GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / net / ethernet / chelsio / cxgb4 / smt.c
1 /*
2  * This file is part of the Chelsio T4/T5/T6 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2017 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include "cxgb4.h"
36 #include "smt.h"
37 #include "t4_msg.h"
38 #include "t4fw_api.h"
39 #include "t4_regs.h"
40 #include "t4_values.h"
41
42 struct smt_data *t4_init_smt(void)
43 {
44         unsigned int smt_size;
45         struct smt_data *s;
46         int i;
47
48         smt_size = SMT_SIZE;
49
50         s = kvzalloc(sizeof(*s) + smt_size * sizeof(struct smt_entry),
51                      GFP_KERNEL);
52         if (!s)
53                 return NULL;
54         s->smt_size = smt_size;
55         rwlock_init(&s->lock);
56         for (i = 0; i < s->smt_size; ++i) {
57                 s->smtab[i].idx = i;
58                 s->smtab[i].state = SMT_STATE_UNUSED;
59                 memset(&s->smtab[i].src_mac, 0, ETH_ALEN);
60                 spin_lock_init(&s->smtab[i].lock);
61                 atomic_set(&s->smtab[i].refcnt, 0);
62         }
63         return s;
64 }
65
66 static struct smt_entry *find_or_alloc_smte(struct smt_data *s, u8 *smac)
67 {
68         struct smt_entry *first_free = NULL;
69         struct smt_entry *e, *end;
70
71         for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
72                 if (atomic_read(&e->refcnt) == 0) {
73                         if (!first_free)
74                                 first_free = e;
75                 } else {
76                         if (e->state == SMT_STATE_SWITCHING) {
77                                 /* This entry is actually in use. See if we can
78                                  * re-use it ?
79                                  */
80                                 if (memcmp(e->src_mac, smac, ETH_ALEN) == 0)
81                                         goto found_reuse;
82                         }
83                 }
84         }
85
86         if (first_free) {
87                 e = first_free;
88                 goto found;
89         }
90         return NULL;
91
92 found:
93         e->state = SMT_STATE_UNUSED;
94
95 found_reuse:
96         return e;
97 }
98
99 static void t4_smte_free(struct smt_entry *e)
100 {
101         if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
102                 e->state = SMT_STATE_UNUSED;
103         }
104 }
105
106 /**
107  * @e: smt entry to release
108  *
109  * Releases ref count and frees up an smt entry from SMT table
110  */
111 void cxgb4_smt_release(struct smt_entry *e)
112 {
113         spin_lock_bh(&e->lock);
114         if (atomic_dec_and_test(&e->refcnt))
115                 t4_smte_free(e);
116         spin_unlock_bh(&e->lock);
117 }
118 EXPORT_SYMBOL(cxgb4_smt_release);
119
120 void do_smt_write_rpl(struct adapter *adap, const struct cpl_smt_write_rpl *rpl)
121 {
122         unsigned int smtidx = TID_TID_G(GET_TID(rpl));
123         struct smt_data *s = adap->smt;
124
125         if (unlikely(rpl->status != CPL_ERR_NONE)) {
126                 struct smt_entry *e = &s->smtab[smtidx];
127
128                 dev_err(adap->pdev_dev,
129                         "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
130                         rpl->status, smtidx);
131                 spin_lock(&e->lock);
132                 e->state = SMT_STATE_ERROR;
133                 spin_unlock(&e->lock);
134                 return;
135         }
136 }
137
138 static int write_smt_entry(struct adapter *adapter, struct smt_entry *e)
139 {
140         struct cpl_t6_smt_write_req *t6req;
141         struct smt_data *s = adapter->smt;
142         struct cpl_smt_write_req *req;
143         struct sk_buff *skb;
144         int size;
145         u8 row;
146
147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
148                 size = sizeof(*req);
149                 skb = alloc_skb(size, GFP_ATOMIC);
150                 if (!skb)
151                         return -ENOMEM;
152                 /* Source MAC Table (SMT) contains 256 SMAC entries
153                  * organized in 128 rows of 2 entries each.
