GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <linux/iommu.h>
14 #include <net/ip.h>
15 #include <net/tso.h>
16
17 #include "nic_reg.h"
18 #include "nic.h"
19 #include "q_struct.h"
20 #include "nicvf_queues.h"
21
22 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
23                                                int size, u64 data);
24 static void nicvf_get_page(struct nicvf *nic)
25 {
26         if (!nic->rb_pageref || !nic->rb_page)
27                 return;
28
29         page_ref_add(nic->rb_page, nic->rb_pageref);
30         nic->rb_pageref = 0;
31 }
32
33 /* Poll a register for a specific value */
34 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
35                           u64 reg, int bit_pos, int bits, int val)
36 {
37         u64 bit_mask;
38         u64 reg_val;
39         int timeout = 10;
40
41         bit_mask = (1ULL << bits) - 1;
42         bit_mask = (bit_mask << bit_pos);
43
44         while (timeout) {
45                 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
46                 if (((reg_val & bit_mask) >> bit_pos) == val)
47                         return 0;
48                 usleep_range(1000, 2000);
49                 timeout--;
50         }
51         netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
52         return 1;
53 }
54
55 /* Allocate memory for a queue's descriptors */
56 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
57                                   int q_len, int desc_size, int align_bytes)
58 {
59         dmem->q_len = q_len;
60         dmem->size = (desc_size * q_len) + align_bytes;
61         /* Save address, need it while freeing */
62         dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
63                                                 &dmem->dma, GFP_KERNEL);
64         if (!dmem->unalign_base)
65                 return -ENOMEM;
66
67         /* Align memory address for 'align_bytes' */
68         dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
69         dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
70         return 0;
71 }
72
73 /* Free queue's descriptor memory */
74 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
75 {
76         if (!dmem)
77                 return;
78
79         dma_free_coherent(&nic->pdev->dev, dmem->size,
80                           dmem->unalign_base, dmem->dma);
81         dmem->unalign_base = NULL;
82         dmem->base = NULL;
83 }
84
85 #define XDP_PAGE_REFCNT_REFILL 256
86
87 /* Allocate a new page or recycle one if possible
88  *
89  * We cannot optimize dma mapping here, since
90  * 1. It's only one RBDR ring for 8 Rx queues.
91  * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
92  *    and not idx into RBDR ring, so can't refer to saved info.
93  * 3. There are multiple receive buffers per page
94  */
95 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
96                                                struct rbdr *rbdr, gfp_t gfp)
97 {
98         int ref_count;
99         struct page *page = NULL;
100         struct pgcache *pgcache, *next;
101
102         /* Check if page is already allocated */
103         pgcache = &rbdr->pgcache[rbdr->pgidx];
104         page = pgcache->page;
105         /* Check if page can be recycled */
106         if (page) {
107                 ref_count = page_ref_count(page);
108                 /* This page can be recycled if internal ref_count and page's
109                  * ref_count are equal, indicating that the page has been used
110                  * once for packet transmission. For non-XDP mode, internal
111                  * ref_count is always '1'.
112                  */
113                 if (rbdr->is_xdp) {
114                         if (ref_count == pgcache->ref_count)
115                                 pgcache->ref_count--;
116                         else
117                                 page = NULL;
118                 } else if (ref_count != 1) {
119                         page = NULL;
120                 }
121         }
122
123         if (!page) {
124                 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
125                 if (!page)
126                         return NULL;
127
128                 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
129
130                 /* Check for space */
131                 if (rbdr->pgalloc >= rbdr->pgcnt) {
132                         /* Page can still be used */
133                         nic->rb_page = page;
134                         return NULL;
135                 }
136
137                 /* Save the page in page cache */
138                 pgcache->page = page;
139                 pgcache->dma_addr = 0;
140                 pgcache->ref_count = 0;
141                 rbdr->pgalloc++;
142         }
143
144         /* Take additional page references for recycling */
145         if (rbdr->is_xdp) {
146                 /* Since there is single RBDR (i.e single core doing
147                  * page recycling) per 8 Rx queues, in XDP mode adjusting
148                  * page references atomically is the biggest bottleneck, so
149                  * take bunch of references at a time.
150                  *
151                  * So here, below reference counts defer by '1'.
152                  */
153                 if (!pgcache->ref_count) {
154                         pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
155                         page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
156                 }
157         } else {
158                 /* In non-XDP case, single 64K page is divided across multiple
159                  * receive buffers, so cost of recycling is less anyway.
160                  * So we can do with just one extra reference.
161                  */
162                 page_ref_add(page, 1);
163         }
164
165         rbdr->pgidx++;
166         rbdr->pgidx &= (rbdr->pgcnt - 1);
167
168         /* Prefetch refcount of next page in page cache */
169         next = &rbdr->pgcache[rbdr->pgidx];
170         page = next->page;
171         if (page)
172                 prefetch(&page->_refcount);
173
174         return pgcache;
175 }
176
177 /* Allocate buffer for packet reception */
178 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
179                                          gfp_t gfp, u32 buf_len, u64 *rbuf)
180 {
181         struct pgcache *pgcache = NULL;
182
183         /* Check if request can be accomodated in previous allocated page.
184          * But in XDP mode only one buffer per page is permitted.
185          */
186         if (!rbdr->is_xdp && nic->rb_page &&
187             ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
188                 nic->rb_pageref++;
189                 goto ret;
190         }
191
192         nicvf_get_page(nic);
193         nic->rb_page = NULL;
194
195         /* Get new page, either recycled or new one */
196         pgcache = nicvf_alloc_page(nic, rbdr, gfp);
197         if (!pgcache && !nic->rb_page) {
198                 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
199                 return -ENOMEM;
200         }
201
202         nic->rb_page_offset = 0;
203
204         /* Reserve space for header modifications by BPF program */
205         if (rbdr->is_xdp)
206                 buf_len += XDP_PACKET_HEADROOM;
207
208         /* Check if it's recycled */
209         if (pgcache)
210                 nic->rb_page = pgcache->page;
211 ret:
212         if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
213                 *rbuf = pgcache->dma_addr;
214         } else {
215                 /* HW will ensure data coherency, CPU sync not required */
216                 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
217                                                 nic->rb_page_offset, buf_len,
218                                                 DMA_FROM_DEVICE,
219                                                 DMA_ATTR_SKIP_CPU_SYNC);
220                 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
221                         if (!nic->rb_page_offset)
222                                 __free_pages(nic->rb_page, 0);
223                         nic->rb_page = NULL;
224                         return -ENOMEM;
225                 }
226                 if (pgcache)
227                         pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
228                 nic->rb_page_offset += buf_len;
229         }
230
231         return 0;
232 }
233
234 /* Build skb around receive buffer */
235 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
236                                            u64 rb_ptr, int len)
237 {
238         void *data;
239         struct sk_buff *skb;
240
241         data = phys_to_virt(rb_ptr);
242
243         /* Now build an skb to give to stack */
244         skb = build_skb(data, RCV_FRAG_LEN);
245         if (!skb) {
246                 put_page(virt_to_page(data));
247                 return NULL;
248         }
249
250         prefetch(skb->data);
251         return skb;
252 }
253
254 /* Allocate RBDR ring and populate receive buffers */
255 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
256                             int ring_len, int buf_size)
257 {
258         int idx;
259         u64 rbuf;
260         struct rbdr_entry_t *desc;
261         int err;
262
263         err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
264                                      sizeof(struct rbdr_entry_t),
265                                      NICVF_RCV_BUF_ALIGN_BYTES);
266         if (err)
267                 return err;
268
269         rbdr->desc = rbdr->dmem.base;
270         /* Buffer size has to be in multiples of 128 bytes */
271         rbdr->dma_size = buf_size;
272         rbdr->enable = true;
273         rbdr->thresh = RBDR_THRESH;
274         rbdr->head = 0;
275         rbdr->tail = 0;
276
277         /* Initialize page recycling stuff.
