GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / ethernet / chelsio / cxgb / sge.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*****************************************************************************
3  *                                                                           *
4  * File: sge.c                                                               *
5  * $Revision: 1.26 $                                                         *
6  * $Date: 2005/06/21 18:29:48 $                                              *
7  * Description:                                                              *
8  *  DMA engine.                                                              *
9  *  part of the Chelsio 10Gb Ethernet Driver.                                *
10  *                                                                           *
11  *                                                                           *
12  * http://www.chelsio.com                                                    *
13  *                                                                           *
14  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
15  * All rights reserved.                                                      *
16  *                                                                           *
17  * Maintainers: maintainers@chelsio.com                                      *
18  *                                                                           *
19  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
20  *          Tina Yang               <tainay@chelsio.com>                     *
21  *          Felix Marti             <felix@chelsio.com>                      *
22  *          Scott Bardone           <sbardone@chelsio.com>                   *
23  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
24  *          Frank DiMambro          <frank@chelsio.com>                      *
25  *                                                                           *
26  * History:                                                                  *
27  *                                                                           *
28  ****************************************************************************/
29
30 #include "common.h"
31
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/pci.h>
35 #include <linux/ktime.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/skbuff.h>
40 #include <linux/mm.h>
41 #include <linux/tcp.h>
42 #include <linux/ip.h>
43 #include <linux/in.h>
44 #include <linux/if_arp.h>
45 #include <linux/slab.h>
46 #include <linux/prefetch.h>
47
48 #include "cpl5_cmd.h"
49 #include "sge.h"
50 #include "regs.h"
51 #include "espi.h"
52
53 /* This belongs in if_ether.h */
54 #define ETH_P_CPL5 0xf
55
56 #define SGE_CMDQ_N              2
57 #define SGE_FREELQ_N            2
58 #define SGE_CMDQ0_E_N           1024
59 #define SGE_CMDQ1_E_N           128
60 #define SGE_FREEL_SIZE          4096
61 #define SGE_JUMBO_FREEL_SIZE    512
62 #define SGE_FREEL_REFILL_THRESH 16
63 #define SGE_RESPQ_E_N           1024
64 #define SGE_INTRTIMER_NRES      1000
65 #define SGE_RX_SM_BUF_SIZE      1536
66 #define SGE_TX_DESC_MAX_PLEN    16384
67
68 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
69
70 /*
71  * Period of the TX buffer reclaim timer.  This timer does not need to run
72  * frequently as TX buffers are usually reclaimed by new TX packets.
73  */
74 #define TX_RECLAIM_PERIOD (HZ / 4)
75
76 #define M_CMD_LEN       0x7fffffff
77 #define V_CMD_LEN(v)    (v)
78 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
79 #define V_CMD_GEN1(v)   ((v) << 31)
80 #define V_CMD_GEN2(v)   (v)
81 #define F_CMD_DATAVALID (1 << 1)
82 #define F_CMD_SOP       (1 << 2)
83 #define V_CMD_EOP(v)    ((v) << 3)
84
85 /*
86  * Command queue, receive buffer list, and response queue descriptors.
87  */
88 #if defined(__BIG_ENDIAN_BITFIELD)
89 struct cmdQ_e {
90         u32 addr_lo;
91         u32 len_gen;
92         u32 flags;
93         u32 addr_hi;
94 };
95
96 struct freelQ_e {
97         u32 addr_lo;
98         u32 len_gen;
99         u32 gen2;
100         u32 addr_hi;
101 };
102
103 struct respQ_e {
104         u32 Qsleeping           : 4;
105         u32 Cmdq1CreditReturn   : 5;
106         u32 Cmdq1DmaComplete    : 5;
107         u32 Cmdq0CreditReturn   : 5;
108         u32 Cmdq0DmaComplete    : 5;
109         u32 FreelistQid         : 2;
110         u32 CreditValid         : 1;
111         u32 DataValid           : 1;
112         u32 Offload             : 1;
113         u32 Eop                 : 1;
114         u32 Sop                 : 1;
115         u32 GenerationBit       : 1;
116         u32 BufferLength;
117 };
118 #elif defined(__LITTLE_ENDIAN_BITFIELD)
119 struct cmdQ_e {
120         u32 len_gen;
121         u32 addr_lo;
122         u32 addr_hi;
123         u32 flags;
124 };
125
126 struct freelQ_e {
127         u32 len_gen;
128         u32 addr_lo;
129         u32 addr_hi;
130         u32 gen2;
131 };
132
133 struct respQ_e {
134         u32 BufferLength;
135         u32 GenerationBit       : 1;
136         u32 Sop                 : 1;
137         u32 Eop                 : 1;
138         u32 Offload             : 1;
139         u32 DataValid           : 1;
140         u32 CreditValid         : 1;
141         u32 FreelistQid         : 2;
142         u32 Cmdq0DmaComplete    : 5;
143         u32 Cmdq0CreditReturn   : 5;
144         u32 Cmdq1DmaComplete    : 5;
145         u32 Cmdq1CreditReturn   : 5;
146         u32 Qsleeping           : 4;
147 } ;
148 #endif
149
150 /*
151  * SW Context Command and Freelist Queue Descriptors
152  */
153 struct cmdQ_ce {
154         struct sk_buff *skb;
155         DEFINE_DMA_UNMAP_ADDR(dma_addr);
156         DEFINE_DMA_UNMAP_LEN(dma_len);
157 };
158
159 struct freelQ_ce {
160         struct sk_buff *skb;
161         DEFINE_DMA_UNMAP_ADDR(dma_addr);
162         DEFINE_DMA_UNMAP_LEN(dma_len);
163 };
164
165 /*
166  * SW command, freelist and response rings
167  */
168 struct cmdQ {
169         unsigned long   status;         /* HW DMA fetch status */
170         unsigned int    in_use;         /* # of in-use command descriptors */
171         unsigned int    size;           /* # of descriptors */
172         unsigned int    processed;      /* total # of descs HW has processed */
173         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
174         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
175         u16             pidx;           /* producer index (SW) */
176         u16             cidx;           /* consumer index (HW) */
177         u8              genbit;         /* current generation (=valid) bit */
178         u8              sop;            /* is next entry start of packet? */
179         struct cmdQ_e  *entries;        /* HW command descriptor Q */
180         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
181         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
182         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
183 };
184
185 struct freelQ {
186         unsigned int    credits;        /* # of available RX buffers */
187         unsigned int    size;           /* free list capacity */
188         u16             pidx;           /* producer index (SW) */
189         u16             cidx;           /* consumer index (HW) */
190         u16             rx_buffer_size; /* Buffer size on this free list */
191         u16             dma_offset;     /* DMA offset to align IP headers */
192         u16             recycleq_idx;   /* skb recycle q to use */
193         u8              genbit;         /* current generation (=valid) bit */
194         struct freelQ_e *entries;       /* HW freelist descriptor Q */
195         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
196         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
197 };
198
199 struct respQ {
200         unsigned int    credits;        /* credits to be returned to SGE */
201         unsigned int    size;           /* # of response Q descriptors */
202         u16             cidx;           /* consumer index (SW) */
203         u8              genbit;         /* current generation(=valid) bit */
204         struct respQ_e *entries;        /* HW response descriptor Q */
205         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
206 };
207
208 /* Bit flags for cmdQ.status */
209 enum {
210         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
211         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
212 };
213
214 /* T204 TX SW scheduler */
215
216 /* Per T204 TX port */
217 struct sched_port {
218         unsigned int    avail;          /* available bits - quota */
219         unsigned int    drain_bits_per_1024ns; /* drain rate */
220         unsigned int    speed;          /* drain rate, mbps */
221         unsigned int    mtu;            /* mtu size */
222         struct sk_buff_head skbq;       /* pending skbs */
223 };
224
225 /* Per T204 device */
226 struct sched {
227         ktime_t         last_updated;   /* last time quotas were computed */
228         unsigned int    max_avail;      /* max bits to be sent to any port */
229         unsigned int    port;           /* port index (round robin ports) */
230         unsigned int    num;            /* num skbs in per port queues */
231         struct sched_port p[MAX_NPORTS];
232         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
233         struct sge *sge;
234 };
235
236 static void restart_sched(struct tasklet_struct *t);
237
238
239 /*
240  * Main SGE data structure
241  *
242  * Interrupts are handled by a single CPU and it is likely that on a MP system
243  * the application is migrated to another CPU. In that scenario, we try to
244  * separate the RX(in irq context) and TX state in order to decrease memory
245  * contention.
