GNU Linux-libre 4.9.331-gnu1
[releases.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 /**
228  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *      @adapter: the adapter
230  *      @cmd: the Firmware Mailbox Command or Reply
231  *      @size: command length in bytes
232  *      @access: the time (ms) needed to access the Firmware Mailbox
233  *      @execute: the time (ms) the command spent being executed
234  */
235 static void t4_record_mbox(struct adapter *adapter,
236                            const __be64 *cmd, unsigned int size,
237                            int access, int execute)
238 {
239         struct mbox_cmd_log *log = adapter->mbox_log;
240         struct mbox_cmd *entry;
241         int i;
242
243         entry = mbox_cmd_log_entry(log, log->cursor++);
244         if (log->cursor == log->size)
245                 log->cursor = 0;
246
247         for (i = 0; i < size / 8; i++)
248                 entry->cmd[i] = be64_to_cpu(cmd[i]);
249         while (i < MBOX_LEN / 8)
250                 entry->cmd[i++] = 0;
251         entry->timestamp = jiffies;
252         entry->seqno = log->seqno++;
253         entry->access = access;
254         entry->execute = execute;
255 }
256
257 /**
258  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *      @adap: the adapter
260  *      @mbox: index of the mailbox to use
261  *      @cmd: the command to write
262  *      @size: command length in bytes
263  *      @rpl: where to optionally store the reply
264  *      @sleep_ok: if true we may sleep while awaiting command completion
265  *      @timeout: time to wait for command to finish before timing out
266  *
267  *      Sends the given command to FW through the selected mailbox and waits
268  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *      store the FW's reply to the command.  The command and its optional
270  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *      the response.  If sleeping is allowed we use progressive backoff
273  *      otherwise we spin.
274  *
275  *      The return value is 0 on success or a negative errno on failure.  A
276  *      failure can happen either because we are not able to execute the
277  *      command or FW executes it but signals an error.  In the latter case
278  *      the return value is the error code indicated by FW (negated).
279  */
280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281                             int size, void *rpl, bool sleep_ok, int timeout)
282 {
283         static const int delay[] = {
284                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285         };
286
287         u16 access = 0;
288         u16 execute = 0;
289         u32 v;
290         u64 res;
291         int i, ms, delay_idx, ret;
292         const __be64 *p = cmd;
293         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
295         __be64 cmd_rpl[MBOX_LEN / 8];
296         u32 pcie_fw;
297
298         if ((size & 15) || size > MBOX_LEN)
299                 return -EINVAL;
300
301         /*
302          * If the device is off-line, as in EEH, commands will time out.
303          * Fail them early so we don't waste time waiting.
304          */
305         if (adap->pdev->error_state != pci_channel_io_normal)
306                 return -EIO;
307
308         /* If we have a negative timeout, that implies that we can't sleep. */
309         if (timeout < 0) {
310                 sleep_ok = false;
311                 timeout = -timeout;
312         }
313
314         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
315         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
316                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
317
318         if (v != MBOX_OWNER_DRV) {
319                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320                 t4_record_mbox(adap, cmd, size, access, ret);
321                 return ret;
322         }
323
324         /* Copy in the new mailbox command and send it on its way ... */
325         t4_record_mbox(adap, cmd, size, access, 0);
326         for (i = 0; i < size; i += 8)
327                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
328
329         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
330         t4_read_reg(adap, ctl_reg);          /* flush write */
331
332         delay_idx = 0;
333         ms = delay[0];
334
335         for (i = 0;
336              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
337              i < timeout;
338              i += ms) {
339                 if (sleep_ok) {
340                         ms = delay[delay_idx];  /* last element may repeat */
341                         if (delay_idx < ARRAY_SIZE(delay) - 1)
342                                 delay_idx++;
343                         msleep(ms);
344                 } else
345                         mdelay(ms);
346
347                 v = t4_read_reg(adap, ctl_reg);
348                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349                         if (!(v & MBMSGVALID_F)) {
350                                 t4_write_reg(adap, ctl_reg, 0);
351                                 continue;
352                         }
353
354                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355                         res = be64_to_cpu(cmd_rpl[0]);
356
357                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
358                                 fw_asrt(adap, data_reg);
359                                 res = FW_CMD_RETVAL_V(EIO);
360                         } else if (rpl) {
361                                 memcpy(rpl, cmd_rpl, size);
362                         }
363
364                         t4_write_reg(adap, ctl_reg, 0);
365
366                         execute = i + ms;
367                         t4_record_mbox(adap, cmd_rpl,
368                                        MBOX_LEN, access, execute);
369                         return -FW_CMD_RETVAL_G((int)res);
370                 }
371         }
372
373         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
374         t4_record_mbox(adap, cmd, size, access, ret);
375         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376                 *(const u8 *)cmd, mbox);
377         t4_report_fw_error(adap);
378         return ret;
379 }
380
381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382                     void *rpl, bool sleep_ok)
383 {
384         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
385                                        FW_CMD_MAX_TIMEOUT);
386 }
387
388 static int t4_edc_err_read(struct adapter *adap, int idx)
389 {
390         u32 edc_ecc_err_addr_reg;
391         u32 rdata_reg;
392
393         if (is_t4(adap->params.chip)) {
394                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
395                 return 0;
396         }
397         if (idx != 0 && idx != 1) {
398                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
399                 return 0;
400         }
401
402         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
404
405         CH_WARN(adap,
406                 "edc%d err addr 0x%x: 0x%x.\n",
407                 idx, edc_ecc_err_addr_reg,
408                 t4_read_reg(adap, edc_ecc_err_addr_reg));
409         CH_WARN(adap,
410                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
411                 rdata_reg,
412                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
413                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
421
422         return 0;
423 }
424
425 /**
426  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
427  *      @adap: the adapter
428  *      @win: PCI-E Memory Window to use
429  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430  *      @addr: address within indicated memory type
431  *      @len: amount of memory to transfer
432  *      @hbuf: host memory buffer
433  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
434  *
435  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
436  *      firmware memory address and host buffer must be aligned on 32-bit
437  *      boudaries; the length may be arbitrary.  The memory is transferred as
438  *      a raw byte sequence from/to the firmware's memory.  If this memory
439  *      contains data structures which contain multi-byte integers, it's the
440  *      caller's responsibility to perform appropriate byte order conversions.
441  */
442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
443                  u32 len, void *hbuf, int dir)
444 {
445         u32 pos, offset, resid, memoffset;
446         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
447         u32 *buf;
448
449         /* Argument sanity checks ...
450          */
451         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
452                 return -EINVAL;
453         buf = (u32 *)hbuf;
454
455         /* It's convenient to be able to handle lengths which aren't a
456          * multiple of 32-bits because we often end up transferring files to
457          * the firmware.  So we'll handle that by normalizing the length here
458          * and then handling any residual transfer at the end.
459          */
460         resid = len & 0x3;
461         len -= resid;
462
463         /* Offset into the region of memory which is being accessed
464          * MEM_EDC0 = 0
465          * MEM_EDC1 = 1
466          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
467          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
468          */
469         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
470         if (mtype != MEM_MC1)
471                 memoffset = (mtype * (edc_size * 1024 * 1024));
472         else {
473                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
474                                                       MA_EXT_MEMORY0_BAR_A));
475                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
476         }
477
478         /* Determine the PCIE_MEM_ACCESS_OFFSET */
479         addr = addr + memoffset;
480
481         /* Each PCI-E Memory Window is programmed with a window size -- or
482          * "aperture" -- which controls the granularity of its mapping onto
483          * adapter memory.  We need to grab that aperture in order to know
484          * how to use the specified window.  The window is also programmed
485          * with the base address of the Memory Window in BAR0's address
486          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
487          * the address is relative to BAR0.
488          */
489         mem_reg = t4_read_reg(adap,
490                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
491                                                   win));
492         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
494         if (is_t4(adap->params.chip))
495                 mem_base -= adap->t4_bar0;
496         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
497
498         /* Calculate our initial PCI-E Memory Window Position and Offset into
499          * that Window.
500          */
501         pos = addr & ~(mem_aperture-1);
502         offset = addr - pos;
503
504         /* Set up initial PCI-E Memory Window to cover the start of our
505          * transfer.  (Read it back to ensure that changes propagate before we
506          * attempt to use the new value.)
507          */
508         t4_write_reg(adap,
509                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
510                      pos | win_pf);
511         t4_read_reg(adap,
512                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
513
514         /* Transfer data to/from the adapter as long as there's an integral
515          * number of 32-bit transfers to complete.
516          *
517          * A note on Endianness issues:
518          *
519          * The "register" reads and writes below from/to the PCI-E Memory
520          * Window invoke the standard adapter Big-Endian to PCI-E Link
521          * Little-Endian "swizzel."  As a result, if we have the following
522          * data in adapter memory:
523          *
524          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
525          *     Address:      i+0  i+1  i+2  i+3
526          *
527          * Then a read of the adapter memory via the PCI-E Memory Window
528          * will yield:
529          *
530          *     x = readl(i)
531          *         31                  0
532          *         [ b3 | b2 | b1 | b0 ]
533          *
534          * If this value is stored into local memory on a Little-Endian system
535          * it will show up correctly in local memory as:
536          *
537          *     ( ..., b0, b1, b2, b3, ... )
538          *
539          * But on a Big-Endian system, the store will show up in memory
540          * incorrectly swizzled as:
541          *
542          *     ( ..., b3, b2, b1, b0, ... )
543          *
544          * So we need to account for this in the reads and writes to the
545          * PCI-E Memory Window below by undoing the register read/write
546          * swizzels.
547          */
548         while (len > 0) {
549                 if (dir == T4_MEMORY_READ)
550                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
551                                                 mem_base + offset));
552                 else
553                         t4_write_reg(adap, mem_base + offset,
554                                      (__force u32)cpu_to_le32(*buf++));
555                 offset += sizeof(__be32);
556                 len -= sizeof(__be32);
557
558                 /* If we've reached the end of our current window aperture,
559                  * move the PCI-E Memory Window on to the next.  Note that
560                  * doing this here after "len" may be 0 allows us to set up
561                  * the PCI-E Memory Window for a possible final residual
562                  * transfer below ...
563                  */
564                 if (offset == mem_aperture) {
565                         pos += mem_aperture;
566                         offset = 0;
567                         t4_write_reg(adap,
568                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
569                                                     win), pos | win_pf);
570                         t4_read_reg(adap,
571                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
572                                                     win));
573                 }
574         }
575
576         /* If the original transfer had a length which wasn't a multiple of
577          * 32-bits, now's where we need to finish off the transfer of the
578          * residual amount.  The PCI-E Memory Window has already been moved
579          * above (if necessary) to cover this final transfer.
580          */
581         if (resid) {
582                 union {
583                         u32 word;
584                         char byte[4];
585                 } last;
586                 unsigned char *bp;
587                 int i;
588
589                 if (dir == T4_MEMORY_READ) {
590                         last.word = le32_to_cpu(
591                                         (__force __le32)t4_read_reg(adap,
592                                                 mem_base + offset));
593                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594                                 bp[i] = last.byte[i];
595                 } else {
596                         last.word = *buf;
597                         for (i = resid; i < 4; i++)
598                                 last.byte[i] = 0;
599                         t4_write_reg(adap, mem_base + offset,
600                                      (__force u32)cpu_to_le32(last.word));
601                 }
602         }
603
604         return 0;
605 }
606
607 /* Return the specified PCI-E Configuration Space register from our Physical
608  * Function.  We try first via a Firmware LDST Command since we prefer to let
609  * the firmware own all of these registers, but if that fails we go for it
610  * directly ourselves.
611  */
612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
613 {
614         u32 val, ldst_addrspace;
615
616         /* If fw_attach != 0, construct and send the Firmware LDST Command to
617          * retrieve the specified PCI-E Configuration Space register.
618          */
619         struct fw_ldst_cmd ldst_cmd;
620         int ret;
621
622         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
625                                                FW_CMD_REQUEST_F |
626                                                FW_CMD_READ_F |
627                                                ldst_addrspace);
628         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630         ldst_cmd.u.pcie.ctrl_to_fn =
631                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
632         ldst_cmd.u.pcie.r = reg;
633
634         /* If the LDST Command succeeds, return the result, otherwise
635          * fall through to reading it directly ourselves ...
636          */
637         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
638                          &ldst_cmd);
639         if (ret == 0)
640                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
641         else
642                 /* Read the desired Configuration Space register via the PCI-E
643                  * Backdoor mechanism.
644                  */
645                 t4_hw_pci_read_cfg4(adap, reg, &val);
646         return val;
647 }
648
649 /* Get the window based on base passed to it.
650  * Window aperture is currently unhandled, but there is no use case for it
651  * right now
652  */
653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
654                          u32 memwin_base)
655 {
656         u32 ret;
657
658         if (is_t4(adap->params.chip)) {
659                 u32 bar0;
660
661                 /* Truncation intentional: we only read the bottom 32-bits of
662                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
663                  * mechanism to read BAR0 instead of using
664                  * pci_resource_start() because we could be operating from
665                  * within a Virtual Machine which is trapping our accesses to
666                  * our Configuration Space and we need to set up the PCI-E
667                  * Memory Window decoders with the actual addresses which will
668                  * be coming across the PCI-E link.
669                  */
670                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
671                 bar0 &= pci_mask;
672                 adap->t4_bar0 = bar0;
673
674                 ret = bar0 + memwin_base;
675         } else {
676                 /* For T5, only relative offset inside the PCIe BAR is passed */
677                 ret = memwin_base;
678         }
679         return ret;
680 }
681
682 /* Get the default utility window (win0) used by everyone */
683 u32 t4_get_util_window(struct adapter *adap)
684 {
685         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
687 }
688
689 /* Set up memory window for accessing adapter memory ranges.  (Read
690  * back MA register to ensure that changes propagate before we attempt
691  * to use the new values.)
692  */
693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
694 {
695         t4_write_reg(adap,
696                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697                      memwin_base | BIR_V(0) |
698                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
699         t4_read_reg(adap,
700                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
701 }
702
703 /**
704  *      t4_get_regs_len - return the size of the chips register set
705  *      @adapter: the adapter
706  *
707  *      Returns the size of the chip's BAR0 register space.
708  */
709 unsigned int t4_get_regs_len(struct adapter *adapter)
710 {
711         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
712
713         switch (chip_version) {
714         case CHELSIO_T4:
715                 return T4_REGMAP_SIZE;
716
717         case CHELSIO_T5:
718         case CHELSIO_T6:
719                 return T5_REGMAP_SIZE;
720         }
721
722         dev_err(adapter->pdev_dev,
723                 "Unsupported chip version %d\n", chip_version);
724         return 0;
725 }
726
727 /**
728  *      t4_get_regs - read chip registers into provided buffer
729  *      @adap: the adapter
730  *      @buf: register buffer
731  *      @buf_size: size (in bytes) of register buffer
732  *
733  *      If the provided register buffer isn't large enough for the chip's
734  *      full register range, the register dump will be truncated to the
735  *      register buffer's size.
736  */
737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
738 {
739         static const unsigned int t4_reg_ranges[] = {
740                 0x1008, 0x1108,
741                 0x1180, 0x1184,
742                 0x1190, 0x1194,
743                 0x11a0, 0x11a4,
744                 0x11b0, 0x11b4,
745                 0x11fc, 0x123c,
746                 0x1300, 0x173c,
747                 0x1800, 0x18fc,
748                 0x3000, 0x30d8,
749                 0x30e0, 0x30e4,
750                 0x30ec, 0x5910,
751                 0x5920, 0x5924,
752                 0x5960, 0x5960,
753                 0x5968, 0x5968,
754                 0x5970, 0x5970,
755                 0x5978, 0x5978,
756                 0x5980, 0x5980,
757                 0x5988, 0x5988,
758                 0x5990, 0x5990,
759                 0x5998, 0x5998,
760                 0x59a0, 0x59d4,
761                 0x5a00, 0x5ae0,
762                 0x5ae8, 0x5ae8,
763                 0x5af0, 0x5af0,
764                 0x5af8, 0x5af8,
765                 0x6000, 0x6098,
766                 0x6100, 0x6150,
767                 0x6200, 0x6208,
768                 0x6240, 0x6248,
769                 0x6280, 0x62b0,
770                 0x62c0, 0x6338,
771                 0x6370, 0x638c,
772                 0x6400, 0x643c,
773                 0x6500, 0x6524,
774                 0x6a00, 0x6a04,
775                 0x6a14, 0x6a38,
776                 0x6a60, 0x6a70,
777                 0x6a78, 0x6a78,
778                 0x6b00, 0x6b0c,
779                 0x6b1c, 0x6b84,
780                 0x6bf0, 0x6bf8,
781                 0x6c00, 0x6c0c,
782                 0x6c1c, 0x6c84,
783                 0x6cf0, 0x6cf8,
784                 0x6d00, 0x6d0c,
785                 0x6d1c, 0x6d84,
786                 0x6df0, 0x6df8,
787                 0x6e00, 0x6e0c,
788                 0x6e1c, 0x6e84,
789                 0x6ef0, 0x6ef8,
790                 0x6f00, 0x6f0c,
791                 0x6f1c, 0x6f84,
792                 0x6ff0, 0x6ff8,
793                 0x7000, 0x700c,
794                 0x701c, 0x7084,
795                 0x70f0, 0x70f8,
796                 0x7100, 0x710c,
797                 0x711c, 0x7184,
798                 0x71f0, 0x71f8,
799                 0x7200, 0x720c,
800                 0x721c, 0x7284,
801                 0x72f0, 0x72f8,
802                 0x7300, 0x730c,
803                 0x731c, 0x7384,
804                 0x73f0, 0x73f8,
805                 0x7400, 0x7450,
806                 0x7500, 0x7530,
807                 0x7600, 0x760c,
808                 0x7614, 0x761c,
809                 0x7680, 0x76cc,
810                 0x7700, 0x7798,
811                 0x77c0, 0x77fc,
812                 0x7900, 0x79fc,
813                 0x7b00, 0x7b58,
814                 0x7b60, 0x7b84,
815                 0x7b8c, 0x7c38,
816                 0x7d00, 0x7d38,
817                 0x7d40, 0x7d80,
818                 0x7d8c, 0x7ddc,
819                 0x7de4, 0x7e04,
820                 0x7e10, 0x7e1c,
821                 0x7e24, 0x7e38,
822                 0x7e40, 0x7e44,
823                 0x7e4c, 0x7e78,
824                 0x7e80, 0x7ea4,
825                 0x7eac, 0x7edc,
826                 0x7ee8, 0x7efc,
827                 0x8dc0, 0x8e04,
828                 0x8e10, 0x8e1c,
829                 0x8e30, 0x8e78,
830                 0x8ea0, 0x8eb8,
831                 0x8ec0, 0x8f6c,
832                 0x8fc0, 0x9008,
833                 0x9010, 0x9058,
834                 0x9060, 0x9060,
835                 0x9068, 0x9074,
836                 0x90fc, 0x90fc,
837                 0x9400, 0x9408,
838                 0x9410, 0x9458,
839                 0x9600, 0x9600,
840                 0x9608, 0x9638,
841                 0x9640, 0x96bc,
842                 0x9800, 0x9808,
843                 0x9820, 0x983c,
844                 0x9850, 0x9864,
845                 0x9c00, 0x9c6c,
846                 0x9c80, 0x9cec,
847                 0x9d00, 0x9d6c,
848                 0x9d80, 0x9dec,
849                 0x9e00, 0x9e6c,
850                 0x9e80, 0x9eec,
851                 0x9f00, 0x9f6c,
852                 0x9f80, 0x9fec,
853                 0xd004, 0xd004,
854                 0xd010, 0xd03c,
855                 0xdfc0, 0xdfe0,
856                 0xe000, 0xea7c,
857                 0xf000, 0x11190,
858                 0x19040, 0x1906c,
859                 0x19078, 0x19080,
860                 0x1908c, 0x190e4,
861                 0x190f0, 0x190f8,
862                 0x19100, 0x19110,
863                 0x19120, 0x19124,
864                 0x19150, 0x19194,
865                 0x1919c, 0x191b0,
866                 0x191d0, 0x191e8,
867                 0x19238, 0x1924c,
868                 0x193f8, 0x1943c,
869                 0x1944c, 0x19474,
870                 0x19490, 0x194e0,
871                 0x194f0, 0x194f8,
872                 0x19800, 0x19c08,
873                 0x19c10, 0x19c90,
874                 0x19ca0, 0x19ce4,
875                 0x19cf0, 0x19d40,
876                 0x19d50, 0x19d94,
877                 0x19da0, 0x19de8,
878                 0x19df0, 0x19e40,
879                 0x19e50, 0x19e90,
880                 0x19ea0, 0x19f4c,
881                 0x1a000, 0x1a004,
882                 0x1a010, 0x1a06c,
883                 0x1a0b0, 0x1a0e4,
884                 0x1a0ec, 0x1a0f4,
885                 0x1a100, 0x1a108,
886                 0x1a114, 0x1a120,
887                 0x1a128, 0x1a130,
888                 0x1a138, 0x1a138,
889                 0x1a190, 0x1a1c4,
890                 0x1a1fc, 0x1a1fc,
891                 0x1e040, 0x1e04c,
892                 0x1e284, 0x1e28c,
893                 0x1e2c0, 0x1e2c0,
894                 0x1e2e0, 0x1e2e0,
895                 0x1e300, 0x1e384,
896                 0x1e3c0, 0x1e3c8,
897                 0x1e440, 0x1e44c,
898                 0x1e684, 0x1e68c,
899                 0x1e6c0, 0x1e6c0,
900                 0x1e6e0, 0x1e6e0,
901                 0x1e700, 0x1e784,
902                 0x1e7c0, 0x1e7c8,
903                 0x1e840, 0x1e84c,
904                 0x1ea84, 0x1ea8c,
905                 0x1eac0, 0x1eac0,
906                 0x1eae0, 0x1eae0,
907                 0x1eb00, 0x1eb84,
908                 0x1ebc0, 0x1ebc8,
909                 0x1ec40, 0x1ec4c,
910                 0x1ee84, 0x1ee8c,
911                 0x1eec0, 0x1eec0,
912                 0x1eee0, 0x1eee0,
913                 0x1ef00, 0x1ef84,
914                 0x1efc0, 0x1efc8,
915                 0x1f040, 0x1f04c,
916                 0x1f284, 0x1f28c,
917                 0x1f2c0, 0x1f2c0,
918                 0x1f2e0, 0x1f2e0,
919                 0x1f300, 0x1f384,
920                 0x1f3c0, 0x1f3c8,
921                 0x1f440, 0x1f44c,
922                 0x1f684, 0x1f68c,
923                 0x1f6c0, 0x1f6c0,
924                 0x1f6e0, 0x1f6e0,
925                 0x1f700, 0x1f784,
926                 0x1f7c0, 0x1f7c8,
927                 0x1f840, 0x1f84c,
928                 0x1fa84, 0x1fa8c,
929                 0x1fac0, 0x1fac0,
930                 0x1fae0, 0x1fae0,
931                 0x1fb00, 0x1fb84,
932                 0x1fbc0, 0x1fbc8,
933                 0x1fc40, 0x1fc4c,
934                 0x1fe84, 0x1fe8c,
935                 0x1fec0, 0x1fec0,
936                 0x1fee0, 0x1fee0,
937                 0x1ff00, 0x1ff84,
938                 0x1ffc0, 0x1ffc8,
939                 0x20000, 0x2002c,
940                 0x20100, 0x2013c,
941                 0x20190, 0x201a0,
942                 0x201a8, 0x201b8,
943                 0x201c4, 0x201c8,
944                 0x20200, 0x20318,
945                 0x20400, 0x204b4,
946                 0x204c0, 0x20528,
947                 0x20540, 0x20614,
948                 0x21000, 0x21040,
949                 0x2104c, 0x21060,
950                 0x210c0, 0x210ec,
951                 0x21200, 0x21268,
952                 0x21270, 0x21284,
953                 0x212fc, 0x21388,
954                 0x21400, 0x21404,
955                 0x21500, 0x21500,
956                 0x21510, 0x21518,
957                 0x2152c, 0x21530,
958                 0x2153c, 0x2153c,
959                 0x21550, 0x21554,
960                 0x21600, 0x21600,
961                 0x21608, 0x2161c,
962                 0x21624, 0x21628,
963                 0x21630, 0x21634,
964                 0x2163c, 0x2163c,
965                 0x21700, 0x2171c,
966                 0x21780, 0x2178c,
967                 0x21800, 0x21818,
968                 0x21820, 0x21828,
969                 0x21830, 0x21848,
970                 0x21850, 0x21854,
971                 0x21860, 0x21868,
972                 0x21870, 0x21870,
973                 0x21878, 0x21898,
974                 0x218a0, 0x218a8,
975                 0x218b0, 0x218c8,
976                 0x218d0, 0x218d4,
977                 0x218e0, 0x218e8,
978                 0x218f0, 0x218f0,
979                 0x218f8, 0x21a18,
980                 0x21a20, 0x21a28,
981                 0x21a30, 0x21a48,
982                 0x21a50, 0x21a54,
983                 0x21a60, 0x21a68,
984                 0x21a70, 0x21a70,
985                 0x21a78, 0x21a98,
986                 0x21aa0, 0x21aa8,
987                 0x21ab0, 0x21ac8,
988                 0x21ad0, 0x21ad4,
989                 0x21ae0, 0x21ae8,
990                 0x21af0, 0x21af0,
991                 0x21af8, 0x21c18,
992                 0x21c20, 0x21c20,
993                 0x21c28, 0x21c30,
994                 0x21c38, 0x21c38,
995                 0x21c80, 0x21c98,
996                 0x21ca0, 0x21ca8,
997                 0x21cb0, 0x21cc8,
998                 0x21cd0, 0x21cd4,
999                 0x21ce0, 0x21ce8,
1000                 0x21cf0, 0x21cf0,
1001                 0x21cf8, 0x21d7c,
1002                 0x21e00, 0x21e04,
1003                 0x22000, 0x2202c,
1004                 0x22100, 0x2213c,
1005                 0x22190, 0x221a0,
1006                 0x221a8, 0x221b8,
1007                 0x221c4, 0x221c8,
1008                 0x22200, 0x22318,
1009                 0x22400, 0x224b4,
1010                 0x224c0, 0x22528,
1011                 0x22540, 0x22614,
1012                 0x23000, 0x23040,
1013                 0x2304c, 0x23060,
1014                 0x230c0, 0x230ec,
1015                 0x23200, 0x23268,
1016                 0x23270, 0x23284,
1017                 0x232fc, 0x23388,
1018                 0x23400, 0x23404,
