hw_features & NETIF_F_RXCSUM)
926                 iow(db, DM9000_RCSR,
927                         (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
928
929         iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
930         iow(db, DM9000_GPR, 0);
931
932         /* If we are dealing with DM9000B, some extra steps are required: a
933          * manual phy reset, and setting init params.
934          */
935         if (db->type == TYPE_DM9000B) {
936                 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
937                 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
938         }
939
940         ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
941
942         /* if wol is needed, then always set NCR_WAKEEN otherwise we end
943          * up dumping the wake events if we disable this. There is already
944          * a wake-mask in DM9000_WCR */
945         if (db->wake_supported)
946                 ncr |= NCR_WAKEEN;
947
948         iow(db, DM9000_NCR, ncr);
949
950         /* Program operating register */
951         iow(db, DM9000_TCR, 0);         /* TX Polling clear */
952         iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
953         iow(db, DM9000_FCR, 0xff);      /* Flow Control */
954         iow(db, DM9000_SMCR, 0);        /* Special Mode */
955         /* clear TX status */
956         iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
957         iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
958
959         /* Set address filter table */
960         dm9000_hash_table_unlocked(dev);
961
962         imr = IMR_PAR | IMR_PTM | IMR_PRM;
963         if (db->type != TYPE_DM9000E)
964                 imr |= IMR_LNKCHNG;
965
966         db->imr_all = imr;
967
968         /* Init Driver variable */
969         db->tx_pkt_cnt = 0;
970         db->queue_pkt_len = 0;
971         netif_trans_update(dev);
972 }
973
974 /* Our watchdog timed out. Called by the networking layer */
975 static void dm9000_timeout(struct net_device *dev)
976 {
977         struct board_info *db = netdev_priv(dev);
978         u8 reg_save;
979         unsigned long flags;
980
981         /* Save previous register address */
982         spin_lock_irqsave(&db->lock, flags);
983         db->in_timeout = 1;
984         reg_save = readb(db->io_addr);
985
986         netif_stop_queue(dev);
987         dm9000_init_dm9000(dev);
988         dm9000_unmask_interrupts(db);
989         /* We can accept TX packets again */
990         netif_trans_update(dev); /* prevent tx timeout */
991         netif_wake_queue(dev);
992
993         /* Restore previous register address */
994         writeb(reg_save, db->io_addr);
995         db->in_timeout = 0;
996         spin_unlock_irqrestore(&db->lock, flags);
997 }
998
999 static void dm9000_send_packet(struct net_device *dev,
1000                                int ip_summed,
1001                                u16 pkt_len)
1002 {
1003         struct board_info *dm = to_dm9000_board(dev);
1004
1005         /* The DM9000 is not smart enough to leave fragmented packets alone. */
1006         if (dm->ip_summed != ip_summed) {
1007                 if (ip_summed == CHECKSUM_NONE)
1008                         iow(dm, DM9000_TCCR, 0);
1009                 else
1010                         iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1011                 dm->ip_summed = ip_summed;
1012         }
1013
1014         /* Set TX length to DM9000 */
1015         iow(dm, DM9000_TXPLL, pkt_len);
1016         iow(dm, DM9000_TXPLH, pkt_len >> 8);
1017
1018         /* Issue TX polling command */
1019         iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1020 }
1021
1022 /*
1023  *  Hardware start transmission.
1024  *  Send a packet to media from the upper layer.
