GNU Linux-libre 4.4.283-gnu1
[releases.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "/*(DEBLOBBED)*/"
137 #define FW5_FNAME "/*(DEBLOBBED)*/"
138 #define FW6_FNAME "/*(DEBLOBBED)*/"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "/*(DEBLOBBED)*/"
143 #define PHY_BCM84834_FIRMWARE "/*(DEBLOBBED)*/"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 /*(DEBLOBBED)*/
153
154 /*
155  * Normally we're willing to become the firmware's Master PF but will be happy
156  * if another PF has already become the Master and initialized the adapter.
157  * Setting "force_init" will cause this driver to forcibly establish itself as
158  * the Master PF and initialize the adapter.
159  */
160 static uint force_init;
161
162 module_param(force_init, uint, 0644);
163 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
164
165 /*
166  * Normally if the firmware we connect to has Configuration File support, we
167  * use that and only fall back to the old Driver-based initialization if the
168  * Configuration File fails for some reason.  If force_old_init is set, then
169  * we'll always use the old Driver-based initialization sequence.
170  */
171 static uint force_old_init;
172
173 module_param(force_old_init, uint, 0644);
174 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
175                  " parameter");
176
177 static int dflt_msg_enable = DFLT_MSG_ENABLE;
178
179 module_param(dflt_msg_enable, int, 0644);
180 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
181
182 /*
183  * The driver uses the best interrupt scheme available on a platform in the
184  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
185  * of these schemes the driver may consider as follows:
186  *
187  * msi = 2: choose from among all three options
188  * msi = 1: only consider MSI and INTx interrupts
189  * msi = 0: force INTx interrupts
190  */
191 static int msi = 2;
192
193 module_param(msi, int, 0644);
194 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
195
196 /*
197  * Queue interrupt hold-off timer values.  Queues default to the first of these
198  * upon creation.
199  */
200 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
201
202 module_param_array(intr_holdoff, uint, NULL, 0644);
203 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
204                  "0..4 in microseconds, deprecated parameter");
205
206 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
207
208 module_param_array(intr_cnt, uint, NULL, 0644);
209 MODULE_PARM_DESC(intr_cnt,
210                  "thresholds 1..3 for queue interrupt packet counters, "
211                  "deprecated parameter");
212
213 /*
214  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
215  * offset by 2 bytes in order to have the IP headers line up on 4-byte
216  * boundaries.  This is a requirement for many architectures which will throw
217  * a machine check fault if an attempt is made to access one of the 4-byte IP
218  * header fields on a non-4-byte boundary.  And it's a major performance issue
219  * even on some architectures which allow it like some implementations of the
220  * x86 ISA.  However, some architectures don't mind this and for some very
221  * edge-case performance sensitive applications (like forwarding large volumes
222  * of small packets), setting this DMA offset to 0 will decrease the number of
223  * PCI-E Bus transfers enough to measurably affect performance.
224  */
225 static int rx_dma_offset = 2;
226
227 static bool vf_acls;
228
229 #ifdef CONFIG_PCI_IOV
230 module_param(vf_acls, bool, 0644);
231 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
232                  "deprecated parameter");
233
234 /* Configure the number of PCI-E Virtual Function which are to be instantiated
235  * on SR-IOV Capable Physical Functions.
236  */
237 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
238
239 module_param_array(num_vf, uint, NULL, 0644);
240 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
241 #endif
242
243 /* TX Queue select used to determine what algorithm to use for selecting TX
244  * queue. Select between the kernel provided function (select_queue=0) or user
245  * cxgb_select_queue function (select_queue=1)
246  *
247  * Default: select_queue=0
248  */
249 static int select_queue;
250 module_param(select_queue, int, 0644);
251 MODULE_PARM_DESC(select_queue,
252                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
253
254 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
255
256 module_param(tp_vlan_pri_map, uint, 0644);
257 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
258                  "deprecated parameter");
259
260 static struct dentry *cxgb4_debugfs_root;
261
262 static LIST_HEAD(adapter_list);
263 static DEFINE_MUTEX(uld_mutex);
264 /* Adapter list to be accessed from atomic context */
265 static LIST_HEAD(adap_rcu_list);
266 static DEFINE_SPINLOCK(adap_rcu_lock);
267 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
268 static const char *uld_str[] = { "RDMA", "iSCSI" };
269
270 static void link_report(struct net_device *dev)
271 {
272         if (!netif_carrier_ok(dev))
273                 netdev_info(dev, "link down\n");
274         else {
275                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
276
277                 const char *s;
278                 const struct port_info *p = netdev_priv(dev);
279
280                 switch (p->link_cfg.speed) {
281                 case 10000:
282                         s = "10Gbps";
283                         break;
284                 case 1000:
285                         s = "1000Mbps";
286                         break;
287                 case 100:
288                         s = "100Mbps";
289                         break;
290                 case 40000:
291                         s = "40Gbps";
292                         break;
293                 default:
294                         pr_info("%s: unsupported speed: %d\n",
295                                 dev->name, p->link_cfg.speed);
296                         return;
297                 }
298
299                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
300                             fc[p->link_cfg.fc]);
301         }
302 }
303
304 #ifdef CONFIG_CHELSIO_T4_DCB
305 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
306 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
307 {
308         struct port_info *pi = netdev_priv(dev);
309         struct adapter *adap = pi->adapter;
310         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
311         int i;
312
313         /* We use a simple mapping of Port TX Queue Index to DCB
314          * Priority when we're enabling DCB.
315          */
316         for (i = 0; i < pi->nqsets; i++, txq++) {
317                 u32 name, value;
318                 int err;
319
320                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
321                         FW_PARAMS_PARAM_X_V(
322                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
323                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
324                 value = enable ? i : 0xffffffff;
325
326                 /* Since we can be called while atomic (from "interrupt
327                  * level") we need to issue the Set Parameters Commannd
328                  * without sleeping (timeout < 0).
329                  */
330                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
331                                             &name, &value,
332                                             -FW_CMD_MAX_TIMEOUT);
333
334                 if (err)
335                         dev_err(adap->pdev_dev,
336                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
337                                 enable ? "set" : "unset", pi->port_id, i, -err);
338                 else
339                         txq->dcb_prio = enable ? value : 0;
340         }
341 }
342 #endif /* CONFIG_CHELSIO_T4_DCB */
343
344 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
345 {
346         struct net_device *dev = adapter->port[port_id];
347
348         /* Skip changes from disabled ports. */
349         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
350                 if (link_stat)
351                         netif_carrier_on(dev);
352                 else {
353 #ifdef CONFIG_CHELSIO_T4_DCB
354                         cxgb4_dcb_state_init(dev);
355                         dcb_tx_queue_prio_enable(dev, false);
356 #endif /* CONFIG_CHELSIO_T4_DCB */
357                         netif_carrier_off(dev);
358                 }
359
360                 link_report(dev);
361         }
362 }
363
364 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
365 {
366         static const char *mod_str[] = {
367                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
368         };
369
370         const struct net_device *dev = adap->port[port_id];
371         const struct port_info *pi = netdev_priv(dev);
372
373         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
374                 netdev_info(dev, "port module unplugged\n");
375         else if (pi->mod_type < ARRAY_SIZE(mod_str))
376                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
377 }
378
379 /*
380  * Configure the exact and hash address filters to handle a port's multicast
381  * and secondary unicast MAC addresses.
382  */
383 static int set_addr_filters(const struct net_device *dev, bool sleep)
384 {
385         u64 mhash = 0;
386         u64 uhash = 0;
387         bool free = true;
388         u16 filt_idx[7];
389         const u8 *addr[7];
390         int ret, naddr = 0;
391         const struct netdev_hw_addr *ha;
392         int uc_cnt = netdev_uc_count(dev);
393         int mc_cnt = netdev_mc_count(dev);
394         const struct port_info *pi = netdev_priv(dev);
395         unsigned int mb = pi->adapter->pf;
396
397         /* first do the secondary unicast addresses */
398         netdev_for_each_uc_addr(ha, dev) {
399                 addr[naddr++] = ha->addr;
400                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
401                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
402                                         naddr, addr, filt_idx, &uhash, sleep);
403                         if (ret < 0)
404                                 return ret;
405
406                         free = false;
407                         naddr = 0;
408                 }
409         }
410
411         /* next set up the multicast addresses */
412         netdev_for_each_mc_addr(ha, dev) {
413                 addr[naddr++] = ha->addr;
414                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
415                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
416                                         naddr, addr, filt_idx, &mhash, sleep);
417                         if (ret < 0)
418                                 return ret;
419
420                         free = false;
421                         naddr = 0;
422                 }
423         }
424
425         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
426                                 uhash | mhash, sleep);
427 }
428
429 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
430 module_param(dbfifo_int_thresh, int, 0644);
431 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
432
433 /*
434  * usecs to sleep while draining the dbfifo
435  */
436 static int dbfifo_drain_delay = 1000;
437 module_param(dbfifo_drain_delay, int, 0644);
438 MODULE_PARM_DESC(dbfifo_drain_delay,
439                  "usecs to sleep while draining the dbfifo");
440
441 /*
442  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
443  * If @mtu is -1 it is left unchanged.
444  */
445 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
446 {
447         int ret;
448         struct port_info *pi = netdev_priv(dev);
449
450         ret = set_addr_filters(dev, sleep_ok);
451         if (ret == 0)
452                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
453                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
454                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
455                                     sleep_ok);
456         return ret;
457 }
458
459 /**
460  *      link_start - enable a port
461  *      @dev: the port to enable
462  *
463  *      Performs the MAC and PHY actions needed to enable a port.
464  */
465 static int link_start(struct net_device *dev)
466 {
467         int ret;
468         struct port_info *pi = netdev_priv(dev);
469         unsigned int mb = pi->adapter->pf;
470
471         /*
472          * We do not set address filters and promiscuity here, the stack does
473          * that step explicitly.
474          */
475         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
476                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
477         if (ret == 0) {
478                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
479                                     pi->xact_addr_filt, dev->dev_addr, true,
480                                     true);
481                 if (ret >= 0) {
482                         pi->xact_addr_filt = ret;
483                         ret = 0;
484                 }
485         }
486         if (ret == 0)
487                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
488                                     &pi->link_cfg);
489         if (ret == 0) {
490                 local_bh_disable();
491                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
492                                           true, CXGB4_DCB_ENABLED);
493                 local_bh_enable();
494         }
495
496         return ret;
497 }
498
499 int cxgb4_dcb_enabled(const struct net_device *dev)
500 {
501 #ifdef CONFIG_CHELSIO_T4_DCB
502         struct port_info *pi = netdev_priv(dev);
503
504         if (!pi->dcb.enabled)
505                 return 0;
506
507         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
508                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
509 #else
510         return 0;
511 #endif
512 }
513 EXPORT_SYMBOL(cxgb4_dcb_enabled);
514
515 #ifdef CONFIG_CHELSIO_T4_DCB
516 /* Handle a Data Center Bridging update message from the firmware. */
517 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
518 {
519         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
520         struct net_device *dev = adap->port[port];
521         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
522         int new_dcb_enabled;
523
524         cxgb4_dcb_handle_fw_update(adap, pcmd);
525         new_dcb_enabled = cxgb4_dcb_enabled(dev);
526
527         /* If the DCB has become enabled or disabled on the port then we're
528          * going to need to set up/tear down DCB Priority parameters for the
529          * TX Queues associated with the port.
530          */
531         if (new_dcb_enabled != old_dcb_enabled)
532                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
533 }
534 #endif /* CONFIG_CHELSIO_T4_DCB */
535
536 /* Clear a filter and release any of its resources that we own.  This also
537  * clears the filter's "pending" status.
538  */
539 static void clear_filter(struct adapter *adap, struct filter_entry *f)
540 {
541         /* If the new or old filter have loopback rewriteing rules then we'll
542          * need to free any existing Layer Two Table (L2T) entries of the old
543          * filter rule.  The firmware will handle freeing up any Source MAC
544          * Table (SMT) entries used for rewriting Source MAC Addresses in
545          * loopback rules.
546          */
547         if (f->l2t)
548                 cxgb4_l2t_release(f->l2t);
549
550         /* The zeroing of the filter rule below clears the filter valid,
551          * pending, locked flags, l2t pointer, etc. so it's all we need for
552          * this operation.
553          */
554         memset(f, 0, sizeof(*f));
555 }
556
557 /* Handle a filter write/deletion reply.
558  */
559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
560 {
561         unsigned int idx = GET_TID(rpl);
562         unsigned int nidx = idx - adap->tids.ftid_base;
563         unsigned int ret;
564         struct filter_entry *f;
565
566         if (idx >= adap->tids.ftid_base && nidx <
567            (adap->tids.nftids + adap->tids.nsftids)) {
568                 idx = nidx;
569                 ret = TCB_COOKIE_G(rpl->cookie);
570                 f = &adap->tids.ftid_tab[idx];
571
572                 if (ret == FW_FILTER_WR_FLT_DELETED) {
573                         /* Clear the filter when we get confirmation from the
574                          * hardware that the filter has been deleted.
575                          */
576                         clear_filter(adap, f);
577                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
578                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
579                                 idx);
580                         clear_filter(adap, f);
581                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
582                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
583                         f->pending = 0;  /* asynchronous setup completed */
584                         f->valid = 1;
585                 } else {
586                         /* Something went wrong.  Issue a warning about the
587                          * problem and clear everything out.
588                          */
589                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
590                                 idx, ret);
591                         clear_filter(adap, f);
592                 }
593         }
594 }
595
596 /* Response queue handler for the FW event queue.
597  */
598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
599                           const struct pkt_gl *gl)
600 {
601         u8 opcode = ((const struct rss_header *)rsp)->opcode;
602
603         rsp++;                                          /* skip RSS header */
604
605         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
606          */
607         if (unlikely(opcode == CPL_FW4_MSG &&
608            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
609                 rsp++;
610                 opcode = ((const struct rss_header *)rsp)->opcode;
611                 rsp++;
612                 if (opcode != CPL_SGE_EGR_UPDATE) {
613                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
614                                 , opcode);
615                         goto out;
616                 }
617         }
618
619         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
620                 const struct cpl_sge_egr_update *p = (void *)rsp;
621                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
622                 struct sge_txq *txq;
623
624                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
625                 txq->restarts++;
626                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
627                         struct sge_eth_txq *eq;
628
629                         eq = container_of(txq, struct sge_eth_txq, q);
630                         netif_tx_wake_queue(eq->txq);
631                 } else {
632                         struct sge_ofld_txq *oq;
633
634                         oq = container_of(txq, struct sge_ofld_txq, q);
635                         tasklet_schedule(&oq->qresume_tsk);
636                 }
637         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
638                 const struct cpl_fw6_msg *p = (void *)rsp;
639
640 #ifdef CONFIG_CHELSIO_T4_DCB
641                 const struct fw_port_cmd *pcmd = (const void *)p->data;
642                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
643                 unsigned int action =
644                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
645
646                 if (cmd == FW_PORT_CMD &&
647                     action == FW_PORT_ACTION_GET_PORT_INFO) {
648                         int port = FW_PORT_CMD_PORTID_G(
649                                         be32_to_cpu(pcmd->op_to_portid));
650                         struct net_device *dev = q->adap->port[port];
651                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
652                                             FW_PORT_CMD_DCBXDIS_F)
653                                            ? CXGB4_DCB_INPUT_FW_DISABLED
654                                            : CXGB4_DCB_INPUT_FW_ENABLED);
655
656                         cxgb4_dcb_state_fsm(dev, state_input);
657                 }
658
659                 if (cmd == FW_PORT_CMD &&
660                     action == FW_PORT_ACTION_L2_DCB_CFG)
661                         dcb_rpl(q->adap, pcmd);
662                 else
663 #endif
664                         if (p->type == 0)
665                                 t4_handle_fw_rpl(q->adap, p->data);
666         } else if (opcode == CPL_L2T_WRITE_RPL) {
667                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
668
669                 do_l2t_write_rpl(q->adap, p);
670         } else if (opcode == CPL_SET_TCB_RPL) {
671                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
672
673                 filter_rpl(q->adap, p);
674         } else
675                 dev_err(q->adap->pdev_dev,
676                         "unexpected CPL %#x on FW event queue\n", opcode);
677 out:
678         return 0;
679 }
680
681 /**
682  *      uldrx_handler - response queue handler for ULD queues
683  *      @q: the response queue that received the packet
684  *      @rsp: the response queue descriptor holding the offload message
685  *      @gl: the gather list of packet fragments
686  *
687  *      Deliver an ingress offload packet to a ULD.  All processing is done by
688  *      the ULD, we just maintain statistics.
689  */
690 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
691                          const struct pkt_gl *gl)
692 {
693         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
694
695         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
696          */
697         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
698             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
699                 rsp += 2;
700
701         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
702                 rxq->stats.nomem++;
703                 return -1;
704         }
705         if (gl == NULL)
706                 rxq->stats.imm++;
707         else if (gl == CXGB4_MSG_AN)
708                 rxq->stats.an++;
709         else
710                 rxq->stats.pkts++;
711         return 0;
712 }
713
714 static void disable_msi(struct adapter *adapter)
715 {
716         if (adapter->flags & USING_MSIX) {
717                 pci_disable_msix(adapter->pdev);
718                 adapter->flags &= ~USING_MSIX;
719         } else if (adapter->flags & USING_MSI) {
720                 pci_disable_msi(adapter->pdev);
721                 adapter->flags &= ~USING_MSI;
722         }
723 }
724
725 /*
726  * Interrupt handler for non-data events used with MSI-X.
727  */
728 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
729 {
730         struct adapter *adap = cookie;
731         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
732
733         if (v & PFSW_F) {
734                 adap->swintr = 1;
735                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
736         }
737         if (adap->flags & MASTER_PF)
738                 t4_slow_intr_handler(adap);
739         return IRQ_HANDLED;
740 }
741
742 /*
743  * Name the MSI-X interrupts.