1019                 0x23500, 0x23500,
1020                 0x23510, 0x23518,
1021                 0x2352c, 0x23530,
1022                 0x2353c, 0x2353c,
1023                 0x23550, 0x23554,
1024                 0x23600, 0x23600,
1025                 0x23608, 0x2361c,
1026                 0x23624, 0x23628,
1027                 0x23630, 0x23634,
1028                 0x2363c, 0x2363c,
1029                 0x23700, 0x2371c,
1030                 0x23780, 0x2378c,
1031                 0x23800, 0x23818,
1032                 0x23820, 0x23828,
1033                 0x23830, 0x23848,
1034                 0x23850, 0x23854,
1035                 0x23860, 0x23868,
1036                 0x23870, 0x23870,
1037                 0x23878, 0x23898,
1038                 0x238a0, 0x238a8,
1039                 0x238b0, 0x238c8,
1040                 0x238d0, 0x238d4,
1041                 0x238e0, 0x238e8,
1042                 0x238f0, 0x238f0,
1043                 0x238f8, 0x23a18,
1044                 0x23a20, 0x23a28,
1045                 0x23a30, 0x23a48,
1046                 0x23a50, 0x23a54,
1047                 0x23a60, 0x23a68,
1048                 0x23a70, 0x23a70,
1049                 0x23a78, 0x23a98,
1050                 0x23aa0, 0x23aa8,
1051                 0x23ab0, 0x23ac8,
1052                 0x23ad0, 0x23ad4,
1053                 0x23ae0, 0x23ae8,
1054                 0x23af0, 0x23af0,
1055                 0x23af8, 0x23c18,
1056                 0x23c20, 0x23c20,
1057                 0x23c28, 0x23c30,
1058                 0x23c38, 0x23c38,
1059                 0x23c80, 0x23c98,
1060                 0x23ca0, 0x23ca8,
1061                 0x23cb0, 0x23cc8,
1062                 0x23cd0, 0x23cd4,
1063                 0x23ce0, 0x23ce8,
1064                 0x23cf0, 0x23cf0,
1065                 0x23cf8, 0x23d7c,
1066                 0x23e00, 0x23e04,
1067                 0x24000, 0x2402c,
1068                 0x24100, 0x2413c,
1069                 0x24190, 0x241a0,
1070                 0x241a8, 0x241b8,
1071                 0x241c4, 0x241c8,
1072                 0x24200, 0x24318,
1073                 0x24400, 0x244b4,
1074                 0x244c0, 0x24528,
1075                 0x24540, 0x24614,
1076                 0x25000, 0x25040,
1077                 0x2504c, 0x25060,
1078                 0x250c0, 0x250ec,
1079                 0x25200, 0x25268,
1080                 0x25270, 0x25284,
1081                 0x252fc, 0x25388,
1082                 0x25400, 0x25404,
1083                 0x25500, 0x25500,
1084                 0x25510, 0x25518,
1085                 0x2552c, 0x25530,
1086                 0x2553c, 0x2553c,
1087                 0x25550, 0x25554,
1088                 0x25600, 0x25600,
1089                 0x25608, 0x2561c,
1090                 0x25624, 0x25628,
1091                 0x25630, 0x25634,
1092                 0x2563c, 0x2563c,
1093                 0x25700, 0x2571c,
1094                 0x25780, 0x2578c,
1095                 0x25800, 0x25818,
1096                 0x25820, 0x25828,
1097                 0x25830, 0x25848,
1098                 0x25850, 0x25854,
1099                 0x25860, 0x25868,
1100                 0x25870, 0x25870,
1101                 0x25878, 0x25898,
1102                 0x258a0, 0x258a8,
1103                 0x258b0, 0x258c8,
1104                 0x258d0, 0x258d4,
1105                 0x258e0, 0x258e8,
1106                 0x258f0, 0x258f0,
1107                 0x258f8, 0x25a18,
1108                 0x25a20, 0x25a28,
1109                 0x25a30, 0x25a48,
1110                 0x25a50, 0x25a54,
1111                 0x25a60, 0x25a68,
1112                 0x25a70, 0x25a70,
1113                 0x25a78, 0x25a98,
1114                 0x25aa0, 0x25aa8,
1115                 0x25ab0, 0x25ac8,
1116                 0x25ad0, 0x25ad4,
1117                 0x25ae0, 0x25ae8,
1118                 0x25af0, 0x25af0,
1119                 0x25af8, 0x25c18,
1120                 0x25c20, 0x25c20,
1121                 0x25c28, 0x25c30,
1122                 0x25c38, 0x25c38,
1123                 0x25c80, 0x25c98,
1124                 0x25ca0, 0x25ca8,
1125                 0x25cb0, 0x25cc8,
1126                 0x25cd0, 0x25cd4,
1127                 0x25ce0, 0x25ce8,
1128                 0x25cf0, 0x25cf0,
1129                 0x25cf8, 0x25d7c,
1130                 0x25e00, 0x25e04,
1131                 0x26000, 0x2602c,
1132                 0x26100, 0x2613c,
1133                 0x26190, 0x261a0,
1134                 0x261a8, 0x261b8,
1135                 0x261c4, 0x261c8,
1136                 0x26200, 0x26318,
1137                 0x26400, 0x264b4,
1138                 0x264c0, 0x26528,
1139                 0x26540, 0x26614,
1140                 0x27000, 0x27040,
1141                 0x2704c, 0x27060,
1142                 0x270c0, 0x270ec,
1143                 0x27200, 0x27268,
1144                 0x27270, 0x27284,
1145                 0x272fc, 0x27388,
1146                 0x27400, 0x27404,
1147                 0x27500, 0x27500,
1148                 0x27510, 0x27518,
1149                 0x2752c, 0x27530,
1150                 0x2753c, 0x2753c,
1151                 0x27550, 0x27554,
1152                 0x27600, 0x27600,
1153                 0x27608, 0x2761c,
1154                 0x27624, 0x27628,
1155                 0x27630, 0x27634,
1156                 0x2763c, 0x2763c,
1157                 0x27700, 0x2771c,
1158                 0x27780, 0x2778c,
1159                 0x27800, 0x27818,
1160                 0x27820, 0x27828,
1161                 0x27830, 0x27848,
1162                 0x27850, 0x27854,
1163                 0x27860, 0x27868,
1164                 0x27870, 0x27870,
1165                 0x27878, 0x27898,
1166                 0x278a0, 0x278a8,
1167                 0x278b0, 0x278c8,
1168                 0x278d0, 0x278d4,
1169                 0x278e0, 0x278e8,
1170                 0x278f0, 0x278f0,
1171                 0x278f8, 0x27a18,
1172                 0x27a20, 0x27a28,
1173                 0x27a30, 0x27a48,
1174                 0x27a50, 0x27a54,
1175                 0x27a60, 0x27a68,
1176                 0x27a70, 0x27a70,
1177                 0x27a78, 0x27a98,
1178                 0x27aa0, 0x27aa8,
1179                 0x27ab0, 0x27ac8,
1180                 0x27ad0, 0x27ad4,
1181                 0x27ae0, 0x27ae8,
1182                 0x27af0, 0x27af0,
1183                 0x27af8, 0x27c18,
1184                 0x27c20, 0x27c20,
1185                 0x27c28, 0x27c30,
1186                 0x27c38, 0x27c38,
1187                 0x27c80, 0x27c98,
1188                 0x27ca0, 0x27ca8,
1189                 0x27cb0, 0x27cc8,
1190                 0x27cd0, 0x27cd4,
1191                 0x27ce0, 0x27ce8,
1192                 0x27cf0, 0x27cf0,
1193                 0x27cf8, 0x27d7c,
1194                 0x27e00, 0x27e04,
1195         };
1196
1197         static const unsigned int t5_reg_ranges[] = {
1198                 0x1008, 0x10c0,
1199                 0x10cc, 0x10f8,
1200                 0x1100, 0x1100,
1201                 0x110c, 0x1148,
1202                 0x1180, 0x1184,
1203                 0x1190, 0x1194,
1204                 0x11a0, 0x11a4,
1205                 0x11b0, 0x11b4,
1206                 0x11fc, 0x123c,
1207                 0x1280, 0x173c,
1208                 0x1800, 0x18fc,
1209                 0x3000, 0x3028,
1210                 0x3060, 0x30b0,
1211                 0x30b8, 0x30d8,
1212                 0x30e0, 0x30fc,
1213                 0x3140, 0x357c,
1214                 0x35a8, 0x35cc,
1215                 0x35ec, 0x35ec,
1216                 0x3600, 0x5624,
1217                 0x56cc, 0x56ec,
1218                 0x56f4, 0x5720,
1219                 0x5728, 0x575c,
1220                 0x580c, 0x5814,
1221                 0x5890, 0x589c,
1222                 0x58a4, 0x58ac,
1223                 0x58b8, 0x58bc,
1224                 0x5940, 0x59c8,
1225                 0x59d0, 0x59dc,
1226                 0x59fc, 0x5a18,
1227                 0x5a60, 0x5a70,
1228                 0x5a80, 0x5a9c,
1229                 0x5b94, 0x5bfc,
1230                 0x6000, 0x6020,
1231                 0x6028, 0x6040,
1232                 0x6058, 0x609c,
1233                 0x60a8, 0x614c,
1234                 0x7700, 0x7798,
1235                 0x77c0, 0x78fc,
1236                 0x7b00, 0x7b58,
1237                 0x7b60, 0x7b84,
1238                 0x7b8c, 0x7c54,
1239                 0x7d00, 0x7d38,
1240                 0x7d40, 0x7d80,
1241                 0x7d8c, 0x7ddc,
1242                 0x7de4, 0x7e04,
1243                 0x7e10, 0x7e1c,
1244                 0x7e24, 0x7e38,
1245                 0x7e40, 0x7e44,
1246                 0x7e4c, 0x7e78,
1247                 0x7e80, 0x7edc,
1248                 0x7ee8, 0x7efc,
1249                 0x8dc0, 0x8de0,
1250                 0x8df8, 0x8e04,
1251                 0x8e10, 0x8e84,
1252                 0x8ea0, 0x8f84,
1253                 0x8fc0, 0x9058,
1254                 0x9060, 0x9060,
1255                 0x9068, 0x90f8,
1256                 0x9400, 0x9408,
1257                 0x9410, 0x9470,
1258                 0x9600, 0x9600,
1259                 0x9608, 0x9638,
1260                 0x9640, 0x96f4,
1261                 0x9800, 0x9808,
1262                 0x9820, 0x983c,
1263                 0x9850, 0x9864,
1264                 0x9c00, 0x9c6c,
1265                 0x9c80, 0x9cec,
1266                 0x9d00, 0x9d6c,
1267                 0x9d80, 0x9dec,
1268                 0x9e00, 0x9e6c,
1269                 0x9e80, 0x9eec,
1270                 0x9f00, 0x9f6c,
1271                 0x9f80, 0xa020,
1272                 0xd004, 0xd004,
1273                 0xd010, 0xd03c,
1274                 0xdfc0, 0xdfe0,
1275                 0xe000, 0x1106c,
1276                 0x11074, 0x11088,
1277                 0x1109c, 0x1117c,
1278                 0x11190, 0x11204,
1279                 0x19040, 0x1906c,
1280                 0x19078, 0x19080,
1281                 0x1908c, 0x190e8,
1282                 0x190f0, 0x190f8,
1283                 0x19100, 0x19110,
1284                 0x19120, 0x19124,
1285                 0x19150, 0x19194,
1286                 0x1919c, 0x191b0,
1287                 0x191d0, 0x191e8,
1288                 0x19238, 0x19290,
1289                 0x193f8, 0x19428,
1290                 0x19430, 0x19444,
1291                 0x1944c, 0x1946c,
1292                 0x19474, 0x19474,
1293                 0x19490, 0x194cc,
1294                 0x194f0, 0x194f8,
1295                 0x19c00, 0x19c08,
1296                 0x19c10, 0x19c60,
1297                 0x19c94, 0x19ce4,
1298                 0x19cf0, 0x19d40,
1299                 0x19d50, 0x19d94,
1300                 0x19da0, 0x19de8,
1301                 0x19df0, 0x19e10,
1302                 0x19e50, 0x19e90,
1303                 0x19ea0, 0x19f24,
1304                 0x19f34, 0x19f34,
1305                 0x19f40, 0x19f50,
1306                 0x19f90, 0x19fb4,
1307                 0x19fc4, 0x19fe4,
1308                 0x1a000, 0x1a004,
1309                 0x1a010, 0x1a06c,
1310                 0x1a0b0, 0x1a0e4,
1311                 0x1a0ec, 0x1a0f8,
1312                 0x1a100, 0x1a108,
1313                 0x1a114, 0x1a120,
1314                 0x1a128, 0x1a130,
1315                 0x1a138, 0x1a138,
1316                 0x1a190, 0x1a1c4,
1317                 0x1a1fc, 0x1a1fc,
1318                 0x1e008, 0x1e00c,
1319                 0x1e040, 0x1e044,
1320                 0x1e04c, 0x1e04c,
1321                 0x1e284, 0x1e290,
1322                 0x1e2c0, 0x1e2c0,
1323                 0x1e2e0, 0x1e2e0,
1324                 0x1e300, 0x1e384,
1325                 0x1e3c0, 0x1e3c8,
1326                 0x1e408, 0x1e40c,
1327                 0x1e440, 0x1e444,
1328                 0x1e44c, 0x1e44c,
1329                 0x1e684, 0x1e690,
1330                 0x1e6c0, 0x1e6c0,
1331                 0x1e6e0, 0x1e6e0,
1332                 0x1e700, 0x1e784,
1333                 0x1e7c0, 0x1e7c8,
1334                 0x1e808, 0x1e80c,
1335                 0x1e840, 0x1e844,
1336                 0x1e84c, 0x1e84c,
1337                 0x1ea84, 0x1ea90,
1338                 0x1eac0, 0x1eac0,
1339                 0x1eae0, 0x1eae0,
1340                 0x1eb00, 0x1eb84,
1341                 0x1ebc0, 0x1ebc8,
1342                 0x1ec08, 0x1ec0c,
1343                 0x1ec40, 0x1ec44,
1344                 0x1ec4c, 0x1ec4c,
1345                 0x1ee84, 0x1ee90,
1346                 0x1eec0, 0x1eec0,
1347                 0x1eee0, 0x1eee0,
1348                 0x1ef00, 0x1ef84,
1349                 0x1efc0, 0x1efc8,
1350                 0x1f008, 0x1f00c,
1351                 0x1f040, 0x1f044,
1352                 0x1f04c, 0x1f04c,
1353                 0x1f284, 0x1f290,
1354                 0x1f2c0, 0x1f2c0,
1355                 0x1f2e0, 0x1f2e0,
1356                 0x1f300, 0x1f384,
1357                 0x1f3c0, 0x1f3c8,
1358                 0x1f408, 0x1f40c,
1359                 0x1f440, 0x1f444,
1360                 0x1f44c, 0x1f44c,
1361                 0x1f684, 0x1f690,
1362                 0x1f6c0, 0x1f6c0,
1363                 0x1f6e0, 0x1f6e0,
1364                 0x1f700, 0x1f784,
1365                 0x1f7c0, 0x1f7c8,
1366                 0x1f808, 0x1f80c,
1367                 0x1f840, 0x1f844,
1368                 0x1f84c, 0x1f84c,
1369                 0x1fa84, 0x1fa90,
1370                 0x1fac0, 0x1fac0,
1371                 0x1fae0, 0x1fae0,
1372                 0x1fb00, 0x1fb84,
1373                 0x1fbc0, 0x1fbc8,
1374                 0x1fc08, 0x1fc0c,
1375                 0x1fc40, 0x1fc44,
1376                 0x1fc4c, 0x1fc4c,
1377                 0x1fe84, 0x1fe90,
1378                 0x1fec0, 0x1fec0,
1379                 0x1fee0, 0x1fee0,
1380                 0x1ff00, 0x1ff84,
1381                 0x1ffc0, 0x1ffc8,
1382                 0x30000, 0x30030,
1383                 0x30038, 0x30038,
1384                 0x30040, 0x30040,
1385                 0x30100, 0x30144,
1386                 0x30190, 0x301a0,
1387                 0x301a8, 0x301b8,
1388                 0x301c4, 0x301c8,
1389                 0x301d0, 0x301d0,
1390                 0x30200, 0x30318,
1391                 0x30400, 0x304b4,
1392                 0x304c0, 0x3052c,
1393                 0x30540, 0x3061c,
1394                 0x30800, 0x30828,
1395                 0x30834, 0x30834,
1396                 0x308c0, 0x30908,
1397                 0x30910, 0x309ac,
1398                 0x30a00, 0x30a14,
1399                 0x30a1c, 0x30a2c,
1400                 0x30a44, 0x30a50,
1401                 0x30a74, 0x30a74,
1402                 0x30a7c, 0x30afc,
1403                 0x30b08, 0x30c24,
1404                 0x30d00, 0x30d00,
1405                 0x30d08, 0x30d14,
1406                 0x30d1c, 0x30d20,
1407                 0x30d3c, 0x30d3c,
1408                 0x30d48, 0x30d50,
1409                 0x31200, 0x3120c,
1410                 0x31220, 0x31220,
1411                 0x31240, 0x31240,
1412                 0x31600, 0x3160c,
1413                 0x31a00, 0x31a1c,
1414                 0x31e00, 0x31e20,
1415                 0x31e38, 0x31e3c,
1416                 0x31e80, 0x31e80,
1417                 0x31e88, 0x31ea8,
1418                 0x31eb0, 0x31eb4,
1419                 0x31ec8, 0x31ed4,
1420                 0x31fb8, 0x32004,
1421                 0x32200, 0x32200,
1422                 0x32208, 0x32240,
1423                 0x32248, 0x32280,
1424                 0x32288, 0x322c0,
1425                 0x322c8, 0x322fc,
1426                 0x32600, 0x32630,
1427                 0x32a00, 0x32abc,
1428                 0x32b00, 0x32b10,
1429                 0x32b20, 0x32b30,
1430                 0x32b40, 0x32b50,
1431                 0x32b60, 0x32b70,
1432                 0x33000, 0x33028,
1433                 0x33030, 0x33048,
1434                 0x33060, 0x33068,
1435                 0x33070, 0x3309c,
1436                 0x330f0, 0x33128,
1437                 0x33130, 0x33148,
1438                 0x33160, 0x33168,
1439                 0x33170, 0x3319c,
1440                 0x331f0, 0x33238,
1441                 0x33240, 0x33240,
1442                 0x33248, 0x33250,
1443                 0x3325c, 0x33264,
1444                 0x33270, 0x332b8,
1445                 0x332c0, 0x332e4,
1446                 0x332f8, 0x33338,
1447                 0x33340, 0x33340,
1448                 0x33348, 0x33350,
1449                 0x3335c, 0x33364,
1450                 0x33370, 0x333b8,
1451                 0x333c0, 0x333e4,
1452                 0x333f8, 0x33428,
1453                 0x33430, 0x33448,
1454                 0x33460, 0x33468,
1455                 0x33470, 0x3349c,
1456                 0x334f0, 0x33528,
1457                 0x33530, 0x33548,
1458                 0x33560, 0x33568,
1459                 0x33570, 0x3359c,
1460                 0x335f0, 0x33638,
1461                 0x33640, 0x33640,
1462                 0x33648, 0x33650,
1463                 0x3365c, 0x33664,
1464                 0x33670, 0x336b8,
1465                 0x336c0, 0x336e4,
1466                 0x336f8, 0x33738,
1467                 0x33740, 0x33740,
1468                 0x33748, 0x33750,
1469                 0x3375c, 0x33764,
1470                 0x33770, 0x337b8,
1471                 0x337c0, 0x337e4,
1472                 0x337f8, 0x337fc,
1473                 0x33814, 0x33814,
1474                 0x3382c, 0x3382c,
1475                 0x33880, 0x3388c,
1476                 0x338e8, 0x338ec,
1477                 0x33900, 0x33928,
1478                 0x33930, 0x33948,
1479                 0x33960, 0x33968,
1480                 0x33970, 0x3399c,
1481                 0x339f0, 0x33a38,
1482                 0x33a40, 0x33a40,
1483                 0x33a48, 0x33a50,
1484                 0x33a5c, 0x33a64,
1485                 0x33a70, 0x33ab8,
1486                 0x33ac0, 0x33ae4,
1487                 0x33af8, 0x33b10,
1488                 0x33b28, 0x33b28,
1489                 0x33b3c, 0x33b50,
1490                 0x33bf0, 0x33c10,
1491                 0x33c28, 0x33c28,
1492                 0x33c3c, 0x33c50,
1493                 0x33cf0, 0x33cfc,
1494                 0x34000, 0x34030,
1495                 0x34038, 0x34038,
1496                 0x34040, 0x34040,
1497                 0x34100, 0x34144,
1498                 0x34190, 0x341a0,
1499                 0x341a8, 0x341b8,
1500                 0x341c4, 0x341c8,
1501                 0x341d0, 0x341d0,
1502                 0x34200, 0x34318,
1503                 0x34400, 0x344b4,
1504                 0x344c0, 0x3452c,
1505                 0x34540, 0x3461c,
1506                 0x34800, 0x34828,
1507                 0x34834, 0x34834,
1508                 0x348c0, 0x34908,
1509                 0x34910, 0x349ac,
1510                 0x34a00, 0x34a14,
1511                 0x34a1c, 0x34a2c,
1512                 0x34a44, 0x34a50,
1513                 0x34a74, 0x34a74,
1514                 0x34a7c, 0x34afc,
1515                 0x34b08, 0x34c24,
1516                 0x34d00, 0x34d00,
1517                 0x34d08, 0x34d14,
1518                 0x34d1c, 0x34d20,
1519                 0x34d3c, 0x34d3c,
1520                 0x34d48, 0x34d50,
1521                 0x35200, 0x3520c,
1522                 0x35220, 0x35220,
1523                 0x35240, 0x35240,
1524                 0x35600, 0x3560c,
1525                 0x35a00, 0x35a1c,
1526                 0x35e00, 0x35e20,
1527                 0x35e38, 0x35e3c,
1528                 0x35e80, 0x35e80,
1529                 0x35e88, 0x35ea8,
1530                 0x35eb0, 0x35eb4,
1531                 0x35ec8, 0x35ed4,
1532                 0x35fb8, 0x36004,
1533                 0x36200, 0x36200,
1534                 0x36208, 0x36240,
1535                 0x36248, 0x36280,
1536                 0x36288, 0x362c0,
1537                 0x362c8, 0x362fc,
1538                 0x36600, 0x36630,
1539                 0x36a00, 0x36abc,
1540                 0x36b00, 0x36b10,
1541                 0x36b20, 0x36b30,
1542                 0x36b40, 0x36b50,
1543                 0x36b60, 0x36b70,
1544                 0x37000, 0x37028,
1545                 0x37030, 0x37048,
1546                 0x37060, 0x37068,
1547                 0x37070, 0x3709c,
1548                 0x370f0, 0x37128,
1549                 0x37130, 0x37148,
1550                 0x37160, 0x37168,
1551                 0x37170, 0x3719c,
1552                 0x371f0, 0x37238,
1553                 0x37240, 0x37240,
1554                 0x37248, 0x37250,
1555                 0x3725c, 0x37264,
1556                 0x37270, 0x372b8,
1557                 0x372c0, 0x372e4,
1558                 0x372f8, 0x37338,
1559                 0x37340, 0x37340,
1560                 0x37348, 0x37350,
1561                 0x3735c, 0x37364,
1562                 0x37370, 0x373b8,
1563                 0x373c0, 0x373e4,
1564                 0x373f8, 0x37428,
1565                 0x37430, 0x37448,
1566                 0x37460, 0x37468,
1567                 0x37470, 0x3749c,
1568                 0x374f0, 0x37528,
1569                 0x37530, 0x37548,
1570                 0x37560, 0x37568,
1571                 0x37570, 0x3759c,
1572                 0x375f0, 0x37638,
1573                 0x37640, 0x37640,
1574                 0x37648, 0x37650,
1575                 0x3765c, 0x37664,
1576                 0x37670, 0x376b8,
1577                 0x376c0, 0x376e4,
1578                 0x376f8, 0x37738,
1579                 0x37740, 0x37740,
1580                 0x37748, 0x37750,
1581                 0x3775c, 0x37764,
1582                 0x37770, 0x377b8,
1583                 0x377c0, 0x377e4,
1584                 0x377f8, 0x377fc,
1585                 0x37814, 0x37814,
1586                 0x3782c, 0x3782c,
1587                 0x37880, 0x3788c,
1588                 0x378e8, 0x378ec,
1589                 0x37900, 0x37928,
1590                 0x37930, 0x37948,
1591                 0x37960, 0x37968,
1592                 0x37970, 0x3799c,
1593                 0x379f0, 0x37a38,
1594                 0x37a40, 0x37a40,
1595                 0x37a48, 0x37a50,
1596                 0x37a5c, 0x37a64,
1597                 0x37a70, 0x37ab8,
1598                 0x37ac0, 0x37ae4,
1599                 0x37af8, 0x37b10,
1600                 0x37b28, 0x37b28,
1601                 0x37b3c, 0x37b50,
1602                 0x37bf0, 0x37c10,
1603                 0x37c28, 0x37c28,
1604                 0x37c3c, 0x37c50,
1605                 0x37cf0, 0x37cfc,
1606                 0x38000, 0x38030,
1607                 0x38038, 0x38038,
1608                 0x38040, 0x38040,
1609                 0x38100, 0x38144,
1610                 0x38190, 0x381a0,
1611                 0x381a8, 0x381b8,
1612                 0x381c4, 0x381c8,
1613                 0x381d0, 0x381d0,
1614                 0x38200, 0x38318,
1615                 0x38400, 0x384b4,
1616                 0x384c0, 0x3852c,
1617                 0x38540, 0x3861c,
1618                 0x38800, 0x38828,
1619                 0x38834, 0x38834,
1620                 0x388c0, 0x38908,
1621                 0x38910, 0x389ac,
1622                 0x38a00, 0x38a14,
1623                 0x38a1c, 0x38a2c,
1624                 0x38a44, 0x38a50,
1625                 0x38a74, 0x38a74,
1626                 0x38a7c, 0x38afc,
1627                 0x38b08, 0x38c24,
1628                 0x38d00, 0x38d00,
1629                 0x38d08, 0x38d14,
1630                 0x38d1c, 0x38d20,
1631                 0x38d3c, 0x38d3c,
1632                 0x38d48, 0x38d50,
1633                 0x39200, 0x3920c,
1634                 0x39220, 0x39220,
1635                 0x39240, 0x39240,
1636                 0x39600, 0x3960c,
1637                 0x39a00, 0x39a1c,
1638                 0x39e00, 0x39e20,
1639                 0x39e38, 0x39e3c,
1640                 0x39e80, 0x39e80,
1641                 0x39e88, 0x39ea8,
1642                 0x39eb0, 0x39eb4,
1643                 0x39ec8, 0x39ed4,
1644                 0x39fb8, 0x3a004,
1645                 0x3a200, 0x3a200,
1646                 0x3a208, 0x3a240,
1647                 0x3a248, 0x3a280,
1648                 0x3a288, 0x3a2c0,
1649                 0x3a2c8, 0x3a2fc,
1650                 0x3a600, 0x3a630,
1651                 0x3aa00, 0x3aabc,
1652                 0x3ab00, 0x3ab10,
1653                 0x3ab20, 0x3ab30,
1654                 0x3ab40, 0x3ab50,
1655                 0x3ab60, 0x3ab70,
1656                 0x3b000, 0x3b028,
1657                 0x3b030, 0x3b048,
1658                 0x3b060, 0x3b068,
1659                 0x3b070, 0x3b09c,
1660                 0x3b0f0, 0x3b128,
1661                 0x3b130, 0x3b148,
1662                 0x3b160, 0x3b168,
1663                 0x3b170, 0x3b19c,
1664                 0x3b1f0, 0x3b238,
1665                 0x3b240, 0x3b240,
1666                 0x3b248, 0x3b250,
1667                 0x3b25c, 0x3b264,
1668                 0x3b270, 0x3b2b8,
1669                 0x3b2c0, 0x3b2e4,
1670                 0x3b2f8, 0x3b338,
1671                 0x3b340, 0x3b340,
1672                 0x3b348, 0x3b350,
1673                 0x3b35c, 0x3b364,
1674                 0x3b370, 0x3b3b8,
1675                 0x3b3c0, 0x3b3e4,
1676                 0x3b3f8, 0x3b428,
1677                 0x3b430, 0x3b448,
1678                 0x3b460, 0x3b468,
1679                 0x3b470, 0x3b49c,
1680                 0x3b4f0, 0x3b528,
1681                 0x3b530, 0x3b548,
1682                 0x3b560, 0x3b568,
1683                 0x3b570, 0x3b59c,
1684                 0x3b5f0, 0x3b638,
1685                 0x3b640, 0x3b640,
1686                 0x3b648, 0x3b650,
1687                 0x3b65c, 0x3b664,
1688                 0x3b670, 0x3b6b8,
1689                 0x3b6c0, 0x3b6e4,
1690                 0x3b6f8, 0x3b738,
1691                 0x3b740, 0x3b740,
1692                 0x3b748, 0x3b750,
1693                 0x3b75c, 0x3b764,
1694                 0x3b770, 0x3b7b8,
1695                 0x3b7c0, 0x3b7e4,
1696                 0x3b7f8, 0x3b7fc,
1697                 0x3b814, 0x3b814,
1698                 0x3b82c, 0x3b82c,
1699                 0x3b880, 0x3b88c,
1700                 0x3b8e8, 0x3b8ec,
1701                 0x3b900, 0x3b928,
1702                 0x3b930, 0x3b948,
1703                 0x3b960, 0x3b968,
1704                 0x3b970, 0x3b99c,
1705                 0x3b9f0, 0x3ba38,
1706                 0x3ba40, 0x3ba40,
1707                 0x3ba48, 0x3ba50,
1708                 0x3ba5c, 0x3ba64,
1709                 0x3ba70, 0x3bab8,
1710                 0x3bac0, 0x3bae4,
1711                 0x3baf8, 0x3bb10,
1712                 0x3bb28, 0x3bb28,
1713                 0x3bb3c, 0x3bb50,
1714                 0x3bbf0, 0x3bc10,
1715                 0x3bc28, 0x3bc28,
1716                 0x3bc3c, 0x3bc50,
1717                 0x3bcf0, 0x3bcfc,
1718                 0x3c000, 0x3c030,
1719                 0x3c038, 0x3c038,
1720                 0x3c040, 0x3c040,
1721                 0x3c100, 0x3c144,
1722                 0x3c190, 0x3c1a0,
1723                 0x3c1a8, 0x3c1b8,
1724                 0x3c1c4, 0x3c1c8,
1725                 0x3c1d0, 0x3c1d0,
1726                 0x3c200, 0x3c318,
1727                 0x3c400, 0x3c4b4,
1728                 0x3c4c0, 0x3c52c,
1729                 0x3c540, 0x3c61c,
1730                 0x3c800, 0x3c828,
1731                 0x3c834, 0x3c834,
1732                 0x3c8c0, 0x3c908,
1733                 0x3c910, 0x3c9ac,
1734                 0x3ca00, 0x3ca14,
1735                 0x3ca1c, 0x3ca2c,
1736                 0x3ca44, 0x3ca50,
1737                 0x3ca74, 0x3ca74,
1738                 0x3ca7c, 0x3cafc,
1739                 0x3cb08, 0x3cc24,
1740                 0x3cd00, 0x3cd00,
1741                 0x3cd08, 0x3cd14,
1742                 0x3cd1c, 0x3cd20,
1743                 0x3cd3c, 0x3cd3c,
1744                 0x3cd48, 0x3cd50,
1745                 0x3d200, 0x3d20c,
1746                 0x3d220, 0x3d220,
1747                 0x3d240, 0x3d240,
1748                 0x3d600, 0x3d60c,
1749                 0x3da00, 0x3da1c,
1750                 0x3de00, 0x3de20,
1751                 0x3de38, 0x3de3c,
1752                 0x3de80, 0x3de80,
1753                 0x3de88, 0x3dea8,
1754                 0x3deb0, 0x3deb4,
1755                 0x3dec8, 0x3ded4,
1756                 0x3dfb8, 0x3e004,
1757                 0x3e200, 0x3e200,
1758                 0x3e208, 0x3e240,
1759                 0x3e248, 0x3e280,
1760                 0x3e288, 0x3e2c0,
1761                 0x3e2c8, 0x3e2fc,
1762                 0x3e600, 0x3e630,
1763                 0x3ea00, 0x3eabc,
1764                 0x3eb00, 0x3eb10,
1765                 0x3eb20, 0x3eb30,
1766                 0x3eb40, 0x3eb50,
1767                 0x3eb60, 0x3eb70,
1768                 0x3f000, 0x3f028,
1769                 0x3f030, 0x3f048,
1770                 0x3f060, 0x3f068,
1771                 0x3f070, 0x3f09c,
1772                 0x3f0f0, 0x3f128,
1773                 0x3f130, 0x3f148,
1774                 0x3f160, 0x3f168,
1775                 0x3f170, 0x3f19c,
1776                 0x3f1f0, 0x3f238,
1777                 0x3f240, 0x3f240,
1778                 0x3f248, 0x3f250,
1779                 0x3f25c, 0x3f264,
1780                 0x3f270, 0x3f2b8,
1781                 0x3f2c0, 0x3f2e4,
1782                 0x3f2f8, 0x3f338,
1783                 0x3f340, 0x3f340,
1784                 0x3f348, 0x3f350,
1785                 0x3f35c, 0x3f364,
1786                 0x3f370, 0x3f3b8,
1787                 0x3f3c0, 0x3f3e4,
1788                 0x3f3f8, 0x3f428,
1789                 0x3f430, 0x3f448,
1790                 0x3f460, 0x3f468,
1791                 0x3f470, 0x3f49c,
1792                 0x3f4f0, 0x3f528,
1793                 0x3f530, 0x3f548,
1794                 0x3f560, 0x3f568,
1795                 0x3f570, 0x3f59c,
1796                 0x3f5f0, 0x3f638,
1797                 0x3f640, 0x3f640,
1798                 0x3f648, 0x3f650,
1799                 0x3f65c, 0x3f664,
1800                 0x3f670, 0x3f6b8,
1801                 0x3f6c0, 0x3f6e4,
1802                 0x3f6f8, 0x3f738,
1803                 0x3f740, 0x3f740,
1804                 0x3f748, 0x3f750,
1805                 0x3f75c, 0x3f764,
1806                 0x3f770, 0x3f7b8,
1807                 0x3f7c0, 0x3f7e4,
1808                 0x3f7f8, 0x3f7fc,
1809                 0x3f814, 0x3f814,
1810                 0x3f82c, 0x3f82c,
1811                 0x3f880, 0x3f88c,
1812                 0x3f8e8, 0x3f8ec,
1813                 0x3f900, 0x3f928,
1814                 0x3f930, 0x3f948,
1815                 0x3f960, 0x3f968,
1816                 0x3f970, 0x3f99c,
1817                 0x3f9f0, 0x3fa38,
1818                 0x3fa40, 0x3fa40,
1819                 0x3fa48, 0x3fa50,
1820                 0x3fa5c, 0x3fa64,
1821                 0x3fa70, 0x3fab8,
1822                 0x3fac0, 0x3fae4,
1823                 0x3faf8, 0x3fb10,
1824                 0x3fb28, 0x3fb28,
1825                 0x3fb3c, 0x3fb50,
1826                 0x3fbf0, 0x3fc10,
1827                 0x3fc28, 0x3fc28,
1828                 0x3fc3c, 0x3fc50,
1829                 0x3fcf0, 0x3fcfc,
1830                 0x40000, 0x4000c,
1831                 0x40040, 0x40050,