278          *
279          * Can't use single buffer per page especially with 64K pages.
280          * On embedded platforms i.e 81xx/83xx available memory itself
281          * is low and minimum ring size of RBDR is 8K, that takes away
282          * lots of memory.
283          *
284          * But for XDP it has to be a single buffer per page.
285          */
286         if (!nic->pnicvf->xdp_prog) {
287                 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
288                 rbdr->is_xdp = false;
289         } else {
290                 rbdr->pgcnt = ring_len;
291                 rbdr->is_xdp = true;
292         }
293         rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
294         rbdr->pgcache = kzalloc(sizeof(*rbdr->pgcache) *
295                                 rbdr->pgcnt, GFP_KERNEL);
296         if (!rbdr->pgcache)
297                 return -ENOMEM;
298         rbdr->pgidx = 0;
299         rbdr->pgalloc = 0;
300
301         nic->rb_page = NULL;
302         for (idx = 0; idx < ring_len; idx++) {
303                 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
304                                              RCV_FRAG_LEN, &rbuf);
305                 if (err) {
306                         /* To free already allocated and mapped ones */
307                         rbdr->tail = idx - 1;
308                         return err;
309                 }
310
311                 desc = GET_RBDR_DESC(rbdr, idx);
312                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
313         }
314
315         nicvf_get_page(nic);
316
317         return 0;
318 }
319
320 /* Free RBDR ring and its receive buffers */
321 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
322 {
323         int head, tail;
324         u64 buf_addr, phys_addr;
325         struct pgcache *pgcache;
326         struct rbdr_entry_t *desc;
327
328         if (!rbdr)
329                 return;
330
331         rbdr->enable = false;
332         if (!rbdr->dmem.base)
333                 return;
334
335         head = rbdr->head;
336         tail = rbdr->tail;
337
338         /* Release page references */
339         while (head != tail) {
340                 desc = GET_RBDR_DESC(rbdr, head);
341                 buf_addr = desc->buf_addr;
342                 phys_addr = nicvf_iova_to_phys(nic, buf_addr);
343                 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
344                                      DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
345                 if (phys_addr)
346                         put_page(virt_to_page(phys_to_virt(phys_addr)));
347                 head++;
348                 head &= (rbdr->dmem.q_len - 1);
349         }
350         /* Release buffer of tail desc */
351         desc = GET_RBDR_DESC(rbdr, tail);
352         buf_addr = desc->buf_addr;
353         phys_addr = nicvf_iova_to_phys(nic, buf_addr);
354         dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
355                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
356         if (phys_addr)
357                 put_page(virt_to_page(phys_to_virt(phys_addr)));
358
359         /* Sync page cache info */
360         smp_rmb();
361
362         /* Release additional page references held for recycling */
363         head = 0;
364         while (head < rbdr->pgcnt) {
365                 pgcache = &rbdr->pgcache[head];
366                 if (pgcache->page && page_ref_count(pgcache->page) != 0) {
367                         if (rbdr->is_xdp) {
368                                 page_ref_sub(pgcache->page,
369                                              pgcache->ref_count - 1);
370                         }
371                         put_page(pgcache->page);
372                 }
373                 head++;
374         }
375
376         /* Free RBDR ring */
377         nicvf_free_q_desc_mem(nic, &rbdr->dmem);
378 }
379
380 /* Refill receive buffer descriptors with new buffers.
381  */
382 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
383 {
384         struct queue_set *qs = nic->qs;
385         int rbdr_idx = qs->rbdr_cnt;
386         int tail, qcount;
387         int refill_rb_cnt;
388         struct rbdr *rbdr;
389         struct rbdr_entry_t *desc;
390         u64 rbuf;
391         int new_rb = 0;
392
393 refill:
394         if (!rbdr_idx)
395                 return;
396         rbdr_idx--;
397         rbdr = &qs->rbdr[rbdr_idx];
398         /* Check if it's enabled */
399         if (!rbdr->enable)
400                 goto next_rbdr;
401
402         /* Get no of desc's to be refilled */
403         qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
404         qcount &= 0x7FFFF;
405         /* Doorbell can be ringed with a max of ring size minus 1 */
406         if (qcount >= (qs->rbdr_len - 1))
407                 goto next_rbdr;
408         else
409                 refill_rb_cnt = qs->rbdr_len - qcount - 1;
410
411         /* Sync page cache info */
412         smp_rmb();
413
414         /* Start filling descs from tail */
415         tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
416         while (refill_rb_cnt) {
417                 tail++;
418                 tail &= (rbdr->dmem.q_len - 1);
419
420                 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
421                         break;
422
423                 desc = GET_RBDR_DESC(rbdr, tail);
424                 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
425                 refill_rb_cnt--;
426                 new_rb++;
427         }
428
429         nicvf_get_page(nic);
430
431         /* make sure all memory stores are done before ringing doorbell */
432         smp_wmb();
433
434         /* Check if buffer allocation failed */
435         if (refill_rb_cnt)
436                 nic->rb_alloc_fail = true;
437         else
438                 nic->rb_alloc_fail = false;
439
440         /* Notify HW */
441         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
442                               rbdr_idx, new_rb);
443 next_rbdr:
444         /* Re-enable RBDR interrupts only if buffer allocation is success */
445         if (!nic->rb_alloc_fail && rbdr->enable &&
446             netif_running(nic->pnicvf->netdev))
447                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
448
449         if (rbdr_idx)
450                 goto refill;
451 }
452
453 /* Alloc rcv buffers in non-atomic mode for better success */
454 void nicvf_rbdr_work(struct work_struct *work)
455 {
456         struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
457
458         nicvf_refill_rbdr(nic, GFP_KERNEL);
459         if (nic->rb_alloc_fail)
460                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
461         else
462                 nic->rb_work_scheduled = false;
463 }
464
465 /* In Softirq context, alloc rcv buffers in atomic mode */
466 void nicvf_rbdr_task(unsigned long data)
467 {
468         struct nicvf *nic = (struct nicvf *)data;
469
470         nicvf_refill_rbdr(nic, GFP_ATOMIC);
471         if (nic->rb_alloc_fail) {
472                 nic->rb_work_scheduled = true;
473                 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
474         }
475 }
476
477 /* Initialize completion queue */
478 static int nicvf_init_cmp_queue(struct nicvf *nic,
479                                 struct cmp_queue *cq, int q_len)
480 {
481         int err;
482
483         err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