744  */
745 static void name_msix_vecs(struct adapter *adap)
746 {
747         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
748
749         /* non-data interrupts */
750         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
751
752         /* FW events */
753         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
754                  adap->port[0]->name);
755
756         /* Ethernet queues */
757         for_each_port(adap, j) {
758                 struct net_device *d = adap->port[j];
759                 const struct port_info *pi = netdev_priv(d);
760
761                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
762                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
763                                  d->name, i);
764         }
765
766         /* offload queues */
767         for_each_ofldrxq(&adap->sge, i)
768                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
769                          adap->port[0]->name, i);
770
771         for_each_rdmarxq(&adap->sge, i)
772                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
773                          adap->port[0]->name, i);
774
775         for_each_rdmaciq(&adap->sge, i)
776                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
777                          adap->port[0]->name, i);
778 }
779
780 static int request_msix_queue_irqs(struct adapter *adap)
781 {
782         struct sge *s = &adap->sge;
783         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
784         int msi_index = 2;
785
786         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
787                           adap->msix_info[1].desc, &s->fw_evtq);
788         if (err)
789                 return err;
790
791         for_each_ethrxq(s, ethqidx) {
792                 err = request_irq(adap->msix_info[msi_index].vec,
793                                   t4_sge_intr_msix, 0,
794                                   adap->msix_info[msi_index].desc,
795                                   &s->ethrxq[ethqidx].rspq);
796                 if (err)
797                         goto unwind;
798                 msi_index++;
799         }
800         for_each_ofldrxq(s, ofldqidx) {
801                 err = request_irq(adap->msix_info[msi_index].vec,
802                                   t4_sge_intr_msix, 0,
803                                   adap->msix_info[msi_index].desc,
804                                   &s->ofldrxq[ofldqidx].rspq);
805                 if (err)
806                         goto unwind;
807                 msi_index++;
808         }
809         for_each_rdmarxq(s, rdmaqidx) {
810                 err = request_irq(adap->msix_info[msi_index].vec,
811                                   t4_sge_intr_msix, 0,
812                                   adap->msix_info[msi_index].desc,
813                                   &s->rdmarxq[rdmaqidx].rspq);
814                 if (err)
815                         goto unwind;
816                 msi_index++;
817         }
818         for_each_rdmaciq(s, rdmaciqqidx) {
819                 err = request_irq(adap->msix_info[msi_index].vec,
820                                   t4_sge_intr_msix, 0,
821                                   adap->msix_info[msi_index].desc,
822                                   &s->rdmaciq[rdmaciqqidx].rspq);
823                 if (err)
824                         goto unwind;
825                 msi_index++;
826         }
827         return 0;
828
829 unwind:
830         while (--rdmaciqqidx >= 0)
831                 free_irq(adap->msix_info[--msi_index].vec,
832                          &s->rdmaciq[rdmaciqqidx].rspq);
833         while (--rdmaqidx >= 0)
834                 free_irq(adap->msix_info[--msi_index].vec,
835                          &s->rdmarxq[rdmaqidx].rspq);
836         while (--ofldqidx >= 0)
837                 free_irq(adap->msix_info[--msi_index].vec,
838                          &s->ofldrxq[ofldqidx].rspq);
839         while (--ethqidx >= 0)
840                 free_irq(adap->msix_info[--msi_index].vec,
841                          &s->ethrxq[ethqidx].rspq);
842         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
843         return err;
844 }
845
846 static void free_msix_queue_irqs(struct adapter *adap)
847 {
848         int i, msi_index = 2;
849         struct sge *s = &adap->sge;
850
851         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
852         for_each_ethrxq(s, i)
853                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
854         for_each_ofldrxq(s, i)
855                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
856         for_each_rdmarxq(s, i)
857                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
858         for_each_rdmaciq(s, i)
859                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
860 }
861
862 /**
863  *      cxgb4_write_rss - write the RSS table for a given port
864  *      @pi: the port
865  *      @queues: array of queue indices for RSS
866  *
867  *      Sets up the portion of the HW RSS table for the port's VI to distribute
868  *      packets to the Rx queues in @queues.
869  *      Should never be called before setting up sge eth rx queues
870  */
871 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
872 {
873         u16 *rss;
874         int i, err;
875         struct adapter *adapter = pi->adapter;
876         const struct sge_eth_rxq *rxq;
877
878         rxq = &adapter->sge.ethrxq[pi->first_qset];
879         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
880         if (!rss)
881                 return -ENOMEM;
882
883         /* map the queue indices to queue ids */
884         for (i = 0; i < pi->rss_size; i++, queues++)
885                 rss[i] = rxq[*queues].rspq.abs_id;
886
887         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
888                                   pi->rss_size, rss, pi->rss_size);
889         /* If Tunnel All Lookup isn't specified in the global RSS
890          * Configuration, then we need to specify a default Ingress
891          * Queue for any ingress packets which aren't hashed.  We'll
892          * use our first ingress queue ...
893          */
894         if (!err)
895                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
896                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
897                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
898                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
899                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
900                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
901                                        rss[0]);
902         kfree(rss);
903         return err;
904 }
905
906 /**
907  *      setup_rss - configure RSS
908  *      @adap: the adapter
909  *
910  *      Sets up RSS for each port.
911  */
912 static int setup_rss(struct adapter *adap)
913 {
914         int i, j, err;
915
916         for_each_port(adap, i) {
917                 const struct port_info *pi = adap2pinfo(adap, i);
918
919                 /* Fill default values with equal distribution */
920                 for (j = 0; j < pi->rss_size; j++)
921                         pi->rss[j] = j % pi->nqsets;
922
923                 err = cxgb4_write_rss(pi, pi->rss);
924                 if (err)
925                         return err;
926         }
927         return 0;
928 }
929
930 /*
931  * Return the channel of the ingress queue with the given qid.
932  */
933 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
934 {
935         qid -= p->ingr_start;
936         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
937 }
938
939 /*
940  * Wait until all NAPI handlers are descheduled.
941  */
942 static void quiesce_rx(struct adapter *adap)
943 {
944         int i;
945
946         for (i = 0; i < adap->sge.ingr_sz; i++) {
947                 struct sge_rspq *q = adap->sge.ingr_map[i];
948
949                 if (q && q->handler) {
950                         napi_disable(&q->napi);
951                         local_bh_disable();
952                         while (!cxgb_poll_lock_napi(q))
953                                 mdelay(1);
954                         local_bh_enable();
955                 }
956
957         }
958 }
959
960 /* Disable interrupt and napi handler */
961 static void disable_interrupts(struct adapter *adap)
962 {
963         if (adap->flags & FULL_INIT_DONE) {
964                 t4_intr_disable(adap);
965                 if (adap->flags & USING_MSIX) {
966                         free_msix_queue_irqs(adap);
967                         free_irq(adap->msix_info[0].vec, adap);
968                 } else {
969                         free_irq(adap->pdev->irq, adap);
970                 }
971                 quiesce_rx(adap);
972         }
973 }
974
975 /*
976  * Enable NAPI scheduling and interrupt generation for all Rx queues.
977  */
978 static void enable_rx(struct adapter *adap)
979 {
980         int i;
981
982         for (i = 0; i < adap->sge.ingr_sz; i++) {
983                 struct sge_rspq *q = adap->sge.ingr_map[i];
984
985                 if (!q)
986                         continue;
987                 if (q->handler) {
988                         cxgb_busy_poll_init_lock(q);
989                         napi_enable(&q->napi);
990                 }
991                 /* 0-increment GTS to start the timer and enable interrupts */
992                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
993                              SEINTARM_V(q->intr_params) |
994                              INGRESSQID_V(q->cntxt_id));
995         }
996 }
997
998 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
999                            unsigned int nq, unsigned int per_chan, int msi_idx,
1000                            u16 *ids)
1001 {
1002         int i, err;
1003
1004         for (i = 0; i < nq; i++, q++) {
1005                 if (msi_idx > 0)
1006                         msi_idx++;
1007                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1008                                        adap->port[i / per_chan],
1009                                        msi_idx, q->fl.size ? &q->fl : NULL,
1010                                        uldrx_handler, 0);
1011                 if (err)
1012                         return err;
1013                 memset(&q->stats, 0, sizeof(q->stats));
1014                 if (ids)
1015                         ids[i] = q->rspq.abs_id;
1016         }
1017         return 0;
1018 }
1019
1020 /**
1021  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1022  *      @adap: the adapter
1023  *
1024  *      Determines how many sets of SGE queues to use and initializes them.
1025  *      We support multiple queue sets per port if we have MSI-X, otherwise
1026  *      just one queue set per port.
1027  */
1028 static int setup_sge_queues(struct adapter *adap)
1029 {
1030         int err, msi_idx, i, j;
1031         struct sge *s = &adap->sge;
1032
1033         bitmap_zero(s->starving_fl, s->egr_sz);
1034         bitmap_zero(s->txq_maperr, s->egr_sz);
1035
1036         if (adap->flags & USING_MSIX)
1037                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1038         else {
1039                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1040                                        NULL, NULL, -1);
1041                 if (err)
1042                         return err;
1043                 msi_idx = -((int)s->intrq.abs_id + 1);
1044         }
1045
1046         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1047          * don't forget to update the following which need to be
1048          * synchronized to and changes here.
1049          *
1050          * 1. The calculations of MAX_INGQ in cxgb4.h.
1051          *
1052          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1053          *    to accommodate any new/deleted Ingress Queues
1054          *    which need MSI-X Vectors.
1055          *
1056          * 3. Update sge_qinfo_show() to include information on the
1057          *    new/deleted queues.
1058          */
1059         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1060                                msi_idx, NULL, fwevtq_handler, -1);
1061         if (err) {
1062 freeout:        t4_free_sge_resources(adap);
1063                 return err;
1064         }
1065
1066         for_each_port(adap, i) {
1067                 struct net_device *dev = adap->port[i];
1068                 struct port_info *pi = netdev_priv(dev);
1069                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1070                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1071
1072                 for (j = 0; j < pi->nqsets; j++, q++) {
1073                         if (msi_idx > 0)
1074                                 msi_idx++;
1075                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1076                                                msi_idx, &q->fl,
1077                                                t4_ethrx_handler,
1078                                                t4_get_mps_bg_map(adap,
1079                                                                  pi->tx_chan));
1080                         if (err)
1081                                 goto freeout;
1082                         q->rspq.idx = j;
1083                         memset(&q->stats, 0, sizeof(q->stats));
1084                 }
1085                 for (j = 0; j < pi->nqsets; j++, t++) {
1086                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1087                                         netdev_get_tx_queue(dev, j),
1088                                         s->fw_evtq.cntxt_id);
1089                         if (err)
1090                                 goto freeout;
1091                 }
1092         }
1093
1094         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1095         for_each_ofldrxq(s, i) {
1096                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1097                                             adap->port[i / j],
1098                                             s->fw_evtq.cntxt_id);
1099                 if (err)
1100                         goto freeout;
1101         }
1102
1103 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1104         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1105         if (err) \
1106                 goto freeout; \
1107         if (msi_idx > 0) \
1108                 msi_idx += nq; \
1109 } while (0)
1110
1111         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1112         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1113         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1114         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1115
1116 #undef ALLOC_OFLD_RXQS
1117
1118         for_each_port(adap, i) {
1119                 /*
1120                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1121                  * have RDMA queues, and that's the right value.
1122                  */
1123                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1124                                             s->fw_evtq.cntxt_id,
1125                                             s->rdmarxq[i].rspq.cntxt_id);
1126                 if (err)
1127                         goto freeout;
1128         }
1129
1130         t4_write_reg(adap, is_t4(adap->params.chip) ?
1131                                 MPS_TRC_RSS_CONTROL_A :
1132                                 MPS_T5_TRC_RSS_CONTROL_A,
1133                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1134                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1135         return 0;
1136 }
1137
1138 /*
1139  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1140  * The allocated memory is cleared.
1141  */
1142 void *t4_alloc_mem(size_t size)
1143 {
1144         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1145
1146         if (!p)
1147                 p = vzalloc(size);
1148         return p;
1149 }
1150
1151 /*
1152  * Free memory allocated through alloc_mem().
1153  */
1154 void t4_free_mem(void *addr)
1155 {
1156         kvfree(addr);
1157 }
1158
1159 /* Send a Work Request to write the filter at a specified index.  We construct
1160  * a Firmware Filter Work Request to have the work done and put the indicated
1161  * filter into "pending" mode which will prevent any further actions against
1162  * it till we get a reply from the firmware on the completion status of the
1163  * request.
1164  */
1165 static int set_filter_wr(struct adapter *adapter, int fidx)
1166 {
1167         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1168         struct sk_buff *skb;
1169         struct fw_filter_wr *fwr;
1170         unsigned int ftid;
1171
1172         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1173         if (!skb)
1174                 return -ENOMEM;
1175
1176         /* If the new filter requires loopback Destination MAC and/or VLAN
1177          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1178          * the filter.
1179          */
1180         if (f->fs.newdmac || f->fs.newvlan) {
1181                 /* allocate L2T entry for new filter */
1182                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1183                 if (f->l2t == NULL) {
1184                         kfree_skb(skb);
1185                         return -EAGAIN;
1186                 }
1187                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1188                                         f->fs.eport, f->fs.dmac)) {
1189                         cxgb4_l2t_release(f->l2t);
1190                         f->l2t = NULL;
1191                         kfree_skb(skb);
1192                         return -ENOMEM;
1193                 }
1194         }
1195
1196         ftid = adapter->tids.ftid_base + fidx;
1197
1198         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1199         memset(fwr, 0, sizeof(*fwr));
1200
1201         /* It would be nice to put most of the following in t4_hw.c but most
1202          * of the work is translating the cxgbtool ch_filter_specification
1203          * into the Work Request and the definition of that structure is
1204          * currently in cxgbtool.h which isn't appropriate to pull into the
1205          * common code.  We may eventually try to come up with a more neutral
1206          * filter specification structure but for now it's easiest to simply
1207          * put this fairly direct code in line ...
1208          */
1209         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1210         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1211         fwr->tid_to_iq =
1212                 htonl(FW_FILTER_WR_TID_V(ftid) |
1213                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1214                       FW_FILTER_WR_NOREPLY_V(0) |
1215                       FW_FILTER_WR_IQ_V(f->fs.iq));
1216         fwr->del_filter_to_l2tix =
1217                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1218                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1219                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1220                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1221                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1222                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1223                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1224                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1225                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1226                                              f->fs.newvlan == VLAN_REWRITE) |
1227                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1228                                             f->fs.newvlan == VLAN_REWRITE) |
1229                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1230                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1231                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1232                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1233         fwr->ethtype = htons(f->fs.val.ethtype);
1234         fwr->ethtypem = htons(f->fs.mask.ethtype);
1235         fwr->frag_to_ovlan_vldm =
1236                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1237                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1238                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1239                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1240                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1241                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1242         fwr->smac_sel = 0;
1243         fwr->rx_chan_rx_rpl_iq =
1244                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1245                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1246         fwr->maci_to_matchtypem =
1247                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1248                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1249                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1250                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1251                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1252                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1253                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1254                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1255         fwr->ptcl = f->fs.val.proto;
1256         fwr->ptclm = f->fs.mask.proto;
1257         fwr->ttyp = f->fs.val.tos;
1258         fwr->ttypm = f->fs.mask.tos;
1259         fwr->ivlan = htons(f->fs.val.ivlan);
1260         fwr->ivlanm = htons(f->fs.mask.ivlan);
1261         fwr->ovlan = htons(f->fs.val.ovlan);
1262         fwr->ovlanm = htons(f->fs.mask.ovlan);
1263         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1264         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1265         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1266         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1267         fwr->lp = htons(f->fs.val.lport);
1268         fwr->lpm = htons(f->fs.mask.lport);
1269         fwr->fp = htons(f->fs.val.fport);
1270         fwr->fpm = htons(f->fs.mask.fport);
1271         if (f->fs.newsmac)
1272                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1273
1274         /* Mark the filter as "pending" and ship off the Filter Work Request.
1275          * When we get the Work Request Reply we'll clear the pending status.
1276          */
1277         f->pending = 1;
1278         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1279         t4_ofld_send(adapter, skb);
1280         return 0;
1281 }
1282
1283 /* Delete the filter at a specified index.
1284  */
1285 static int del_filter_wr(struct adapter *adapter, int fidx)
1286 {
1287         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1288         struct sk_buff *skb;
1289         struct fw_filter_wr *fwr;
1290         unsigned int len, ftid;
1291
1292         len = sizeof(*fwr);
1293         ftid = adapter->tids.ftid_base + fidx;
1294
1295         skb = alloc_skb(len, GFP_KERNEL);
1296         if (!skb)
1297                 return -ENOMEM;
1298
1299         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1300         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1301
1302         /* Mark the filter as "pending" and ship off the Filter Work Request.
1303          * When we get the Work Request Reply we'll clear the pending status.
1304          */
1305         f->pending = 1;
1306         t4_mgmt_tx(adapter, skb);
1307         return 0;
1308 }
1309
1310 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1311                              void *accel_priv, select_queue_fallback_t fallback)
1312 {
1313         int txq;
1314
1315 #ifdef CONFIG_CHELSIO_T4_DCB
1316         /* If a Data Center Bridging has been successfully negotiated on this
1317          * link then we'll use the skb's priority to map it to a TX Queue.
1318          * The skb's priority is determined via the VLAN Tag Priority Code
1319          * Point field.
1320          */
1321         if (cxgb4_dcb_enabled(dev)) {
1322                 u16 vlan_tci;
1323                 int err;
1324
1325                 err = vlan_get_tag(skb, &vlan_tci);
1326                 if (unlikely(err)) {
1327                         if (net_ratelimit())
1328                                 netdev_warn(dev,
1329                                             "TX Packet without VLAN Tag on DCB Link\n");
1330                         txq = 0;
1331                 } else {
1332                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1333 #ifdef CONFIG_CHELSIO_T4_FCOE
1334                         if (skb->protocol == htons(ETH_P_FCOE))
1335                                 txq = skb->priority & 0x7;
1336 #endif /* CONFIG_CHELSIO_T4_FCOE */
1337                 }
1338                 return txq;
1339         }
1340 #endif /* CONFIG_CHELSIO_T4_DCB */
1341
1342         if (select_queue) {
1343                 txq = (skb_rx_queue_recorded(skb)
1344                         ? skb_get_rx_queue(skb)
1345                         : smp_processor_id());
1346
1347                 while (unlikely(txq >= dev->real_num_tx_queues))
1348                         txq -= dev->real_num_tx_queues;
1349
1350                 return txq;
1351         }
1352
1353         return fallback(dev, skb) % dev->real_num_tx_queues;
1354 }
1355
1356 static int closest_timer(const struct sge *s, int time)
1357 {
1358         int i, delta, match = 0, min_delta = INT_MAX;
1359
1360         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1361                 delta = time - s->timer_val[i];
1362                 if (delta < 0)
1363                         delta = -delta;
1364                 if (delta < min_delta) {
1365                         min_delta = delta;
1366                         match = i;
1367                 }
1368         }
1369         return match;
1370 }
1371
1372 static int closest_thres(const struct sge *s, int thres)
1373 {
1374         int i, delta, match = 0, min_delta = INT_MAX;
1375
1376         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1377                 delta = thres - s->counter_val[i];
1378                 if (delta < 0)
1379                         delta = -delta;
1380                 if (delta < min_delta) {
1381                         min_delta = delta;
1382                         match = i;
1383                 }
1384         }
1385         return match;
1386 }
1387
1388 /**
1389  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1390  *      @q: the Rx queue
1391  *      @us: the hold-off time in us, or 0 to disable timer
1392  *      @cnt: the hold-off packet count, or 0 to disable counter
1393  *
1394  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1395  *      one of the two needs to be enabled for the queue to generate interrupts.
