GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  *
22  * Updated to the driver model and the PHY abstraction layer
23  * by Maciej W. Rozycki.
24  */
25
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>      /* Processor type for cache alignment. */
49
50 /* Operational parameters that usually are not changed. */
51
52 #define CONFIG_SBMAC_COALESCE
53
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT  (2*HZ)
56
57
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60
61 /* A few user-configurable values which may be modified when a driver
62    module is loaded. */
63
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, S_IRUGO);
67 MODULE_PARM_DESC(debug, "Debug messages");
68
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, S_IRUGO);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, S_IRUGO);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, S_IRUGO);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, S_IRUGO);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT                   K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT                   PHY_POLL
115 #endif
116
117 /**********************************************************************
118  *  Simple types
119  ********************************************************************* */
120
121 enum sbmac_speed {
122         sbmac_speed_none = 0,
123         sbmac_speed_10 = SPEED_10,
124         sbmac_speed_100 = SPEED_100,
125         sbmac_speed_1000 = SPEED_1000,
126 };
127
128 enum sbmac_duplex {
129         sbmac_duplex_none = -1,
130         sbmac_duplex_half = DUPLEX_HALF,
131         sbmac_duplex_full = DUPLEX_FULL,
132 };
133
134 enum sbmac_fc {
135         sbmac_fc_none,
136         sbmac_fc_disabled,
137         sbmac_fc_frame,
138         sbmac_fc_collision,
139         sbmac_fc_carrier,
140 };
141
142 enum sbmac_state {
143         sbmac_state_uninit,
144         sbmac_state_off,
145         sbmac_state_on,
146         sbmac_state_broken,
147 };
148
149
150 /**********************************************************************
151  *  Macros
152  ********************************************************************* */
153
154
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156                           (d)->sbdma_dscrtable : (d)->f+1)
157
158
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
160
161 #define SBMAC_MAX_TXDESCR       256
162 #define SBMAC_MAX_RXDESCR       256
163
164 #define ENET_PACKET_SIZE        1518
165 /*#define ENET_PACKET_SIZE      9216 */
166
167 /**********************************************************************
168  *  DMA Descriptor structure
169  ********************************************************************* */
170
171 struct sbdmadscr {
172         uint64_t  dscr_a;
173         uint64_t  dscr_b;
174 };
175
176 /**********************************************************************
177  *  DMA Controller structure
178  ********************************************************************* */
179
180 struct sbmacdma {
181
182         /*
183          * This stuff is used to identify the channel and the registers
184          * associated with it.
185          */
186         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
187                                                    MAC */
188         int                     sbdma_channel;  /* channel number */
189         int                     sbdma_txdir;    /* direction (1=transmit) */
190         int                     sbdma_maxdescr; /* total # of descriptors
191                                                    in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193         int                     sbdma_int_pktcnt;
194                                                 /* # descriptors rx/tx
195                                                    before interrupt */
196         int                     sbdma_int_timeout;
197                                                 /* # usec rx/tx interrupt */
198 #endif
199         void __iomem            *sbdma_config0; /* DMA config register 0 */
200         void __iomem            *sbdma_config1; /* DMA config register 1 */
201         void __iomem            *sbdma_dscrbase;
202                                                 /* descriptor base address */
203         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
204         void __iomem            *sbdma_curdscr; /* current descriptor
205                                                    address */
206         void __iomem            *sbdma_oodpktlost;
207                                                 /* pkt drop (rx only) */
208
209         /*
210          * This stuff is for maintenance of the ring
211          */
212         void                    *sbdma_dscrtable_unaligned;
213         struct sbdmadscr        *sbdma_dscrtable;
214                                                 /* base of descriptor table */
215         struct sbdmadscr        *sbdma_dscrtable_end;
216                                                 /* end of descriptor table */
217         struct sk_buff          **sbdma_ctxtable;
218                                                 /* context table, one
219                                                    per descr */
220         dma_addr_t              sbdma_dscrtable_phys;
221                                                 /* and also the phys addr */
222         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
223         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
224                                                    to remove */
225 };
226
227
228 /**********************************************************************
229  *  Ethernet softc structure
230  ********************************************************************* */
231
232 struct sbmac_softc {
233
234         /*
235          * Linux-specific things
236          */
237         struct net_device       *sbm_dev;       /* pointer to linux device */
238         struct napi_struct      napi;
239         struct phy_device       *phy_dev;       /* the associated PHY device */
240         struct mii_bus          *mii_bus;       /* the MII bus */
