GNU Linux-libre 4.19.281-gnu1
[releases.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46  * Wait for the device to become ready (signified by our "who am I" register
47  * returning a value other than all 1's).  Return an error if it doesn't
48  * become ready ...
49  */
50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53         const u32 notready1 = 0xffffffff;
54         const u32 notready2 = 0xeeeeeeee;
55         u32 val;
56
57         val = t4_read_reg(adapter, whoami);
58         if (val != notready1 && val != notready2)
59                 return 0;
60         msleep(500);
61         val = t4_read_reg(adapter, whoami);
62         if (val != notready1 && val != notready2)
63                 return 0;
64         else
65                 return -EIO;
66 }
67
68 /*
69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
70  * (since the firmware data structures are specified in a big-endian layout).
71  */
72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73                          u32 mbox_data)
74 {
75         for ( ; size; size -= 8, mbox_data += 8)
76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81  *      @adapter: the adapter
82  *      @cmd: the Firmware Mailbox Command or Reply
83  *      @size: command length in bytes
84  *      @access: the time (ms) needed to access the Firmware Mailbox
85  *      @execute: the time (ms) the command spent being executed
86  */
87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88                              int size, int access, int execute)
89 {
90         struct mbox_cmd_log *log = adapter->mbox_log;
91         struct mbox_cmd *entry;
92         int i;
93
94         entry = mbox_cmd_log_entry(log, log->cursor++);
95         if (log->cursor == log->size)
96                 log->cursor = 0;
97
98         for (i = 0; i < size / 8; i++)
99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
100         while (i < MBOX_LEN / 8)
101                 entry->cmd[i++] = 0;
102         entry->timestamp = jiffies;
103         entry->seqno = log->seqno++;
104         entry->access = access;
105         entry->execute = execute;
106 }
107
108 /**
109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
110  *      @adapter: the adapter
111  *      @cmd: the command to write
112  *      @size: command length in bytes
113  *      @rpl: where to optionally store the reply
114  *      @sleep_ok: if true we may sleep while awaiting command completion
115  *
116  *      Sends the given command to FW through the mailbox and waits for the
117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
118  *      the FW's reply to the command.  The command and its optional reply
119  *      are of the same length.  FW can take up to 500 ms to respond.
120  *      @sleep_ok determines whether we may sleep while awaiting the response.
121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
122  *
123  *      The return value is 0 on success or a negative errno on failure.  A
124  *      failure can happen either because we are not able to execute the
125  *      command or FW executes it but signals an error.  In the latter case
126  *      the return value is the error code indicated by FW (negated).
127  */
128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129                       void *rpl, bool sleep_ok)
130 {
131         static const int delay[] = {
132                 1, 1, 3, 5, 10, 10, 20, 50, 100
133         };
134
135         u16 access = 0, execute = 0;
136         u32 v, mbox_data;
137         int i, ms, delay_idx, ret;
138         const __be64 *p;
139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141         __be64 cmd_rpl[MBOX_LEN / 8];
142         struct mbox_list entry;
143
144         /* In T6, mailbox size is changed to 128 bytes to avoid
145          * invalidating the entire prefetch buffer.
146          */
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
149         else
150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152         /*
153          * Commands must be multiples of 16 bytes in length and may not be
154          * larger than the size of the Mailbox Data register array.
155          */
156         if ((size % 16) != 0 ||
157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158                 return -EINVAL;
159
160         /* Queue ourselves onto the mailbox access list.  When our entry is at
161          * the front of the list, we have rights to access the mailbox.  So we
162          * wait [for a while] till we're at the front [or bail out with an
163          * EBUSY] ...
164          */
165         spin_lock(&adapter->mbox_lock);
166         list_add_tail(&entry.list, &adapter->mlist.list);
167         spin_unlock(&adapter->mbox_lock);
168
169         delay_idx = 0;
170         ms = delay[0];
171
172         for (i = 0; ; i += ms) {
173                 /* If we've waited too long, return a busy indication.  This
174                  * really ought to be based on our initial position in the
175                  * mailbox access list but this is a start.  We very rearely
176                  * contend on access to the mailbox ...
177                  */
178                 if (i > FW_CMD_MAX_TIMEOUT) {
179                         spin_lock(&adapter->mbox_lock);
180                         list_del(&entry.list);
181                         spin_unlock(&adapter->mbox_lock);
182                         ret = -EBUSY;
183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
184                         return ret;
185                 }
186
187                 /* If we're at the head, break out and start the mailbox
188                  * protocol.
189                  */
190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191                                      list) == &entry)
192                         break;
193
194                 /* Delay for a bit before checking again ... */
195                 if (sleep_ok) {
196                         ms = delay[delay_idx];  /* last element may repeat */
197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
198                                 delay_idx++;
199                         msleep(ms);
200                 } else {
201                         mdelay(ms);
202                 }
203         }
204
205         /*
206          * Loop trying to get ownership of the mailbox.  Return an error
207          * if we can't gain ownership.
208          */
209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212         if (v != MBOX_OWNER_DRV) {
213                 spin_lock(&adapter->mbox_lock);
214                 list_del(&entry.list);
215                 spin_unlock(&adapter->mbox_lock);
216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
218                 return ret;
219         }
220
221         /*
222          * Write the command array into the Mailbox Data register array and
223          * transfer ownership of the mailbox to the firmware.
224          *
225          * For the VFs, the Mailbox Data "registers" are actually backed by
226          * T4's "MA" interface rather than PL Registers (as is the case for
227          * the PFs).  Because these are in different coherency domains, the
228          * write to the VF's PL-register-backed Mailbox Control can race in
229          * front of the writes to the MA-backed VF Mailbox Data "registers".
230          * So we need to do a read-back on at least one byte of the VF Mailbox
231          * Data registers before doing the write to the VF Mailbox Control
232          * register.
233          */
234         if (cmd_op != FW_VI_STATS_CMD)
235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
236         for (i = 0, p = cmd; i < size; i += 8)
237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238         t4_read_reg(adapter, mbox_data);         /* flush write */
239
240         t4_write_reg(adapter, mbox_ctl,
241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
243
244         /*
245          * Spin waiting for firmware to acknowledge processing our command.
246          */
247         delay_idx = 0;
248         ms = delay[0];
249
250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251                 if (sleep_ok) {
252                         ms = delay[delay_idx];
253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
254                                 delay_idx++;
255                         msleep(ms);
256                 } else
257                         mdelay(ms);
258
259                 /*
260                  * If we're the owner, see if this is the reply we wanted.
261                  */
262                 v = t4_read_reg(adapter, mbox_ctl);
263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264                         /*
265                          * If the Message Valid bit isn't on, revoke ownership
266                          * of the mailbox and continue waiting for our reply.
267                          */
268                         if ((v & MBMSGVALID_F) == 0) {
269                                 t4_write_reg(adapter, mbox_ctl,
270                                              MBOWNER_V(MBOX_OWNER_NONE));
271                                 continue;
272                         }
273
274                         /*
275                          * We now have our reply.  Extract the command return
276                          * value, copy the reply back to our caller's buffer
277                          * (if specified) and revoke ownership of the mailbox.
278                          * We return the (negated) firmware command return
279                          * code (this depends on FW_SUCCESS == 0).
280                          */
281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283                         /* return value in low-order little-endian word */
284                         v = be64_to_cpu(cmd_rpl[0]);
285
286                         if (rpl) {
287                                 /* request bit in high-order BE word */
288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289                                          & FW_CMD_REQUEST_F) == 0);
290                                 memcpy(rpl, cmd_rpl, size);
291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292                                          & FW_CMD_REQUEST_F) != 0);
293                         }
294                         t4_write_reg(adapter, mbox_ctl,
295                                      MBOWNER_V(MBOX_OWNER_NONE));
296                         execute = i + ms;
297                         if (cmd_op != FW_VI_STATS_CMD)
298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299                                                  execute);
300                         spin_lock(&adapter->mbox_lock);
301                         list_del(&entry.list);
302                         spin_unlock(&adapter->mbox_lock);
303                         return -FW_CMD_RETVAL_G(v);
304                 }
305         }
306
307         /* We timed out.  Return the error ... */
308         ret = -ETIMEDOUT;
309         t4vf_record_mbox(adapter, cmd, size, access, ret);
310         spin_lock(&adapter->mbox_lock);
311         list_del(&entry.list);
312         spin_unlock(&adapter->mbox_lock);
313         return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
317                      FW_PORT_CAP32_ANEG)
318
319 /**
320  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321  *      @caps16: a 16-bit Port Capabilities value
322  *
323  *      Returns the equivalent 32-bit Port Capabilities value.
