GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / ethernet / chelsio / cxgb4vf / t4vf_hw.c
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35
36 #include <linux/ethtool.h>
37 #include <linux/pci.h>
38
39 #include "t4vf_common.h"
40 #include "t4vf_defs.h"
41
42 #include "../cxgb4/t4_regs.h"
43 #include "../cxgb4/t4_values.h"
44 #include "../cxgb4/t4fw_api.h"
45
46 /*
47  * Wait for the device to become ready (signified by our "who am I" register
48  * returning a value other than all 1's).  Return an error if it doesn't
49  * become ready ...
50  */
51 int t4vf_wait_dev_ready(struct adapter *adapter)
52 {
53         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
54         const u32 notready1 = 0xffffffff;
55         const u32 notready2 = 0xeeeeeeee;
56         u32 val;
57
58         val = t4_read_reg(adapter, whoami);
59         if (val != notready1 && val != notready2)
60                 return 0;
61         msleep(500);
62         val = t4_read_reg(adapter, whoami);
63         if (val != notready1 && val != notready2)
64                 return 0;
65         else
66                 return -EIO;
67 }
68
69 /*
70  * Get the reply to a mailbox command and store it in @rpl in big-endian order
71  * (since the firmware data structures are specified in a big-endian layout).
72  */
73 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
74                          u32 mbox_data)
75 {
76         for ( ; size; size -= 8, mbox_data += 8)
77                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
78 }
79
80 /**
81  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
82  *      @adapter: the adapter
83  *      @cmd: the Firmware Mailbox Command or Reply
84  *      @size: command length in bytes
85  *      @access: the time (ms) needed to access the Firmware Mailbox
86  *      @execute: the time (ms) the command spent being executed
87  */
88 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
89                              int size, int access, int execute)
90 {
91         struct mbox_cmd_log *log = adapter->mbox_log;
92         struct mbox_cmd *entry;
93         int i;
94
95         entry = mbox_cmd_log_entry(log, log->cursor++);
96         if (log->cursor == log->size)
97                 log->cursor = 0;
98
99         for (i = 0; i < size / 8; i++)
100                 entry->cmd[i] = be64_to_cpu(cmd[i]);
101         while (i < MBOX_LEN / 8)
102                 entry->cmd[i++] = 0;
103         entry->timestamp = jiffies;
104         entry->seqno = log->seqno++;
105         entry->access = access;
106         entry->execute = execute;
107 }
108
109 /**
110  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
111  *      @adapter: the adapter
112  *      @cmd: the command to write
113  *      @size: command length in bytes
114  *      @rpl: where to optionally store the reply
115  *      @sleep_ok: if true we may sleep while awaiting command completion
116  *
117  *      Sends the given command to FW through the mailbox and waits for the
118  *      FW to execute the command.  If @rpl is not %NULL it is used to store
119  *      the FW's reply to the command.  The command and its optional reply
120  *      are of the same length.  FW can take up to 500 ms to respond.
121  *      @sleep_ok determines whether we may sleep while awaiting the response.
122  *      If sleeping is allowed we use progressive backoff otherwise we spin.
123  *
124  *      The return value is 0 on success or a negative errno on failure.  A
125  *      failure can happen either because we are not able to execute the
126  *      command or FW executes it but signals an error.  In the latter case
127  *      the return value is the error code indicated by FW (negated).
128  */
129 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
130                       void *rpl, bool sleep_ok)
131 {
132         static const int delay[] = {
133                 1, 1, 3, 5, 10, 10, 20, 50, 100
134         };
135
136         u16 access = 0, execute = 0;
137         u32 v, mbox_data;
138         int i, ms, delay_idx, ret;
139         const __be64 *p;
140         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
141         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
142         __be64 cmd_rpl[MBOX_LEN / 8];
143         struct mbox_list entry;
144
145         /* In T6, mailbox size is changed to 128 bytes to avoid
146          * invalidating the entire prefetch buffer.
147          */
148         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
149                 mbox_data = T4VF_MBDATA_BASE_ADDR;
150         else
151                 mbox_data = T6VF_MBDATA_BASE_ADDR;
152
153         /*
154          * Commands must be multiples of 16 bytes in length and may not be
155          * larger than the size of the Mailbox Data register array.
156          */
157         if ((size % 16) != 0 ||
158             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
159                 return -EINVAL;
160
161         /* Queue ourselves onto the mailbox access list.  When our entry is at
162          * the front of the list, we have rights to access the mailbox.  So we
163          * wait [for a while] till we're at the front [or bail out with an
164          * EBUSY] ...
165          */
166         spin_lock(&adapter->mbox_lock);
167         list_add_tail(&entry.list, &adapter->mlist.list);
168         spin_unlock(&adapter->mbox_lock);
169
170         delay_idx = 0;
171         ms = delay[0];
172
173         for (i = 0; ; i += ms) {
174                 /* If we've waited too long, return a busy indication.  This
175                  * really ought to be based on our initial position in the
176                  * mailbox access list but this is a start.  We very rearely
177                  * contend on access to the mailbox ...
178                  */
179                 if (i > FW_CMD_MAX_TIMEOUT) {
180                         spin_lock(&adapter->mbox_lock);
181                         list_del(&entry.list);
182                         spin_unlock(&adapter->mbox_lock);
183                         ret = -EBUSY;
184                         t4vf_record_mbox(adapter, cmd, size, access, ret);
185                         return ret;
186                 }
187
188                 /* If we're at the head, break out and start the mailbox
189                  * protocol.
190                  */
191                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
192                                      list) == &entry)
193                         break;
194
195                 /* Delay for a bit before checking again ... */
196                 if (sleep_ok) {
197                         ms = delay[delay_idx];  /* last element may repeat */
198                         if (delay_idx < ARRAY_SIZE(delay) - 1)
199                                 delay_idx++;
200                         msleep(ms);
201                 } else {
202                         mdelay(ms);
203                 }
204         }
205
206         /*
207          * Loop trying to get ownership of the mailbox.  Return an error
208          * if we can't gain ownership.
209          */
210         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
211         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
212                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
213         if (v != MBOX_OWNER_DRV) {
214                 spin_lock(&adapter->mbox_lock);
215                 list_del(&entry.list);
216                 spin_unlock(&adapter->mbox_lock);
217                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
218                 t4vf_record_mbox(adapter, cmd, size, access, ret);
219                 return ret;
220         }
221
222         /*
223          * Write the command array into the Mailbox Data register array and
224          * transfer ownership of the mailbox to the firmware.
225          *
226          * For the VFs, the Mailbox Data "registers" are actually backed by
227          * T4's "MA" interface rather than PL Registers (as is the case for
228          * the PFs).  Because these are in different coherency domains, the
229          * write to the VF's PL-register-backed Mailbox Control can race in
230          * front of the writes to the MA-backed VF Mailbox Data "registers".
231          * So we need to do a read-back on at least one byte of the VF Mailbox
232          * Data registers before doing the write to the VF Mailbox Control
233          * register.
234          */
235         if (cmd_op != FW_VI_STATS_CMD)
236                 t4vf_record_mbox(adapter, cmd, size, access, 0);
237         for (i = 0, p = cmd; i < size; i += 8)
238                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
239         t4_read_reg(adapter, mbox_data);         /* flush write */
240
241         t4_write_reg(adapter, mbox_ctl,
242                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
243         t4_read_reg(adapter, mbox_ctl);          /* flush write */
244
245         /*
246          * Spin waiting for firmware to acknowledge processing our command.
247          */
248         delay_idx = 0;
249         ms = delay[0];
250
251         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
252                 if (sleep_ok) {
253                         ms = delay[delay_idx];
254                         if (delay_idx < ARRAY_SIZE(delay) - 1)
255                                 delay_idx++;
256                         msleep(ms);
257                 } else
258                         mdelay(ms);
259
260                 /*
261                  * If we're the owner, see if this is the reply we wanted.
262                  */
263                 v = t4_read_reg(adapter, mbox_ctl);
264                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
265                         /*
266                          * If the Message Valid bit isn't on, revoke ownership
267                          * of the mailbox and continue waiting for our reply.
268                          */
269                         if ((v & MBMSGVALID_F) == 0) {
270                                 t4_write_reg(adapter, mbox_ctl,
271                                              MBOWNER_V(MBOX_OWNER_NONE));
272                                 continue;
273                         }
274
275                         /*
276                          * We now have our reply.  Extract the command return
277                          * value, copy the reply back to our caller's buffer
278                          * (if specified) and revoke ownership of the mailbox.
279                          * We return the (negated) firmware command return
280                          * code (this depends on FW_SUCCESS == 0).