1396  */
1397 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1398                                unsigned int us, unsigned int cnt)
1399 {
1400         struct adapter *adap = q->adap;
1401
1402         if ((us | cnt) == 0)
1403                 cnt = 1;
1404
1405         if (cnt) {
1406                 int err;
1407                 u32 v, new_idx;
1408
1409                 new_idx = closest_thres(&adap->sge, cnt);
1410                 if (q->desc && q->pktcnt_idx != new_idx) {
1411                         /* the queue has already been created, update it */
1412                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1413                             FW_PARAMS_PARAM_X_V(
1414                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1415                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1416                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1417                                             &v, &new_idx);
1418                         if (err)
1419                                 return err;
1420                 }
1421                 q->pktcnt_idx = new_idx;
1422         }
1423
1424         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1425         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1426         return 0;
1427 }
1428
1429 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1430 {
1431         const struct port_info *pi = netdev_priv(dev);
1432         netdev_features_t changed = dev->features ^ features;
1433         int err;
1434
1435         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1436                 return 0;
1437
1438         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1439                             -1, -1, -1,
1440                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1441         if (unlikely(err))
1442                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1443         return err;
1444 }
1445
1446 static int setup_debugfs(struct adapter *adap)
1447 {
1448         if (IS_ERR_OR_NULL(adap->debugfs_root))
1449                 return -1;
1450
1451 #ifdef CONFIG_DEBUG_FS
1452         t4_setup_debugfs(adap);
1453 #endif
1454         return 0;
1455 }
1456
1457 /*
1458  * upper-layer driver support
1459  */
1460
1461 /*
1462  * Allocate an active-open TID and set it to the supplied value.
1463  */
1464 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1465 {
1466         int atid = -1;
1467
1468         spin_lock_bh(&t->atid_lock);
1469         if (t->afree) {
1470                 union aopen_entry *p = t->afree;
1471
1472                 atid = (p - t->atid_tab) + t->atid_base;
1473                 t->afree = p->next;
1474                 p->data = data;
1475                 t->atids_in_use++;
1476         }
1477         spin_unlock_bh(&t->atid_lock);
1478         return atid;
1479 }
1480 EXPORT_SYMBOL(cxgb4_alloc_atid);
1481
1482 /*
1483  * Release an active-open TID.
1484  */
1485 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1486 {
1487         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1488
1489         spin_lock_bh(&t->atid_lock);
1490         p->next = t->afree;
1491         t->afree = p;
1492         t->atids_in_use--;
1493         spin_unlock_bh(&t->atid_lock);
1494 }
1495 EXPORT_SYMBOL(cxgb4_free_atid);
1496
1497 /*
1498  * Allocate a server TID and set it to the supplied value.
1499  */
1500 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1501 {
1502         int stid;
1503
1504         spin_lock_bh(&t->stid_lock);
1505         if (family == PF_INET) {
1506                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1507                 if (stid < t->nstids)
1508                         __set_bit(stid, t->stid_bmap);
1509                 else
1510                         stid = -1;
1511         } else {
1512                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1513                 if (stid < 0)
1514                         stid = -1;
1515         }
1516         if (stid >= 0) {
1517                 t->stid_tab[stid].data = data;
1518                 stid += t->stid_base;
1519                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1520                  * This is equivalent to 4 TIDs. With CLIP enabled it
1521                  * needs 2 TIDs.
1522                  */
1523                 if (family == PF_INET)
1524                         t->stids_in_use++;
1525                 else
1526                         t->stids_in_use += 4;
1527         }
1528         spin_unlock_bh(&t->stid_lock);
1529         return stid;
1530 }
1531 EXPORT_SYMBOL(cxgb4_alloc_stid);
1532
1533 /* Allocate a server filter TID and set it to the supplied value.
1534  */
1535 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1536 {
1537         int stid;
1538
1539         spin_lock_bh(&t->stid_lock);
1540         if (family == PF_INET) {
1541                 stid = find_next_zero_bit(t->stid_bmap,
1542                                 t->nstids + t->nsftids, t->nstids);
1543                 if (stid < (t->nstids + t->nsftids))
1544                         __set_bit(stid, t->stid_bmap);
1545                 else
1546                         stid = -1;
1547         } else {
1548                 stid = -1;
1549         }
1550         if (stid >= 0) {
1551                 t->stid_tab[stid].data = data;
1552                 stid -= t->nstids;
1553                 stid += t->sftid_base;
1554                 t->sftids_in_use++;
1555         }
1556         spin_unlock_bh(&t->stid_lock);
1557         return stid;
1558 }
1559 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1560
1561 /* Release a server TID.
1562  */
1563 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1564 {
1565         /* Is it a server filter TID? */
1566         if (t->nsftids && (stid >= t->sftid_base)) {
1567                 stid -= t->sftid_base;
1568                 stid += t->nstids;
1569         } else {
1570                 stid -= t->stid_base;
1571         }
1572
1573         spin_lock_bh(&t->stid_lock);
1574         if (family == PF_INET)
1575                 __clear_bit(stid, t->stid_bmap);
1576         else
1577                 bitmap_release_region(t->stid_bmap, stid, 2);
1578         t->stid_tab[stid].data = NULL;
1579         if (stid < t->nstids) {
1580                 if (family == PF_INET)
1581                         t->stids_in_use--;
1582                 else
1583                         t->stids_in_use -= 4;
1584         } else {
1585                 t->sftids_in_use--;
1586         }
1587         spin_unlock_bh(&t->stid_lock);
1588 }
1589 EXPORT_SYMBOL(cxgb4_free_stid);
1590
1591 /*
1592  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1593  */
1594 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1595                            unsigned int tid)
1596 {
1597         struct cpl_tid_release *req;
1598
1599         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1600         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1601         INIT_TP_WR(req, tid);
1602         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1603 }
1604
1605 /*
1606  * Queue a TID release request and if necessary schedule a work queue to
1607  * process it.
1608  */
1609 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1610                                     unsigned int tid)
1611 {
1612         void **p = &t->tid_tab[tid];
1613         struct adapter *adap = container_of(t, struct adapter, tids);
1614
1615         spin_lock_bh(&adap->tid_release_lock);
1616         *p = adap->tid_release_head;
1617         /* Low 2 bits encode the Tx channel number */
1618         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1619         if (!adap->tid_release_task_busy) {
1620                 adap->tid_release_task_busy = true;
1621                 queue_work(adap->workq, &adap->tid_release_task);
1622         }
1623         spin_unlock_bh(&adap->tid_release_lock);
1624 }
1625
1626 /*
1627  * Process the list of pending TID release requests.
1628  */
1629 static void process_tid_release_list(struct work_struct *work)
1630 {
1631         struct sk_buff *skb;
1632         struct adapter *adap;
1633
1634         adap = container_of(work, struct adapter, tid_release_task);
1635
1636         spin_lock_bh(&adap->tid_release_lock);
1637         while (adap->tid_release_head) {
1638                 void **p = adap->tid_release_head;
1639                 unsigned int chan = (uintptr_t)p & 3;
1640                 p = (void *)p - chan;
1641
1642                 adap->tid_release_head = *p;
1643                 *p = NULL;
1644                 spin_unlock_bh(&adap->tid_release_lock);
1645
1646                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1647                                          GFP_KERNEL)))
1648                         schedule_timeout_uninterruptible(1);
1649
1650                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1651                 t4_ofld_send(adap, skb);
1652                 spin_lock_bh(&adap->tid_release_lock);
1653         }
1654         adap->tid_release_task_busy = false;
1655         spin_unlock_bh(&adap->tid_release_lock);
1656 }
1657
1658 /*
1659  * Release a TID and inform HW.  If we are unable to allocate the release
1660  * message we defer to a work queue.
1661  */
1662 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1663 {
1664         struct sk_buff *skb;
1665         struct adapter *adap = container_of(t, struct adapter, tids);
1666
1667         WARN_ON(tid >= t->ntids);
1668
1669         if (t->tid_tab[tid]) {
1670                 t->tid_tab[tid] = NULL;
1671                 if (t->hash_base && (tid >= t->hash_base))
1672                         atomic_dec(&t->hash_tids_in_use);
1673                 else
1674                         atomic_dec(&t->tids_in_use);
1675         }
1676
1677         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1678         if (likely(skb)) {
1679                 mk_tid_release(skb, chan, tid);
1680                 t4_ofld_send(adap, skb);
1681         } else
1682                 cxgb4_queue_tid_release(t, chan, tid);
1683 }
1684 EXPORT_SYMBOL(cxgb4_remove_tid);
1685
1686 /*
1687  * Allocate and initialize the TID tables.  Returns 0 on success.
1688  */
1689 static int tid_init(struct tid_info *t)
1690 {
1691         size_t size;
1692         unsigned int stid_bmap_size;
1693         unsigned int natids = t->natids;
1694         struct adapter *adap = container_of(t, struct adapter, tids);
1695
1696         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1697         size = t->ntids * sizeof(*t->tid_tab) +
1698                natids * sizeof(*t->atid_tab) +
1699                t->nstids * sizeof(*t->stid_tab) +
1700                t->nsftids * sizeof(*t->stid_tab) +
1701                stid_bmap_size * sizeof(long) +
1702                t->nftids * sizeof(*t->ftid_tab) +
1703                t->nsftids * sizeof(*t->ftid_tab);
1704
1705         t->tid_tab = t4_alloc_mem(size);
1706         if (!t->tid_tab)
1707                 return -ENOMEM;
1708
1709         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1710         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1711         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1712         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1713         spin_lock_init(&t->stid_lock);
1714         spin_lock_init(&t->atid_lock);
1715
1716         t->stids_in_use = 0;
1717         t->sftids_in_use = 0;
1718         t->afree = NULL;
1719         t->atids_in_use = 0;
1720         atomic_set(&t->tids_in_use, 0);
1721         atomic_set(&t->hash_tids_in_use, 0);
1722
1723         /* Setup the free list for atid_tab and clear the stid bitmap. */
1724         if (natids) {
1725                 while (--natids)
1726                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1727                 t->afree = t->atid_tab;
1728         }
1729         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1730         /* Reserve stid 0 for T4/T5 adapters */
1731         if (!t->stid_base &&
1732             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1733                 __set_bit(0, t->stid_bmap);
1734
1735         return 0;
1736 }
1737
1738 /**
1739  *      cxgb4_create_server - create an IP server
1740  *      @dev: the device
1741  *      @stid: the server TID
1742  *      @sip: local IP address to bind server to
1743  *      @sport: the server's TCP port
1744  *      @queue: queue to direct messages from this server to
1745  *
1746  *      Create an IP server for the given port and address.
1747  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1748  */
1749 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1750                         __be32 sip, __be16 sport, __be16 vlan,
1751                         unsigned int queue)
1752 {
1753         unsigned int chan;
1754         struct sk_buff *skb;
1755         struct adapter *adap;
1756         struct cpl_pass_open_req *req;
1757         int ret;
1758
1759         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1760         if (!skb)
1761                 return -ENOMEM;
1762
1763         adap = netdev2adap(dev);
1764         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1765         INIT_TP_WR(req, 0);
1766         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1767         req->local_port = sport;
1768         req->peer_port = htons(0);
1769         req->local_ip = sip;
1770         req->peer_ip = htonl(0);
1771         chan = rxq_to_chan(&adap->sge, queue);
1772         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1773         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1774                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1775         ret = t4_mgmt_tx(adap, skb);
1776         return net_xmit_eval(ret);
1777 }
1778 EXPORT_SYMBOL(cxgb4_create_server);
1779
1780 /*      cxgb4_create_server6 - create an IPv6 server
1781  *      @dev: the device
1782  *      @stid: the server TID
1783  *      @sip: local IPv6 address to bind server to
1784  *      @sport: the server's TCP port
1785  *      @queue: queue to direct messages from this server to
1786  *
1787  *      Create an IPv6 server for the given port and address.
1788  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1789  */
1790 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1791                          const struct in6_addr *sip, __be16 sport,
1792                          unsigned int queue)
1793 {
1794         unsigned int chan;
1795         struct sk_buff *skb;
1796         struct adapter *adap;
1797         struct cpl_pass_open_req6 *req;
1798         int ret;
1799
1800         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1801         if (!skb)
1802                 return -ENOMEM;
1803
1804         adap = netdev2adap(dev);
1805         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1806         INIT_TP_WR(req, 0);
1807         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1808         req->local_port = sport;
1809         req->peer_port = htons(0);
1810         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1811         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1812         req->peer_ip_hi = cpu_to_be64(0);
1813         req->peer_ip_lo = cpu_to_be64(0);
1814         chan = rxq_to_chan(&adap->sge, queue);
1815         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1816         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1817                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1818         ret = t4_mgmt_tx(adap, skb);
1819         return net_xmit_eval(ret);
1820 }
1821 EXPORT_SYMBOL(cxgb4_create_server6);
1822
1823 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1824                         unsigned int queue, bool ipv6)
1825 {
1826         struct sk_buff *skb;
1827         struct adapter *adap;
1828         struct cpl_close_listsvr_req *req;
1829         int ret;
1830
1831         adap = netdev2adap(dev);
1832
1833         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1834         if (!skb)
1835                 return -ENOMEM;
1836
1837         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1838         INIT_TP_WR(req, 0);
1839         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1840         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1841                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1842         ret = t4_mgmt_tx(adap, skb);
1843         return net_xmit_eval(ret);
1844 }
1845 EXPORT_SYMBOL(cxgb4_remove_server);
1846
1847 /**
1848  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1849  *      @mtus: the HW MTU table
1850  *      @mtu: the target MTU
1851  *      @idx: index of selected entry in the MTU table
1852  *
1853  *      Returns the index and the value in the HW MTU table that is closest to
1854  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1855  *      table, in which case that smallest available value is selected.
1856  */
1857 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1858                             unsigned int *idx)
1859 {
1860         unsigned int i = 0;
1861
1862         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1863                 ++i;
1864         if (idx)
1865                 *idx = i;
1866         return mtus[i];
1867 }
1868 EXPORT_SYMBOL(cxgb4_best_mtu);
1869
1870 /**
1871  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1872  *     @mtus: the HW MTU table
1873  *     @header_size: Header Size
1874  *     @data_size_max: maximum Data Segment Size
1875  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1876  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1877  *
1878  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1879  *     MTU Table based solely on a Maximum MTU parameter, we break that
1880  *     parameter up into a Header Size and Maximum Data Segment Size, and
1881  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1882  *     the Hardware MTU Table which will result in a Data Segment Size with
1883  *     the requested alignment _and_ that MTU isn't "too far" from the
1884  *     closest MTU, then we'll return that rather than the closest MTU.
1885  */
1886 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1887                                     unsigned short header_size,
1888                                     unsigned short data_size_max,
1889                                     unsigned short data_size_align,
1890                                     unsigned int *mtu_idxp)
1891 {
1892         unsigned short max_mtu = header_size + data_size_max;
1893         unsigned short data_size_align_mask = data_size_align - 1;
1894         int mtu_idx, aligned_mtu_idx;
1895
1896         /* Scan the MTU Table till we find an MTU which is larger than our
1897          * Maximum MTU or we reach the end of the table.  Along the way,
1898          * record the last MTU found, if any, which will result in a Data
1899          * Segment Length matching the requested alignment.
1900          */
1901         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1902                 unsigned short data_size = mtus[mtu_idx] - header_size;
1903
1904                 /* If this MTU minus the Header Size would result in a
1905                  * Data Segment Size of the desired alignment, remember it.
1906                  */
1907                 if ((data_size & data_size_align_mask) == 0)
1908                         aligned_mtu_idx = mtu_idx;
1909
1910                 /* If we're not at the end of the Hardware MTU Table and the
1911                  * next element is larger than our Maximum MTU, drop out of
1912                  * the loop.
1913                  */
1914                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1915                         break;
1916         }
1917
1918         /* If we fell out of the loop because we ran to the end of the table,
1919          * then we just have to use the last [largest] entry.
1920          */
1921         if (mtu_idx == NMTUS)
1922                 mtu_idx--;
1923
1924         /* If we found an MTU which resulted in the requested Data Segment
1925          * Length alignment and that's "not far" from the largest MTU which is
1926          * less than or equal to the maximum MTU, then use that.
1927          */
1928         if (aligned_mtu_idx >= 0 &&
1929             mtu_idx - aligned_mtu_idx <= 1)
1930                 mtu_idx = aligned_mtu_idx;
1931
1932         /* If the caller has passed in an MTU Index pointer, pass the
1933          * MTU Index back.  Return the MTU value.
1934          */
1935         if (mtu_idxp)
1936                 *mtu_idxp = mtu_idx;
1937         return mtus[mtu_idx];
1938 }
1939 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1940
1941 /**
1942  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1943  *      @chip: chip type
1944  *      @viid: VI id of the given port
1945  *
1946  *      Return the SMT index for this VI.
1947  */
1948 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1949 {
1950         /* In T4/T5, SMT contains 256 SMAC entries organized in
1951          * 128 rows of 2 entries each.
1952          * In T6, SMT contains 256 SMAC entries in 256 rows.
1953          * TODO: The below code needs to be updated when we add support
1954          * for 256 VFs.
1955          */
1956         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1957                 return ((viid & 0x7f) << 1);
1958         else
1959                 return (viid & 0x7f);
1960 }
1961 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1962
1963 /**
1964  *      cxgb4_port_chan - get the HW channel of a port
1965  *      @dev: the net device for the port
1966  *
1967  *      Return the HW Tx channel of the given port.
1968  */
1969 unsigned int cxgb4_port_chan(const struct net_device *dev)
1970 {
1971         return netdev2pinfo(dev)->tx_chan;
1972 }
1973 EXPORT_SYMBOL(cxgb4_port_chan);
1974
1975 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1976 {
1977         struct adapter *adap = netdev2adap(dev);
1978         u32 v1, v2, lp_count, hp_count;
1979
1980         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1981         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1982         if (is_t4(adap->params.chip)) {
1983                 lp_count = LP_COUNT_G(v1);
1984                 hp_count = HP_COUNT_G(v1);
1985         } else {
1986                 lp_count = LP_COUNT_T5_G(v1);
1987                 hp_count = HP_COUNT_T5_G(v2);
1988         }
1989         return lpfifo ? lp_count : hp_count;
1990 }
1991 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1992
1993 /**
1994  *      cxgb4_port_viid - get the VI id of a port
1995  *      @dev: the net device for the port
1996  *
1997  *      Return the VI id of the given port.
1998  */
1999 unsigned int cxgb4_port_viid(const struct net_device *dev)
2000 {
2001         return netdev2pinfo(dev)->viid;
2002 }
2003 EXPORT_SYMBOL(cxgb4_port_viid);
2004
2005 /**
2006  *      cxgb4_port_idx - get the index of a port
2007  *      @dev: the net device for the port
2008  *
2009  *      Return the index of the given port.