324  */
325 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
326 {
327         fw_port_cap32_t caps32 = 0;
328
329         #define CAP16_TO_CAP32(__cap) \
330                 do { \
331                         if (caps16 & FW_PORT_CAP_##__cap) \
332                                 caps32 |= FW_PORT_CAP32_##__cap; \
333                 } while (0)
334
335         CAP16_TO_CAP32(SPEED_100M);
336         CAP16_TO_CAP32(SPEED_1G);
337         CAP16_TO_CAP32(SPEED_25G);
338         CAP16_TO_CAP32(SPEED_10G);
339         CAP16_TO_CAP32(SPEED_40G);
340         CAP16_TO_CAP32(SPEED_100G);
341         CAP16_TO_CAP32(FC_RX);
342         CAP16_TO_CAP32(FC_TX);
343         CAP16_TO_CAP32(ANEG);
344         CAP16_TO_CAP32(MDIAUTO);
345         CAP16_TO_CAP32(MDISTRAIGHT);
346         CAP16_TO_CAP32(FEC_RS);
347         CAP16_TO_CAP32(FEC_BASER_RS);
348         CAP16_TO_CAP32(802_3_PAUSE);
349         CAP16_TO_CAP32(802_3_ASM_DIR);
350
351         #undef CAP16_TO_CAP32
352
353         return caps32;
354 }
355
356 /* Translate Firmware Pause specification to Common Code */
357 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
358 {
359         enum cc_pause cc_pause = 0;
360
361         if (fw_pause & FW_PORT_CAP32_FC_RX)
362                 cc_pause |= PAUSE_RX;
363         if (fw_pause & FW_PORT_CAP32_FC_TX)
364                 cc_pause |= PAUSE_TX;
365
366         return cc_pause;
367 }
368
369 /* Translate Firmware Forward Error Correction specification to Common Code */
370 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
371 {
372         enum cc_fec cc_fec = 0;
373
374         if (fw_fec & FW_PORT_CAP32_FEC_RS)
375                 cc_fec |= FEC_RS;
376         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
377                 cc_fec |= FEC_BASER_RS;
378
379         return cc_fec;
380 }
381
382 /**
383  * Return the highest speed set in the port capabilities, in Mb/s.
384  */
385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
386 {
387         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
388                 do { \
389                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
390                                 return __speed; \
391                 } while (0)
392
393         TEST_SPEED_RETURN(400G, 400000);
394         TEST_SPEED_RETURN(200G, 200000);
395         TEST_SPEED_RETURN(100G, 100000);
396         TEST_SPEED_RETURN(50G,   50000);
397         TEST_SPEED_RETURN(40G,   40000);
398         TEST_SPEED_RETURN(25G,   25000);
399         TEST_SPEED_RETURN(10G,   10000);
400         TEST_SPEED_RETURN(1G,     1000);
401         TEST_SPEED_RETURN(100M,    100);
402
403         #undef TEST_SPEED_RETURN
404
405         return 0;
406 }
407
408 /**
409  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
410  *      @acaps: advertised Port Capabilities
411  *
412  *      Get the highest speed for the port from the advertised Port
413  *      Capabilities.  It will be either the highest speed from the list of
414  *      speeds or whatever user has set using ethtool.
415  */
416 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
417 {
418         #define TEST_SPEED_RETURN(__caps_speed) \
419                 do { \
420                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
421                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
422                 } while (0)
423
424         TEST_SPEED_RETURN(400G);
425         TEST_SPEED_RETURN(200G);
426         TEST_SPEED_RETURN(100G);
427         TEST_SPEED_RETURN(50G);
428         TEST_SPEED_RETURN(40G);
429         TEST_SPEED_RETURN(25G);
430         TEST_SPEED_RETURN(10G);
431         TEST_SPEED_RETURN(1G);
432         TEST_SPEED_RETURN(100M);
433
434         #undef TEST_SPEED_RETURN
435         return 0;
436 }
437
438 /*
439  *      init_link_config - initialize a link's SW state
440  *      @lc: structure holding the link state
441  *      @pcaps: link Port Capabilities
442  *      @acaps: link current Advertised Port Capabilities
443  *
444  *      Initializes the SW state maintained for each link, including the link's
445  *      capabilities and default speed/flow-control/autonegotiation settings.
446  */
447 static void init_link_config(struct link_config *lc,
448                              fw_port_cap32_t pcaps,
449                              fw_port_cap32_t acaps)
450 {
451         lc->pcaps = pcaps;
452         lc->lpacaps = 0;
453         lc->speed_caps = 0;
454         lc->speed = 0;
455         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
456
457         /* For Forward Error Control, we default to whatever the Firmware
458          * tells us the Link is currently advertising.
459          */
460         lc->auto_fec = fwcap_to_cc_fec(acaps);
461         lc->requested_fec = FEC_AUTO;
462         lc->fec = lc->auto_fec;
463
464         /* If the Port is capable of Auto-Negtotiation, initialize it as
465          * "enabled" and copy over all of the Physical Port Capabilities
466          * to the Advertised Port Capabilities.  Otherwise mark it as
467          * Auto-Negotiate disabled and select the highest supported speed
468          * for the link.  Note parallel structure in t4_link_l1cfg_core()
469          * and t4_handle_get_port_info().
470          */
471         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
472                 lc->acaps = acaps & ADVERT_MASK;
473                 lc->autoneg = AUTONEG_ENABLE;
474                 lc->requested_fc |= PAUSE_AUTONEG;
475         } else {
476                 lc->acaps = 0;
477                 lc->autoneg = AUTONEG_DISABLE;
478                 lc->speed_caps = fwcap_to_fwspeed(acaps);
479         }
480 }
481
482 /**
483  *      t4vf_port_init - initialize port hardware/software state
484  *      @adapter: the adapter
485  *      @pidx: the adapter port index
486  */
487 int t4vf_port_init(struct adapter *adapter, int pidx)
488 {
489         struct port_info *pi = adap2pinfo(adapter, pidx);
490         unsigned int fw_caps = adapter->params.fw_caps_support;
491         struct fw_vi_cmd vi_cmd, vi_rpl;
492         struct fw_port_cmd port_cmd, port_rpl;
493         enum fw_port_type port_type;
494         int mdio_addr;
495         fw_port_cap32_t pcaps, acaps;
496         int ret;
497
498         /* If we haven't yet determined whether we're talking to Firmware
499          * which knows the new 32-bit Port Capabilities, it's time to find
500          * out now.  This will also tell new Firmware to send us Port Status
501          * Updates using the new 32-bit Port Capabilities version of the
502          * Port Information message.
503          */
504         if (fw_caps == FW_CAPS_UNKNOWN) {
505                 u32 param, val;
506
507                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
508                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
509                 val = 1;
510                 ret = t4vf_set_params(adapter, 1, &param, &val);
511                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
512                 adapter->params.fw_caps_support = fw_caps;
513         }
514
515         /*
516          * Execute a VI Read command to get our Virtual Interface information
517          * like MAC address, etc.
518          */
519         memset(&vi_cmd, 0, sizeof(vi_cmd));
520         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
521                                        FW_CMD_REQUEST_F |
522                                        FW_CMD_READ_F);
523         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
524         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
525         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
526         if (ret != FW_SUCCESS)
527                 return ret;
528
529         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
530         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
531         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
532
533         /*
534          * If we don't have read access to our port information, we're done
535          * now.  Otherwise, execute a PORT Read command to get it ...