241         spinlock_t              sbm_lock;       /* spin lock */
242         int                     sbm_devflags;   /* current device flags */
243
244         /*
245          * Controller-specific things
246          */
247         void __iomem            *sbm_base;      /* MAC's base address */
248         enum sbmac_state        sbm_state;      /* current state */
249
250         void __iomem            *sbm_macenable; /* MAC Enable Register */
251         void __iomem            *sbm_maccfg;    /* MAC Config Register */
252         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
253         void __iomem            *sbm_framecfg;  /* Frame Config Register */
254         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
255         void __iomem            *sbm_isr;       /* Interrupt Status Register */
256         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
257         void __iomem            *sbm_mdio;      /* MDIO Register */
258
259         enum sbmac_speed        sbm_speed;      /* current speed */
260         enum sbmac_duplex       sbm_duplex;     /* current duplex */
261         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
262         int                     sbm_pause;      /* current pause setting */
263         int                     sbm_link;       /* current link state */
264
265         unsigned char           sbm_hwaddr[ETH_ALEN];
266
267         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
268         struct sbmacdma         sbm_rxdma;
269         int                     rx_hw_checksum;
270         int                     sbe_idx;
271 };
272
273
274 /**********************************************************************
275  *  Externs
276  ********************************************************************* */
277
278 /**********************************************************************
279  *  Prototypes
280  ********************************************************************* */
281
282 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
283                           int txrx, int maxdescr);
284 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
286                                struct sk_buff *m);
287 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
288 static void sbdma_emptyring(struct sbmacdma *d);
289 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
290 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
291                             int work_to_do, int poll);
292 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293                              int poll);
294 static int sbmac_initctx(struct sbmac_softc *s);
295 static void sbmac_channel_start(struct sbmac_softc *s);
296 static void sbmac_channel_stop(struct sbmac_softc *s);
297 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
298                                                 enum sbmac_state);
299 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr);
301 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
302 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
303 static void sbmac_setmulti(struct sbmac_softc *sc);
304 static int sbmac_init(struct platform_device *pldev, long long base);
305 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
306 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
307                             enum sbmac_fc fc);
308
309 static int sbmac_open(struct net_device *dev);
310 static void sbmac_tx_timeout (struct net_device *dev);
311 static void sbmac_set_rx_mode(struct net_device *dev);
312 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
313 static int sbmac_close(struct net_device *dev);
314 static int sbmac_poll(struct napi_struct *napi, int budget);
315
316 static void sbmac_mii_poll(struct net_device *dev);
317 static int sbmac_mii_probe(struct net_device *dev);
318
319 static void sbmac_mii_sync(void __iomem *sbm_mdio);
320 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
321                                int bitcnt);
322 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
323 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
324                            u16 val);
325
326
327 /**********************************************************************
328  *  Globals
329  ********************************************************************* */
330
331 static char sbmac_string[] = "sb1250-mac";
332
333 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
334
335
336 /**********************************************************************
337  *  MDIO constants
338  ********************************************************************* */
339
340 #define MII_COMMAND_START       0x01
341 #define MII_COMMAND_READ        0x02
342 #define MII_COMMAND_WRITE       0x01
343 #define MII_COMMAND_ACK         0x02
344
345 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
346
347 #define ENABLE          1
348 #define DISABLE         0
349
350 /**********************************************************************
351  *  SBMAC_MII_SYNC(sbm_mdio)
352  *
353  *  Synchronize with the MII - send a pattern of bits to the MII
354  *  that will guarantee that it is ready to accept a command.
355  *
356  *  Input parameters:
357  *         sbm_mdio - address of the MAC's MDIO register
358  *
359  *  Return value:
360  *         nothing
361  ********************************************************************* */
362
363 static void sbmac_mii_sync(void __iomem *sbm_mdio)
364 {
365         int cnt;
366         uint64_t bits;
367         int mac_mdio_genc;
368
369         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
370
371         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
372
373         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
374
375         for (cnt = 0; cnt < 32; cnt++) {
376                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
377                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378         }
379 }
380
381 /**********************************************************************
382  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
383  *
384  *  Send some bits to the MII.  The bits to be sent are right-
385  *  justified in the 'data' parameter.