281                          */
282                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
283
284                         /* return value in low-order little-endian word */
285                         v = be64_to_cpu(cmd_rpl[0]);
286
287                         if (rpl) {
288                                 /* request bit in high-order BE word */
289                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
290                                          & FW_CMD_REQUEST_F) == 0);
291                                 memcpy(rpl, cmd_rpl, size);
292                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
293                                          & FW_CMD_REQUEST_F) != 0);
294                         }
295                         t4_write_reg(adapter, mbox_ctl,
296                                      MBOWNER_V(MBOX_OWNER_NONE));
297                         execute = i + ms;
298                         if (cmd_op != FW_VI_STATS_CMD)
299                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
300                                                  execute);
301                         spin_lock(&adapter->mbox_lock);
302                         list_del(&entry.list);
303                         spin_unlock(&adapter->mbox_lock);
304                         return -FW_CMD_RETVAL_G(v);
305                 }
306         }
307
308         /* We timed out.  Return the error ... */
309         ret = -ETIMEDOUT;
310         t4vf_record_mbox(adapter, cmd, size, access, ret);
311         spin_lock(&adapter->mbox_lock);
312         list_del(&entry.list);
313         spin_unlock(&adapter->mbox_lock);
314         return ret;
315 }
316
317 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
318  * mask out bits in the Advertised Port Capabilities which are managed via
319  * separate controls, like Pause Frames and Forward Error Correction.  In the
320  * Virtual Function Common Code, since we never perform L1 Configuration on
321  * the Link, the only things we really need to filter out are things which
322  * we decode and report separately like Speed.
323  */
324 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
325                      FW_PORT_CAP32_802_3_PAUSE | \
326                      FW_PORT_CAP32_802_3_ASM_DIR | \
327                      FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
328                      FW_PORT_CAP32_ANEG)
329
330 /**
331  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
332  *      @caps16: a 16-bit Port Capabilities value
333  *
334  *      Returns the equivalent 32-bit Port Capabilities value.
335  */
336 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
337 {
338         fw_port_cap32_t caps32 = 0;
339
340         #define CAP16_TO_CAP32(__cap) \
341                 do { \
342                         if (caps16 & FW_PORT_CAP_##__cap) \
343                                 caps32 |= FW_PORT_CAP32_##__cap; \
344                 } while (0)
345
346         CAP16_TO_CAP32(SPEED_100M);
347         CAP16_TO_CAP32(SPEED_1G);
348         CAP16_TO_CAP32(SPEED_25G);
349         CAP16_TO_CAP32(SPEED_10G);
350         CAP16_TO_CAP32(SPEED_40G);
351         CAP16_TO_CAP32(SPEED_100G);
352         CAP16_TO_CAP32(FC_RX);
353         CAP16_TO_CAP32(FC_TX);
354         CAP16_TO_CAP32(ANEG);
355         CAP16_TO_CAP32(MDIAUTO);
356         CAP16_TO_CAP32(MDISTRAIGHT);
357         CAP16_TO_CAP32(FEC_RS);
358         CAP16_TO_CAP32(FEC_BASER_RS);
359         CAP16_TO_CAP32(802_3_PAUSE);
360         CAP16_TO_CAP32(802_3_ASM_DIR);
361
362         #undef CAP16_TO_CAP32
363
364         return caps32;
365 }
366
367 /* Translate Firmware Pause specification to Common Code */
368 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
369 {
370         enum cc_pause cc_pause = 0;
371
372         if (fw_pause & FW_PORT_CAP32_FC_RX)
373                 cc_pause |= PAUSE_RX;
374         if (fw_pause & FW_PORT_CAP32_FC_TX)
375                 cc_pause |= PAUSE_TX;
376
377         return cc_pause;
378 }
379
380 /* Translate Firmware Forward Error Correction specification to Common Code */
381 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
382 {
383         enum cc_fec cc_fec = 0;
384
385         if (fw_fec & FW_PORT_CAP32_FEC_RS)
386                 cc_fec |= FEC_RS;
387         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
388                 cc_fec |= FEC_BASER_RS;
389
390         return cc_fec;
391 }
392
393 /* Return the highest speed set in the port capabilities, in Mb/s. */
394 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
395 {
396         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
397                 do { \
398                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
399                                 return __speed; \
400                 } while (0)
401
402         TEST_SPEED_RETURN(400G, 400000);
403         TEST_SPEED_RETURN(200G, 200000);
404         TEST_SPEED_RETURN(100G, 100000);
405         TEST_SPEED_RETURN(50G,   50000);
406         TEST_SPEED_RETURN(40G,   40000);
407         TEST_SPEED_RETURN(25G,   25000);
408         TEST_SPEED_RETURN(10G,   10000);
409         TEST_SPEED_RETURN(1G,     1000);
410         TEST_SPEED_RETURN(100M,    100);
411
412         #undef TEST_SPEED_RETURN
413
414         return 0;
415 }
416
417 /**
418  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
419  *      @acaps: advertised Port Capabilities
420  *
421  *      Get the highest speed for the port from the advertised Port
422  *      Capabilities.  It will be either the highest speed from the list of
423  *      speeds or whatever user has set using ethtool.
424  */
425 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
426 {
427         #define TEST_SPEED_RETURN(__caps_speed) \
428                 do { \
429                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
430                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
431                 } while (0)
432
433         TEST_SPEED_RETURN(400G);
434         TEST_SPEED_RETURN(200G);
435         TEST_SPEED_RETURN(100G);
436         TEST_SPEED_RETURN(50G);
437         TEST_SPEED_RETURN(40G);
438         TEST_SPEED_RETURN(25G);
439         TEST_SPEED_RETURN(10G);
440         TEST_SPEED_RETURN(1G);
441         TEST_SPEED_RETURN(100M);
442
443         #undef TEST_SPEED_RETURN
444         return 0;
445 }
446
447 /*
448  *      init_link_config - initialize a link's SW state
449  *      @lc: structure holding the link state
450  *      @pcaps: link Port Capabilities
451  *      @acaps: link current Advertised Port Capabilities
452  *
453  *      Initializes the SW state maintained for each link, including the link's
454  *      capabilities and default speed/flow-control/autonegotiation settings.
455  */
456 static void init_link_config(struct link_config *lc,
457                              fw_port_cap32_t pcaps,
458                              fw_port_cap32_t acaps)
459 {
460         lc->pcaps = pcaps;
461         lc->lpacaps = 0;
462         lc->speed_caps = 0;
463         lc->speed = 0;
464         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
465
466         /* For Forward Error Control, we default to whatever the Firmware
467          * tells us the Link is currently advertising.
468          */
469         lc->auto_fec = fwcap_to_cc_fec(acaps);
470         lc->requested_fec = FEC_AUTO;
471         lc->fec = lc->auto_fec;
472
473         /* If the Port is capable of Auto-Negtotiation, initialize it as
474          * "enabled" and copy over all of the Physical Port Capabilities
475          * to the Advertised Port Capabilities.  Otherwise mark it as
476          * Auto-Negotiate disabled and select the highest supported speed
477          * for the link.  Note parallel structure in t4_link_l1cfg_core()
478          * and t4_handle_get_port_info().
479          */
480         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
481                 lc->acaps = acaps & ADVERT_MASK;
482                 lc->autoneg = AUTONEG_ENABLE;
483                 lc->requested_fc |= PAUSE_AUTONEG;
484         } else {
485                 lc->acaps = 0;
486                 lc->autoneg = AUTONEG_DISABLE;
487                 lc->speed_caps = fwcap_to_fwspeed(acaps);
488         }
489 }
490
491 /**
492  *      t4vf_port_init - initialize port hardware/software state
493  *      @adapter: the adapter
494  *      @pidx: the adapter port index
495  */
496 int t4vf_port_init(struct adapter *adapter, int pidx)
497 {
498         struct port_info *pi = adap2pinfo(adapter, pidx);
499         unsigned int fw_caps = adapter->params.fw_caps_support;
500         struct fw_vi_cmd vi_cmd, vi_rpl;
501         struct fw_port_cmd port_cmd, port_rpl;
502         enum fw_port_type port_type;
503         int mdio_addr;
504         fw_port_cap32_t pcaps, acaps;
505         int ret;
506
507         /* If we haven't yet determined whether we're talking to Firmware
508          * which knows the new 32-bit Port Capabilities, it's time to find
509          * out now.  This will also tell new Firmware to send us Port Status
510          * Updates using the new 32-bit Port Capabilities version of the
511          * Port Information message.