1832                 0x40060, 0x40068,
1833                 0x4007c, 0x4008c,
1834                 0x40094, 0x400b0,
1835                 0x400c0, 0x40144,
1836                 0x40180, 0x4018c,
1837                 0x40200, 0x40254,
1838                 0x40260, 0x40264,
1839                 0x40270, 0x40288,
1840                 0x40290, 0x40298,
1841                 0x402ac, 0x402c8,
1842                 0x402d0, 0x402e0,
1843                 0x402f0, 0x402f0,
1844                 0x40300, 0x4033c,
1845                 0x403f8, 0x403fc,
1846                 0x41304, 0x413c4,
1847                 0x41400, 0x4140c,
1848                 0x41414, 0x4141c,
1849                 0x41480, 0x414d0,
1850                 0x44000, 0x44054,
1851                 0x4405c, 0x44078,
1852                 0x440c0, 0x44174,
1853                 0x44180, 0x441ac,
1854                 0x441b4, 0x441b8,
1855                 0x441c0, 0x44254,
1856                 0x4425c, 0x44278,
1857                 0x442c0, 0x44374,
1858                 0x44380, 0x443ac,
1859                 0x443b4, 0x443b8,
1860                 0x443c0, 0x44454,
1861                 0x4445c, 0x44478,
1862                 0x444c0, 0x44574,
1863                 0x44580, 0x445ac,
1864                 0x445b4, 0x445b8,
1865                 0x445c0, 0x44654,
1866                 0x4465c, 0x44678,
1867                 0x446c0, 0x44774,
1868                 0x44780, 0x447ac,
1869                 0x447b4, 0x447b8,
1870                 0x447c0, 0x44854,
1871                 0x4485c, 0x44878,
1872                 0x448c0, 0x44974,
1873                 0x44980, 0x449ac,
1874                 0x449b4, 0x449b8,
1875                 0x449c0, 0x449fc,
1876                 0x45000, 0x45004,
1877                 0x45010, 0x45030,
1878                 0x45040, 0x45060,
1879                 0x45068, 0x45068,
1880                 0x45080, 0x45084,
1881                 0x450a0, 0x450b0,
1882                 0x45200, 0x45204,
1883                 0x45210, 0x45230,
1884                 0x45240, 0x45260,
1885                 0x45268, 0x45268,
1886                 0x45280, 0x45284,
1887                 0x452a0, 0x452b0,
1888                 0x460c0, 0x460e4,
1889                 0x47000, 0x4703c,
1890                 0x47044, 0x4708c,
1891                 0x47200, 0x47250,
1892                 0x47400, 0x47408,
1893                 0x47414, 0x47420,
1894                 0x47600, 0x47618,
1895                 0x47800, 0x47814,
1896                 0x48000, 0x4800c,
1897                 0x48040, 0x48050,
1898                 0x48060, 0x48068,
1899                 0x4807c, 0x4808c,
1900                 0x48094, 0x480b0,
1901                 0x480c0, 0x48144,
1902                 0x48180, 0x4818c,
1903                 0x48200, 0x48254,
1904                 0x48260, 0x48264,
1905                 0x48270, 0x48288,
1906                 0x48290, 0x48298,
1907                 0x482ac, 0x482c8,
1908                 0x482d0, 0x482e0,
1909                 0x482f0, 0x482f0,
1910                 0x48300, 0x4833c,
1911                 0x483f8, 0x483fc,
1912                 0x49304, 0x493c4,
1913                 0x49400, 0x4940c,
1914                 0x49414, 0x4941c,
1915                 0x49480, 0x494d0,
1916                 0x4c000, 0x4c054,
1917                 0x4c05c, 0x4c078,
1918                 0x4c0c0, 0x4c174,
1919                 0x4c180, 0x4c1ac,
1920                 0x4c1b4, 0x4c1b8,
1921                 0x4c1c0, 0x4c254,
1922                 0x4c25c, 0x4c278,
1923                 0x4c2c0, 0x4c374,
1924                 0x4c380, 0x4c3ac,
1925                 0x4c3b4, 0x4c3b8,
1926                 0x4c3c0, 0x4c454,
1927                 0x4c45c, 0x4c478,
1928                 0x4c4c0, 0x4c574,
1929                 0x4c580, 0x4c5ac,
1930                 0x4c5b4, 0x4c5b8,
1931                 0x4c5c0, 0x4c654,
1932                 0x4c65c, 0x4c678,
1933                 0x4c6c0, 0x4c774,
1934                 0x4c780, 0x4c7ac,
1935                 0x4c7b4, 0x4c7b8,
1936                 0x4c7c0, 0x4c854,
1937                 0x4c85c, 0x4c878,
1938                 0x4c8c0, 0x4c974,
1939                 0x4c980, 0x4c9ac,
1940                 0x4c9b4, 0x4c9b8,
1941                 0x4c9c0, 0x4c9fc,
1942                 0x4d000, 0x4d004,
1943                 0x4d010, 0x4d030,
1944                 0x4d040, 0x4d060,
1945                 0x4d068, 0x4d068,
1946                 0x4d080, 0x4d084,
1947                 0x4d0a0, 0x4d0b0,
1948                 0x4d200, 0x4d204,
1949                 0x4d210, 0x4d230,
1950                 0x4d240, 0x4d260,
1951                 0x4d268, 0x4d268,
1952                 0x4d280, 0x4d284,
1953                 0x4d2a0, 0x4d2b0,
1954                 0x4e0c0, 0x4e0e4,
1955                 0x4f000, 0x4f03c,
1956                 0x4f044, 0x4f08c,
1957                 0x4f200, 0x4f250,
1958                 0x4f400, 0x4f408,
1959                 0x4f414, 0x4f420,
1960                 0x4f600, 0x4f618,
1961                 0x4f800, 0x4f814,
1962                 0x50000, 0x50084,
1963                 0x50090, 0x500cc,
1964                 0x50400, 0x50400,
1965                 0x50800, 0x50884,
1966                 0x50890, 0x508cc,
1967                 0x50c00, 0x50c00,
1968                 0x51000, 0x5101c,
1969                 0x51300, 0x51308,
1970         };
1971
1972         static const unsigned int t6_reg_ranges[] = {
1973                 0x1008, 0x101c,
1974                 0x1024, 0x10a8,
1975                 0x10b4, 0x10f8,
1976                 0x1100, 0x1114,
1977                 0x111c, 0x112c,
1978                 0x1138, 0x113c,
1979                 0x1144, 0x114c,
1980                 0x1180, 0x1184,
1981                 0x1190, 0x1194,
1982                 0x11a0, 0x11a4,
1983                 0x11b0, 0x11b4,
1984                 0x11fc, 0x1258,
1985                 0x1280, 0x12d4,
1986                 0x12d9, 0x12d9,
1987                 0x12de, 0x12de,
1988                 0x12e3, 0x12e3,
1989                 0x12e8, 0x133c,
1990                 0x1800, 0x18fc,
1991                 0x3000, 0x302c,
1992                 0x3060, 0x30b0,
1993                 0x30b8, 0x30d8,
1994                 0x30e0, 0x30fc,
1995                 0x3140, 0x357c,
1996                 0x35a8, 0x35cc,
1997                 0x35ec, 0x35ec,
1998                 0x3600, 0x5624,
1999                 0x56cc, 0x56ec,
2000                 0x56f4, 0x5720,
2001                 0x5728, 0x575c,
2002                 0x580c, 0x5814,
2003                 0x5890, 0x589c,
2004                 0x58a4, 0x58ac,
2005                 0x58b8, 0x58bc,
2006                 0x5940, 0x595c,
2007                 0x5980, 0x598c,
2008                 0x59b0, 0x59c8,
2009                 0x59d0, 0x59dc,
2010                 0x59fc, 0x5a18,
2011                 0x5a60, 0x5a6c,
2012                 0x5a80, 0x5a8c,
2013                 0x5a94, 0x5a9c,
2014                 0x5b94, 0x5bfc,
2015                 0x5c10, 0x5e48,
2016                 0x5e50, 0x5e94,
2017                 0x5ea0, 0x5eb0,
2018                 0x5ec0, 0x5ec0,
2019                 0x5ec8, 0x5ed0,
2020                 0x6000, 0x6020,
2021                 0x6028, 0x6040,
2022                 0x6058, 0x609c,
2023                 0x60a8, 0x619c,
2024                 0x7700, 0x7798,
2025                 0x77c0, 0x7880,
2026                 0x78cc, 0x78fc,
2027                 0x7b00, 0x7b58,
2028                 0x7b60, 0x7b84,
2029                 0x7b8c, 0x7c54,
2030                 0x7d00, 0x7d38,
2031                 0x7d40, 0x7d84,
2032                 0x7d8c, 0x7ddc,
2033                 0x7de4, 0x7e04,
2034                 0x7e10, 0x7e1c,
2035                 0x7e24, 0x7e38,
2036                 0x7e40, 0x7e44,
2037                 0x7e4c, 0x7e78,
2038                 0x7e80, 0x7edc,
2039                 0x7ee8, 0x7efc,
2040                 0x8dc0, 0x8de4,
2041                 0x8df8, 0x8e04,
2042                 0x8e10, 0x8e84,
2043                 0x8ea0, 0x8f88,
2044                 0x8fb8, 0x9058,
2045                 0x9060, 0x9060,
2046                 0x9068, 0x90f8,
2047                 0x9100, 0x9124,
2048                 0x9400, 0x9470,
2049                 0x9600, 0x9600,
2050                 0x9608, 0x9638,
2051                 0x9640, 0x9704,
2052                 0x9710, 0x971c,
2053                 0x9800, 0x9808,
2054                 0x9820, 0x983c,
2055                 0x9850, 0x9864,
2056                 0x9c00, 0x9c6c,
2057                 0x9c80, 0x9cec,
2058                 0x9d00, 0x9d6c,
2059                 0x9d80, 0x9dec,
2060                 0x9e00, 0x9e6c,
2061                 0x9e80, 0x9eec,
2062                 0x9f00, 0x9f6c,
2063                 0x9f80, 0xa020,
2064                 0xd004, 0xd03c,
2065                 0xd100, 0xd118,
2066                 0xd200, 0xd214,
2067                 0xd220, 0xd234,
2068                 0xd240, 0xd254,
2069                 0xd260, 0xd274,
2070                 0xd280, 0xd294,
2071                 0xd2a0, 0xd2b4,
2072                 0xd2c0, 0xd2d4,
2073                 0xd2e0, 0xd2f4,
2074                 0xd300, 0xd31c,
2075                 0xdfc0, 0xdfe0,
2076                 0xe000, 0xf008,
2077                 0x11000, 0x11014,
2078                 0x11048, 0x1106c,
2079                 0x11074, 0x11088,
2080                 0x11098, 0x11120,
2081                 0x1112c, 0x1117c,
2082                 0x11190, 0x112e0,
2083                 0x11300, 0x1130c,
2084                 0x12000, 0x1206c,
2085                 0x19040, 0x1906c,
2086                 0x19078, 0x19080,
2087                 0x1908c, 0x190e8,
2088                 0x190f0, 0x190f8,
2089                 0x19100, 0x19110,
2090                 0x19120, 0x19124,
2091                 0x19150, 0x19194,
2092                 0x1919c, 0x191b0,
2093                 0x191d0, 0x191e8,
2094                 0x19238, 0x19290,
2095                 0x192a4, 0x192b0,
2096                 0x192bc, 0x192bc,
2097                 0x19348, 0x1934c,
2098                 0x193f8, 0x19418,
2099                 0x19420, 0x19428,
2100                 0x19430, 0x19444,
2101                 0x1944c, 0x1946c,
2102                 0x19474, 0x19474,
2103                 0x19490, 0x194cc,
2104                 0x194f0, 0x194f8,
2105                 0x19c00, 0x19c48,
2106                 0x19c50, 0x19c80,
2107                 0x19c94, 0x19c98,
2108                 0x19ca0, 0x19cbc,
2109                 0x19ce4, 0x19ce4,
2110                 0x19cf0, 0x19cf8,
2111                 0x19d00, 0x19d28,
2112                 0x19d50, 0x19d78,
2113                 0x19d94, 0x19d98,
2114                 0x19da0, 0x19dc8,
2115                 0x19df0, 0x19e10,
2116                 0x19e50, 0x19e6c,
2117                 0x19ea0, 0x19ebc,
2118                 0x19ec4, 0x19ef4,
2119                 0x19f04, 0x19f2c,
2120                 0x19f34, 0x19f34,
2121                 0x19f40, 0x19f50,
2122                 0x19f90, 0x19fac,
2123                 0x19fc4, 0x19fc8,
2124                 0x19fd0, 0x19fe4,
2125                 0x1a000, 0x1a004,
2126                 0x1a010, 0x1a06c,
2127                 0x1a0b0, 0x1a0e4,
2128                 0x1a0ec, 0x1a0f8,
2129                 0x1a100, 0x1a108,
2130                 0x1a114, 0x1a120,
2131                 0x1a128, 0x1a130,
2132                 0x1a138, 0x1a138,
2133                 0x1a190, 0x1a1c4,
2134                 0x1a1fc, 0x1a1fc,
2135                 0x1e008, 0x1e00c,
2136                 0x1e040, 0x1e044,
2137                 0x1e04c, 0x1e04c,
2138                 0x1e284, 0x1e290,
2139                 0x1e2c0, 0x1e2c0,
2140                 0x1e2e0, 0x1e2e0,
2141                 0x1e300, 0x1e384,
2142                 0x1e3c0, 0x1e3c8,
2143                 0x1e408, 0x1e40c,
2144                 0x1e440, 0x1e444,
2145                 0x1e44c, 0x1e44c,
2146                 0x1e684, 0x1e690,
2147                 0x1e6c0, 0x1e6c0,
2148                 0x1e6e0, 0x1e6e0,
2149                 0x1e700, 0x1e784,
2150                 0x1e7c0, 0x1e7c8,
2151                 0x1e808, 0x1e80c,
2152                 0x1e840, 0x1e844,
2153                 0x1e84c, 0x1e84c,
2154                 0x1ea84, 0x1ea90,
2155                 0x1eac0, 0x1eac0,
2156                 0x1eae0, 0x1eae0,
2157                 0x1eb00, 0x1eb84,
2158                 0x1ebc0, 0x1ebc8,
2159                 0x1ec08, 0x1ec0c,
2160                 0x1ec40, 0x1ec44,
2161                 0x1ec4c, 0x1ec4c,
2162                 0x1ee84, 0x1ee90,
2163                 0x1eec0, 0x1eec0,
2164                 0x1eee0, 0x1eee0,
2165                 0x1ef00, 0x1ef84,
2166                 0x1efc0, 0x1efc8,
2167                 0x1f008, 0x1f00c,
2168                 0x1f040, 0x1f044,
2169                 0x1f04c, 0x1f04c,
2170                 0x1f284, 0x1f290,
2171                 0x1f2c0, 0x1f2c0,
2172                 0x1f2e0, 0x1f2e0,
2173                 0x1f300, 0x1f384,
2174                 0x1f3c0, 0x1f3c8,
2175                 0x1f408, 0x1f40c,
2176                 0x1f440, 0x1f444,
2177                 0x1f44c, 0x1f44c,
2178                 0x1f684, 0x1f690,
2179                 0x1f6c0, 0x1f6c0,
2180                 0x1f6e0, 0x1f6e0,
2181                 0x1f700, 0x1f784,
2182                 0x1f7c0, 0x1f7c8,
2183                 0x1f808, 0x1f80c,
2184                 0x1f840, 0x1f844,
2185                 0x1f84c, 0x1f84c,
2186                 0x1fa84, 0x1fa90,
2187                 0x1fac0, 0x1fac0,
2188                 0x1fae0, 0x1fae0,
2189                 0x1fb00, 0x1fb84,
2190                 0x1fbc0, 0x1fbc8,
2191                 0x1fc08, 0x1fc0c,
2192                 0x1fc40, 0x1fc44,
2193                 0x1fc4c, 0x1fc4c,
2194                 0x1fe84, 0x1fe90,
2195                 0x1fec0, 0x1fec0,
2196                 0x1fee0, 0x1fee0,
2197                 0x1ff00, 0x1ff84,
2198                 0x1ffc0, 0x1ffc8,
2199                 0x30000, 0x30030,
2200                 0x30038, 0x30038,
2201                 0x30040, 0x30040,
2202                 0x30048, 0x30048,
2203                 0x30050, 0x30050,
2204                 0x3005c, 0x30060,
2205                 0x30068, 0x30068,
2206                 0x30070, 0x30070,
2207                 0x30100, 0x30168,
2208                 0x30190, 0x301a0,
2209                 0x301a8, 0x301b8,
2210                 0x301c4, 0x301c8,
2211                 0x301d0, 0x301d0,
2212                 0x30200, 0x30320,
2213                 0x30400, 0x304b4,
2214                 0x304c0, 0x3052c,
2215                 0x30540, 0x3061c,
2216                 0x30800, 0x308a0,
2217                 0x308c0, 0x30908,
2218                 0x30910, 0x309b8,
2219                 0x30a00, 0x30a04,
2220                 0x30a0c, 0x30a14,
2221                 0x30a1c, 0x30a2c,
2222                 0x30a44, 0x30a50,
2223                 0x30a74, 0x30a74,
2224                 0x30a7c, 0x30afc,
2225                 0x30b08, 0x30c24,
2226                 0x30d00, 0x30d14,
2227                 0x30d1c, 0x30d3c,
2228                 0x30d44, 0x30d4c,
2229                 0x30d54, 0x30d74,
2230                 0x30d7c, 0x30d7c,
2231                 0x30de0, 0x30de0,
2232                 0x30e00, 0x30ed4,
2233                 0x30f00, 0x30fa4,
2234                 0x30fc0, 0x30fc4,
2235                 0x31000, 0x31004,
2236                 0x31080, 0x310fc,
2237                 0x31208, 0x31220,
2238                 0x3123c, 0x31254,
2239                 0x31300, 0x31300,
2240                 0x31308, 0x3131c,
2241                 0x31338, 0x3133c,
2242                 0x31380, 0x31380,
2243                 0x31388, 0x313a8,
2244                 0x313b4, 0x313b4,
2245                 0x31400, 0x31420,
2246                 0x31438, 0x3143c,
2247                 0x31480, 0x31480,
2248                 0x314a8, 0x314a8,
2249                 0x314b0, 0x314b4,
2250                 0x314c8, 0x314d4,
2251                 0x31a40, 0x31a4c,
2252                 0x31af0, 0x31b20,
2253                 0x31b38, 0x31b3c,
2254                 0x31b80, 0x31b80,
2255                 0x31ba8, 0x31ba8,
2256                 0x31bb0, 0x31bb4,
2257                 0x31bc8, 0x31bd4,
2258                 0x32140, 0x3218c,
2259                 0x321f0, 0x321f4,
2260                 0x32200, 0x32200,
2261                 0x32218, 0x32218,
2262                 0x32400, 0x32400,
2263                 0x32408, 0x3241c,
2264                 0x32618, 0x32620,
2265                 0x32664, 0x32664,
2266                 0x326a8, 0x326a8,
2267                 0x326ec, 0x326ec,
2268                 0x32a00, 0x32abc,
2269                 0x32b00, 0x32b38,
2270                 0x32b40, 0x32b58,
2271                 0x32b60, 0x32b78,
2272                 0x32c00, 0x32c00,
2273                 0x32c08, 0x32c3c,
2274                 0x32e00, 0x32e2c,
2275                 0x32f00, 0x32f2c,
2276                 0x33000, 0x3302c,
2277                 0x33034, 0x33050,
2278                 0x33058, 0x33058,
2279                 0x33060, 0x3308c,
2280                 0x3309c, 0x330ac,
2281                 0x330c0, 0x330c0,
2282                 0x330c8, 0x330d0,
2283                 0x330d8, 0x330e0,
2284                 0x330ec, 0x3312c,
2285                 0x33134, 0x33150,
2286                 0x33158, 0x33158,
2287                 0x33160, 0x3318c,
2288                 0x3319c, 0x331ac,
2289                 0x331c0, 0x331c0,
2290                 0x331c8, 0x331d0,
2291                 0x331d8, 0x331e0,
2292                 0x331ec, 0x33290,
2293                 0x33298, 0x332c4,
2294                 0x332e4, 0x33390,
2295                 0x33398, 0x333c4,
2296                 0x333e4, 0x3342c,
2297                 0x33434, 0x33450,
2298                 0x33458, 0x33458,
2299                 0x33460, 0x3348c,
2300                 0x3349c, 0x334ac,
2301                 0x334c0, 0x334c0,
2302                 0x334c8, 0x334d0,
2303                 0x334d8, 0x334e0,
2304                 0x334ec, 0x3352c,
2305                 0x33534, 0x33550,
2306                 0x33558, 0x33558,
2307                 0x33560, 0x3358c,
2308                 0x3359c, 0x335ac,
2309                 0x335c0, 0x335c0,
2310                 0x335c8, 0x335d0,
2311                 0x335d8, 0x335e0,
2312                 0x335ec, 0x33690,
2313                 0x33698, 0x336c4,
2314                 0x336e4, 0x33790,
2315                 0x33798, 0x337c4,
2316                 0x337e4, 0x337fc,
2317                 0x33814, 0x33814,
2318                 0x33854, 0x33868,
2319                 0x33880, 0x3388c,
2320                 0x338c0, 0x338d0,
2321                 0x338e8, 0x338ec,
2322                 0x33900, 0x3392c,
2323                 0x33934, 0x33950,
2324                 0x33958, 0x33958,
2325                 0x33960, 0x3398c,
2326                 0x3399c, 0x339ac,
2327                 0x339c0, 0x339c0,
2328                 0x339c8, 0x339d0,
2329                 0x339d8, 0x339e0,
2330                 0x339ec, 0x33a90,
2331                 0x33a98, 0x33ac4,
2332                 0x33ae4, 0x33b10,
2333                 0x33b24, 0x33b28,
2334                 0x33b38, 0x33b50,
2335                 0x33bf0, 0x33c10,
2336                 0x33c24, 0x33c28,
2337                 0x33c38, 0x33c50,
2338                 0x33cf0, 0x33cfc,
2339                 0x34000, 0x34030,
2340                 0x34038, 0x34038,
2341                 0x34040, 0x34040,
2342                 0x34048, 0x34048,
2343                 0x34050, 0x34050,
2344                 0x3405c, 0x34060,
2345                 0x34068, 0x34068,
2346                 0x34070, 0x34070,
2347                 0x34100, 0x34168,
2348                 0x34190, 0x341a0,
2349                 0x341a8, 0x341b8,
2350                 0x341c4, 0x341c8,
2351                 0x341d0, 0x341d0,
2352                 0x34200, 0x34320,
2353                 0x34400, 0x344b4,
2354                 0x344c0, 0x3452c,
2355                 0x34540, 0x3461c,
2356                 0x34800, 0x348a0,
2357                 0x348c0, 0x34908,
2358                 0x34910, 0x349b8,
2359                 0x34a00, 0x34a04,
2360                 0x34a0c, 0x34a14,
2361                 0x34a1c, 0x34a2c,
2362                 0x34a44, 0x34a50,
2363                 0x34a74, 0x34a74,
2364                 0x34a7c, 0x34afc,
2365                 0x34b08, 0x34c24,
2366                 0x34d00, 0x34d14,
2367                 0x34d1c, 0x34d3c,
2368                 0x34d44, 0x34d4c,
2369                 0x34d54, 0x34d74,
2370                 0x34d7c, 0x34d7c,
2371                 0x34de0, 0x34de0,
2372                 0x34e00, 0x34ed4,
2373                 0x34f00, 0x34fa4,
2374                 0x34fc0, 0x34fc4,
2375                 0x35000, 0x35004,
2376                 0x35080, 0x350fc,
2377                 0x35208, 0x35220,
2378                 0x3523c, 0x35254,
2379                 0x35300, 0x35300,
2380                 0x35308, 0x3531c,
2381                 0x35338, 0x3533c,
2382                 0x35380, 0x35380,
2383                 0x35388, 0x353a8,
2384                 0x353b4, 0x353b4,
2385                 0x35400, 0x35420,
2386                 0x35438, 0x3543c,
2387                 0x35480, 0x35480,
2388                 0x354a8, 0x354a8,
2389                 0x354b0, 0x354b4,
2390                 0x354c8, 0x354d4,
2391                 0x35a40, 0x35a4c,
2392                 0x35af0, 0x35b20,
2393                 0x35b38, 0x35b3c,
2394                 0x35b80, 0x35b80,
2395                 0x35ba8, 0x35ba8,
2396                 0x35bb0, 0x35bb4,
2397                 0x35bc8, 0x35bd4,
2398                 0x36140, 0x3618c,
2399                 0x361f0, 0x361f4,
2400                 0x36200, 0x36200,
2401                 0x36218, 0x36218,
2402                 0x36400, 0x36400,
2403                 0x36408, 0x3641c,
2404                 0x36618, 0x36620,
2405                 0x36664, 0x36664,
2406                 0x366a8, 0x366a8,
2407                 0x366ec, 0x366ec,
2408                 0x36a00, 0x36abc,
2409                 0x36b00, 0x36b38,
2410                 0x36b40, 0x36b58,
2411                 0x36b60, 0x36b78,
2412                 0x36c00, 0x36c00,
2413                 0x36c08, 0x36c3c,
2414                 0x36e00, 0x36e2c,
2415                 0x36f00, 0x36f2c,
2416                 0x37000, 0x3702c,
2417                 0x37034, 0x37050,
2418                 0x37058, 0x37058,
2419                 0x37060, 0x3708c,
2420                 0x3709c, 0x370ac,
2421                 0x370c0, 0x370c0,
2422                 0x370c8, 0x370d0,
2423                 0x370d8, 0x370e0,
2424                 0x370ec, 0x3712c,
2425                 0x37134, 0x37150,
2426                 0x37158, 0x37158,
2427                 0x37160, 0x3718c,
2428                 0x3719c, 0x371ac,
2429                 0x371c0, 0x371c0,
2430                 0x371c8, 0x371d0,
2431                 0x371d8, 0x371e0,
2432                 0x371ec, 0x37290,
2433                 0x37298, 0x372c4,
2434                 0x372e4, 0x37390,
2435                 0x37398, 0x373c4,
2436                 0x373e4, 0x3742c,
2437                 0x37434, 0x37450,
2438                 0x37458, 0x37458,
2439                 0x37460, 0x3748c,
2440                 0x3749c, 0x374ac,
2441                 0x374c0, 0x374c0,
2442                 0x374c8, 0x374d0,
2443                 0x374d8, 0x374e0,
2444                 0x374ec, 0x3752c,
2445                 0x37534, 0x37550,
2446                 0x37558, 0x37558,
2447                 0x37560, 0x3758c,
2448                 0x3759c, 0x375ac,
2449                 0x375c0, 0x375c0,
2450                 0x375c8, 0x375d0,
2451                 0x375d8, 0x375e0,
2452                 0x375ec, 0x37690,
2453                 0x37698, 0x376c4,
2454                 0x376e4, 0x37790,
2455                 0x37798, 0x377c4,
2456                 0x377e4, 0x377fc,
2457                 0x37814, 0x37814,
2458                 0x37854, 0x37868,
2459                 0x37880, 0x3788c,
2460                 0x378c0, 0x378d0,
2461                 0x378e8, 0x378ec,
2462                 0x37900, 0x3792c,
2463                 0x37934, 0x37950,
2464                 0x37958, 0x37958,
2465                 0x37960, 0x3798c,
2466                 0x3799c, 0x379ac,
2467                 0x379c0, 0x379c0,
2468                 0x379c8, 0x379d0,
2469                 0x379d8, 0x379e0,
2470                 0x379ec, 0x37a90,
2471                 0x37a98, 0x37ac4,
2472                 0x37ae4, 0x37b10,
2473                 0x37b24, 0x37b28,
2474                 0x37b38, 0x37b50,
2475                 0x37bf0, 0x37c10,
2476                 0x37c24, 0x37c28,
2477                 0x37c38, 0x37c50,
2478                 0x37cf0, 0x37cfc,
2479                 0x40040, 0x40040,
2480                 0x40080, 0x40084,
2481                 0x40100, 0x40100,
2482                 0x40140, 0x401bc,
2483                 0x40200, 0x40214,
2484                 0x40228, 0x40228,
2485                 0x40240, 0x40258,
2486                 0x40280, 0x40280,
2487                 0x40304, 0x40304,
2488                 0x40330, 0x4033c,
2489                 0x41304, 0x413b8,
2490                 0x413c0, 0x413c8,
2491                 0x413d0, 0x413dc,
2492                 0x413f0, 0x413f0,
2493                 0x41400, 0x4140c,
2494                 0x41414, 0x4141c,
2495                 0x41480, 0x414d0,
2496                 0x44000, 0x4407c,
2497                 0x440c0, 0x441ac,
2498                 0x441b4, 0x4427c,
2499                 0x442c0, 0x443ac,
2500                 0x443b4, 0x4447c,
2501                 0x444c0, 0x445ac,
2502                 0x445b4, 0x4467c,
2503                 0x446c0, 0x447ac,
2504                 0x447b4, 0x4487c,
2505                 0x448c0, 0x449ac,
2506                 0x449b4, 0x44a7c,
2507                 0x44ac0, 0x44bac,
2508                 0x44bb4, 0x44c7c,
2509                 0x44cc0, 0x44dac,
2510                 0x44db4, 0x44e7c,
2511                 0x44ec0, 0x44fac,
2512                 0x44fb4, 0x4507c,
2513                 0x450c0, 0x451ac,
2514                 0x451b4, 0x451fc,
2515                 0x45800, 0x45804,
2516                 0x45810, 0x45830,
2517                 0x45840, 0x45860,
2518                 0x45868, 0x45868,
2519                 0x45880, 0x45884,
2520                 0x458a0, 0x458b0,
2521                 0x45a00, 0x45a04,
2522                 0x45a10, 0x45a30,
2523                 0x45a40, 0x45a60,
2524                 0x45a68, 0x45a68,
2525                 0x45a80, 0x45a84,
2526                 0x45aa0, 0x45ab0,
2527                 0x460c0, 0x460e4,
2528                 0x47000, 0x4703c,
2529                 0x47044, 0x4708c,
2530                 0x47200, 0x47250,
2531                 0x47400, 0x47408,
2532                 0x47414, 0x47420,
2533                 0x47600, 0x47618,
2534                 0x47800, 0x47814,
2535                 0x47820, 0x4782c,
2536                 0x50000, 0x50084,
2537                 0x50090, 0x500cc,
2538                 0x50300, 0x50384,
2539                 0x50400, 0x50400,
2540                 0x50800, 0x50884,
2541                 0x50890, 0x508cc,
2542                 0x50b00, 0x50b84,
2543                 0x50c00, 0x50c00,
2544                 0x51000, 0x51020,
2545                 0x51028, 0x510b0,
2546                 0x51300, 0x51324,
2547         };
2548
2549         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550         const unsigned int *reg_ranges;
2551         int reg_ranges_size, range;
2552         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2553
2554         /* Select the right set of register ranges to dump depending on the
2555          * adapter chip type.
2556          */
2557         switch (chip_version) {
2558         case CHELSIO_T4:
2559                 reg_ranges = t4_reg_ranges;
2560                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2561                 break;
2562
2563         case CHELSIO_T5:
2564                 reg_ranges = t5_reg_ranges;
2565                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2566                 break;
2567
2568         case CHELSIO_T6:
2569                 reg_ranges = t6_reg_ranges;
2570                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2571                 break;
2572
2573         default:
2574                 dev_err(adap->pdev_dev,
2575                         "Unsupported chip version %d\n", chip_version);
2576                 return;
2577         }
2578
2579         /* Clear the register buffer and insert the appropriate register
2580          * values selected by the above register ranges.
2581          */
2582         memset(buf, 0, buf_size);
2583         for (range = 0; range < reg_ranges_size; range += 2) {
2584                 unsigned int reg = reg_ranges[range];
2585                 unsigned int last_reg = reg_ranges[range + 1];
2586                 u32 *bufp = (u32 *)((char *)buf + reg);
2587
2588                 /* Iterate across the register range filling in the register
2589                  * buffer but don't write past the end of the register buffer.
2590                  */
2591                 while (reg <= last_reg && bufp < buf_end) {
2592                         *bufp++ = t4_read_reg(adap, reg);
2593                         reg += sizeof(u32);
2594                 }
2595         }
2596 }
2597
2598 #define EEPROM_STAT_ADDR   0x7bfc
2599 #define VPD_BASE           0x400
2600 #define VPD_BASE_OLD       0
2601 #define VPD_LEN            1024
2602 #define CHELSIO_VPD_UNIQUE_ID 0x82
2603
2604 /**
2605  *      t4_seeprom_wp - enable/disable EEPROM write protection
2606  *      @adapter: the adapter
2607  *      @enable: whether to enable or disable write protection
2608  *
2609  *      Enables or disables write protection on the serial EEPROM.
2610  */
2611 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2612 {
2613         unsigned int v = enable ? 0xc : 0;
2614         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2615         return ret < 0 ? ret : 0;
2616 }
2617
2618 /**
2619  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2620  *      @adapter: adapter to read
2621  *      @p: where to store the parameters
2622  *
2623  *      Reads card parameters stored in VPD EEPROM.
2624  */
2625 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2626 {
2627         int i, ret = 0, addr;
2628         int ec, sn, pn, na;
2629         u8 *vpd, csum;
2630         unsigned int vpdr_len, kw_offset, id_len;
2631
2632         vpd = vmalloc(VPD_LEN);
2633         if (!vpd)
2634                 return -ENOMEM;
2635
2636         /* Card information normally starts at VPD_BASE but early cards had
2637          * it at 0.
2638          */
2639         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2640         if (ret < 0)
2641                 goto out;
2642
2643         /* The VPD shall have a unique identifier specified by the PCI SIG.
2644          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2645          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2646          * is expected to automatically put this entry at the
2647          * beginning of the VPD.