1025  */
1026 static int
1027 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1028 {
1029         unsigned long flags;
1030         struct board_info *db = netdev_priv(dev);
1031
1032         dm9000_dbg(db, 3, "%s:\n", __func__);
1033
1034         if (db->tx_pkt_cnt > 1)
1035                 return NETDEV_TX_BUSY;
1036
1037         spin_lock_irqsave(&db->lock, flags);
1038
1039         /* Move data to DM9000 TX RAM */
1040         writeb(DM9000_MWCMD, db->io_addr);
1041
1042         (db->outblk)(db->io_data, skb->data, skb->len);
1043         dev->stats.tx_bytes += skb->len;
1044
1045         db->tx_pkt_cnt++;
1046         /* TX control: First packet immediately send, second packet queue */
1047         if (db->tx_pkt_cnt == 1) {
1048                 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1049         } else {
1050                 /* Second packet */
1051                 db->queue_pkt_len = skb->len;
1052                 db->queue_ip_summed = skb->ip_summed;
1053                 netif_stop_queue(dev);
1054         }
1055
1056         spin_unlock_irqrestore(&db->lock, flags);
1057
1058         /* free this SKB */
1059         dev_consume_skb_any(skb);
1060
1061         return NETDEV_TX_OK;
1062 }
1063
1064 /*
1065  * DM9000 interrupt handler
1066  * receive the packet to upper layer, free the transmitted packet
1067  */
1068
1069 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1070 {
1071         int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1072
1073         if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1074                 /* One packet sent complete */
1075                 db->tx_pkt_cnt--;
1076                 dev->stats.tx_packets++;
1077
1078                 if (netif_msg_tx_done(db))
1079                         dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1080
1081                 /* Queue packet check & send */
1082                 if (db->tx_pkt_cnt > 0)
1083                         dm9000_send_packet(dev, db->queue_ip_summed,
1084                                            db->queue_pkt_len);
1085                 netif_wake_queue(dev);
1086         }
1087 }
1088
1089 struct dm9000_rxhdr {
1090         u8      RxPktReady;
1091         u8      RxStatus;
1092         __le16  RxLen;
1093 } __packed;
1094
1095 /*
1096  *  Received a packet and pass to upper layer
1097  */
1098 static void
1099 dm9000_rx(struct net_device *dev)
1100 {
1101         struct board_info *db = netdev_priv(dev);
1102         struct dm9000_rxhdr rxhdr;
1103         struct sk_buff *skb;
1104         u8 rxbyte, *rdptr;
1105         bool GoodPacket;
1106         int RxLen;
1107
1108         /* Check packet ready or not */
1109         do {
1110                 ior(db, DM9000_MRCMDX); /* Dummy read */
1111
1112                 /* Get most updated data */
1113                 rxbyte = readb(db->io_data);
1114
1115                 /* Status check: this byte must be 0 or 1 */
1116                 if (rxbyte & DM9000_PKT_ERR) {
1117                         dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1118                         iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1119                         return;
1120                 }
1121
1122                 if (!(rxbyte & DM9000_PKT_RDY))
1123                         return;
1124
1125                 /* A packet ready now  & Get status/length */
1126                 GoodPacket = true;
1127                 writeb(DM9000_MRCMD, db->io_addr);
1128
1129                 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1130
1131                 RxLen = le16_to_cpu(rxhdr.RxLen);
1132
1133                 if (netif_msg_rx_status(db))
1134                         dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1135                                 rxhdr.RxStatus, RxLen);
1136
1137                 /* Packet Status check */
1138                 if (RxLen < 0x40) {
1139                         GoodPacket = false;
1140                         if (netif_msg_rx_err(db))
1141                                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1142                 }
1143
1144                 if (RxLen > DM9000_PKT_MAX) {
1145                         dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1146                 }
1147
1148                 /* rxhdr.RxStatus is identical to RSR register. */
1149                 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1150                                       RSR_PLE | RSR_RWTO |
1151                                       RSR_LCS | RSR_RF)) {
1152                         GoodPacket = false;
1153                         if (rxhdr.RxStatus & RSR_FOE) {
1154                                 if (netif_msg_rx_err(db))
1155                                         dev_dbg(db->dev, "fifo error\n");
1156                                 dev->stats.rx_fifo_errors++;
1157                         }
1158                         if (rxhdr.RxStatus & RSR_CE) {
1159                                 if (netif_msg_rx_err(db))
1160                                         dev_dbg(db->dev, "crc error\n");
1161                                 dev->stats.rx_crc_errors++;