512          */
513         if (fw_caps == FW_CAPS_UNKNOWN) {
514                 u32 param, val;
515
516                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
517                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
518                 val = 1;
519                 ret = t4vf_set_params(adapter, 1, &param, &val);
520                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
521                 adapter->params.fw_caps_support = fw_caps;
522         }
523
524         /*
525          * Execute a VI Read command to get our Virtual Interface information
526          * like MAC address, etc.
527          */
528         memset(&vi_cmd, 0, sizeof(vi_cmd));
529         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
530                                        FW_CMD_REQUEST_F |
531                                        FW_CMD_READ_F);
532         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
533         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
534         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
535         if (ret != FW_SUCCESS)
536                 return ret;
537
538         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
539         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
540         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
541
542         /*
543          * If we don't have read access to our port information, we're done
544          * now.  Otherwise, execute a PORT Read command to get it ...
545          */
546         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
547                 return 0;
548
549         memset(&port_cmd, 0, sizeof(port_cmd));
550         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
551                                             FW_CMD_REQUEST_F |
552                                             FW_CMD_READ_F |
553                                             FW_PORT_CMD_PORTID_V(pi->port_id));
554         port_cmd.action_to_len16 = cpu_to_be32(
555                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
556                                      ? FW_PORT_ACTION_GET_PORT_INFO
557                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
558                 FW_LEN16(port_cmd));
559         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
560         if (ret != FW_SUCCESS)
561                 return ret;
562
563         /* Extract the various fields from the Port Information message. */
564         if (fw_caps == FW_CAPS16) {
565                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
566
567                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
568                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
569                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
570                              : -1);
571                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
572                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
573         } else {
574                 u32 lstatus32 =
575                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
576
577                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
578                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
579                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
580                              : -1);
581                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
582                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
583         }
584
585         pi->port_type = port_type;
586         pi->mdio_addr = mdio_addr;
587         pi->mod_type = FW_PORT_MOD_TYPE_NA;
588
589         init_link_config(&pi->link_cfg, pcaps, acaps);
590         return 0;
591 }
592
593 /**
594  *      t4vf_fw_reset - issue a reset to FW
595  *      @adapter: the adapter
596  *
597  *      Issues a reset command to FW.  For a Physical Function this would
598  *      result in the Firmware resetting all of its state.  For a Virtual
599  *      Function this just resets the state associated with the VF.
600  */
601 int t4vf_fw_reset(struct adapter *adapter)
602 {
603         struct fw_reset_cmd cmd;
604
605         memset(&cmd, 0, sizeof(cmd));
606         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
607                                       FW_CMD_WRITE_F);
608         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
609         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
610 }
611
612 /**
613  *      t4vf_query_params - query FW or device parameters
614  *      @adapter: the adapter
615  *      @nparams: the number of parameters
616  *      @params: the parameter names
617  *      @vals: the parameter values
618  *
619  *      Reads the values of firmware or device parameters.  Up to 7 parameters
620  *      can be queried at once.
621  */
622 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
623                              const u32 *params, u32 *vals)
624 {
625         int i, ret;
626         struct fw_params_cmd cmd, rpl;
627         struct fw_params_param *p;
628         size_t len16;
629
630         if (nparams > 7)
631                 return -EINVAL;
632
633         memset(&cmd, 0, sizeof(cmd));
634         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
635                                     FW_CMD_REQUEST_F |
636                                     FW_CMD_READ_F);
637         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
638                                       param[nparams].mnem), 16);
639         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
640         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
641                 p->mnem = htonl(*params++);
642
643         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
644         if (ret == 0)
645                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
646                         *vals++ = be32_to_cpu(p->val);
647         return ret;
648 }
649
650 /**
651  *      t4vf_set_params - sets FW or device parameters
652  *      @adapter: the adapter
653  *      @nparams: the number of parameters
654  *      @params: the parameter names
655  *      @vals: the parameter values
656  *
657  *      Sets the values of firmware or device parameters.  Up to 7 parameters
658  *      can be specified at once.
659  */
660 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
661                     const u32 *params, const u32 *vals)
662 {
663         int i;
664         struct fw_params_cmd cmd;
665         struct fw_params_param *p;
666         size_t len16;
667
668         if (nparams > 7)
669                 return -EINVAL;
670
671         memset(&cmd, 0, sizeof(cmd));
672         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
673                                     FW_CMD_REQUEST_F |
674                                     FW_CMD_WRITE_F);
675         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
676                                       param[nparams]), 16);
677         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
678         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
679                 p->mnem = cpu_to_be32(*params++);
680                 p->val = cpu_to_be32(*vals++);
681         }
682
683         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
684 }
685
686 /**
687  *      t4vf_fl_pkt_align - return the fl packet alignment
688  *      @adapter: the adapter
689  *
690  *      T4 has a single field to specify the packing and padding boundary.
691  *      T5 onwards has separate fields for this and hence the alignment for
692  *      next packet offset is maximum of these two.  And T6 changes the
693  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
694  *      if we put this in low-level Common Code ...
695  *
696  */
697 int t4vf_fl_pkt_align(struct adapter *adapter)
698 {
699         u32 sge_control, sge_control2;
700         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
701
702         sge_control = adapter->params.sge.sge_control;
703
704         /* T4 uses a single control field to specify both the PCIe Padding and
705          * Packing Boundary.  T5 introduced the ability to specify these
706          * separately.  The actual Ingress Packet Data alignment boundary
707          * within Packed Buffer Mode is the maximum of these two
708          * specifications.  (Note that it makes no real practical sense to
709          * have the Pading Boudary be larger than the Packing Boundary but you
710          * could set the chip up that way and, in fact, legacy T4 code would
711          * end doing this because it would initialize the Padding Boundary and
712          * leave the Packing Boundary initialized to 0 (16 bytes).)
713          * Padding Boundary values in T6 starts from 8B,
714          * where as it is 32B for T4 and T5.
715          */
716         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
717                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
718         else
719                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
720
721         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
722
723         fl_align = ingpadboundary;
724         if (!is_t4(adapter->params.chip)) {
725                 /* T5 has a different interpretation of one of the PCIe Packing
726                  * Boundary values.
727                  */
728                 sge_control2 = adapter->params.sge.sge_control2;
729                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
730                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
731                         ingpackboundary = 16;
732                 else
733                         ingpackboundary = 1 << (ingpackboundary +
734                                                 INGPACKBOUNDARY_SHIFT_X);
735
736                 fl_align = max(ingpadboundary, ingpackboundary);
737         }
738         return fl_align;
739 }
740
741 /**
742  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
743  *      @adapter: the adapter
744  *      @qid: the Queue ID
745  *      @qtype: the Ingress or Egress type for @qid
746  *      @pbar2_qoffset: BAR2 Queue Offset
747  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
748  *
749  *      Returns the BAR2 SGE Queue Registers information associated with the
750  *      indicated Absolute Queue ID.  These are passed back in return value
751  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
752  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
753  *
754  *      This may return an error which indicates that BAR2 SGE Queue
755  *      registers aren't available.  If an error is not returned, then the
756  *      following values are returned:
757  *
758  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
759  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
760  *
761  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
762  *      require the "Inferred Queue ID" ability may be used.  E.g. the
763  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
764  *      then these "Inferred Queue ID" register may not be used.
765  */
766 int t4vf_bar2_sge_qregs(struct adapter *adapter,
767                         unsigned int qid,
768                         enum t4_bar2_qtype qtype,
769                         u64 *pbar2_qoffset,
770                         unsigned int *pbar2_qid)
771 {
772         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
773         u64 bar2_page_offset, bar2_qoffset;
774         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
775
776         /* T4 doesn't support BAR2 SGE Queue registers.
777          */
778         if (is_t4(adapter->params.chip))
779                 return -EINVAL;
780
781         /* Get our SGE Page Size parameters.
782          */
783         page_shift = adapter->params.sge.sge_vf_hps + 10;
784         page_size = 1 << page_shift;
785
786         /* Get the right Queues per Page parameters for our Queue.
787          */
788         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
789                      ? adapter->params.sge.sge_vf_eq_qpp
790                      : adapter->params.sge.sge_vf_iq_qpp);
791         qpp_mask = (1 << qpp_shift) - 1;
792
793         /* Calculate the basics of the BAR2 SGE Queue register area:
794          *  o The BAR2 page the Queue registers will be in.
795          *  o The BAR2 Queue ID.
796          *  o The BAR2 Queue ID Offset into the BAR2 page.
797          */
798         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
799         bar2_qid = qid & qpp_mask;
800         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
801
802         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
803          * hardware will infer the Absolute Queue ID simply from the writes to
804          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
805          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
806          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
807          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
808          * from the BAR2 Page and BAR2 Queue ID.