536          */
537         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
538                 return 0;
539
540         memset(&port_cmd, 0, sizeof(port_cmd));
541         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
542                                             FW_CMD_REQUEST_F |
543                                             FW_CMD_READ_F |
544                                             FW_PORT_CMD_PORTID_V(pi->port_id));
545         port_cmd.action_to_len16 = cpu_to_be32(
546                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
547                                      ? FW_PORT_ACTION_GET_PORT_INFO
548                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
549                 FW_LEN16(port_cmd));
550         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
551         if (ret != FW_SUCCESS)
552                 return ret;
553
554         /* Extract the various fields from the Port Information message. */
555         if (fw_caps == FW_CAPS16) {
556                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
557
558                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
559                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
560                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
561                              : -1);
562                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
563                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
564         } else {
565                 u32 lstatus32 =
566                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
567
568                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
569                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
570                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
571                              : -1);
572                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
573                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
574         }
575
576         pi->port_type = port_type;
577         pi->mdio_addr = mdio_addr;
578         pi->mod_type = FW_PORT_MOD_TYPE_NA;
579
580         init_link_config(&pi->link_cfg, pcaps, acaps);
581         return 0;
582 }
583
584 /**
585  *      t4vf_fw_reset - issue a reset to FW
586  *      @adapter: the adapter
587  *
588  *      Issues a reset command to FW.  For a Physical Function this would
589  *      result in the Firmware resetting all of its state.  For a Virtual
590  *      Function this just resets the state associated with the VF.
591  */
592 int t4vf_fw_reset(struct adapter *adapter)
593 {
594         struct fw_reset_cmd cmd;
595
596         memset(&cmd, 0, sizeof(cmd));
597         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
598                                       FW_CMD_WRITE_F);
599         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
600         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
601 }
602
603 /**
604  *      t4vf_query_params - query FW or device parameters
605  *      @adapter: the adapter
606  *      @nparams: the number of parameters
607  *      @params: the parameter names
608  *      @vals: the parameter values
609  *
610  *      Reads the values of firmware or device parameters.  Up to 7 parameters
611  *      can be queried at once.
612  */
613 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
614                              const u32 *params, u32 *vals)
615 {
616         int i, ret;
617         struct fw_params_cmd cmd, rpl;
618         struct fw_params_param *p;
619         size_t len16;
620
621         if (nparams > 7)
622                 return -EINVAL;
623
624         memset(&cmd, 0, sizeof(cmd));
625         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
626                                     FW_CMD_REQUEST_F |
627                                     FW_CMD_READ_F);
628         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
629                                       param[nparams].mnem), 16);
630         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
631         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
632                 p->mnem = htonl(*params++);
633
634         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
635         if (ret == 0)
636                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
637                         *vals++ = be32_to_cpu(p->val);
638         return ret;
639 }
640
641 /**
642  *      t4vf_set_params - sets FW or device parameters
643  *      @adapter: the adapter
644  *      @nparams: the number of parameters
645  *      @params: the parameter names
646  *      @vals: the parameter values
647  *
648  *      Sets the values of firmware or device parameters.  Up to 7 parameters
649  *      can be specified at once.
650  */
651 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
652                     const u32 *params, const u32 *vals)
653 {
654         int i;
655         struct fw_params_cmd cmd;
656         struct fw_params_param *p;
657         size_t len16;
658
659         if (nparams > 7)
660                 return -EINVAL;
661
662         memset(&cmd, 0, sizeof(cmd));
663         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
664                                     FW_CMD_REQUEST_F |
665                                     FW_CMD_WRITE_F);
666         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
667                                       param[nparams]), 16);
668         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
669         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
670                 p->mnem = cpu_to_be32(*params++);
671                 p->val = cpu_to_be32(*vals++);
672         }
673
674         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
675 }
676
677 /**
678  *      t4vf_fl_pkt_align - return the fl packet alignment
679  *      @adapter: the adapter
680  *
681  *      T4 has a single field to specify the packing and padding boundary.
682  *      T5 onwards has separate fields for this and hence the alignment for
683  *      next packet offset is maximum of these two.  And T6 changes the
684  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
685  *      if we put this in low-level Common Code ...
686  *
687  */
688 int t4vf_fl_pkt_align(struct adapter *adapter)
689 {
690         u32 sge_control, sge_control2;
691         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
692
693         sge_control = adapter->params.sge.sge_control;
694
695         /* T4 uses a single control field to specify both the PCIe Padding and
696          * Packing Boundary.  T5 introduced the ability to specify these
697          * separately.  The actual Ingress Packet Data alignment boundary
698          * within Packed Buffer Mode is the maximum of these two
699          * specifications.  (Note that it makes no real practical sense to
700          * have the Pading Boudary be larger than the Packing Boundary but you
701          * could set the chip up that way and, in fact, legacy T4 code would
702          * end doing this because it would initialize the Padding Boundary and
703          * leave the Packing Boundary initialized to 0 (16 bytes).)
704          * Padding Boundary values in T6 starts from 8B,
705          * where as it is 32B for T4 and T5.
706          */
707         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
708                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
709         else
710                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
711
712         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
713
714         fl_align = ingpadboundary;
715         if (!is_t4(adapter->params.chip)) {
716                 /* T5 has a different interpretation of one of the PCIe Packing
717                  * Boundary values.
718                  */
719                 sge_control2 = adapter->params.sge.sge_control2;
720                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
721                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
722                         ingpackboundary = 16;
723                 else
724                         ingpackboundary = 1 << (ingpackboundary +
725                                                 INGPACKBOUNDARY_SHIFT_X);
726
727                 fl_align = max(ingpadboundary, ingpackboundary);
728         }
729         return fl_align;
730 }
731
732 /**
733  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
734  *      @adapter: the adapter
735  *      @qid: the Queue ID
736  *      @qtype: the Ingress or Egress type for @qid
737  *      @pbar2_qoffset: BAR2 Queue Offset
738  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
739  *
740  *      Returns the BAR2 SGE Queue Registers information associated with the
741  *      indicated Absolute Queue ID.  These are passed back in return value
742  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
743  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
744  *
745  *      This may return an error which indicates that BAR2 SGE Queue
746  *      registers aren't available.  If an error is not returned, then the
747  *      following values are returned:
748  *
749  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
750  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
751  *
752  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
753  *      require the "Inferred Queue ID" ability may be used.  E.g. the
754  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
755  *      then these "Inferred Queue ID" register may not be used.
756  */
757 int t4vf_bar2_sge_qregs(struct adapter *adapter,
758                         unsigned int qid,
759                         enum t4_bar2_qtype qtype,
760                         u64 *pbar2_qoffset,
761                         unsigned int *pbar2_qid)
762 {
763         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
764         u64 bar2_page_offset, bar2_qoffset;
765         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
766
767         /* T4 doesn't support BAR2 SGE Queue registers.
768          */
769         if (is_t4(adapter->params.chip))
770                 return -EINVAL;
771
772         /* Get our SGE Page Size parameters.
773          */
774         page_shift = adapter->params.sge.sge_vf_hps + 10;
775         page_size = 1 << page_shift;
776
777         /* Get the right Queues per Page parameters for our Queue.
778          */
779         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
780                      ? adapter->params.sge.sge_vf_eq_qpp
781                      : adapter->params.sge.sge_vf_iq_qpp);
782         qpp_mask = (1 << qpp_shift) - 1;
783
784         /* Calculate the basics of the BAR2 SGE Queue register area:
785          *  o The BAR2 page the Queue registers will be in.
786          *  o The BAR2 Queue ID.
787          *  o The BAR2 Queue ID Offset into the BAR2 page.
788          */
789         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
790         bar2_qid = qid & qpp_mask;
791         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
792
793         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
794          * hardware will infer the Absolute Queue ID simply from the writes to
795          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
796          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
797          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
798          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
799          * from the BAR2 Page and BAR2 Queue ID.
800          *
801          * One important censequence of this is that some BAR2 SGE registers
802          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
803          * there.  But other registers synthesize the SGE Queue ID purely
804          * from the writes to the registers -- the Write Combined Doorbell
805          * Buffer is a good example.  These BAR2 SGE Registers are only
806          * available for those BAR2 SGE Register areas where the SGE Absolute
807          * Queue ID can be inferred from simple writes.
808          */
809         bar2_qoffset = bar2_page_offset;
810         bar2_qinferred = (bar2_qid_offset < page_size);
811         if (bar2_qinferred) {
812                 bar2_qoffset += bar2_qid_offset;
813                 bar2_qid = 0;
814         }
815
816         *pbar2_qoffset = bar2_qoffset;
817         *pbar2_qid = bar2_qid;
818         return 0;
819 }
820
821 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
822 {
823         u32 whoami;
824
825         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
826         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
827                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
828 }
829
830 /**
831  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
832  *      @adapter: the adapter
833  *
834  *      Retrieves various core SGE parameters in the form of hardware SGE
835  *      register values.  The caller is responsible for decoding these as
836  *      needed.  The SGE parameters are stored in @adapter->params.sge.