1162                         }
1163                         if (rxhdr.RxStatus & RSR_RF) {
1164                                 if (netif_msg_rx_err(db))
1165                                         dev_dbg(db->dev, "length error\n");
1166                                 dev->stats.rx_length_errors++;
1167                         }
1168                 }
1169
1170                 /* Move data from DM9000 */
1171                 if (GoodPacket &&
1172                     ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1173                         skb_reserve(skb, 2);
1174                         rdptr = (u8 *) skb_put(skb, RxLen - 4);
1175
1176                         /* Read received packet from RX SRAM */
1177
1178                         (db->inblk)(db->io_data, rdptr, RxLen);
1179                         dev->stats.rx_bytes += RxLen;
1180
1181                         /* Pass to upper layer */
1182                         skb->protocol = eth_type_trans(skb, dev);
1183                         if (dev->features & NETIF_F_RXCSUM) {
1184                                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1185                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1186                                 else
1187                                         skb_checksum_none_assert(skb);
1188                         }
1189                         netif_rx(skb);
1190                         dev->stats.rx_packets++;
1191
1192                 } else {
1193                         /* need to dump the packet's data */
1194
1195                         (db->dumpblk)(db->io_data, RxLen);
1196                 }
1197         } while (rxbyte & DM9000_PKT_RDY);
1198 }
1199
1200 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1201 {
1202         struct net_device *dev = dev_id;
1203         struct board_info *db = netdev_priv(dev);
1204         int int_status;
1205         unsigned long flags;
1206         u8 reg_save;
1207
1208         dm9000_dbg(db, 3, "entering %s\n", __func__);
1209
1210         /* A real interrupt coming */
1211
1212         /* holders of db->lock must always block IRQs */
1213         spin_lock_irqsave(&db->lock, flags);
1214
1215         /* Save previous register address */
1216         reg_save = readb(db->io_addr);
1217
1218         dm9000_mask_interrupts(db);
1219         /* Got DM9000 interrupt status */
1220         int_status = ior(db, DM9000_ISR);       /* Got ISR */
1221         iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1222
1223         if (netif_msg_intr(db))
1224                 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1225
1226         /* Received the coming packet */
1227         if (int_status & ISR_PRS)
1228                 dm9000_rx(dev);
1229
1230         /* Transmit Interrupt check */
1231         if (int_status & ISR_PTS)
1232                 dm9000_tx_done(dev, db);
1233
1234         if (db->type != TYPE_DM9000E) {
1235                 if (int_status & ISR_LNKCHNG) {
1236                         /* fire a link-change request */
1237                         schedule_delayed_work(&db->phy_poll, 1);
1238                 }
1239         }
1240
1241         dm9000_unmask_interrupts(db);
1242         /* Restore previous register address */
1243         writeb(reg_save, db->io_addr);
1244
1245         spin_unlock_irqrestore(&db->lock, flags);
1246
1247         return IRQ_HANDLED;
1248 }
1249
1250 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1251 {
1252         struct net_device *dev = dev_id;
1253         struct board_info *db = netdev_priv(dev);
1254         unsigned long flags;
1255         unsigned nsr, wcr;
1256
1257         spin_lock_irqsave(&db->lock, flags);
1258
1259         nsr = ior(db, DM9000_NSR);
1260         wcr = ior(db, DM9000_WCR);
1261
1262         dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1263
1264         if (nsr & NSR_WAKEST) {
1265                 /* clear, so we can avoid */
1266                 iow(db, DM9000_NSR, NSR_WAKEST);
1267
1268                 if (wcr & WCR_LINKST)
1269                         dev_info(db->dev, "wake by link status change\n");
1270                 if (wcr & WCR_SAMPLEST)
1271                         dev_info(db->dev, "wake by sample packet\n");
1272                 if (wcr & WCR_MAGICST)
1273                         dev_info(db->dev, "wake by magic packet\n");
1274                 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1275                         dev_err(db->dev, "wake signalled with no reason? "
1276                                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1277         }
1278
1279         spin_unlock_irqrestore(&db->lock, flags);
1280
1281         return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1282 }
1283
1284 #ifdef CONFIG_NET_POLL_CONTROLLER
1285 /*
1286  *Used by netconsole
1287  */
1288 static void dm9000_poll_controller(struct net_device *dev)
1289 {
1290         disable_irq(dev->irq);
1291         dm9000_interrupt(dev->irq, dev);
1292         enable_irq(dev->irq);
1293 }
1294 #endif
1295
1296 /*
1297  *  Open the interface.
1298  *  The interface is opened whenever "ifconfig" actives it.