2648          */
2649         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2650
2651         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2652         if (ret < 0)
2653                 goto out;
2654
2655         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2656                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2657                 ret = -EINVAL;
2658                 goto out;
2659         }
2660
2661         id_len = pci_vpd_lrdt_size(vpd);
2662         if (id_len > ID_LEN)
2663                 id_len = ID_LEN;
2664
2665         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2666         if (i < 0) {
2667                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2668                 ret = -EINVAL;
2669                 goto out;
2670         }
2671
2672         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2673         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2674         if (vpdr_len + kw_offset > VPD_LEN) {
2675                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2676                 ret = -EINVAL;
2677                 goto out;
2678         }
2679
2680 #define FIND_VPD_KW(var, name) do { \
2681         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2682         if (var < 0) { \
2683                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2684                 ret = -EINVAL; \
2685                 goto out; \
2686         } \
2687         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2688 } while (0)
2689
2690         FIND_VPD_KW(i, "RV");
2691         for (csum = 0; i >= 0; i--)
2692                 csum += vpd[i];
2693
2694         if (csum) {
2695                 dev_err(adapter->pdev_dev,
2696                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2697                 ret = -EINVAL;
2698                 goto out;
2699         }
2700
2701         FIND_VPD_KW(ec, "EC");
2702         FIND_VPD_KW(sn, "SN");
2703         FIND_VPD_KW(pn, "PN");
2704         FIND_VPD_KW(na, "NA");
2705 #undef FIND_VPD_KW
2706
2707         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2708         strim(p->id);
2709         memcpy(p->ec, vpd + ec, EC_LEN);
2710         strim(p->ec);
2711         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2712         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2713         strim(p->sn);
2714         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2715         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2716         strim(p->pn);
2717         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2718         strim((char *)p->na);
2719
2720 out:
2721         vfree(vpd);
2722         return ret < 0 ? ret : 0;
2723 }
2724
2725 /**
2726  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2727  *      @adapter: adapter to read
2728  *      @p: where to store the parameters
2729  *
2730  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2731  *      Clock.  This can only be called after a connection to the firmware
2732  *      is established.
2733  */
2734 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2735 {
2736         u32 cclk_param, cclk_val;
2737         int ret;
2738
2739         /* Grab the raw VPD parameters.
2740          */
2741         ret = t4_get_raw_vpd_params(adapter, p);
2742         if (ret)
2743                 return ret;
2744
2745         /* Ask firmware for the Core Clock since it knows how to translate the
2746          * Reference Clock ('V2') VPD field into a Core Clock value ...
2747          */
2748         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2749                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2750         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2751                               1, &cclk_param, &cclk_val);
2752
2753         if (ret)
2754                 return ret;
2755         p->cclk = cclk_val;
2756
2757         return 0;
2758 }
2759
2760 /* serial flash and firmware constants */
2761 enum {
2762         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2763
2764         /* flash command opcodes */
2765         SF_PROG_PAGE    = 2,          /* program page */
2766         SF_WR_DISABLE   = 4,          /* disable writes */
2767         SF_RD_STATUS    = 5,          /* read status register */
2768         SF_WR_ENABLE    = 6,          /* enable writes */
2769         SF_RD_DATA_FAST = 0xb,        /* read flash */
2770         SF_RD_ID        = 0x9f,       /* read ID */
2771         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2772
2773         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2774 };
2775
2776 /**
2777  *      sf1_read - read data from the serial flash
2778  *      @adapter: the adapter
2779  *      @byte_cnt: number of bytes to read
2780  *      @cont: whether another operation will be chained
2781  *      @lock: whether to lock SF for PL access only
2782  *      @valp: where to store the read data
2783  *
2784  *      Reads up to 4 bytes of data from the serial flash.  The location of
2785  *      the read needs to be specified prior to calling this by issuing the
2786  *      appropriate commands to the serial flash.
2787  */
2788 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789                     int lock, u32 *valp)
2790 {
2791         int ret;
2792
2793         if (!byte_cnt || byte_cnt > 4)
2794                 return -EINVAL;
2795         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2796                 return -EBUSY;
2797         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2798                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2799         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2800         if (!ret)
2801                 *valp = t4_read_reg(adapter, SF_DATA_A);
2802         return ret;
2803 }
2804
2805 /**
2806  *      sf1_write - write data to the serial flash
2807  *      @adapter: the adapter
2808  *      @byte_cnt: number of bytes to write
2809  *      @cont: whether another operation will be chained
2810  *      @lock: whether to lock SF for PL access only
2811  *      @val: value to write
2812  *
2813  *      Writes up to 4 bytes of data to the serial flash.  The location of
2814  *      the write needs to be specified prior to calling this by issuing the
2815  *      appropriate commands to the serial flash.
2816  */
2817 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2818                      int lock, u32 val)
2819 {
2820         if (!byte_cnt || byte_cnt > 4)
2821                 return -EINVAL;
2822         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2823                 return -EBUSY;
2824         t4_write_reg(adapter, SF_DATA_A, val);
2825         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2826                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2827         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2828 }
2829
2830 /**
2831  *      flash_wait_op - wait for a flash operation to complete
2832  *      @adapter: the adapter
2833  *      @attempts: max number of polls of the status register
2834  *      @delay: delay between polls in ms
2835  *
2836  *      Wait for a flash operation to complete by polling the status register.
2837  */
2838 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2839 {
2840         int ret;
2841         u32 status;
2842
2843         while (1) {
2844                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2845                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2846                         return ret;
2847                 if (!(status & 1))
2848                         return 0;
2849                 if (--attempts == 0)
2850                         return -EAGAIN;
2851                 if (delay)
2852                         msleep(delay);
2853         }
2854 }
2855
2856 /**
2857  *      t4_read_flash - read words from serial flash
2858  *      @adapter: the adapter
2859  *      @addr: the start address for the read
2860  *      @nwords: how many 32-bit words to read
2861  *      @data: where to store the read data
2862  *      @byte_oriented: whether to store data as bytes or as words
2863  *
2864  *      Read the specified number of 32-bit words from the serial flash.
2865  *      If @byte_oriented is set the read data is stored as a byte array
2866  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2867  *      natural endianness.
2868  */
2869 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2870                   unsigned int nwords, u32 *data, int byte_oriented)
2871 {
2872         int ret;
2873
2874         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2875                 return -EINVAL;
2876
2877         addr = swab32(addr) | SF_RD_DATA_FAST;
2878
2879         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2880             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2881                 return ret;
2882
2883         for ( ; nwords; nwords--, data++) {
2884                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2885                 if (nwords == 1)
2886                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2887                 if (ret)
2888                         return ret;
2889                 if (byte_oriented)
2890                         *data = (__force __u32)(cpu_to_be32(*data));
2891         }
2892         return 0;
2893 }
2894
2895 /**
2896  *      t4_write_flash - write up to a page of data to the serial flash
2897  *      @adapter: the adapter
2898  *      @addr: the start address to write
2899  *      @n: length of data to write in bytes
2900  *      @data: the data to write
2901  *
2902  *      Writes up to a page of data (256 bytes) to the serial flash starting
2903  *      at the given address.  All the data must be written to the same page.
2904  */
2905 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2906                           unsigned int n, const u8 *data)
2907 {
2908         int ret;
2909         u32 buf[64];
2910         unsigned int i, c, left, val, offset = addr & 0xff;
2911
2912         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2913                 return -EINVAL;
2914
2915         val = swab32(addr) | SF_PROG_PAGE;
2916
2917         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2918             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2919                 goto unlock;
2920
2921         for (left = n; left; left -= c) {
2922                 c = min(left, 4U);
2923                 for (val = 0, i = 0; i < c; ++i)
2924                         val = (val << 8) + *data++;
2925
2926                 ret = sf1_write(adapter, c, c != left, 1, val);
2927                 if (ret)
2928                         goto unlock;
2929         }
2930         ret = flash_wait_op(adapter, 8, 1);
2931         if (ret)
2932                 goto unlock;
2933
2934         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2935
2936         /* Read the page to verify the write succeeded */
2937         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2938         if (ret)
2939                 return ret;
2940
2941         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2942                 dev_err(adapter->pdev_dev,
2943                         "failed to correctly write the flash page at %#x\n",
2944                         addr);
2945                 return -EIO;
2946         }
2947         return 0;
2948
2949 unlock:
2950         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2951         return ret;
2952 }
2953
2954 /**
2955  *      t4_get_fw_version - read the firmware version
2956  *      @adapter: the adapter
2957  *      @vers: where to place the version
2958  *
2959  *      Reads the FW version from flash.
2960  */
2961 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2962 {
2963         return t4_read_flash(adapter, FLASH_FW_START +
2964                              offsetof(struct fw_hdr, fw_ver), 1,
2965                              vers, 0);
2966 }
2967
2968 /**
2969  *      t4_get_bs_version - read the firmware bootstrap version
2970  *      @adapter: the adapter
2971  *      @vers: where to place the version
2972  *
2973  *      Reads the FW Bootstrap version from flash.
2974  */
2975 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2976 {
2977         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2978                              offsetof(struct fw_hdr, fw_ver), 1,
2979                              vers, 0);
2980 }
2981
2982 /**
2983  *      t4_get_tp_version - read the TP microcode version
2984  *      @adapter: the adapter
2985  *      @vers: where to place the version
2986  *
2987  *      Reads the TP microcode version from flash.
2988  */
2989 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2990 {
2991         return t4_read_flash(adapter, FLASH_FW_START +
2992                              offsetof(struct fw_hdr, tp_microcode_ver),
2993                              1, vers, 0);
2994 }
2995
2996 /**
2997  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2998  *      @adapter: the adapter
2999  *      @vers: where to place the version
3000  *
3001  *      Reads the Expansion ROM header from FLASH and returns the version
3002  *      number (if present) through the @vers return value pointer.  We return
3003  *      this in the Firmware Version Format since it's convenient.  Return
3004  *      0 on success, -ENOENT if no Expansion ROM is present.
3005  */
3006 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3007 {
3008         struct exprom_header {
3009                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3010                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3011         } *hdr;
3012         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3013                                            sizeof(u32))];
3014         int ret;
3015
3016         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3017                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3018                             0);
3019         if (ret)
3020                 return ret;
3021
3022         hdr = (struct exprom_header *)exprom_header_buf;
3023         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3024                 return -ENOENT;
3025
3026         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3027                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3028                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3029                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3030         return 0;
3031 }
3032
3033 /**
3034  *      t4_check_fw_version - check if the FW is supported with this driver
3035  *      @adap: the adapter
3036  *
3037  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3038  *      if there's exact match, a negative error if the version could not be
3039  *      read or there's a major version mismatch
3040  */
3041 int t4_check_fw_version(struct adapter *adap)
3042 {
3043         int i, ret, major, minor, micro;
3044         int exp_major, exp_minor, exp_micro;
3045         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3046
3047         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3048         /* Try multiple times before returning error */
3049         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3050                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3051
3052         if (ret)
3053                 return ret;
3054
3055         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3056         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3057         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3058
3059         switch (chip_version) {
3060         case CHELSIO_T4:
3061                 exp_major = T4FW_MIN_VERSION_MAJOR;
3062                 exp_minor = T4FW_MIN_VERSION_MINOR;
3063                 exp_micro = T4FW_MIN_VERSION_MICRO;
3064                 break;
3065         case CHELSIO_T5:
3066                 exp_major = T5FW_MIN_VERSION_MAJOR;
3067                 exp_minor = T5FW_MIN_VERSION_MINOR;
3068                 exp_micro = T5FW_MIN_VERSION_MICRO;
3069                 break;
3070         case CHELSIO_T6:
3071                 exp_major = T6FW_MIN_VERSION_MAJOR;
3072                 exp_minor = T6FW_MIN_VERSION_MINOR;
3073                 exp_micro = T6FW_MIN_VERSION_MICRO;
3074                 break;
3075         default:
3076                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3077                         adap->chip);
3078                 return -EINVAL;
3079         }
3080
3081         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3082             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3083                 dev_err(adap->pdev_dev,
3084                         "Card has firmware version %u.%u.%u, minimum "
3085                         "supported firmware is %u.%u.%u.\n", major, minor,
3086                         micro, exp_major, exp_minor, exp_micro);
3087                 return -EFAULT;
3088         }
3089         return 0;
3090 }
3091
3092 /* Is the given firmware API compatible with the one the driver was compiled
3093  * with?
3094  */
3095 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3096 {
3097
3098         /* short circuit if it's the exact same firmware version */
3099         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3100                 return 1;
3101
3102 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3103         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3104             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3105                 return 1;
3106 #undef SAME_INTF
3107
3108         return 0;
3109 }
3110
3111 /* The firmware in the filesystem is usable, but should it be installed?
3112  * This routine explains itself in detail if it indicates the filesystem
3113  * firmware should be installed.
3114  */
3115 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3116                                 int k, int c)
3117 {
3118         const char *reason;
3119
3120         if (!card_fw_usable) {
3121                 reason = "incompatible or unusable";
3122                 goto install;
3123         }
3124
3125         if (k > c) {
3126                 reason = "older than the version supported with this driver";
3127                 goto install;
3128         }
3129
3130         return 0;
3131
3132 install:
3133         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3134                 "installing firmware %u.%u.%u.%u on card.\n",
3135                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3136                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3137                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3138                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3139
3140         return 1;
3141 }
3142
3143 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3144                const u8 *fw_data, unsigned int fw_size,
3145                struct fw_hdr *card_fw, enum dev_state state,
3146                int *reset)
3147 {
3148         int ret, card_fw_usable, fs_fw_usable;
3149         const struct fw_hdr *fs_fw;
3150         const struct fw_hdr *drv_fw;
3151
3152         drv_fw = &fw_info->fw_hdr;
3153
3154         /* Read the header of the firmware on the card */
3155         ret = t4_read_flash(adap, FLASH_FW_START,
3156                             sizeof(*card_fw) / sizeof(uint32_t),
3157                             (uint32_t *)card_fw, 1);
3158         if (ret == 0) {
3159                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3160         } else {
3161                 dev_err(adap->pdev_dev,
3162                         "Unable to read card's firmware header: %d\n", ret);
3163                 card_fw_usable = 0;
3164         }
3165
3166         if (fw_data != NULL) {
3167                 fs_fw = (const void *)fw_data;
3168                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3169         } else {
3170                 fs_fw = NULL;
3171                 fs_fw_usable = 0;
3172         }
3173
3174         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3175             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3176                 /* Common case: the firmware on the card is an exact match and
3177                  * the filesystem one is an exact match too, or the filesystem
3178                  * one is absent/incompatible.
3179                  */
3180         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3181                    should_install_fs_fw(adap, card_fw_usable,
3182                                         be32_to_cpu(fs_fw->fw_ver),
3183                                         be32_to_cpu(card_fw->fw_ver))) {
3184                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3185                                     fw_size, 0);
3186                 if (ret != 0) {
3187                         dev_err(adap->pdev_dev,
3188                                 "failed to install firmware: %d\n", ret);
3189                         goto bye;
3190                 }
3191
3192                 /* Installed successfully, update the cached header too. */
3193                 *card_fw = *fs_fw;
3194                 card_fw_usable = 1;
3195                 *reset = 0;     /* already reset as part of load_fw */
3196         }
3197
3198         if (!card_fw_usable) {
3199                 uint32_t d, c, k;
3200
3201                 d = be32_to_cpu(drv_fw->fw_ver);
3202                 c = be32_to_cpu(card_fw->fw_ver);
3203                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3204
3205                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3206                         "chip state %d, "
3207                         "driver compiled with %d.%d.%d.%d, "
3208                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3209                         state,
3210                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3211                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3212                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3213                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3214                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3215                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3216                 ret = -EINVAL;
3217                 goto bye;
3218         }
3219
3220         /* We're using whatever's on the card and it's known to be good. */
3221         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3222         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3223
3224 bye:
3225         return ret;
3226 }
3227
3228 /**
3229  *      t4_flash_erase_sectors - erase a range of flash sectors
3230  *      @adapter: the adapter
3231  *      @start: the first sector to erase
3232  *      @end: the last sector to erase
3233  *
3234  *      Erases the sectors in the given inclusive range.
3235  */
3236 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3237 {
3238         int ret = 0;
3239
3240         if (end >= adapter->params.sf_nsec)
3241                 return -EINVAL;
3242
3243         while (start <= end) {
3244                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3245                     (ret = sf1_write(adapter, 4, 0, 1,
3246                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3247                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3248                         dev_err(adapter->pdev_dev,
3249                                 "erase of flash sector %d failed, error %d\n",
3250                                 start, ret);
3251                         break;
3252                 }
3253                 start++;
3254         }
3255         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3256         return ret;
3257 }
3258
3259 /**
3260  *      t4_flash_cfg_addr - return the address of the flash configuration file
3261  *      @adapter: the adapter
3262  *
3263  *      Return the address within the flash where the Firmware Configuration
3264  *      File is stored.
3265  */
3266 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3267 {
3268         if (adapter->params.sf_size == 0x100000)
3269                 return FLASH_FPGA_CFG_START;
3270         else
3271                 return FLASH_CFG_START;
3272 }
3273
3274 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3275  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3276  * and emit an error message for mismatched firmware to save our caller the
3277  * effort ...
3278  */
3279 static bool t4_fw_matches_chip(const struct adapter *adap,
3280                                const struct fw_hdr *hdr)
3281 {
3282         /* The expression below will return FALSE for any unsupported adapter
3283          * which will keep us "honest" in the future ...
3284          */
3285         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3286             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3287             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3288                 return true;
3289
3290         dev_err(adap->pdev_dev,
3291                 "FW image (%d) is not suitable for this adapter (%d)\n",
3292                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3293         return false;
3294 }
3295
3296 /**
3297  *      t4_load_fw - download firmware
3298  *      @adap: the adapter
3299  *      @fw_data: the firmware image to write
3300  *      @size: image size
3301  *
3302  *      Write the supplied firmware image to the card's serial flash.
3303  */
3304 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3305 {
3306         u32 csum;
3307         int ret, addr;
3308         unsigned int i;
3309         u8 first_page[SF_PAGE_SIZE];
3310         const __be32 *p = (const __be32 *)fw_data;
3311         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3312         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3313         unsigned int fw_img_start = adap->params.sf_fw_start;
3314         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3315
3316         if (!size) {
3317                 dev_err(adap->pdev_dev, "FW image has no data\n");
3318                 return -EINVAL;
3319         }
3320         if (size & 511) {
3321                 dev_err(adap->pdev_dev,
3322                         "FW image size not multiple of 512 bytes\n");
3323                 return -EINVAL;
3324         }
3325         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3326                 dev_err(adap->pdev_dev,
3327                         "FW image size differs from size in FW header\n");
3328                 return -EINVAL;
3329         }
3330         if (size > FW_MAX_SIZE) {
3331                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3332                         FW_MAX_SIZE);
3333                 return -EFBIG;
3334         }
3335         if (!t4_fw_matches_chip(adap, hdr))
3336                 return -EINVAL;
3337
3338         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3339                 csum += be32_to_cpu(p[i]);
3340
3341         if (csum != 0xffffffff) {
3342                 dev_err(adap->pdev_dev,
3343                         "corrupted firmware image, checksum %#x\n", csum);
3344                 return -EINVAL;
3345         }
3346
3347         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3348         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3349         if (ret)
3350                 goto out;
3351
3352         /*
3353          * We write the correct version at the end so the driver can see a bad
3354          * version if the FW write fails.  Start by writing a copy of the
3355          * first page with a bad version.
3356          */
3357         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3358         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3359         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3360         if (ret)
3361                 goto out;
3362
3363         addr = fw_img_start;
3364         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3365                 addr += SF_PAGE_SIZE;
3366                 fw_data += SF_PAGE_SIZE;
3367                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3368                 if (ret)
3369                         goto out;
3370         }
3371
3372         ret = t4_write_flash(adap,
3373                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3374                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3375 out:
3376         if (ret)
3377                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3378                         ret);
3379         else
3380                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3381         return ret;
3382 }
3383
3384 /**
3385  *      t4_phy_fw_ver - return current PHY firmware version
3386  *      @adap: the adapter
3387  *      @phy_fw_ver: return value buffer for PHY firmware version
3388  *
3389  *      Returns the current version of external PHY firmware on the
3390  *      adapter.
3391  */
3392 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3393 {
3394         u32 param, val;
3395         int ret;
3396
3397         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3398                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3399                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3400                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3401         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3402                               &param, &val);
3403         if (ret)
3404                 return ret;
3405         *phy_fw_ver = val;
3406         return 0;
3407 }
3408
3409 /**
3410  *      t4_load_phy_fw - download port PHY firmware
3411  *      @adap: the adapter
3412  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3413  *      @win_lock: the lock to use to guard the memory copy
3414  *      @phy_fw_version: function to check PHY firmware versions
3415  *      @phy_fw_data: the PHY firmware image to write
3416  *      @phy_fw_size: image size
3417  *
3418  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3419  *      @phy_fw_version is supplied, then it will be used to determine if
3420  *      it's necessary to perform the transfer by comparing the version
3421  *      of any existing adapter PHY firmware with that of the passed in
3422  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3423  *      around the call to t4_memory_rw() which transfers the PHY firmware
3424  *      to the adapter.
3425  *
3426  *      A negative error number will be returned if an error occurs.  If
3427  *      version number support is available and there's no need to upgrade
3428  *      the firmware, 0 will be returned.  If firmware is successfully
3429  *      transferred to the adapter, 1 will be retured.
3430  *
3431  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3432  *      a result, a RESET of the adapter would cause that RAM to lose its
3433  *      contents.  Thus, loading PHY firmware on such adapters must happen
3434  *      after any FW_RESET_CMDs ...
3435  */
3436 int t4_load_phy_fw(struct adapter *adap,
3437                    int win, spinlock_t *win_lock,
3438                    int (*phy_fw_version)(const u8 *, size_t),
3439                    const u8 *phy_fw_data, size_t phy_fw_size)
3440 {
3441         unsigned long mtype = 0, maddr = 0;
3442         u32 param, val;
3443         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3444         int ret;
3445
3446         /* If we have version number support, then check to see if the adapter
3447          * already has up-to-date PHY firmware loaded.
3448          */
3449          if (phy_fw_version) {
3450                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3451                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3452                 if (ret < 0)
3453                         return ret;
3454
3455                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3456                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3457                                 "version %#x\n", cur_phy_fw_ver);
3458                         return 0;
3459                 }
3460         }
3461
3462         /* Ask the firmware where it wants us to copy the PHY firmware image.
3463          * The size of the file requires a special version of the READ coommand
3464          * which will pass the file size via the values field in PARAMS_CMD and
3465          * retrieve the return value from firmware and place it in the same
3466          * buffer values
3467          */
3468         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3469                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3470                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3471                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3472         val = phy_fw_size;
3473         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3474                                  &param, &val, 1);
3475         if (ret < 0)
3476                 return ret;
3477         mtype = val >> 8;
3478         maddr = (val & 0xff) << 16;
3479
3480         /* Copy the supplied PHY Firmware image to the adapter memory location
3481          * allocated by the adapter firmware.
3482          */
3483         if (win_lock)
3484                 spin_lock_bh(win_lock);
3485         ret = t4_memory_rw(adap, win, mtype, maddr,
3486                            phy_fw_size, (__be32 *)phy_fw_data,
3487                            T4_MEMORY_WRITE);
3488         if (win_lock)
3489                 spin_unlock_bh(win_lock);
3490         if (ret)
3491                 return ret;
3492
3493         /* Tell the firmware that the PHY firmware image has been written to
3494          * RAM and it can now start copying it over to the PHYs.  The chip
3495          * firmware will RESET the affected PHYs as part of this operation
3496          * leaving them running the new PHY firmware image.
3497          */
3498         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3499                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3500                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3501                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3502         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3503                                     &param, &val, 30000);
3504
3505         /* If we have version number support, then check to see that the new
3506          * firmware got loaded properly.
3507          */
3508         if (phy_fw_version) {
3509                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3510                 if (ret < 0)
3511                         return ret;
3512
3513                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3514                         CH_WARN(adap, "PHY Firmware did not update: "
3515                                 "version on adapter %#x, "
3516                                 "version flashed %#x\n",
3517                                 cur_phy_fw_ver, new_phy_fw_vers);
3518                         return -ENXIO;
3519                 }
3520         }
3521
3522         return 1;
3523 }
3524
3525 /**
3526  *      t4_fwcache - firmware cache operation
3527  *      @adap: the adapter
3528  *      @op  : the operation (flush or flush and invalidate)
3529  */
3530 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3531 {
3532         struct fw_params_cmd c;
3533
3534         memset(&c, 0, sizeof(c));
3535         c.op_to_vfn =
3536                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3537                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3538                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3539                             FW_PARAMS_CMD_VFN_V(0));
3540         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3541         c.param[0].mnem =
3542                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3543                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3544         c.param[0].val = cpu_to_be32(op);
3545
3546         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3547 }
3548
3549 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3550                         unsigned int *pif_req_wrptr,
3551                         unsigned int *pif_rsp_wrptr)
3552 {
3553         int i, j;
3554         u32 cfg, val, req, rsp;
3555
3556         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3557         if (cfg & LADBGEN_F)
3558                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3559
3560         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3561         req = POLADBGWRPTR_G(val);
3562         rsp = PILADBGWRPTR_G(val);
3563         if (pif_req_wrptr)
3564                 *pif_req_wrptr = req;
3565         if (pif_rsp_wrptr)
3566                 *pif_rsp_wrptr = rsp;
3567
3568         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3569                 for (j = 0; j < 6; j++) {
3570                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3571                                      PILADBGRDPTR_V(rsp));
3572                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3573                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3574                         req++;
3575                         rsp++;
3576                 }
3577                 req = (req + 2) & POLADBGRDPTR_M;
3578                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3579         }
3580         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3581 }
3582
3583 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3584 {
3585         u32 cfg;
3586         int i, j, idx;
3587
3588         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3589         if (cfg & LADBGEN_F)
3590                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3591
3592         for (i = 0; i < CIM_MALA_SIZE; i++) {
3593                 for (j = 0; j < 5; j++) {
3594                         idx = 8 * i + j;
3595                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3596                                      PILADBGRDPTR_V(idx));
3597                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3598                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3599                 }
3600         }
3601         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3602 }
3603
3604 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3605 {
3606         unsigned int i, j;
3607
3608         for (i = 0; i < 8; i++) {
3609                 u32 *p = la_buf + i;
3610
3611                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3612                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3613                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3614                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3615                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3616         }
3617 }
3618
3619 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3620                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3621                      FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3622                      FW_PORT_CAP_ANEG)
3623
3624 /**
3625  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3626  *      @phy: the PHY to setup
3627  *      @mac: the MAC to setup
3628  *      @lc: the requested link configuration
3629  *
3630  *      Set up a port's MAC and PHY according to a desired link configuration.
3631  *      - If the PHY can auto-negotiate first decide what to advertise, then
3632  *        enable/disable auto-negotiation as desired, and reset.
3633  *      - If the PHY does not auto-negotiate just reset it.
3634  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3635  *        otherwise do it later based on the outcome of auto-negotiation.
3636  */
3637 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3638                   struct link_config *lc)
3639 {
3640         struct fw_port_cmd c;
3641         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3642
3643         lc->link_ok = 0;
3644         if (lc->requested_fc & PAUSE_RX)
3645                 fc |= FW_PORT_CAP_FC_RX;
3646         if (lc->requested_fc & PAUSE_TX)
3647                 fc |= FW_PORT_CAP_FC_TX;
3648
3649         memset(&c, 0, sizeof(c));
3650         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3651                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3652                                      FW_PORT_CMD_PORTID_V(port));
3653         c.action_to_len16 =
3654                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3655                             FW_LEN16(c));
3656
3657         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3658                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3659                                              fc);
3660                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3661         } else if (lc->autoneg == AUTONEG_DISABLE) {
3662                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3663                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3664         } else
3665                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3666
3667         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3668 }
3669
3670 /**
3671  *      t4_restart_aneg - restart autonegotiation
3672  *      @adap: the adapter
3673  *      @mbox: mbox to use for the FW command
3674  *      @port: the port id
3675  *
3676  *      Restarts autonegotiation for the selected port.
3677  */
3678 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3679 {
3680         struct fw_port_cmd c;
3681
3682         memset(&c, 0, sizeof(c));
3683         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3684                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3685                                      FW_PORT_CMD_PORTID_V(port));
3686         c.action_to_len16 =
3687                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3688                             FW_LEN16(c));
3689         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3690         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3691 }
3692
3693 typedef void (*int_handler_t)(struct adapter *adap);
3694
3695 struct intr_info {
3696         unsigned int mask;       /* bits to check in interrupt status */
3697         const char *msg;         /* message to print or NULL */
3698         short stat_idx;          /* stat counter to increment or -1 */
3699         unsigned short fatal;    /* whether the condition reported is fatal */
3700         int_handler_t int_handler; /* platform-specific int handler */
3701 };
3702
3703 /**
3704  *      t4_handle_intr_status - table driven interrupt handler
3705  *      @adapter: the adapter that generated the interrupt
3706  *      @reg: the interrupt status register to process
3707  *      @acts: table of interrupt actions
3708  *
3709  *      A table driven interrupt handler that applies a set of masks to an
3710  *      interrupt status word and performs the corresponding actions if the
3711  *      interrupts described by the mask have occurred.  The actions include
3712  *      optionally emitting a warning or alert message.  The table is terminated
3713  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3714  *      conditions.
3715  */
3716 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3717                                  const struct intr_info *acts)
3718 {
3719         int fatal = 0;
3720         unsigned int mask = 0;
3721         unsigned int status = t4_read_reg(adapter, reg);
3722
3723         for ( ; acts->mask; ++acts) {
3724                 if (!(status & acts->mask))
3725                         continue;
3726                 if (acts->fatal) {
3727                         fatal++;
3728                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3729                                   status & acts->mask);
3730                 } else if (acts->msg && printk_ratelimit())
3731                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3732                                  status & acts->mask);
3733                 if (acts->int_handler)
3734                         acts->int_handler(adapter);
3735                 mask |= acts->mask;
3736         }
3737         status &= mask;
3738         if (status)                           /* clear processed interrupts */
3739                 t4_write_reg(adapter, reg, status);
3740         return fatal;
3741 }
3742
3743 /*
3744  * Interrupt handler for the PCIE module.
3745  */
3746 static void pcie_intr_handler(struct adapter *adapter)
3747 {
3748         static const struct intr_info sysbus_intr_info[] = {
3749                 { RNPP_F, "RXNP array parity error", -1, 1 },
3750                 { RPCP_F, "RXPC array parity error", -1, 1 },
3751                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3752                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3753                 { RFTP_F, "RXFT array parity error", -1, 1 },
3754                 { 0 }
3755         };
3756         static const struct intr_info pcie_port_intr_info[] = {
3757                 { TPCP_F, "TXPC array parity error", -1, 1 },
3758                 { TNPP_F, "TXNP array parity error", -1, 1 },
3759                 { TFTP_F, "TXFT array parity error", -1, 1 },
3760                 { TCAP_F, "TXCA array parity error", -1, 1 },
3761                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3762                 { RCAP_F, "RXCA array parity error", -1, 1 },
3763                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3764                 { RDPE_F, "Rx data parity error", -1, 1 },
3765                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3766                 { 0 }
3767         };
3768         static const struct intr_info pcie_intr_info[] = {
3769                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3770                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3771                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3772                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3773                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3774                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3775                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3776                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3777                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3778                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3779                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3780                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3781                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3782                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3783                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3784                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3785                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3786                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3787                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3788                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3789                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3790                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3791                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3792                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3793                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3794                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3795                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3796                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3797                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3798                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3799                   -1, 0 },
3800                 { 0 }
3801         };
3802
3803         static struct intr_info t5_pcie_intr_info[] = {
3804                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3805                   -1, 1 },
3806                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3807                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3808                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3809                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3810                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3811                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3812                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3813                   -1, 1 },
3814                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3815                   -1, 1 },
3816                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3817                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3818                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3819                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3820                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3821                   -1, 1 },
3822                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3823                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3824                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3825                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3826                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3827                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3828                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3829                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3830                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3831                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3832                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3833                   -1, 1 },
3834                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3835                   -1, 1 },
3836                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3837                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3838                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3839                 { READRSPERR_F, "Outbound read error", -1, 0 },
3840                 { 0 }
3841         };
3842
3843         int fat;
3844
3845         if (is_t4(adapter->params.chip))
3846                 fat = t4_handle_intr_status(adapter,
3847                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3848                                 sysbus_intr_info) +
3849                         t4_handle_intr_status(adapter,
3850                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3851                                         pcie_port_intr_info) +
3852                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3853                                               pcie_intr_info);
3854         else
3855                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3856                                             t5_pcie_intr_info);
3857
3858         if (fat)
3859                 t4_fatal_err(adapter);
3860 }
3861
3862 /*
3863  * TP interrupt handler.