2010  */
2011 unsigned int cxgb4_port_idx(const struct net_device *dev)
2012 {
2013         return netdev2pinfo(dev)->port_id;
2014 }
2015 EXPORT_SYMBOL(cxgb4_port_idx);
2016
2017 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2018                          struct tp_tcp_stats *v6)
2019 {
2020         struct adapter *adap = pci_get_drvdata(pdev);
2021
2022         spin_lock(&adap->stats_lock);
2023         t4_tp_get_tcp_stats(adap, v4, v6);
2024         spin_unlock(&adap->stats_lock);
2025 }
2026 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2027
2028 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2029                       const unsigned int *pgsz_order)
2030 {
2031         struct adapter *adap = netdev2adap(dev);
2032
2033         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2034         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2035                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2036                      HPZ3_V(pgsz_order[3]));
2037 }
2038 EXPORT_SYMBOL(cxgb4_iscsi_init);
2039
2040 int cxgb4_flush_eq_cache(struct net_device *dev)
2041 {
2042         struct adapter *adap = netdev2adap(dev);
2043
2044         return t4_sge_ctxt_flush(adap, adap->mbox);
2045 }
2046 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2047
2048 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2049 {
2050         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2051         __be64 indices;
2052         int ret;
2053
2054         spin_lock(&adap->win0_lock);
2055         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2056                            sizeof(indices), (__be32 *)&indices,
2057                            T4_MEMORY_READ);
2058         spin_unlock(&adap->win0_lock);
2059         if (!ret) {
2060                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2061                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2062         }
2063         return ret;
2064 }
2065
2066 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2067                         u16 size)
2068 {
2069         struct adapter *adap = netdev2adap(dev);
2070         u16 hw_pidx, hw_cidx;
2071         int ret;
2072
2073         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2074         if (ret)
2075                 goto out;
2076
2077         if (pidx != hw_pidx) {
2078                 u16 delta;
2079                 u32 val;
2080
2081                 if (pidx >= hw_pidx)
2082                         delta = pidx - hw_pidx;
2083                 else
2084                         delta = size - hw_pidx + pidx;
2085
2086                 if (is_t4(adap->params.chip))
2087                         val = PIDX_V(delta);
2088                 else
2089                         val = PIDX_T5_V(delta);
2090                 wmb();
2091                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2092                              QID_V(qid) | val);
2093         }
2094 out:
2095         return ret;
2096 }
2097 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2098
2099 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2100 {
2101         struct adapter *adap;
2102         u32 offset, memtype, memaddr;
2103         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2104         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2105         int ret;
2106
2107         adap = netdev2adap(dev);
2108
2109         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2110
2111         /* Figure out where the offset lands in the Memory Type/Address scheme.
2112          * This code assumes that the memory is laid out starting at offset 0
2113          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2114          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2115          * MC0, and some have both MC0 and MC1.
2116          */
2117         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2118         edc0_size = EDRAM0_SIZE_G(size) << 20;
2119         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2120         edc1_size = EDRAM1_SIZE_G(size) << 20;
2121         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2122         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2123
2124         edc0_end = edc0_size;
2125         edc1_end = edc0_end + edc1_size;
2126         mc0_end = edc1_end + mc0_size;
2127
2128         if (offset < edc0_end) {
2129                 memtype = MEM_EDC0;
2130                 memaddr = offset;
2131         } else if (offset < edc1_end) {
2132                 memtype = MEM_EDC1;
2133                 memaddr = offset - edc0_end;
2134         } else {
2135                 if (offset < mc0_end) {
2136                         memtype = MEM_MC0;
2137                         memaddr = offset - edc1_end;
2138                 } else if (is_t5(adap->params.chip)) {
2139                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2140                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2141                         mc1_end = mc0_end + mc1_size;
2142                         if (offset < mc1_end) {
2143                                 memtype = MEM_MC1;
2144                                 memaddr = offset - mc0_end;
2145                         } else {
2146                                 /* offset beyond the end of any memory */
2147                                 goto err;
2148                         }
2149                 } else {
2150                         /* T4/T6 only has a single memory channel */
2151                         goto err;
2152                 }
2153         }
2154
2155         spin_lock(&adap->win0_lock);
2156         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2157         spin_unlock(&adap->win0_lock);
2158         return ret;
2159
2160 err:
2161         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2162                 stag, offset);
2163         return -EINVAL;
2164 }
2165 EXPORT_SYMBOL(cxgb4_read_tpte);
2166
2167 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2168 {
2169         u32 hi, lo;
2170         struct adapter *adap;
2171
2172         adap = netdev2adap(dev);
2173         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2174         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2175
2176         return ((u64)hi << 32) | (u64)lo;
2177 }
2178 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2179
2180 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2181                          unsigned int qid,
2182                          enum cxgb4_bar2_qtype qtype,
2183                          int user,
2184                          u64 *pbar2_qoffset,
2185                          unsigned int *pbar2_qid)
2186 {
2187         return t4_bar2_sge_qregs(netdev2adap(dev),
2188                                  qid,
2189                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2190                                   ? T4_BAR2_QTYPE_EGRESS
2191                                   : T4_BAR2_QTYPE_INGRESS),
2192                                  user,
2193                                  pbar2_qoffset,
2194                                  pbar2_qid);
2195 }
2196 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2197
2198 static struct pci_driver cxgb4_driver;
2199
2200 static void check_neigh_update(struct neighbour *neigh)
2201 {
2202         const struct device *parent;
2203         const struct net_device *netdev = neigh->dev;
2204
2205         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2206                 netdev = vlan_dev_real_dev(netdev);
2207         parent = netdev->dev.parent;
2208         if (parent && parent->driver == &cxgb4_driver.driver)
2209                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2210 }
2211
2212 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2213                        void *data)
2214 {
2215         switch (event) {
2216         case NETEVENT_NEIGH_UPDATE:
2217                 check_neigh_update(data);
2218                 break;
2219         case NETEVENT_REDIRECT:
2220         default:
2221                 break;
2222         }
2223         return 0;
2224 }
2225
2226 static bool netevent_registered;
2227 static struct notifier_block cxgb4_netevent_nb = {
2228         .notifier_call = netevent_cb
2229 };
2230
2231 static void drain_db_fifo(struct adapter *adap, int usecs)
2232 {
2233         u32 v1, v2, lp_count, hp_count;
2234
2235         do {
2236                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2237                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2238                 if (is_t4(adap->params.chip)) {
2239                         lp_count = LP_COUNT_G(v1);
2240                         hp_count = HP_COUNT_G(v1);
2241                 } else {
2242                         lp_count = LP_COUNT_T5_G(v1);
2243                         hp_count = HP_COUNT_T5_G(v2);
2244                 }
2245
2246                 if (lp_count == 0 && hp_count == 0)
2247                         break;
2248                 set_current_state(TASK_UNINTERRUPTIBLE);
2249                 schedule_timeout(usecs_to_jiffies(usecs));
2250         } while (1);
2251 }
2252
2253 static void disable_txq_db(struct sge_txq *q)
2254 {
2255         unsigned long flags;
2256
2257         spin_lock_irqsave(&q->db_lock, flags);
2258         q->db_disabled = 1;
2259         spin_unlock_irqrestore(&q->db_lock, flags);
2260 }
2261
2262 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2263 {
2264         spin_lock_irq(&q->db_lock);
2265         if (q->db_pidx_inc) {
2266                 /* Make sure that all writes to the TX descriptors
2267                  * are committed before we tell HW about them.
2268                  */
2269                 wmb();
2270                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2271                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2272                 q->db_pidx_inc = 0;
2273         }
2274         q->db_disabled = 0;
2275         spin_unlock_irq(&q->db_lock);
2276 }
2277
2278 static void disable_dbs(struct adapter *adap)
2279 {
2280         int i;
2281
2282         for_each_ethrxq(&adap->sge, i)
2283                 disable_txq_db(&adap->sge.ethtxq[i].q);
2284         for_each_ofldrxq(&adap->sge, i)
2285                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2286         for_each_port(adap, i)
2287                 disable_txq_db(&adap->sge.ctrlq[i].q);
2288 }
2289
2290 static void enable_dbs(struct adapter *adap)
2291 {
2292         int i;
2293
2294         for_each_ethrxq(&adap->sge, i)
2295                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2296         for_each_ofldrxq(&adap->sge, i)
2297                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2298         for_each_port(adap, i)
2299                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2300 }
2301
2302 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2303 {
2304         if (adap->uld_handle[CXGB4_ULD_RDMA])
2305                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2306                                 cmd);
2307 }
2308
2309 static void process_db_full(struct work_struct *work)
2310 {
2311         struct adapter *adap;
2312
2313         adap = container_of(work, struct adapter, db_full_task);
2314
2315         drain_db_fifo(adap, dbfifo_drain_delay);
2316         enable_dbs(adap);
2317         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2318         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2319                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2320                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2321                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2322         else
2323                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2324                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2325 }
2326
2327 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2328 {
2329         u16 hw_pidx, hw_cidx;
2330         int ret;
2331
2332         spin_lock_irq(&q->db_lock);
2333         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2334         if (ret)
2335                 goto out;
2336         if (q->db_pidx != hw_pidx) {
2337                 u16 delta;
2338                 u32 val;
2339
2340                 if (q->db_pidx >= hw_pidx)
2341                         delta = q->db_pidx - hw_pidx;
2342                 else
2343                         delta = q->size - hw_pidx + q->db_pidx;
2344
2345                 if (is_t4(adap->params.chip))
2346                         val = PIDX_V(delta);
2347                 else
2348                         val = PIDX_T5_V(delta);
2349                 wmb();
2350                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2351                              QID_V(q->cntxt_id) | val);
2352         }
2353 out:
2354         q->db_disabled = 0;
2355         q->db_pidx_inc = 0;
2356         spin_unlock_irq(&q->db_lock);
2357         if (ret)
2358                 CH_WARN(adap, "DB drop recovery failed.\n");
2359 }
2360 static void recover_all_queues(struct adapter *adap)
2361 {
2362         int i;
2363
2364         for_each_ethrxq(&adap->sge, i)
2365                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2366         for_each_ofldrxq(&adap->sge, i)
2367                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2368         for_each_port(adap, i)
2369                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2370 }
2371
2372 static void process_db_drop(struct work_struct *work)
2373 {
2374         struct adapter *adap;
2375
2376         adap = container_of(work, struct adapter, db_drop_task);
2377
2378         if (is_t4(adap->params.chip)) {
2379                 drain_db_fifo(adap, dbfifo_drain_delay);
2380                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2381                 drain_db_fifo(adap, dbfifo_drain_delay);
2382                 recover_all_queues(adap);
2383                 drain_db_fifo(adap, dbfifo_drain_delay);
2384                 enable_dbs(adap);
2385                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2386         } else if (is_t5(adap->params.chip)) {
2387                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2388                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2389                 u16 pidx_inc = dropped_db & 0x1fff;
2390                 u64 bar2_qoffset;
2391                 unsigned int bar2_qid;
2392                 int ret;
2393
2394                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2395                                         0, &bar2_qoffset, &bar2_qid);
2396                 if (ret)
2397                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2398                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2399                 else
2400                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2401                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2402
2403                 /* Re-enable BAR2 WC */
2404                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2405         }
2406
2407         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2408                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2409 }
2410
2411 void t4_db_full(struct adapter *adap)
2412 {
2413         if (is_t4(adap->params.chip)) {
2414                 disable_dbs(adap);
2415                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2416                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2417                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2418                 queue_work(adap->workq, &adap->db_full_task);
2419         }
2420 }
2421
2422 void t4_db_dropped(struct adapter *adap)
2423 {
2424         if (is_t4(adap->params.chip)) {
2425                 disable_dbs(adap);
2426                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2427         }
2428         queue_work(adap->workq, &adap->db_drop_task);
2429 }
2430
2431 static void uld_attach(struct adapter *adap, unsigned int uld)
2432 {
2433         void *handle;
2434         struct cxgb4_lld_info lli;
2435         unsigned short i;
2436
2437         lli.pdev = adap->pdev;
2438         lli.pf = adap->pf;
2439         lli.l2t = adap->l2t;
2440         lli.tids = &adap->tids;
2441         lli.ports = adap->port;
2442         lli.vr = &adap->vres;
2443         lli.mtus = adap->params.mtus;
2444         if (uld == CXGB4_ULD_RDMA) {
2445                 lli.rxq_ids = adap->sge.rdma_rxq;
2446                 lli.ciq_ids = adap->sge.rdma_ciq;
2447                 lli.nrxq = adap->sge.rdmaqs;
2448                 lli.nciq = adap->sge.rdmaciqs;
2449         } else if (uld == CXGB4_ULD_ISCSI) {
2450                 lli.rxq_ids = adap->sge.ofld_rxq;
2451                 lli.nrxq = adap->sge.ofldqsets;
2452         }
2453         lli.ntxq = adap->sge.ofldqsets;
2454         lli.nchan = adap->params.nports;
2455         lli.nports = adap->params.nports;
2456         lli.wr_cred = adap->params.ofldq_wr_cred;
2457         lli.adapter_type = adap->params.chip;
2458         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2459         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2460         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2461         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2462         lli.filt_mode = adap->params.tp.vlan_pri_map;
2463         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2464         for (i = 0; i < NCHAN; i++)
2465                 lli.tx_modq[i] = i;
2466         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2467         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2468         lli.fw_vers = adap->params.fw_vers;
2469         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2470         lli.sge_ingpadboundary = adap->sge.fl_align;
2471         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2472         lli.sge_pktshift = adap->sge.pktshift;
2473         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2474         lli.max_ordird_qp = adap->params.max_ordird_qp;
2475         lli.max_ird_adapter = adap->params.max_ird_adapter;
2476         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2477         lli.nodeid = dev_to_node(adap->pdev_dev);
2478
2479         handle = ulds[uld].add(&lli);
2480         if (IS_ERR(handle)) {
2481                 dev_warn(adap->pdev_dev,
2482                          "could not attach to the %s driver, error %ld\n",
2483                          uld_str[uld], PTR_ERR(handle));
2484                 return;
2485         }
2486
2487         adap->uld_handle[uld] = handle;
2488
2489         if (!netevent_registered) {
2490                 register_netevent_notifier(&cxgb4_netevent_nb);
2491                 netevent_registered = true;
2492         }
2493
2494         if (adap->flags & FULL_INIT_DONE)
2495                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2496 }
2497
2498 static void attach_ulds(struct adapter *adap)
2499 {
2500         unsigned int i;
2501
2502         spin_lock(&adap_rcu_lock);
2503         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2504         spin_unlock(&adap_rcu_lock);
2505
2506         mutex_lock(&uld_mutex);
2507         list_add_tail(&adap->list_node, &adapter_list);
2508         for (i = 0; i < CXGB4_ULD_MAX; i++)
2509                 if (ulds[i].add)
2510                         uld_attach(adap, i);
2511         mutex_unlock(&uld_mutex);
2512 }
2513
2514 static void detach_ulds(struct adapter *adap)
2515 {
2516         unsigned int i;
2517
2518         mutex_lock(&uld_mutex);
2519         list_del(&adap->list_node);
2520         for (i = 0; i < CXGB4_ULD_MAX; i++)
2521                 if (adap->uld_handle[i]) {
2522                         ulds[i].state_change(adap->uld_handle[i],
2523                                              CXGB4_STATE_DETACH);
2524                         adap->uld_handle[i] = NULL;
2525                 }
2526         if (netevent_registered && list_empty(&adapter_list)) {
2527                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2528                 netevent_registered = false;
2529         }
2530         mutex_unlock(&uld_mutex);
2531
2532         spin_lock(&adap_rcu_lock);
2533         list_del_rcu(&adap->rcu_node);
2534         spin_unlock(&adap_rcu_lock);
2535 }
2536
2537 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2538 {
2539         unsigned int i;
2540
2541         mutex_lock(&uld_mutex);
2542         for (i = 0; i < CXGB4_ULD_MAX; i++)
2543                 if (adap->uld_handle[i])
2544                         ulds[i].state_change(adap->uld_handle[i], new_state);
2545         mutex_unlock(&uld_mutex);
2546 }
2547
2548 /**
2549  *      cxgb4_register_uld - register an upper-layer driver
2550  *      @type: the ULD type
2551  *      @p: the ULD methods
2552  *
2553  *      Registers an upper-layer driver with this driver and notifies the ULD
2554  *      about any presently available devices that support its type.  Returns
2555  *      %-EBUSY if a ULD of the same type is already registered.
2556  */
2557 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2558 {
2559         int ret = 0;
2560         struct adapter *adap;
2561
2562         if (type >= CXGB4_ULD_MAX)
2563                 return -EINVAL;
2564         mutex_lock(&uld_mutex);
2565         if (ulds[type].add) {
2566                 ret = -EBUSY;
2567                 goto out;
2568         }
2569         ulds[type] = *p;
2570         list_for_each_entry(adap, &adapter_list, list_node)
2571                 uld_attach(adap, type);
2572 out:    mutex_unlock(&uld_mutex);
2573         return ret;
2574 }
2575 EXPORT_SYMBOL(cxgb4_register_uld);
2576
2577 /**
2578  *      cxgb4_unregister_uld - unregister an upper-layer driver
2579  *      @type: the ULD type
2580  *
2581  *      Unregisters an existing upper-layer driver.
2582  */
2583 int cxgb4_unregister_uld(enum cxgb4_uld type)
2584 {
2585         struct adapter *adap;
2586
2587         if (type >= CXGB4_ULD_MAX)
2588                 return -EINVAL;
2589         mutex_lock(&uld_mutex);
2590         list_for_each_entry(adap, &adapter_list, list_node)
2591                 adap->uld_handle[type] = NULL;
2592         ulds[type].add = NULL;
2593         mutex_unlock(&uld_mutex);
2594         return 0;
2595 }
2596 EXPORT_SYMBOL(cxgb4_unregister_uld);
2597
2598 #if IS_ENABLED(CONFIG_IPV6)
2599 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2600                                    unsigned long event, void *data)
2601 {
2602         struct inet6_ifaddr *ifa = data;
2603         struct net_device *event_dev = ifa->idev->dev;
2604         const struct device *parent = NULL;
2605 #if IS_ENABLED(CONFIG_BONDING)
2606         struct adapter *adap;
2607 #endif
2608         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2609                 event_dev = vlan_dev_real_dev(event_dev);
2610 #if IS_ENABLED(CONFIG_BONDING)
2611         if (event_dev->flags & IFF_MASTER) {
2612                 list_for_each_entry(adap, &adapter_list, list_node) {
2613                         switch (event) {
2614                         case NETDEV_UP:
2615                                 cxgb4_clip_get(adap->port[0],
2616                                                (const u32 *)ifa, 1);
2617                                 break;
2618                         case NETDEV_DOWN:
2619                                 cxgb4_clip_release(adap->port[0],
2620                                                    (const u32 *)ifa, 1);
2621                                 break;
2622                         default:
2623                                 break;
2624                         }
2625                 }
2626                 return NOTIFY_OK;
2627         }
2628 #endif
2629
2630         if (event_dev)
2631                 parent = event_dev->dev.parent;
2632
2633         if (parent && parent->driver == &cxgb4_driver.driver) {
2634                 switch (event) {
2635                 case NETDEV_UP:
2636                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2637                         break;
2638                 case NETDEV_DOWN:
2639                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2640                         break;
2641                 default:
2642                         break;
2643                 }
2644         }
2645         return NOTIFY_OK;
2646 }
2647
2648 static bool inet6addr_registered;
2649 static struct notifier_block cxgb4_inet6addr_notifier = {
2650         .notifier_call = cxgb4_inet6addr_handler
2651 };
2652
2653 static void update_clip(const struct adapter *adap)
2654 {
2655         int i;
2656         struct net_device *dev;
2657         int ret;
2658
2659         rcu_read_lock();
2660
2661         for (i = 0; i < MAX_NPORTS; i++) {
2662                 dev = adap->port[i];
2663                 ret = 0;
2664
2665                 if (dev)
2666                         ret = cxgb4_update_root_dev_clip(dev);
2667
2668                 if (ret < 0)
2669                         break;
2670         }
2671         rcu_read_unlock();
2672 }
2673 #endif /* IS_ENABLED(CONFIG_IPV6) */
2674
2675 /**
2676  *      cxgb_up - enable the adapter
2677  *      @adap: adapter being enabled
2678  *
2679  *      Called when the first port is enabled, this function performs the
2680  *      actions necessary to make an adapter operational, such as completing
2681  *      the initialization of HW modules, and enabling interrupts.