837  */
838 int t4vf_get_sge_params(struct adapter *adapter)
839 {
840         struct sge_params *sge_params = &adapter->params.sge;
841         u32 params[7], vals[7];
842         int v;
843
844         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
845                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
846         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
847                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
848         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
849                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
850         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
851                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
852         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
854         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
856         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
858         v = t4vf_query_params(adapter, 7, params, vals);
859         if (v)
860                 return v;
861         sge_params->sge_control = vals[0];
862         sge_params->sge_host_page_size = vals[1];
863         sge_params->sge_fl_buffer_size[0] = vals[2];
864         sge_params->sge_fl_buffer_size[1] = vals[3];
865         sge_params->sge_timer_value_0_and_1 = vals[4];
866         sge_params->sge_timer_value_2_and_3 = vals[5];
867         sge_params->sge_timer_value_4_and_5 = vals[6];
868
869         /* T4 uses a single control field to specify both the PCIe Padding and
870          * Packing Boundary.  T5 introduced the ability to specify these
871          * separately with the Padding Boundary in SGE_CONTROL and and Packing
872          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
873          * SGE_CONTROL in order to determine how ingress packet data will be
874          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
875          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
876          * failure grabbing it we throw an error since we can't figure out the
877          * right value.
878          */
879         if (!is_t4(adapter->params.chip)) {
880                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
881                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
882                 v = t4vf_query_params(adapter, 1, params, vals);
883                 if (v != FW_SUCCESS) {
884                         dev_err(adapter->pdev_dev,
885                                 "Unable to get SGE Control2; "
886                                 "probably old firmware.\n");
887                         return v;
888                 }
889                 sge_params->sge_control2 = vals[0];
890         }
891
892         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
893                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
894         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
895                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
896         v = t4vf_query_params(adapter, 2, params, vals);
897         if (v)
898                 return v;
899         sge_params->sge_ingress_rx_threshold = vals[0];
900         sge_params->sge_congestion_control = vals[1];
901
902         /* For T5 and later we want to use the new BAR2 Doorbells.
903          * Unfortunately, older firmware didn't allow the this register to be
904          * read.
905          */
906         if (!is_t4(adapter->params.chip)) {
907                 unsigned int pf, s_hps, s_qpp;
908
909                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
910                              FW_PARAMS_PARAM_XYZ_V(
911                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
912                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
913                              FW_PARAMS_PARAM_XYZ_V(
914                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
915                 v = t4vf_query_params(adapter, 2, params, vals);
916                 if (v != FW_SUCCESS) {
917                         dev_warn(adapter->pdev_dev,
918                                  "Unable to get VF SGE Queues/Page; "
919                                  "probably old firmware.\n");
920                         return v;
921                 }
922                 sge_params->sge_egress_queues_per_page = vals[0];
923                 sge_params->sge_ingress_queues_per_page = vals[1];
924
925                 /* We need the Queues/Page for our VF.  This is based on the
926                  * PF from which we're instantiated and is indexed in the
927                  * register we just read. Do it once here so other code in
928                  * the driver can just use it.
929                  */
930                 pf = t4vf_get_pf_from_vf(adapter);
931                 s_hps = (HOSTPAGESIZEPF0_S +
932                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
933                 sge_params->sge_vf_hps =
934                         ((sge_params->sge_host_page_size >> s_hps)
935                          & HOSTPAGESIZEPF0_M);
936
937                 s_qpp = (QUEUESPERPAGEPF0_S +
938                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
939                 sge_params->sge_vf_eq_qpp =
940                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
941                          & QUEUESPERPAGEPF0_M);
942                 sge_params->sge_vf_iq_qpp =
943                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
944                          & QUEUESPERPAGEPF0_M);
945         }
946
947         return 0;
948 }
949
950 /**
951  *      t4vf_get_vpd_params - retrieve device VPD paremeters
952  *      @adapter: the adapter
953  *
954  *      Retrives various device Vital Product Data parameters.  The parameters
955  *      are stored in @adapter->params.vpd.
956  */
957 int t4vf_get_vpd_params(struct adapter *adapter)
958 {
959         struct vpd_params *vpd_params = &adapter->params.vpd;
960         u32 params[7], vals[7];
961         int v;
962
963         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
964                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
965         v = t4vf_query_params(adapter, 1, params, vals);
966         if (v)
967                 return v;
968         vpd_params->cclk = vals[0];
969
970         return 0;
971 }
972
973 /**
974  *      t4vf_get_dev_params - retrieve device paremeters
975  *      @adapter: the adapter
976  *
977  *      Retrives various device parameters.  The parameters are stored in
978  *      @adapter->params.dev.
979  */
980 int t4vf_get_dev_params(struct adapter *adapter)
981 {
982         struct dev_params *dev_params = &adapter->params.dev;
983         u32 params[7], vals[7];
984         int v;
985
986         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
987                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
988         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
989                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
990         v = t4vf_query_params(adapter, 2, params, vals);
991         if (v)
992                 return v;
993         dev_params->fwrev = vals[0];
994         dev_params->tprev = vals[1];
995
996         return 0;
997 }
998
999 /**
1000  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1001  *      @adapter: the adapter
1002  *
1003  *      Retrieves global RSS mode and parameters with which we have to live
1004  *      and stores them in the @adapter's RSS parameters.
1005  */
1006 int t4vf_get_rss_glb_config(struct adapter *adapter)
1007 {
1008         struct rss_params *rss = &adapter->params.rss;
1009         struct fw_rss_glb_config_cmd cmd, rpl;
1010         int v;
1011
1012         /*
1013          * Execute an RSS Global Configuration read command to retrieve
1014          * our RSS configuration.
1015          */
1016         memset(&cmd, 0, sizeof(cmd));
1017         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1018                                       FW_CMD_REQUEST_F |
1019                                       FW_CMD_READ_F);
1020         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1021         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1022         if (v)
1023                 return v;
1024
1025         /*
1026          * Transate the big-endian RSS Global Configuration into our
1027          * cpu-endian format based on the RSS mode.  We also do first level
1028          * filtering at this point to weed out modes which don't support
1029          * VF Drivers ...
1030          */
1031         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1032                         be32_to_cpu(rpl.u.manual.mode_pkd));
1033         switch (rss->mode) {
1034         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1035                 u32 word = be32_to_cpu(
1036                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1037
1038                 rss->u.basicvirtual.synmapen =
1039                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1040                 rss->u.basicvirtual.syn4tupenipv6 =
1041                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1042                 rss->u.basicvirtual.syn2tupenipv6 =
1043                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1044                 rss->u.basicvirtual.syn4tupenipv4 =
1045                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1046                 rss->u.basicvirtual.syn2tupenipv4 =
1047                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1048
1049                 rss->u.basicvirtual.ofdmapen =
1050                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1051
1052                 rss->u.basicvirtual.tnlmapen =
1053                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1054                 rss->u.basicvirtual.tnlalllookup =
1055                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1056
1057                 rss->u.basicvirtual.hashtoeplitz =
1058                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1059
1060                 /* we need at least Tunnel Map Enable to be set */
1061                 if (!rss->u.basicvirtual.tnlmapen)
1062                         return -EINVAL;
1063                 break;
1064         }
1065
1066         default:
1067                 /* all unknown/unsupported RSS modes result in an error */
1068                 return -EINVAL;
1069         }
1070
1071         return 0;
1072 }
1073
1074 /**
1075  *      t4vf_get_vfres - retrieve VF resource limits
1076  *      @adapter: the adapter
1077  *
1078  *      Retrieves configured resource limits and capabilities for a virtual
1079  *      function.  The results are stored in @adapter->vfres.
1080  */
1081 int t4vf_get_vfres(struct adapter *adapter)
1082 {
1083         struct vf_resources *vfres = &adapter->params.vfres;
1084         struct fw_pfvf_cmd cmd, rpl;
1085         int v;
1086         u32 word;
1087
1088         /*
1089          * Execute PFVF Read command to get VF resource limits; bail out early
1090          * with error on command failure.
1091          */
1092         memset(&cmd, 0, sizeof(cmd));
1093         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1094                                     FW_CMD_REQUEST_F |
1095                                     FW_CMD_READ_F);
1096         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1097         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1098         if (v)
1099                 return v;
1100
1101         /*
1102          * Extract VF resource limits and return success.