1299  */
1300 static int
1301 dm9000_open(struct net_device *dev)
1302 {
1303         struct board_info *db = netdev_priv(dev);
1304         unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1305
1306         if (netif_msg_ifup(db))
1307                 dev_dbg(db->dev, "enabling %s\n", dev->name);
1308
1309         /* If there is no IRQ type specified, tell the user that this is a
1310          * problem
1311          */
1312         if (irq_flags == IRQF_TRIGGER_NONE)
1313                 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1314
1315         irq_flags |= IRQF_SHARED;
1316
1317         /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1318         iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1319         mdelay(1); /* delay needs by DM9000B */
1320
1321         /* Initialize DM9000 board */
1322         dm9000_init_dm9000(dev);
1323
1324         if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1325                 return -EAGAIN;
1326         /* Now that we have an interrupt handler hooked up we can unmask
1327          * our interrupts
1328          */
1329         dm9000_unmask_interrupts(db);
1330
1331         /* Init driver variable */
1332         db->dbug_cnt = 0;
1333
1334         mii_check_media(&db->mii, netif_msg_link(db), 1);
1335         netif_start_queue(dev);
1336
1337         /* Poll initial link status */
1338         schedule_delayed_work(&db->phy_poll, 1);
1339
1340         return 0;
1341 }
1342
1343 static void
1344 dm9000_shutdown(struct net_device *dev)
1345 {
1346         struct board_info *db = netdev_priv(dev);
1347
1348         /* RESET device */
1349         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1350         iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1351         dm9000_mask_interrupts(db);
1352         iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1353 }
1354
1355 /*
1356  * Stop the interface.
1357  * The interface is stopped when it is brought.
1358  */
1359 static int
1360 dm9000_stop(struct net_device *ndev)
1361 {
1362         struct board_info *db = netdev_priv(ndev);
1363
1364         if (netif_msg_ifdown(db))
1365                 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1366
1367         cancel_delayed_work_sync(&db->phy_poll);
1368
1369         netif_stop_queue(ndev);
1370         netif_carrier_off(ndev);
1371
1372         /* free interrupt */
1373         free_irq(ndev->irq, ndev);
1374
1375         dm9000_shutdown(ndev);
1376
1377         return 0;
1378 }
1379
1380 static const struct net_device_ops dm9000_netdev_ops = {
1381         .ndo_open               = dm9000_open,
1382         .ndo_stop               = dm9000_stop,
1383         .ndo_start_xmit         = dm9000_start_xmit,
1384         .ndo_tx_timeout         = dm9000_timeout,
1385         .ndo_set_rx_mode        = dm9000_hash_table,
1386         .ndo_do_ioctl           = dm9000_ioctl,
1387         .ndo_change_mtu         = eth_change_mtu,
1388         .ndo_set_features       = dm9000_set_features,
1389         .ndo_validate_addr      = eth_validate_addr,
1390         .ndo_set_mac_address    = eth_mac_addr,
1391 #ifdef CONFIG_NET_POLL_CONTROLLER
1392         .ndo_poll_controller    = dm9000_poll_controller,
1393 #endif
1394 };
1395
1396 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1397 {
1398         struct dm9000_plat_data *pdata;
1399         struct device_node *np = dev->of_node;
1400         const void *mac_addr;
1401
1402         if (!IS_ENABLED(CONFIG_OF) || !np)
1403                 return ERR_PTR(-ENXIO);
1404
1405         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1406         if (!pdata)
1407                 return ERR_PTR(-ENOMEM);
1408
1409         if (of_find_property(np, "davicom,ext-phy", NULL))
1410                 pdata->flags |= DM9000_PLATF_EXT_PHY;
1411         if (of_find_property(np, "davicom,no-eeprom", NULL))
1412                 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1413
1414         mac_addr = of_get_mac_address(np);
1415         if (mac_addr)
1416                 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1417
1418         return pdata;
1419 }
1420
1421 /*
1422  * Search DM9000 board, allocate space and register it
1423  */
1424 static int
1425 dm9000_probe(struct platform_device *pdev)
1426 {
1427         struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1428         struct board_info *db;  /* Point a board information structure */
1429         struct net_device *ndev;
1430         struct device *dev = &pdev->dev;
1431         const unsigned char *mac_src;
1432         int ret = 0;
1433         int iosize;
1434         int i;
1435         u32 id_val;
1436         int reset_gpios;
1437         enum of_gpio_flags flags;
1438         struct regulator *power;
1439         bool inv_mac_addr = false;