2682  *
2683  *      Must be called with the rtnl lock held.
2684  */
2685 static int cxgb_up(struct adapter *adap)
2686 {
2687         int err;
2688
2689         err = setup_sge_queues(adap);
2690         if (err)
2691                 goto out;
2692         err = setup_rss(adap);
2693         if (err)
2694                 goto freeq;
2695
2696         if (adap->flags & USING_MSIX) {
2697                 name_msix_vecs(adap);
2698                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2699                                   adap->msix_info[0].desc, adap);
2700                 if (err)
2701                         goto irq_err;
2702
2703                 err = request_msix_queue_irqs(adap);
2704                 if (err) {
2705                         free_irq(adap->msix_info[0].vec, adap);
2706                         goto irq_err;
2707                 }
2708         } else {
2709                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2710                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2711                                   adap->port[0]->name, adap);
2712                 if (err)
2713                         goto irq_err;
2714         }
2715
2716         mutex_lock(&uld_mutex);
2717         enable_rx(adap);
2718         t4_sge_start(adap);
2719         t4_intr_enable(adap);
2720         adap->flags |= FULL_INIT_DONE;
2721         mutex_unlock(&uld_mutex);
2722
2723         notify_ulds(adap, CXGB4_STATE_UP);
2724 #if IS_ENABLED(CONFIG_IPV6)
2725         update_clip(adap);
2726 #endif
2727  out:
2728         return err;
2729  irq_err:
2730         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2731  freeq:
2732         t4_free_sge_resources(adap);
2733         goto out;
2734 }
2735
2736 static void cxgb_down(struct adapter *adapter)
2737 {
2738         cancel_work_sync(&adapter->tid_release_task);
2739         cancel_work_sync(&adapter->db_full_task);
2740         cancel_work_sync(&adapter->db_drop_task);
2741         adapter->tid_release_task_busy = false;
2742         adapter->tid_release_head = NULL;
2743
2744         t4_sge_stop(adapter);
2745         t4_free_sge_resources(adapter);
2746         adapter->flags &= ~FULL_INIT_DONE;
2747 }
2748
2749 /*
2750  * net_device operations
2751  */
2752 static int cxgb_open(struct net_device *dev)
2753 {
2754         int err;
2755         struct port_info *pi = netdev_priv(dev);
2756         struct adapter *adapter = pi->adapter;
2757
2758         netif_carrier_off(dev);
2759
2760         if (!(adapter->flags & FULL_INIT_DONE)) {
2761                 err = cxgb_up(adapter);
2762                 if (err < 0)
2763                         return err;
2764         }
2765
2766         err = link_start(dev);
2767         if (!err)
2768                 netif_tx_start_all_queues(dev);
2769         return err;
2770 }
2771
2772 static int cxgb_close(struct net_device *dev)
2773 {
2774         struct port_info *pi = netdev_priv(dev);
2775         struct adapter *adapter = pi->adapter;
2776
2777         netif_tx_stop_all_queues(dev);
2778         netif_carrier_off(dev);
2779         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2780 }
2781
2782 /* Return an error number if the indicated filter isn't writable ...
2783  */
2784 static int writable_filter(struct filter_entry *f)
2785 {
2786         if (f->locked)
2787                 return -EPERM;
2788         if (f->pending)
2789                 return -EBUSY;
2790
2791         return 0;
2792 }
2793
2794 /* Delete the filter at the specified index (if valid).  The checks for all
2795  * the common problems with doing this like the filter being locked, currently
2796  * pending in another operation, etc.
2797  */
2798 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2799 {
2800         struct filter_entry *f;
2801         int ret;
2802
2803         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2804                 return -EINVAL;
2805
2806         f = &adapter->tids.ftid_tab[fidx];
2807         ret = writable_filter(f);
2808         if (ret)
2809                 return ret;
2810         if (f->valid)
2811                 return del_filter_wr(adapter, fidx);
2812
2813         return 0;
2814 }
2815
2816 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2817                 __be32 sip, __be16 sport, __be16 vlan,
2818                 unsigned int queue, unsigned char port, unsigned char mask)
2819 {
2820         int ret;
2821         struct filter_entry *f;
2822         struct adapter *adap;
2823         int i;
2824         u8 *val;
2825
2826         adap = netdev2adap(dev);
2827
2828         /* Adjust stid to correct filter index */
2829         stid -= adap->tids.sftid_base;
2830         stid += adap->tids.nftids;
2831
2832         /* Check to make sure the filter requested is writable ...
2833          */
2834         f = &adap->tids.ftid_tab[stid];
2835         ret = writable_filter(f);
2836         if (ret)
2837                 return ret;
2838
2839         /* Clear out any old resources being used by the filter before
2840          * we start constructing the new filter.
2841          */
2842         if (f->valid)
2843                 clear_filter(adap, f);
2844
2845         /* Clear out filter specifications */
2846         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2847         f->fs.val.lport = cpu_to_be16(sport);
2848         f->fs.mask.lport  = ~0;
2849         val = (u8 *)&sip;
2850         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2851                 for (i = 0; i < 4; i++) {
2852                         f->fs.val.lip[i] = val[i];
2853                         f->fs.mask.lip[i] = ~0;
2854                 }
2855                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2856                         f->fs.val.iport = port;
2857                         f->fs.mask.iport = mask;
2858                 }
2859         }
2860
2861         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2862                 f->fs.val.proto = IPPROTO_TCP;
2863                 f->fs.mask.proto = ~0;
2864         }
2865
2866         f->fs.dirsteer = 1;
2867         f->fs.iq = queue;
2868         /* Mark filter as locked */
2869         f->locked = 1;
2870         f->fs.rpttid = 1;
2871
2872         ret = set_filter_wr(adap, stid);
2873         if (ret) {
2874                 clear_filter(adap, f);
2875                 return ret;
2876         }
2877
2878         return 0;
2879 }
2880 EXPORT_SYMBOL(cxgb4_create_server_filter);
2881
2882 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2883                 unsigned int queue, bool ipv6)
2884 {
2885         int ret;
2886         struct filter_entry *f;
2887         struct adapter *adap;
2888
2889         adap = netdev2adap(dev);
2890
2891         /* Adjust stid to correct filter index */
2892         stid -= adap->tids.sftid_base;
2893         stid += adap->tids.nftids;
2894
2895         f = &adap->tids.ftid_tab[stid];
2896         /* Unlock the filter */
2897         f->locked = 0;
2898
2899         ret = delete_filter(adap, stid);
2900         if (ret)
2901                 return ret;
2902
2903         return 0;
2904 }
2905 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2906
2907 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2908                                                 struct rtnl_link_stats64 *ns)
2909 {
2910         struct port_stats stats;
2911         struct port_info *p = netdev_priv(dev);
2912         struct adapter *adapter = p->adapter;
2913
2914         /* Block retrieving statistics during EEH error
2915          * recovery. Otherwise, the recovery might fail
2916          * and the PCI device will be removed permanently
2917          */
2918         spin_lock(&adapter->stats_lock);
2919         if (!netif_device_present(dev)) {
2920                 spin_unlock(&adapter->stats_lock);
2921                 return ns;
2922         }
2923         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2924                                  &p->stats_base);
2925         spin_unlock(&adapter->stats_lock);
2926
2927         ns->tx_bytes   = stats.tx_octets;
2928         ns->tx_packets = stats.tx_frames;
2929         ns->rx_bytes   = stats.rx_octets;
2930         ns->rx_packets = stats.rx_frames;
2931         ns->multicast  = stats.rx_mcast_frames;
2932
2933         /* detailed rx_errors */
2934         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2935                                stats.rx_runt;
2936         ns->rx_over_errors   = 0;
2937         ns->rx_crc_errors    = stats.rx_fcs_err;
2938         ns->rx_frame_errors  = stats.rx_symbol_err;
2939         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2940                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2941                                stats.rx_trunc0 + stats.rx_trunc1 +
2942                                stats.rx_trunc2 + stats.rx_trunc3;
2943         ns->rx_missed_errors = 0;
2944
2945         /* detailed tx_errors */
2946         ns->tx_aborted_errors   = 0;
2947         ns->tx_carrier_errors   = 0;
2948         ns->tx_fifo_errors      = 0;
2949         ns->tx_heartbeat_errors = 0;
2950         ns->tx_window_errors    = 0;
2951
2952         ns->tx_errors = stats.tx_error_frames;
2953         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2954                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2955         return ns;
2956 }
2957
2958 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2959 {
2960         unsigned int mbox;
2961         int ret = 0, prtad, devad;
2962         struct port_info *pi = netdev_priv(dev);
2963         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2964
2965         switch (cmd) {
2966         case SIOCGMIIPHY:
2967                 if (pi->mdio_addr < 0)
2968                         return -EOPNOTSUPP;
2969                 data->phy_id = pi->mdio_addr;
2970                 break;
2971         case SIOCGMIIREG:
2972         case SIOCSMIIREG:
2973                 if (mdio_phy_id_is_c45(data->phy_id)) {
2974                         prtad = mdio_phy_id_prtad(data->phy_id);
2975                         devad = mdio_phy_id_devad(data->phy_id);
2976                 } else if (data->phy_id < 32) {
2977                         prtad = data->phy_id;
2978                         devad = 0;
2979                         data->reg_num &= 0x1f;
2980                 } else
2981                         return -EINVAL;
2982
2983                 mbox = pi->adapter->pf;
2984                 if (cmd == SIOCGMIIREG)
2985                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2986                                          data->reg_num, &data->val_out);
2987                 else
2988                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2989                                          data->reg_num, data->val_in);
2990                 break;
2991         case SIOCGHWTSTAMP:
2992                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2993                                     sizeof(pi->tstamp_config)) ?
2994                         -EFAULT : 0;
2995         case SIOCSHWTSTAMP:
2996                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2997                                    sizeof(pi->tstamp_config)))
2998                         return -EFAULT;
2999
3000                 switch (pi->tstamp_config.rx_filter) {
3001                 case HWTSTAMP_FILTER_NONE:
3002                         pi->rxtstamp = false;
3003                         break;
3004                 case HWTSTAMP_FILTER_ALL:
3005                         pi->rxtstamp = true;
3006                         break;
3007                 default:
3008                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3009                         return -ERANGE;
3010                 }
3011
3012                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3013                                     sizeof(pi->tstamp_config)) ?
3014                         -EFAULT : 0;
3015         default:
3016                 return -EOPNOTSUPP;
3017         }
3018         return ret;
3019 }
3020
3021 static void cxgb_set_rxmode(struct net_device *dev)
3022 {
3023         /* unfortunately we can't return errors to the stack */
3024         set_rxmode(dev, -1, false);
3025 }
3026
3027 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3028 {
3029         int ret;
3030         struct port_info *pi = netdev_priv(dev);
3031
3032         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3033                 return -EINVAL;
3034         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3035                             -1, -1, -1, true);
3036         if (!ret)
3037                 dev->mtu = new_mtu;
3038         return ret;
3039 }
3040
3041 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3042 {
3043         int ret;
3044         struct sockaddr *addr = p;
3045         struct port_info *pi = netdev_priv(dev);
3046
3047         if (!is_valid_ether_addr(addr->sa_data))
3048                 return -EADDRNOTAVAIL;
3049
3050         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3051                             pi->xact_addr_filt, addr->sa_data, true, true);
3052         if (ret < 0)
3053                 return ret;
3054
3055         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3056         pi->xact_addr_filt = ret;
3057         return 0;
3058 }
3059
3060 #ifdef CONFIG_NET_POLL_CONTROLLER
3061 static void cxgb_netpoll(struct net_device *dev)
3062 {
3063         struct port_info *pi = netdev_priv(dev);
3064         struct adapter *adap = pi->adapter;
3065
3066         if (adap->flags & USING_MSIX) {
3067                 int i;
3068                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3069
3070                 for (i = pi->nqsets; i; i--, rx++)
3071                         t4_sge_intr_msix(0, &rx->rspq);
3072         } else
3073                 t4_intr_handler(adap)(0, adap);
3074 }
3075 #endif
3076
3077 static const struct net_device_ops cxgb4_netdev_ops = {
3078         .ndo_open             = cxgb_open,
3079         .ndo_stop             = cxgb_close,
3080         .ndo_start_xmit       = t4_eth_xmit,
3081         .ndo_select_queue     = cxgb_select_queue,
3082         .ndo_get_stats64      = cxgb_get_stats,
3083         .ndo_set_rx_mode      = cxgb_set_rxmode,
3084         .ndo_set_mac_address  = cxgb_set_mac_addr,
3085         .ndo_set_features     = cxgb_set_features,
3086         .ndo_validate_addr    = eth_validate_addr,
3087         .ndo_do_ioctl         = cxgb_ioctl,
3088         .ndo_change_mtu       = cxgb_change_mtu,
3089 #ifdef CONFIG_NET_POLL_CONTROLLER
3090         .ndo_poll_controller  = cxgb_netpoll,
3091 #endif
3092 #ifdef CONFIG_CHELSIO_T4_FCOE
3093         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3094         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3095 #endif /* CONFIG_CHELSIO_T4_FCOE */
3096 #ifdef CONFIG_NET_RX_BUSY_POLL
3097         .ndo_busy_poll        = cxgb_busy_poll,
3098 #endif
3099
3100 };
3101
3102 void t4_fatal_err(struct adapter *adap)
3103 {
3104         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3105         t4_intr_disable(adap);
3106         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3107 }
3108
3109 static void setup_memwin(struct adapter *adap)
3110 {
3111         u32 nic_win_base = t4_get_util_window(adap);
3112
3113         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3114 }
3115
3116 static void setup_memwin_rdma(struct adapter *adap)
3117 {
3118         if (adap->vres.ocq.size) {
3119                 u32 start;
3120                 unsigned int sz_kb;
3121
3122                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3123                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3124                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3125                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3126                 t4_write_reg(adap,
3127                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3128                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3129                 t4_write_reg(adap,
3130                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3131                              adap->vres.ocq.start);
3132                 t4_read_reg(adap,
3133                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3134         }
3135 }
3136
3137 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3138 {
3139         u32 v;
3140         int ret;
3141
3142         /* get device capabilities */
3143         memset(c, 0, sizeof(*c));
3144         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3145                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3146         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3147         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3148         if (ret < 0)
3149                 return ret;
3150
3151         /* select capabilities we'll be using */
3152         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3153                 if (!vf_acls)
3154                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3155                 else
3156                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3157         } else if (vf_acls) {
3158                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3159                 return ret;
3160         }
3161         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3162                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3163         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3164         if (ret < 0)
3165                 return ret;
3166
3167         ret = t4_config_glbl_rss(adap, adap->pf,
3168                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3169                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3170                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3171         if (ret < 0)
3172                 return ret;
3173
3174         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3175                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3176                           FW_CMD_CAP_PF);
3177         if (ret < 0)
3178                 return ret;
3179
3180         t4_sge_init(adap);
3181
3182         /* tweak some settings */
3183         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3184         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3185         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3186         v = t4_read_reg(adap, TP_PIO_DATA_A);
3187         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3188
3189         /* first 4 Tx modulation queues point to consecutive Tx channels */
3190         adap->params.tp.tx_modq_map = 0xE4;
3191         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3192                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3193
3194         /* associate each Tx modulation queue with consecutive Tx channels */
3195         v = 0x84218421;
3196         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3197                           &v, 1, TP_TX_SCHED_HDR_A);
3198         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3199                           &v, 1, TP_TX_SCHED_FIFO_A);
3200         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3201                           &v, 1, TP_TX_SCHED_PCMD_A);
3202
3203 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3204         if (is_offload(adap)) {
3205                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3206                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3208                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3209                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3210                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3211                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3213                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3214                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3215         }
3216
3217         /* get basic stuff going */
3218         return t4_early_init(adap, adap->pf);
3219 }
3220
3221 /*
3222  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3223  */
3224 #define MAX_ATIDS 8192U
3225
3226 /*
3227  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3228  *
3229  * If the firmware we're dealing with has Configuration File support, then
3230  * we use that to perform all configuration
3231  */
3232
3233 /*
3234  * Tweak configuration based on module parameters, etc.  Most of these have
3235  * defaults assigned to them by Firmware Configuration Files (if we're using
3236  * them) but need to be explicitly set if we're using hard-coded
3237  * initialization.  But even in the case of using Firmware Configuration
3238  * Files, we'd like to expose the ability to change these via module
3239  * parameters so these are essentially common tweaks/settings for
3240  * Configuration Files and hard-coded initialization ...
3241  */
3242 static int adap_init0_tweaks(struct adapter *adapter)
3243 {
3244         /*
3245          * Fix up various Host-Dependent Parameters like Page Size, Cache
3246          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3247          * 64B Cache Line Size ...
3248          */
3249         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3250
3251         /*
3252          * Process module parameters which affect early initialization.
3253          */
3254         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3255                 dev_err(&adapter->pdev->dev,
3256                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3257                         rx_dma_offset);
3258                 rx_dma_offset = 2;
3259         }
3260         t4_set_reg_field(adapter, SGE_CONTROL_A,
3261                          PKTSHIFT_V(PKTSHIFT_M),
3262                          PKTSHIFT_V(rx_dma_offset));
3263
3264         /*
3265          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3266          * adds the pseudo header itself.
3267          */
3268         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3269                                CSUM_HAS_PSEUDO_HDR_F, 0);
3270
3271         return 0;
3272 }
3273
3274 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3275  * unto themselves and they contain their own firmware to perform their
3276  * tasks ...
3277  */
3278 static int phy_aq1202_version(const u8 *phy_fw_data,
3279                               size_t phy_fw_size)
3280 {
3281         int offset;
3282
3283         /* At offset 0x8 you're looking for the primary image's
3284          * starting offset which is 3 Bytes wide
3285          *
3286          * At offset 0xa of the primary image, you look for the offset
3287          * of the DRAM segment which is 3 Bytes wide.