386  *
387  *  Input parameters:
388  *         sbm_mdio - address of the MAC's MDIO register
389  *         data     - data to send
390  *         bitcnt   - number of bits to send
391  ********************************************************************* */
392
393 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
394                                int bitcnt)
395 {
396         int i;
397         uint64_t bits;
398         unsigned int curmask;
399         int mac_mdio_genc;
400
401         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
402
403         bits = M_MAC_MDIO_DIR_OUTPUT;
404         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
405
406         curmask = 1 << (bitcnt - 1);
407
408         for (i = 0; i < bitcnt; i++) {
409                 if (data & curmask)
410                         bits |= M_MAC_MDIO_OUT;
411                 else bits &= ~M_MAC_MDIO_OUT;
412                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
413                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
414                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415                 curmask >>= 1;
416         }
417 }
418
419
420
421 /**********************************************************************
422  *  SBMAC_MII_READ(bus, phyaddr, regidx)
423  *  Read a PHY register.
424  *
425  *  Input parameters:
426  *         bus     - MDIO bus handle
427  *         phyaddr - PHY's address
428  *         regnum  - index of register to read
429  *
430  *  Return value:
431  *         value read, or 0xffff if an error occurred.
432  ********************************************************************* */
433
434 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
435 {
436         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
437         void __iomem *sbm_mdio = sc->sbm_mdio;
438         int idx;
439         int error;
440         int regval;
441         int mac_mdio_genc;
442
443         /*
444          * Synchronize ourselves so that the PHY knows the next
445          * thing coming down is a command
446          */
447         sbmac_mii_sync(sbm_mdio);
448
449         /*
450          * Send the data to the PHY.  The sequence is
451          * a "start" command (2 bits)
452          * a "read" command (2 bits)
453          * the PHY addr (5 bits)
454          * the register index (5 bits)
455          */
456         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
457         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
458         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
459         sbmac_mii_senddata(sbm_mdio, regidx, 5);
460
461         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
462
463         /*
464          * Switch the port around without a clock transition.
465          */
466         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
467
468         /*
469          * Send out a clock pulse to signal we want the status
470          */
471         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472                      sbm_mdio);
473         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475         /*
476          * If an error occurred, the PHY will signal '1' back
477          */
478         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
479
480         /*
481          * Issue an 'idle' clock pulse, but keep the direction
482          * the same.
483          */
484         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
485                      sbm_mdio);
486         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
487
488         regval = 0;
489
490         for (idx = 0; idx < 16; idx++) {
491                 regval <<= 1;
492
493                 if (error == 0) {
494                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
495                                 regval |= 1;
496                 }
497
498                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
499                              sbm_mdio);
500                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
501         }
502
503         /* Switch back to output */
504         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
505
506         if (error == 0)
507                 return regval;
508         return 0xffff;
509 }
510
511
512 /**********************************************************************
513  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
514  *
515  *  Write a value to a PHY register.
516  *
517  *  Input parameters:
518  *         bus     - MDIO bus handle
519  *         phyaddr - PHY to use
520  *         regidx  - register within the PHY
521  *         regval  - data to write to register
522  *
523  *  Return value:
524  *         0 for success
525  ********************************************************************* */
526
527 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
528                            u16 regval)
529 {
530         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
531         void __iomem *sbm_mdio = sc->sbm_mdio;
532         int mac_mdio_genc;
533
534         sbmac_mii_sync(sbm_mdio);
535
536         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
537         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
538         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
539         sbmac_mii_senddata(sbm_mdio, regidx, 5);
540         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
541         sbmac_mii_senddata(sbm_mdio, regval, 16);
542
543         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
544
545         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
546
547         return 0;
548 }
549
550
551
552 /**********************************************************************
553  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
554  *
555  *  Initialize a DMA channel context.  Since there are potentially
556  *  eight DMA channels per MAC, it's nice to do this in a standard
557  *  way.
558  *
559  *  Input parameters:
560  *         d - struct sbmacdma (DMA channel context)
561  *         s - struct sbmac_softc (pointer to a MAC)
562  *         chan - channel number (0..1 right now)
563  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
564  *      maxdescr - number of descriptors
565  *
566  *  Return value:
567  *         nothing
568  ********************************************************************* */
569
570 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
571                           int txrx, int maxdescr)
572 {
573 #ifdef CONFIG_SBMAC_COALESCE
574         int int_pktcnt, int_timeout;
575 #endif
576
577         /*
578          * Save away interesting stuff in the structure
579          */
580
581         d->sbdma_eth       = s;
582         d->sbdma_channel   = chan;
583         d->sbdma_txdir     = txrx;
584
585 #if 0
586         /* RMON clearing */
587         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
588 #endif
589
590         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
591         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
592         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
598         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
599         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
600         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
601         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
602         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
603         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
604         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
605         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
606         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
607         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
608         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
609         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
610         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
611
612         /*
613          * initialize register pointers
614          */
615
616         d->sbdma_config0 =
617                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
618         d->sbdma_config1 =
619                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
620         d->sbdma_dscrbase =
621                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
622         d->sbdma_dscrcnt =
623                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
624         d->sbdma_curdscr =
625                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
626         if (d->sbdma_txdir)
627                 d->sbdma_oodpktlost = NULL;
628         else
629                 d->sbdma_oodpktlost =
630                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
631
632         /*
633          * Allocate memory for the ring
634          */
635
636         d->sbdma_maxdescr = maxdescr;
637
638         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
639                                                sizeof(*d->sbdma_dscrtable),
640                                                GFP_KERNEL);
641
642         /*
643          * The descriptor table must be aligned to at least 16 bytes or the
644          * MAC will corrupt it.