1440
1441         power = devm_regulator_get(dev, "vcc");
1442         if (IS_ERR(power)) {
1443                 if (PTR_ERR(power) == -EPROBE_DEFER)
1444                         return -EPROBE_DEFER;
1445                 dev_dbg(dev, "no regulator provided\n");
1446         } else {
1447                 ret = regulator_enable(power);
1448                 if (ret != 0) {
1449                         dev_err(dev,
1450                                 "Failed to enable power regulator: %d\n", ret);
1451                         return ret;
1452                 }
1453                 dev_dbg(dev, "regulator enabled\n");
1454         }
1455
1456         reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1457                                               &flags);
1458         if (gpio_is_valid(reset_gpios)) {
1459                 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1460                                             "dm9000_reset");
1461                 if (ret) {
1462                         dev_err(dev, "failed to request reset gpio %d: %d\n",
1463                                 reset_gpios, ret);
1464                         goto out_regulator_disable;
1465                 }
1466
1467                 /* According to manual PWRST# Low Period Min 1ms */
1468                 msleep(2);
1469                 gpio_set_value(reset_gpios, 1);
1470                 /* Needs 3ms to read eeprom when PWRST is deasserted */
1471                 msleep(4);
1472         }
1473
1474         if (!pdata) {
1475                 pdata = dm9000_parse_dt(&pdev->dev);
1476                 if (IS_ERR(pdata)) {
1477                         ret = PTR_ERR(pdata);
1478                         goto out_regulator_disable;
1479                 }
1480         }
1481
1482         /* Init network device */
1483         ndev = alloc_etherdev(sizeof(struct board_info));
1484         if (!ndev) {
1485                 ret = -ENOMEM;
1486                 goto out_regulator_disable;
1487         }
1488
1489         SET_NETDEV_DEV(ndev, &pdev->dev);
1490
1491         dev_dbg(&pdev->dev, "dm9000_probe()\n");
1492
1493         /* setup board info structure */
1494         db = netdev_priv(ndev);
1495
1496         db->dev = &pdev->dev;
1497         db->ndev = ndev;
1498         if (!IS_ERR(power))
1499                 db->power_supply = power;
1500
1501         spin_lock_init(&db->lock);
1502         mutex_init(&db->addr_lock);
1503
1504         INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1505
1506         db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507         db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1508
1509         if (!db->addr_res || !db->data_res) {
1510                 dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1511                         db->addr_res, db->data_res);
1512                 ret = -ENOENT;
1513                 goto out;
1514         }
1515
1516         ndev->irq = platform_get_irq(pdev, 0);
1517         if (ndev->irq < 0) {
1518                 dev_err(db->dev, "interrupt resource unavailable: %d\n",
1519                         ndev->irq);
1520                 ret = ndev->irq;
1521                 goto out;
1522         }
1523
1524         db->irq_wake = platform_get_irq(pdev, 1);
1525         if (db->irq_wake >= 0) {
1526                 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1527
1528                 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1529                                   IRQF_SHARED, dev_name(db->dev), ndev);
1530                 if (ret) {
1531                         dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1532                 } else {
1533
1534                         /* test to see if irq is really wakeup capable */
1535                         ret = irq_set_irq_wake(db->irq_wake, 1);
1536                         if (ret) {
1537                                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1538                                         db->irq_wake, ret);
1539                                 ret = 0;
1540                         } else {
1541                                 irq_set_irq_wake(db->irq_wake, 0);
1542                                 db->wake_supported = 1;
1543                         }
1544                 }
1545         }
1546
1547         iosize = resource_size(db->addr_res);
1548         db->addr_req = request_mem_region(db->addr_res->start, iosize,
1549                                           pdev->name);
1550
1551         if (db->addr_req == NULL) {
1552                 dev_err(db->dev, "cannot claim address reg area\n");
1553                 ret = -EIO;
1554                 goto out;
1555         }
1556
1557         db->io_addr = ioremap(db->addr_res->start, iosize);
1558