246  */
247 struct sge {
248         struct adapter *adapter;        /* adapter backpointer */
249         struct net_device *netdev;      /* netdevice backpointer */
250         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
251         struct respQ    respQ;          /* response Q */
252         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
253         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
254         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
255         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
256         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
257         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
258         struct timer_list espibug_timer;
259         unsigned long   espibug_timeout;
260         struct sk_buff  *espibug_skb[MAX_NPORTS];
261         u32             sge_control;    /* shadow value of sge control reg */
262         struct sge_intr_counts stats;
263         struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
264         struct sched    *tx_sched;
265         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
266 };
267
268 static const u8 ch_mac_addr[ETH_ALEN] = {
269         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
270 };
271
272 /*
273  * stop tasklet and free all pending skb's
274  */
275 static void tx_sched_stop(struct sge *sge)
276 {
277         struct sched *s = sge->tx_sched;
278         int i;
279
280         tasklet_kill(&s->sched_tsk);
281
282         for (i = 0; i < MAX_NPORTS; i++)
283                 __skb_queue_purge(&s->p[s->port].skbq);
284 }
285
286 /*
287  * t1_sched_update_parms() is called when the MTU or link speed changes. It
288  * re-computes scheduler parameters to scope with the change.
289  */
290 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
291                                    unsigned int mtu, unsigned int speed)
292 {
293         struct sched *s = sge->tx_sched;
294         struct sched_port *p = &s->p[port];
295         unsigned int max_avail_segs;
296
297         pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
298         if (speed)
299                 p->speed = speed;
300         if (mtu)
301                 p->mtu = mtu;
302
303         if (speed || mtu) {
304                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
305                 do_div(drain, (p->mtu + 50) * 1000);
306                 p->drain_bits_per_1024ns = (unsigned int) drain;
307
308                 if (p->speed < 1000)
309                         p->drain_bits_per_1024ns =
310                                 90 * p->drain_bits_per_1024ns / 100;
311         }
312
313         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
314                 p->drain_bits_per_1024ns -= 16;
315                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
316                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
317         } else {
318                 s->max_avail = 16384;
319                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
320         }
321
322         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
323                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
324                  p->speed, s->max_avail, max_avail_segs,
325                  p->drain_bits_per_1024ns);
326
327         return max_avail_segs * (p->mtu - 40);
328 }
329
330 #if 0
331
332 /*
333  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
334  * data that can be pushed per port.
335  */
336 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
337 {
338         struct sched *s = sge->tx_sched;
339         unsigned int i;
340
341         s->max_avail = val;
342         for (i = 0; i < MAX_NPORTS; i++)
343                 t1_sched_update_parms(sge, i, 0, 0);
344 }
345
346 /*
347  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
348  * is draining.
349  */
350 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
351                                          unsigned int val)
352 {
353         struct sched *s = sge->tx_sched;
354         struct sched_port *p = &s->p[port];
355         p->drain_bits_per_1024ns = val * 1024 / 1000;
356         t1_sched_update_parms(sge, port, 0, 0);
357 }
358
359 #endif  /*  0  */
360
361 /*
362  * tx_sched_init() allocates resources and does basic initialization.
363  */
364 static int tx_sched_init(struct sge *sge)
365 {
366         struct sched *s;
367         int i;
368
369         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
370         if (!s)
371                 return -ENOMEM;
372
373         pr_debug("tx_sched_init\n");
374         tasklet_setup(&s->sched_tsk, restart_sched);
375         s->sge = sge;
376         sge->tx_sched = s;
377
378         for (i = 0; i < MAX_NPORTS; i++) {
379                 skb_queue_head_init(&s->p[i].skbq);
380                 t1_sched_update_parms(sge, i, 1500, 1000);
381         }
382
383         return 0;
384 }
385
386 /*
387  * sched_update_avail() computes the delta since the last time it was called
388  * and updates the per port quota (number of bits that can be sent to the any
389  * port).
390  */
391 static inline int sched_update_avail(struct sge *sge)
392 {
393         struct sched *s = sge->tx_sched;
394         ktime_t now = ktime_get();
395         unsigned int i;
396         long long delta_time_ns;
397
398         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
399
400         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
401         if (delta_time_ns < 15000)
402                 return 0;
403
404         for (i = 0; i < MAX_NPORTS; i++) {
405                 struct sched_port *p = &s->p[i];
406                 unsigned int delta_avail;
407
408                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
409                 p->avail = min(p->avail + delta_avail, s->max_avail);
410         }
411
412         s->last_updated = now;
413
414         return 1;
415 }
416
417 /*
418  * sched_skb() is called from two different places. In the tx path, any
419  * packet generating load on an output port will call sched_skb()
420  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
421  * context (skb == NULL).
422  * The scheduler only returns a skb (which will then be sent) if the
423  * length of the skb is <= the current quota of the output port.
424  */
425 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
426                                 unsigned int credits)
427 {
428         struct sched *s = sge->tx_sched;
429         struct sk_buff_head *skbq;
430         unsigned int i, len, update = 1;
431
432         pr_debug("sched_skb %p\n", skb);
433         if (!skb) {
434                 if (!s->num)
435                         return NULL;
436         } else {
437                 skbq = &s->p[skb->dev->if_port].skbq;
438                 __skb_queue_tail(skbq, skb);
439                 s->num++;
440                 skb = NULL;
441         }
442
443         if (credits < MAX_SKB_FRAGS + 1)
444                 goto out;
445
446 again:
447         for (i = 0; i < MAX_NPORTS; i++) {
448                 s->port = (s->port + 1) & (MAX_NPORTS - 1);
449                 skbq = &s->p[s->port].skbq;
450
451                 skb = skb_peek(skbq);
452
453                 if (!skb)
454                         continue;
455
456                 len = skb->len;
457                 if (len <= s->p[s->port].avail) {
458                         s->p[s->port].avail -= len;
459                         s->num--;
460                         __skb_unlink(skb, skbq);
461                         goto out;
462                 }
463                 skb = NULL;
464         }
465
466         if (update-- && sched_update_avail(sge))
467                 goto again;
468
469 out:
470         /* If there are more pending skbs, we use the hardware to schedule us
471          * again.
472          */
473         if (s->num && !skb) {
474                 struct cmdQ *q = &sge->cmdQ[0];
475                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
476                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
477                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
478                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
479                 }
480         }
481         pr_debug("sched_skb ret %p\n", skb);
482
483         return skb;
484 }
485
486 /*
487  * PIO to indicate that memory mapped Q contains valid descriptor(s).
488  */
489 static inline void doorbell_pio(struct adapter *adapter, u32 val)
490 {
491         wmb();
492         writel(val, adapter->regs + A_SG_DOORBELL);
493 }
494
495 /*
496  * Frees all RX buffers on the freelist Q. The caller must make sure that
497  * the SGE is turned off before calling this function.
498  */
499 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
500 {
501         unsigned int cidx = q->cidx;
502
503         while (q->credits--) {
504                 struct freelQ_ce *ce = &q->centries[cidx];
505
506                 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
507                                  dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
508                 dev_kfree_skb(ce->skb);
509                 ce->skb = NULL;
510                 if (++cidx == q->size)
511                         cidx = 0;
512         }
513 }
514
515 /*
516  * Free RX free list and response queue resources.
517  */
518 static void free_rx_resources(struct sge *sge)
519 {
520         struct pci_dev *pdev = sge->adapter->pdev;
521         unsigned int size, i;
522
523         if (sge->respQ.entries) {
524                 size = sizeof(struct respQ_e) * sge->respQ.size;
525                 dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
526                                   sge->respQ.dma_addr);
527         }
528
529         for (i = 0; i < SGE_FREELQ_N; i++) {
530                 struct freelQ *q = &sge->freelQ[i];
531
532                 if (q->centries) {
533                         free_freelQ_buffers(pdev, q);
534                         kfree(q->centries);
535                 }
536                 if (q->entries) {
537                         size = sizeof(struct freelQ_e) * q->size;
538                         dma_free_coherent(&pdev->dev, size, q->entries,
539                                           q->dma_addr);
540                 }
541         }
542 }
543
544 /*
545  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
546  * response queue.