809          *
810          * One important censequence of this is that some BAR2 SGE registers
811          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
812          * there.  But other registers synthesize the SGE Queue ID purely
813          * from the writes to the registers -- the Write Combined Doorbell
814          * Buffer is a good example.  These BAR2 SGE Registers are only
815          * available for those BAR2 SGE Register areas where the SGE Absolute
816          * Queue ID can be inferred from simple writes.
817          */
818         bar2_qoffset = bar2_page_offset;
819         bar2_qinferred = (bar2_qid_offset < page_size);
820         if (bar2_qinferred) {
821                 bar2_qoffset += bar2_qid_offset;
822                 bar2_qid = 0;
823         }
824
825         *pbar2_qoffset = bar2_qoffset;
826         *pbar2_qid = bar2_qid;
827         return 0;
828 }
829
830 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
831 {
832         u32 whoami;
833
834         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
835         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
836                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
837 }
838
839 /**
840  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
841  *      @adapter: the adapter
842  *
843  *      Retrieves various core SGE parameters in the form of hardware SGE
844  *      register values.  The caller is responsible for decoding these as
845  *      needed.  The SGE parameters are stored in @adapter->params.sge.
846  */
847 int t4vf_get_sge_params(struct adapter *adapter)
848 {
849         struct sge_params *sge_params = &adapter->params.sge;
850         u32 params[7], vals[7];
851         int v;
852
853         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
854                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
855         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
856                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
857         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
858                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
859         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
860                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
861         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
862                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
863         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
864                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
865         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
866                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
867         v = t4vf_query_params(adapter, 7, params, vals);
868         if (v)
869                 return v;
870         sge_params->sge_control = vals[0];
871         sge_params->sge_host_page_size = vals[1];
872         sge_params->sge_fl_buffer_size[0] = vals[2];
873         sge_params->sge_fl_buffer_size[1] = vals[3];
874         sge_params->sge_timer_value_0_and_1 = vals[4];
875         sge_params->sge_timer_value_2_and_3 = vals[5];
876         sge_params->sge_timer_value_4_and_5 = vals[6];
877
878         /* T4 uses a single control field to specify both the PCIe Padding and
879          * Packing Boundary.  T5 introduced the ability to specify these
880          * separately with the Padding Boundary in SGE_CONTROL and Packing
881          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
882          * SGE_CONTROL in order to determine how ingress packet data will be
883          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
884          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
885          * failure grabbing it we throw an error since we can't figure out the
886          * right value.
887          */
888         if (!is_t4(adapter->params.chip)) {
889                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
890                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
891                 v = t4vf_query_params(adapter, 1, params, vals);
892                 if (v != FW_SUCCESS) {
893                         dev_err(adapter->pdev_dev,
894                                 "Unable to get SGE Control2; "
895                                 "probably old firmware.\n");
896                         return v;
897                 }
898                 sge_params->sge_control2 = vals[0];
899         }
900
901         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
902                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
903         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
904                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
905         v = t4vf_query_params(adapter, 2, params, vals);
906         if (v)
907                 return v;
908         sge_params->sge_ingress_rx_threshold = vals[0];
909         sge_params->sge_congestion_control = vals[1];
910
911         /* For T5 and later we want to use the new BAR2 Doorbells.
912          * Unfortunately, older firmware didn't allow the this register to be
913          * read.
914          */
915         if (!is_t4(adapter->params.chip)) {
916                 unsigned int pf, s_hps, s_qpp;
917
918                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
919                              FW_PARAMS_PARAM_XYZ_V(
920                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
921                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
922                              FW_PARAMS_PARAM_XYZ_V(
923                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
924                 v = t4vf_query_params(adapter, 2, params, vals);
925                 if (v != FW_SUCCESS) {
926                         dev_warn(adapter->pdev_dev,
927                                  "Unable to get VF SGE Queues/Page; "
928                                  "probably old firmware.\n");
929                         return v;
930                 }
931                 sge_params->sge_egress_queues_per_page = vals[0];
932                 sge_params->sge_ingress_queues_per_page = vals[1];
933
934                 /* We need the Queues/Page for our VF.  This is based on the
935                  * PF from which we're instantiated and is indexed in the
936                  * register we just read. Do it once here so other code in
937                  * the driver can just use it.
938                  */
939                 pf = t4vf_get_pf_from_vf(adapter);
940                 s_hps = (HOSTPAGESIZEPF0_S +
941                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
942                 sge_params->sge_vf_hps =
943                         ((sge_params->sge_host_page_size >> s_hps)
944                          & HOSTPAGESIZEPF0_M);
945
946                 s_qpp = (QUEUESPERPAGEPF0_S +
947                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
948                 sge_params->sge_vf_eq_qpp =
949                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
950                          & QUEUESPERPAGEPF0_M);
951                 sge_params->sge_vf_iq_qpp =
952                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
953                          & QUEUESPERPAGEPF0_M);
954         }
955
956         return 0;
957 }
958
959 /**
960  *      t4vf_get_vpd_params - retrieve device VPD paremeters
961  *      @adapter: the adapter
962  *
963  *      Retrives various device Vital Product Data parameters.  The parameters
964  *      are stored in @adapter->params.vpd.
965  */
966 int t4vf_get_vpd_params(struct adapter *adapter)
967 {
968         struct vpd_params *vpd_params = &adapter->params.vpd;
969         u32 params[7], vals[7];
970         int v;
971
972         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
973                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
974         v = t4vf_query_params(adapter, 1, params, vals);
975         if (v)
976                 return v;
977         vpd_params->cclk = vals[0];
978
979         return 0;
980 }
981
982 /**
983  *      t4vf_get_dev_params - retrieve device paremeters
984  *      @adapter: the adapter
985  *
986  *      Retrives various device parameters.  The parameters are stored in
987  *      @adapter->params.dev.
988  */
989 int t4vf_get_dev_params(struct adapter *adapter)
990 {
991         struct dev_params *dev_params = &adapter->params.dev;
992         u32 params[7], vals[7];
993         int v;
994
995         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
996                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
997         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
998                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
999         v = t4vf_query_params(adapter, 2, params, vals);
1000         if (v)
1001                 return v;
1002         dev_params->fwrev = vals[0];
1003         dev_params->tprev = vals[1];
1004
1005         return 0;
1006 }
1007
1008 /**
1009  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1010  *      @adapter: the adapter
1011  *
1012  *      Retrieves global RSS mode and parameters with which we have to live
1013  *      and stores them in the @adapter's RSS parameters.
1014  */
1015 int t4vf_get_rss_glb_config(struct adapter *adapter)
1016 {
1017         struct rss_params *rss = &adapter->params.rss;
1018         struct fw_rss_glb_config_cmd cmd, rpl;
1019         int v;
1020
1021         /*
1022          * Execute an RSS Global Configuration read command to retrieve
1023          * our RSS configuration.
1024          */
1025         memset(&cmd, 0, sizeof(cmd));
1026         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1027                                       FW_CMD_REQUEST_F |
1028                                       FW_CMD_READ_F);
1029         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1030         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1031         if (v)
1032                 return v;
1033
1034         /*
1035          * Transate the big-endian RSS Global Configuration into our
1036          * cpu-endian format based on the RSS mode.  We also do first level
1037          * filtering at this point to weed out modes which don't support
1038          * VF Drivers ...
1039          */
1040         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1041                         be32_to_cpu(rpl.u.manual.mode_pkd));
1042         switch (rss->mode) {
1043         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1044                 u32 word = be32_to_cpu(
1045                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1046
1047                 rss->u.basicvirtual.synmapen =
1048                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1049                 rss->u.basicvirtual.syn4tupenipv6 =
1050                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1051                 rss->u.basicvirtual.syn2tupenipv6 =
1052                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1053                 rss->u.basicvirtual.syn4tupenipv4 =
1054                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1055                 rss->u.basicvirtual.syn2tupenipv4 =
1056                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1057
1058                 rss->u.basicvirtual.ofdmapen =
1059                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1060
1061                 rss->u.basicvirtual.tnlmapen =
1062                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1063                 rss->u.basicvirtual.tnlalllookup =
1064                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1065
1066                 rss->u.basicvirtual.hashtoeplitz =
1067                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1068
1069                 /* we need at least Tunnel Map Enable to be set */
1070                 if (!rss->u.basicvirtual.tnlmapen)
1071                         return -EINVAL;
1072                 break;
1073         }
1074
1075         default:
1076                 /* all unknown/unsupported RSS modes result in an error */
1077                 return -EINVAL;
1078         }
1079
1080         return 0;
1081 }
1082
1083 /**
1084  *      t4vf_get_vfres - retrieve VF resource limits
1085  *      @adapter: the adapter
1086  *
1087  *      Retrieves configured resource limits and capabilities for a virtual
1088  *      function.  The results are stored in @adapter->vfres.