3288          *
3289          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3290          * wide
3291          */
3292         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3293         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3294         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3295
3296         offset = le24(phy_fw_data + 0x8) << 12;
3297         offset = le24(phy_fw_data + offset + 0xa);
3298         return be16(phy_fw_data + offset + 0x27e);
3299
3300         #undef be16
3301         #undef le16
3302         #undef le24
3303 }
3304
3305 static struct info_10gbt_phy_fw {
3306         unsigned int phy_fw_id;         /* PCI Device ID */
3307         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3308         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3309         int phy_flash;                  /* Has FLASH for PHY Firmware */
3310 } phy_info_array[] = {
3311         {
3312                 PHY_AQ1202_DEVICEID,
3313                 PHY_AQ1202_FIRMWARE,
3314                 phy_aq1202_version,
3315                 1,
3316         },
3317         {
3318                 PHY_BCM84834_DEVICEID,
3319                 PHY_BCM84834_FIRMWARE,
3320                 NULL,
3321                 0,
3322         },
3323         { 0, NULL, NULL },
3324 };
3325
3326 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3327 {
3328         int i;
3329
3330         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3331                 if (phy_info_array[i].phy_fw_id == devid)
3332                         return &phy_info_array[i];
3333         }
3334         return NULL;
3335 }
3336
3337 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3338  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3339  * we return a negative error number.  If we transfer new firmware we return 1
3340  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3341  */
3342 static int adap_init0_phy(struct adapter *adap)
3343 {
3344         const struct firmware *phyf;
3345         int ret;
3346         struct info_10gbt_phy_fw *phy_info;
3347
3348         /* Use the device ID to determine which PHY file to flash.
3349          */
3350         phy_info = find_phy_info(adap->pdev->device);
3351         if (!phy_info) {
3352                 dev_warn(adap->pdev_dev,
3353                          "No PHY Firmware file found for this PHY\n");
3354                 return -EOPNOTSUPP;
3355         }
3356
3357         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3358          * use that. The adapter firmware provides us with a memory buffer
3359          * where we can load a PHY firmware file from the host if we want to
3360          * override the PHY firmware File in flash.
3361          */
3362         ret = reject_firmware_direct(&phyf, phy_info->phy_fw_file,
3363                                       adap->pdev_dev);
3364         if (ret < 0) {
3365                 /* For adapters without FLASH attached to PHY for their
3366                  * firmware, it's obviously a fatal error if we can't get the
3367                  * firmware to the adapter.  For adapters with PHY firmware
3368                  * FLASH storage, it's worth a warning if we can't find the
3369                  * PHY Firmware but we'll neuter the error ...
3370                  */
3371                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3372                         "/lib/firmware/%s, error %d\n",
3373                         phy_info->phy_fw_file, -ret);
3374                 if (phy_info->phy_flash) {
3375                         int cur_phy_fw_ver = 0;
3376
3377                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3378                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3379                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3380                         ret = 0;
3381                 }
3382
3383                 return ret;
3384         }
3385
3386         /* Load PHY Firmware onto adapter.
3387          */
3388         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3389                              phy_info->phy_fw_version,
3390                              (u8 *)phyf->data, phyf->size);
3391         if (ret < 0)
3392                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3393                         -ret);
3394         else if (ret > 0) {
3395                 int new_phy_fw_ver = 0;
3396
3397                 if (phy_info->phy_fw_version)
3398                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3399                                                                   phyf->size);
3400                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3401                          "Firmware /lib/firmware/%s, version %#x\n",
3402                          phy_info->phy_fw_file, new_phy_fw_ver);
3403         }
3404
3405         release_firmware(phyf);
3406
3407         return ret;
3408 }
3409
3410 /*
3411  * Attempt to initialize the adapter via a Firmware Configuration File.
3412  */
3413 static int adap_init0_config(struct adapter *adapter, int reset)
3414 {
3415         struct fw_caps_config_cmd caps_cmd;
3416         const struct firmware *cf;
3417         unsigned long mtype = 0, maddr = 0;
3418         u32 finiver, finicsum, cfcsum;
3419         int ret;
3420         int config_issued = 0;
3421         char *fw_config_file, fw_config_file_path[256];
3422         char *config_name = NULL;
3423
3424         /*
3425          * Reset device if necessary.
3426          */
3427         if (reset) {
3428                 ret = t4_fw_reset(adapter, adapter->mbox,
3429                                   PIORSTMODE_F | PIORST_F);
3430                 if (ret < 0)
3431                         goto bye;
3432         }
3433
3434         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3435          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3436          * to be performed after any global adapter RESET above since some
3437          * PHYs only have local RAM copies of the PHY firmware.
3438          */
3439         if (is_10gbt_device(adapter->pdev->device)) {
3440                 ret = adap_init0_phy(adapter);
3441                 if (ret < 0)
3442                         goto bye;
3443         }
3444         /*
3445          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3446          * then use that.  Otherwise, use the configuration file stored
3447          * in the adapter flash ...
3448          */
3449         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3450         case CHELSIO_T4:
3451                 fw_config_file = FW4_CFNAME;
3452                 break;
3453         case CHELSIO_T5:
3454                 fw_config_file = FW5_CFNAME;
3455                 break;
3456         case CHELSIO_T6:
3457                 fw_config_file = FW6_CFNAME;
3458                 break;
3459         default:
3460                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3461                        adapter->pdev->device);
3462                 ret = -EINVAL;
3463                 goto bye;
3464         }
3465
3466         ret = reject_firmware(&cf, fw_config_file, adapter->pdev_dev);
3467         if (ret < 0) {
3468                 config_name = "On FLASH";
3469                 mtype = FW_MEMTYPE_CF_FLASH;
3470                 maddr = t4_flash_cfg_addr(adapter);
3471         } else {
3472                 u32 params[7], val[7];
3473
3474                 sprintf(fw_config_file_path,
3475                         "/lib/firmware/%s", fw_config_file);
3476                 config_name = fw_config_file_path;
3477
3478                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3479                         ret = -ENOMEM;
3480                 else {
3481                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3482                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3483                         ret = t4_query_params(adapter, adapter->mbox,
3484                                               adapter->pf, 0, 1, params, val);
3485                         if (ret == 0) {
3486                                 /*
3487                                  * For t4_memory_rw() below addresses and
3488                                  * sizes have to be in terms of multiples of 4
3489                                  * bytes.  So, if the Configuration File isn't
3490                                  * a multiple of 4 bytes in length we'll have
3491                                  * to write that out separately since we can't
3492                                  * guarantee that the bytes following the
3493                                  * residual byte in the buffer returned by
3494                                  * reject_firmware() are zeroed out ...
3495                                  */
3496                                 size_t resid = cf->size & 0x3;
3497                                 size_t size = cf->size & ~0x3;
3498                                 __be32 *data = (__be32 *)cf->data;
3499
3500                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3501                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3502
3503                                 spin_lock(&adapter->win0_lock);
3504                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3505                                                    size, data, T4_MEMORY_WRITE);
3506                                 if (ret == 0 && resid != 0) {
3507                                         union {
3508                                                 __be32 word;
3509                                                 char buf[4];
3510                                         } last;
3511                                         int i;
3512
3513                                         last.word = data[size >> 2];
3514                                         for (i = resid; i < 4; i++)
3515                                                 last.buf[i] = 0;
3516                                         ret = t4_memory_rw(adapter, 0, mtype,
3517                                                            maddr + size,
3518                                                            4, &last.word,
3519                                                            T4_MEMORY_WRITE);
3520                                 }
3521                                 spin_unlock(&adapter->win0_lock);
3522                         }
3523                 }
3524
3525                 release_firmware(cf);
3526                 if (ret)
3527                         goto bye;
3528         }
3529
3530         /*
3531          * Issue a Capability Configuration command to the firmware to get it
3532          * to parse the Configuration File.  We don't use t4_fw_config_file()
3533          * because we want the ability to modify various features after we've
3534          * processed the configuration file ...
3535          */
3536         memset(&caps_cmd, 0, sizeof(caps_cmd));
3537         caps_cmd.op_to_write =
3538                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3539                       FW_CMD_REQUEST_F |
3540                       FW_CMD_READ_F);
3541         caps_cmd.cfvalid_to_len16 =
3542                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3543                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3544                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3545                       FW_LEN16(caps_cmd));
3546         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3547                          &caps_cmd);
3548
3549         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3550          * Configuration File in FLASH), our last gasp effort is to use the
3551          * Firmware Configuration File which is embedded in the firmware.  A
3552          * very few early versions of the firmware didn't have one embedded
3553          * but we can ignore those.
3554          */
3555         if (ret == -ENOENT) {
3556                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3557                 caps_cmd.op_to_write =
3558                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3559                                         FW_CMD_REQUEST_F |
3560                                         FW_CMD_READ_F);
3561                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3562                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3563                                 sizeof(caps_cmd), &caps_cmd);
3564                 config_name = "Firmware Default";
3565         }
3566
3567         config_issued = 1;
3568         if (ret < 0)
3569                 goto bye;
3570
3571         finiver = ntohl(caps_cmd.finiver);
3572         finicsum = ntohl(caps_cmd.finicsum);
3573         cfcsum = ntohl(caps_cmd.cfcsum);
3574         if (finicsum != cfcsum)
3575                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3576                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3577                          finicsum, cfcsum);
3578
3579         /*
3580          * And now tell the firmware to use the configuration we just loaded.
3581          */
3582         caps_cmd.op_to_write =
3583                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3584                       FW_CMD_REQUEST_F |
3585                       FW_CMD_WRITE_F);
3586         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3587         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3588                          NULL);
3589         if (ret < 0)
3590                 goto bye;
3591
3592         /*
3593          * Tweak configuration based on system architecture, module
3594          * parameters, etc.
3595          */
3596         ret = adap_init0_tweaks(adapter);
3597         if (ret < 0)
3598                 goto bye;
3599
3600         /*
3601          * And finally tell the firmware to initialize itself using the
3602          * parameters from the Configuration File.
3603          */
3604         ret = t4_fw_initialize(adapter, adapter->mbox);
3605         if (ret < 0)
3606                 goto bye;
3607
3608         /* Emit Firmware Configuration File information and return
3609          * successfully.
3610          */
3611         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3612                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3613                  config_name, finiver, cfcsum);
3614         return 0;
3615
3616         /*
3617          * Something bad happened.  Return the error ...  (If the "error"
3618          * is that there's no Configuration File on the adapter we don't
3619          * want to issue a warning since this is fairly common.)
3620          */
3621 bye:
3622         if (config_issued && ret != -ENOENT)
3623                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3624                          config_name, -ret);
3625         return ret;
3626 }
3627
3628 static struct fw_info fw_info_array[] = {
3629         {
3630                 .chip = CHELSIO_T4,
3631                 .fs_name = FW4_CFNAME,
3632                 .fw_mod_name = FW4_FNAME,
3633                 .fw_hdr = {
3634                         .chip = FW_HDR_CHIP_T4,
3635                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3636                         .intfver_nic = FW_INTFVER(T4, NIC),
3637                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3638                         .intfver_ri = FW_INTFVER(T4, RI),
3639                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3640                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3641                 },
3642         }, {
3643                 .chip = CHELSIO_T5,
3644                 .fs_name = FW5_CFNAME,
3645                 .fw_mod_name = FW5_FNAME,
3646                 .fw_hdr = {
3647                         .chip = FW_HDR_CHIP_T5,
3648                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3649                         .intfver_nic = FW_INTFVER(T5, NIC),
3650                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3651                         .intfver_ri = FW_INTFVER(T5, RI),
3652                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3653                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3654                 },
3655         }, {
3656                 .chip = CHELSIO_T6,
3657                 .fs_name = FW6_CFNAME,
3658                 .fw_mod_name = FW6_FNAME,
3659                 .fw_hdr = {
3660                         .chip = FW_HDR_CHIP_T6,
3661                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3662                         .intfver_nic = FW_INTFVER(T6, NIC),
3663                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3664                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3665                         .intfver_ri = FW_INTFVER(T6, RI),
3666                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3667                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3668                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3669                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3670                 },
3671         }
3672
3673 };
3674
3675 static struct fw_info *find_fw_info(int chip)
3676 {
3677         int i;
3678
3679         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3680                 if (fw_info_array[i].chip == chip)
3681                         return &fw_info_array[i];
3682         }
3683         return NULL;
3684 }
3685
3686 /*
3687  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3688  */
3689 static int adap_init0(struct adapter *adap)
3690 {
3691         int ret;
3692         u32 v, port_vec;
3693         enum dev_state state;
3694         u32 params[7], val[7];
3695         struct fw_caps_config_cmd caps_cmd;
3696         int reset = 1;
3697
3698         /* Grab Firmware Device Log parameters as early as possible so we have
3699          * access to it for debugging, etc.
3700          */
3701         ret = t4_init_devlog_params(adap);
3702         if (ret < 0)
3703                 return ret;
3704
3705         /* Contact FW, advertising Master capability */
3706         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3707         if (ret < 0) {
3708                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3709                         ret);
3710                 return ret;
3711         }
3712         if (ret == adap->mbox)
3713                 adap->flags |= MASTER_PF;
3714
3715         /*
3716          * If we're the Master PF Driver and the device is uninitialized,
3717          * then let's consider upgrading the firmware ...  (We always want
3718          * to check the firmware version number in order to A. get it for
3719          * later reporting and B. to warn if the currently loaded firmware
3720          * is excessively mismatched relative to the driver.)
3721          */
3722         t4_get_fw_version(adap, &adap->params.fw_vers);
3723         t4_get_tp_version(adap, &adap->params.tp_vers);
3724         ret = t4_check_fw_version(adap);
3725         /* If firmware is too old (not supported by driver) force an update. */
3726         if (ret)
3727                 state = DEV_STATE_UNINIT;
3728         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3729                 struct fw_info *fw_info;
3730                 struct fw_hdr *card_fw;
3731                 const struct firmware *fw;
3732                 const u8 *fw_data = NULL;
3733                 unsigned int fw_size = 0;
3734
3735                 /* This is the firmware whose headers the driver was compiled
3736                  * against
3737                  */
3738                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3739                 if (fw_info == NULL) {
3740                         dev_err(adap->pdev_dev,
3741                                 "unable to get firmware info for chip %d.\n",
3742                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3743                         return -EINVAL;
3744                 }
3745
3746                 /* allocate memory to read the header of the firmware on the
3747                  * card
3748                  */
3749                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3750
3751                 /* Get FW from from /lib/firmware/ */
3752                 ret = reject_firmware(&fw, fw_info->fw_mod_name,
3753                                        adap->pdev_dev);
3754                 if (ret < 0) {
3755                         dev_err(adap->pdev_dev,
3756                                 "unable to load firmware image %s, error %d\n",
3757                                 fw_info->fw_mod_name, ret);
3758                 } else {
3759                         fw_data = fw->data;
3760                         fw_size = fw->size;
3761                 }
3762
3763                 /* upgrade FW logic */
3764                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3765                                  state, &reset);
3766
3767                 /* Cleaning up */
3768                 release_firmware(fw);
3769                 t4_free_mem(card_fw);
3770
3771                 if (ret < 0)
3772                         goto bye;
3773         }
3774
3775         /*
3776          * Grab VPD parameters.  This should be done after we establish a
3777          * connection to the firmware since some of the VPD parameters
3778          * (notably the Core Clock frequency) are retrieved via requests to
3779          * the firmware.  On the other hand, we need these fairly early on
3780          * so we do this right after getting ahold of the firmware.
3781          */
3782         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3783         if (ret < 0)
3784                 goto bye;
3785
3786         /*
3787          * Find out what ports are available to us.  Note that we need to do
3788          * this before calling adap_init0_no_config() since it needs nports
3789          * and portvec ...
3790          */
3791         v =
3792             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3793             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3794         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3795         if (ret < 0)
3796                 goto bye;
3797
3798         adap->params.nports = hweight32(port_vec);
3799         adap->params.portvec = port_vec;
3800
3801         /* If the firmware is initialized already, emit a simply note to that
3802          * effect. Otherwise, it's time to try initializing the adapter.
3803          */
3804         if (state == DEV_STATE_INIT) {
3805                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3806                          "Adapter already initialized\n",
3807                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3808         } else {
3809                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3810                          "Initializing adapter\n");
3811
3812                 /* Find out whether we're dealing with a version of the
3813                  * firmware which has configuration file support.
3814                  */
3815                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3816                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3817                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3818                                       params, val);
3819
3820                 /* If the firmware doesn't support Configuration Files,
3821                  * return an error.
3822                  */
3823                 if (ret < 0) {
3824                         dev_err(adap->pdev_dev, "firmware doesn't support "
3825                                 "Firmware Configuration Files\n");
3826                         goto bye;
3827                 }
3828
3829                 /* The firmware provides us with a memory buffer where we can
3830                  * load a Configuration File from the host if we want to
3831                  * override the Configuration File in flash.
3832                  */
3833                 ret = adap_init0_config(adap, reset);
3834                 if (ret == -ENOENT) {
3835                         dev_err(adap->pdev_dev, "no Configuration File "
3836                                 "present on adapter.\n");
3837                         goto bye;
3838                 }
3839                 if (ret < 0) {
3840                         dev_err(adap->pdev_dev, "could not initialize "
3841                                 "adapter, error %d\n", -ret);
3842                         goto bye;
3843                 }
3844         }
3845
3846         /* Give the SGE code a chance to pull in anything that it needs ...
3847          * Note that this must be called after we retrieve our VPD parameters
3848          * in order to know how to convert core ticks to seconds, etc.
3849          */
3850         ret = t4_sge_init(adap);
3851         if (ret < 0)
3852                 goto bye;
3853
3854         if (is_bypass_device(adap->pdev->device))
3855                 adap->params.bypass = 1;
3856
3857         /*
3858          * Grab some of our basic fundamental operating parameters.
3859          */
3860 #define FW_PARAM_DEV(param) \
3861         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3862         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3863
3864 #define FW_PARAM_PFVF(param) \
3865         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3866         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3867         FW_PARAMS_PARAM_Y_V(0) | \
3868         FW_PARAMS_PARAM_Z_V(0)
3869
3870         params[0] = FW_PARAM_PFVF(EQ_START);
3871         params[1] = FW_PARAM_PFVF(L2T_START);
3872         params[2] = FW_PARAM_PFVF(L2T_END);
3873         params[3] = FW_PARAM_PFVF(FILTER_START);
3874         params[4] = FW_PARAM_PFVF(FILTER_END);
3875         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3876         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3877         if (ret < 0)
3878                 goto bye;
3879         adap->sge.egr_start = val[0];
3880         adap->l2t_start = val[1];
3881         adap->l2t_end = val[2];
3882         adap->tids.ftid_base = val[3];
3883         adap->tids.nftids = val[4] - val[3] + 1;
3884         adap->sge.ingr_start = val[5];
3885
3886         /* qids (ingress/egress) returned from firmware can be anywhere
3887          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3888          * Hence driver needs to allocate memory for this range to
3889          * store the queue info. Get the highest IQFLINT/EQ index returned
3890          * in FW_EQ_*_CMD.alloc command.