1103          */
1104         word = be32_to_cpu(rpl.niqflint_niq);
1105         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1106         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1107
1108         word = be32_to_cpu(rpl.type_to_neq);
1109         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1110         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1111
1112         word = be32_to_cpu(rpl.tc_to_nexactf);
1113         vfres->tc = FW_PFVF_CMD_TC_G(word);
1114         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1115         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1116
1117         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1118         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1119         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1120         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1121
1122         return 0;
1123 }
1124
1125 /**
1126  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1127  *      @adapter: the adapter
1128  *      @viid: Virtual Interface ID
1129  *      @config: pointer to host-native VI RSS Configuration buffer
1130  *
1131  *      Reads the Virtual Interface's RSS configuration information and
1132  *      translates it into CPU-native format.
1133  */
1134 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1135                             union rss_vi_config *config)
1136 {
1137         struct fw_rss_vi_config_cmd cmd, rpl;
1138         int v;
1139
1140         memset(&cmd, 0, sizeof(cmd));
1141         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1142                                      FW_CMD_REQUEST_F |
1143                                      FW_CMD_READ_F |
1144                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1145         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1146         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1147         if (v)
1148                 return v;
1149
1150         switch (adapter->params.rss.mode) {
1151         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1152                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1153
1154                 config->basicvirtual.ip6fourtupen =
1155                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1156                 config->basicvirtual.ip6twotupen =
1157                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1158                 config->basicvirtual.ip4fourtupen =
1159                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1160                 config->basicvirtual.ip4twotupen =
1161                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1162                 config->basicvirtual.udpen =
1163                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1164                 config->basicvirtual.defaultq =
1165                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1166                 break;
1167         }
1168
1169         default:
1170                 return -EINVAL;
1171         }
1172
1173         return 0;
1174 }
1175
1176 /**
1177  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1178  *      @adapter: the adapter
1179  *      @viid: Virtual Interface ID
1180  *      @config: pointer to host-native VI RSS Configuration buffer
1181  *
1182  *      Write the Virtual Interface's RSS configuration information
1183  *      (translating it into firmware-native format before writing).
1184  */
1185 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1186                              union rss_vi_config *config)
1187 {
1188         struct fw_rss_vi_config_cmd cmd, rpl;
1189
1190         memset(&cmd, 0, sizeof(cmd));
1191         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1192                                      FW_CMD_REQUEST_F |
1193                                      FW_CMD_WRITE_F |
1194                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1195         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1196         switch (adapter->params.rss.mode) {
1197         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1198                 u32 word = 0;
1199
1200                 if (config->basicvirtual.ip6fourtupen)
1201                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1202                 if (config->basicvirtual.ip6twotupen)
1203                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1204                 if (config->basicvirtual.ip4fourtupen)
1205                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1206                 if (config->basicvirtual.ip4twotupen)
1207                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1208                 if (config->basicvirtual.udpen)
1209                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1210                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1211                                 config->basicvirtual.defaultq);
1212                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1213                 break;
1214         }
1215
1216         default:
1217                 return -EINVAL;
1218         }
1219
1220         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1221 }
1222
1223 /**
1224  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1225  *      @adapter: the adapter
1226  *      @viid: Virtual Interface of RSS Table Slice
1227  *      @start: starting entry in the table to write
1228  *      @n: how many table entries to write
1229  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1230  *      @nrspq: number of values in @rspq
1231  *
1232  *      Programs the selected part of the VI's RSS mapping table with the
1233  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1234  *      until the full table range is populated.
1235  *
1236  *      The caller must ensure the values in @rspq are in the range 0..1023.
1237  */
1238 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1239                           int start, int n, const u16 *rspq, int nrspq)
1240 {
1241         const u16 *rsp = rspq;
1242         const u16 *rsp_end = rspq+nrspq;
1243         struct fw_rss_ind_tbl_cmd cmd;
1244
1245         /*
1246          * Initialize firmware command template to write the RSS table.
1247          */
1248         memset(&cmd, 0, sizeof(cmd));
1249         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1250                                      FW_CMD_REQUEST_F |
1251                                      FW_CMD_WRITE_F |
1252                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1253         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1254
1255         /*
1256          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1257          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1258          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1259          * reserved.
1260          */
1261         while (n > 0) {
1262                 __be32 *qp = &cmd.iq0_to_iq2;
1263                 int nq = min(n, 32);
1264                 int ret;
1265
1266                 /*
1267                  * Set up the firmware RSS command header to send the next
1268                  * "nq" Ingress Queue IDs to the firmware.
1269                  */
1270                 cmd.niqid = cpu_to_be16(nq);
1271                 cmd.startidx = cpu_to_be16(start);
1272
1273                 /*
1274                  * "nq" more done for the start of the next loop.
1275                  */
1276                 start += nq;
1277                 n -= nq;
1278
1279                 /*
1280                  * While there are still Ingress Queue IDs to stuff into the
1281                  * current firmware RSS command, retrieve them from the
1282                  * Ingress Queue ID array and insert them into the command.
1283                  */
1284                 while (nq > 0) {
1285                         /*
1286                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1287                          * around the Ingress Queue ID array if necessary) and
1288                          * insert them into the firmware RSS command at the
1289                          * current 3-tuple position within the commad.
1290                          */
1291                         u16 qbuf[3];
1292                         u16 *qbp = qbuf;
1293                         int nqbuf = min(3, nq);
1294
1295                         nq -= nqbuf;
1296                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1297                         while (nqbuf) {
1298                                 nqbuf--;
1299                                 *qbp++ = *rsp++;
1300                                 if (rsp >= rsp_end)
1301                                         rsp = rspq;
1302                         }
1303                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1304                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1305                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1306                 }
1307
1308                 /*
1309                  * Send this portion of the RRS table update to the firmware;
1310                  * bail out on any errors.
1311                  */
1312                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1313                 if (ret)
1314                         return ret;
1315         }
1316         return 0;
1317 }
1318
1319 /**
1320  *      t4vf_alloc_vi - allocate a virtual interface on a port
1321  *      @adapter: the adapter
1322  *      @port_id: physical port associated with the VI
1323  *
1324  *      Allocate a new Virtual Interface and bind it to the indicated
1325  *      physical port.  Return the new Virtual Interface Identifier on
1326  *      success, or a [negative] error number on failure.
1327  */
1328 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1329 {
1330         struct fw_vi_cmd cmd, rpl;
1331         int v;
1332
1333         /*
1334          * Execute a VI command to allocate Virtual Interface and return its
1335          * VIID.
1336          */
1337         memset(&cmd, 0, sizeof(cmd));
1338         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1339                                     FW_CMD_REQUEST_F |
1340                                     FW_CMD_WRITE_F |
1341                                     FW_CMD_EXEC_F);
1342         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1343                                          FW_VI_CMD_ALLOC_F);
1344         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1345         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1346         if (v)
1347                 return v;
1348
1349         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1350 }
1351
1352 /**
1353  *      t4vf_free_vi -- free a virtual interface
1354  *      @adapter: the adapter
1355  *      @viid: the virtual interface identifier
1356  *
1357  *      Free a previously allocated Virtual Interface.  Return an error on
1358  *      failure.
1359  */
1360 int t4vf_free_vi(struct adapter *adapter, int viid)
1361 {
1362         struct fw_vi_cmd cmd;
1363
1364         /*
1365          * Execute a VI command to free the Virtual Interface.
1366          */
1367         memset(&cmd, 0, sizeof(cmd));
1368         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1369                                     FW_CMD_REQUEST_F |
1370                                     FW_CMD_EXEC_F);
1371         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1372                                          FW_VI_CMD_FREE_F);
1373         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1374         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1375 }
1376
1377 /**
1378  *      t4vf_enable_vi - enable/disable a virtual interface
1379  *      @adapter: the adapter
1380  *      @viid: the Virtual Interface ID
1381  *      @rx_en: 1=enable Rx, 0=disable Rx
1382  *      @tx_en: 1=enable Tx, 0=disable Tx
1383  *
1384  *      Enables/disables a virtual interface.