1089  */
1090 int t4vf_get_vfres(struct adapter *adapter)
1091 {
1092         struct vf_resources *vfres = &adapter->params.vfres;
1093         struct fw_pfvf_cmd cmd, rpl;
1094         int v;
1095         u32 word;
1096
1097         /*
1098          * Execute PFVF Read command to get VF resource limits; bail out early
1099          * with error on command failure.
1100          */
1101         memset(&cmd, 0, sizeof(cmd));
1102         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1103                                     FW_CMD_REQUEST_F |
1104                                     FW_CMD_READ_F);
1105         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1106         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1107         if (v)
1108                 return v;
1109
1110         /*
1111          * Extract VF resource limits and return success.
1112          */
1113         word = be32_to_cpu(rpl.niqflint_niq);
1114         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1115         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1116
1117         word = be32_to_cpu(rpl.type_to_neq);
1118         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1119         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1120
1121         word = be32_to_cpu(rpl.tc_to_nexactf);
1122         vfres->tc = FW_PFVF_CMD_TC_G(word);
1123         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1124         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1125
1126         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1127         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1128         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1129         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1130
1131         return 0;
1132 }
1133
1134 /**
1135  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1136  *      @adapter: the adapter
1137  *      @viid: Virtual Interface ID
1138  *      @config: pointer to host-native VI RSS Configuration buffer
1139  *
1140  *      Reads the Virtual Interface's RSS configuration information and
1141  *      translates it into CPU-native format.
1142  */
1143 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1144                             union rss_vi_config *config)
1145 {
1146         struct fw_rss_vi_config_cmd cmd, rpl;
1147         int v;
1148
1149         memset(&cmd, 0, sizeof(cmd));
1150         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1151                                      FW_CMD_REQUEST_F |
1152                                      FW_CMD_READ_F |
1153                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1154         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1155         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1156         if (v)
1157                 return v;
1158
1159         switch (adapter->params.rss.mode) {
1160         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1161                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1162
1163                 config->basicvirtual.ip6fourtupen =
1164                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1165                 config->basicvirtual.ip6twotupen =
1166                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1167                 config->basicvirtual.ip4fourtupen =
1168                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1169                 config->basicvirtual.ip4twotupen =
1170                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1171                 config->basicvirtual.udpen =
1172                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1173                 config->basicvirtual.defaultq =
1174                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1175                 break;
1176         }
1177
1178         default:
1179                 return -EINVAL;
1180         }
1181
1182         return 0;
1183 }
1184
1185 /**
1186  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1187  *      @adapter: the adapter
1188  *      @viid: Virtual Interface ID
1189  *      @config: pointer to host-native VI RSS Configuration buffer
1190  *
1191  *      Write the Virtual Interface's RSS configuration information
1192  *      (translating it into firmware-native format before writing).
1193  */
1194 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1195                              union rss_vi_config *config)
1196 {
1197         struct fw_rss_vi_config_cmd cmd, rpl;
1198
1199         memset(&cmd, 0, sizeof(cmd));
1200         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1201                                      FW_CMD_REQUEST_F |
1202                                      FW_CMD_WRITE_F |
1203                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1204         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1205         switch (adapter->params.rss.mode) {
1206         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1207                 u32 word = 0;
1208
1209                 if (config->basicvirtual.ip6fourtupen)
1210                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1211                 if (config->basicvirtual.ip6twotupen)
1212                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1213                 if (config->basicvirtual.ip4fourtupen)
1214                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1215                 if (config->basicvirtual.ip4twotupen)
1216                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1217                 if (config->basicvirtual.udpen)
1218                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1219                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1220                                 config->basicvirtual.defaultq);
1221                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1222                 break;
1223         }
1224
1225         default:
1226                 return -EINVAL;
1227         }
1228
1229         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1230 }
1231
1232 /**
1233  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1234  *      @adapter: the adapter
1235  *      @viid: Virtual Interface of RSS Table Slice
1236  *      @start: starting entry in the table to write
1237  *      @n: how many table entries to write
1238  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1239  *      @nrspq: number of values in @rspq
1240  *
1241  *      Programs the selected part of the VI's RSS mapping table with the
1242  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1243  *      until the full table range is populated.
1244  *
1245  *      The caller must ensure the values in @rspq are in the range 0..1023.
1246  */
1247 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1248                           int start, int n, const u16 *rspq, int nrspq)
1249 {
1250         const u16 *rsp = rspq;
1251         const u16 *rsp_end = rspq+nrspq;
1252         struct fw_rss_ind_tbl_cmd cmd;
1253
1254         /*
1255          * Initialize firmware command template to write the RSS table.
1256          */
1257         memset(&cmd, 0, sizeof(cmd));
1258         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1259                                      FW_CMD_REQUEST_F |
1260                                      FW_CMD_WRITE_F |
1261                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1262         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1263
1264         /*
1265          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1266          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1267          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1268          * reserved.
1269          */
1270         while (n > 0) {
1271                 __be32 *qp = &cmd.iq0_to_iq2;
1272                 int nq = min(n, 32);
1273                 int ret;
1274
1275                 /*
1276                  * Set up the firmware RSS command header to send the next
1277                  * "nq" Ingress Queue IDs to the firmware.
1278                  */
1279                 cmd.niqid = cpu_to_be16(nq);
1280                 cmd.startidx = cpu_to_be16(start);
1281
1282                 /*
1283                  * "nq" more done for the start of the next loop.
1284                  */
1285                 start += nq;
1286                 n -= nq;
1287
1288                 /*
1289                  * While there are still Ingress Queue IDs to stuff into the
1290                  * current firmware RSS command, retrieve them from the
1291                  * Ingress Queue ID array and insert them into the command.
1292                  */
1293                 while (nq > 0) {
1294                         /*
1295                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1296                          * around the Ingress Queue ID array if necessary) and
1297                          * insert them into the firmware RSS command at the
1298                          * current 3-tuple position within the commad.
1299                          */
1300                         u16 qbuf[3];
1301                         u16 *qbp = qbuf;
1302                         int nqbuf = min(3, nq);
1303
1304                         nq -= nqbuf;
1305                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1306                         while (nqbuf) {
1307                                 nqbuf--;
1308                                 *qbp++ = *rsp++;
1309                                 if (rsp >= rsp_end)
1310                                         rsp = rspq;
1311                         }
1312                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1313                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1314                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1315                 }
1316
1317                 /*
1318                  * Send this portion of the RRS table update to the firmware;
1319                  * bail out on any errors.
1320                  */
1321                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1322                 if (ret)
1323                         return ret;
1324         }
1325         return 0;
1326 }
1327
1328 /**
1329  *      t4vf_alloc_vi - allocate a virtual interface on a port
1330  *      @adapter: the adapter
1331  *      @port_id: physical port associated with the VI
1332  *
1333  *      Allocate a new Virtual Interface and bind it to the indicated
1334  *      physical port.  Return the new Virtual Interface Identifier on
1335  *      success, or a [negative] error number on failure.
1336  */
1337 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1338 {
1339         struct fw_vi_cmd cmd, rpl;
1340         int v;
1341
1342         /*
1343          * Execute a VI command to allocate Virtual Interface and return its
1344          * VIID.
1345          */
1346         memset(&cmd, 0, sizeof(cmd));
1347         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1348                                     FW_CMD_REQUEST_F |
1349                                     FW_CMD_WRITE_F |
1350                                     FW_CMD_EXEC_F);
1351         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1352                                          FW_VI_CMD_ALLOC_F);
1353         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1354         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1355         if (v)
1356                 return v;
1357
1358         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1359 }
1360
1361 /**
1362  *      t4vf_free_vi -- free a virtual interface
1363  *      @adapter: the adapter
1364  *      @viid: the virtual interface identifier
1365  *
1366  *      Free a previously allocated Virtual Interface.  Return an error on
1367  *      failure.
1368  */
1369 int t4vf_free_vi(struct adapter *adapter, int viid)
1370 {
1371         struct fw_vi_cmd cmd;
1372
1373         /*
1374          * Execute a VI command to free the Virtual Interface.
1375          */
1376         memset(&cmd, 0, sizeof(cmd));
1377         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1378                                     FW_CMD_REQUEST_F |
1379                                     FW_CMD_EXEC_F);
1380         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1381                                          FW_VI_CMD_FREE_F);
1382         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1383         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1384 }
1385
1386 /**
1387  *      t4vf_enable_vi - enable/disable a virtual interface
1388  *      @adapter: the adapter
1389  *      @viid: the Virtual Interface ID
1390  *      @rx_en: 1=enable Rx, 0=disable Rx
1391  *      @tx_en: 1=enable Tx, 0=disable Tx
1392  *
1393  *      Enables/disables a virtual interface.