3864  */
3865 static void tp_intr_handler(struct adapter *adapter)
3866 {
3867         static const struct intr_info tp_intr_info[] = {
3868                 { 0x3fffffff, "TP parity error", -1, 1 },
3869                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3870                 { 0 }
3871         };
3872
3873         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3874                 t4_fatal_err(adapter);
3875 }
3876
3877 /*
3878  * SGE interrupt handler.
3879  */
3880 static void sge_intr_handler(struct adapter *adapter)
3881 {
3882         u64 v;
3883         u32 err;
3884
3885         static const struct intr_info sge_intr_info[] = {
3886                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3887                   "SGE received CPL exceeding IQE size", -1, 1 },
3888                 { ERR_INVALID_CIDX_INC_F,
3889                   "SGE GTS CIDX increment too large", -1, 0 },
3890                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3891                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3892                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3893                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3894                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3895                   0 },
3896                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3897                   0 },
3898                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3899                   0 },
3900                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3901                   0 },
3902                 { ERR_ING_CTXT_PRIO_F,
3903                   "SGE too many priority ingress contexts", -1, 0 },
3904                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3905                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3906                 { 0 }
3907         };
3908
3909         static struct intr_info t4t5_sge_intr_info[] = {
3910                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3911                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3912                 { ERR_EGR_CTXT_PRIO_F,
3913                   "SGE too many priority egress contexts", -1, 0 },
3914                 { 0 }
3915         };
3916
3917         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3918                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3919         if (v) {
3920                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3921                                 (unsigned long long)v);
3922                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3923                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3924         }
3925
3926         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3927         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3928                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3929                                            t4t5_sge_intr_info);
3930
3931         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3932         if (err & ERROR_QID_VALID_F) {
3933                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3934                         ERROR_QID_G(err));
3935                 if (err & UNCAPTURED_ERROR_F)
3936                         dev_err(adapter->pdev_dev,
3937                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3938                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3939                              UNCAPTURED_ERROR_F);
3940         }
3941
3942         if (v != 0)
3943                 t4_fatal_err(adapter);
3944 }
3945
3946 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3947                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3948 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3949                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3950
3951 /*
3952  * CIM interrupt handler.
3953  */
3954 static void cim_intr_handler(struct adapter *adapter)
3955 {
3956         static const struct intr_info cim_intr_info[] = {
3957                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3958                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3959                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3960                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3961                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3962                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3963                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3964                 { 0 }
3965         };
3966         static const struct intr_info cim_upintr_info[] = {
3967                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3968                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3969                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3970                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3971                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3972                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3973                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3974                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3975                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3976                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3977                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3978                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3979                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3980                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3981                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3982                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3983                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3984                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3985                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3986                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3987                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3988                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3989                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3990                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3991                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3992                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3993                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3994                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3995                 { 0 }
3996         };
3997
3998         int fat;
3999
4000         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4001                 t4_report_fw_error(adapter);
4002
4003         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4004                                     cim_intr_info) +
4005               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4006                                     cim_upintr_info);
4007         if (fat)
4008                 t4_fatal_err(adapter);
4009 }
4010
4011 /*
4012  * ULP RX interrupt handler.
4013  */
4014 static void ulprx_intr_handler(struct adapter *adapter)
4015 {
4016         static const struct intr_info ulprx_intr_info[] = {
4017                 { 0x1800000, "ULPRX context error", -1, 1 },
4018                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4019                 { 0 }
4020         };
4021
4022         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4023                 t4_fatal_err(adapter);
4024 }
4025
4026 /*
4027  * ULP TX interrupt handler.
4028  */
4029 static void ulptx_intr_handler(struct adapter *adapter)
4030 {
4031         static const struct intr_info ulptx_intr_info[] = {
4032                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4033                   0 },
4034                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4035                   0 },
4036                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4037                   0 },
4038                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4039                   0 },
4040                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4041                 { 0 }
4042         };
4043
4044         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4045                 t4_fatal_err(adapter);
4046 }
4047
4048 /*
4049  * PM TX interrupt handler.
4050  */
4051 static void pmtx_intr_handler(struct adapter *adapter)
4052 {
4053         static const struct intr_info pmtx_intr_info[] = {
4054                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4055                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4056                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4057                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4058                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4059                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4060                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4061                   -1, 1 },
4062                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4063                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4064                 { 0 }
4065         };
4066
4067         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4068                 t4_fatal_err(adapter);
4069 }
4070
4071 /*
4072  * PM RX interrupt handler.
4073  */
4074 static void pmrx_intr_handler(struct adapter *adapter)
4075 {
4076         static const struct intr_info pmrx_intr_info[] = {
4077                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4078                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4079                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4080                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4081                   -1, 1 },
4082                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4083                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4084                 { 0 }
4085         };
4086
4087         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4088                 t4_fatal_err(adapter);
4089 }
4090
4091 /*
4092  * CPL switch interrupt handler.
4093  */
4094 static void cplsw_intr_handler(struct adapter *adapter)
4095 {
4096         static const struct intr_info cplsw_intr_info[] = {
4097                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4098                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4099                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4100                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4101                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4102                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4103                 { 0 }
4104         };
4105
4106         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4107                 t4_fatal_err(adapter);
4108 }
4109
4110 /*
4111  * LE interrupt handler.
4112  */
4113 static void le_intr_handler(struct adapter *adap)
4114 {
4115         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4116         static const struct intr_info le_intr_info[] = {
4117                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4118                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4119                 { PARITYERR_F, "LE parity error", -1, 1 },
4120                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4121                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4122                 { 0 }
4123         };
4124
4125         static struct intr_info t6_le_intr_info[] = {
4126                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4127                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4128                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4129                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4130                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4131                 { 0 }
4132         };
4133
4134         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4135                                   (chip <= CHELSIO_T5) ?
4136                                   le_intr_info : t6_le_intr_info))
4137                 t4_fatal_err(adap);
4138 }
4139
4140 /*
4141  * MPS interrupt handler.
4142  */
4143 static void mps_intr_handler(struct adapter *adapter)
4144 {
4145         static const struct intr_info mps_rx_intr_info[] = {
4146                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4147                 { 0 }
4148         };
4149         static const struct intr_info mps_tx_intr_info[] = {
4150                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4151                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4152                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4153                   -1, 1 },
4154                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4155                   -1, 1 },
4156                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4157                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4158                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4159                 { 0 }
4160         };
4161         static const struct intr_info mps_trc_intr_info[] = {
4162                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4163                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4164                   -1, 1 },
4165                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4166                 { 0 }
4167         };
4168         static const struct intr_info mps_stat_sram_intr_info[] = {
4169                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4170                 { 0 }
4171         };
4172         static const struct intr_info mps_stat_tx_intr_info[] = {
4173                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4174                 { 0 }
4175         };
4176         static const struct intr_info mps_stat_rx_intr_info[] = {
4177                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4178                 { 0 }
4179         };
4180         static const struct intr_info mps_cls_intr_info[] = {
4181                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4182                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4183                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4184                 { 0 }
4185         };
4186
4187         int fat;
4188
4189         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4190                                     mps_rx_intr_info) +
4191               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4192                                     mps_tx_intr_info) +
4193               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4194                                     mps_trc_intr_info) +
4195               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4196                                     mps_stat_sram_intr_info) +
4197               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4198                                     mps_stat_tx_intr_info) +
4199               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4200                                     mps_stat_rx_intr_info) +
4201               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4202                                     mps_cls_intr_info);
4203
4204         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4205         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4206         if (fat)
4207                 t4_fatal_err(adapter);
4208 }
4209
4210 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4211                       ECC_UE_INT_CAUSE_F)
4212
4213 /*
4214  * EDC/MC interrupt handler.
4215  */
4216 static void mem_intr_handler(struct adapter *adapter, int idx)
4217 {
4218         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4219
4220         unsigned int addr, cnt_addr, v;
4221
4222         if (idx <= MEM_EDC1) {
4223                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4224                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4225         } else if (idx == MEM_MC) {
4226                 if (is_t4(adapter->params.chip)) {
4227                         addr = MC_INT_CAUSE_A;
4228                         cnt_addr = MC_ECC_STATUS_A;
4229                 } else {
4230                         addr = MC_P_INT_CAUSE_A;
4231                         cnt_addr = MC_P_ECC_STATUS_A;
4232                 }
4233         } else {
4234                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4235                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4236         }
4237
4238         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4239         if (v & PERR_INT_CAUSE_F)
4240                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4241                           name[idx]);
4242         if (v & ECC_CE_INT_CAUSE_F) {
4243                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4244
4245                 t4_edc_err_read(adapter, idx);
4246
4247                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4248                 if (printk_ratelimit())
4249                         dev_warn(adapter->pdev_dev,
4250                                  "%u %s correctable ECC data error%s\n",
4251                                  cnt, name[idx], cnt > 1 ? "s" : "");
4252         }
4253         if (v & ECC_UE_INT_CAUSE_F)
4254                 dev_alert(adapter->pdev_dev,
4255                           "%s uncorrectable ECC data error\n", name[idx]);
4256
4257         t4_write_reg(adapter, addr, v);
4258         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4259                 t4_fatal_err(adapter);
4260 }
4261
4262 /*
4263  * MA interrupt handler.
4264  */
4265 static void ma_intr_handler(struct adapter *adap)
4266 {
4267         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4268
4269         if (status & MEM_PERR_INT_CAUSE_F) {
4270                 dev_alert(adap->pdev_dev,
4271                           "MA parity error, parity status %#x\n",
4272                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4273                 if (is_t5(adap->params.chip))
4274                         dev_alert(adap->pdev_dev,
4275                                   "MA parity error, parity status %#x\n",
4276                                   t4_read_reg(adap,
4277                                               MA_PARITY_ERROR_STATUS2_A));
4278         }
4279         if (status & MEM_WRAP_INT_CAUSE_F) {
4280                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4281                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4282                           "client %u to address %#x\n",
4283                           MEM_WRAP_CLIENT_NUM_G(v),
4284                           MEM_WRAP_ADDRESS_G(v) << 4);
4285         }
4286         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4287         t4_fatal_err(adap);
4288 }
4289
4290 /*
4291  * SMB interrupt handler.
4292  */
4293 static void smb_intr_handler(struct adapter *adap)
4294 {
4295         static const struct intr_info smb_intr_info[] = {
4296                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4297                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4298                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4299                 { 0 }
4300         };
4301
4302         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4303                 t4_fatal_err(adap);
4304 }
4305
4306 /*
4307  * NC-SI interrupt handler.
4308  */
4309 static void ncsi_intr_handler(struct adapter *adap)
4310 {
4311         static const struct intr_info ncsi_intr_info[] = {
4312                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4313                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4314                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4315                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4316                 { 0 }
4317         };
4318
4319         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4320                 t4_fatal_err(adap);
4321 }
4322
4323 /*
4324  * XGMAC interrupt handler.
4325  */
4326 static void xgmac_intr_handler(struct adapter *adap, int port)
4327 {
4328         u32 v, int_cause_reg;
4329
4330         if (is_t4(adap->params.chip))
4331                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4332         else
4333                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4334
4335         v = t4_read_reg(adap, int_cause_reg);
4336
4337         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4338         if (!v)
4339                 return;
4340
4341         if (v & TXFIFO_PRTY_ERR_F)
4342                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4343                           port);
4344         if (v & RXFIFO_PRTY_ERR_F)
4345                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4346                           port);
4347         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4348         t4_fatal_err(adap);
4349 }
4350
4351 /*
4352  * PL interrupt handler.
4353  */
4354 static void pl_intr_handler(struct adapter *adap)
4355 {
4356         static const struct intr_info pl_intr_info[] = {
4357                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4358                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4359                 { 0 }
4360         };
4361
4362         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4363                 t4_fatal_err(adap);
4364 }
4365
4366 #define PF_INTR_MASK (PFSW_F)
4367 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4368                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4369                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4370
4371 /**
4372  *      t4_slow_intr_handler - control path interrupt handler
4373  *      @adapter: the adapter
4374  *
4375  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4376  *      The designation 'slow' is because it involves register reads, while
4377  *      data interrupts typically don't involve any MMIOs.
4378  */
4379 int t4_slow_intr_handler(struct adapter *adapter)
4380 {
4381         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4382
4383         if (!(cause & GLBL_INTR_MASK))
4384                 return 0;
4385         if (cause & CIM_F)
4386                 cim_intr_handler(adapter);
4387         if (cause & MPS_F)
4388                 mps_intr_handler(adapter);
4389         if (cause & NCSI_F)
4390                 ncsi_intr_handler(adapter);
4391         if (cause & PL_F)
4392                 pl_intr_handler(adapter);
4393         if (cause & SMB_F)
4394                 smb_intr_handler(adapter);
4395         if (cause & XGMAC0_F)
4396                 xgmac_intr_handler(adapter, 0);
4397         if (cause & XGMAC1_F)
4398                 xgmac_intr_handler(adapter, 1);
4399         if (cause & XGMAC_KR0_F)
4400                 xgmac_intr_handler(adapter, 2);
4401         if (cause & XGMAC_KR1_F)
4402                 xgmac_intr_handler(adapter, 3);
4403         if (cause & PCIE_F)
4404                 pcie_intr_handler(adapter);
4405         if (cause & MC_F)
4406                 mem_intr_handler(adapter, MEM_MC);
4407         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4408                 mem_intr_handler(adapter, MEM_MC1);
4409         if (cause & EDC0_F)
4410                 mem_intr_handler(adapter, MEM_EDC0);
4411         if (cause & EDC1_F)
4412                 mem_intr_handler(adapter, MEM_EDC1);
4413         if (cause & LE_F)
4414                 le_intr_handler(adapter);
4415         if (cause & TP_F)
4416                 tp_intr_handler(adapter);
4417         if (cause & MA_F)
4418                 ma_intr_handler(adapter);
4419         if (cause & PM_TX_F)
4420                 pmtx_intr_handler(adapter);
4421         if (cause & PM_RX_F)
4422                 pmrx_intr_handler(adapter);
4423         if (cause & ULP_RX_F)
4424                 ulprx_intr_handler(adapter);
4425         if (cause & CPL_SWITCH_F)
4426                 cplsw_intr_handler(adapter);
4427         if (cause & SGE_F)
4428                 sge_intr_handler(adapter);
4429         if (cause & ULP_TX_F)
4430                 ulptx_intr_handler(adapter);
4431
4432         /* Clear the interrupts just processed for which we are the master. */
4433         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4434         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4435         return 1;
4436 }
4437
4438 /**
4439  *      t4_intr_enable - enable interrupts
4440  *      @adapter: the adapter whose interrupts should be enabled
4441  *
4442  *      Enable PF-specific interrupts for the calling function and the top-level
4443  *      interrupt concentrator for global interrupts.  Interrupts are already
4444  *      enabled at each module, here we just enable the roots of the interrupt
4445  *      hierarchies.
4446  *
4447  *      Note: this function should be called only when the driver manages
4448  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4449  *      function at a time should be doing this.
4450  */
4451 void t4_intr_enable(struct adapter *adapter)
4452 {
4453         u32 val = 0;
4454         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4455         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4456                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4457
4458         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4459                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4460         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4461                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4462                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4463                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4464                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4465                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4466                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4467         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4468         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4469 }
4470
4471 /**
4472  *      t4_intr_disable - disable interrupts
4473  *      @adapter: the adapter whose interrupts should be disabled
4474  *
4475  *      Disable interrupts.  We only disable the top-level interrupt
4476  *      concentrators.  The caller must be a PCI function managing global
4477  *      interrupts.
4478  */
4479 void t4_intr_disable(struct adapter *adapter)
4480 {
4481         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4482         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4483                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4484
4485         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4486         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4487 }
4488
4489 /**
4490  *      t4_config_rss_range - configure a portion of the RSS mapping table
4491  *      @adapter: the adapter
4492  *      @mbox: mbox to use for the FW command
4493  *      @viid: virtual interface whose RSS subtable is to be written
4494  *      @start: start entry in the table to write
4495  *      @n: how many table entries to write
4496  *      @rspq: values for the response queue lookup table
4497  *      @nrspq: number of values in @rspq
4498  *
4499  *      Programs the selected part of the VI's RSS mapping table with the
4500  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4501  *      until the full table range is populated.
4502  *
4503  *      The caller must ensure the values in @rspq are in the range allowed for
4504  *      @viid.
4505  */
4506 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4507                         int start, int n, const u16 *rspq, unsigned int nrspq)
4508 {
4509         int ret;
4510         const u16 *rsp = rspq;
4511         const u16 *rsp_end = rspq + nrspq;
4512         struct fw_rss_ind_tbl_cmd cmd;
4513
4514         memset(&cmd, 0, sizeof(cmd));
4515         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4516                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4517                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4518         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4519
4520         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4521         while (n > 0) {
4522                 int nq = min(n, 32);
4523                 __be32 *qp = &cmd.iq0_to_iq2;
4524
4525                 cmd.niqid = cpu_to_be16(nq);
4526                 cmd.startidx = cpu_to_be16(start);
4527
4528                 start += nq;
4529                 n -= nq;
4530
4531                 while (nq > 0) {
4532                         unsigned int v;
4533
4534                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4535                         if (++rsp >= rsp_end)
4536                                 rsp = rspq;
4537                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4538                         if (++rsp >= rsp_end)
4539                                 rsp = rspq;
4540                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4541                         if (++rsp >= rsp_end)
4542                                 rsp = rspq;
4543
4544                         *qp++ = cpu_to_be32(v);
4545                         nq -= 3;
4546                 }
4547
4548                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4549                 if (ret)
4550                         return ret;
4551         }
4552         return 0;
4553 }
4554
4555 /**
4556  *      t4_config_glbl_rss - configure the global RSS mode
4557  *      @adapter: the adapter
4558  *      @mbox: mbox to use for the FW command
4559  *      @mode: global RSS mode
4560  *      @flags: mode-specific flags
4561  *
4562  *      Sets the global RSS mode.
4563  */
4564 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4565                        unsigned int flags)
4566 {
4567         struct fw_rss_glb_config_cmd c;
4568
4569         memset(&c, 0, sizeof(c));
4570         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4571                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4572         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4573         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4574                 c.u.manual.mode_pkd =
4575                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4576         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4577                 c.u.basicvirtual.mode_pkd =
4578                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4579                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4580         } else
4581                 return -EINVAL;
4582         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4583 }
4584
4585 /**
4586  *      t4_config_vi_rss - configure per VI RSS settings
4587  *      @adapter: the adapter
4588  *      @mbox: mbox to use for the FW command
4589  *      @viid: the VI id
4590  *      @flags: RSS flags
4591  *      @defq: id of the default RSS queue for the VI.
4592  *
4593  *      Configures VI-specific RSS properties.
4594  */
4595 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4596                      unsigned int flags, unsigned int defq)
4597 {
4598         struct fw_rss_vi_config_cmd c;
4599
4600         memset(&c, 0, sizeof(c));
4601         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4602                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4603                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4604         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4605         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4606                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4607         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4608 }
4609
4610 /* Read an RSS table row */
4611 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4612 {
4613         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4614         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4615                                    5, 0, val);
4616 }
4617
4618 /**
4619  *      t4_read_rss - read the contents of the RSS mapping table
4620  *      @adapter: the adapter
4621  *      @map: holds the contents of the RSS mapping table
4622  *
4623  *      Reads the contents of the RSS hash->queue mapping table.
4624  */
4625 int t4_read_rss(struct adapter *adapter, u16 *map)
4626 {
4627         u32 val;
4628         int i, ret;
4629
4630         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4631                 ret = rd_rss_row(adapter, i, &val);
4632                 if (ret)
4633                         return ret;
4634                 *map++ = LKPTBLQUEUE0_G(val);
4635                 *map++ = LKPTBLQUEUE1_G(val);
4636         }
4637         return 0;
4638 }
4639
4640 static unsigned int t4_use_ldst(struct adapter *adap)
4641 {
4642         return (adap->flags & FW_OK) || !adap->use_bd;
4643 }
4644
4645 /**
4646  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4647  *      @adap: the adapter
4648  *      @vals: where the indirect register values are stored/written
4649  *      @nregs: how many indirect registers to read/write
4650  *      @start_idx: index of first indirect register to read/write
4651  *      @rw: Read (1) or Write (0)
4652  *
4653  *      Access TP PIO registers through LDST
4654  */
4655 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4656                             unsigned int start_index, unsigned int rw)
4657 {
4658         int ret, i;
4659         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4660         struct fw_ldst_cmd c;
4661
4662         for (i = 0 ; i < nregs; i++) {
4663                 memset(&c, 0, sizeof(c));
4664                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4665                                                 FW_CMD_REQUEST_F |
4666                                                 (rw ? FW_CMD_READ_F :
4667                                                       FW_CMD_WRITE_F) |
4668                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4669                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4670
4671                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4672                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4673                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4674                 if (!ret && rw)
4675                         vals[i] = be32_to_cpu(c.u.addrval.val);
4676         }
4677 }
4678
4679 /**
4680  *      t4_read_rss_key - read the global RSS key
4681  *      @adap: the adapter
4682  *      @key: 10-entry array holding the 320-bit RSS key
4683  *
4684  *      Reads the global 320-bit RSS key.
4685  */
4686 void t4_read_rss_key(struct adapter *adap, u32 *key)
4687 {
4688         if (t4_use_ldst(adap))
4689                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4690         else
4691                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4692                                  TP_RSS_SECRET_KEY0_A);
4693 }
4694
4695 /**
4696  *      t4_write_rss_key - program one of the RSS keys
4697  *      @adap: the adapter
4698  *      @key: 10-entry array holding the 320-bit RSS key
4699  *      @idx: which RSS key to write
4700  *
4701  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4702  *      0..15 the corresponding entry in the RSS key table is written,
4703  *      otherwise the global RSS key is written.
4704  */
4705 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4706 {
4707         u8 rss_key_addr_cnt = 16;
4708         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4709
4710         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4711          * allows access to key addresses 16-63 by using KeyWrAddrX
4712          * as index[5:4](upper 2) into key table
4713          */
4714         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4715             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4716                 rss_key_addr_cnt = 32;
4717
4718         if (t4_use_ldst(adap))
4719                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4720         else
4721                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4722                                   TP_RSS_SECRET_KEY0_A);
4723
4724         if (idx >= 0 && idx < rss_key_addr_cnt) {
4725                 if (rss_key_addr_cnt > 16)
4726                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4727                                      KEYWRADDRX_V(idx >> 4) |
4728                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4729                 else
4730                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4731                                      KEYWRADDR_V(idx) | KEYWREN_F);
4732         }
4733 }
4734
4735 /**
4736  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4737  *      @adapter: the adapter
4738  *      @index: the entry in the PF RSS table to read
4739  *      @valp: where to store the returned value
4740  *
4741  *      Reads the PF RSS Configuration Table at the specified index and returns
4742  *      the value found there.
4743  */
4744 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4745                            u32 *valp)
4746 {
4747         if (t4_use_ldst(adapter))
4748                 t4_fw_tp_pio_rw(adapter, valp, 1,
4749                                 TP_RSS_PF0_CONFIG_A + index, 1);
4750         else
4751                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4752                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4753 }
4754
4755 /**
4756  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4757  *      @adapter: the adapter
4758  *      @index: the entry in the VF RSS table to read
4759  *      @vfl: where to store the returned VFL
4760  *      @vfh: where to store the returned VFH
4761  *
4762  *      Reads the VF RSS Configuration Table at the specified index and returns
4763  *      the (VFL, VFH) values found there.
4764  */
4765 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4766                            u32 *vfl, u32 *vfh)
4767 {
4768         u32 vrt, mask, data;
4769
4770         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4771                 mask = VFWRADDR_V(VFWRADDR_M);
4772                 data = VFWRADDR_V(index);
4773         } else {
4774                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4775                  data = T6_VFWRADDR_V(index);
4776         }
4777
4778         /* Request that the index'th VF Table values be read into VFL/VFH.
4779          */
4780         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4781         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4782         vrt |= data | VFRDEN_F;
4783         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4784
4785         /* Grab the VFL/VFH values ...
4786          */
4787         if (t4_use_ldst(adapter)) {
4788                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4789                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4790         } else {
4791                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4792                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4793                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4794                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4795         }
4796 }
4797
4798 /**
4799  *      t4_read_rss_pf_map - read PF RSS Map
4800  *      @adapter: the adapter
4801  *
4802  *      Reads the PF RSS Map register and returns its value.
4803  */
4804 u32 t4_read_rss_pf_map(struct adapter *adapter)
4805 {
4806         u32 pfmap;
4807
4808         if (t4_use_ldst(adapter))
4809                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4810         else
4811                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4812                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4813         return pfmap;
4814 }
4815
4816 /**
4817  *      t4_read_rss_pf_mask - read PF RSS Mask
4818  *      @adapter: the adapter
4819  *
4820  *      Reads the PF RSS Mask register and returns its value.
4821  */
4822 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4823 {
4824         u32 pfmask;
4825
4826         if (t4_use_ldst(adapter))
4827                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4828         else
4829                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4830                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4831         return pfmask;
4832 }
4833
4834 /**
4835  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4836  *      @adap: the adapter
4837  *      @v4: holds the TCP/IP counter values
4838  *      @v6: holds the TCP/IPv6 counter values
4839  *
4840  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4841  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4842  */
4843 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4844                          struct tp_tcp_stats *v6)
4845 {
4846         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4847
4848 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4849 #define STAT(x)     val[STAT_IDX(x)]
4850 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4851
4852         if (v4) {
4853                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4854                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4855                 v4->tcp_out_rsts = STAT(OUT_RST);
4856                 v4->tcp_in_segs  = STAT64(IN_SEG);
4857                 v4->tcp_out_segs = STAT64(OUT_SEG);
4858                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4859         }
4860         if (v6) {
4861                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4862                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4863                 v6->tcp_out_rsts = STAT(OUT_RST);
4864                 v6->tcp_in_segs  = STAT64(IN_SEG);
4865                 v6->tcp_out_segs = STAT64(OUT_SEG);
4866                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4867         }
4868 #undef STAT64
4869 #undef STAT
4870 #undef STAT_IDX
4871 }
4872
4873 /**
4874  *      t4_tp_get_err_stats - read TP's error MIB counters
4875  *      @adap: the adapter
4876  *      @st: holds the counter values
4877  *
4878  *      Returns the values of TP's error counters.
4879  */
4880 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4881 {
4882         int nchan = adap->params.arch.nchan;
4883
4884         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4885                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4886         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4887                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4888         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4889                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4890         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4891                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4892         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4893                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4894         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4895                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4896         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4897                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4898         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4899                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4900
4901         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4902                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4903 }
4904
4905 /**
4906  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4907  *      @adap: the adapter
4908  *      @st: holds the counter values
4909  *
4910  *      Returns the values of TP's CPL counters.
4911  */
4912 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4913 {
4914         int nchan = adap->params.arch.nchan;
4915
4916         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4917                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4918         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4919                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4920
4921 }
4922
4923 /**
4924  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4925  *      @adap: the adapter
4926  *      @st: holds the counter values
4927  *
4928  *      Returns the values of TP's RDMA counters.
4929  */
4930 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4931 {
4932         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4933                          2, TP_MIB_RQE_DFR_PKT_A);
4934 }
4935
4936 /**
4937  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4938  *      @adap: the adapter
4939  *      @idx: the port index
4940  *      @st: holds the counter values
4941  *
4942  *      Returns the values of TP's FCoE counters for the selected port.
4943  */
4944 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4945                        struct tp_fcoe_stats *st)
4946 {
4947         u32 val[2];
4948
4949         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4950                          1, TP_MIB_FCOE_DDP_0_A + idx);
4951         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4952                          1, TP_MIB_FCOE_DROP_0_A + idx);
4953         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4954                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4955         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4956 }
4957
4958 /**
4959  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4960  *      @adap: the adapter
4961  *      @st: holds the counter values
4962  *
4963  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4964  */
4965 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4966 {
4967         u32 val[4];
4968
4969         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4970                          TP_MIB_USM_PKTS_A);
4971         st->frames = val[0];
4972         st->drops = val[1];
4973         st->octets = ((u64)val[2] << 32) | val[3];
4974 }
4975
4976 /**
4977  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4978  *      @adap: the adapter
4979  *      @mtus: where to store the MTU values
4980  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4981  *
4982  *      Reads the HW path MTU table.
4983  */
4984 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4985 {
4986         u32 v;
4987         int i;
4988
4989         for (i = 0; i < NMTUS; ++i) {
4990                 t4_write_reg(adap, TP_MTU_TABLE_A,
4991                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
4992                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4993                 mtus[i] = MTUVALUE_G(v);
4994                 if (mtu_log)
4995                         mtu_log[i] = MTUWIDTH_G(v);
4996         }
4997 }
4998
4999 /**
5000  *      t4_read_cong_tbl - reads the congestion control table
5001  *      @adap: the adapter
5002  *      @incr: where to store the alpha values
5003  *
5004  *      Reads the additive increments programmed into the HW congestion
5005  *      control table.
5006  */
5007 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5008 {
5009         unsigned int mtu, w;
5010
5011         for (mtu = 0; mtu < NMTUS; ++mtu)
5012                 for (w = 0; w < NCCTRL_WIN; ++w) {
5013                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5014                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5015                         incr[mtu][w] = (u16)t4_read_reg(adap,
5016                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5017                 }
5018 }
5019
5020 /**
5021  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5022  *      @adap: the adapter
5023  *      @addr: the indirect TP register address
5024  *      @mask: specifies the field within the register to modify
5025  *      @val: new value for the field
5026  *
5027  *      Sets a field of an indirect TP register to the given value.
5028  */
5029 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5030                             unsigned int mask, unsigned int val)
5031 {
5032         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5033         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5034         t4_write_reg(adap, TP_PIO_DATA_A, val);
5035 }
5036
5037 /**
5038  *      init_cong_ctrl - initialize congestion control parameters
5039  *      @a: the alpha values for congestion control
5040  *      @b: the beta values for congestion control
5041  *
5042  *      Initialize the congestion control parameters.
5043  */
5044 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5045 {
5046         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5047         a[9] = 2;
5048         a[10] = 3;
5049         a[11] = 4;
5050         a[12] = 5;
5051         a[13] = 6;
5052         a[14] = 7;
5053         a[15] = 8;
5054         a[16] = 9;
5055         a[17] = 10;
5056         a[18] = 14;
5057         a[19] = 17;
5058         a[20] = 21;
5059         a[21] = 25;
5060         a[22] = 30;
5061         a[23] = 35;
5062         a[24] = 45;
5063         a[25] = 60;
5064         a[26] = 80;
5065         a[27] = 100;
5066         a[28] = 200;
5067         a[29] = 300;
5068         a[30] = 400;
5069         a[31] = 500;
5070
5071         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5072         b[9] = b[10] = 1;
5073         b[11] = b[12] = 2;
5074         b[13] = b[14] = b[15] = b[16] = 3;
5075         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5076         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5077         b[28] = b[29] = 6;
5078         b[30] = b[31] = 7;
5079 }
5080
5081 /* The minimum additive increment value for the congestion control table */
5082 #define CC_MIN_INCR 2U
5083
5084 /**
5085  *      t4_load_mtus - write the MTU and congestion control HW tables
5086  *      @adap: the adapter
5087  *      @mtus: the values for the MTU table
5088  *      @alpha: the values for the congestion control alpha parameter
5089  *      @beta: the values for the congestion control beta parameter
5090  *
5091  *      Write the HW MTU table with the supplied MTUs and the high-speed
5092  *      congestion control table with the supplied alpha, beta, and MTUs.
5093  *      We write the two tables together because the additive increments
5094  *      depend on the MTUs.