1385  */
1386 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1387                    bool rx_en, bool tx_en)
1388 {
1389         struct fw_vi_enable_cmd cmd;
1390
1391         memset(&cmd, 0, sizeof(cmd));
1392         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1393                                      FW_CMD_REQUEST_F |
1394                                      FW_CMD_EXEC_F |
1395                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1396         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1397                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1398                                        FW_LEN16(cmd));
1399         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1400 }
1401
1402 /**
1403  *      t4vf_enable_pi - enable/disable a Port's virtual interface
1404  *      @adapter: the adapter
1405  *      @pi: the Port Information structure
1406  *      @rx_en: 1=enable Rx, 0=disable Rx
1407  *      @tx_en: 1=enable Tx, 0=disable Tx
1408  *
1409  *      Enables/disables a Port's virtual interface.  If the Virtual
1410  *      Interface enable/disable operation is successful, we notify the
1411  *      OS-specific code of a potential Link Status change via the OS Contract
1412  *      API t4vf_os_link_changed().
1413  */
1414 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1415                    bool rx_en, bool tx_en)
1416 {
1417         int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1418
1419         if (ret)
1420                 return ret;
1421         t4vf_os_link_changed(adapter, pi->pidx,
1422                              rx_en && tx_en && pi->link_cfg.link_ok);
1423         return 0;
1424 }
1425
1426 /**
1427  *      t4vf_identify_port - identify a VI's port by blinking its LED
1428  *      @adapter: the adapter
1429  *      @viid: the Virtual Interface ID
1430  *      @nblinks: how many times to blink LED at 2.5 Hz
1431  *
1432  *      Identifies a VI's port by blinking its LED.
1433  */
1434 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1435                        unsigned int nblinks)
1436 {
1437         struct fw_vi_enable_cmd cmd;
1438
1439         memset(&cmd, 0, sizeof(cmd));
1440         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1441                                      FW_CMD_REQUEST_F |
1442                                      FW_CMD_EXEC_F |
1443                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1444         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1445                                        FW_LEN16(cmd));
1446         cmd.blinkdur = cpu_to_be16(nblinks);
1447         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1448 }
1449
1450 /**
1451  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1452  *      @adapter: the adapter
1453  *      @viid: the VI id
1454  *      @mtu: the new MTU or -1 for no change
1455  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1456  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1457  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1458  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1459  *              -1 no change
1460  *
1461  *      Sets Rx properties of a virtual interface.
1462  */
1463 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1464                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1465                     bool sleep_ok)
1466 {
1467         struct fw_vi_rxmode_cmd cmd;
1468
1469         /* convert to FW values */
1470         if (mtu < 0)
1471                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1472         if (promisc < 0)
1473                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1474         if (all_multi < 0)
1475                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1476         if (bcast < 0)
1477                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1478         if (vlanex < 0)
1479                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1480
1481         memset(&cmd, 0, sizeof(cmd));
1482         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1483                                      FW_CMD_REQUEST_F |
1484                                      FW_CMD_WRITE_F |
1485                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1486         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1487         cmd.mtu_to_vlanexen =
1488                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1489                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1490                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1491                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1492                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1493         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1494 }
1495
1496 /**
1497  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1498  *      @adapter: the adapter
1499  *      @viid: the Virtual Interface Identifier
1500  *      @free: if true any existing filters for this VI id are first removed
1501  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1502  *      @addr: the MAC address(es)
1503  *      @idx: where to store the index of each allocated filter
1504  *      @hash: pointer to hash address filter bitmap
1505  *      @sleep_ok: call is allowed to sleep
1506  *
1507  *      Allocates an exact-match filter for each of the supplied addresses and
1508  *      sets it to the corresponding address.  If @idx is not %NULL it should
1509  *      have at least @naddr entries, each of which will be set to the index of
1510  *      the filter allocated for the corresponding MAC address.  If a filter
1511  *      could not be allocated for an address its index is set to 0xffff.
1512  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1513  *      are hashed and update the hash filter bitmap pointed at by @hash.
1514  *
1515  *      Returns a negative error number or the number of filters allocated.
1516  */
1517 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1518                         unsigned int naddr, const u8 **addr, u16 *idx,
1519                         u64 *hash, bool sleep_ok)
1520 {
1521         int offset, ret = 0;
1522         unsigned nfilters = 0;
1523         unsigned int rem = naddr;
1524         struct fw_vi_mac_cmd cmd, rpl;
1525         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1526
1527         if (naddr > max_naddr)
1528                 return -EINVAL;
1529
1530         for (offset = 0; offset < naddr; /**/) {
1531                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1532                                          ? rem
1533                                          : ARRAY_SIZE(cmd.u.exact));
1534                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1535                                                      u.exact[fw_naddr]), 16);
1536                 struct fw_vi_mac_exact *p;
1537                 int i;
1538
1539                 memset(&cmd, 0, sizeof(cmd));
1540                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1541                                              FW_CMD_REQUEST_F |
1542                                              FW_CMD_WRITE_F |
1543                                              (free ? FW_CMD_EXEC_F : 0) |
1544                                              FW_VI_MAC_CMD_VIID_V(viid));
1545                 cmd.freemacs_to_len16 =
1546                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1547                                     FW_CMD_LEN16_V(len16));
1548
1549                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1550                         p->valid_to_idx = cpu_to_be16(
1551                                 FW_VI_MAC_CMD_VALID_F |
1552                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1553                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1554                 }
1555
1556
1557                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1558                                         sleep_ok);
1559                 if (ret && ret != -ENOMEM)
1560                         break;
1561
1562                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1563                         u16 index = FW_VI_MAC_CMD_IDX_G(
1564                                 be16_to_cpu(p->valid_to_idx));
1565
1566                         if (idx)
1567                                 idx[offset+i] =
1568                                         (index >= max_naddr
1569                                          ? 0xffff
1570                                          : index);
1571                         if (index < max_naddr)
1572                                 nfilters++;
1573                         else if (hash)
1574                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1575                 }
1576
1577                 free = false;
1578                 offset += fw_naddr;
1579                 rem -= fw_naddr;
1580         }
1581
1582         /*
1583          * If there were no errors or we merely ran out of room in our MAC
1584          * address arena, return the number of filters actually written.
1585          */
1586         if (ret == 0 || ret == -ENOMEM)
1587                 ret = nfilters;
1588         return ret;
1589 }
1590
1591 /**
1592  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1593  *      @adapter: the adapter
1594  *      @viid: the VI id
1595  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1596  *      @addr: the MAC address(es)
1597  *      @sleep_ok: call is allowed to sleep
1598  *
1599  *      Frees the exact-match filter for each of the supplied addresses
1600  *
1601  *      Returns a negative error number or the number of filters freed.
1602  */
1603 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1604                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1605 {
1606         int offset, ret = 0;
1607         struct fw_vi_mac_cmd cmd;
1608         unsigned int nfilters = 0;
1609         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1610         unsigned int rem = naddr;
1611
1612         if (naddr > max_naddr)
1613                 return -EINVAL;
1614
1615         for (offset = 0; offset < (int)naddr ; /**/) {
1616                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1617                                          rem : ARRAY_SIZE(cmd.u.exact));
1618                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1619                                                      u.exact[fw_naddr]), 16);
1620                 struct fw_vi_mac_exact *p;
1621                 int i;
1622
1623                 memset(&cmd, 0, sizeof(cmd));
1624                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1625                                      FW_CMD_REQUEST_F |
1626                                      FW_CMD_WRITE_F |
1627                                      FW_CMD_EXEC_V(0) |
1628                                      FW_VI_MAC_CMD_VIID_V(viid));
1629                 cmd.freemacs_to_len16 =
1630                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1631                                             FW_CMD_LEN16_V(len16));
1632
1633                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1634                         p->valid_to_idx = cpu_to_be16(
1635                                 FW_VI_MAC_CMD_VALID_F |
1636                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1637                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1638                 }
1639
1640                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1641                                         sleep_ok);
1642                 if (ret)
1643                         break;
1644
1645                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1646                         u16 index = FW_VI_MAC_CMD_IDX_G(
1647                                                 be16_to_cpu(p->valid_to_idx));
1648
1649                         if (index < max_naddr)
1650                                 nfilters++;
1651                 }
1652
1653                 offset += fw_naddr;
1654                 rem -= fw_naddr;
1655         }
1656
1657         if (ret == 0)
1658                 ret = nfilters;
1659         return ret;
1660 }
1661
1662 /**
1663  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1664  *      @adapter: the adapter
1665  *      @viid: the Virtual Interface ID
1666  *      @idx: index of existing filter for old value of MAC address, or -1
1667  *      @addr: the new MAC address value
1668  *      @persist: if idx < 0, the new MAC allocation should be persistent
1669  *
1670  *      Modifies an exact-match filter and sets it to the new MAC address.