3891          */
3892         params[0] = FW_PARAM_PFVF(EQ_END);
3893         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3894         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3895         if (ret < 0)
3896                 goto bye;
3897         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3898         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3899
3900         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3901                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3902         if (!adap->sge.egr_map) {
3903                 ret = -ENOMEM;
3904                 goto bye;
3905         }
3906
3907         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3908                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3909         if (!adap->sge.ingr_map) {
3910                 ret = -ENOMEM;
3911                 goto bye;
3912         }
3913
3914         /* Allocate the memory for the vaious egress queue bitmaps
3915          * ie starving_fl, txq_maperr and blocked_fl.
3916          */
3917         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3918                                         sizeof(long), GFP_KERNEL);
3919         if (!adap->sge.starving_fl) {
3920                 ret = -ENOMEM;
3921                 goto bye;
3922         }
3923
3924         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3925                                        sizeof(long), GFP_KERNEL);
3926         if (!adap->sge.txq_maperr) {
3927                 ret = -ENOMEM;
3928                 goto bye;
3929         }
3930
3931 #ifdef CONFIG_DEBUG_FS
3932         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3933                                        sizeof(long), GFP_KERNEL);
3934         if (!adap->sge.blocked_fl) {
3935                 ret = -ENOMEM;
3936                 goto bye;
3937         }
3938 #endif
3939
3940         params[0] = FW_PARAM_PFVF(CLIP_START);
3941         params[1] = FW_PARAM_PFVF(CLIP_END);
3942         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3943         if (ret < 0)
3944                 goto bye;
3945         adap->clipt_start = val[0];
3946         adap->clipt_end = val[1];
3947
3948         /* query params related to active filter region */
3949         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3950         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3951         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3952         /* If Active filter size is set we enable establishing
3953          * offload connection through firmware work request
3954          */
3955         if ((val[0] != val[1]) && (ret >= 0)) {
3956                 adap->flags |= FW_OFLD_CONN;
3957                 adap->tids.aftid_base = val[0];
3958                 adap->tids.aftid_end = val[1];
3959         }
3960
3961         /* If we're running on newer firmware, let it know that we're
3962          * prepared to deal with encapsulated CPL messages.  Older
3963          * firmware won't understand this and we'll just get
3964          * unencapsulated messages ...
3965          */
3966         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3967         val[0] = 1;
3968         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3969
3970         /*
3971          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3972          * capability.  Earlier versions of the firmware didn't have the
3973          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3974          * permission to use ULPTX MEMWRITE DSGL.
3975          */
3976         if (is_t4(adap->params.chip)) {
3977                 adap->params.ulptx_memwrite_dsgl = false;
3978         } else {
3979                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3980                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3981                                       1, params, val);
3982                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3983         }
3984
3985         /*
3986          * Get device capabilities so we can determine what resources we need
3987          * to manage.
3988          */
3989         memset(&caps_cmd, 0, sizeof(caps_cmd));
3990         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3991                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3992         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3993         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3994                          &caps_cmd);
3995         if (ret < 0)
3996                 goto bye;
3997
3998         if (caps_cmd.ofldcaps) {
3999                 /* query offload-related parameters */
4000                 params[0] = FW_PARAM_DEV(NTID);
4001                 params[1] = FW_PARAM_PFVF(SERVER_START);
4002                 params[2] = FW_PARAM_PFVF(SERVER_END);
4003                 params[3] = FW_PARAM_PFVF(TDDP_START);
4004                 params[4] = FW_PARAM_PFVF(TDDP_END);
4005                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4006                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4007                                       params, val);
4008                 if (ret < 0)
4009                         goto bye;
4010                 adap->tids.ntids = val[0];
4011                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4012                 adap->tids.stid_base = val[1];
4013                 adap->tids.nstids = val[2] - val[1] + 1;
4014                 /*
4015                  * Setup server filter region. Divide the available filter
4016                  * region into two parts. Regular filters get 1/3rd and server
4017                  * filters get 2/3rd part. This is only enabled if workarond
4018                  * path is enabled.
4019                  * 1. For regular filters.
4020                  * 2. Server filter: This are special filters which are used
4021                  * to redirect SYN packets to offload queue.
4022                  */
4023                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4024                         adap->tids.sftid_base = adap->tids.ftid_base +
4025                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4026                         adap->tids.nsftids = adap->tids.nftids -
4027                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4028                         adap->tids.nftids = adap->tids.sftid_base -
4029                                                 adap->tids.ftid_base;
4030                 }
4031                 adap->vres.ddp.start = val[3];
4032                 adap->vres.ddp.size = val[4] - val[3] + 1;
4033                 adap->params.ofldq_wr_cred = val[5];
4034
4035                 adap->params.offload = 1;
4036         }
4037         if (caps_cmd.rdmacaps) {
4038                 params[0] = FW_PARAM_PFVF(STAG_START);
4039                 params[1] = FW_PARAM_PFVF(STAG_END);
4040                 params[2] = FW_PARAM_PFVF(RQ_START);
4041                 params[3] = FW_PARAM_PFVF(RQ_END);
4042                 params[4] = FW_PARAM_PFVF(PBL_START);
4043                 params[5] = FW_PARAM_PFVF(PBL_END);
4044                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4045                                       params, val);
4046                 if (ret < 0)
4047                         goto bye;
4048                 adap->vres.stag.start = val[0];
4049                 adap->vres.stag.size = val[1] - val[0] + 1;
4050                 adap->vres.rq.start = val[2];
4051                 adap->vres.rq.size = val[3] - val[2] + 1;
4052                 adap->vres.pbl.start = val[4];
4053                 adap->vres.pbl.size = val[5] - val[4] + 1;
4054
4055                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4056                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4057                 params[2] = FW_PARAM_PFVF(CQ_START);
4058                 params[3] = FW_PARAM_PFVF(CQ_END);
4059                 params[4] = FW_PARAM_PFVF(OCQ_START);
4060                 params[5] = FW_PARAM_PFVF(OCQ_END);
4061                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4062                                       val);
4063                 if (ret < 0)
4064                         goto bye;
4065                 adap->vres.qp.start = val[0];
4066                 adap->vres.qp.size = val[1] - val[0] + 1;
4067                 adap->vres.cq.start = val[2];
4068                 adap->vres.cq.size = val[3] - val[2] + 1;
4069                 adap->vres.ocq.start = val[4];
4070                 adap->vres.ocq.size = val[5] - val[4] + 1;
4071
4072                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4073                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4074                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4075                                       val);
4076                 if (ret < 0) {
4077                         adap->params.max_ordird_qp = 8;
4078                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4079                         ret = 0;
4080                 } else {
4081                         adap->params.max_ordird_qp = val[0];
4082                         adap->params.max_ird_adapter = val[1];
4083                 }
4084                 dev_info(adap->pdev_dev,
4085                          "max_ordird_qp %d max_ird_adapter %d\n",
4086                          adap->params.max_ordird_qp,
4087                          adap->params.max_ird_adapter);
4088         }
4089         if (caps_cmd.iscsicaps) {
4090                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4091                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4092                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4093                                       params, val);
4094                 if (ret < 0)
4095                         goto bye;
4096                 adap->vres.iscsi.start = val[0];
4097                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4098         }
4099 #undef FW_PARAM_PFVF
4100 #undef FW_PARAM_DEV
4101
4102         /* The MTU/MSS Table is initialized by now, so load their values.  If
4103          * we're initializing the adapter, then we'll make any modifications
4104          * we want to the MTU/MSS Table and also initialize the congestion
4105          * parameters.
4106          */
4107         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4108         if (state != DEV_STATE_INIT) {
4109                 int i;
4110
4111                 /* The default MTU Table contains values 1492 and 1500.
4112                  * However, for TCP, it's better to have two values which are
4113                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4114                  * This allows us to have a TCP Data Payload which is a
4115                  * multiple of 8 regardless of what combination of TCP Options
4116                  * are in use (always a multiple of 4 bytes) which is
4117                  * important for performance reasons.  For instance, if no
4118                  * options are in use, then we have a 20-byte IP header and a
4119                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4120                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4121                  * which is not a multiple of 8.  So using an MSS of 1488 in
4122                  * this case results in a TCP Data Payload of 1448 bytes which
4123                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4124                  * Stamps have been negotiated, then an MTU of 1500 bytes
4125                  * results in a TCP Data Payload of 1448 bytes which, as
4126                  * above, is a multiple of 8 bytes ...
4127                  */
4128                 for (i = 0; i < NMTUS; i++)
4129                         if (adap->params.mtus[i] == 1492) {
4130                                 adap->params.mtus[i] = 1488;
4131                                 break;
4132                         }
4133
4134                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4135                              adap->params.b_wnd);
4136         }
4137         t4_init_sge_params(adap);
4138         adap->flags |= FW_OK;
4139         t4_init_tp_params(adap);
4140         return 0;
4141
4142         /*
4143          * Something bad happened.  If a command timed out or failed with EIO
4144          * FW does not operate within its spec or something catastrophic
4145          * happened to HW/FW, stop issuing commands.
4146          */
4147 bye:
4148         kfree(adap->sge.egr_map);
4149         kfree(adap->sge.ingr_map);
4150         kfree(adap->sge.starving_fl);
4151         kfree(adap->sge.txq_maperr);
4152 #ifdef CONFIG_DEBUG_FS
4153         kfree(adap->sge.blocked_fl);
4154 #endif
4155         if (ret != -ETIMEDOUT && ret != -EIO)
4156                 t4_fw_bye(adap, adap->mbox);
4157         return ret;
4158 }
4159
4160 /* EEH callbacks */
4161
4162 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4163                                          pci_channel_state_t state)
4164 {
4165         int i;
4166         struct adapter *adap = pci_get_drvdata(pdev);
4167
4168         if (!adap)
4169                 goto out;
4170
4171         rtnl_lock();
4172         adap->flags &= ~FW_OK;
4173         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4174         spin_lock(&adap->stats_lock);
4175         for_each_port(adap, i) {
4176                 struct net_device *dev = adap->port[i];
4177
4178                 netif_device_detach(dev);
4179                 netif_carrier_off(dev);
4180         }
4181         spin_unlock(&adap->stats_lock);
4182         disable_interrupts(adap);
4183         if (adap->flags & FULL_INIT_DONE)
4184                 cxgb_down(adap);
4185         rtnl_unlock();
4186         if ((adap->flags & DEV_ENABLED)) {
4187                 pci_disable_device(pdev);
4188                 adap->flags &= ~DEV_ENABLED;
4189         }
4190 out:    return state == pci_channel_io_perm_failure ?
4191                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4192 }
4193
4194 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4195 {
4196         int i, ret;
4197         struct fw_caps_config_cmd c;
4198         struct adapter *adap = pci_get_drvdata(pdev);
4199
4200         if (!adap) {
4201                 pci_restore_state(pdev);
4202                 pci_save_state(pdev);
4203                 return PCI_ERS_RESULT_RECOVERED;
4204         }
4205
4206         if (!(adap->flags & DEV_ENABLED)) {
4207                 if (pci_enable_device(pdev)) {
4208                         dev_err(&pdev->dev, "Cannot reenable PCI "
4209                                             "device after reset\n");
4210                         return PCI_ERS_RESULT_DISCONNECT;
4211                 }
4212                 adap->flags |= DEV_ENABLED;
4213         }
4214
4215         pci_set_master(pdev);
4216         pci_restore_state(pdev);
4217         pci_save_state(pdev);
4218         pci_cleanup_aer_uncorrect_error_status(pdev);
4219
4220         if (t4_wait_dev_ready(adap->regs) < 0)
4221                 return PCI_ERS_RESULT_DISCONNECT;
4222         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4223                 return PCI_ERS_RESULT_DISCONNECT;
4224         adap->flags |= FW_OK;
4225         if (adap_init1(adap, &c))
4226                 return PCI_ERS_RESULT_DISCONNECT;
4227
4228         for_each_port(adap, i) {
4229                 struct port_info *p = adap2pinfo(adap, i);
4230
4231                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4232                                   NULL, NULL);
4233                 if (ret < 0)
4234                         return PCI_ERS_RESULT_DISCONNECT;
4235                 p->viid = ret;
4236                 p->xact_addr_filt = -1;
4237         }
4238
4239         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4240                      adap->params.b_wnd);
4241         setup_memwin(adap);
4242         if (cxgb_up(adap))
4243                 return PCI_ERS_RESULT_DISCONNECT;
4244         return PCI_ERS_RESULT_RECOVERED;
4245 }
4246
4247 static void eeh_resume(struct pci_dev *pdev)
4248 {
4249         int i;
4250         struct adapter *adap = pci_get_drvdata(pdev);
4251
4252         if (!adap)
4253                 return;
4254
4255         rtnl_lock();
4256         for_each_port(adap, i) {
4257                 struct net_device *dev = adap->port[i];
4258
4259                 if (netif_running(dev)) {
4260                         link_start(dev);
4261                         cxgb_set_rxmode(dev);
4262                 }
4263                 netif_device_attach(dev);
4264         }
4265         rtnl_unlock();
4266 }
4267
4268 static const struct pci_error_handlers cxgb4_eeh = {
4269         .error_detected = eeh_err_detected,
4270         .slot_reset     = eeh_slot_reset,
4271         .resume         = eeh_resume,
4272 };
4273
4274 static inline bool is_x_10g_port(const struct link_config *lc)
4275 {
4276         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4277                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4278 }
4279
4280 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4281                              unsigned int us, unsigned int cnt,
4282                              unsigned int size, unsigned int iqe_size)
4283 {
4284         q->adap = adap;
4285         cxgb4_set_rspq_intr_params(q, us, cnt);
4286         q->iqe_len = iqe_size;
4287         q->size = size;
4288 }
4289
4290 /*
4291  * Perform default configuration of DMA queues depending on the number and type
4292  * of ports we found and the number of available CPUs.  Most settings can be
4293  * modified by the admin prior to actual use.
4294  */
4295 static void cfg_queues(struct adapter *adap)
4296 {
4297         struct sge *s = &adap->sge;
4298         int i, n10g = 0, qidx = 0;
4299 #ifndef CONFIG_CHELSIO_T4_DCB
4300         int q10g = 0;
4301 #endif
4302         int ciq_size;
4303
4304         for_each_port(adap, i)
4305                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4306 #ifdef CONFIG_CHELSIO_T4_DCB
4307         /* For Data Center Bridging support we need to be able to support up
4308          * to 8 Traffic Priorities; each of which will be assigned to its
4309          * own TX Queue in order to prevent Head-Of-Line Blocking.
4310          */
4311         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4312                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4313                         MAX_ETH_QSETS, adap->params.nports * 8);
4314                 BUG_ON(1);
4315         }
4316
4317         for_each_port(adap, i) {
4318                 struct port_info *pi = adap2pinfo(adap, i);
4319
4320                 pi->first_qset = qidx;
4321                 pi->nqsets = 8;
4322                 qidx += pi->nqsets;
4323         }
4324 #else /* !CONFIG_CHELSIO_T4_DCB */
4325         /*
4326          * We default to 1 queue per non-10G port and up to # of cores queues
4327          * per 10G port.
4328          */
4329         if (n10g)
4330                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4331         if (q10g > netif_get_num_default_rss_queues())
4332                 q10g = netif_get_num_default_rss_queues();
4333
4334         for_each_port(adap, i) {
4335                 struct port_info *pi = adap2pinfo(adap, i);
4336
4337                 pi->first_qset = qidx;
4338                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4339                 qidx += pi->nqsets;
4340         }
4341 #endif /* !CONFIG_CHELSIO_T4_DCB */
4342
4343         s->ethqsets = qidx;
4344         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4345
4346         if (is_offload(adap)) {
4347                 /*
4348                  * For offload we use 1 queue/channel if all ports are up to 1G,
4349                  * otherwise we divide all available queues amongst the channels
4350                  * capped by the number of available cores.
4351                  */
4352                 if (n10g) {
4353                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4354                                   num_online_cpus());
4355                         s->ofldqsets = roundup(i, adap->params.nports);
4356                 } else
4357                         s->ofldqsets = adap->params.nports;
4358                 /* For RDMA one Rx queue per channel suffices */
4359                 s->rdmaqs = adap->params.nports;
4360                 /* Try and allow at least 1 CIQ per cpu rounding down
4361                  * to the number of ports, with a minimum of 1 per port.
4362                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4363                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4364                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4365                  */
4366                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4367                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4368                                 adap->params.nports;
4369                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4370         }
4371
4372         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4373                 struct sge_eth_rxq *r = &s->ethrxq[i];
4374
4375                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4376                 r->fl.size = 72;
4377         }
4378
4379         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4380                 s->ethtxq[i].q.size = 1024;
4381
4382         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4383                 s->ctrlq[i].q.size = 512;
4384
4385         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4386                 s->ofldtxq[i].q.size = 1024;
4387
4388         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4389                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4390
4391                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4392                 r->rspq.uld = CXGB4_ULD_ISCSI;
4393                 r->fl.size = 72;
4394         }
4395
4396         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4397                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4398
4399                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4400                 r->rspq.uld = CXGB4_ULD_RDMA;
4401                 r->fl.size = 72;
4402         }
4403
4404         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4405         if (ciq_size > SGE_MAX_IQ_SIZE) {
4406                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4407                 ciq_size = SGE_MAX_IQ_SIZE;
4408         }
4409
4410         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4411                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4412
4413                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4414                 r->rspq.uld = CXGB4_ULD_RDMA;
4415         }
4416
4417         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4418         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4419 }
4420
4421 /*
4422  * Reduce the number of Ethernet queues across all ports to at most n.
4423  * n provides at least one queue per port.
4424  */
4425 static void reduce_ethqs(struct adapter *adap, int n)
4426 {
4427         int i;
4428         struct port_info *pi;
4429
4430         while (n < adap->sge.ethqsets)
4431                 for_each_port(adap, i) {
4432                         pi = adap2pinfo(adap, i);
4433                         if (pi->nqsets > 1) {
4434                                 pi->nqsets--;
4435                                 adap->sge.ethqsets--;
4436                                 if (adap->sge.ethqsets <= n)
4437                                         break;
4438                         }
4439                 }
4440
4441         n = 0;
4442         for_each_port(adap, i) {
4443                 pi = adap2pinfo(adap, i);
4444                 pi->first_qset = n;
4445                 n += pi->nqsets;
4446         }
4447 }
4448
4449 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4450 #define EXTRA_VECS 2
4451
4452 static int enable_msix(struct adapter *adap)
4453 {
4454         int ofld_need = 0;
4455         int i, want, need, allocated;
4456         struct sge *s = &adap->sge;
4457         unsigned int nchan = adap->params.nports;
4458         struct msix_entry *entries;
4459
4460         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4461                           GFP_KERNEL);
4462         if (!entries)
4463                 return -ENOMEM;
4464
4465         for (i = 0; i < MAX_INGQ + 1; ++i)
4466                 entries[i].entry = i;
4467
4468         want = s->max_ethqsets + EXTRA_VECS;
4469         if (is_offload(adap)) {
4470                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4471                 /* need nchan for each possible ULD */
4472                 ofld_need = 3 * nchan;
4473         }
4474 #ifdef CONFIG_CHELSIO_T4_DCB
4475         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4476          * each port.