484                                      NICVF_CQ_BASE_ALIGN_BYTES);
485         if (err)
486                 return err;
487
488         cq->desc = cq->dmem.base;
489         cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
490         nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
491
492         return 0;
493 }
494
495 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
496 {
497         if (!cq)
498                 return;
499         if (!cq->dmem.base)
500                 return;
501
502         nicvf_free_q_desc_mem(nic, &cq->dmem);
503 }
504
505 /* Initialize transmit queue */
506 static int nicvf_init_snd_queue(struct nicvf *nic,
507                                 struct snd_queue *sq, int q_len, int qidx)
508 {
509         int err;
510
511         err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
512                                      NICVF_SQ_BASE_ALIGN_BYTES);
513         if (err)
514                 return err;
515
516         sq->desc = sq->dmem.base;
517         sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
518         if (!sq->skbuff)
519                 return -ENOMEM;
520
521         sq->head = 0;
522         sq->tail = 0;
523         sq->thresh = SND_QUEUE_THRESH;
524
525         /* Check if this SQ is a XDP TX queue */
526         if (nic->sqs_mode)
527                 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
528         if (qidx < nic->pnicvf->xdp_tx_queues) {
529                 /* Alloc memory to save page pointers for XDP_TX */
530                 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
531                 if (!sq->xdp_page)
532                         return -ENOMEM;
533                 sq->xdp_desc_cnt = 0;
534                 sq->xdp_free_cnt = q_len - 1;
535                 sq->is_xdp = true;
536         } else {
537                 sq->xdp_page = NULL;
538                 sq->xdp_desc_cnt = 0;
539                 sq->xdp_free_cnt = 0;
540                 sq->is_xdp = false;
541
542                 atomic_set(&sq->free_cnt, q_len - 1);
543
544                 /* Preallocate memory for TSO segment's header */
545                 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
546                                                   q_len * TSO_HEADER_SIZE,
547                                                   &sq->tso_hdrs_phys,
548                                                   GFP_KERNEL);
549                 if (!sq->tso_hdrs)
550                         return -ENOMEM;
551         }
552
553         return 0;
554 }
555
556 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
557                               int hdr_sqe, u8 subdesc_cnt)
558 {
559         u8 idx;
560         struct sq_gather_subdesc *gather;
561
562         /* Unmap DMA mapped skb data buffers */
563         for (idx = 0; idx < subdesc_cnt; idx++) {
564                 hdr_sqe++;
565                 hdr_sqe &= (sq->dmem.q_len - 1);
566                 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
567                 /* HW will ensure data coherency, CPU sync not required */
568                 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
569                                      gather->size, DMA_TO_DEVICE,
570                                      DMA_ATTR_SKIP_CPU_SYNC);
571         }
572 }
573
574 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
575 {
576         struct sk_buff *skb;
577         struct page *page;
578         struct sq_hdr_subdesc *hdr;
579         struct sq_hdr_subdesc *tso_sqe;
580
581         if (!sq)
582                 return;
583         if (!sq->dmem.base)
584                 return;
585
586         if (sq->tso_hdrs) {
587                 dma_free_coherent(&nic->pdev->dev,
588                                   sq->dmem.q_len * TSO_HEADER_SIZE,
589                                   sq->tso_hdrs, sq->tso_hdrs_phys);
590                 sq->tso_hdrs = NULL;
591         }
592
593         /* Free pending skbs in the queue */
594         smp_rmb();
595         while (sq->head != sq->tail) {
596                 skb = (struct sk_buff *)sq->skbuff[sq->head];
597                 if (!skb || !sq->xdp_page)
598                         goto next;
599
600                 page = (struct page *)sq->xdp_page[sq->head];
601                 if (!page)
602                         goto next;
603                 else
604                         put_page(page);
605
606                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
607                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
608                 if (hdr->dont_send) {
609                         /* Get actual TSO descriptors and unmap them */
610                         tso_sqe =
611                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
612                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
613                                                  tso_sqe->subdesc_cnt);
614                 } else {
615                         nicvf_unmap_sndq_buffers(nic, sq, sq->head,
616                                                  hdr->subdesc_cnt);
617                 }
618                 if (skb)
619                         dev_kfree_skb_any(skb);
620 next:
621                 sq->head++;
622                 sq->head &= (sq->dmem.q_len - 1);
623         }
624         kfree(sq->skbuff);
625         kfree(sq->xdp_page);
626         nicvf_free_q_desc_mem(nic, &sq->dmem);
627 }
628
629 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
630                                     struct queue_set *qs, int qidx)
631 {
632         /* Disable send queue */
633         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
634         /* Check if SQ is stopped */
635         if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
636                 return;
637         /* Reset send queue */
638         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
639 }
640
641 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
642                                     struct queue_set *qs, int qidx)
643 {
644         union nic_mbx mbx = {};
645
646         /* Make sure all packets in the pipeline are written back into mem */
647         mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
648         nicvf_send_msg_to_pf(nic, &mbx);
649 }
650
651 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
652                                     struct queue_set *qs, int qidx)
653 {
654         /* Disable timer threshold (doesn't get reset upon CQ reset */
655         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
656         /* Disable completion queue */
657         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
658         /* Reset completion queue */
659         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
660 }
661
662 static void nicvf_reclaim_rbdr(struct nicvf *nic,
663                                struct rbdr *rbdr, int qidx)
664 {
665         u64 tmp, fifo_state;
666         int timeout = 10;
667
668         /* Save head and tail pointers for feeing up buffers */
669         rbdr->head = nicvf_queue_reg_read(nic,
670                                           NIC_QSET_RBDR_0_1_HEAD,
671                                           qidx) >> 3;
672         rbdr->tail = nicvf_queue_reg_read(nic,
673                                           NIC_QSET_RBDR_0_1_TAIL,
674                                           qidx) >> 3;
675
676         /* If RBDR FIFO is in 'FAIL' state then do a reset first
677          * before relaiming.