1671  *      Note that in general it is not possible to modify the value of a given
1672  *      filter so the generic way to modify an address filter is to free the
1673  *      one being used by the old address value and allocate a new filter for
1674  *      the new address value.  @idx can be -1 if the address is a new
1675  *      addition.
1676  *
1677  *      Returns a negative error number or the index of the filter with the new
1678  *      MAC value.
1679  */
1680 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1681                     int idx, const u8 *addr, bool persist)
1682 {
1683         int ret;
1684         struct fw_vi_mac_cmd cmd, rpl;
1685         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1686         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1687                                              u.exact[1]), 16);
1688         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1689
1690         /*
1691          * If this is a new allocation, determine whether it should be
1692          * persistent (across a "freemacs" operation) or not.
1693          */
1694         if (idx < 0)
1695                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1696
1697         memset(&cmd, 0, sizeof(cmd));
1698         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1699                                      FW_CMD_REQUEST_F |
1700                                      FW_CMD_WRITE_F |
1701                                      FW_VI_MAC_CMD_VIID_V(viid));
1702         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1703         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1704                                       FW_VI_MAC_CMD_IDX_V(idx));
1705         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1706
1707         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1708         if (ret == 0) {
1709                 p = &rpl.u.exact[0];
1710                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1711                 if (ret >= max_mac_addr)
1712                         ret = -ENOMEM;
1713         }
1714         return ret;
1715 }
1716
1717 /**
1718  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1719  *      @adapter: the adapter
1720  *      @viid: the Virtual Interface Identifier
1721  *      @ucast: whether the hash filter should also match unicast addresses
1722  *      @vec: the value to be written to the hash filter
1723  *      @sleep_ok: call is allowed to sleep
1724  *
1725  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1726  */
1727 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1728                        bool ucast, u64 vec, bool sleep_ok)
1729 {
1730         struct fw_vi_mac_cmd cmd;
1731         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1732                                              u.exact[0]), 16);
1733
1734         memset(&cmd, 0, sizeof(cmd));
1735         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1736                                      FW_CMD_REQUEST_F |
1737                                      FW_CMD_WRITE_F |
1738                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1739         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1740                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1741                                             FW_CMD_LEN16_V(len16));
1742         cmd.u.hash.hashvec = cpu_to_be64(vec);
1743         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1744 }
1745
1746 /**
1747  *      t4vf_get_port_stats - collect "port" statistics
1748  *      @adapter: the adapter
1749  *      @pidx: the port index
1750  *      @s: the stats structure to fill
1751  *
1752  *      Collect statistics for the "port"'s Virtual Interface.
1753  */
1754 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1755                         struct t4vf_port_stats *s)
1756 {
1757         struct port_info *pi = adap2pinfo(adapter, pidx);
1758         struct fw_vi_stats_vf fwstats;
1759         unsigned int rem = VI_VF_NUM_STATS;
1760         __be64 *fwsp = (__be64 *)&fwstats;
1761
1762         /*
1763          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1764          * commands.  We could use a Work Request and get all of them at once
1765          * but that's an asynchronous interface which is awkward to use.
1766          */
1767         while (rem) {
1768                 unsigned int ix = VI_VF_NUM_STATS - rem;
1769                 unsigned int nstats = min(6U, rem);
1770                 struct fw_vi_stats_cmd cmd, rpl;
1771                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1772                               sizeof(struct fw_vi_stats_ctl));
1773                 size_t len16 = DIV_ROUND_UP(len, 16);
1774                 int ret;
1775
1776                 memset(&cmd, 0, sizeof(cmd));
1777                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1778                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1779                                              FW_CMD_REQUEST_F |
1780                                              FW_CMD_READ_F);
1781                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1782                 cmd.u.ctl.nstats_ix =
1783                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1784                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1785                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1786                 if (ret)
1787                         return ret;
1788
1789                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1790
1791                 rem -= nstats;
1792                 fwsp += nstats;
1793         }
1794
1795         /*
1796          * Translate firmware statistics into host native statistics.
1797          */
1798         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1799         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1800         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1801         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1802         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1803         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1804         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1805         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1806         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1807
1808         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1809         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1810         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1811         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1812         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1813         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1814
1815         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1816
1817         return 0;
1818 }
1819
1820 /**
1821  *      t4vf_iq_free - free an ingress queue and its free lists
1822  *      @adapter: the adapter
1823  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1824  *      @iqid: ingress queue ID
1825  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1826  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1827  *
1828  *      Frees an ingress queue and its associated free lists, if any.
1829  */
1830 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1831                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1832 {
1833         struct fw_iq_cmd cmd;
1834
1835         memset(&cmd, 0, sizeof(cmd));
1836         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1837                                     FW_CMD_REQUEST_F |
1838                                     FW_CMD_EXEC_F);
1839         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1840                                          FW_LEN16(cmd));
1841         cmd.type_to_iqandstindex =
1842                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1843
1844         cmd.iqid = cpu_to_be16(iqid);
1845         cmd.fl0id = cpu_to_be16(fl0id);
1846         cmd.fl1id = cpu_to_be16(fl1id);
1847         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1848 }
1849
1850 /**
1851  *      t4vf_eth_eq_free - free an Ethernet egress queue
1852  *      @adapter: the adapter
1853  *      @eqid: egress queue ID
1854  *
1855  *      Frees an Ethernet egress queue.
1856  */
1857 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1858 {
1859         struct fw_eq_eth_cmd cmd;
1860
1861         memset(&cmd, 0, sizeof(cmd));
1862         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1863                                     FW_CMD_REQUEST_F |
1864                                     FW_CMD_EXEC_F);
1865         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1866                                          FW_LEN16(cmd));
1867         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1868         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1869 }
1870
1871 /**
1872  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1873  *      @link_down_rc: Link Down Reason Code
1874  *
1875  *      Returns a string representation of the Link Down Reason Code.
1876  */
1877 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1878 {
1879         static const char * const reason[] = {
1880                 "Link Down",
1881                 "Remote Fault",
1882                 "Auto-negotiation Failure",
1883                 "Reserved",
1884                 "Insufficient Airflow",
1885                 "Unable To Determine Reason",
1886                 "No RX Signal Detected",
1887                 "Reserved",
1888         };
1889
1890         if (link_down_rc >= ARRAY_SIZE(reason))
1891                 return "Bad Reason Code";
1892
1893         return reason[link_down_rc];
1894 }
1895
1896 /**
1897  *      t4vf_handle_get_port_info - process a FW reply message
1898  *      @pi: the port info
1899  *      @rpl: start of the FW message
1900  *
1901  *      Processes a GET_PORT_INFO FW reply message.
1902  */
1903 static void t4vf_handle_get_port_info(struct port_info *pi,
1904                                       const struct fw_port_cmd *cmd)
1905 {
1906         int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1907         struct adapter *adapter = pi->adapter;
1908         struct link_config *lc = &pi->link_cfg;
1909         int link_ok, linkdnrc;
1910         enum fw_port_type port_type;
1911         enum fw_port_module_type mod_type;
1912         unsigned int speed, fc, fec;
1913         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1914
1915         /* Extract the various fields from the Port Information message. */
1916         switch (action) {
1917         case FW_PORT_ACTION_GET_PORT_INFO: {
1918                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1919
1920                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1921                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1922                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1923                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1924                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1925                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1926                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1927
1928                 /* Unfortunately the format of the Link Status in the old
1929                  * 16-bit Port Information message isn't the same as the
1930                  * 16-bit Port Capabilities bitfield used everywhere else ...
1931                  */
1932                 linkattr = 0;
1933                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1934                         linkattr |= FW_PORT_CAP32_FC_RX;
1935                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1936                         linkattr |= FW_PORT_CAP32_FC_TX;
1937                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1938                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1939                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1940                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1941                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1942                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1943                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1944                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1945                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1946                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1947                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1948                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1949
1950                 break;
1951         }
1952
1953         case FW_PORT_ACTION_GET_PORT_INFO32: {
1954                 u32 lstatus32;
1955
1956                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1957                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1958                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1959                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1960                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1961                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1962                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1963                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1964                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1965                 break;
1966         }
1967
1968         default:
1969                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1970                         be32_to_cpu(cmd->action_to_len16));
1971                 return;
1972         }
1973
1974         fec = fwcap_to_cc_fec(acaps);
1975         fc = fwcap_to_cc_pause(linkattr);
1976         speed = fwcap_to_speed(linkattr);
1977
1978         if (mod_type != pi->mod_type) {
1979                 /* When a new Transceiver Module is inserted, the Firmware
1980                  * will examine any Forward Error Correction parameters
1981                  * present in the Transceiver Module i2c EPROM and determine
1982                  * the supported and recommended FEC settings from those
1983                  * based on IEEE 802.3 standards.  We always record the
1984                  * IEEE 802.3 recommended "automatic" settings.