1559         if (db->io_addr == NULL) {
1560                 dev_err(db->dev, "failed to ioremap address reg\n");
1561                 ret = -EINVAL;
1562                 goto out;
1563         }
1564
1565         iosize = resource_size(db->data_res);
1566         db->data_req = request_mem_region(db->data_res->start, iosize,
1567                                           pdev->name);
1568
1569         if (db->data_req == NULL) {
1570                 dev_err(db->dev, "cannot claim data reg area\n");
1571                 ret = -EIO;
1572                 goto out;
1573         }
1574
1575         db->io_data = ioremap(db->data_res->start, iosize);
1576
1577         if (db->io_data == NULL) {
1578                 dev_err(db->dev, "failed to ioremap data reg\n");
1579                 ret = -EINVAL;
1580                 goto out;
1581         }
1582
1583         /* fill in parameters for net-dev structure */
1584         ndev->base_addr = (unsigned long)db->io_addr;
1585
1586         /* ensure at least we have a default set of IO routines */
1587         dm9000_set_io(db, iosize);
1588
1589         /* check to see if anything is being over-ridden */
1590         if (pdata != NULL) {
1591                 /* check to see if the driver wants to over-ride the
1592                  * default IO width */
1593
1594                 if (pdata->flags & DM9000_PLATF_8BITONLY)
1595                         dm9000_set_io(db, 1);
1596
1597                 if (pdata->flags & DM9000_PLATF_16BITONLY)
1598                         dm9000_set_io(db, 2);
1599
1600                 if (pdata->flags & DM9000_PLATF_32BITONLY)
1601                         dm9000_set_io(db, 4);
1602
1603                 /* check to see if there are any IO routine
1604                  * over-rides */
1605
1606                 if (pdata->inblk != NULL)
1607                         db->inblk = pdata->inblk;
1608
1609                 if (pdata->outblk != NULL)
1610                         db->outblk = pdata->outblk;
1611
1612                 if (pdata->dumpblk != NULL)
1613                         db->dumpblk = pdata->dumpblk;
1614
1615                 db->flags = pdata->flags;
1616         }
1617
1618 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1619         db->flags |= DM9000_PLATF_SIMPLE_PHY;
1620 #endif
1621
1622         dm9000_reset(db);
1623
1624         /* try multiple times, DM9000 sometimes gets the read wrong */
1625         for (i = 0; i < 8; i++) {
1626                 id_val  = ior(db, DM9000_VIDL);
1627                 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1628                 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1629                 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1630
1631                 if (id_val == DM9000_ID)
1632                         break;
1633                 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1634         }
1635
1636         if (id_val != DM9000_ID) {
1637                 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1638                 ret = -ENODEV;
1639                 goto out;
1640         }
1641
1642         /* Identify what type of DM9000 we are working on */
1643
1644         id_val = ior(db, DM9000_CHIPR);
1645         dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1646
1647         switch (id_val) {
1648         case CHIPR_DM9000A:
1649                 db->type = TYPE_DM9000A;
1650                 break;
1651         case CHIPR_DM9000B:
1652                 db->type = TYPE_DM9000B;
1653                 break;
1654         default:
1655                 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1656                 db->type = TYPE_DM9000E;
1657         }
1658
1659         /* dm9000a/b are capable of hardware checksum offload */
1660         if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1661                 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1662                 ndev->features |= ndev->hw_features;
1663         }
1664
1665         /* from this point we assume that we have found a DM9000 */
1666
1667         ndev->netdev_ops        = &dm9000_netdev_ops;
1668         ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1669         ndev->ethtool_ops       = &dm9000_ethtool_ops;
1670
1671         db->msg_enable       = NETIF_MSG_LINK;
1672         db->mii.phy_id_mask  = 0x1f;
1673         db->mii.reg_num_mask = 0x1f;
1674         db->mii.force_media  = 0;
1675         db->mii.full_duplex  = 0;
1676         db->mii.dev          = ndev;
1677         db->mii.mdio_read    = dm9000_phy_read;
1678         db->mii.mdio_write   = dm9000_phy_write;
1679
1680         mac_src = "eeprom";
1681
1682         /* try reading the node address from the attached EEPROM */
1683         for (i = 0; i < 6; i += 2)
1684                 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1685