645          */
646         d->sbdma_dscrtable = (struct sbdmadscr *)
647                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
648                                    sizeof(*d->sbdma_dscrtable));
649
650         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
651
652         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
653
654         /*
655          * And context table
656          */
657
658         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
659                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
660
661 #ifdef CONFIG_SBMAC_COALESCE
662         /*
663          * Setup Rx/Tx DMA coalescing defaults
664          */
665
666         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
667         if ( int_pktcnt ) {
668                 d->sbdma_int_pktcnt = int_pktcnt;
669         } else {
670                 d->sbdma_int_pktcnt = 1;
671         }
672
673         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
674         if ( int_timeout ) {
675                 d->sbdma_int_timeout = int_timeout;
676         } else {
677                 d->sbdma_int_timeout = 0;
678         }
679 #endif
680
681 }
682
683 /**********************************************************************
684  *  SBDMA_CHANNEL_START(d)
685  *
686  *  Initialize the hardware registers for a DMA channel.
687  *
688  *  Input parameters:
689  *         d - DMA channel to init (context must be previously init'd
690  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
691  *
692  *  Return value:
693  *         nothing
694  ********************************************************************* */
695
696 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
697 {
698         /*
699          * Turn on the DMA channel
700          */
701
702 #ifdef CONFIG_SBMAC_COALESCE
703         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
704                        0, d->sbdma_config1);
705         __raw_writeq(M_DMA_EOP_INT_EN |
706                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
707                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
708                        0, d->sbdma_config0);
709 #else
710         __raw_writeq(0, d->sbdma_config1);
711         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
712                        0, d->sbdma_config0);
713 #endif
714
715         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
716
717         /*
718          * Initialize ring pointers
719          */
720
721         d->sbdma_addptr = d->sbdma_dscrtable;
722         d->sbdma_remptr = d->sbdma_dscrtable;
723 }
724
725 /**********************************************************************
726  *  SBDMA_CHANNEL_STOP(d)
727  *
728  *  Initialize the hardware registers for a DMA channel.
729  *
730  *  Input parameters:
731  *         d - DMA channel to init (context must be previously init'd
732  *
733  *  Return value:
734  *         nothing
735  ********************************************************************* */
736
737 static void sbdma_channel_stop(struct sbmacdma *d)
738 {
739         /*
740          * Turn off the DMA channel
741          */
742
743         __raw_writeq(0, d->sbdma_config1);
744
745         __raw_writeq(0, d->sbdma_dscrbase);
746
747         __raw_writeq(0, d->sbdma_config0);
748
749         /*
750          * Zero ring pointers
751          */
752
753         d->sbdma_addptr = NULL;
754         d->sbdma_remptr = NULL;
755 }
756
757 static inline void sbdma_align_skb(struct sk_buff *skb,
758                                    unsigned int power2, unsigned int offset)
759 {
760         unsigned char *addr = skb->data;
761         unsigned char *newaddr = PTR_ALIGN(addr, power2);
762
763         skb_reserve(skb, newaddr - addr + offset);
764 }
765
766
767 /**********************************************************************
768  *  SBDMA_ADD_RCVBUFFER(d,sb)
769  *
770  *  Add a buffer to the specified DMA channel.   For receive channels,
771  *  this queues a buffer for inbound packets.