678          */
679         fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
680         if (((fifo_state >> 62) & 0x03) == 0x3)
681                 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
682                                       qidx, NICVF_RBDR_RESET);
683
684         /* Disable RBDR */
685         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
686         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
687                 return;
688         while (1) {
689                 tmp = nicvf_queue_reg_read(nic,
690                                            NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
691                                            qidx);
692                 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
693                         break;
694                 usleep_range(1000, 2000);
695                 timeout--;
696                 if (!timeout) {
697                         netdev_err(nic->netdev,
698                                    "Failed polling on prefetch status\n");
699                         return;
700                 }
701         }
702         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
703                               qidx, NICVF_RBDR_RESET);
704
705         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
706                 return;
707         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
708         if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
709                 return;
710 }
711
712 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
713 {
714         u64 rq_cfg;
715         int sqs;
716
717         rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
718
719         /* Enable first VLAN stripping */
720         if (features & NETIF_F_HW_VLAN_CTAG_RX)
721                 rq_cfg |= (1ULL << 25);
722         else
723                 rq_cfg &= ~(1ULL << 25);
724         nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
725
726         /* Configure Secondary Qsets, if any */
727         for (sqs = 0; sqs < nic->sqs_count; sqs++)
728                 if (nic->snicvf[sqs])
729                         nicvf_queue_reg_write(nic->snicvf[sqs],
730                                               NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
731 }
732
733 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
734 {
735         union nic_mbx mbx = {};
736
737         /* Reset all RQ/SQ and VF stats */
738         mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
739         mbx.reset_stat.rx_stat_mask = 0x3FFF;
740         mbx.reset_stat.tx_stat_mask = 0x1F;
741         mbx.reset_stat.rq_stat_mask = 0xFFFF;
742         mbx.reset_stat.sq_stat_mask = 0xFFFF;
743         nicvf_send_msg_to_pf(nic, &mbx);
744 }
745
746 /* Configures receive queue */
747 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
748                                    int qidx, bool enable)
749 {
750         union nic_mbx mbx = {};
751         struct rcv_queue *rq;
752         struct rq_cfg rq_cfg;
753
754         rq = &qs->rq[qidx];
755         rq->enable = enable;
756
757         /* Disable receive queue */
758         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
759
760         if (!rq->enable) {
761                 nicvf_reclaim_rcv_queue(nic, qs, qidx);
762                 return;
763         }
764
765         rq->cq_qs = qs->vnic_id;
766         rq->cq_idx = qidx;
767         rq->start_rbdr_qs = qs->vnic_id;
768         rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
769         rq->cont_rbdr_qs = qs->vnic_id;
770         rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
771         /* all writes of RBDR data to be loaded into L2 Cache as well*/
772         rq->caching = 1;
773
774         /* Send a mailbox msg to PF to config RQ */
775         mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
776         mbx.rq.qs_num = qs->vnic_id;
777         mbx.rq.rq_num = qidx;
778         mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
779                           (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
780                           (rq->cont_qs_rbdr_idx << 8) |
781                           (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
782         nicvf_send_msg_to_pf(nic, &mbx);
783
784         mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
785         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
786                      (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
787                      (qs->vnic_id << 0);
788         nicvf_send_msg_to_pf(nic, &mbx);
789
790         /* RQ drop config
791          * Enable CQ drop to reserve sufficient CQEs for all tx packets
792          */
793         mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
794         mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
795                      (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
796                      (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
797         nicvf_send_msg_to_pf(nic, &mbx);
798
799         if (!nic->sqs_mode && (qidx == 0)) {
800                 /* Enable checking L3/L4 length and TCP/UDP checksums
801                  * Also allow IPv6 pkts with zero UDP checksum.
802                  */
803                 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
804                                       (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
805                 nicvf_config_vlan_stripping(nic, nic->netdev->features);
806         }
807
808         /* Enable Receive queue */
809         memset(&rq_cfg, 0, sizeof(struct rq_cfg));
810         rq_cfg.ena = 1;
811         rq_cfg.tcp_ena = 0;
812         nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
813 }
814
815 /* Configures completion queue */
816 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
817                             int qidx, bool enable)
818 {
819         struct cmp_queue *cq;
820         struct cq_cfg cq_cfg;
821
822         cq = &qs->cq[qidx];
823         cq->enable = enable;
824
825         if (!cq->enable) {
826                 nicvf_reclaim_cmp_queue(nic, qs, qidx);
827                 return;
828         }
829
830         /* Reset completion queue */
831         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
832
833         if (!cq->enable)
834                 return;
835
836         spin_lock_init(&cq->lock);
837         /* Set completion queue base address */
838         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
839                               qidx, (u64)(cq->dmem.phys_base));
840
841         /* Enable Completion queue */
842         memset(&cq_cfg, 0, sizeof(struct cq_cfg));
843         cq_cfg.ena = 1;
844         cq_cfg.reset = 0;
845         cq_cfg.caching = 0;
846         cq_cfg.qsize = ilog2(qs->cq_len >> 10);
847         cq_cfg.avg_con = 0;
848         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
849
850         /* Set threshold value for interrupt generation */
851         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
852         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
853                               qidx, CMP_QUEUE_TIMER_THRESH);
854 }
855
856 /* Configures transmit queue */
857 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
858                                    int qidx, bool enable)
859 {
860         union nic_mbx mbx = {};
861         struct snd_queue *sq;
862         struct sq_cfg sq_cfg;
863
864         sq = &qs->sq[qidx];
865         sq->enable = enable;
866
867         if (!sq->enable) {
868                 nicvf_reclaim_snd_queue(nic, qs, qidx);
869                 return;
870         }
871
872         /* Reset send queue */
873         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
874
875         sq->cq_qs = qs->vnic_id;
876         sq->cq_idx = qidx;
877
878         /* Send a mailbox msg to PF to config SQ */
879         mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
880         mbx.sq.qs_num = qs->vnic_id;
881         mbx.sq.sq_num = qidx;
882         mbx.sq.sqs_mode = nic->sqs_mode;
883         mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
884         nicvf_send_msg_to_pf(nic, &mbx);
885
886         /* Set queue base address */
887         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
888                               qidx, (u64)(sq->dmem.phys_base));
889
890         /* Enable send queue  & set queue size */
891         memset(&sq_cfg, 0, sizeof(struct sq_cfg));
892         sq_cfg.ena = 1;
893         sq_cfg.reset = 0;
894         sq_cfg.ldwb = 0;
895         sq_cfg.qsize = ilog2(qs->sq_len >> 10);
896         sq_cfg.tstmp_bgx_intf = 0;
897         /* CQ's level at which HW will stop processing SQEs to avoid
898          * transmitting a pkt with no space in CQ to post CQE_TX.