5095  */
5096 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5097                   const unsigned short *alpha, const unsigned short *beta)
5098 {
5099         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5100                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5101                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5102                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5103         };
5104
5105         unsigned int i, w;
5106
5107         for (i = 0; i < NMTUS; ++i) {
5108                 unsigned int mtu = mtus[i];
5109                 unsigned int log2 = fls(mtu);
5110
5111                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5112                         log2--;
5113                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5114                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5115
5116                 for (w = 0; w < NCCTRL_WIN; ++w) {
5117                         unsigned int inc;
5118
5119                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5120                                   CC_MIN_INCR);
5121
5122                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5123                                      (w << 16) | (beta[w] << 13) | inc);
5124                 }
5125         }
5126 }
5127
5128 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5129  * clocks.  The formula is
5130  *
5131  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5132  *
5133  * which is equivalent to
5134  *
5135  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5136  */
5137 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5138 {
5139         u64 v = bytes256 * adap->params.vpd.cclk;
5140
5141         return v * 62 + v / 2;
5142 }
5143
5144 /**
5145  *      t4_get_chan_txrate - get the current per channel Tx rates
5146  *      @adap: the adapter
5147  *      @nic_rate: rates for NIC traffic
5148  *      @ofld_rate: rates for offloaded traffic
5149  *
5150  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5151  *      for each channel.
5152  */
5153 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5154 {
5155         u32 v;
5156
5157         v = t4_read_reg(adap, TP_TX_TRATE_A);
5158         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5159         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5160         if (adap->params.arch.nchan == NCHAN) {
5161                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5162                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5163         }
5164
5165         v = t4_read_reg(adap, TP_TX_ORATE_A);
5166         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5167         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5168         if (adap->params.arch.nchan == NCHAN) {
5169                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5170                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5171         }
5172 }
5173
5174 /**
5175  *      t4_set_trace_filter - configure one of the tracing filters
5176  *      @adap: the adapter
5177  *      @tp: the desired trace filter parameters
5178  *      @idx: which filter to configure
5179  *      @enable: whether to enable or disable the filter
5180  *
5181  *      Configures one of the tracing filters available in HW.  If @enable is
5182  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5183  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5184  */
5185 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5186                         int idx, int enable)
5187 {
5188         int i, ofst = idx * 4;
5189         u32 data_reg, mask_reg, cfg;
5190         u32 multitrc = TRCMULTIFILTER_F;
5191
5192         if (!enable) {
5193                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5194                 return 0;
5195         }
5196
5197         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5198         if (cfg & TRCMULTIFILTER_F) {
5199                 /* If multiple tracers are enabled, then maximum
5200                  * capture size is 2.5KB (FIFO size of a single channel)
5201                  * minus 2 flits for CPL_TRACE_PKT header.
5202                  */
5203                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5204                         return -EINVAL;
5205         } else {
5206                 /* If multiple tracers are disabled, to avoid deadlocks
5207                  * maximum packet capture size of 9600 bytes is recommended.
5208                  * Also in this mode, only trace0 can be enabled and running.
5209                  */
5210                 multitrc = 0;
5211                 if (tp->snap_len > 9600 || idx)
5212                         return -EINVAL;
5213         }
5214
5215         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5216             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5217             tp->min_len > TFMINPKTSIZE_M)
5218                 return -EINVAL;
5219
5220         /* stop the tracer we'll be changing */
5221         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5222
5223         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5224         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5225         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5226
5227         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5228                 t4_write_reg(adap, data_reg, tp->data[i]);
5229                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5230         }
5231         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5232                      TFCAPTUREMAX_V(tp->snap_len) |
5233                      TFMINPKTSIZE_V(tp->min_len));
5234         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5235                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5236                      (is_t4(adap->params.chip) ?
5237                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5238                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5239                      T5_TFINVERTMATCH_V(tp->invert)));
5240
5241         return 0;
5242 }
5243
5244 /**
5245  *      t4_get_trace_filter - query one of the tracing filters
5246  *      @adap: the adapter
5247  *      @tp: the current trace filter parameters
5248  *      @idx: which trace filter to query
5249  *      @enabled: non-zero if the filter is enabled
5250  *
5251  *      Returns the current settings of one of the HW tracing filters.
5252  */
5253 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5254                          int *enabled)
5255 {
5256         u32 ctla, ctlb;
5257         int i, ofst = idx * 4;
5258         u32 data_reg, mask_reg;
5259
5260         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5261         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5262
5263         if (is_t4(adap->params.chip)) {
5264                 *enabled = !!(ctla & TFEN_F);
5265                 tp->port =  TFPORT_G(ctla);
5266                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5267         } else {
5268                 *enabled = !!(ctla & T5_TFEN_F);
5269                 tp->port = T5_TFPORT_G(ctla);
5270                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5271         }
5272         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5273         tp->min_len = TFMINPKTSIZE_G(ctlb);
5274         tp->skip_ofst = TFOFFSET_G(ctla);
5275         tp->skip_len = TFLENGTH_G(ctla);
5276
5277         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5278         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5279         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5280
5281         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5282                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5283                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5284         }
5285 }
5286
5287 /**
5288  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5289  *      @adap: the adapter
5290  *      @cnt: where to store the count statistics
5291  *      @cycles: where to store the cycle statistics
5292  *
5293  *      Returns performance statistics from PMTX.
5294  */
5295 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5296 {
5297         int i;
5298         u32 data[2];
5299
5300         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5301                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5302                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5303                 if (is_t4(adap->params.chip)) {
5304                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5305                 } else {
5306                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5307                                          PM_TX_DBG_DATA_A, data, 2,
5308                                          PM_TX_DBG_STAT_MSB_A);
5309                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5310                 }
5311         }
5312 }
5313
5314 /**
5315  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5316  *      @adap: the adapter
5317  *      @cnt: where to store the count statistics
5318  *      @cycles: where to store the cycle statistics
5319  *
5320  *      Returns performance statistics from PMRX.
5321  */
5322 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5323 {
5324         int i;
5325         u32 data[2];
5326
5327         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5328                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5329                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5330                 if (is_t4(adap->params.chip)) {
5331                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5332                 } else {
5333                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5334                                          PM_RX_DBG_DATA_A, data, 2,
5335                                          PM_RX_DBG_STAT_MSB_A);
5336                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5337                 }
5338         }
5339 }
5340
5341 /**
5342  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5343  *      @adap: the adapter
5344  *      @idx: the port index
5345  *
5346  *      Returns a bitmap indicating which MPS buffer groups are associated
5347  *      with the given port.  Bit i is set if buffer group i is used by the
5348  *      port.
5349  */
5350 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5351 {
5352         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5353
5354         if (n == 0)
5355                 return idx == 0 ? 0xf : 0;
5356         /* In T6 (which is a 2 port card),
5357          * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5358          * For 2 port T4/T5 adapter,
5359          * port 0 is mapped to channel 0 and 1,
5360          * port 1 is mapped to channel 2 and 3.
5361          */
5362         if ((n == 1) &&
5363             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5364                 return idx < 2 ? (3 << (2 * idx)) : 0;
5365         return 1 << idx;
5366 }
5367
5368 /**
5369  *      t4_get_port_type_description - return Port Type string description
5370  *      @port_type: firmware Port Type enumeration
5371  */
5372 const char *t4_get_port_type_description(enum fw_port_type port_type)
5373 {
5374         static const char *const port_type_description[] = {
5375                 "R XFI",
5376                 "R XAUI",
5377                 "T SGMII",
5378                 "T XFI",
5379                 "T XAUI",
5380                 "KX4",
5381                 "CX4",
5382                 "KX",
5383                 "KR",
5384                 "R SFP+",
5385                 "KR/KX",
5386                 "KR/KX/KX4",
5387                 "R QSFP_10G",
5388                 "R QSA",
5389                 "R QSFP",
5390                 "R BP40_BA",
5391         };
5392
5393         if (port_type < ARRAY_SIZE(port_type_description))
5394                 return port_type_description[port_type];
5395         return "UNKNOWN";
5396 }
5397
5398 /**
5399  *      t4_get_port_stats_offset - collect port stats relative to a previous
5400  *                                 snapshot
5401  *      @adap: The adapter
5402  *      @idx: The port
5403  *      @stats: Current stats to fill
5404  *      @offset: Previous stats snapshot
5405  */
5406 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5407                               struct port_stats *stats,
5408                               struct port_stats *offset)
5409 {
5410         u64 *s, *o;
5411         int i;
5412
5413         t4_get_port_stats(adap, idx, stats);
5414         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5415                         i < (sizeof(struct port_stats) / sizeof(u64));
5416                         i++, s++, o++)
5417                 *s -= *o;
5418 }
5419
5420 /**
5421  *      t4_get_port_stats - collect port statistics
5422  *      @adap: the adapter
5423  *      @idx: the port index
5424  *      @p: the stats structure to fill
5425  *
5426  *      Collect statistics related to the given port from HW.
5427  */
5428 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5429 {
5430         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5431
5432 #define GET_STAT(name) \
5433         t4_read_reg64(adap, \
5434         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5435         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5436 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5437
5438         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5439         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5440         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5441         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5442         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5443         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5444         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5445         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5446         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5447         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5448         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5449         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5450         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5451         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5452         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5453         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5454         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5455         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5456         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5457         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5458         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5459         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5460         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5461
5462         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5463         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5464         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5465         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5466         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5467         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5468         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5469         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5470         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5471         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5472         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5473         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5474         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5475         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5476         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5477         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5478         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5479         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5480         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5481         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5482         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5483         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5484         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5485         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5486         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5487         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5488         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5489
5490         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5491         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5492         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5493         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5494         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5495         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5496         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5497         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5498
5499 #undef GET_STAT
5500 #undef GET_STAT_COM
5501 }
5502
5503 /**
5504  *      t4_get_lb_stats - collect loopback port statistics
5505  *      @adap: the adapter
5506  *      @idx: the loopback port index
5507  *      @p: the stats structure to fill
5508  *
5509  *      Return HW statistics for the given loopback port.
5510  */
5511 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5512 {
5513         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5514
5515 #define GET_STAT(name) \
5516         t4_read_reg64(adap, \
5517         (is_t4(adap->params.chip) ? \
5518         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5519         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5520 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5521
5522         p->octets           = GET_STAT(BYTES);
5523         p->frames           = GET_STAT(FRAMES);
5524         p->bcast_frames     = GET_STAT(BCAST);
5525         p->mcast_frames     = GET_STAT(MCAST);
5526         p->ucast_frames     = GET_STAT(UCAST);
5527         p->error_frames     = GET_STAT(ERROR);
5528
5529         p->frames_64        = GET_STAT(64B);
5530         p->frames_65_127    = GET_STAT(65B_127B);
5531         p->frames_128_255   = GET_STAT(128B_255B);
5532         p->frames_256_511   = GET_STAT(256B_511B);
5533         p->frames_512_1023  = GET_STAT(512B_1023B);
5534         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5535         p->frames_1519_max  = GET_STAT(1519B_MAX);
5536         p->drop             = GET_STAT(DROP_FRAMES);
5537
5538         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5539         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5540         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5541         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5542         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5543         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5544         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5545         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5546
5547 #undef GET_STAT
5548 #undef GET_STAT_COM
5549 }
5550
5551 /*     t4_mk_filtdelwr - create a delete filter WR
5552  *     @ftid: the filter ID
5553  *     @wr: the filter work request to populate
5554  *     @qid: ingress queue to receive the delete notification
5555  *
5556  *     Creates a filter work request to delete the supplied filter.  If @qid is
5557  *     negative the delete notification is suppressed.
5558  */
5559 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5560 {
5561         memset(wr, 0, sizeof(*wr));
5562         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5563         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5564         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5565                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5566         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5567         if (qid >= 0)
5568                 wr->rx_chan_rx_rpl_iq =
5569                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5570 }
5571
5572 #define INIT_CMD(var, cmd, rd_wr) do { \
5573         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5574                                         FW_CMD_REQUEST_F | \
5575                                         FW_CMD_##rd_wr##_F); \
5576         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5577 } while (0)
5578
5579 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5580                           u32 addr, u32 val)
5581 {
5582         u32 ldst_addrspace;
5583         struct fw_ldst_cmd c;
5584
5585         memset(&c, 0, sizeof(c));
5586         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5587         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5588                                         FW_CMD_REQUEST_F |
5589                                         FW_CMD_WRITE_F |
5590                                         ldst_addrspace);
5591         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5592         c.u.addrval.addr = cpu_to_be32(addr);
5593         c.u.addrval.val = cpu_to_be32(val);
5594
5595         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5596 }
5597
5598 /**
5599  *      t4_mdio_rd - read a PHY register through MDIO
5600  *      @adap: the adapter
5601  *      @mbox: mailbox to use for the FW command
5602  *      @phy_addr: the PHY address
5603  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5604  *      @reg: the register to read
5605  *      @valp: where to store the value
5606  *
5607  *      Issues a FW command through the given mailbox to read a PHY register.
5608  */
5609 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5610                unsigned int mmd, unsigned int reg, u16 *valp)
5611 {
5612         int ret;
5613         u32 ldst_addrspace;
5614         struct fw_ldst_cmd c;
5615
5616         memset(&c, 0, sizeof(c));
5617         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5618         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5619                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5620                                         ldst_addrspace);
5621         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5622         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5623                                          FW_LDST_CMD_MMD_V(mmd));
5624         c.u.mdio.raddr = cpu_to_be16(reg);
5625
5626         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5627         if (ret == 0)
5628                 *valp = be16_to_cpu(c.u.mdio.rval);
5629         return ret;
5630 }
5631
5632 /**
5633  *      t4_mdio_wr - write a PHY register through MDIO
5634  *      @adap: the adapter
5635  *      @mbox: mailbox to use for the FW command
5636  *      @phy_addr: the PHY address
5637  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5638  *      @reg: the register to write
5639  *      @valp: value to write
5640  *
5641  *      Issues a FW command through the given mailbox to write a PHY register.
5642  */
5643 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5644                unsigned int mmd, unsigned int reg, u16 val)
5645 {
5646         u32 ldst_addrspace;
5647         struct fw_ldst_cmd c;
5648
5649         memset(&c, 0, sizeof(c));
5650         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5651         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5652                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5653                                         ldst_addrspace);
5654         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5655         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5656                                          FW_LDST_CMD_MMD_V(mmd));
5657         c.u.mdio.raddr = cpu_to_be16(reg);
5658         c.u.mdio.rval = cpu_to_be16(val);
5659
5660         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5661 }
5662
5663 /**
5664  *      t4_sge_decode_idma_state - decode the idma state
5665  *      @adap: the adapter
5666  *      @state: the state idma is stuck in
5667  */
5668 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5669 {
5670         static const char * const t4_decode[] = {
5671                 "IDMA_IDLE",
5672                 "IDMA_PUSH_MORE_CPL_FIFO",
5673                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5674                 "Not used",
5675                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5676                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5677                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5678                 "IDMA_SEND_FIFO_TO_IMSG",
5679                 "IDMA_FL_REQ_DATA_FL_PREP",
5680                 "IDMA_FL_REQ_DATA_FL",
5681                 "IDMA_FL_DROP",
5682                 "IDMA_FL_H_REQ_HEADER_FL",
5683                 "IDMA_FL_H_SEND_PCIEHDR",
5684                 "IDMA_FL_H_PUSH_CPL_FIFO",
5685                 "IDMA_FL_H_SEND_CPL",
5686                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5687                 "IDMA_FL_H_SEND_IP_HDR",
5688                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5689                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5690                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5691                 "IDMA_FL_D_SEND_PCIEHDR",
5692                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5693                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5694                 "IDMA_FL_SEND_PCIEHDR",
5695                 "IDMA_FL_PUSH_CPL_FIFO",
5696                 "IDMA_FL_SEND_CPL",
5697                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5698                 "IDMA_FL_SEND_PAYLOAD",
5699                 "IDMA_FL_REQ_NEXT_DATA_FL",
5700                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5701                 "IDMA_FL_SEND_PADDING",
5702                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5703                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5704                 "IDMA_FL_REQ_DATAFL_DONE",
5705                 "IDMA_FL_REQ_HEADERFL_DONE",
5706         };
5707         static const char * const t5_decode[] = {
5708                 "IDMA_IDLE",
5709                 "IDMA_ALMOST_IDLE",
5710                 "IDMA_PUSH_MORE_CPL_FIFO",
5711                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5712                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5713                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5714                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5715                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5716                 "IDMA_SEND_FIFO_TO_IMSG",
5717                 "IDMA_FL_REQ_DATA_FL",
5718                 "IDMA_FL_DROP",
5719                 "IDMA_FL_DROP_SEND_INC",
5720                 "IDMA_FL_H_REQ_HEADER_FL",
5721                 "IDMA_FL_H_SEND_PCIEHDR",
5722                 "IDMA_FL_H_PUSH_CPL_FIFO",
5723                 "IDMA_FL_H_SEND_CPL",
5724                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5725                 "IDMA_FL_H_SEND_IP_HDR",
5726                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5727                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5728                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5729                 "IDMA_FL_D_SEND_PCIEHDR",
5730                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5731                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5732                 "IDMA_FL_SEND_PCIEHDR",
5733                 "IDMA_FL_PUSH_CPL_FIFO",
5734                 "IDMA_FL_SEND_CPL",
5735                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5736                 "IDMA_FL_SEND_PAYLOAD",
5737                 "IDMA_FL_REQ_NEXT_DATA_FL",
5738                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5739                 "IDMA_FL_SEND_PADDING",
5740                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5741         };
5742         static const char * const t6_decode[] = {
5743                 "IDMA_IDLE",
5744                 "IDMA_PUSH_MORE_CPL_FIFO",
5745                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5746                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5747                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5748                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5749                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5750                 "IDMA_FL_REQ_DATA_FL",
5751                 "IDMA_FL_DROP",
5752                 "IDMA_FL_DROP_SEND_INC",
5753                 "IDMA_FL_H_REQ_HEADER_FL",
5754                 "IDMA_FL_H_SEND_PCIEHDR",
5755                 "IDMA_FL_H_PUSH_CPL_FIFO",
5756                 "IDMA_FL_H_SEND_CPL",
5757                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5758                 "IDMA_FL_H_SEND_IP_HDR",
5759                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5760                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5761                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5762                 "IDMA_FL_D_SEND_PCIEHDR",
5763                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5764                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5765                 "IDMA_FL_SEND_PCIEHDR",
5766                 "IDMA_FL_PUSH_CPL_FIFO",
5767                 "IDMA_FL_SEND_CPL",
5768                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5769                 "IDMA_FL_SEND_PAYLOAD",
5770                 "IDMA_FL_REQ_NEXT_DATA_FL",
5771                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5772                 "IDMA_FL_SEND_PADDING",
5773                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5774         };
5775         static const u32 sge_regs[] = {
5776                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5777                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5778                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5779         };
5780         const char **sge_idma_decode;
5781         int sge_idma_decode_nstates;
5782         int i;
5783         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5784
5785         /* Select the right set of decode strings to dump depending on the
5786          * adapter chip type.
5787          */
5788         switch (chip_version) {
5789         case CHELSIO_T4:
5790                 sge_idma_decode = (const char **)t4_decode;
5791                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5792                 break;
5793
5794         case CHELSIO_T5:
5795                 sge_idma_decode = (const char **)t5_decode;
5796                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5797                 break;
5798
5799         case CHELSIO_T6:
5800                 sge_idma_decode = (const char **)t6_decode;
5801                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5802                 break;
5803
5804         default:
5805                 dev_err(adapter->pdev_dev,
5806                         "Unsupported chip version %d\n", chip_version);
5807                 return;
5808         }
5809
5810         if (is_t4(adapter->params.chip)) {
5811                 sge_idma_decode = (const char **)t4_decode;
5812                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5813         } else {
5814                 sge_idma_decode = (const char **)t5_decode;
5815                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5816         }
5817
5818         if (state < sge_idma_decode_nstates)
5819                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5820         else
5821                 CH_WARN(adapter, "idma state %d unknown\n", state);
5822
5823         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5824                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5825                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5826 }
5827
5828 /**
5829  *      t4_sge_ctxt_flush - flush the SGE context cache
5830  *      @adap: the adapter
5831  *      @mbox: mailbox to use for the FW command
5832  *
5833  *      Issues a FW command through the given mailbox to flush the
5834  *      SGE context cache.
5835  */
5836 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5837 {
5838         int ret;
5839         u32 ldst_addrspace;
5840         struct fw_ldst_cmd c;
5841
5842         memset(&c, 0, sizeof(c));
5843         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5844         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5845                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5846                                         ldst_addrspace);
5847         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5848         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5849
5850         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5851         return ret;
5852 }
5853
5854 /**
5855  *      t4_fw_hello - establish communication with FW
5856  *      @adap: the adapter
5857  *      @mbox: mailbox to use for the FW command
5858  *      @evt_mbox: mailbox to receive async FW events
5859  *      @master: specifies the caller's willingness to be the device master
5860  *      @state: returns the current device state (if non-NULL)
5861  *
5862  *      Issues a command to establish communication with FW.  Returns either
5863  *      an error (negative integer) or the mailbox of the Master PF.
5864  */
5865 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5866                 enum dev_master master, enum dev_state *state)
5867 {
5868         int ret;
5869         struct fw_hello_cmd c;
5870         u32 v;
5871         unsigned int master_mbox;
5872         int retries = FW_CMD_HELLO_RETRIES;
5873
5874 retry:
5875         memset(&c, 0, sizeof(c));
5876         INIT_CMD(c, HELLO, WRITE);
5877         c.err_to_clearinit = cpu_to_be32(
5878                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5879                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5880                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5881                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5882                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5883                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5884                 FW_HELLO_CMD_CLEARINIT_F);
5885
5886         /*
5887          * Issue the HELLO command to the firmware.  If it's not successful
5888          * but indicates that we got a "busy" or "timeout" condition, retry
5889          * the HELLO until we exhaust our retry limit.  If we do exceed our
5890          * retry limit, check to see if the firmware left us any error
5891          * information and report that if so.
5892          */
5893         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5894         if (ret < 0) {
5895                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5896                         goto retry;
5897                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5898                         t4_report_fw_error(adap);
5899                 return ret;
5900         }
5901
5902         v = be32_to_cpu(c.err_to_clearinit);
5903         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5904         if (state) {
5905                 if (v & FW_HELLO_CMD_ERR_F)
5906                         *state = DEV_STATE_ERR;
5907                 else if (v & FW_HELLO_CMD_INIT_F)
5908                         *state = DEV_STATE_INIT;
5909                 else
5910                         *state = DEV_STATE_UNINIT;
5911         }
5912
5913         /*
5914          * If we're not the Master PF then we need to wait around for the
5915          * Master PF Driver to finish setting up the adapter.
5916          *
5917          * Note that we also do this wait if we're a non-Master-capable PF and
5918          * there is no current Master PF; a Master PF may show up momentarily
5919          * and we wouldn't want to fail pointlessly.  (This can happen when an
5920          * OS loads lots of different drivers rapidly at the same time).  In
5921          * this case, the Master PF returned by the firmware will be
5922          * PCIE_FW_MASTER_M so the test below will work ...
5923          */
5924         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5925             master_mbox != mbox) {
5926                 int waiting = FW_CMD_HELLO_TIMEOUT;
5927
5928                 /*
5929                  * Wait for the firmware to either indicate an error or
5930                  * initialized state.  If we see either of these we bail out
5931                  * and report the issue to the caller.  If we exhaust the
5932                  * "hello timeout" and we haven't exhausted our retries, try
5933                  * again.  Otherwise bail with a timeout error.
5934                  */
5935                 for (;;) {
5936                         u32 pcie_fw;
5937
5938                         msleep(50);
5939                         waiting -= 50;
5940
5941                         /*
5942                          * If neither Error nor Initialialized are indicated
5943                          * by the firmware keep waiting till we exaust our
5944                          * timeout ... and then retry if we haven't exhausted
5945                          * our retries ...
5946                          */
5947                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5948                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5949                                 if (waiting <= 0) {
5950                                         if (retries-- > 0)
5951                                                 goto retry;
5952
5953                                         return -ETIMEDOUT;
5954                                 }
5955                                 continue;
5956                         }
5957
5958                         /*
5959                          * We either have an Error or Initialized condition
5960                          * report errors preferentially.
5961                          */
5962                         if (state) {
5963                                 if (pcie_fw & PCIE_FW_ERR_F)
5964                                         *state = DEV_STATE_ERR;
5965                                 else if (pcie_fw & PCIE_FW_INIT_F)
5966                                         *state = DEV_STATE_INIT;
5967                         }
5968
5969                         /*
5970                          * If we arrived before a Master PF was selected and
5971                          * there's not a valid Master PF, grab its identity
5972                          * for our caller.
5973                          */
5974                         if (master_mbox == PCIE_FW_MASTER_M &&
5975                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5976                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5977                         break;
5978                 }
5979         }
5980
5981         return master_mbox;
5982 }
5983
5984 /**
5985  *      t4_fw_bye - end communication with FW
5986  *      @adap: the adapter
5987  *      @mbox: mailbox to use for the FW command
5988  *
5989  *      Issues a command to terminate communication with FW.
5990  */
5991 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5992 {
5993         struct fw_bye_cmd c;
5994
5995         memset(&c, 0, sizeof(c));
5996         INIT_CMD(c, BYE, WRITE);
5997         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5998 }
5999
6000 /**
6001  *      t4_init_cmd - ask FW to initialize the device
6002  *      @adap: the adapter
6003  *      @mbox: mailbox to use for the FW command
6004  *
6005  *      Issues a command to FW to partially initialize the device.  This
6006  *      performs initialization that generally doesn't depend on user input.
6007  */
6008 int t4_early_init(struct adapter *adap, unsigned int mbox)
6009 {
6010         struct fw_initialize_cmd c;
6011
6012         memset(&c, 0, sizeof(c));
6013         INIT_CMD(c, INITIALIZE, WRITE);
6014         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6015 }
6016
6017 /**
6018  *      t4_fw_reset - issue a reset to FW
6019  *      @adap: the adapter
6020  *      @mbox: mailbox to use for the FW command
6021  *      @reset: specifies the type of reset to perform
6022  *
6023  *      Issues a reset command of the specified type to FW.
6024  */
6025 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6026 {
6027         struct fw_reset_cmd c;
6028
6029         memset(&c, 0, sizeof(c));
6030         INIT_CMD(c, RESET, WRITE);
6031         c.val = cpu_to_be32(reset);
6032         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6033 }
6034
6035 /**
6036  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6037  *      @adap: the adapter
6038  *      @mbox: mailbox to use for the FW RESET command (if desired)
6039  *      @force: force uP into RESET even if FW RESET command fails
6040  *
6041  *      Issues a RESET command to firmware (if desired) with a HALT indication
6042  *      and then puts the microprocessor into RESET state.  The RESET command
6043  *      will only be issued if a legitimate mailbox is provided (mbox <=
6044  *      PCIE_FW_MASTER_M).
6045  *
6046  *      This is generally used in order for the host to safely manipulate the
6047  *      adapter without fear of conflicting with whatever the firmware might
6048  *      be doing.  The only way out of this state is to RESTART the firmware
6049  *      ...
6050  */
6051 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6052 {
6053         int ret = 0;
6054
6055         /*
6056          * If a legitimate mailbox is provided, issue a RESET command
6057          * with a HALT indication.
6058          */
6059         if (mbox <= PCIE_FW_MASTER_M) {
6060                 struct fw_reset_cmd c;
6061
6062                 memset(&c, 0, sizeof(c));
6063                 INIT_CMD(c, RESET, WRITE);
6064                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6065                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6066                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6067         }
6068
6069         /*
6070          * Normally we won't complete the operation if the firmware RESET
6071          * command fails but if our caller insists we'll go ahead and put the
6072          * uP into RESET.  This can be useful if the firmware is hung or even
6073          * missing ...  We'll have to take the risk of putting the uP into
6074          * RESET without the cooperation of firmware in that case.
6075          *
6076          * We also force the firmware's HALT flag to be on in case we bypassed
6077          * the firmware RESET command above or we're dealing with old firmware
6078          * which doesn't have the HALT capability.  This will serve as a flag
6079          * for the incoming firmware to know that it's coming out of a HALT
6080          * rather than a RESET ... if it's new enough to understand that ...
6081          */
6082         if (ret == 0 || force) {
6083                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6084                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6085                                  PCIE_FW_HALT_F);
6086         }
6087
6088         /*
6089          * And we always return the result of the firmware RESET command
6090          * even when we force the uP into RESET ...
6091          */
6092         return ret;
6093 }
6094
6095 /**
6096  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6097  *      @adap: the adapter
6098  *      @reset: if we want to do a RESET to restart things
6099  *
6100  *      Restart firmware previously halted by t4_fw_halt().  On successful
6101  *      return the previous PF Master remains as the new PF Master and there
6102  *      is no need to issue a new HELLO command, etc.
6103  *
6104  *      We do this in two ways:
6105  *
6106  *       1. If we're dealing with newer firmware we'll simply want to take
6107  *          the chip's microprocessor out of RESET.  This will cause the
6108  *          firmware to start up from its start vector.  And then we'll loop
6109  *          until the firmware indicates it's started again (PCIE_FW.HALT
6110  *          reset to 0) or we timeout.
6111  *
6112  *       2. If we're dealing with older firmware then we'll need to RESET
6113  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6114  *          flag and automatically RESET itself on startup.
6115  */
6116 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6117 {
6118         if (reset) {
6119                 /*
6120                  * Since we're directing the RESET instead of the firmware
6121                  * doing it automatically, we need to clear the PCIE_FW.HALT
6122                  * bit.
6123                  */
6124                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6125
6126                 /*
6127                  * If we've been given a valid mailbox, first try to get the
6128                  * firmware to do the RESET.  If that works, great and we can
6129                  * return success.  Otherwise, if we haven't been given a
6130                  * valid mailbox or the RESET command failed, fall back to
6131                  * hitting the chip with a hammer.
6132                  */
6133                 if (mbox <= PCIE_FW_MASTER_M) {
6134                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6135                         msleep(100);
6136                         if (t4_fw_reset(adap, mbox,
6137                                         PIORST_F | PIORSTMODE_F) == 0)
6138                                 return 0;
6139                 }
6140
6141                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6142                 msleep(2000);
6143         } else {
6144                 int ms;
6145
6146                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6147                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6148                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6149                                 return 0;
6150                         msleep(100);
6151                         ms += 100;
6152                 }
6153                 return -ETIMEDOUT;
6154         }
6155         return 0;
6156 }
6157
6158 /**
6159  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6160  *      @adap: the adapter
6161  *      @mbox: mailbox to use for the FW RESET command (if desired)
6162  *      @fw_data: the firmware image to write
6163  *      @size: image size
6164  *      @force: force upgrade even if firmware doesn't cooperate
6165  *
6166  *      Perform all of the steps necessary for upgrading an adapter's
6167  *      firmware image.  Normally this requires the cooperation of the
6168  *      existing firmware in order to halt all existing activities
6169  *      but if an invalid mailbox token is passed in we skip that step
6170  *      (though we'll still put the adapter microprocessor into RESET in
6171  *      that case).
6172  *
6173  *      On successful return the new firmware will have been loaded and
6174  *      the adapter will have been fully RESET losing all previous setup
6175  *      state.  On unsuccessful return the adapter may be completely hosed ...
6176  *      positive errno indicates that the adapter is ~probably~ intact, a
6177  *      negative errno indicates that things are looking bad ...
6178  */
6179 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6180                   const u8 *fw_data, unsigned int size, int force)
6181 {
6182         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6183         int reset, ret;
6184
6185         if (!t4_fw_matches_chip(adap, fw_hdr))
6186                 return -EINVAL;
6187
6188         /* Disable FW_OK flag so that mbox commands with FW_OK flag set
6189          * wont be sent when we are flashing FW.
6190          */
6191         adap->flags &= ~FW_OK;
6192
6193         ret = t4_fw_halt(adap, mbox, force);
6194         if (ret < 0 && !force)
6195                 goto out;
6196
6197         ret = t4_load_fw(adap, fw_data, size);
6198         if (ret < 0)
6199                 goto out;
6200
6201         /*
6202          * Older versions of the firmware don't understand the new
6203          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6204          * restart.  So for newly loaded older firmware we'll have to do the
6205          * RESET for it so it starts up on a clean slate.  We can tell if
6206          * the newly loaded firmware will handle this right by checking
6207          * its header flags to see if it advertises the capability.
6208          */
6209         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6210         ret = t4_fw_restart(adap, mbox, reset);
6211
6212         /* Grab potentially new Firmware Device Log parameters so we can see
6213          * how healthy the new Firmware is.  It's okay to contact the new
6214          * Firmware for these parameters even though, as far as it's
6215          * concerned, we've never said "HELLO" to it ...