547  */
548 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
549 {
550         struct pci_dev *pdev = sge->adapter->pdev;
551         unsigned int size, i;
552
553         for (i = 0; i < SGE_FREELQ_N; i++) {
554                 struct freelQ *q = &sge->freelQ[i];
555
556                 q->genbit = 1;
557                 q->size = p->freelQ_size[i];
558                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
559                 size = sizeof(struct freelQ_e) * q->size;
560                 q->entries = dma_alloc_coherent(&pdev->dev, size,
561                                                 &q->dma_addr, GFP_KERNEL);
562                 if (!q->entries)
563                         goto err_no_mem;
564
565                 size = sizeof(struct freelQ_ce) * q->size;
566                 q->centries = kzalloc(size, GFP_KERNEL);
567                 if (!q->centries)
568                         goto err_no_mem;
569         }
570
571         /*
572          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
573          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
574          * including all the sk_buff overhead.
575          *
576          * Note: For T2 FL0 and FL1 are reversed.
577          */
578         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
579                 sizeof(struct cpl_rx_data) +
580                 sge->freelQ[!sge->jumbo_fl].dma_offset;
581
582         size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
583
584         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
585
586         /*
587          * Setup which skb recycle Q should be used when recycling buffers from
588          * each free list.
589          */
590         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
591         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
592
593         sge->respQ.genbit = 1;
594         sge->respQ.size = SGE_RESPQ_E_N;
595         sge->respQ.credits = 0;
596         size = sizeof(struct respQ_e) * sge->respQ.size;
597         sge->respQ.entries =
598                 dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
599                                    GFP_KERNEL);
600         if (!sge->respQ.entries)
601                 goto err_no_mem;
602         return 0;
603
604 err_no_mem:
605         free_rx_resources(sge);
606         return -ENOMEM;
607 }
608
609 /*
610  * Reclaims n TX descriptors and frees the buffers associated with them.
611  */
612 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
613 {
614         struct cmdQ_ce *ce;
615         struct pci_dev *pdev = sge->adapter->pdev;
616         unsigned int cidx = q->cidx;
617
618         q->in_use -= n;
619         ce = &q->centries[cidx];
620         while (n--) {
621                 if (likely(dma_unmap_len(ce, dma_len))) {
622                         dma_unmap_single(&pdev->dev,
623                                          dma_unmap_addr(ce, dma_addr),
624                                          dma_unmap_len(ce, dma_len),
625                                          DMA_TO_DEVICE);
626                         if (q->sop)
627                                 q->sop = 0;
628                 }
629                 if (ce->skb) {
630                         dev_kfree_skb_any(ce->skb);
631                         q->sop = 1;
632                 }
633                 ce++;
634                 if (++cidx == q->size) {
635                         cidx = 0;
636                         ce = q->centries;
637                 }
638         }
639         q->cidx = cidx;
640 }
641
642 /*
643  * Free TX resources.
644  *
645  * Assumes that SGE is stopped and all interrupts are disabled.
646  */
647 static void free_tx_resources(struct sge *sge)
648 {
649         struct pci_dev *pdev = sge->adapter->pdev;
650         unsigned int size, i;
651
652         for (i = 0; i < SGE_CMDQ_N; i++) {
653                 struct cmdQ *q = &sge->cmdQ[i];
654
655                 if (q->centries) {
656                         if (q->in_use)
657                                 free_cmdQ_buffers(sge, q, q->in_use);
658                         kfree(q->centries);
659                 }
660                 if (q->entries) {
661                         size = sizeof(struct cmdQ_e) * q->size;
662                         dma_free_coherent(&pdev->dev, size, q->entries,
663                                           q->dma_addr);
664                 }
665         }
666 }
667
668 /*
669  * Allocates basic TX resources, consisting of memory mapped command Qs.
670  */
671 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
672 {
673         struct pci_dev *pdev = sge->adapter->pdev;
674         unsigned int size, i;
675
676         for (i = 0; i < SGE_CMDQ_N; i++) {
677                 struct cmdQ *q = &sge->cmdQ[i];
678
679                 q->genbit = 1;
680                 q->sop = 1;
681                 q->size = p->cmdQ_size[i];
682                 q->in_use = 0;
683                 q->status = 0;
684                 q->processed = q->cleaned = 0;
685                 q->stop_thres = 0;
686                 spin_lock_init(&q->lock);
687                 size = sizeof(struct cmdQ_e) * q->size;
688                 q->entries = dma_alloc_coherent(&pdev->dev, size,
689                                                 &q->dma_addr, GFP_KERNEL);
690                 if (!q->entries)
691                         goto err_no_mem;
692
693                 size = sizeof(struct cmdQ_ce) * q->size;
694                 q->centries = kzalloc(size, GFP_KERNEL);
695                 if (!q->centries)
696                         goto err_no_mem;
697         }
698
699         /*
700          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
701          * only.  For queue 0 set the stop threshold so we can handle one more
702          * packet from each port, plus reserve an additional 24 entries for
703          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
704          * space for Ethernet packets.
705          */
706         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
707                 (MAX_SKB_FRAGS + 1);
708         return 0;
709
710 err_no_mem:
711         free_tx_resources(sge);
712         return -ENOMEM;
713 }
714
715 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
716                                      u32 size, int base_reg_lo,
717                                      int base_reg_hi, int size_reg)
718 {
719         writel((u32)addr, adapter->regs + base_reg_lo);
720         writel(addr >> 32, adapter->regs + base_reg_hi);
721         writel(size, adapter->regs + size_reg);
722 }
723
724 /*
725  * Enable/disable VLAN acceleration.
726  */
727 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
728 {
729         struct sge *sge = adapter->sge;
730
731         if (features & NETIF_F_HW_VLAN_CTAG_RX)
732                 sge->sge_control |= F_VLAN_XTRACT;
733         else
734                 sge->sge_control &= ~F_VLAN_XTRACT;
735         if (adapter->open_device_map) {
736                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
737                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
738         }
739 }
740
741 /*
742  * Programs the various SGE registers. However, the engine is not yet enabled,
743  * but sge->sge_control is setup and ready to go.
744  */
745 static void configure_sge(struct sge *sge, struct sge_params *p)
746 {
747         struct adapter *ap = sge->adapter;
748
749         writel(0, ap->regs + A_SG_CONTROL);
750         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
751                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
752         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
753                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
754         setup_ring_params(ap, sge->freelQ[0].dma_addr,
755                           sge->freelQ[0].size, A_SG_FL0BASELWR,
756                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
757         setup_ring_params(ap, sge->freelQ[1].dma_addr,
758                           sge->freelQ[1].size, A_SG_FL1BASELWR,
759                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
760
761         /* The threshold comparison uses <. */
762         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
763
764         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
765                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
766         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
767
768         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
769                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
770                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
771                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
772
773 #if defined(__BIG_ENDIAN_BITFIELD)
774         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
775 #endif
776
777         /* Initialize no-resource timer */
778         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
779
780         t1_sge_set_coalesce_params(sge, p);
781 }
782
783 /*
784  * Return the payload capacity of the jumbo free-list buffers.
785  */
786 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
787 {
788         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
789                 sge->freelQ[sge->jumbo_fl].dma_offset -
790                 sizeof(struct cpl_rx_data);
791 }
792
793 /*
794  * Frees all SGE related resources and the sge structure itself
795  */
796 void t1_sge_destroy(struct sge *sge)
797 {
798         int i;
799
800         for_each_port(sge->adapter, i)
801                 free_percpu(sge->port_stats[i]);
802
803         kfree(sge->tx_sched);
804         free_tx_resources(sge);
805         free_rx_resources(sge);
806         kfree(sge);
807 }
808
809 /*
810  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
811  * context Q) until the Q is full or alloc_skb fails.
812  *
813  * It is possible that the generation bits already match, indicating that the
814  * buffer is already valid and nothing needs to be done. This happens when we
815  * copied a received buffer into a new sk_buff during the interrupt processing.
816  *
817  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
818  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
819  * aligned.