899          */
900         sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
901         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
902
903         /* Set threshold value for interrupt generation */
904         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
905
906         /* Set queue:cpu affinity for better load distribution */
907         if (cpu_online(qidx)) {
908                 cpumask_set_cpu(qidx, &sq->affinity_mask);
909                 netif_set_xps_queue(nic->netdev,
910                                     &sq->affinity_mask, qidx);
911         }
912 }
913
914 /* Configures receive buffer descriptor ring */
915 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
916                               int qidx, bool enable)
917 {
918         struct rbdr *rbdr;
919         struct rbdr_cfg rbdr_cfg;
920
921         rbdr = &qs->rbdr[qidx];
922         nicvf_reclaim_rbdr(nic, rbdr, qidx);
923         if (!enable)
924                 return;
925
926         /* Set descriptor base address */
927         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
928                               qidx, (u64)(rbdr->dmem.phys_base));
929
930         /* Enable RBDR  & set queue size */
931         /* Buffer size should be in multiples of 128 bytes */
932         memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
933         rbdr_cfg.ena = 1;
934         rbdr_cfg.reset = 0;
935         rbdr_cfg.ldwb = 0;
936         rbdr_cfg.qsize = RBDR_SIZE;
937         rbdr_cfg.avg_con = 0;
938         rbdr_cfg.lines = rbdr->dma_size / 128;
939         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
940                               qidx, *(u64 *)&rbdr_cfg);
941
942         /* Notify HW */
943         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
944                               qidx, qs->rbdr_len - 1);
945
946         /* Set threshold value for interrupt generation */
947         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
948                               qidx, rbdr->thresh - 1);
949 }
950
951 /* Requests PF to assign and enable Qset */
952 void nicvf_qset_config(struct nicvf *nic, bool enable)
953 {
954         union nic_mbx mbx = {};
955         struct queue_set *qs = nic->qs;
956         struct qs_cfg *qs_cfg;
957
958         if (!qs) {
959                 netdev_warn(nic->netdev,
960                             "Qset is still not allocated, don't init queues\n");
961                 return;
962         }
963
964         qs->enable = enable;
965         qs->vnic_id = nic->vf_id;
966
967         /* Send a mailbox msg to PF to config Qset */
968         mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
969         mbx.qs.num = qs->vnic_id;
970         mbx.qs.sqs_count = nic->sqs_count;
971
972         mbx.qs.cfg = 0;
973         qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
974         if (qs->enable) {
975                 qs_cfg->ena = 1;
976 #ifdef __BIG_ENDIAN
977                 qs_cfg->be = 1;
978 #endif
979                 qs_cfg->vnic = qs->vnic_id;
980         }
981         nicvf_send_msg_to_pf(nic, &mbx);
982 }
983
984 static void nicvf_free_resources(struct nicvf *nic)
985 {
986         int qidx;
987         struct queue_set *qs = nic->qs;
988
989         /* Free receive buffer descriptor ring */
990         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
991                 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
992
993         /* Free completion queue */
994         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
995                 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
996
997         /* Free send queue */
998         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
999                 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1000 }
1001
1002 static int nicvf_alloc_resources(struct nicvf *nic)
1003 {
1004         int qidx;
1005         struct queue_set *qs = nic->qs;
1006
1007         /* Alloc receive buffer descriptor ring */
1008         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1009                 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1010                                     DMA_BUFFER_LEN))
1011                         goto alloc_fail;
1012         }
1013
1014         /* Alloc send queue */
1015         for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1016                 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1017                         goto alloc_fail;
1018         }
1019
1020         /* Alloc completion queue */
1021         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1022                 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1023                         goto alloc_fail;
1024         }
1025
1026         return 0;
1027 alloc_fail:
1028         nicvf_free_resources(nic);
1029         return -ENOMEM;
1030 }
1031
1032 int nicvf_set_qset_resources(struct nicvf *nic)
1033 {
1034         struct queue_set *qs;
1035
1036         qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1037         if (!qs)
1038                 return -ENOMEM;
1039         nic->qs = qs;
1040
1041         /* Set count of each queue */
1042         qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1043         qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1044         qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1045         qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1046
1047         /* Set queue lengths */
1048         qs->rbdr_len = RCV_BUF_COUNT;
1049         qs->sq_len = SND_QUEUE_LEN;
1050         qs->cq_len = CMP_QUEUE_LEN;
1051
1052         nic->rx_queues = qs->rq_cnt;
1053         nic->tx_queues = qs->sq_cnt;
1054         nic->xdp_tx_queues = 0;
1055
1056         return 0;
1057 }
1058
1059 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1060 {
1061         bool disable = false;
1062         struct queue_set *qs = nic->qs;
1063         struct queue_set *pqs = nic->pnicvf->qs;
1064         int qidx;
1065
1066         if (!qs)
1067                 return 0;
1068
1069         /* Take primary VF's queue lengths.
1070          * This is needed to take queue lengths set from ethtool
1071          * into consideration.
1072          */
1073         if (nic->sqs_mode && pqs) {
1074                 qs->cq_len = pqs->cq_len;
1075                 qs->sq_len = pqs->sq_len;
1076         }
1077
1078         if (enable) {
1079                 if (nicvf_alloc_resources(nic))
1080                         return -ENOMEM;
1081
1082                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1083                         nicvf_snd_queue_config(nic, qs, qidx, enable);
1084                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1085                         nicvf_cmp_queue_config(nic, qs, qidx, enable);
1086                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1087                         nicvf_rbdr_config(nic, qs, qidx, enable);
1088                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1089                         nicvf_rcv_queue_config(nic, qs, qidx, enable);
1090         } else {
1091                 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1092                         nicvf_rcv_queue_config(nic, qs, qidx, disable);
1093                 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1094                         nicvf_rbdr_config(nic, qs, qidx, disable);
1095                 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1096                         nicvf_snd_queue_config(nic, qs, qidx, disable);
1097                 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1098                         nicvf_cmp_queue_config(nic, qs, qidx, disable);
1099
1100                 nicvf_free_resources(nic);
1101         }
1102
1103         /* Reset RXQ's stats.
1104          * SQ's stats will get reset automatically once SQ is reset.
1105          */
1106         nicvf_reset_rcv_queue_stats(nic);
1107
1108         return 0;
1109 }
1110
1111 /* Get a free desc from SQ
1112  * returns descriptor ponter & descriptor number
1113  */
1114 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1115 {
1116         int qentry;
1117
1118         qentry = sq->tail;
1119         if (!sq->is_xdp)
1120                 atomic_sub(desc_cnt, &sq->free_cnt);
1121         else
1122                 sq->xdp_free_cnt -= desc_cnt;
1123         sq->tail += desc_cnt;
1124         sq->tail &= (sq->dmem.q_len - 1);
1125
1126         return qentry;
1127 }
1128
1129 /* Rollback to previous tail pointer when descriptors not used */
1130 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1131                                           int qentry, int desc_cnt)
1132 {
1133         sq->tail = qentry;
1134         atomic_add(desc_cnt, &sq->free_cnt);
1135 }
1136
1137 /* Free descriptor back to SQ for future use */
1138 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1139 {
1140         if (!sq->is_xdp)
1141                 atomic_add(desc_cnt, &sq->free_cnt);
1142         else
1143                 sq->xdp_free_cnt += desc_cnt;
1144         sq->head += desc_cnt;
1145         sq->head &= (sq->dmem.q_len - 1);
1146 }
1147
1148 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1149 {
1150         qentry++;
1151         qentry &= (sq->dmem.q_len - 1);
1152         return qentry;
1153 }
1154
1155 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1156 {
1157         u64 sq_cfg;
1158
1159         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1160         sq_cfg |= NICVF_SQ_EN;
1161         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1162         /* Ring doorbell so that H/W restarts processing SQEs */
1163         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1164 }
1165
1166 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1167 {
1168         u64 sq_cfg;
1169
1170         sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1171         sq_cfg &= ~NICVF_SQ_EN;
1172         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1173 }
1174
1175 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1176                               int qidx)
1177 {
1178         u64 head, tail;
1179         struct sk_buff *skb;
1180         struct nicvf *nic = netdev_priv(netdev);
1181         struct sq_hdr_subdesc *hdr;
1182
1183         head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1184         tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1185         while (sq->head != head) {
1186                 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1187                 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1188                         nicvf_put_sq_desc(sq, 1);
1189                         continue;
1190                 }
1191                 skb = (struct sk_buff *)sq->skbuff[sq->head];
1192                 if (skb)
1193                         dev_kfree_skb_any(skb);
1194                 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1195                 atomic64_add(hdr->tot_len,
1196                              (atomic64_t *)&netdev->stats.tx_bytes);
1197                 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1198         }
1199 }
1200
1201 /* XDP Transmit APIs */
1202 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1203                            struct snd_queue *sq, int sq_num)
1204 {
1205         if (!sq->xdp_desc_cnt)
1206                 return;
1207
1208         /* make sure all memory stores are done before ringing doorbell */
1209         wmb();
1210
1211         /* Inform HW to xmit all TSO segments */
1212         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1213                               sq_num, sq->xdp_desc_cnt);
1214         sq->xdp_desc_cnt = 0;
1215 }
1216
1217 static inline void
1218 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1219                              int subdesc_cnt, u64 data, int len)
1220 {
1221         struct sq_hdr_subdesc *hdr;
1222
1223         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1224         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1225         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1226         hdr->subdesc_cnt = subdesc_cnt;
1227         hdr->tot_len = len;
1228         hdr->post_cqe = 1;
1229         sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1230 }
1231
1232 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1233                             u64 bufaddr, u64 dma_addr, u16 len)
1234 {
1235         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1236         int qentry;
1237
1238         if (subdesc_cnt > sq->xdp_free_cnt)
1239                 return 0;
1240
1241         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1242
1243         nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1244
1245         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1246         nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1247
1248         sq->xdp_desc_cnt += subdesc_cnt;
1249
1250         return 1;
1251 }
1252
1253 /* Calculate no of SQ subdescriptors needed to transmit all
1254  * segments of this TSO packet.