6216          */
6217         (void)t4_init_devlog_params(adap);
6218 out:
6219         adap->flags |= FW_OK;
6220         return ret;
6221 }
6222
6223 /**
6224  *      t4_fl_pkt_align - return the fl packet alignment
6225  *      @adap: the adapter
6226  *
6227  *      T4 has a single field to specify the packing and padding boundary.
6228  *      T5 onwards has separate fields for this and hence the alignment for
6229  *      next packet offset is maximum of these two.
6230  *
6231  */
6232 int t4_fl_pkt_align(struct adapter *adap)
6233 {
6234         u32 sge_control, sge_control2;
6235         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6236
6237         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6238
6239         /* T4 uses a single control field to specify both the PCIe Padding and
6240          * Packing Boundary.  T5 introduced the ability to specify these
6241          * separately.  The actual Ingress Packet Data alignment boundary
6242          * within Packed Buffer Mode is the maximum of these two
6243          * specifications.  (Note that it makes no real practical sense to
6244          * have the Pading Boudary be larger than the Packing Boundary but you
6245          * could set the chip up that way and, in fact, legacy T4 code would
6246          * end doing this because it would initialize the Padding Boundary and
6247          * leave the Packing Boundary initialized to 0 (16 bytes).)
6248          * Padding Boundary values in T6 starts from 8B,
6249          * where as it is 32B for T4 and T5.
6250          */
6251         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6252                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6253         else
6254                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6255
6256         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6257
6258         fl_align = ingpadboundary;
6259         if (!is_t4(adap->params.chip)) {
6260                 /* T5 has a weird interpretation of one of the PCIe Packing
6261                  * Boundary values.  No idea why ...
6262                  */
6263                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6264                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6265                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6266                         ingpackboundary = 16;
6267                 else
6268                         ingpackboundary = 1 << (ingpackboundary +
6269                                                 INGPACKBOUNDARY_SHIFT_X);
6270
6271                 fl_align = max(ingpadboundary, ingpackboundary);
6272         }
6273         return fl_align;
6274 }
6275
6276 /**
6277  *      t4_fixup_host_params - fix up host-dependent parameters
6278  *      @adap: the adapter
6279  *      @page_size: the host's Base Page Size
6280  *      @cache_line_size: the host's Cache Line Size
6281  *
6282  *      Various registers in T4 contain values which are dependent on the
6283  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6284  *      those registers with the appropriate values as passed in ...
6285  */
6286 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6287                          unsigned int cache_line_size)
6288 {
6289         unsigned int page_shift = fls(page_size) - 1;
6290         unsigned int sge_hps = page_shift - 10;
6291         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6292         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6293         unsigned int fl_align_log = fls(fl_align) - 1;
6294         unsigned int ingpad;
6295
6296         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6297                      HOSTPAGESIZEPF0_V(sge_hps) |
6298                      HOSTPAGESIZEPF1_V(sge_hps) |
6299                      HOSTPAGESIZEPF2_V(sge_hps) |
6300                      HOSTPAGESIZEPF3_V(sge_hps) |
6301                      HOSTPAGESIZEPF4_V(sge_hps) |
6302                      HOSTPAGESIZEPF5_V(sge_hps) |
6303                      HOSTPAGESIZEPF6_V(sge_hps) |
6304                      HOSTPAGESIZEPF7_V(sge_hps));
6305
6306         if (is_t4(adap->params.chip)) {
6307                 t4_set_reg_field(adap, SGE_CONTROL_A,
6308                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6309                                  EGRSTATUSPAGESIZE_F,
6310                                  INGPADBOUNDARY_V(fl_align_log -
6311                                                   INGPADBOUNDARY_SHIFT_X) |
6312                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6313         } else {
6314                 /* T5 introduced the separation of the Free List Padding and
6315                  * Packing Boundaries.  Thus, we can select a smaller Padding
6316                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6317                  * Bandwidth, and use a Packing Boundary which is large enough
6318                  * to avoid false sharing between CPUs, etc.
6319                  *
6320                  * For the PCI Link, the smaller the Padding Boundary the
6321                  * better.  For the Memory Controller, a smaller Padding
6322                  * Boundary is better until we cross under the Memory Line
6323                  * Size (the minimum unit of transfer to/from Memory).  If we
6324                  * have a Padding Boundary which is smaller than the Memory
6325                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6326                  * Memory Controller which is never good.  For T5 the smallest
6327                  * Padding Boundary which we can select is 32 bytes which is
6328                  * larger than any known Memory Controller Line Size so we'll
6329                  * use that.
6330                  *
6331                  * T5 has a different interpretation of the "0" value for the
6332                  * Packing Boundary.  This corresponds to 16 bytes instead of
6333                  * the expected 32 bytes.  We never have a Packing Boundary
6334                  * less than 32 bytes so we can't use that special value but
6335                  * on the other hand, if we wanted 32 bytes, the best we can
6336                  * really do is 64 bytes.
6337                 */
6338                 if (fl_align <= 32) {
6339                         fl_align = 64;
6340                         fl_align_log = 6;
6341                 }
6342
6343                 if (is_t5(adap->params.chip))
6344                         ingpad = INGPCIEBOUNDARY_32B_X;
6345                 else
6346                         ingpad = T6_INGPADBOUNDARY_32B_X;
6347
6348                 t4_set_reg_field(adap, SGE_CONTROL_A,
6349                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6350                                  EGRSTATUSPAGESIZE_F,
6351                                  INGPADBOUNDARY_V(ingpad) |
6352                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6353                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6354                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6355                                  INGPACKBOUNDARY_V(fl_align_log -
6356                                                    INGPACKBOUNDARY_SHIFT_X));
6357         }
6358         /*
6359          * Adjust various SGE Free List Host Buffer Sizes.
6360          *
6361          * This is something of a crock since we're using fixed indices into
6362          * the array which are also known by the sge.c code and the T4
6363          * Firmware Configuration File.  We need to come up with a much better
6364          * approach to managing this array.  For now, the first four entries
6365          * are:
6366          *
6367          *   0: Host Page Size
6368          *   1: 64KB
6369          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6370          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6371          *
6372          * For the single-MTU buffers in unpacked mode we need to include
6373          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6374          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6375          * Padding boundary.  All of these are accommodated in the Factory
6376          * Default Firmware Configuration File but we need to adjust it for
6377          * this host's cache line size.
6378          */
6379         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6380         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6381                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6382                      & ~(fl_align-1));
6383         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6384                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6385                      & ~(fl_align-1));
6386
6387         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6388
6389         return 0;
6390 }
6391
6392 /**
6393  *      t4_fw_initialize - ask FW to initialize the device
6394  *      @adap: the adapter
6395  *      @mbox: mailbox to use for the FW command
6396  *
6397  *      Issues a command to FW to partially initialize the device.  This
6398  *      performs initialization that generally doesn't depend on user input.
6399  */
6400 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6401 {
6402         struct fw_initialize_cmd c;
6403
6404         memset(&c, 0, sizeof(c));
6405         INIT_CMD(c, INITIALIZE, WRITE);
6406         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6407 }
6408
6409 /**
6410  *      t4_query_params_rw - query FW or device parameters
6411  *      @adap: the adapter
6412  *      @mbox: mailbox to use for the FW command
6413  *      @pf: the PF
6414  *      @vf: the VF
6415  *      @nparams: the number of parameters
6416  *      @params: the parameter names
6417  *      @val: the parameter values
6418  *      @rw: Write and read flag
6419  *
6420  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6421  *      queried at once.
6422  */
6423 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6424                        unsigned int vf, unsigned int nparams, const u32 *params,
6425                        u32 *val, int rw)
6426 {
6427         int i, ret;
6428         struct fw_params_cmd c;
6429         __be32 *p = &c.param[0].mnem;
6430
6431         if (nparams > 7)
6432                 return -EINVAL;
6433
6434         memset(&c, 0, sizeof(c));
6435         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6436                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6437                                   FW_PARAMS_CMD_PFN_V(pf) |
6438                                   FW_PARAMS_CMD_VFN_V(vf));
6439         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6440
6441         for (i = 0; i < nparams; i++) {
6442                 *p++ = cpu_to_be32(*params++);
6443                 if (rw)
6444                         *p = cpu_to_be32(*(val + i));
6445                 p++;
6446         }
6447
6448         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6449         if (ret == 0)
6450                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6451                         *val++ = be32_to_cpu(*p);
6452         return ret;
6453 }
6454
6455 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6456                     unsigned int vf, unsigned int nparams, const u32 *params,
6457                     u32 *val)
6458 {
6459         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6460 }
6461
6462 /**
6463  *      t4_set_params_timeout - sets FW or device parameters
6464  *      @adap: the adapter
6465  *      @mbox: mailbox to use for the FW command
6466  *      @pf: the PF
6467  *      @vf: the VF
6468  *      @nparams: the number of parameters
6469  *      @params: the parameter names
6470  *      @val: the parameter values
6471  *      @timeout: the timeout time
6472  *
6473  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6474  *      specified at once.
6475  */
6476 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6477                           unsigned int pf, unsigned int vf,
6478                           unsigned int nparams, const u32 *params,
6479                           const u32 *val, int timeout)
6480 {
6481         struct fw_params_cmd c;
6482         __be32 *p = &c.param[0].mnem;
6483
6484         if (nparams > 7)
6485                 return -EINVAL;
6486
6487         memset(&c, 0, sizeof(c));
6488         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6489                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6490                                   FW_PARAMS_CMD_PFN_V(pf) |
6491                                   FW_PARAMS_CMD_VFN_V(vf));
6492         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6493
6494         while (nparams--) {
6495                 *p++ = cpu_to_be32(*params++);
6496                 *p++ = cpu_to_be32(*val++);
6497         }
6498
6499         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6500 }
6501
6502 /**
6503  *      t4_set_params - sets FW or device parameters
6504  *      @adap: the adapter
6505  *      @mbox: mailbox to use for the FW command
6506  *      @pf: the PF
6507  *      @vf: the VF
6508  *      @nparams: the number of parameters
6509  *      @params: the parameter names
6510  *      @val: the parameter values
6511  *
6512  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6513  *      specified at once.
6514  */
6515 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6516                   unsigned int vf, unsigned int nparams, const u32 *params,
6517                   const u32 *val)
6518 {
6519         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6520                                      FW_CMD_MAX_TIMEOUT);
6521 }
6522
6523 /**
6524  *      t4_cfg_pfvf - configure PF/VF resource limits
6525  *      @adap: the adapter
6526  *      @mbox: mailbox to use for the FW command
6527  *      @pf: the PF being configured
6528  *      @vf: the VF being configured
6529  *      @txq: the max number of egress queues
6530  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6531  *      @rxqi: the max number of interrupt-capable ingress queues
6532  *      @rxq: the max number of interruptless ingress queues
6533  *      @tc: the PCI traffic class
6534  *      @vi: the max number of virtual interfaces
6535  *      @cmask: the channel access rights mask for the PF/VF
6536  *      @pmask: the port access rights mask for the PF/VF
6537  *      @nexact: the maximum number of exact MPS filters
6538  *      @rcaps: read capabilities
6539  *      @wxcaps: write/execute capabilities
6540  *
6541  *      Configures resource limits and capabilities for a physical or virtual
6542  *      function.
6543  */
6544 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6545                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6546                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6547                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6548                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6549 {
6550         struct fw_pfvf_cmd c;
6551
6552         memset(&c, 0, sizeof(c));
6553         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6554                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6555                                   FW_PFVF_CMD_VFN_V(vf));
6556         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6557         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6558                                      FW_PFVF_CMD_NIQ_V(rxq));
6559         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6560                                     FW_PFVF_CMD_PMASK_V(pmask) |
6561                                     FW_PFVF_CMD_NEQ_V(txq));
6562         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6563                                       FW_PFVF_CMD_NVI_V(vi) |
6564                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6565         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6566                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6567                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6568         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6569 }
6570
6571 /**
6572  *      t4_alloc_vi - allocate a virtual interface
6573  *      @adap: the adapter
6574  *      @mbox: mailbox to use for the FW command
6575  *      @port: physical port associated with the VI
6576  *      @pf: the PF owning the VI
6577  *      @vf: the VF owning the VI
6578  *      @nmac: number of MAC addresses needed (1 to 5)
6579  *      @mac: the MAC addresses of the VI
6580  *      @rss_size: size of RSS table slice associated with this VI
6581  *
6582  *      Allocates a virtual interface for the given physical port.  If @mac is
6583  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6584  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6585  *      stored consecutively so the space needed is @nmac * 6 bytes.
6586  *      Returns a negative error number or the non-negative VI id.
6587  */
6588 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6589                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6590                 unsigned int *rss_size)
6591 {
6592         int ret;
6593         struct fw_vi_cmd c;
6594
6595         memset(&c, 0, sizeof(c));
6596         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6597                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6598                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6599         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6600         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6601         c.nmac = nmac - 1;
6602
6603         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6604         if (ret)
6605                 return ret;
6606
6607         if (mac) {
6608                 memcpy(mac, c.mac, sizeof(c.mac));
6609                 switch (nmac) {
6610                 case 5:
6611                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6612                 case 4:
6613                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6614                 case 3:
6615                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6616                 case 2:
6617                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6618                 }
6619         }
6620         if (rss_size)
6621                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6622         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6623 }
6624
6625 /**
6626  *      t4_free_vi - free a virtual interface
6627  *      @adap: the adapter
6628  *      @mbox: mailbox to use for the FW command
6629  *      @pf: the PF owning the VI
6630  *      @vf: the VF owning the VI
6631  *      @viid: virtual interface identifiler
6632  *
6633  *      Free a previously allocated virtual interface.
6634  */
6635 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6636                unsigned int vf, unsigned int viid)
6637 {
6638         struct fw_vi_cmd c;
6639
6640         memset(&c, 0, sizeof(c));
6641         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6642                                   FW_CMD_REQUEST_F |
6643                                   FW_CMD_EXEC_F |
6644                                   FW_VI_CMD_PFN_V(pf) |
6645                                   FW_VI_CMD_VFN_V(vf));
6646         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6647         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6648
6649         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6650 }
6651
6652 /**
6653  *      t4_set_rxmode - set Rx properties of a virtual interface
6654  *      @adap: the adapter
6655  *      @mbox: mailbox to use for the FW command
6656  *      @viid: the VI id
6657  *      @mtu: the new MTU or -1
6658  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6659  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6660  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6661  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6662  *      @sleep_ok: if true we may sleep while awaiting command completion
6663  *
6664  *      Sets Rx properties of a virtual interface.
6665  */
6666 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6667                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6668                   bool sleep_ok)
6669 {
6670         struct fw_vi_rxmode_cmd c;
6671
6672         /* convert to FW values */
6673         if (mtu < 0)
6674                 mtu = FW_RXMODE_MTU_NO_CHG;
6675         if (promisc < 0)
6676                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6677         if (all_multi < 0)
6678                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6679         if (bcast < 0)
6680                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6681         if (vlanex < 0)
6682                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6683
6684         memset(&c, 0, sizeof(c));
6685         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6686                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6687                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6688         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6689         c.mtu_to_vlanexen =
6690                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6691                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6692                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6693                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6694                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6695         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6696 }
6697
6698 /**
6699  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6700  *      @adap: the adapter
6701  *      @mbox: mailbox to use for the FW command
6702  *      @viid: the VI id
6703  *      @free: if true any existing filters for this VI id are first removed
6704  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6705  *      @addr: the MAC address(es)
6706  *      @idx: where to store the index of each allocated filter
6707  *      @hash: pointer to hash address filter bitmap
6708  *      @sleep_ok: call is allowed to sleep
6709  *
6710  *      Allocates an exact-match filter for each of the supplied addresses and
6711  *      sets it to the corresponding address.  If @idx is not %NULL it should
6712  *      have at least @naddr entries, each of which will be set to the index of
6713  *      the filter allocated for the corresponding MAC address.  If a filter
6714  *      could not be allocated for an address its index is set to 0xffff.
6715  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6716  *      are hashed and update the hash filter bitmap pointed at by @hash.
6717  *
6718  *      Returns a negative error number or the number of filters allocated.
6719  */
6720 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6721                       unsigned int viid, bool free, unsigned int naddr,
6722                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6723 {
6724         int offset, ret = 0;
6725         struct fw_vi_mac_cmd c;
6726         unsigned int nfilters = 0;
6727         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6728         unsigned int rem = naddr;
6729
6730         if (naddr > max_naddr)
6731                 return -EINVAL;
6732
6733         for (offset = 0; offset < naddr ; /**/) {
6734                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6735                                          rem : ARRAY_SIZE(c.u.exact));
6736                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6737                                                      u.exact[fw_naddr]), 16);
6738                 struct fw_vi_mac_exact *p;
6739                 int i;
6740
6741                 memset(&c, 0, sizeof(c));
6742                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6743                                            FW_CMD_REQUEST_F |
6744                                            FW_CMD_WRITE_F |
6745                                            FW_CMD_EXEC_V(free) |
6746                                            FW_VI_MAC_CMD_VIID_V(viid));
6747                 c.freemacs_to_len16 =
6748                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6749                                     FW_CMD_LEN16_V(len16));
6750
6751                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6752                         p->valid_to_idx =
6753                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6754                                             FW_VI_MAC_CMD_IDX_V(
6755                                                     FW_VI_MAC_ADD_MAC));
6756                         memcpy(p->macaddr, addr[offset + i],
6757                                sizeof(p->macaddr));
6758                 }
6759
6760                 /* It's okay if we run out of space in our MAC address arena.
6761                  * Some of the addresses we submit may get stored so we need
6762                  * to run through the reply to see what the results were ...
6763                  */
6764                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6765                 if (ret && ret != -FW_ENOMEM)
6766                         break;
6767
6768                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6769                         u16 index = FW_VI_MAC_CMD_IDX_G(
6770                                         be16_to_cpu(p->valid_to_idx));
6771
6772                         if (idx)
6773                                 idx[offset + i] = (index >= max_naddr ?
6774                                                    0xffff : index);
6775                         if (index < max_naddr)
6776                                 nfilters++;
6777                         else if (hash)
6778                                 *hash |= (1ULL <<
6779                                           hash_mac_addr(addr[offset + i]));
6780                 }
6781
6782                 free = false;
6783                 offset += fw_naddr;
6784                 rem -= fw_naddr;
6785         }
6786
6787         if (ret == 0 || ret == -FW_ENOMEM)
6788                 ret = nfilters;
6789         return ret;
6790 }
6791
6792 /**
6793  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
6794  *      @adap: the adapter
6795  *      @mbox: mailbox to use for the FW command
6796  *      @viid: the VI id
6797  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6798  *      @addr: the MAC address(es)
6799  *      @sleep_ok: call is allowed to sleep
6800  *
6801  *      Frees the exact-match filter for each of the supplied addresses
6802  *
6803  *      Returns a negative error number or the number of filters freed.
6804  */
6805 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6806                      unsigned int viid, unsigned int naddr,
6807                      const u8 **addr, bool sleep_ok)
6808 {
6809         int offset, ret = 0;
6810         struct fw_vi_mac_cmd c;
6811         unsigned int nfilters = 0;
6812         unsigned int max_naddr = is_t4(adap->params.chip) ?
6813                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
6814                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6815         unsigned int rem = naddr;
6816
6817         if (naddr > max_naddr)
6818                 return -EINVAL;
6819
6820         for (offset = 0; offset < (int)naddr ; /**/) {
6821                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6822                                          ? rem
6823                                          : ARRAY_SIZE(c.u.exact));
6824                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6825                                                      u.exact[fw_naddr]), 16);
6826                 struct fw_vi_mac_exact *p;
6827                 int i;
6828
6829                 memset(&c, 0, sizeof(c));
6830                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6831                                      FW_CMD_REQUEST_F |
6832                                      FW_CMD_WRITE_F |
6833                                      FW_CMD_EXEC_V(0) |
6834                                      FW_VI_MAC_CMD_VIID_V(viid));
6835                 c.freemacs_to_len16 =
6836                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6837                                             FW_CMD_LEN16_V(len16));
6838
6839                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6840                         p->valid_to_idx = cpu_to_be16(
6841                                 FW_VI_MAC_CMD_VALID_F |
6842                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6843                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6844                 }
6845
6846                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6847                 if (ret)
6848                         break;
6849
6850                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6851                         u16 index = FW_VI_MAC_CMD_IDX_G(
6852                                                 be16_to_cpu(p->valid_to_idx));
6853
6854                         if (index < max_naddr)
6855                                 nfilters++;
6856                 }
6857
6858                 offset += fw_naddr;
6859                 rem -= fw_naddr;
6860         }
6861
6862         if (ret == 0)
6863                 ret = nfilters;
6864         return ret;
6865 }
6866
6867 /**
6868  *      t4_change_mac - modifies the exact-match filter for a MAC address
6869  *      @adap: the adapter
6870  *      @mbox: mailbox to use for the FW command
6871  *      @viid: the VI id
6872  *      @idx: index of existing filter for old value of MAC address, or -1
6873  *      @addr: the new MAC address value
6874  *      @persist: whether a new MAC allocation should be persistent
6875  *      @add_smt: if true also add the address to the HW SMT
6876  *
6877  *      Modifies an exact-match filter and sets it to the new MAC address.
6878  *      Note that in general it is not possible to modify the value of a given
6879  *      filter so the generic way to modify an address filter is to free the one
6880  *      being used by the old address value and allocate a new filter for the
6881  *      new address value.  @idx can be -1 if the address is a new addition.
6882  *
6883  *      Returns a negative error number or the index of the filter with the new
6884  *      MAC value.
6885  */
6886 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6887                   int idx, const u8 *addr, bool persist, bool add_smt)
6888 {
6889         int ret, mode;
6890         struct fw_vi_mac_cmd c;
6891         struct fw_vi_mac_exact *p = c.u.exact;
6892         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6893
6894         if (idx < 0)                             /* new allocation */
6895                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6896         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6897
6898         memset(&c, 0, sizeof(c));
6899         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6900                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6901                                    FW_VI_MAC_CMD_VIID_V(viid));
6902         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6903         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6904                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6905                                       FW_VI_MAC_CMD_IDX_V(idx));
6906         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6907
6908         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6909         if (ret == 0) {
6910                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6911                 if (ret >= max_mac_addr)
6912                         ret = -ENOMEM;
6913         }
6914         return ret;
6915 }
6916
6917 /**
6918  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6919  *      @adap: the adapter
6920  *      @mbox: mailbox to use for the FW command
6921  *      @viid: the VI id
6922  *      @ucast: whether the hash filter should also match unicast addresses
6923  *      @vec: the value to be written to the hash filter
6924  *      @sleep_ok: call is allowed to sleep
6925  *
6926  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6927  */
6928 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6929                      bool ucast, u64 vec, bool sleep_ok)
6930 {
6931         struct fw_vi_mac_cmd c;
6932
6933         memset(&c, 0, sizeof(c));
6934         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6935                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6936                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6937         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6938                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6939                                           FW_CMD_LEN16_V(1));
6940         c.u.hash.hashvec = cpu_to_be64(vec);
6941         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6942 }
6943
6944 /**
6945  *      t4_enable_vi_params - enable/disable a virtual interface
6946  *      @adap: the adapter
6947  *      @mbox: mailbox to use for the FW command
6948  *      @viid: the VI id
6949  *      @rx_en: 1=enable Rx, 0=disable Rx
6950  *      @tx_en: 1=enable Tx, 0=disable Tx
6951  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6952  *
6953  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6954  *      only makes sense when enabling a Virtual Interface ...
6955  */
6956 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6957                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6958 {
6959         struct fw_vi_enable_cmd c;
6960
6961         memset(&c, 0, sizeof(c));
6962         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6963                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6964                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6965         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6966                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6967                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6968                                      FW_LEN16(c));
6969         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971
6972 /**
6973  *      t4_enable_vi - enable/disable a virtual interface
6974  *      @adap: the adapter
6975  *      @mbox: mailbox to use for the FW command
6976  *      @viid: the VI id
6977  *      @rx_en: 1=enable Rx, 0=disable Rx
6978  *      @tx_en: 1=enable Tx, 0=disable Tx
6979  *
6980  *      Enables/disables a virtual interface.
6981  */
6982 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6983                  bool rx_en, bool tx_en)
6984 {
6985         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6986 }
6987
6988 /**
6989  *      t4_identify_port - identify a VI's port by blinking its LED
6990  *      @adap: the adapter
6991  *      @mbox: mailbox to use for the FW command
6992  *      @viid: the VI id
6993  *      @nblinks: how many times to blink LED at 2.5 Hz
6994  *
6995  *      Identifies a VI's port by blinking its LED.
6996  */
6997 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6998                      unsigned int nblinks)
6999 {
7000         struct fw_vi_enable_cmd c;
7001
7002         memset(&c, 0, sizeof(c));
7003         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7004                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7005                                    FW_VI_ENABLE_CMD_VIID_V(viid));
7006         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7007         c.blinkdur = cpu_to_be16(nblinks);
7008         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7009 }
7010
7011 /**
7012  *      t4_iq_stop - stop an ingress queue and its FLs
7013  *      @adap: the adapter
7014  *      @mbox: mailbox to use for the FW command
7015  *      @pf: the PF owning the queues
7016  *      @vf: the VF owning the queues
7017  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7018  *      @iqid: ingress queue id
7019  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7020  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7021  *
7022  *      Stops an ingress queue and its associated FLs, if any.  This causes
7023  *      any current or future data/messages destined for these queues to be
7024  *      tossed.
7025  */
7026 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7028                unsigned int fl0id, unsigned int fl1id)
7029 {
7030         struct fw_iq_cmd c;
7031
7032         memset(&c, 0, sizeof(c));
7033         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7034                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7035                                   FW_IQ_CMD_VFN_V(vf));
7036         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7037         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7038         c.iqid = cpu_to_be16(iqid);
7039         c.fl0id = cpu_to_be16(fl0id);
7040         c.fl1id = cpu_to_be16(fl1id);
7041         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7042 }
7043
7044 /**
7045  *      t4_iq_free - free an ingress queue and its FLs
7046  *      @adap: the adapter
7047  *      @mbox: mailbox to use for the FW command
7048  *      @pf: the PF owning the queues
7049  *      @vf: the VF owning the queues
7050  *      @iqtype: the ingress queue type
7051  *      @iqid: ingress queue id
7052  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
7053  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
7054  *
7055  *      Frees an ingress queue and its associated FLs, if any.
7056  */
7057 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7058                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7059                unsigned int fl0id, unsigned int fl1id)
7060 {
7061         struct fw_iq_cmd c;
7062
7063         memset(&c, 0, sizeof(c));
7064         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7065                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7066                                   FW_IQ_CMD_VFN_V(vf));
7067         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7068         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7069         c.iqid = cpu_to_be16(iqid);
7070         c.fl0id = cpu_to_be16(fl0id);
7071         c.fl1id = cpu_to_be16(fl1id);
7072         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7073 }
7074
7075 /**
7076  *      t4_eth_eq_free - free an Ethernet egress queue
7077  *      @adap: the adapter
7078  *      @mbox: mailbox to use for the FW command
7079  *      @pf: the PF owning the queue
7080  *      @vf: the VF owning the queue
7081  *      @eqid: egress queue id
7082  *
7083  *      Frees an Ethernet egress queue.
7084  */
7085 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7086                    unsigned int vf, unsigned int eqid)
7087 {
7088         struct fw_eq_eth_cmd c;
7089
7090         memset(&c, 0, sizeof(c));
7091         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7092                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7093                                   FW_EQ_ETH_CMD_PFN_V(pf) |
7094                                   FW_EQ_ETH_CMD_VFN_V(vf));
7095         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7096         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7097         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7098 }
7099
7100 /**
7101  *      t4_ctrl_eq_free - free a control egress queue
7102  *      @adap: the adapter
7103  *      @mbox: mailbox to use for the FW command
7104  *      @pf: the PF owning the queue
7105  *      @vf: the VF owning the queue
7106  *      @eqid: egress queue id
7107  *
7108  *      Frees a control egress queue.
7109  */
7110 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7111                     unsigned int vf, unsigned int eqid)
7112 {
7113         struct fw_eq_ctrl_cmd c;
7114
7115         memset(&c, 0, sizeof(c));
7116         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7117                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7118                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
7119                                   FW_EQ_CTRL_CMD_VFN_V(vf));
7120         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7121         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7122         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7123 }
7124
7125 /**
7126  *      t4_ofld_eq_free - free an offload egress queue
7127  *      @adap: the adapter
7128  *      @mbox: mailbox to use for the FW command
7129  *      @pf: the PF owning the queue
7130  *      @vf: the VF owning the queue
7131  *      @eqid: egress queue id
7132  *
7133  *      Frees a control egress queue.
7134  */
7135 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7136                     unsigned int vf, unsigned int eqid)
7137 {
7138         struct fw_eq_ofld_cmd c;
7139
7140         memset(&c, 0, sizeof(c));
7141         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7142                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7143                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
7144                                   FW_EQ_OFLD_CMD_VFN_V(vf));
7145         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7146         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7147         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7148 }
7149
7150 /**
7151  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
7152  *      @adap: the adapter
7153  *      @link_down_rc: Link Down Reason Code
7154  *
7155  *      Returns a string representation of the Link Down Reason Code.
7156  */
7157 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7158 {
7159         static const char * const reason[] = {
7160                 "Link Down",
7161                 "Remote Fault",
7162                 "Auto-negotiation Failure",
7163                 "Reserved",
7164                 "Insufficient Airflow",
7165                 "Unable To Determine Reason",
7166                 "No RX Signal Detected",
7167                 "Reserved",
7168         };
7169
7170         if (link_down_rc >= ARRAY_SIZE(reason))
7171                 return "Bad Reason Code";
7172
7173         return reason[link_down_rc];
7174 }
7175
7176 /**
7177  *      t4_handle_get_port_info - process a FW reply message
7178  *      @pi: the port info
7179  *      @rpl: start of the FW message
7180  *
7181  *      Processes a GET_PORT_INFO FW reply message.
7182  */
7183 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7184 {
7185         const struct fw_port_cmd *p = (const void *)rpl;
7186         struct adapter *adap = pi->adapter;
7187
7188         /* link/module state change message */
7189         int speed = 0, fc = 0;
7190         struct link_config *lc;
7191         u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7192         int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7193         u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7194
7195         if (stat & FW_PORT_CMD_RXPAUSE_F)
7196                 fc |= PAUSE_RX;
7197         if (stat & FW_PORT_CMD_TXPAUSE_F)
7198                 fc |= PAUSE_TX;
7199         if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7200                 speed = 100;
7201         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7202                 speed = 1000;
7203         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7204                 speed = 10000;
7205         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7206                 speed = 25000;
7207         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7208                 speed = 40000;
7209         else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7210                 speed = 100000;
7211
7212         lc = &pi->link_cfg;
7213
7214         if (mod != pi->mod_type) {
7215                 pi->mod_type = mod;
7216                 t4_os_portmod_changed(adap, pi->port_id);
7217         }
7218         if (link_ok != lc->link_ok || speed != lc->speed ||
7219             fc != lc->fc) {     /* something changed */
7220                 if (!link_ok && lc->link_ok) {
7221                         unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7222
7223                         lc->link_down_rc = rc;
7224                         dev_warn(adap->pdev_dev,
7225                                  "Port %d link down, reason: %s\n",
7226                                  pi->port_id, t4_link_down_rc_str(rc));
7227                 }
7228                 lc->link_ok = link_ok;
7229                 lc->speed = speed;
7230                 lc->fc = fc;
7231                 lc->supported = be16_to_cpu(p->u.info.pcap);
7232                 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7233                 t4_os_link_changed(adap, pi->port_id, link_ok);
7234         }
7235 }
7236
7237 /**
7238  *      t4_handle_fw_rpl - process a FW reply message
7239  *      @adap: the adapter
7240  *      @rpl: start of the FW message
7241  *
7242  *      Processes a FW message, such as link state change messages.
7243  */
7244 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7245 {
7246         u8 opcode = *(const u8 *)rpl;
7247
7248         /* This might be a port command ... this simplifies the following
7249          * conditionals ...  We can get away with pre-dereferencing
7250          * action_to_len16 because it's in the first 16 bytes and all messages
7251          * will be at least that long.