820  */
821 static void refill_free_list(struct sge *sge, struct freelQ *q)
822 {
823         struct pci_dev *pdev = sge->adapter->pdev;
824         struct freelQ_ce *ce = &q->centries[q->pidx];
825         struct freelQ_e *e = &q->entries[q->pidx];
826         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
827
828         while (q->credits < q->size) {
829                 struct sk_buff *skb;
830                 dma_addr_t mapping;
831
832                 skb = dev_alloc_skb(q->rx_buffer_size);
833                 if (!skb)
834                         break;
835
836                 skb_reserve(skb, q->dma_offset);
837                 mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
838                                          DMA_FROM_DEVICE);
839                 skb_reserve(skb, sge->rx_pkt_pad);
840
841                 ce->skb = skb;
842                 dma_unmap_addr_set(ce, dma_addr, mapping);
843                 dma_unmap_len_set(ce, dma_len, dma_len);
844                 e->addr_lo = (u32)mapping;
845                 e->addr_hi = (u64)mapping >> 32;
846                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
847                 wmb();
848                 e->gen2 = V_CMD_GEN2(q->genbit);
849
850                 e++;
851                 ce++;
852                 if (++q->pidx == q->size) {
853                         q->pidx = 0;
854                         q->genbit ^= 1;
855                         ce = q->centries;
856                         e = q->entries;
857                 }
858                 q->credits++;
859         }
860 }
861
862 /*
863  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
864  * of both rings, we go into 'few interrupt mode' in order to give the system
865  * time to free up resources.
866  */
867 static void freelQs_empty(struct sge *sge)
868 {
869         struct adapter *adapter = sge->adapter;
870         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
871         u32 irqholdoff_reg;
872
873         refill_free_list(sge, &sge->freelQ[0]);
874         refill_free_list(sge, &sge->freelQ[1]);
875
876         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
877             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
878                 irq_reg |= F_FL_EXHAUSTED;
879                 irqholdoff_reg = sge->fixed_intrtimer;
880         } else {
881                 /* Clear the F_FL_EXHAUSTED interrupts for now */
882                 irq_reg &= ~F_FL_EXHAUSTED;
883                 irqholdoff_reg = sge->intrtimer_nres;
884         }
885         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
886         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
887
888         /* We reenable the Qs to force a freelist GTS interrupt later */
889         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
890 }
891
892 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
893 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
894 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
895                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
896
897 /*
898  * Disable SGE Interrupts
899  */
900 void t1_sge_intr_disable(struct sge *sge)
901 {
902         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
903
904         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
905         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
906 }
907
908 /*
909  * Enable SGE interrupts.
910  */
911 void t1_sge_intr_enable(struct sge *sge)
912 {
913         u32 en = SGE_INT_ENABLE;
914         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
915
916         if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
917                 en &= ~F_PACKET_TOO_BIG;
918         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
919         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
920 }
921
922 /*
923  * Clear SGE interrupts.
924  */
925 void t1_sge_intr_clear(struct sge *sge)
926 {
927         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
928         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
929 }
930
931 /*
932  * SGE 'Error' interrupt handler
933  */
934 bool t1_sge_intr_error_handler(struct sge *sge)
935 {
936         struct adapter *adapter = sge->adapter;
937         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
938         bool wake = false;
939
940         if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
941                 cause &= ~F_PACKET_TOO_BIG;
942         if (cause & F_RESPQ_EXHAUSTED)
943                 sge->stats.respQ_empty++;
944         if (cause & F_RESPQ_OVERFLOW) {
945                 sge->stats.respQ_overflow++;
946                 pr_alert("%s: SGE response queue overflow\n",
947                          adapter->name);
948         }
949         if (cause & F_FL_EXHAUSTED) {
950                 sge->stats.freelistQ_empty++;
951                 freelQs_empty(sge);
952         }
953         if (cause & F_PACKET_TOO_BIG) {
954                 sge->stats.pkt_too_big++;
955                 pr_alert("%s: SGE max packet size exceeded\n",
956                          adapter->name);
957         }
958         if (cause & F_PACKET_MISMATCH) {
959                 sge->stats.pkt_mismatch++;
960                 pr_alert("%s: SGE packet mismatch\n", adapter->name);
961         }
962         if (cause & SGE_INT_FATAL) {
963                 t1_interrupts_disable(adapter);
964                 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
965                 wake = true;
966         }
967
968         writel(cause, adapter->regs + A_SG_INT_CAUSE);
969         return wake;
970 }
971
972 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
973 {
974         return &sge->stats;
975 }
976
977 void t1_sge_get_port_stats(const struct sge *sge, int port,
978                            struct sge_port_stats *ss)
979 {
980         int cpu;
981
982         memset(ss, 0, sizeof(*ss));
983         for_each_possible_cpu(cpu) {
984                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
985
986                 ss->rx_cso_good += st->rx_cso_good;
987                 ss->tx_cso += st->tx_cso;
988                 ss->tx_tso += st->tx_tso;
989                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
990                 ss->vlan_xtract += st->vlan_xtract;
991                 ss->vlan_insert += st->vlan_insert;
992         }
993 }
994
995 /**
996  *      recycle_fl_buf - recycle a free list buffer
997  *      @fl: the free list
998  *      @idx: index of buffer to recycle
999  *
1000  *      Recycles the specified buffer on the given free list by adding it at
1001  *      the next available slot on the list.
1002  */
1003 static void recycle_fl_buf(struct freelQ *fl, int idx)
1004 {
1005         struct freelQ_e *from = &fl->entries[idx];
1006         struct freelQ_e *to = &fl->entries[fl->pidx];
1007
1008         fl->centries[fl->pidx] = fl->centries[idx];
1009         to->addr_lo = from->addr_lo;
1010         to->addr_hi = from->addr_hi;
1011         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1012         wmb();
1013         to->gen2 = V_CMD_GEN2(fl->genbit);
1014         fl->credits++;
1015
1016         if (++fl->pidx == fl->size) {
1017                 fl->pidx = 0;
1018                 fl->genbit ^= 1;
1019         }
1020 }
1021
1022 static int copybreak __read_mostly = 256;
1023 module_param(copybreak, int, 0);
1024 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1025
1026 /**
1027  *      get_packet - return the next ingress packet buffer
1028  *      @adapter: the adapter that received the packet
1029  *      @fl: the SGE free list holding the packet
1030  *      @len: the actual packet length, excluding any SGE padding
1031  *
1032  *      Get the next packet from a free list and complete setup of the
1033  *      sk_buff.  If the packet is small we make a copy and recycle the
1034  *      original buffer, otherwise we use the original buffer itself.  If a
1035  *      positive drop threshold is supplied packets are dropped and their
1036  *      buffers recycled if (a) the number of remaining buffers is under the
1037  *      threshold and the packet is too big to copy, or (b) the packet should
1038  *      be copied but there is no memory for the copy.
1039  */
1040 static inline struct sk_buff *get_packet(struct adapter *adapter,
1041                                          struct freelQ *fl, unsigned int len)
1042 {
1043         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1044         struct pci_dev *pdev = adapter->pdev;
1045         struct sk_buff *skb;
1046
1047         if (len < copybreak) {
1048                 skb = napi_alloc_skb(&adapter->napi, len);
1049                 if (!skb)
1050                         goto use_orig_buf;
1051
1052                 skb_put(skb, len);
1053                 dma_sync_single_for_cpu(&pdev->dev,
1054                                         dma_unmap_addr(ce, dma_addr),
1055                                         dma_unmap_len(ce, dma_len),
1056                                         DMA_FROM_DEVICE);
1057                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1058                 dma_sync_single_for_device(&pdev->dev,
1059                                            dma_unmap_addr(ce, dma_addr),
1060                                            dma_unmap_len(ce, dma_len),
1061                                            DMA_FROM_DEVICE);
1062                 recycle_fl_buf(fl, fl->cidx);
1063                 return skb;
1064         }
1065
1066 use_orig_buf:
1067         if (fl->credits < 2) {
1068                 recycle_fl_buf(fl, fl->cidx);
1069                 return NULL;
1070         }
1071
1072         dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1073                          dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1074         skb = ce->skb;
1075         prefetch(skb->data);
1076
1077         skb_put(skb, len);
1078         return skb;
1079 }
1080
1081 /**
1082  *      unexpected_offload - handle an unexpected offload packet
1083  *      @adapter: the adapter
1084  *      @fl: the free list that received the packet
1085  *
1086  *      Called when we receive an unexpected offload packet (e.g., the TOE
1087  *      function is disabled or the card is a NIC).  Prints a message and
1088  *      recycles the buffer.