1255  * Taken from 'Tilera network driver' with a minor modification.
1256  */
1257 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1258 {
1259         struct skb_shared_info *sh = skb_shinfo(skb);
1260         unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1261         unsigned int data_len = skb->len - sh_len;
1262         unsigned int p_len = sh->gso_size;
1263         long f_id = -1;    /* id of the current fragment */
1264         long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1265         long f_used = 0;  /* bytes used from the current fragment */
1266         long n;            /* size of the current piece of payload */
1267         int num_edescs = 0;
1268         int segment;
1269
1270         for (segment = 0; segment < sh->gso_segs; segment++) {
1271                 unsigned int p_used = 0;
1272
1273                 /* One edesc for header and for each piece of the payload. */
1274                 for (num_edescs++; p_used < p_len; num_edescs++) {
1275                         /* Advance as needed. */
1276                         while (f_used >= f_size) {
1277                                 f_id++;
1278                                 f_size = skb_frag_size(&sh->frags[f_id]);
1279                                 f_used = 0;
1280                         }
1281
1282                         /* Use bytes from the current fragment. */
1283                         n = p_len - p_used;
1284                         if (n > f_size - f_used)
1285                                 n = f_size - f_used;
1286                         f_used += n;
1287                         p_used += n;
1288                 }
1289
1290                 /* The last segment may be less than gso_size. */
1291                 data_len -= p_len;
1292                 if (data_len < p_len)
1293                         p_len = data_len;
1294         }
1295
1296         /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1297         return num_edescs + sh->gso_segs;
1298 }
1299
1300 #define POST_CQE_DESC_COUNT 2
1301
1302 /* Get the number of SQ descriptors needed to xmit this skb */
1303 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1304 {
1305         int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1306
1307         if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1308                 subdesc_cnt = nicvf_tso_count_subdescs(skb);
1309                 return subdesc_cnt;
1310         }
1311
1312         /* Dummy descriptors to get TSO pkt completion notification */
1313         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1314                 subdesc_cnt += POST_CQE_DESC_COUNT;
1315
1316         if (skb_shinfo(skb)->nr_frags)
1317                 subdesc_cnt += skb_shinfo(skb)->nr_frags;
1318
1319         return subdesc_cnt;
1320 }
1321
1322 /* Add SQ HEADER subdescriptor.
1323  * First subdescriptor for every send descriptor.
1324  */
1325 static inline void
1326 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1327                          int subdesc_cnt, struct sk_buff *skb, int len)
1328 {
1329         int proto;
1330         struct sq_hdr_subdesc *hdr;
1331         union {
1332                 struct iphdr *v4;
1333                 struct ipv6hdr *v6;
1334                 unsigned char *hdr;
1335         } ip;
1336
1337         ip.hdr = skb_network_header(skb);
1338         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1339         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1340         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1341
1342         if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1343                 /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1344                  * segment transmitted on 88xx.
1345                  */
1346                 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1347         } else {
1348                 sq->skbuff[qentry] = (u64)skb;
1349                 /* Enable notification via CQE after processing SQE */
1350                 hdr->post_cqe = 1;
1351                 /* No of subdescriptors following this */
1352                 hdr->subdesc_cnt = subdesc_cnt;
1353         }
1354         hdr->tot_len = len;
1355
1356         /* Offload checksum calculation to HW */
1357         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1358                 if (ip.v4->version == 4)
1359                         hdr->csum_l3 = 1; /* Enable IP csum calculation */
1360                 hdr->l3_offset = skb_network_offset(skb);
1361                 hdr->l4_offset = skb_transport_offset(skb);
1362
1363                 proto = (ip.v4->version == 4) ? ip.v4->protocol :
1364                         ip.v6->nexthdr;
1365
1366                 switch (proto) {
1367                 case IPPROTO_TCP:
1368                         hdr->csum_l4 = SEND_L4_CSUM_TCP;
1369                         break;
1370                 case IPPROTO_UDP:
1371                         hdr->csum_l4 = SEND_L4_CSUM_UDP;
1372                         break;
1373                 case IPPROTO_SCTP:
1374                         hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1375                         break;
1376                 }
1377         }
1378
1379         if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1380                 hdr->tso = 1;
1381                 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1382                 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1383                 /* For non-tunneled pkts, point this to L2 ethertype */
1384                 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1385                 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1386         }
1387 }
1388
1389 /* SQ GATHER subdescriptor
1390  * Must follow HDR descriptor
1391  */
1392 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1393                                                int size, u64 data)
1394 {
1395         struct sq_gather_subdesc *gather;
1396
1397         qentry &= (sq->dmem.q_len - 1);
1398         gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1399
1400         memset(gather, 0, SND_QUEUE_DESC_SIZE);
1401         gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1402         gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1403         gather->size = size;
1404         gather->addr = data;
1405 }
1406
1407 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1408  * packet so that a CQE is posted as a notifation for transmission of
1409  * TSO packet.