7252          */
7253         const struct fw_port_cmd *p = (const void *)rpl;
7254         unsigned int action =
7255                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7256
7257         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7258                 int i;
7259                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7260                 struct port_info *pi = NULL;
7261
7262                 for_each_port(adap, i) {
7263                         pi = adap2pinfo(adap, i);
7264                         if (pi->tx_chan == chan)
7265                                 break;
7266                 }
7267
7268                 t4_handle_get_port_info(pi, rpl);
7269         } else {
7270                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7271                 return -EINVAL;
7272         }
7273         return 0;
7274 }
7275
7276 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7277 {
7278         u16 val;
7279
7280         if (pci_is_pcie(adapter->pdev)) {
7281                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7282                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7283                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7284         }
7285 }
7286
7287 /**
7288  *      init_link_config - initialize a link's SW state
7289  *      @lc: structure holding the link state
7290  *      @caps: link capabilities
7291  *
7292  *      Initializes the SW state maintained for each link, including the link's
7293  *      capabilities and default speed/flow-control/autonegotiation settings.
7294  */
7295 static void init_link_config(struct link_config *lc, unsigned int caps)
7296 {
7297         lc->supported = caps;
7298         lc->lp_advertising = 0;
7299         lc->requested_speed = 0;
7300         lc->speed = 0;
7301         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7302         if (lc->supported & FW_PORT_CAP_ANEG) {
7303                 lc->advertising = lc->supported & ADVERT_MASK;
7304                 lc->autoneg = AUTONEG_ENABLE;
7305                 lc->requested_fc |= PAUSE_AUTONEG;
7306         } else {
7307                 lc->advertising = 0;
7308                 lc->autoneg = AUTONEG_DISABLE;
7309         }
7310 }
7311
7312 #define CIM_PF_NOACCESS 0xeeeeeeee
7313
7314 int t4_wait_dev_ready(void __iomem *regs)
7315 {
7316         u32 whoami;
7317
7318         whoami = readl(regs + PL_WHOAMI_A);
7319         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7320                 return 0;
7321
7322         msleep(500);
7323         whoami = readl(regs + PL_WHOAMI_A);
7324         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7325 }
7326
7327 struct flash_desc {
7328         u32 vendor_and_model_id;
7329         u32 size_mb;
7330 };
7331
7332 static int get_flash_params(struct adapter *adap)
7333 {
7334         /* Table for non-Numonix supported flash parts.  Numonix parts are left
7335          * to the preexisting code.  All flash parts have 64KB sectors.
7336          */
7337         static struct flash_desc supported_flash[] = {
7338                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7339         };
7340
7341         int ret;
7342         u32 info;
7343
7344         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7345         if (!ret)
7346                 ret = sf1_read(adap, 3, 0, 1, &info);
7347         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7348         if (ret)
7349                 return ret;
7350
7351         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7352                 if (supported_flash[ret].vendor_and_model_id == info) {
7353                         adap->params.sf_size = supported_flash[ret].size_mb;
7354                         adap->params.sf_nsec =
7355                                 adap->params.sf_size / SF_SEC_SIZE;
7356                         return 0;
7357                 }
7358
7359         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7360                 return -EINVAL;
7361         info >>= 16;                           /* log2 of size */
7362         if (info >= 0x14 && info < 0x18)
7363                 adap->params.sf_nsec = 1 << (info - 16);
7364         else if (info == 0x18)
7365                 adap->params.sf_nsec = 64;
7366         else
7367                 return -EINVAL;
7368         adap->params.sf_size = 1 << info;
7369         adap->params.sf_fw_start =
7370                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7371
7372         if (adap->params.sf_size < FLASH_MIN_SIZE)
7373                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7374                          adap->params.sf_size, FLASH_MIN_SIZE);
7375         return 0;
7376 }
7377
7378 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7379 {
7380         u16 val;
7381         u32 pcie_cap;
7382
7383         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7384         if (pcie_cap) {
7385                 pci_read_config_word(adapter->pdev,
7386                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7387                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7388                 val |= range;
7389                 pci_write_config_word(adapter->pdev,
7390                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7391         }
7392 }
7393
7394 /**
7395  *      t4_prep_adapter - prepare SW and HW for operation
7396  *      @adapter: the adapter
7397  *      @reset: if true perform a HW reset
7398  *
7399  *      Initialize adapter SW state for the various HW modules, set initial
7400  *      values for some adapter tunables, take PHYs out of reset, and
7401  *      initialize the MDIO interface.
7402  */
7403 int t4_prep_adapter(struct adapter *adapter)
7404 {
7405         int ret, ver;
7406         uint16_t device_id;
7407         u32 pl_rev;
7408
7409         get_pci_mode(adapter, &adapter->params.pci);
7410         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7411
7412         ret = get_flash_params(adapter);
7413         if (ret < 0) {
7414                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7415                 return ret;
7416         }
7417
7418         /* Retrieve adapter's device ID
7419          */
7420         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7421         ver = device_id >> 12;
7422         adapter->params.chip = 0;
7423         switch (ver) {
7424         case CHELSIO_T4:
7425                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7426                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7427                 adapter->params.arch.mps_tcam_size =
7428                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7429                 adapter->params.arch.mps_rplc_size = 128;
7430                 adapter->params.arch.nchan = NCHAN;
7431                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7432                 adapter->params.arch.vfcount = 128;
7433                 /* Congestion map is for 4 channels so that
7434                  * MPS can have 4 priority per port.
7435                  */
7436                 adapter->params.arch.cng_ch_bits_log = 2;
7437                 break;
7438         case CHELSIO_T5:
7439                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7440                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7441                 adapter->params.arch.mps_tcam_size =
7442                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7443                 adapter->params.arch.mps_rplc_size = 128;
7444                 adapter->params.arch.nchan = NCHAN;
7445                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7446                 adapter->params.arch.vfcount = 128;
7447                 adapter->params.arch.cng_ch_bits_log = 2;
7448                 break;
7449         case CHELSIO_T6:
7450                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7451                 adapter->params.arch.sge_fl_db = 0;
7452                 adapter->params.arch.mps_tcam_size =
7453                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7454                 adapter->params.arch.mps_rplc_size = 256;
7455                 adapter->params.arch.nchan = 2;
7456                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7457                 adapter->params.arch.vfcount = 256;
7458                 /* Congestion map will be for 2 channels so that
7459                  * MPS can have 8 priority per port.
7460                  */
7461                 adapter->params.arch.cng_ch_bits_log = 3;
7462                 break;
7463         default:
7464                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7465                         device_id);
7466                 return -EINVAL;
7467         }
7468
7469         adapter->params.cim_la_size = CIMLA_SIZE;
7470         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7471
7472         /*
7473          * Default port for debugging in case we can't reach FW.
7474          */
7475         adapter->params.nports = 1;
7476         adapter->params.portvec = 1;
7477         adapter->params.vpd.cclk = 50000;
7478
7479         /* Set pci completion timeout value to 4 seconds. */
7480         set_pcie_completion_timeout(adapter, 0xd);
7481         return 0;
7482 }
7483
7484 /**
7485  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7486  *      @adapter: the adapter
7487  *      @qid: the Queue ID
7488  *      @qtype: the Ingress or Egress type for @qid
7489  *      @user: true if this request is for a user mode queue
7490  *      @pbar2_qoffset: BAR2 Queue Offset
7491  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7492  *
7493  *      Returns the BAR2 SGE Queue Registers information associated with the
7494  *      indicated Absolute Queue ID.  These are passed back in return value
7495  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7496  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7497  *
7498  *      This may return an error which indicates that BAR2 SGE Queue
7499  *      registers aren't available.  If an error is not returned, then the
7500  *      following values are returned:
7501  *
7502  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7503  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7504  *
7505  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7506  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7507  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7508  *      then these "Inferred Queue ID" register may not be used.
7509  */
7510 int t4_bar2_sge_qregs(struct adapter *adapter,
7511                       unsigned int qid,
7512                       enum t4_bar2_qtype qtype,
7513                       int user,
7514                       u64 *pbar2_qoffset,
7515                       unsigned int *pbar2_qid)
7516 {
7517         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7518         u64 bar2_page_offset, bar2_qoffset;
7519         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7520
7521         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7522         if (!user && is_t4(adapter->params.chip))
7523                 return -EINVAL;
7524
7525         /* Get our SGE Page Size parameters.
7526          */
7527         page_shift = adapter->params.sge.hps + 10;
7528         page_size = 1 << page_shift;
7529
7530         /* Get the right Queues per Page parameters for our Queue.
7531          */
7532         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7533                      ? adapter->params.sge.eq_qpp
7534                      : adapter->params.sge.iq_qpp);
7535         qpp_mask = (1 << qpp_shift) - 1;
7536
7537         /*  Calculate the basics of the BAR2 SGE Queue register area:
7538          *  o The BAR2 page the Queue registers will be in.
7539          *  o The BAR2 Queue ID.
7540          *  o The BAR2 Queue ID Offset into the BAR2 page.
7541          */
7542         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7543         bar2_qid = qid & qpp_mask;
7544         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7545
7546         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7547          * hardware will infer the Absolute Queue ID simply from the writes to
7548          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7549          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7550          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7551          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7552          * from the BAR2 Page and BAR2 Queue ID.
7553          *
7554          * One important censequence of this is that some BAR2 SGE registers
7555          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7556          * there.  But other registers synthesize the SGE Queue ID purely
7557          * from the writes to the registers -- the Write Combined Doorbell
7558          * Buffer is a good example.  These BAR2 SGE Registers are only
7559          * available for those BAR2 SGE Register areas where the SGE Absolute
7560          * Queue ID can be inferred from simple writes.
7561          */
7562         bar2_qoffset = bar2_page_offset;
7563         bar2_qinferred = (bar2_qid_offset < page_size);
7564         if (bar2_qinferred) {
7565                 bar2_qoffset += bar2_qid_offset;
7566                 bar2_qid = 0;
7567         }
7568
7569         *pbar2_qoffset = bar2_qoffset;
7570         *pbar2_qid = bar2_qid;
7571         return 0;
7572 }
7573
7574 /**
7575  *      t4_init_devlog_params - initialize adapter->params.devlog
7576  *      @adap: the adapter
7577  *
7578  *      Initialize various fields of the adapter's Firmware Device Log
7579  *      Parameters structure.
7580  */
7581 int t4_init_devlog_params(struct adapter *adap)
7582 {
7583         struct devlog_params *dparams = &adap->params.devlog;
7584         u32 pf_dparams;
7585         unsigned int devlog_meminfo;
7586         struct fw_devlog_cmd devlog_cmd;
7587         int ret;
7588
7589         /* If we're dealing with newer firmware, the Device Log Paramerters
7590          * are stored in a designated register which allows us to access the
7591          * Device Log even if we can't talk to the firmware.
7592          */
7593         pf_dparams =
7594                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7595         if (pf_dparams) {
7596                 unsigned int nentries, nentries128;
7597
7598                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7599                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7600
7601                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7602                 nentries = (nentries128 + 1) * 128;
7603                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7604
7605                 return 0;
7606         }
7607
7608         /* Otherwise, ask the firmware for it's Device Log Parameters.
7609          */
7610         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7611         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7612                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7613         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7614         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7615                          &devlog_cmd);
7616         if (ret)
7617                 return ret;
7618
7619         devlog_meminfo =
7620                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7621         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7622         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7623         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7624
7625         return 0;
7626 }
7627
7628 /**
7629  *      t4_init_sge_params - initialize adap->params.sge
7630  *      @adapter: the adapter
7631  *
7632  *      Initialize various fields of the adapter's SGE Parameters structure.
7633  */
7634 int t4_init_sge_params(struct adapter *adapter)
7635 {
7636         struct sge_params *sge_params = &adapter->params.sge;
7637         u32 hps, qpp;
7638         unsigned int s_hps, s_qpp;
7639
7640         /* Extract the SGE Page Size for our PF.
7641          */
7642         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7643         s_hps = (HOSTPAGESIZEPF0_S +
7644                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7645         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7646
7647         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7648          */
7649         s_qpp = (QUEUESPERPAGEPF0_S +
7650                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7651         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7652         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7653         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7654         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7655
7656         return 0;
7657 }
7658
7659 /**
7660  *      t4_init_tp_params - initialize adap->params.tp
7661  *      @adap: the adapter
7662  *
7663  *      Initialize various fields of the adapter's TP Parameters structure.
7664  */
7665 int t4_init_tp_params(struct adapter *adap)
7666 {
7667         int chan;
7668         u32 v;
7669
7670         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7671         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7672         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7673
7674         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7675         for (chan = 0; chan < NCHAN; chan++)
7676                 adap->params.tp.tx_modq[chan] = chan;
7677
7678         /* Cache the adapter's Compressed Filter Mode and global Incress
7679          * Configuration.
7680          */
7681         if (t4_use_ldst(adap)) {
7682                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7683                                 TP_VLAN_PRI_MAP_A, 1);
7684                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7685                                 TP_INGRESS_CONFIG_A, 1);
7686         } else {
7687                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7688                                  &adap->params.tp.vlan_pri_map, 1,
7689                                  TP_VLAN_PRI_MAP_A);
7690                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7691                                  &adap->params.tp.ingress_config, 1,
7692                                  TP_INGRESS_CONFIG_A);
7693         }
7694
7695         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7696          * shift positions of several elements of the Compressed Filter Tuple
7697          * for this adapter which we need frequently ...
7698          */
7699         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7700         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7701         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7702         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7703                                                                PROTOCOL_F);
7704
7705         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7706          * represents the presence of an Outer VLAN instead of a VNIC ID.
7707          */
7708         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7709                 adap->params.tp.vnic_shift = -1;
7710
7711         return 0;
7712 }
7713
7714 /**
7715  *      t4_filter_field_shift - calculate filter field shift
7716  *      @adap: the adapter
7717  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7718  *
7719  *      Return the shift position of a filter field within the Compressed
7720  *      Filter Tuple.  The filter field is specified via its selection bit
7721  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7722  */
7723 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7724 {
7725         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7726         unsigned int sel;
7727         int field_shift;
7728
7729         if ((filter_mode & filter_sel) == 0)
7730                 return -1;
7731
7732         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7733                 switch (filter_mode & sel) {
7734                 case FCOE_F:
7735                         field_shift += FT_FCOE_W;
7736                         break;
7737                 case PORT_F:
7738                         field_shift += FT_PORT_W;
7739                         break;
7740                 case VNIC_ID_F:
7741                         field_shift += FT_VNIC_ID_W;
7742                         break;
7743                 case VLAN_F:
7744                         field_shift += FT_VLAN_W;
7745                         break;
7746                 case TOS_F:
7747                         field_shift += FT_TOS_W;
7748                         break;
7749                 case PROTOCOL_F:
7750                         field_shift += FT_PROTOCOL_W;
7751                         break;
7752                 case ETHERTYPE_F:
7753                         field_shift += FT_ETHERTYPE_W;
7754                         break;
7755                 case MACMATCH_F:
7756                         field_shift += FT_MACMATCH_W;
7757                         break;
7758                 case MPSHITTYPE_F:
7759                         field_shift += FT_MPSHITTYPE_W;
7760                         break;
7761                 case FRAGMENTATION_F:
7762                         field_shift += FT_FRAGMENTATION_W;
7763                         break;
7764                 }
7765         }
7766         return field_shift;
7767 }
7768
7769 int t4_init_rss_mode(struct adapter *adap, int mbox)
7770 {
7771         int i, ret;
7772         struct fw_rss_vi_config_cmd rvc;
7773
7774         memset(&rvc, 0, sizeof(rvc));
7775
7776         for_each_port(adap, i) {
7777                 struct port_info *p = adap2pinfo(adap, i);
7778
7779                 rvc.op_to_viid =
7780                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7781                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7782                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7783                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7784                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7785                 if (ret)
7786                         return ret;
7787                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7788         }
7789         return 0;
7790 }
7791
7792 /**
7793  *      t4_init_portinfo - allocate a virtual interface amd initialize port_info
7794  *      @pi: the port_info
7795  *      @mbox: mailbox to use for the FW command
7796  *      @port: physical port associated with the VI
7797  *      @pf: the PF owning the VI
7798  *      @vf: the VF owning the VI
7799  *      @mac: the MAC address of the VI
7800  *
7801  *      Allocates a virtual interface for the given physical port.  If @mac is
7802  *      not %NULL it contains the MAC address of the VI as assigned by FW.
7803  *      @mac should be large enough to hold an Ethernet address.
7804  *      Returns < 0 on error.
7805  */
7806 int t4_init_portinfo(struct port_info *pi, int mbox,
7807                      int port, int pf, int vf, u8 mac[])
7808 {
7809         int ret;
7810         struct fw_port_cmd c;
7811         unsigned int rss_size;
7812
7813         memset(&c, 0, sizeof(c));
7814         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7815                                      FW_CMD_REQUEST_F | FW_CMD_READ_F |
7816                                      FW_PORT_CMD_PORTID_V(port));
7817         c.action_to_len16 = cpu_to_be32(
7818                 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7819                 FW_LEN16(c));
7820         ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7821         if (ret)
7822                 return ret;
7823
7824         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7825         if (ret < 0)
7826                 return ret;
7827
7828         pi->viid = ret;
7829         pi->tx_chan = port;
7830         pi->lport = port;
7831         pi->rss_size = rss_size;
7832
7833         ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7834         pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7835                 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7836         pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7837         pi->mod_type = FW_PORT_MOD_TYPE_NA;
7838
7839         init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7840         return 0;
7841 }
7842
7843 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7844 {
7845         u8 addr[6];
7846         int ret, i, j = 0;
7847
7848         for_each_port(adap, i) {
7849                 struct port_info *pi = adap2pinfo(adap, i);
7850
7851                 while ((adap->params.portvec & (1 << j)) == 0)
7852                         j++;
7853
7854                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7855                 if (ret)
7856                         return ret;
7857
7858                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7859                 j++;
7860         }
7861         return 0;
7862 }
7863
7864 /**
7865  *      t4_read_cimq_cfg - read CIM queue configuration
7866  *      @adap: the adapter
7867  *      @base: holds the queue base addresses in bytes
7868  *      @size: holds the queue sizes in bytes
7869  *      @thres: holds the queue full thresholds in bytes
7870  *
7871  *      Returns the current configuration of the CIM queues, starting with
7872  *      the IBQs, then the OBQs.
7873  */
7874 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7875 {
7876         unsigned int i, v;
7877         int cim_num_obq = is_t4(adap->params.chip) ?
7878                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7879
7880         for (i = 0; i < CIM_NUM_IBQ; i++) {
7881                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7882                              QUENUMSELECT_V(i));
7883                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7884                 /* value is in 256-byte units */
7885                 *base++ = CIMQBASE_G(v) * 256;
7886                 *size++ = CIMQSIZE_G(v) * 256;
7887                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7888         }
7889         for (i = 0; i < cim_num_obq; i++) {
7890                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7891                              QUENUMSELECT_V(i));
7892                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7893                 /* value is in 256-byte units */
7894                 *base++ = CIMQBASE_G(v) * 256;
7895                 *size++ = CIMQSIZE_G(v) * 256;
7896         }
7897 }
7898
7899 /**
7900  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7901  *      @adap: the adapter
7902  *      @qid: the queue index
7903  *      @data: where to store the queue contents
7904  *      @n: capacity of @data in 32-bit words
7905  *
7906  *      Reads the contents of the selected CIM queue starting at address 0 up
7907  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7908  *      error and the number of 32-bit words actually read on success.
7909  */
7910 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7911 {
7912         int i, err, attempts;
7913         unsigned int addr;
7914         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7915
7916         if (qid > 5 || (n & 3))
7917                 return -EINVAL;
7918
7919         addr = qid * nwords;
7920         if (n > nwords)
7921                 n = nwords;
7922
7923         /* It might take 3-10ms before the IBQ debug read access is allowed.
7924          * Wait for 1 Sec with a delay of 1 usec.
7925          */
7926         attempts = 1000000;
7927
7928         for (i = 0; i < n; i++, addr++) {
7929                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7930                              IBQDBGEN_F);
7931                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7932                                       attempts, 1);
7933                 if (err)
7934                         return err;
7935                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7936         }
7937         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7938         return i;
7939 }
7940
7941 /**
7942  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7943  *      @adap: the adapter
7944  *      @qid: the queue index
7945  *      @data: where to store the queue contents
7946  *      @n: capacity of @data in 32-bit words
7947  *
7948  *      Reads the contents of the selected CIM queue starting at address 0 up
7949  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7950  *      error and the number of 32-bit words actually read on success.
7951  */
7952 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7953 {
7954         int i, err;
7955         unsigned int addr, v, nwords;
7956         int cim_num_obq = is_t4(adap->params.chip) ?
7957                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7958
7959         if ((qid > (cim_num_obq - 1)) || (n & 3))
7960                 return -EINVAL;
7961
7962         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7963                      QUENUMSELECT_V(qid));
7964         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7965
7966         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7967         nwords = CIMQSIZE_G(v) * 64;  /* same */
7968         if (n > nwords)
7969                 n = nwords;
7970
7971         for (i = 0; i < n; i++, addr++) {
7972                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7973                              OBQDBGEN_F);
7974                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7975                                       2, 1);
7976                 if (err)
7977                         return err;
7978                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7979         }
7980         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7981         return i;
7982 }
7983
7984 /**
7985  *      t4_cim_read - read a block from CIM internal address space
7986  *      @adap: the adapter
7987  *      @addr: the start address within the CIM address space
7988  *      @n: number of words to read
7989  *      @valp: where to store the result
7990  *
7991  *      Reads a block of 4-byte words from the CIM intenal address space.
7992  */
7993 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7994                 unsigned int *valp)
7995 {
7996         int ret = 0;
7997
7998         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7999                 return -EBUSY;
8000
8001         for ( ; !ret && n--; addr += 4) {
8002                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8003                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8004                                       0, 5, 2);
8005                 if (!ret)
8006                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8007         }
8008         return ret;
8009 }
8010
8011 /**
8012  *      t4_cim_write - write a block into CIM internal address space
8013  *      @adap: the adapter
8014  *      @addr: the start address within the CIM address space
8015  *      @n: number of words to write
8016  *      @valp: set of values to write
8017  *
8018  *      Writes a block of 4-byte words into the CIM intenal address space.
8019  */
8020 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8021                  const unsigned int *valp)
8022 {
8023         int ret = 0;
8024
8025         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8026                 return -EBUSY;
8027
8028         for ( ; !ret && n--; addr += 4) {
8029                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8030                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8031                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8032                                       0, 5, 2);
8033         }
8034         return ret;
8035 }
8036
8037 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8038                          unsigned int val)
8039 {
8040         return t4_cim_write(adap, addr, 1, &val);
8041 }
8042
8043 /**
8044  *      t4_cim_read_la - read CIM LA capture buffer
8045  *      @adap: the adapter
8046  *      @la_buf: where to store the LA data
8047  *      @wrptr: the HW write pointer within the capture buffer
8048  *
8049  *      Reads the contents of the CIM LA buffer with the most recent entry at
8050  *      the end of the returned data and with the entry at @wrptr first.
8051  *      We try to leave the LA in the running state we find it in.
8052  */
8053 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8054 {
8055         int i, ret;
8056         unsigned int cfg, val, idx;
8057
8058         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8059         if (ret)
8060                 return ret;
8061
8062         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
8063                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8064                 if (ret)
8065                         return ret;
8066         }
8067
8068         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8069         if (ret)
8070                 goto restart;
8071
8072         idx = UPDBGLAWRPTR_G(val);
8073         if (wrptr)
8074                 *wrptr = idx;
8075
8076         for (i = 0; i < adap->params.cim_la_size; i++) {
8077                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8078                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8079                 if (ret)
8080                         break;
8081                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8082                 if (ret)
8083                         break;
8084                 if (val & UPDBGLARDEN_F) {
8085                         ret = -ETIMEDOUT;
8086                         break;
8087                 }
8088                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8089                 if (ret)
8090                         break;
8091
8092                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8093                  * identify the 32-bit portion of the full 312-bit data
8094                  */
8095                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
8096                         idx = (idx & 0xff0) + 0x10;
8097                 else
8098                         idx++;
8099                 /* address can't exceed 0xfff */
8100                 idx &= UPDBGLARDPTR_M;
8101         }
8102 restart:
8103         if (cfg & UPDBGLAEN_F) {
8104                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8105                                       cfg & ~UPDBGLARDEN_F);
8106                 if (!ret)
8107                         ret = r;
8108         }
8109         return ret;
8110 }
8111
8112 /**
8113  *      t4_tp_read_la - read TP LA capture buffer
8114  *      @adap: the adapter
8115  *      @la_buf: where to store the LA data
8116  *      @wrptr: the HW write pointer within the capture buffer
8117  *
8118  *      Reads the contents of the TP LA buffer with the most recent entry at
8119  *      the end of the returned data and with the entry at @wrptr first.
8120  *      We leave the LA in the running state we find it in.
8121  */
8122 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8123 {
8124         bool last_incomplete;
8125         unsigned int i, cfg, val, idx;
8126
8127         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8128         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
8129                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8130                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8131
8132         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8133         idx = DBGLAWPTR_G(val);
8134         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8135         if (last_incomplete)
8136                 idx = (idx + 1) & DBGLARPTR_M;
8137         if (wrptr)
8138                 *wrptr = idx;
8139
8140         val &= 0xffff;
8141         val &= ~DBGLARPTR_V(DBGLARPTR_M);
8142         val |= adap->params.tp.la_mask;
8143
8144         for (i = 0; i < TPLA_SIZE; i++) {
8145                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8146                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8147                 idx = (idx + 1) & DBGLARPTR_M;
8148         }
8149
8150         /* Wipe out last entry if it isn't valid */
8151         if (last_incomplete)
8152                 la_buf[TPLA_SIZE - 1] = ~0ULL;
8153
8154         if (cfg & DBGLAENABLE_F)                    /* restore running state */
8155                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8156                              cfg | adap->params.tp.la_mask);
8157 }
8158
8159 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8160  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8161  * state for more than the Warning Threshold then we'll issue a warning about
8162  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8163  * appears to be hung every Warning Repeat second till the situation clears.
8164  * If the situation clears, we'll note that as well.
8165  */
8166 #define SGE_IDMA_WARN_THRESH 1
8167 #define SGE_IDMA_WARN_REPEAT 300
8168
8169 /**
8170  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8171  *      @adapter: the adapter
8172  *      @idma: the adapter IDMA Monitor state
8173  *
8174  *      Initialize the state of an SGE Ingress DMA Monitor.
8175  */
8176 void t4_idma_monitor_init(struct adapter *adapter,
8177                           struct sge_idma_monitor_state *idma)
8178 {
8179         /* Initialize the state variables for detecting an SGE Ingress DMA
8180          * hang.  The SGE has internal counters which count up on each clock
8181          * tick whenever the SGE finds its Ingress DMA State Engines in the
8182          * same state they were on the previous clock tick.  The clock used is
8183          * the Core Clock so we have a limit on the maximum "time" they can
8184          * record; typically a very small number of seconds.  For instance,
8185          * with a 600MHz Core Clock, we can only count up to a bit more than
8186          * 7s.  So we'll synthesize a larger counter in order to not run the
8187          * risk of having the "timers" overflow and give us the flexibility to
8188          * maintain a Hung SGE State Machine of our own which operates across
8189          * a longer time frame.
8190          */
8191         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8192         idma->idma_stalled[0] = 0;
8193         idma->idma_stalled[1] = 0;
8194 }
8195
8196 /**
8197  *      t4_idma_monitor - monitor SGE Ingress DMA state
8198  *      @adapter: the adapter
8199  *      @idma: the adapter IDMA Monitor state
8200  *      @hz: number of ticks/second
8201  *      @ticks: number of ticks since the last IDMA Monitor call
8202  */
8203 void t4_idma_monitor(struct adapter *adapter,
8204                      struct sge_idma_monitor_state *idma,
8205                      int hz, int ticks)
8206 {
8207         int i, idma_same_state_cnt[2];
8208
8209          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8210           * are counters inside the SGE which count up on each clock when the
8211           * SGE finds its Ingress DMA State Engines in the same states they
8212           * were in the previous clock.  The counters will peg out at
8213           * 0xffffffff without wrapping around so once they pass the 1s
8214           * threshold they'll stay above that till the IDMA state changes.
8215           */
8216         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8217         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8218         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8219
8220         for (i = 0; i < 2; i++) {
8221                 u32 debug0, debug11;
8222
8223                 /* If the Ingress DMA Same State Counter ("timer") is less
8224                  * than 1s, then we can reset our synthesized Stall Timer and
8225                  * continue.  If we have previously emitted warnings about a
8226                  * potential stalled Ingress Queue, issue a note indicating
8227                  * that the Ingress Queue has resumed forward progress.
8228                  */
8229                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8230                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8231                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8232                                          "resumed after %d seconds\n",
8233                                          i, idma->idma_qid[i],
8234                                          idma->idma_stalled[i] / hz);
8235                         idma->idma_stalled[i] = 0;
8236                         continue;
8237                 }
8238
8239                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8240                  * domain.  The first time we get here it'll be because we
8241                  * passed the 1s Threshold; each additional time it'll be
8242                  * because the RX Timer Callback is being fired on its regular
8243                  * schedule.
8244                  *
8245                  * If the stall is below our Potential Hung Ingress Queue
8246                  * Warning Threshold, continue.
8247                  */
8248                 if (idma->idma_stalled[i] == 0) {
8249                         idma->idma_stalled[i] = hz;
8250                         idma->idma_warn[i] = 0;
8251                 } else {
8252                         idma->idma_stalled[i] += ticks;
8253                         idma->idma_warn[i] -= ticks;
8254                 }
8255
8256                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8257                         continue;
8258
8259                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8260                  */
8261                 if (idma->idma_warn[i] > 0)
8262                         continue;
8263                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8264
8265                 /* Read and save the SGE IDMA State and Queue ID information.
8266                  * We do this every time in case it changes across time ...
8267                  * can't be too careful ...
8268                  */
8269                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8270                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8271                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8272
8273                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8274                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8275                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8276
8277                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8278                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8279                          i, idma->idma_qid[i], idma->idma_state[i],
8280                          idma->idma_stalled[i] / hz,
8281                          debug0, debug11);
8282                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8283         }
8284 }
8285
8286 /**
8287  *      t4_set_vf_mac - Set MAC address for the specified VF
8288  *      @adapter: The adapter
8289  *      @vf: one of the VFs instantiated by the specified PF
8290  *      @naddr: the number of MAC addresses
8291  *      @addr: the MAC address(es) to be set to the specified VF
8292  */
8293 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8294                       unsigned int naddr, u8 *addr)
8295 {
8296         struct fw_acl_mac_cmd cmd;
8297
8298         memset(&cmd, 0, sizeof(cmd));
8299         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8300                                     FW_CMD_REQUEST_F |
8301                                     FW_CMD_WRITE_F |
8302                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8303                                     FW_ACL_MAC_CMD_VFN_V(vf));
8304
8305         /* Note: Do not enable the ACL */
8306         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8307         cmd.nmac = naddr;
8308
8309         switch (adapter->pf) {
8310         case 3:
8311                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8312                 break;
8313         case 2:
8314                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8315                 break;
8316         case 1:
8317                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8318                 break;
8319         case 0:
8320                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8321                 break;
8322         }
8323
8324         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8325 }
8326
8327 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8328                     int rateunit, int ratemode, int channel, int class,
8329                     int minrate, int maxrate, int weight, int pktsize)
8330 {
8331         struct fw_sched_cmd cmd;
8332
8333         memset(&cmd, 0, sizeof(cmd));
8334         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8335                                       FW_CMD_REQUEST_F |
8336                                       FW_CMD_WRITE_F);
8337         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8338
8339         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8340         cmd.u.params.type = type;
8341         cmd.u.params.level = level;
8342         cmd.u.params.mode = mode;
8343         cmd.u.params.ch = channel;
8344         cmd.u.params.cl = class;
8345         cmd.u.params.unit = rateunit;
8346         cmd.u.params.rate = ratemode;
8347         cmd.u.params.min = cpu_to_be32(minrate);
8348         cmd.u.params.max = cpu_to_be32(maxrate);
8349         cmd.u.params.weight = cpu_to_be16(weight);
8350         cmd.u.params.pktsize = cpu_to_be16(pktsize);
8351
8352         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8353                                NULL, 1);
8354 }