4477          */
4478         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4479 #else
4480         need = adap->params.nports + EXTRA_VECS + ofld_need;
4481 #endif
4482         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4483         if (allocated < 0) {
4484                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4485                          " not using MSI-X\n");
4486                 kfree(entries);
4487                 return allocated;
4488         }
4489
4490         /* Distribute available vectors to the various queue groups.
4491          * Every group gets its minimum requirement and NIC gets top
4492          * priority for leftovers.
4493          */
4494         i = allocated - EXTRA_VECS - ofld_need;
4495         if (i < s->max_ethqsets) {
4496                 s->max_ethqsets = i;
4497                 if (i < s->ethqsets)
4498                         reduce_ethqs(adap, i);
4499         }
4500         if (is_offload(adap)) {
4501                 if (allocated < want) {
4502                         s->rdmaqs = nchan;
4503                         s->rdmaciqs = nchan;
4504                 }
4505
4506                 /* leftovers go to OFLD */
4507                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4508                     s->rdmaqs - s->rdmaciqs;
4509                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4510         }
4511         for (i = 0; i < allocated; ++i)
4512                 adap->msix_info[i].vec = entries[i].vector;
4513         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4514                  "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4515                  allocated, s->max_ethqsets, s->ofldqsets, s->rdmaqs,
4516                  s->rdmaciqs);
4517
4518         kfree(entries);
4519         return 0;
4520 }
4521
4522 #undef EXTRA_VECS
4523
4524 static int init_rss(struct adapter *adap)
4525 {
4526         unsigned int i;
4527         int err;
4528
4529         err = t4_init_rss_mode(adap, adap->mbox);
4530         if (err)
4531                 return err;
4532
4533         for_each_port(adap, i) {
4534                 struct port_info *pi = adap2pinfo(adap, i);
4535
4536                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4537                 if (!pi->rss)
4538                         return -ENOMEM;
4539         }
4540         return 0;
4541 }
4542
4543 static void print_port_info(const struct net_device *dev)
4544 {
4545         char buf[80];
4546         char *bufp = buf;
4547         const char *spd = "";
4548         const struct port_info *pi = netdev_priv(dev);
4549         const struct adapter *adap = pi->adapter;
4550
4551         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4552                 spd = " 2.5 GT/s";
4553         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4554                 spd = " 5 GT/s";
4555         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4556                 spd = " 8 GT/s";
4557
4558         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4559                 bufp += sprintf(bufp, "100/");
4560         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4561                 bufp += sprintf(bufp, "1000/");
4562         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4563                 bufp += sprintf(bufp, "10G/");
4564         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4565                 bufp += sprintf(bufp, "40G/");
4566         if (bufp != buf)
4567                 --bufp;
4568         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4569
4570         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4571                     adap->params.vpd.id,
4572                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4573                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4574                     (adap->flags & USING_MSIX) ? " MSI-X" :
4575                     (adap->flags & USING_MSI) ? " MSI" : "");
4576         netdev_info(dev, "S/N: %s, P/N: %s\n",
4577                     adap->params.vpd.sn, adap->params.vpd.pn);
4578 }
4579
4580 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4581 {
4582         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4583 }
4584
4585 /*
4586  * Free the following resources:
4587  * - memory used for tables
4588  * - MSI/MSI-X
4589  * - net devices
4590  * - resources FW is holding for us
4591  */
4592 static void free_some_resources(struct adapter *adapter)
4593 {
4594         unsigned int i;
4595
4596         t4_free_mem(adapter->l2t);
4597         t4_free_mem(adapter->tids.tid_tab);
4598         kfree(adapter->sge.egr_map);
4599         kfree(adapter->sge.ingr_map);
4600         kfree(adapter->sge.starving_fl);
4601         kfree(adapter->sge.txq_maperr);
4602 #ifdef CONFIG_DEBUG_FS
4603         kfree(adapter->sge.blocked_fl);
4604 #endif
4605         disable_msi(adapter);
4606
4607         for_each_port(adapter, i)
4608                 if (adapter->port[i]) {
4609                         struct port_info *pi = adap2pinfo(adapter, i);
4610
4611                         if (pi->viid != 0)
4612                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4613                                            0, pi->viid);
4614                         kfree(adap2pinfo(adapter, i)->rss);
4615                         free_netdev(adapter->port[i]);
4616                 }
4617         if (adapter->flags & FW_OK)
4618                 t4_fw_bye(adapter, adapter->pf);
4619 }
4620
4621 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4622 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4623                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4624 #define SEGMENT_SIZE 128
4625
4626 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4627 {
4628         u16 device_id;
4629
4630         /* Retrieve adapter's device ID */
4631         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4632
4633         switch (device_id >> 12) {
4634         case CHELSIO_T4:
4635                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4636         case CHELSIO_T5:
4637                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4638         case CHELSIO_T6:
4639                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4640         default:
4641                 dev_err(&pdev->dev, "Device %d is not supported\n",
4642                         device_id);
4643         }
4644         return -EINVAL;
4645 }
4646
4647 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4648 {
4649         int func, i, err, s_qpp, qpp, num_seg;
4650         struct port_info *pi;
4651         bool highdma = false;
4652         struct adapter *adapter = NULL;
4653         void __iomem *regs;
4654         u32 whoami, pl_rev;
4655         enum chip_type chip;
4656
4657         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4658
4659         err = pci_request_regions(pdev, KBUILD_MODNAME);
4660         if (err) {
4661                 /* Just info, some other driver may have claimed the device. */
4662                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4663                 return err;
4664         }
4665
4666         err = pci_enable_device(pdev);
4667         if (err) {
4668                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4669                 goto out_release_regions;
4670         }
4671
4672         regs = pci_ioremap_bar(pdev, 0);
4673         if (!regs) {
4674                 dev_err(&pdev->dev, "cannot map device registers\n");
4675                 err = -ENOMEM;
4676                 goto out_disable_device;
4677         }
4678
4679         err = t4_wait_dev_ready(regs);
4680         if (err < 0)
4681                 goto out_unmap_bar0;
4682
4683         /* We control everything through one PF */
4684         whoami = readl(regs + PL_WHOAMI_A);
4685         pl_rev = REV_G(readl(regs + PL_REV_A));
4686         chip = get_chip_type(pdev, pl_rev);
4687         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4688                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4689         if (func != ent->driver_data) {
4690                 iounmap(regs);
4691                 pci_disable_device(pdev);
4692                 pci_save_state(pdev);        /* to restore SR-IOV later */
4693                 goto sriov;
4694         }
4695
4696         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4697                 highdma = true;
4698                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4699                 if (err) {
4700                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4701                                 "coherent allocations\n");
4702                         goto out_unmap_bar0;
4703                 }
4704         } else {
4705                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4706                 if (err) {
4707                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4708                         goto out_unmap_bar0;
4709                 }
4710         }
4711
4712         pci_enable_pcie_error_reporting(pdev);
4713         enable_pcie_relaxed_ordering(pdev);
4714         pci_set_master(pdev);
4715         pci_save_state(pdev);
4716
4717         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4718         if (!adapter) {
4719                 err = -ENOMEM;
4720                 goto out_unmap_bar0;
4721         }
4722
4723         adapter->workq = create_singlethread_workqueue("cxgb4");
4724         if (!adapter->workq) {
4725                 err = -ENOMEM;
4726                 goto out_free_adapter;
4727         }
4728
4729         /* PCI device has been enabled */
4730         adapter->flags |= DEV_ENABLED;
4731
4732         adapter->regs = regs;
4733         adapter->pdev = pdev;
4734         adapter->pdev_dev = &pdev->dev;
4735         adapter->mbox = func;
4736         adapter->pf = func;
4737         adapter->msg_enable = dflt_msg_enable;
4738         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4739
4740         spin_lock_init(&adapter->stats_lock);
4741         spin_lock_init(&adapter->tid_release_lock);
4742         spin_lock_init(&adapter->win0_lock);
4743
4744         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4745         INIT_WORK(&adapter->db_full_task, process_db_full);
4746         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4747
4748         err = t4_prep_adapter(adapter);
4749         if (err)
4750                 goto out_free_adapter;
4751
4752
4753         if (!is_t4(adapter->params.chip)) {
4754                 s_qpp = (QUEUESPERPAGEPF0_S +
4755                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4756                         adapter->pf);
4757                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4758                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4759                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4760
4761                 /* Each segment size is 128B. Write coalescing is enabled only
4762                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4763                  * queue is less no of segments that can be accommodated in
4764                  * a page size.
4765                  */
4766                 if (qpp > num_seg) {
4767                         dev_err(&pdev->dev,
4768                                 "Incorrect number of egress queues per page\n");
4769                         err = -EINVAL;
4770                         goto out_free_adapter;
4771                 }
4772                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4773                 pci_resource_len(pdev, 2));
4774                 if (!adapter->bar2) {
4775                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4776                         err = -ENOMEM;
4777                         goto out_free_adapter;
4778                 }
4779         }
4780
4781         setup_memwin(adapter);
4782         err = adap_init0(adapter);
4783 #ifdef CONFIG_DEBUG_FS
4784         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4785 #endif
4786         setup_memwin_rdma(adapter);
4787         if (err)
4788                 goto out_unmap_bar;
4789
4790         /* configure SGE_STAT_CFG_A to read WC stats */
4791         if (!is_t4(adapter->params.chip))
4792                 t4_write_reg(adapter, SGE_STAT_CFG_A,
4793                              STATSOURCE_T5_V(7) | STATMODE_V(0));
4794
4795         for_each_port(adapter, i) {
4796                 struct net_device *netdev;
4797
4798                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4799                                            MAX_ETH_QSETS);
4800                 if (!netdev) {
4801                         err = -ENOMEM;
4802                         goto out_free_dev;
4803                 }
4804
4805                 SET_NETDEV_DEV(netdev, &pdev->dev);
4806
4807                 adapter->port[i] = netdev;
4808                 pi = netdev_priv(netdev);
4809                 pi->adapter = adapter;
4810                 pi->xact_addr_filt = -1;
4811                 pi->port_id = i;
4812                 netdev->irq = pdev->irq;
4813
4814                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4815                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4816                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4817                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4818                 if (highdma)
4819                         netdev->hw_features |= NETIF_F_HIGHDMA;
4820                 netdev->features |= netdev->hw_features;
4821                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4822
4823                 netdev->priv_flags |= IFF_UNICAST_FLT;
4824
4825                 netdev->netdev_ops = &cxgb4_netdev_ops;
4826 #ifdef CONFIG_CHELSIO_T4_DCB
4827                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4828                 cxgb4_dcb_state_init(netdev);
4829 #endif
4830                 cxgb4_set_ethtool_ops(netdev);
4831         }
4832
4833         pci_set_drvdata(pdev, adapter);
4834
4835         if (adapter->flags & FW_OK) {
4836                 err = t4_port_init(adapter, func, func, 0);
4837                 if (err)
4838                         goto out_free_dev;
4839         } else if (adapter->params.nports == 1) {
4840                 /* If we don't have a connection to the firmware -- possibly
4841                  * because of an error -- grab the raw VPD parameters so we
4842                  * can set the proper MAC Address on the debug network
4843                  * interface that we've created.
4844                  */
4845                 u8 hw_addr[ETH_ALEN];
4846                 u8 *na = adapter->params.vpd.na;
4847
4848                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4849                 if (!err) {
4850                         for (i = 0; i < ETH_ALEN; i++)
4851                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4852                                               hex2val(na[2 * i + 1]));
4853                         t4_set_hw_addr(adapter, 0, hw_addr);
4854                 }
4855         }
4856
4857         /* Configure queues and allocate tables now, they can be needed as
4858          * soon as the first register_netdev completes.
4859          */
4860         cfg_queues(adapter);
4861
4862         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4863         if (!adapter->l2t) {
4864                 /* We tolerate a lack of L2T, giving up some functionality */
4865                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4866                 adapter->params.offload = 0;
4867         }
4868
4869 #if IS_ENABLED(CONFIG_IPV6)
4870         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4871                                           adapter->clipt_end);
4872         if (!adapter->clipt) {
4873                 /* We tolerate a lack of clip_table, giving up
4874                  * some functionality
4875                  */
4876                 dev_warn(&pdev->dev,
4877                          "could not allocate Clip table, continuing\n");
4878                 adapter->params.offload = 0;
4879         }
4880 #endif
4881         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4882                 dev_warn(&pdev->dev, "could not allocate TID table, "
4883                          "continuing\n");
4884                 adapter->params.offload = 0;
4885         }
4886
4887         if (is_offload(adapter)) {
4888                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4889                         u32 hash_base, hash_reg;
4890
4891                         if (chip <= CHELSIO_T5) {
4892                                 hash_reg = LE_DB_TID_HASHBASE_A;
4893                                 hash_base = t4_read_reg(adapter, hash_reg);
4894                                 adapter->tids.hash_base = hash_base / 4;
4895                         } else {
4896                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4897                                 hash_base = t4_read_reg(adapter, hash_reg);
4898                                 adapter->tids.hash_base = hash_base;
4899                         }
4900                 }
4901         }
4902
4903         /* See what interrupts we'll be using */
4904         if (msi > 1 && enable_msix(adapter) == 0)
4905                 adapter->flags |= USING_MSIX;
4906         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4907                 adapter->flags |= USING_MSI;
4908
4909         err = init_rss(adapter);
4910         if (err)
4911                 goto out_free_dev;
4912
4913         /*
4914          * The card is now ready to go.  If any errors occur during device
4915          * registration we do not fail the whole card but rather proceed only
4916          * with the ports we manage to register successfully.  However we must
4917          * register at least one net device.
4918          */
4919         for_each_port(adapter, i) {
4920                 pi = adap2pinfo(adapter, i);
4921                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4922                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4923
4924                 err = register_netdev(adapter->port[i]);
4925                 if (err)
4926                         break;
4927                 adapter->chan_map[pi->tx_chan] = i;
4928                 print_port_info(adapter->port[i]);
4929         }
4930         if (i == 0) {
4931                 dev_err(&pdev->dev, "could not register any net devices\n");
4932                 goto out_free_dev;
4933         }
4934         if (err) {
4935                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4936                 err = 0;
4937         }
4938
4939         if (cxgb4_debugfs_root) {
4940                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4941                                                            cxgb4_debugfs_root);
4942                 setup_debugfs(adapter);
4943         }
4944
4945         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4946         pdev->needs_freset = 1;
4947
4948         if (is_offload(adapter))
4949                 attach_ulds(adapter);
4950
4951 sriov:
4952 #ifdef CONFIG_PCI_IOV
4953         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4954                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4955                         dev_info(&pdev->dev,
4956                                  "instantiated %u virtual functions\n",
4957                                  num_vf[func]);
4958 #endif
4959         return 0;
4960
4961  out_free_dev:
4962         free_some_resources(adapter);
4963  out_unmap_bar:
4964         if (!is_t4(adapter->params.chip))
4965                 iounmap(adapter->bar2);
4966  out_free_adapter:
4967         if (adapter->workq)
4968                 destroy_workqueue(adapter->workq);
4969
4970         kfree(adapter);
4971  out_unmap_bar0:
4972         iounmap(regs);
4973  out_disable_device:
4974         pci_disable_pcie_error_reporting(pdev);
4975         pci_disable_device(pdev);
4976  out_release_regions:
4977         pci_release_regions(pdev);
4978         return err;
4979 }
4980
4981 static void remove_one(struct pci_dev *pdev)
4982 {
4983         struct adapter *adapter = pci_get_drvdata(pdev);
4984
4985 #ifdef CONFIG_PCI_IOV
4986         pci_disable_sriov(pdev);
4987
4988 #endif
4989
4990         if (adapter) {
4991                 int i;
4992
4993                 /* Tear down per-adapter Work Queue first since it can contain
4994                  * references to our adapter data structure.
4995                  */
4996                 destroy_workqueue(adapter->workq);
4997
4998                 if (is_offload(adapter))
4999                         detach_ulds(adapter);
5000
5001                 disable_interrupts(adapter);
5002
5003                 for_each_port(adapter, i)
5004                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5005                                 unregister_netdev(adapter->port[i]);
5006
5007                 debugfs_remove_recursive(adapter->debugfs_root);
5008
5009                 /* If we allocated filters, free up state associated with any
5010                  * valid filters ...
5011                  */
5012                 if (adapter->tids.ftid_tab) {
5013                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5014                         for (i = 0; i < (adapter->tids.nftids +
5015                                         adapter->tids.nsftids); i++, f++)
5016                                 if (f->valid)
5017                                         clear_filter(adapter, f);
5018                 }
5019
5020                 if (adapter->flags & FULL_INIT_DONE)
5021                         cxgb_down(adapter);
5022
5023                 free_some_resources(adapter);
5024 #if IS_ENABLED(CONFIG_IPV6)
5025                 t4_cleanup_clip_tbl(adapter);
5026 #endif
5027                 iounmap(adapter->regs);
5028                 if (!is_t4(adapter->params.chip))
5029                         iounmap(adapter->bar2);
5030                 pci_disable_pcie_error_reporting(pdev);
5031                 if ((adapter->flags & DEV_ENABLED)) {
5032                         pci_disable_device(pdev);
5033                         adapter->flags &= ~DEV_ENABLED;
5034                 }
5035                 pci_release_regions(pdev);
5036                 synchronize_rcu();
5037                 kfree(adapter);
5038         } else
5039                 pci_release_regions(pdev);
5040 }
5041
5042 static struct pci_driver cxgb4_driver = {
5043         .name     = KBUILD_MODNAME,
5044         .id_table = cxgb4_pci_tbl,
5045         .probe    = init_one,
5046         .remove   = remove_one,
5047         .shutdown = remove_one,
5048         .err_handler = &cxgb4_eeh,
5049 };
5050
5051 static int __init cxgb4_init_module(void)
5052 {
5053         int ret;
5054
5055         /* Debugfs support is optional, just warn if this fails */
5056         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5057         if (!cxgb4_debugfs_root)
5058                 pr_warn("could not create debugfs entry, continuing\n");
5059
5060         ret = pci_register_driver(&cxgb4_driver);
5061         if (ret < 0)
5062                 goto err_pci;
5063
5064 #if IS_ENABLED(CONFIG_IPV6)
5065         if (!inet6addr_registered) {
5066                 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5067                 if (ret)
5068                         pci_unregister_driver(&cxgb4_driver);
5069                 else
5070                         inet6addr_registered = true;
5071         }
5072 #endif
5073
5074         if (ret == 0)
5075                 return ret;
5076
5077 err_pci:
5078         debugfs_remove(cxgb4_debugfs_root);
5079
5080         return ret;
5081 }
5082
5083 static void __exit cxgb4_cleanup_module(void)
5084 {
5085 #if IS_ENABLED(CONFIG_IPV6)
5086         if (inet6addr_registered) {
5087                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5088                 inet6addr_registered = false;
5089         }
5090 #endif
5091         pci_unregister_driver(&cxgb4_driver);
5092         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5093 }
5094
5095 module_init(cxgb4_init_module);
5096 module_exit(cxgb4_cleanup_module);