1410  */
1411 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1412                                             int tso_sqe, struct sk_buff *skb)
1413 {
1414         struct sq_imm_subdesc *imm;
1415         struct sq_hdr_subdesc *hdr;
1416
1417         sq->skbuff[qentry] = (u64)skb;
1418
1419         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1420         memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1421         hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1422         /* Enable notification via CQE after processing SQE */
1423         hdr->post_cqe = 1;
1424         /* There is no packet to transmit here */
1425         hdr->dont_send = 1;
1426         hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1427         hdr->tot_len = 1;
1428         /* Actual TSO header SQE index, needed for cleanup */
1429         hdr->rsvd2 = tso_sqe;
1430
1431         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1432         imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1433         memset(imm, 0, SND_QUEUE_DESC_SIZE);
1434         imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1435         imm->len = 1;
1436 }
1437
1438 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1439                                      int sq_num, int desc_cnt)
1440 {
1441         struct netdev_queue *txq;
1442
1443         txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1444                                   skb_get_queue_mapping(skb));
1445
1446         netdev_tx_sent_queue(txq, skb->len);
1447
1448         /* make sure all memory stores are done before ringing doorbell */
1449         smp_wmb();
1450
1451         /* Inform HW to xmit all TSO segments */
1452         nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1453                               sq_num, desc_cnt);
1454 }
1455
1456 /* Segment a TSO packet into 'gso_size' segments and append
1457  * them to SQ for transfer
1458  */
1459 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1460                                int sq_num, int qentry, struct sk_buff *skb)
1461 {
1462         struct tso_t tso;
1463         int seg_subdescs = 0, desc_cnt = 0;
1464         int seg_len, total_len, data_left;
1465         int hdr_qentry = qentry;
1466         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1467
1468         tso_start(skb, &tso);
1469         total_len = skb->len - hdr_len;
1470         while (total_len > 0) {
1471                 char *hdr;
1472
1473                 /* Save Qentry for adding HDR_SUBDESC at the end */
1474                 hdr_qentry = qentry;
1475
1476                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1477                 total_len -= data_left;
1478
1479                 /* Add segment's header */
1480                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1481                 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1482                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1483                 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1484                                             sq->tso_hdrs_phys +
1485                                             qentry * TSO_HEADER_SIZE);
1486                 /* HDR_SUDESC + GATHER */
1487                 seg_subdescs = 2;
1488                 seg_len = hdr_len;
1489
1490                 /* Add segment's payload fragments */
1491                 while (data_left > 0) {
1492                         int size;
1493
1494                         size = min_t(int, tso.size, data_left);
1495
1496                         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1497                         nicvf_sq_add_gather_subdesc(sq, qentry, size,
1498                                                     virt_to_phys(tso.data));
1499                         seg_subdescs++;
1500                         seg_len += size;
1501
1502                         data_left -= size;
1503                         tso_build_data(skb, &tso, size);
1504                 }
1505                 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1506                                          seg_subdescs - 1, skb, seg_len);
1507                 sq->skbuff[hdr_qentry] = (u64)NULL;
1508                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1509
1510                 desc_cnt += seg_subdescs;
1511         }
1512         /* Save SKB in the last segment for freeing */
1513         sq->skbuff[hdr_qentry] = (u64)skb;
1514
1515         nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1516
1517         this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1518         return 1;
1519 }
1520
1521 /* Append an skb to a SQ for packet transfer. */
1522 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1523                         struct sk_buff *skb, u8 sq_num)
1524 {
1525         int i, size;
1526         int subdesc_cnt, hdr_sqe = 0;
1527         int qentry;
1528         u64 dma_addr;
1529
1530         subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1531         if (subdesc_cnt > atomic_read(&sq->free_cnt))
1532                 goto append_fail;
1533
1534         qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1535
1536         /* Check if its a TSO packet */
1537         if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1538                 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1539
1540         /* Add SQ header subdesc */
1541         nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1542                                  skb, skb->len);
1543         hdr_sqe = qentry;
1544
1545         /* Add SQ gather subdescs */
1546         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1547         size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1548         /* HW will ensure data coherency, CPU sync not required */
1549         dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1550                                       offset_in_page(skb->data), size,
1551                                       DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1552         if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1553                 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1554                 return 0;
1555         }
1556
1557         nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1558
1559         /* Check for scattered buffer */
1560         if (!skb_is_nonlinear(skb))
1561                 goto doorbell;
1562
1563         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1564                 const struct skb_frag_struct *frag;
1565
1566                 frag = &skb_shinfo(skb)->frags[i];
1567
1568                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1569                 size = skb_frag_size(frag);
1570                 dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1571                                               skb_frag_page(frag),
1572                                               frag->page_offset, size,
1573                                               DMA_TO_DEVICE,
1574                                               DMA_ATTR_SKIP_CPU_SYNC);
1575                 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1576                         /* Free entire chain of mapped buffers
1577                          * here 'i' = frags mapped + above mapped skb->data
1578                          */
1579                         nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1580                         nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1581                         return 0;
1582                 }
1583                 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1584         }
1585
1586 doorbell:
1587         if (nic->t88 && skb_shinfo(skb)->gso_size) {
1588                 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1589                 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1590         }
1591
1592         nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1593
1594         return 1;
1595
1596 append_fail:
1597         /* Use original PCI dev for debug log */
1598         nic = nic->pnicvf;
1599         netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1600         return 0;
1601 }
1602
1603 static inline unsigned frag_num(unsigned i)
1604 {
1605 #ifdef __BIG_ENDIAN
1606         return (i & ~3) + 3 - (i & 3);
1607 #else
1608         return i;
1609 #endif
1610 }
1611
1612 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1613                                    u64 buf_addr, bool xdp)
1614 {
1615         struct page *page = NULL;
1616         int len = RCV_FRAG_LEN;
1617
1618         if (xdp) {
1619                 page = virt_to_page(phys_to_virt(buf_addr));
1620                 /* Check if it's a recycled page, if not
1621                  * unmap the DMA mapping.
1622                  *
1623                  * Recycled page holds an extra reference.
1624                  */
1625                 if (page_ref_count(page) != 1)
1626                         return;
1627
1628                 len += XDP_PACKET_HEADROOM;
1629                 /* Receive buffers in XDP mode are mapped from page start */
1630                 dma_addr &= PAGE_MASK;
1631         }
1632         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1633                              DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1634 }
1635
1636 /* Returns SKB for a received packet */
1637 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1638                                   struct cqe_rx_t *cqe_rx, bool xdp)
1639 {
1640         int frag;
1641         int payload_len = 0;
1642         struct sk_buff *skb = NULL;
1643         struct page *page;
1644         int offset;
1645         u16 *rb_lens = NULL;
1646         u64 *rb_ptrs = NULL;
1647         u64 phys_addr;
1648
1649         rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1650         /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1651          * CQE_RX at word6, hence buffer pointers move by word
1652          *
1653          * Use existing 'hw_tso' flag which will be set for all chips
1654          * except 88xx pass1 instead of a additional cache line
1655          * access (or miss) by using pci dev's revision.