1089  */
1090 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1091 {
1092         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1093         struct sk_buff *skb = ce->skb;
1094
1095         dma_sync_single_for_cpu(&adapter->pdev->dev,
1096                                 dma_unmap_addr(ce, dma_addr),
1097                                 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1098         pr_err("%s: unexpected offload packet, cmd %u\n",
1099                adapter->name, *skb->data);
1100         recycle_fl_buf(fl, fl->cidx);
1101 }
1102
1103 /*
1104  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107  * Note that the *_large_page_tx_descs stuff will be optimized out when
1108  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1109  *
1110  * compute_large_page_descs() computes how many additional descriptors are
1111  * required to break down the stack's request.
1112  */
1113 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1114 {
1115         unsigned int count = 0;
1116
1117         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1118                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1119                 unsigned int i, len = skb_headlen(skb);
1120                 while (len > SGE_TX_DESC_MAX_PLEN) {
1121                         count++;
1122                         len -= SGE_TX_DESC_MAX_PLEN;
1123                 }
1124                 for (i = 0; nfrags--; i++) {
1125                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126                         len = skb_frag_size(frag);
1127                         while (len > SGE_TX_DESC_MAX_PLEN) {
1128                                 count++;
1129                                 len -= SGE_TX_DESC_MAX_PLEN;
1130                         }
1131                 }
1132         }
1133         return count;
1134 }
1135
1136 /*
1137  * Write a cmdQ entry.
1138  *
1139  * Since this function writes the 'flags' field, it must not be used to
1140  * write the first cmdQ entry.
1141  */
1142 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1143                                  unsigned int len, unsigned int gen,
1144                                  unsigned int eop)
1145 {
1146         BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1147
1148         e->addr_lo = (u32)mapping;
1149         e->addr_hi = (u64)mapping >> 32;
1150         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1151         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1152 }
1153
1154 /*
1155  * See comment for previous function.
1156  *
1157  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158  * *desc_len exceeds HW's capability.
1159  */
1160 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1161                                                      struct cmdQ_e **e,
1162                                                      struct cmdQ_ce **ce,
1163                                                      unsigned int *gen,
1164                                                      dma_addr_t *desc_mapping,
1165                                                      unsigned int *desc_len,
1166                                                      unsigned int nfrags,
1167                                                      struct cmdQ *q)
1168 {
1169         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1170                 struct cmdQ_e *e1 = *e;
1171                 struct cmdQ_ce *ce1 = *ce;
1172
1173                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1174                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1175                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1176                                       *gen, nfrags == 0 && *desc_len == 0);
1177                         ce1->skb = NULL;
1178                         dma_unmap_len_set(ce1, dma_len, 0);
1179                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1180                         if (*desc_len) {
1181                                 ce1++;
1182                                 e1++;
1183                                 if (++pidx == q->size) {
1184                                         pidx = 0;
1185                                         *gen ^= 1;
1186                                         ce1 = q->centries;
1187                                         e1 = q->entries;
1188                                 }
1189                         }
1190                 }
1191                 *e = e1;
1192                 *ce = ce1;
1193         }
1194         return pidx;
1195 }
1196
1197 /*
1198  * Write the command descriptors to transmit the given skb starting at
1199  * descriptor pidx with the given generation.
1200  */
1201 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1202                                   unsigned int pidx, unsigned int gen,
1203                                   struct cmdQ *q)
1204 {
1205         dma_addr_t mapping, desc_mapping;
1206         struct cmdQ_e *e, *e1;
1207         struct cmdQ_ce *ce;
1208         unsigned int i, flags, first_desc_len, desc_len,
1209             nfrags = skb_shinfo(skb)->nr_frags;
1210
1211         e = e1 = &q->entries[pidx];
1212         ce = &q->centries[pidx];
1213
1214         mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1215                                  skb_headlen(skb), DMA_TO_DEVICE);
1216
1217         desc_mapping = mapping;
1218         desc_len = skb_headlen(skb);
1219
1220         flags = F_CMD_DATAVALID | F_CMD_SOP |
1221             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1222             V_CMD_GEN2(gen);
1223         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1224             desc_len : SGE_TX_DESC_MAX_PLEN;
1225         e->addr_lo = (u32)desc_mapping;
1226         e->addr_hi = (u64)desc_mapping >> 32;
1227         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1228         ce->skb = NULL;
1229         dma_unmap_len_set(ce, dma_len, 0);
1230
1231         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1232             desc_len > SGE_TX_DESC_MAX_PLEN) {
1233                 desc_mapping += first_desc_len;
1234                 desc_len -= first_desc_len;
1235                 e1++;
1236                 ce++;
1237                 if (++pidx == q->size) {
1238                         pidx = 0;
1239                         gen ^= 1;
1240                         e1 = q->entries;
1241                         ce = q->centries;
1242                 }
1243                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1244                                                  &desc_mapping, &desc_len,
1245                                                  nfrags, q);
1246
1247                 if (likely(desc_len))
1248                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1249                                       nfrags == 0);
1250         }
1251
1252         ce->skb = NULL;
1253         dma_unmap_addr_set(ce, dma_addr, mapping);
1254         dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1255
1256         for (i = 0; nfrags--; i++) {
1257                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1258                 e1++;
1259                 ce++;
1260                 if (++pidx == q->size) {
1261                         pidx = 0;
1262                         gen ^= 1;
1263                         e1 = q->entries;
1264                         ce = q->centries;
1265                 }
1266
1267                 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1268                                            skb_frag_size(frag), DMA_TO_DEVICE);
1269                 desc_mapping = mapping;
1270                 desc_len = skb_frag_size(frag);
1271
1272                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1273                                                  &desc_mapping, &desc_len,
1274                                                  nfrags, q);
1275                 if (likely(desc_len))
1276                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1277                                       nfrags == 0);
1278                 ce->skb = NULL;
1279                 dma_unmap_addr_set(ce, dma_addr, mapping);
1280                 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1281         }
1282         ce->skb = skb;
1283         wmb();
1284         e->flags = flags;
1285 }
1286
1287 /*
1288  * Clean up completed Tx buffers.
1289  */
1290 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1291 {
1292         unsigned int reclaim = q->processed - q->cleaned;
1293
1294         if (reclaim) {
1295                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296                          q->processed, q->cleaned);
1297                 free_cmdQ_buffers(sge, q, reclaim);
1298                 q->cleaned += reclaim;
1299         }
1300 }
1301
1302 /*
1303  * Called from tasklet. Checks the scheduler for any
1304  * pending skbs that can be sent.
1305  */
1306 static void restart_sched(struct tasklet_struct *t)
1307 {
1308         struct sched *s = from_tasklet(s, t, sched_tsk);
1309         struct sge *sge = s->sge;
1310         struct adapter *adapter = sge->adapter;
1311         struct cmdQ *q = &sge->cmdQ[0];
1312         struct sk_buff *skb;
1313         unsigned int credits, queued_skb = 0;
1314
1315         spin_lock(&q->lock);
1316         reclaim_completed_tx(sge, q);
1317
1318         credits = q->size - q->in_use;
1319         pr_debug("restart_sched credits=%d\n", credits);
1320         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1321                 unsigned int genbit, pidx, count;
1322                 count = 1 + skb_shinfo(skb)->nr_frags;
1323                 count += compute_large_page_tx_descs(skb);
1324                 q->in_use += count;
1325                 genbit = q->genbit;
1326                 pidx = q->pidx;
1327                 q->pidx += count;
1328                 if (q->pidx >= q->size) {
1329                         q->pidx -= q->size;
1330                         q->genbit ^= 1;
1331                 }
1332                 write_tx_descs(adapter, skb, pidx, genbit, q);
1333                 credits = q->size - q->in_use;
1334                 queued_skb = 1;
1335         }
1336
1337         if (queued_skb) {
1338                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1339                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1340                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1341                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1342                 }
1343         }
1344         spin_unlock(&q->lock);
1345 }
1346
1347 /**
1348  *      sge_rx - process an ingress ethernet packet
1349  *      @sge: the sge structure
1350  *      @fl: the free list that contains the packet buffer
1351  *      @len: the packet length
1352  *
1353  *      Process an ingress ethernet packet and deliver it to the stack.