1686         if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1687                 mac_src = "platform data";
1688                 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1689         }
1690
1691         if (!is_valid_ether_addr(ndev->dev_addr)) {
1692                 /* try reading from mac */
1693
1694                 mac_src = "chip";
1695                 for (i = 0; i < 6; i++)
1696                         ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1697         }
1698
1699         if (!is_valid_ether_addr(ndev->dev_addr)) {
1700                 inv_mac_addr = true;
1701                 eth_hw_addr_random(ndev);
1702                 mac_src = "random";
1703         }
1704
1705
1706         platform_set_drvdata(pdev, ndev);
1707         ret = register_netdev(ndev);
1708
1709         if (ret == 0) {
1710                 if (inv_mac_addr)
1711                         dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1712                                  ndev->name);
1713                 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1714                        ndev->name, dm9000_type_to_char(db->type),
1715                        db->io_addr, db->io_data, ndev->irq,
1716                        ndev->dev_addr, mac_src);
1717         }
1718         return 0;
1719
1720 out:
1721         dev_err(db->dev, "not found (%d).\n", ret);
1722
1723         dm9000_release_board(pdev, db);
1724         free_netdev(ndev);
1725
1726 out_regulator_disable:
1727         if (!IS_ERR(power))
1728                 regulator_disable(power);
1729
1730         return ret;
1731 }
1732
1733 static int
1734 dm9000_drv_suspend(struct device *dev)
1735 {
1736         struct platform_device *pdev = to_platform_device(dev);
1737         struct net_device *ndev = platform_get_drvdata(pdev);
1738         struct board_info *db;
1739
1740         if (ndev) {
1741                 db = netdev_priv(ndev);
1742                 db->in_suspend = 1;
1743
1744                 if (!netif_running(ndev))
1745                         return 0;
1746
1747                 netif_device_detach(ndev);
1748
1749                 /* only shutdown if not using WoL */
1750                 if (!db->wake_state)
1751                         dm9000_shutdown(ndev);
1752         }
1753         return 0;
1754 }
1755
1756 static int
1757 dm9000_drv_resume(struct device *dev)
1758 {
1759         struct platform_device *pdev = to_platform_device(dev);
1760         struct net_device *ndev = platform_get_drvdata(pdev);
1761         struct board_info *db = netdev_priv(ndev);
1762
1763         if (ndev) {
1764                 if (netif_running(ndev)) {
1765                         /* reset if we were not in wake mode to ensure if
1766                          * the device was powered off it is in a known state */
1767                         if (!db->wake_state) {
1768                                 dm9000_init_dm9000(ndev);
1769                                 dm9000_unmask_interrupts(db);
1770                         }
1771
1772                         netif_device_attach(ndev);
1773                 }
1774
1775                 db->in_suspend = 0;
1776         }
1777         return 0;
1778 }
1779
1780 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1781         .suspend        = dm9000_drv_suspend,
1782         .resume         = dm9000_drv_resume,
1783 };
1784
1785 static int
1786 dm9000_drv_remove(struct platform_device *pdev)
1787 {
1788         struct net_device *ndev = platform_get_drvdata(pdev);
1789         struct board_info *dm = to_dm9000_board(ndev);
1790
1791         unregister_netdev(ndev);
1792         dm9000_release_board(pdev, dm);
1793         free_netdev(ndev);              /* free device structure */
1794         if (dm->power_supply)
1795                 regulator_disable(dm->power_supply);
1796
1797         dev_dbg(&pdev->dev, "released and freed device\n");
1798         return 0;
1799 }
1800
1801 #ifdef CONFIG_OF
1802 static const struct of_device_id dm9000_of_matches[] = {
1803         { .compatible = "davicom,dm9000", },
1804         { /* sentinel */ }
1805 };
1806 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1807 #endif
1808
1809 static struct platform_driver dm9000_driver = {
1810         .driver = {
1811                 .name    = "dm9000",
1812                 .pm      = &dm9000_drv_pm_ops,
1813                 .of_match_table = of_match_ptr(dm9000_of_matches),
1814         },
1815         .probe   = dm9000_probe,
1816         .remove  = dm9000_drv_remove,
1817 };
1818
1819 module_platform_driver(dm9000_driver);
1820
1821 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1822 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1823 MODULE_LICENSE("GPL");
1824 MODULE_ALIAS("platform:dm9000");