1656          */
1657         if (!nic->hw_tso)
1658                 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1659         else
1660                 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1661
1662         for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1663                 payload_len = rb_lens[frag_num(frag)];
1664                 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1665                 if (!phys_addr) {
1666                         if (skb)
1667                                 dev_kfree_skb_any(skb);
1668                         return NULL;
1669                 }
1670
1671                 if (!frag) {
1672                         /* First fragment */
1673                         nicvf_unmap_rcv_buffer(nic,
1674                                                *rb_ptrs - cqe_rx->align_pad,
1675                                                phys_addr, xdp);
1676                         skb = nicvf_rb_ptr_to_skb(nic,
1677                                                   phys_addr - cqe_rx->align_pad,
1678                                                   payload_len);
1679                         if (!skb)
1680                                 return NULL;
1681                         skb_reserve(skb, cqe_rx->align_pad);
1682                         skb_put(skb, payload_len);
1683                 } else {
1684                         /* Add fragments */
1685                         nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1686                         page = virt_to_page(phys_to_virt(phys_addr));
1687                         offset = phys_to_virt(phys_addr) - page_address(page);
1688                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1689                                         offset, payload_len, RCV_FRAG_LEN);
1690                 }
1691                 /* Next buffer pointer */
1692                 rb_ptrs++;
1693         }
1694         return skb;
1695 }
1696
1697 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1698 {
1699         u64 reg_val;
1700
1701         switch (int_type) {
1702         case NICVF_INTR_CQ:
1703                 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1704                 break;
1705         case NICVF_INTR_SQ:
1706                 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1707                 break;
1708         case NICVF_INTR_RBDR:
1709                 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1710                 break;
1711         case NICVF_INTR_PKT_DROP:
1712                 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1713                 break;
1714         case NICVF_INTR_TCP_TIMER:
1715                 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1716                 break;
1717         case NICVF_INTR_MBOX:
1718                 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1719                 break;
1720         case NICVF_INTR_QS_ERR:
1721                 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1722                 break;
1723         default:
1724                 reg_val = 0;
1725         }
1726
1727         return reg_val;
1728 }
1729
1730 /* Enable interrupt */
1731 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1732 {
1733         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1734
1735         if (!mask) {
1736                 netdev_dbg(nic->netdev,
1737                            "Failed to enable interrupt: unknown type\n");
1738                 return;
1739         }
1740         nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1741                         nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1742 }
1743
1744 /* Disable interrupt */
1745 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1746 {
1747         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1748
1749         if (!mask) {
1750                 netdev_dbg(nic->netdev,
1751                            "Failed to disable interrupt: unknown type\n");
1752                 return;
1753         }
1754
1755         nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1756 }
1757
1758 /* Clear interrupt */
1759 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1760 {
1761         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1762
1763         if (!mask) {
1764                 netdev_dbg(nic->netdev,
1765                            "Failed to clear interrupt: unknown type\n");
1766                 return;
1767         }
1768
1769         nicvf_reg_write(nic, NIC_VF_INT, mask);
1770 }
1771
1772 /* Check if interrupt is enabled */
1773 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1774 {
1775         u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1776         /* If interrupt type is unknown, we treat it disabled. */
1777         if (!mask) {
1778                 netdev_dbg(nic->netdev,
1779                            "Failed to check interrupt enable: unknown type\n");
1780                 return 0;
1781         }
1782
1783         return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1784 }
1785
1786 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1787 {
1788         struct rcv_queue *rq;
1789
1790 #define GET_RQ_STATS(reg) \
1791         nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1792                             (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1793
1794         rq = &nic->qs->rq[rq_idx];
1795         rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1796         rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1797 }
1798
1799 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1800 {
1801         struct snd_queue *sq;
1802
1803 #define GET_SQ_STATS(reg) \
1804         nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1805                             (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1806
1807         sq = &nic->qs->sq[sq_idx];
1808         sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1809         sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1810 }
1811
1812 /* Check for errors in the receive cmp.queue entry */
1813 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1814 {
1815         netif_err(nic, rx_err, nic->netdev,
1816                   "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1817                   cqe_rx->err_level, cqe_rx->err_opcode);
1818
1819         switch (cqe_rx->err_opcode) {
1820         case CQ_RX_ERROP_RE_PARTIAL:
1821                 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1822                 break;
1823         case CQ_RX_ERROP_RE_JABBER:
1824                 this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1825                 break;
1826         case CQ_RX_ERROP_RE_FCS:
1827                 this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1828                 break;
1829         case CQ_RX_ERROP_RE_RX_CTL:
1830                 this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1831                 break;
1832         case CQ_RX_ERROP_PREL2_ERR:
1833                 this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1834                 break;
1835         case CQ_RX_ERROP_L2_MAL:
1836                 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1837                 break;
1838         case CQ_RX_ERROP_L2_OVERSIZE:
1839                 this_cpu_inc(nic->drv_stats->rx_oversize);
1840                 break;
1841         case CQ_RX_ERROP_L2_UNDERSIZE:
1842                 this_cpu_inc(nic->drv_stats->rx_undersize);
1843                 break;
1844         case CQ_RX_ERROP_L2_LENMISM:
1845                 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1846                 break;
1847         case CQ_RX_ERROP_L2_PCLP:
1848                 this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1849                 break;
1850         case CQ_RX_ERROP_IP_NOT:
1851                 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1852                 break;
1853         case CQ_RX_ERROP_IP_CSUM_ERR:
1854                 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1855                 break;
1856         case CQ_RX_ERROP_IP_MAL:
1857                 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1858                 break;
1859         case CQ_RX_ERROP_IP_MALD:
1860                 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1861                 break;
1862         case CQ_RX_ERROP_IP_HOP:
1863                 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1864                 break;
1865         case CQ_RX_ERROP_L3_PCLP:
1866                 this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1867                 break;
1868         case CQ_RX_ERROP_L4_MAL:
1869                 this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1870                 break;
1871         case CQ_RX_ERROP_L4_CHK:
1872                 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1873                 break;
1874         case CQ_RX_ERROP_UDP_LEN:
1875                 this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1876                 break;
1877         case CQ_RX_ERROP_L4_PORT:
1878                 this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1879                 break;
1880         case CQ_RX_ERROP_TCP_FLAG:
1881                 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1882                 break;
1883         case CQ_RX_ERROP_TCP_OFFSET:
1884                 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1885                 break;
1886         case CQ_RX_ERROP_L4_PCLP:
1887                 this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1888                 break;
1889         case CQ_RX_ERROP_RBDR_TRUNC:
1890                 this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1891                 break;
1892         }
1893
1894         return 1;
1895 }
1896
1897 /* Check for errors in the send cmp.queue entry */
1898 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1899 {
1900         switch (cqe_tx->send_status) {
1901         case CQ_TX_ERROP_DESC_FAULT:
1902                 this_cpu_inc(nic->drv_stats->tx_desc_fault);
1903                 break;
1904         case CQ_TX_ERROP_HDR_CONS_ERR:
1905                 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1906                 break;
1907         case CQ_TX_ERROP_SUBDC_ERR:
1908                 this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1909                 break;
1910         case CQ_TX_ERROP_MAX_SIZE_VIOL:
1911                 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1912                 break;
1913         case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1914                 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1915                 break;
1916         case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1917                 this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1918                 break;
1919         case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1920                 this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1921                 break;
1922         case CQ_TX_ERROP_LOCK_VIOL:
1923                 this_cpu_inc(nic->drv_stats->tx_lock_viol);
1924                 break;
1925         case CQ_TX_ERROP_DATA_FAULT:
1926                 this_cpu_inc(nic->drv_stats->tx_data_fault);
1927                 break;
1928         case CQ_TX_ERROP_TSTMP_CONFLICT:
1929                 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1930                 break;
1931         case CQ_TX_ERROP_TSTMP_TIMEOUT:
1932                 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1933                 break;
1934         case CQ_TX_ERROP_MEM_FAULT:
1935                 this_cpu_inc(nic->drv_stats->tx_mem_fault);
1936                 break;
1937         case CQ_TX_ERROP_CK_OVERLAP:
1938                 this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1939                 break;
1940         case CQ_TX_ERROP_CK_OFLOW:
1941                 this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1942                 break;
1943         }
1944
1945         return 1;
1946 }