1985                  */
1986                 lc->auto_fec = fec;
1987
1988                 /* Some versions of the early T6 Firmware "cheated" when
1989                  * handling different Transceiver Modules by changing the
1990                  * underlaying Port Type reported to the Host Drivers.  As
1991                  * such we need to capture whatever Port Type the Firmware
1992                  * sends us and record it in case it's different from what we
1993                  * were told earlier.  Unfortunately, since Firmware is
1994                  * forever, we'll need to keep this code here forever, but in
1995                  * later T6 Firmware it should just be an assignment of the
1996                  * same value already recorded.
1997                  */
1998                 pi->port_type = port_type;
1999
2000                 pi->mod_type = mod_type;
2001                 t4vf_os_portmod_changed(adapter, pi->pidx);
2002         }
2003
2004         if (link_ok != lc->link_ok || speed != lc->speed ||
2005             fc != lc->fc || fec != lc->fec) {   /* something changed */
2006                 if (!link_ok && lc->link_ok) {
2007                         lc->link_down_rc = linkdnrc;
2008                         dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
2009                                  pi->port_id, t4vf_link_down_rc_str(linkdnrc));
2010                 }
2011                 lc->link_ok = link_ok;
2012                 lc->speed = speed;
2013                 lc->fc = fc;
2014                 lc->fec = fec;
2015
2016                 lc->pcaps = pcaps;
2017                 lc->lpacaps = lpacaps;
2018                 lc->acaps = acaps & ADVERT_MASK;
2019
2020                 /* If we're not physically capable of Auto-Negotiation, note
2021                  * this as Auto-Negotiation disabled.  Otherwise, we track
2022                  * what Auto-Negotiation settings we have.  Note parallel
2023                  * structure in init_link_config().
2024                  */
2025                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2026                         lc->autoneg = AUTONEG_DISABLE;
2027                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2028                         lc->autoneg = AUTONEG_ENABLE;
2029                 } else {
2030                         /* When Autoneg is disabled, user needs to set
2031                          * single speed.
2032                          * Similar to cxgb4_ethtool.c: set_link_ksettings
2033                          */
2034                         lc->acaps = 0;
2035                         lc->speed_caps = fwcap_to_speed(acaps);
2036                         lc->autoneg = AUTONEG_DISABLE;
2037                 }
2038
2039                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2040         }
2041 }
2042
2043 /**
2044  *      t4vf_update_port_info - retrieve and update port information if changed
2045  *      @pi: the port_info
2046  *
2047  *      We issue a Get Port Information Command to the Firmware and, if
2048  *      successful, we check to see if anything is different from what we
2049  *      last recorded and update things accordingly.
2050  */
2051 int t4vf_update_port_info(struct port_info *pi)
2052 {
2053         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2054         struct fw_port_cmd port_cmd;
2055         int ret;
2056
2057         memset(&port_cmd, 0, sizeof(port_cmd));
2058         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2059                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
2060                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2061         port_cmd.action_to_len16 = cpu_to_be32(
2062                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2063                                      ? FW_PORT_ACTION_GET_PORT_INFO
2064                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
2065                 FW_LEN16(port_cmd));
2066         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2067                            &port_cmd);
2068         if (ret)
2069                 return ret;
2070         t4vf_handle_get_port_info(pi, &port_cmd);
2071         return 0;
2072 }
2073
2074 /**
2075  *      t4vf_handle_fw_rpl - process a firmware reply message
2076  *      @adapter: the adapter
2077  *      @rpl: start of the firmware message
2078  *
2079  *      Processes a firmware message, such as link state change messages.
2080  */
2081 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2082 {
2083         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2084         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2085
2086         switch (opcode) {
2087         case FW_PORT_CMD: {
2088                 /*
2089                  * Link/module state change message.
2090                  */
2091                 const struct fw_port_cmd *port_cmd =
2092                         (const struct fw_port_cmd *)rpl;
2093                 int action = FW_PORT_CMD_ACTION_G(
2094                         be32_to_cpu(port_cmd->action_to_len16));
2095                 int port_id, pidx;
2096
2097                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2098                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2099                         dev_err(adapter->pdev_dev,
2100                                 "Unknown firmware PORT reply action %x\n",
2101                                 action);
2102                         break;
2103                 }
2104
2105                 port_id = FW_PORT_CMD_PORTID_G(
2106                         be32_to_cpu(port_cmd->op_to_portid));
2107                 for_each_port(adapter, pidx) {
2108                         struct port_info *pi = adap2pinfo(adapter, pidx);
2109
2110                         if (pi->port_id != port_id)
2111                                 continue;
2112                         t4vf_handle_get_port_info(pi, port_cmd);
2113                 }
2114                 break;
2115         }
2116
2117         default:
2118                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2119                         opcode);
2120         }
2121         return 0;
2122 }
2123
2124 /**
2125  */
2126 int t4vf_prep_adapter(struct adapter *adapter)
2127 {
2128         int err;
2129         unsigned int chipid;
2130
2131         /* Wait for the device to become ready before proceeding ...
2132          */
2133         err = t4vf_wait_dev_ready(adapter);
2134         if (err)
2135                 return err;
2136
2137         /* Default port and clock for debugging in case we can't reach
2138          * firmware.
2139          */
2140         adapter->params.nports = 1;
2141         adapter->params.vfres.pmask = 1;
2142         adapter->params.vpd.cclk = 50000;
2143
2144         adapter->params.chip = 0;
2145         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2146         case CHELSIO_T4:
2147                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2148                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2149                 adapter->params.arch.mps_tcam_size =
2150                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2151                 break;
2152
2153         case CHELSIO_T5:
2154                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2155                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2156                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2157                 adapter->params.arch.mps_tcam_size =
2158                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2159                 break;
2160
2161         case CHELSIO_T6:
2162                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2163                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2164                 adapter->params.arch.sge_fl_db = 0;
2165                 adapter->params.arch.mps_tcam_size =
2166                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2167                 break;
2168         }
2169
2170         return 0;
2171 }
2172
2173 /**
2174  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2175  *                            the VI of this VF.
2176  *      @adapter: The adapter
2177  *      @pf: The pf associated with vf
2178  *      @naddr: the number of ACL MAC addresses returned in addr
2179  *      @addr: Placeholder for MAC addresses
2180  *
2181  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2182  *      is from the host OS via callback in the PF driver.
2183  */
2184 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2185                         unsigned int *naddr, u8 *addr)
2186 {
2187         struct fw_acl_mac_cmd cmd;
2188         int ret;
2189
2190         memset(&cmd, 0, sizeof(cmd));
2191         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2192                                     FW_CMD_REQUEST_F |
2193                                     FW_CMD_READ_F);
2194         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2195         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2196         if (ret)
2197                 return ret;
2198
2199         if (cmd.nmac < *naddr)
2200                 *naddr = cmd.nmac;
2201
2202         switch (pf) {
2203         case 3:
2204                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2205                 break;
2206         case 2:
2207                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2208                 break;
2209         case 1:
2210                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2211                 break;
2212         case 0:
2213                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2214                 break;
2215         }
2216
2217         return ret;
2218 }
2219
2220 /**
2221  *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2222  *                             the VI of this VF.
2223  *      @adapter: The adapter
2224  *
2225  *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2226  *      is from the host OS via callback in the PF driver.
2227  */
2228 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2229 {
2230         struct fw_acl_vlan_cmd cmd;
2231         int vlan = 0;
2232         int ret = 0;
2233
2234         cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2235                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2236
2237         /* Note: Do not enable the ACL */
2238         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2239
2240         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2241
2242         if (!ret)
2243                 vlan = be16_to_cpu(cmd.vlanid[0]);
2244
2245         return vlan;
2246 }