1394  */
1395 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1396                    bool rx_en, bool tx_en)
1397 {
1398         struct fw_vi_enable_cmd cmd;
1399
1400         memset(&cmd, 0, sizeof(cmd));
1401         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1402                                      FW_CMD_REQUEST_F |
1403                                      FW_CMD_EXEC_F |
1404                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1405         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1406                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1407                                        FW_LEN16(cmd));
1408         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1409 }
1410
1411 /**
1412  *      t4vf_enable_pi - enable/disable a Port's virtual interface
1413  *      @adapter: the adapter
1414  *      @pi: the Port Information structure
1415  *      @rx_en: 1=enable Rx, 0=disable Rx
1416  *      @tx_en: 1=enable Tx, 0=disable Tx
1417  *
1418  *      Enables/disables a Port's virtual interface.  If the Virtual
1419  *      Interface enable/disable operation is successful, we notify the
1420  *      OS-specific code of a potential Link Status change via the OS Contract
1421  *      API t4vf_os_link_changed().
1422  */
1423 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1424                    bool rx_en, bool tx_en)
1425 {
1426         int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1427
1428         if (ret)
1429                 return ret;
1430         t4vf_os_link_changed(adapter, pi->pidx,
1431                              rx_en && tx_en && pi->link_cfg.link_ok);
1432         return 0;
1433 }
1434
1435 /**
1436  *      t4vf_identify_port - identify a VI's port by blinking its LED
1437  *      @adapter: the adapter
1438  *      @viid: the Virtual Interface ID
1439  *      @nblinks: how many times to blink LED at 2.5 Hz
1440  *
1441  *      Identifies a VI's port by blinking its LED.
1442  */
1443 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1444                        unsigned int nblinks)
1445 {
1446         struct fw_vi_enable_cmd cmd;
1447
1448         memset(&cmd, 0, sizeof(cmd));
1449         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1450                                      FW_CMD_REQUEST_F |
1451                                      FW_CMD_EXEC_F |
1452                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1453         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1454                                        FW_LEN16(cmd));
1455         cmd.blinkdur = cpu_to_be16(nblinks);
1456         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1457 }
1458
1459 /**
1460  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1461  *      @adapter: the adapter
1462  *      @viid: the VI id
1463  *      @mtu: the new MTU or -1 for no change
1464  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1465  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1466  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1467  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1468  *              -1 no change
1469  *      @sleep_ok: call is allowed to sleep
1470  *
1471  *      Sets Rx properties of a virtual interface.
1472  */
1473 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1474                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1475                     bool sleep_ok)
1476 {
1477         struct fw_vi_rxmode_cmd cmd;
1478
1479         /* convert to FW values */
1480         if (mtu < 0)
1481                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1482         if (promisc < 0)
1483                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1484         if (all_multi < 0)
1485                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1486         if (bcast < 0)
1487                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1488         if (vlanex < 0)
1489                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1490
1491         memset(&cmd, 0, sizeof(cmd));
1492         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1493                                      FW_CMD_REQUEST_F |
1494                                      FW_CMD_WRITE_F |
1495                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1496         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1497         cmd.mtu_to_vlanexen =
1498                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1499                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1500                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1501                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1502                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1503         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1504 }
1505
1506 /**
1507  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508  *      @adapter: the adapter
1509  *      @viid: the Virtual Interface Identifier
1510  *      @free: if true any existing filters for this VI id are first removed
1511  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1512  *      @addr: the MAC address(es)
1513  *      @idx: where to store the index of each allocated filter
1514  *      @hash: pointer to hash address filter bitmap
1515  *      @sleep_ok: call is allowed to sleep
1516  *
1517  *      Allocates an exact-match filter for each of the supplied addresses and
1518  *      sets it to the corresponding address.  If @idx is not %NULL it should
1519  *      have at least @naddr entries, each of which will be set to the index of
1520  *      the filter allocated for the corresponding MAC address.  If a filter
1521  *      could not be allocated for an address its index is set to 0xffff.
1522  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1523  *      are hashed and update the hash filter bitmap pointed at by @hash.
1524  *
1525  *      Returns a negative error number or the number of filters allocated.
1526  */
1527 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1528                         unsigned int naddr, const u8 **addr, u16 *idx,
1529                         u64 *hash, bool sleep_ok)
1530 {
1531         int offset, ret = 0;
1532         unsigned nfilters = 0;
1533         unsigned int rem = naddr;
1534         struct fw_vi_mac_cmd cmd, rpl;
1535         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1536
1537         if (naddr > max_naddr)
1538                 return -EINVAL;
1539
1540         for (offset = 0; offset < naddr; /**/) {
1541                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1542                                          ? rem
1543                                          : ARRAY_SIZE(cmd.u.exact));
1544                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1545                                                      u.exact[fw_naddr]), 16);
1546                 struct fw_vi_mac_exact *p;
1547                 int i;
1548
1549                 memset(&cmd, 0, sizeof(cmd));
1550                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1551                                              FW_CMD_REQUEST_F |
1552                                              FW_CMD_WRITE_F |
1553                                              (free ? FW_CMD_EXEC_F : 0) |
1554                                              FW_VI_MAC_CMD_VIID_V(viid));
1555                 cmd.freemacs_to_len16 =
1556                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1557                                     FW_CMD_LEN16_V(len16));
1558
1559                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1560                         p->valid_to_idx = cpu_to_be16(
1561                                 FW_VI_MAC_CMD_VALID_F |
1562                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1563                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1564                 }
1565
1566
1567                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1568                                         sleep_ok);
1569                 if (ret && ret != -ENOMEM)
1570                         break;
1571
1572                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1573                         u16 index = FW_VI_MAC_CMD_IDX_G(
1574                                 be16_to_cpu(p->valid_to_idx));
1575
1576                         if (idx)
1577                                 idx[offset+i] =
1578                                         (index >= max_naddr
1579                                          ? 0xffff
1580                                          : index);
1581                         if (index < max_naddr)
1582                                 nfilters++;
1583                         else if (hash)
1584                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1585                 }
1586
1587                 free = false;
1588                 offset += fw_naddr;
1589                 rem -= fw_naddr;
1590         }
1591
1592         /*
1593          * If there were no errors or we merely ran out of room in our MAC
1594          * address arena, return the number of filters actually written.
1595          */
1596         if (ret == 0 || ret == -ENOMEM)
1597                 ret = nfilters;
1598         return ret;
1599 }
1600
1601 /**
1602  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603  *      @adapter: the adapter
1604  *      @viid: the VI id
1605  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1606  *      @addr: the MAC address(es)
1607  *      @sleep_ok: call is allowed to sleep
1608  *
1609  *      Frees the exact-match filter for each of the supplied addresses
1610  *
1611  *      Returns a negative error number or the number of filters freed.
1612  */
1613 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1614                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1615 {
1616         int offset, ret = 0;
1617         struct fw_vi_mac_cmd cmd;
1618         unsigned int nfilters = 0;
1619         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1620         unsigned int rem = naddr;
1621
1622         if (naddr > max_naddr)
1623                 return -EINVAL;
1624
1625         for (offset = 0; offset < (int)naddr ; /**/) {
1626                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1627                                          rem : ARRAY_SIZE(cmd.u.exact));
1628                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1629                                                      u.exact[fw_naddr]), 16);
1630                 struct fw_vi_mac_exact *p;
1631                 int i;
1632
1633                 memset(&cmd, 0, sizeof(cmd));
1634                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1635                                      FW_CMD_REQUEST_F |
1636                                      FW_CMD_WRITE_F |
1637                                      FW_CMD_EXEC_V(0) |
1638                                      FW_VI_MAC_CMD_VIID_V(viid));
1639                 cmd.freemacs_to_len16 =
1640                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641                                             FW_CMD_LEN16_V(len16));
1642
1643                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1644                         p->valid_to_idx = cpu_to_be16(
1645                                 FW_VI_MAC_CMD_VALID_F |
1646                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1647                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1648                 }
1649
1650                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1651                                         sleep_ok);
1652                 if (ret)
1653                         break;
1654
1655                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1656                         u16 index = FW_VI_MAC_CMD_IDX_G(
1657                                                 be16_to_cpu(p->valid_to_idx));
1658
1659                         if (index < max_naddr)
1660                                 nfilters++;
1661                 }
1662
1663                 offset += fw_naddr;
1664                 rem -= fw_naddr;
1665         }
1666
1667         if (ret == 0)
1668                 ret = nfilters;
1669         return ret;
1670 }
1671
1672 /**
1673  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1674  *      @adapter: the adapter
1675  *      @viid: the Virtual Interface ID
1676  *      @idx: index of existing filter for old value of MAC address, or -1
1677  *      @addr: the new MAC address value
1678  *      @persist: if idx < 0, the new MAC allocation should be persistent
1679  *
1680  *      Modifies an exact-match filter and sets it to the new MAC address.