1354  */
1355 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1356 {
1357         struct sk_buff *skb;
1358         const struct cpl_rx_pkt *p;
1359         struct adapter *adapter = sge->adapter;
1360         struct sge_port_stats *st;
1361         struct net_device *dev;
1362
1363         skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1364         if (unlikely(!skb)) {
1365                 sge->stats.rx_drops++;
1366                 return;
1367         }
1368
1369         p = (const struct cpl_rx_pkt *) skb->data;
1370         if (p->iff >= adapter->params.nports) {
1371                 kfree_skb(skb);
1372                 return;
1373         }
1374         __skb_pull(skb, sizeof(*p));
1375
1376         st = this_cpu_ptr(sge->port_stats[p->iff]);
1377         dev = adapter->port[p->iff].dev;
1378
1379         skb->protocol = eth_type_trans(skb, dev);
1380         if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1381             skb->protocol == htons(ETH_P_IP) &&
1382             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1383                 ++st->rx_cso_good;
1384                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1385         } else
1386                 skb_checksum_none_assert(skb);
1387
1388         if (p->vlan_valid) {
1389                 st->vlan_xtract++;
1390                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1391         }
1392         netif_receive_skb(skb);
1393 }
1394
1395 /*
1396  * Returns true if a command queue has enough available descriptors that
1397  * we can resume Tx operation after temporarily disabling its packet queue.
1398  */
1399 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1400 {
1401         unsigned int r = q->processed - q->cleaned;
1402
1403         return q->in_use - r < (q->size >> 1);
1404 }
1405
1406 /*
1407  * Called when sufficient space has become available in the SGE command queues
1408  * after the Tx packet schedulers have been suspended to restart the Tx path.
1409  */
1410 static void restart_tx_queues(struct sge *sge)
1411 {
1412         struct adapter *adap = sge->adapter;
1413         int i;
1414
1415         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1416                 return;
1417
1418         for_each_port(adap, i) {
1419                 struct net_device *nd = adap->port[i].dev;
1420
1421                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1422                     netif_running(nd)) {
1423                         sge->stats.cmdQ_restarted[2]++;
1424                         netif_wake_queue(nd);
1425                 }
1426         }
1427 }
1428
1429 /*
1430  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1431  * information.
1432  */
1433 static unsigned int update_tx_info(struct adapter *adapter,
1434                                           unsigned int flags,
1435                                           unsigned int pr0)
1436 {
1437         struct sge *sge = adapter->sge;
1438         struct cmdQ *cmdq = &sge->cmdQ[0];
1439
1440         cmdq->processed += pr0;
1441         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1442                 freelQs_empty(sge);
1443                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1444         }
1445         if (flags & F_CMDQ0_ENABLE) {
1446                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1447
1448                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1449                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1450                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1451                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1452                 }
1453                 if (sge->tx_sched)
1454                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1455
1456                 flags &= ~F_CMDQ0_ENABLE;
1457         }
1458
1459         if (unlikely(sge->stopped_tx_queues != 0))
1460                 restart_tx_queues(sge);
1461
1462         return flags;
1463 }
1464
1465 /*
1466  * Process SGE responses, up to the supplied budget.  Returns the number of
1467  * responses processed.  A negative budget is effectively unlimited.
1468  */
1469 static int process_responses(struct adapter *adapter, int budget)
1470 {
1471         struct sge *sge = adapter->sge;
1472         struct respQ *q = &sge->respQ;
1473         struct respQ_e *e = &q->entries[q->cidx];
1474         int done = 0;
1475         unsigned int flags = 0;
1476         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1477
1478         while (done < budget && e->GenerationBit == q->genbit) {
1479                 flags |= e->Qsleeping;
1480
1481                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1482                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1483
1484                 /* We batch updates to the TX side to avoid cacheline
1485                  * ping-pong of TX state information on MP where the sender
1486                  * might run on a different CPU than this function...
1487                  */
1488                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1489                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1490                         cmdq_processed[0] = 0;
1491                 }
1492
1493                 if (unlikely(cmdq_processed[1] > 16)) {
1494                         sge->cmdQ[1].processed += cmdq_processed[1];
1495                         cmdq_processed[1] = 0;
1496                 }
1497
1498                 if (likely(e->DataValid)) {
1499                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1500
1501                         BUG_ON(!e->Sop || !e->Eop);
1502                         if (unlikely(e->Offload))
1503                                 unexpected_offload(adapter, fl);
1504                         else
1505                                 sge_rx(sge, fl, e->BufferLength);
1506
1507                         ++done;
1508
1509                         /*
1510                          * Note: this depends on each packet consuming a
1511                          * single free-list buffer; cf. the BUG above.
1512                          */
1513                         if (++fl->cidx == fl->size)
1514                                 fl->cidx = 0;
1515                         prefetch(fl->centries[fl->cidx].skb);
1516
1517                         if (unlikely(--fl->credits <
1518                                      fl->size - SGE_FREEL_REFILL_THRESH))
1519                                 refill_free_list(sge, fl);
1520                 } else
1521                         sge->stats.pure_rsps++;
1522
1523                 e++;
1524                 if (unlikely(++q->cidx == q->size)) {
1525                         q->cidx = 0;
1526                         q->genbit ^= 1;
1527                         e = q->entries;
1528                 }
1529                 prefetch(e);
1530
1531                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1532                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1533                         q->credits = 0;
1534                 }
1535         }
1536
1537         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1538         sge->cmdQ[1].processed += cmdq_processed[1];
1539
1540         return done;
1541 }
1542
1543 static inline int responses_pending(const struct adapter *adapter)
1544 {
1545         const struct respQ *Q = &adapter->sge->respQ;
1546         const struct respQ_e *e = &Q->entries[Q->cidx];
1547
1548         return e->GenerationBit == Q->genbit;
1549 }
1550
1551 /*
1552  * A simpler version of process_responses() that handles only pure (i.e.,
1553  * non data-carrying) responses.  Such respones are too light-weight to justify
1554  * calling a softirq when using NAPI, so we handle them specially in hard
1555  * interrupt context.  The function is called with a pointer to a response,
1556  * which the caller must ensure is a valid pure response.  Returns 1 if it
1557  * encounters a valid data-carrying response, 0 otherwise.
1558  */
1559 static int process_pure_responses(struct adapter *adapter)
1560 {
1561         struct sge *sge = adapter->sge;
1562         struct respQ *q = &sge->respQ;
1563         struct respQ_e *e = &q->entries[q->cidx];
1564         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1565         unsigned int flags = 0;
1566         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1567
1568         prefetch(fl->centries[fl->cidx].skb);
1569         if (e->DataValid)
1570                 return 1;
1571
1572         do {
1573                 flags |= e->Qsleeping;
1574
1575                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1576                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1577
1578                 e++;
1579                 if (unlikely(++q->cidx == q->size)) {
1580                         q->cidx = 0;
1581                         q->genbit ^= 1;
1582                         e = q->entries;
1583                 }
1584                 prefetch(e);
1585
1586                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1587                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1588                         q->credits = 0;
1589                 }
1590                 sge->stats.pure_rsps++;
1591         } while (e->GenerationBit == q->genbit && !e->DataValid);
1592
1593         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1594         sge->cmdQ[1].processed += cmdq_processed[1];
1595
1596         return e->GenerationBit == q->genbit;
1597 }
1598
1599 /*
1600  * Handler for new data events when using NAPI.  This does not need any locking
1601  * or protection from interrupts as data interrupts are off at this point and
1602  * other adapter interrupts do not interfere.