154                  */
155                 req = (struct cpl_smt_write_req *)__skb_put(skb, size);
156                 INIT_TP_WR(req, 0);
157
158                 /* Each row contains an SMAC pair.
159                  * LSB selects the SMAC entry within a row
160                  */
161                 row = (e->idx >> 1);
162                 if (e->idx & 1) {
163                         req->pfvf1 = 0x0;
164                         memcpy(req->src_mac1, e->src_mac, ETH_ALEN);
165
166                         /* fill pfvf0/src_mac0 with entry
167                          * at prev index from smt-tab.
168                          */
169                         req->pfvf0 = 0x0;
170                         memcpy(req->src_mac0, s->smtab[e->idx - 1].src_mac,
171                                ETH_ALEN);
172                 } else {
173                         req->pfvf0 = 0x0;
174                         memcpy(req->src_mac0, e->src_mac, ETH_ALEN);
175
176                         /* fill pfvf1/src_mac1 with entry
177                          * at next index from smt-tab
178                          */
179                         req->pfvf1 = 0x0;
180                         memcpy(req->src_mac1, s->smtab[e->idx + 1].src_mac,
181                                ETH_ALEN);
182                 }
183         } else {
184                 size = sizeof(*t6req);
185                 skb = alloc_skb(size, GFP_ATOMIC);
186                 if (!skb)
187                         return -ENOMEM;
188                 /* Source MAC Table (SMT) contains 256 SMAC entries */
189                 t6req = (struct cpl_t6_smt_write_req *)__skb_put(skb, size);
190                 INIT_TP_WR(t6req, 0);
191                 req = (struct cpl_smt_write_req *)t6req;
192
193                 /* fill pfvf0/src_mac0 from smt-tab */
194                 req->pfvf0 = 0x0;
195                 memcpy(req->src_mac0, s->smtab[e->idx].src_mac, ETH_ALEN);
196                 row = e->idx;
197         }
198
199         OPCODE_TID(req) =
200                 htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, e->idx |
201                                     TID_QID_V(adapter->sge.fw_evtq.abs_id)));
202         req->params = htonl(SMTW_NORPL_V(0) |
203                             SMTW_IDX_V(row) |
204                             SMTW_OVLAN_IDX_V(0));
205         t4_mgmt_tx(adapter, skb);
206         return 0;
207 }
208
209 static struct smt_entry *t4_smt_alloc_switching(struct adapter *adap, u16 pfvf,
210                                                 u8 *smac)
211 {
212         struct smt_data *s = adap->smt;
213         struct smt_entry *e;
214
215         write_lock_bh(&s->lock);
216         e = find_or_alloc_smte(s, smac);
217         if (e) {
218                 spin_lock(&e->lock);
219                 if (!atomic_read(&e->refcnt)) {
220                         atomic_set(&e->refcnt, 1);
221                         e->state = SMT_STATE_SWITCHING;
222                         e->pfvf = pfvf;
223                         memcpy(e->src_mac, smac, ETH_ALEN);
224                         write_smt_entry(adap, e);
225                 } else {
226                         atomic_inc(&e->refcnt);
227                 }
228                 spin_unlock(&e->lock);
229         }
230         write_unlock_bh(&s->lock);
231         return e;
232 }
233
234 /**
235  * @dev: net_device pointer
236  * @smac: MAC address to add to SMT
237  * Returns pointer to the SMT entry created
238  *
239  * Allocates an SMT entry to be used by switching rule of a filter.
240  */
241 struct smt_entry *cxgb4_smt_alloc_switching(struct net_device *dev, u8 *smac)
242 {
243         struct adapter *adap = netdev2adap(dev);
244
245         return t4_smt_alloc_switching(adap, 0x0, smac);
246 }
247 EXPORT_SYMBOL(cxgb4_smt_alloc_switching);