1681  *      Note that in general it is not possible to modify the value of a given
1682  *      filter so the generic way to modify an address filter is to free the
1683  *      one being used by the old address value and allocate a new filter for
1684  *      the new address value.  @idx can be -1 if the address is a new
1685  *      addition.
1686  *
1687  *      Returns a negative error number or the index of the filter with the new
1688  *      MAC value.
1689  */
1690 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1691                     int idx, const u8 *addr, bool persist)
1692 {
1693         int ret;
1694         struct fw_vi_mac_cmd cmd, rpl;
1695         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1696         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1697                                              u.exact[1]), 16);
1698         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1699
1700         /*
1701          * If this is a new allocation, determine whether it should be
1702          * persistent (across a "freemacs" operation) or not.
1703          */
1704         if (idx < 0)
1705                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1706
1707         memset(&cmd, 0, sizeof(cmd));
1708         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1709                                      FW_CMD_REQUEST_F |
1710                                      FW_CMD_WRITE_F |
1711                                      FW_VI_MAC_CMD_VIID_V(viid));
1712         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1713         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1714                                       FW_VI_MAC_CMD_IDX_V(idx));
1715         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1716
1717         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1718         if (ret == 0) {
1719                 p = &rpl.u.exact[0];
1720                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1721                 if (ret >= max_mac_addr)
1722                         ret = -ENOMEM;
1723         }
1724         return ret;
1725 }
1726
1727 /**
1728  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729  *      @adapter: the adapter
1730  *      @viid: the Virtual Interface Identifier
1731  *      @ucast: whether the hash filter should also match unicast addresses
1732  *      @vec: the value to be written to the hash filter
1733  *      @sleep_ok: call is allowed to sleep
1734  *
1735  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1736  */
1737 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1738                        bool ucast, u64 vec, bool sleep_ok)
1739 {
1740         struct fw_vi_mac_cmd cmd;
1741         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1742                                              u.exact[0]), 16);
1743
1744         memset(&cmd, 0, sizeof(cmd));
1745         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1746                                      FW_CMD_REQUEST_F |
1747                                      FW_CMD_WRITE_F |
1748                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1749         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1750                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1751                                             FW_CMD_LEN16_V(len16));
1752         cmd.u.hash.hashvec = cpu_to_be64(vec);
1753         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1754 }
1755
1756 /**
1757  *      t4vf_get_port_stats - collect "port" statistics
1758  *      @adapter: the adapter
1759  *      @pidx: the port index
1760  *      @s: the stats structure to fill
1761  *
1762  *      Collect statistics for the "port"'s Virtual Interface.
1763  */
1764 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1765                         struct t4vf_port_stats *s)
1766 {
1767         struct port_info *pi = adap2pinfo(adapter, pidx);
1768         struct fw_vi_stats_vf fwstats;
1769         unsigned int rem = VI_VF_NUM_STATS;
1770         __be64 *fwsp = (__be64 *)&fwstats;
1771
1772         /*
1773          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774          * commands.  We could use a Work Request and get all of them at once
1775          * but that's an asynchronous interface which is awkward to use.
1776          */
1777         while (rem) {
1778                 unsigned int ix = VI_VF_NUM_STATS - rem;
1779                 unsigned int nstats = min(6U, rem);
1780                 struct fw_vi_stats_cmd cmd, rpl;
1781                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1782                               sizeof(struct fw_vi_stats_ctl));
1783                 size_t len16 = DIV_ROUND_UP(len, 16);
1784                 int ret;
1785
1786                 memset(&cmd, 0, sizeof(cmd));
1787                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1788                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1789                                              FW_CMD_REQUEST_F |
1790                                              FW_CMD_READ_F);
1791                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1792                 cmd.u.ctl.nstats_ix =
1793                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1794                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1795                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1796                 if (ret)
1797                         return ret;
1798
1799                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1800
1801                 rem -= nstats;
1802                 fwsp += nstats;
1803         }
1804
1805         /*
1806          * Translate firmware statistics into host native statistics.
1807          */
1808         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1809         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1810         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1811         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1812         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1813         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1814         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1815         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1816         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1817
1818         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1819         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1820         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1821         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1822         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1823         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1824
1825         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1826
1827         return 0;
1828 }
1829
1830 /**
1831  *      t4vf_iq_free - free an ingress queue and its free lists
1832  *      @adapter: the adapter
1833  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834  *      @iqid: ingress queue ID
1835  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1836  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1837  *
1838  *      Frees an ingress queue and its associated free lists, if any.
1839  */
1840 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1841                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1842 {
1843         struct fw_iq_cmd cmd;
1844
1845         memset(&cmd, 0, sizeof(cmd));
1846         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1847                                     FW_CMD_REQUEST_F |
1848                                     FW_CMD_EXEC_F);
1849         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1850                                          FW_LEN16(cmd));
1851         cmd.type_to_iqandstindex =
1852                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1853
1854         cmd.iqid = cpu_to_be16(iqid);
1855         cmd.fl0id = cpu_to_be16(fl0id);
1856         cmd.fl1id = cpu_to_be16(fl1id);
1857         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1858 }
1859
1860 /**
1861  *      t4vf_eth_eq_free - free an Ethernet egress queue
1862  *      @adapter: the adapter
1863  *      @eqid: egress queue ID
1864  *
1865  *      Frees an Ethernet egress queue.
1866  */
1867 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1868 {
1869         struct fw_eq_eth_cmd cmd;
1870
1871         memset(&cmd, 0, sizeof(cmd));
1872         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1873                                     FW_CMD_REQUEST_F |
1874                                     FW_CMD_EXEC_F);
1875         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1876                                          FW_LEN16(cmd));
1877         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1878         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1879 }
1880
1881 /**
1882  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883  *      @link_down_rc: Link Down Reason Code
1884  *
1885  *      Returns a string representation of the Link Down Reason Code.
1886  */
1887 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1888 {
1889         static const char * const reason[] = {
1890                 "Link Down",
1891                 "Remote Fault",
1892                 "Auto-negotiation Failure",
1893                 "Reserved",
1894                 "Insufficient Airflow",
1895                 "Unable To Determine Reason",
1896                 "No RX Signal Detected",
1897                 "Reserved",
1898         };
1899
1900         if (link_down_rc >= ARRAY_SIZE(reason))
1901                 return "Bad Reason Code";
1902
1903         return reason[link_down_rc];
1904 }
1905
1906 /**
1907  *      t4vf_handle_get_port_info - process a FW reply message
1908  *      @pi: the port info
1909  *      @cmd: start of the FW message
1910  *
1911  *      Processes a GET_PORT_INFO FW reply message.
1912  */
1913 static void t4vf_handle_get_port_info(struct port_info *pi,
1914                                       const struct fw_port_cmd *cmd)
1915 {
1916         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1917         struct link_config *lc = &pi->link_cfg;
1918         struct adapter *adapter = pi->adapter;
1919         unsigned int speed, fc, fec, adv_fc;
1920         enum fw_port_module_type mod_type;
1921         int action, link_ok, linkdnrc;
1922         enum fw_port_type port_type;
1923
1924         /* Extract the various fields from the Port Information message. */
1925         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1926         switch (action) {
1927         case FW_PORT_ACTION_GET_PORT_INFO: {
1928                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1929
1930                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1931                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1932                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1933                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1934                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1935                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1936                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1937
1938                 /* Unfortunately the format of the Link Status in the old
1939                  * 16-bit Port Information message isn't the same as the
1940                  * 16-bit Port Capabilities bitfield used everywhere else ...