1603  */
1604 int t1_poll(struct napi_struct *napi, int budget)
1605 {
1606         struct adapter *adapter = container_of(napi, struct adapter, napi);
1607         int work_done = process_responses(adapter, budget);
1608
1609         if (likely(work_done < budget)) {
1610                 napi_complete_done(napi, work_done);
1611                 writel(adapter->sge->respQ.cidx,
1612                        adapter->regs + A_SG_SLEEPING);
1613         }
1614         return work_done;
1615 }
1616
1617 irqreturn_t t1_interrupt_thread(int irq, void *data)
1618 {
1619         struct adapter *adapter = data;
1620         u32 pending_thread_intr;
1621
1622         spin_lock_irq(&adapter->async_lock);
1623         pending_thread_intr = adapter->pending_thread_intr;
1624         adapter->pending_thread_intr = 0;
1625         spin_unlock_irq(&adapter->async_lock);
1626
1627         if (!pending_thread_intr)
1628                 return IRQ_NONE;
1629
1630         if (pending_thread_intr & F_PL_INTR_EXT)
1631                 t1_elmer0_ext_intr_handler(adapter);
1632
1633         /* This error is fatal, interrupts remain off */
1634         if (pending_thread_intr & F_PL_INTR_SGE_ERR) {
1635                 pr_alert("%s: encountered fatal error, operation suspended\n",
1636                          adapter->name);
1637                 t1_sge_stop(adapter->sge);
1638                 return IRQ_HANDLED;
1639         }
1640
1641         spin_lock_irq(&adapter->async_lock);
1642         adapter->slow_intr_mask |= F_PL_INTR_EXT;
1643
1644         writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
1645         writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1646                adapter->regs + A_PL_ENABLE);
1647         spin_unlock_irq(&adapter->async_lock);
1648
1649         return IRQ_HANDLED;
1650 }
1651
1652 irqreturn_t t1_interrupt(int irq, void *data)
1653 {
1654         struct adapter *adapter = data;
1655         struct sge *sge = adapter->sge;
1656         irqreturn_t handled;
1657
1658         if (likely(responses_pending(adapter))) {
1659                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1660
1661                 if (napi_schedule_prep(&adapter->napi)) {
1662                         if (process_pure_responses(adapter))
1663                                 __napi_schedule(&adapter->napi);
1664                         else {
1665                                 /* no data, no NAPI needed */
1666                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1667                                 /* undo schedule_prep */
1668                                 napi_enable(&adapter->napi);
1669                         }
1670                 }
1671                 return IRQ_HANDLED;
1672         }
1673
1674         spin_lock(&adapter->async_lock);
1675         handled = t1_slow_intr_handler(adapter);
1676         spin_unlock(&adapter->async_lock);
1677
1678         if (handled == IRQ_NONE)
1679                 sge->stats.unhandled_irqs++;
1680
1681         return handled;
1682 }
1683
1684 /*
1685  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1686  *
1687  * The code figures out how many entries the sk_buff will require in the
1688  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1689  * has complete. Then, it doesn't access the global structure anymore, but
1690  * uses the corresponding fields on the stack. In conjunction with a spinlock
1691  * around that code, we can make the function reentrant without holding the
1692  * lock when we actually enqueue (which might be expensive, especially on
1693  * architectures with IO MMUs).
1694  *
1695  * This runs with softirqs disabled.
1696  */
1697 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1698                      unsigned int qid, struct net_device *dev)
1699 {
1700         struct sge *sge = adapter->sge;
1701         struct cmdQ *q = &sge->cmdQ[qid];
1702         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1703
1704         spin_lock(&q->lock);
1705
1706         reclaim_completed_tx(sge, q);
1707
1708         pidx = q->pidx;
1709         credits = q->size - q->in_use;
1710         count = 1 + skb_shinfo(skb)->nr_frags;
1711         count += compute_large_page_tx_descs(skb);
1712
1713         /* Ethernet packet */
1714         if (unlikely(credits < count)) {
1715                 if (!netif_queue_stopped(dev)) {
1716                         netif_stop_queue(dev);
1717                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1718                         sge->stats.cmdQ_full[2]++;
1719                         pr_err("%s: Tx ring full while queue awake!\n",
1720                                adapter->name);
1721                 }
1722                 spin_unlock(&q->lock);
1723                 return NETDEV_TX_BUSY;
1724         }
1725
1726         if (unlikely(credits - count < q->stop_thres)) {
1727                 netif_stop_queue(dev);
1728                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1729                 sge->stats.cmdQ_full[2]++;
1730         }
1731
1732         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1733          * through the scheduler.
1734          */
1735         if (sge->tx_sched && !qid && skb->dev) {
1736 use_sched:
1737                 use_sched_skb = 1;
1738                 /* Note that the scheduler might return a different skb than
1739                  * the one passed in.
1740                  */
1741                 skb = sched_skb(sge, skb, credits);
1742                 if (!skb) {
1743                         spin_unlock(&q->lock);
1744                         return NETDEV_TX_OK;
1745                 }
1746                 pidx = q->pidx;
1747                 count = 1 + skb_shinfo(skb)->nr_frags;
1748                 count += compute_large_page_tx_descs(skb);
1749         }
1750
1751         q->in_use += count;
1752         genbit = q->genbit;
1753         pidx = q->pidx;
1754         q->pidx += count;
1755         if (q->pidx >= q->size) {
1756                 q->pidx -= q->size;
1757                 q->genbit ^= 1;
1758         }
1759         spin_unlock(&q->lock);
1760
1761         write_tx_descs(adapter, skb, pidx, genbit, q);
1762
1763         /*
1764          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1765          * the doorbell if the Q is asleep. There is a natural race, where
1766          * the hardware is going to sleep just after we checked, however,
1767          * then the interrupt handler will detect the outstanding TX packet
1768          * and ring the doorbell for us.
1769          */
1770         if (qid)
1771                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1772         else {
1773                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1774                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1775                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1776                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1777                 }
1778         }
1779
1780         if (use_sched_skb) {
1781                 if (spin_trylock(&q->lock)) {
1782                         credits = q->size - q->in_use;
1783                         skb = NULL;
1784                         goto use_sched;
1785                 }
1786         }
1787         return NETDEV_TX_OK;
1788 }
1789
1790 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1791
1792 /*
1793  *      eth_hdr_len - return the length of an Ethernet header
1794  *      @data: pointer to the start of the Ethernet header
1795  *
1796  *      Returns the length of an Ethernet header, including optional VLAN tag.
1797  */
1798 static inline int eth_hdr_len(const void *data)
1799 {
1800         const struct ethhdr *e = data;
1801
1802         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1803 }
1804
1805 /*
1806  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1807  */
1808 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810         struct adapter *adapter = dev->ml_priv;
1811         struct sge *sge = adapter->sge;
1812         struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1813         struct cpl_tx_pkt *cpl;
1814         struct sk_buff *orig_skb = skb;
1815         int ret;
1816
1817         if (skb->protocol == htons(ETH_P_CPL5))
1818                 goto send;
1819
1820         /*
1821          * We are using a non-standard hard_header_len.
1822          * Allocate more header room in the rare cases it is not big enough.
1823          */
1824         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1825                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1826                 ++st->tx_need_hdrroom;
1827                 dev_kfree_skb_any(orig_skb);
1828                 if (!skb)
1829                         return NETDEV_TX_OK;
1830         }
1831
1832         if (skb_shinfo(skb)->gso_size) {
1833                 int eth_type;
1834                 struct cpl_tx_pkt_lso *hdr;
1835
1836                 ++st->tx_tso;
1837
1838                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1839                         CPL_ETH_II : CPL_ETH_II_VLAN;
1840
1841                 hdr = skb_push(skb, sizeof(*hdr));
1842                 hdr->opcode = CPL_TX_PKT_LSO;
1843                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1844                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1845                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1846                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1847                                                           skb_shinfo(skb)->gso_size));
1848                 hdr->len = htonl(skb->len - sizeof(*hdr));
1849                 cpl = (struct cpl_tx_pkt *)hdr;
1850         } else {
1851                 /*
1852                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1853                  * early.  Also, we may get oversized packets because some
1854                  * parts of the kernel don't handle our unusual hard_header_len
1855                  * right, drop those too.
1856                  */
1857                 if (unlikely(skb->len < ETH_HLEN ||
1858                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1859                         netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1860                                    skb->len, eth_hdr_len(skb->data), dev->mtu);
1861                         dev_kfree_skb_any(skb);
1862                         return NETDEV_TX_OK;
1863                 }
1864
1865                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1866                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1867                         if (unlikely(skb_checksum_help(skb))) {
1868                                 netdev_dbg(dev, "unable to do udp checksum\n");
1869                                 dev_kfree_skb_any(skb);
1870                                 return NETDEV_TX_OK;
1871                         }
1872                 }
1873
1874                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1875                  * it to flush out stuck espi packets...