1941                  */
1942                 linkattr = 0;
1943                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1944                         linkattr |= FW_PORT_CAP32_FC_RX;
1945                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1946                         linkattr |= FW_PORT_CAP32_FC_TX;
1947                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1948                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1949                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1950                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1951                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1952                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1953                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1954                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1955                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1956                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1957                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1958                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1959
1960                 break;
1961         }
1962
1963         case FW_PORT_ACTION_GET_PORT_INFO32: {
1964                 u32 lstatus32;
1965
1966                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1967                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1968                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1969                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1970                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1971                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1972                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1973                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1974                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1975                 break;
1976         }
1977
1978         default:
1979                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1980                         be32_to_cpu(cmd->action_to_len16));
1981                 return;
1982         }
1983
1984         fec = fwcap_to_cc_fec(acaps);
1985         adv_fc = fwcap_to_cc_pause(acaps);
1986         fc = fwcap_to_cc_pause(linkattr);
1987         speed = fwcap_to_speed(linkattr);
1988
1989         if (mod_type != pi->mod_type) {
1990                 /* When a new Transceiver Module is inserted, the Firmware
1991                  * will examine any Forward Error Correction parameters
1992                  * present in the Transceiver Module i2c EPROM and determine
1993                  * the supported and recommended FEC settings from those
1994                  * based on IEEE 802.3 standards.  We always record the
1995                  * IEEE 802.3 recommended "automatic" settings.
1996                  */
1997                 lc->auto_fec = fec;
1998
1999                 /* Some versions of the early T6 Firmware "cheated" when
2000                  * handling different Transceiver Modules by changing the
2001                  * underlaying Port Type reported to the Host Drivers.  As
2002                  * such we need to capture whatever Port Type the Firmware
2003                  * sends us and record it in case it's different from what we
2004                  * were told earlier.  Unfortunately, since Firmware is
2005                  * forever, we'll need to keep this code here forever, but in
2006                  * later T6 Firmware it should just be an assignment of the
2007                  * same value already recorded.
2008                  */
2009                 pi->port_type = port_type;
2010
2011                 pi->mod_type = mod_type;
2012                 t4vf_os_portmod_changed(adapter, pi->pidx);
2013         }
2014
2015         if (link_ok != lc->link_ok || speed != lc->speed ||
2016             fc != lc->fc || adv_fc != lc->advertised_fc ||
2017             fec != lc->fec) {
2018                 /* something changed */
2019                 if (!link_ok && lc->link_ok) {
2020                         lc->link_down_rc = linkdnrc;
2021                         dev_warn_ratelimited(adapter->pdev_dev,
2022                                              "Port %d link down, reason: %s\n",
2023                                              pi->port_id,
2024                                              t4vf_link_down_rc_str(linkdnrc));
2025                 }
2026                 lc->link_ok = link_ok;
2027                 lc->speed = speed;
2028                 lc->advertised_fc = adv_fc;
2029                 lc->fc = fc;
2030                 lc->fec = fec;
2031
2032                 lc->pcaps = pcaps;
2033                 lc->lpacaps = lpacaps;
2034                 lc->acaps = acaps & ADVERT_MASK;
2035
2036                 /* If we're not physically capable of Auto-Negotiation, note
2037                  * this as Auto-Negotiation disabled.  Otherwise, we track
2038                  * what Auto-Negotiation settings we have.  Note parallel
2039                  * structure in init_link_config().
2040                  */
2041                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2042                         lc->autoneg = AUTONEG_DISABLE;
2043                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2044                         lc->autoneg = AUTONEG_ENABLE;
2045                 } else {
2046                         /* When Autoneg is disabled, user needs to set
2047                          * single speed.
2048                          * Similar to cxgb4_ethtool.c: set_link_ksettings
2049                          */
2050                         lc->acaps = 0;
2051                         lc->speed_caps = fwcap_to_speed(acaps);
2052                         lc->autoneg = AUTONEG_DISABLE;
2053                 }
2054
2055                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2056         }
2057 }
2058
2059 /**
2060  *      t4vf_update_port_info - retrieve and update port information if changed
2061  *      @pi: the port_info
2062  *
2063  *      We issue a Get Port Information Command to the Firmware and, if
2064  *      successful, we check to see if anything is different from what we
2065  *      last recorded and update things accordingly.
2066  */
2067 int t4vf_update_port_info(struct port_info *pi)
2068 {
2069         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2070         struct fw_port_cmd port_cmd;
2071         int ret;
2072
2073         memset(&port_cmd, 0, sizeof(port_cmd));
2074         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2075                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
2076                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2077         port_cmd.action_to_len16 = cpu_to_be32(
2078                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2079                                      ? FW_PORT_ACTION_GET_PORT_INFO
2080                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
2081                 FW_LEN16(port_cmd));
2082         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2083                            &port_cmd);
2084         if (ret)
2085                 return ret;
2086         t4vf_handle_get_port_info(pi, &port_cmd);
2087         return 0;
2088 }
2089
2090 /**
2091  *      t4vf_handle_fw_rpl - process a firmware reply message
2092  *      @adapter: the adapter
2093  *      @rpl: start of the firmware message
2094  *
2095  *      Processes a firmware message, such as link state change messages.
2096  */
2097 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2098 {
2099         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2100         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2101
2102         switch (opcode) {
2103         case FW_PORT_CMD: {
2104                 /*
2105                  * Link/module state change message.
2106                  */
2107                 const struct fw_port_cmd *port_cmd =
2108                         (const struct fw_port_cmd *)rpl;
2109                 int action = FW_PORT_CMD_ACTION_G(
2110                         be32_to_cpu(port_cmd->action_to_len16));
2111                 int port_id, pidx;
2112
2113                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2114                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2115                         dev_err(adapter->pdev_dev,
2116                                 "Unknown firmware PORT reply action %x\n",
2117                                 action);
2118                         break;
2119                 }
2120
2121                 port_id = FW_PORT_CMD_PORTID_G(
2122                         be32_to_cpu(port_cmd->op_to_portid));
2123                 for_each_port(adapter, pidx) {
2124                         struct port_info *pi = adap2pinfo(adapter, pidx);
2125
2126                         if (pi->port_id != port_id)
2127                                 continue;
2128                         t4vf_handle_get_port_info(pi, port_cmd);
2129                 }
2130                 break;
2131         }
2132
2133         default:
2134                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2135                         opcode);
2136         }
2137         return 0;
2138 }
2139
2140 int t4vf_prep_adapter(struct adapter *adapter)
2141 {
2142         int err;
2143         unsigned int chipid;
2144
2145         /* Wait for the device to become ready before proceeding ...
2146          */
2147         err = t4vf_wait_dev_ready(adapter);
2148         if (err)
2149                 return err;
2150
2151         /* Default port and clock for debugging in case we can't reach
2152          * firmware.
2153          */
2154         adapter->params.nports = 1;
2155         adapter->params.vfres.pmask = 1;
2156         adapter->params.vpd.cclk = 50000;
2157
2158         adapter->params.chip = 0;
2159         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2160         case CHELSIO_T4:
2161                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2162                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2163                 adapter->params.arch.mps_tcam_size =
2164                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2165                 break;
2166
2167         case CHELSIO_T5:
2168                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2169                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2170                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2171                 adapter->params.arch.mps_tcam_size =
2172                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2173                 break;
2174
2175         case CHELSIO_T6:
2176                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2177                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2178                 adapter->params.arch.sge_fl_db = 0;
2179                 adapter->params.arch.mps_tcam_size =
2180                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2181                 break;
2182         }
2183
2184         return 0;
2185 }
2186
2187 /**
2188  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2189  *                            the VI of this VF.
2190  *      @adapter: The adapter
2191  *      @port: The port associated with vf
2192  *      @naddr: the number of ACL MAC addresses returned in addr
2193  *      @addr: Placeholder for MAC addresses
2194  *
2195  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2196  *      is from the host OS via callback in the PF driver.
2197  */
2198 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
2199                         unsigned int *naddr, u8 *addr)
2200 {
2201         struct fw_acl_mac_cmd cmd;
2202         int ret;
2203
2204         memset(&cmd, 0, sizeof(cmd));
2205         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2206                                     FW_CMD_REQUEST_F |
2207                                     FW_CMD_READ_F);
2208         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2209         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2210         if (ret)
2211                 return ret;
2212
2213         if (cmd.nmac < *naddr)
2214                 *naddr = cmd.nmac;
2215
2216         switch (port) {
2217         case 3:
2218                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2219                 break;
2220         case 2:
2221                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2222                 break;
2223         case 1:
2224                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2225                 break;
2226         case 0:
2227                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2228                 break;
2229         }
2230
2231         return ret;
2232 }
2233
2234 /**
2235  *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2236  *                             the VI of this VF.
2237  *      @adapter: The adapter
2238  *
2239  *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2240  *      is from the host OS via callback in the PF driver.
2241  */
2242 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2243 {
2244         struct fw_acl_vlan_cmd cmd;
2245         int vlan = 0;
2246         int ret = 0;
2247
2248         cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2249                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2250
2251         /* Note: Do not enable the ACL */
2252         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2253
2254         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2255
2256         if (!ret)
2257                 vlan = be16_to_cpu(cmd.vlanid[0]);
2258
2259         return vlan;
2260 }