1876                  */
1877                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1878                         if (skb->protocol == htons(ETH_P_ARP) &&
1879                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1880                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1881                                 /* We want to re-use this skb later. We
1882                                  * simply bump the reference count and it
1883                                  * will not be freed...
1884                                  */
1885                                 skb = skb_get(skb);
1886                         }
1887                 }
1888
1889                 cpl = __skb_push(skb, sizeof(*cpl));
1890                 cpl->opcode = CPL_TX_PKT;
1891                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1892                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1893                 /* the length field isn't used so don't bother setting it */
1894
1895                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1896         }
1897         cpl->iff = dev->if_port;
1898
1899         if (skb_vlan_tag_present(skb)) {
1900                 cpl->vlan_valid = 1;
1901                 cpl->vlan = htons(skb_vlan_tag_get(skb));
1902                 st->vlan_insert++;
1903         } else
1904                 cpl->vlan_valid = 0;
1905
1906 send:
1907         ret = t1_sge_tx(skb, adapter, 0, dev);
1908
1909         /* If transmit busy, and we reallocated skb's due to headroom limit,
1910          * then silently discard to avoid leak.
1911          */
1912         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1913                 dev_kfree_skb_any(skb);
1914                 ret = NETDEV_TX_OK;
1915         }
1916         return ret;
1917 }
1918
1919 /*
1920  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1921  */
1922 static void sge_tx_reclaim_cb(struct timer_list *t)
1923 {
1924         int i;
1925         struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1926
1927         for (i = 0; i < SGE_CMDQ_N; ++i) {
1928                 struct cmdQ *q = &sge->cmdQ[i];
1929
1930                 if (!spin_trylock(&q->lock))
1931                         continue;
1932
1933                 reclaim_completed_tx(sge, q);
1934                 if (i == 0 && q->in_use) {    /* flush pending credits */
1935                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1936                 }
1937                 spin_unlock(&q->lock);
1938         }
1939         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1940 }
1941
1942 /*
1943  * Propagate changes of the SGE coalescing parameters to the HW.
1944  */
1945 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1946 {
1947         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1948                 core_ticks_per_usec(sge->adapter);
1949         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1950         return 0;
1951 }
1952
1953 /*
1954  * Allocates both RX and TX resources and configures the SGE. However,
1955  * the hardware is not enabled yet.
1956  */
1957 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1958 {
1959         if (alloc_rx_resources(sge, p))
1960                 return -ENOMEM;
1961         if (alloc_tx_resources(sge, p)) {
1962                 free_rx_resources(sge);
1963                 return -ENOMEM;
1964         }
1965         configure_sge(sge, p);
1966
1967         /*
1968          * Now that we have sized the free lists calculate the payload
1969          * capacity of the large buffers.  Other parts of the driver use
1970          * this to set the max offload coalescing size so that RX packets
1971          * do not overflow our large buffers.
1972          */
1973         p->large_buf_capacity = jumbo_payload_capacity(sge);
1974         return 0;
1975 }
1976
1977 /*
1978  * Disables the DMA engine.
1979  */
1980 void t1_sge_stop(struct sge *sge)
1981 {
1982         int i;
1983         writel(0, sge->adapter->regs + A_SG_CONTROL);
1984         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1985
1986         if (is_T2(sge->adapter))
1987                 del_timer_sync(&sge->espibug_timer);
1988
1989         del_timer_sync(&sge->tx_reclaim_timer);
1990         if (sge->tx_sched)
1991                 tx_sched_stop(sge);
1992
1993         for (i = 0; i < MAX_NPORTS; i++)
1994                 kfree_skb(sge->espibug_skb[i]);
1995 }
1996
1997 /*
1998  * Enables the DMA engine.
1999  */
2000 void t1_sge_start(struct sge *sge)
2001 {
2002         refill_free_list(sge, &sge->freelQ[0]);
2003         refill_free_list(sge, &sge->freelQ[1]);
2004
2005         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2006         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2007         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2008
2009         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2010
2011         if (is_T2(sge->adapter))
2012                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2013 }
2014
2015 /*
2016  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2017  */
2018 static void espibug_workaround_t204(struct timer_list *t)
2019 {
2020         struct sge *sge = from_timer(sge, t, espibug_timer);
2021         struct adapter *adapter = sge->adapter;
2022         unsigned int nports = adapter->params.nports;
2023         u32 seop[MAX_NPORTS];
2024
2025         if (adapter->open_device_map & PORT_MASK) {
2026                 int i;
2027
2028                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2029                         return;
2030
2031                 for (i = 0; i < nports; i++) {
2032                         struct sk_buff *skb = sge->espibug_skb[i];
2033
2034                         if (!netif_running(adapter->port[i].dev) ||
2035                             netif_queue_stopped(adapter->port[i].dev) ||
2036                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2037                                 continue;
2038
2039                         if (!skb->cb[0]) {
2040                                 skb_copy_to_linear_data_offset(skb,
2041                                                     sizeof(struct cpl_tx_pkt),
2042                                                                ch_mac_addr,
2043                                                                ETH_ALEN);
2044                                 skb_copy_to_linear_data_offset(skb,
2045                                                                skb->len - 10,
2046                                                                ch_mac_addr,
2047                                                                ETH_ALEN);
2048                                 skb->cb[0] = 0xff;
2049                         }
2050
2051                         /* bump the reference count to avoid freeing of
2052                          * the skb once the DMA has completed.
2053                          */
2054                         skb = skb_get(skb);
2055                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2056                 }
2057         }
2058         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2059 }
2060
2061 static void espibug_workaround(struct timer_list *t)
2062 {
2063         struct sge *sge = from_timer(sge, t, espibug_timer);
2064         struct adapter *adapter = sge->adapter;
2065
2066         if (netif_running(adapter->port[0].dev)) {
2067                 struct sk_buff *skb = sge->espibug_skb[0];
2068                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2069
2070                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2071                         if (!skb->cb[0]) {
2072                                 skb_copy_to_linear_data_offset(skb,
2073                                                      sizeof(struct cpl_tx_pkt),
2074                                                                ch_mac_addr,
2075                                                                ETH_ALEN);
2076                                 skb_copy_to_linear_data_offset(skb,
2077                                                                skb->len - 10,
2078                                                                ch_mac_addr,
2079                                                                ETH_ALEN);
2080                                 skb->cb[0] = 0xff;
2081                         }
2082
2083                         /* bump the reference count to avoid freeing of the
2084                          * skb once the DMA has completed.
2085                          */
2086                         skb = skb_get(skb);
2087                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2088                 }
2089         }
2090         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2091 }
2092
2093 /*
2094  * Creates a t1_sge structure and returns suggested resource parameters.
2095  */
2096 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2097 {
2098         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2099         int i;
2100
2101         if (!sge)
2102                 return NULL;
2103
2104         sge->adapter = adapter;
2105         sge->netdev = adapter->port[0].dev;
2106         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2107         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2108
2109         for_each_port(adapter, i) {
2110                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2111                 if (!sge->port_stats[i])
2112                         goto nomem_port;
2113         }
2114
2115         timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2116
2117         if (is_T2(sge->adapter)) {
2118                 timer_setup(&sge->espibug_timer,
2119                             adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2120                             0);
2121
2122                 if (adapter->params.nports > 1)
2123                         tx_sched_init(sge);
2124
2125                 sge->espibug_timeout = 1;
2126                 /* for T204, every 10ms */
2127                 if (adapter->params.nports > 1)
2128                         sge->espibug_timeout = HZ/100;
2129         }
2130
2131
2132         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2133         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2134         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2135         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2136         if (sge->tx_sched) {
2137                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2138                         p->rx_coalesce_usecs = 15;
2139                 else
2140                         p->rx_coalesce_usecs = 50;
2141         } else
2142                 p->rx_coalesce_usecs = 50;
2143
2144         p->coalesce_enable = 0;
2145         p->sample_interval_usecs = 0;
2146
2147         return sge;
2148 nomem_port:
2149         while (i >= 0) {
2150                 free_percpu(sge->port_stats[i]);
2151                 --i;
2152         }
2153         kfree(sge);
2154         return NULL;
2155
2156 }