772  *
773  *  Input parameters:
774  *         sc - softc structure
775  *          d - DMA channel descriptor
776  *         sb - sk_buff to add, or NULL if we should allocate one
777  *
778  *  Return value:
779  *         0 if buffer could not be added (ring is full)
780  *         1 if buffer added successfully
781  ********************************************************************* */
782
783
784 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
785                                struct sk_buff *sb)
786 {
787         struct net_device *dev = sc->sbm_dev;
788         struct sbdmadscr *dsc;
789         struct sbdmadscr *nextdsc;
790         struct sk_buff *sb_new = NULL;
791         int pktsize = ENET_PACKET_SIZE;
792
793         /* get pointer to our current place in the ring */
794
795         dsc = d->sbdma_addptr;
796         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
797
798         /*
799          * figure out if the ring is full - if the next descriptor
800          * is the same as the one that we're going to remove from
801          * the ring, the ring is full
802          */
803
804         if (nextdsc == d->sbdma_remptr) {
805                 return -ENOSPC;
806         }
807
808         /*
809          * Allocate a sk_buff if we don't already have one.
810          * If we do have an sk_buff, reset it so that it's empty.
811          *
812          * Note: sk_buffs don't seem to be guaranteed to have any sort
813          * of alignment when they are allocated.  Therefore, allocate enough
814          * extra space to make sure that:
815          *
816          *    1. the data does not start in the middle of a cache line.
817          *    2. The data does not end in the middle of a cache line
818          *    3. The buffer can be aligned such that the IP addresses are
819          *       naturally aligned.
820          *
821          *  Remember, the SOCs MAC writes whole cache lines at a time,
822          *  without reading the old contents first.  So, if the sk_buff's
823          *  data portion starts in the middle of a cache line, the SOC
824          *  DMA will trash the beginning (and ending) portions.
825          */
826
827         if (sb == NULL) {
828                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
829                                                SMP_CACHE_BYTES * 2 +
830                                                NET_IP_ALIGN);
831                 if (sb_new == NULL)
832                         return -ENOBUFS;
833
834                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
835         }
836         else {
837                 sb_new = sb;
838                 /*
839                  * nothing special to reinit buffer, it's already aligned
840                  * and sb->data already points to a good place.
841                  */
842         }
843
844         /*
845          * fill in the descriptor
846          */
847
848 #ifdef CONFIG_SBMAC_COALESCE
849         /*
850          * Do not interrupt per DMA transfer.
851          */
852         dsc->dscr_a = virt_to_phys(sb_new->data) |
853                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
854 #else
855         dsc->dscr_a = virt_to_phys(sb_new->data) |
856                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
857                 M_DMA_DSCRA_INTERRUPT;
858 #endif
859
860         /* receiving: no options */
861         dsc->dscr_b = 0;
862
863         /*
864          * fill in the context
865          */
866
867         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
868
869         /*
870          * point at next packet
871          */
872
873         d->sbdma_addptr = nextdsc;
874
875         /*
876          * Give the buffer to the DMA engine.
877          */
878
879         __raw_writeq(1, d->sbdma_dscrcnt);
880
881         return 0;                                       /* we did it */
882 }
883
884 /**********************************************************************
885  *  SBDMA_ADD_TXBUFFER(d,sb)
886  *
887  *  Add a transmit buffer to the specified DMA channel, causing a
888  *  transmit to start.
889  *
890  *  Input parameters:
891  *         d - DMA channel descriptor
892  *         sb - sk_buff to add
893  *
894  *  Return value:
895  *         0 transmit queued successfully
896  *         otherwise error code
897  ********************************************************************* */
898
899
900 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
901 {
902         struct sbdmadscr *dsc;
903         struct sbdmadscr *nextdsc;
904         uint64_t phys;
905         uint64_t ncb;
906         int length;
907
908         /* get pointer to our current place in the ring */
909
910         dsc = d->sbdma_addptr;
911         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
912
913         /*
914          * figure out if the ring is full - if the next descriptor
915          * is the same as the one that we're going to remove from
916          * the ring, the ring is full
917          */
918
919         if (nextdsc == d->sbdma_remptr) {
920                 return -ENOSPC;
921         }
922
923         /*
924          * Under Linux, it's not necessary to copy/coalesce buffers
925          * like it is on NetBSD.  We think they're all contiguous,
926          * but that may not be true for GBE.
927          */
928
929         length = sb->len;
930
931         /*
932          * fill in the descriptor.  Note that the number of cache
933          * blocks in the descriptor is the number of blocks
934          * *spanned*, so we need to add in the offset (if any)
935          * while doing the calculation.
936          */
937
938         phys = virt_to_phys(sb->data);
939         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
940
941         dsc->dscr_a = phys |
942                 V_DMA_DSCRA_A_SIZE(ncb) |
943 #ifndef CONFIG_SBMAC_COALESCE
944                 M_DMA_DSCRA_INTERRUPT |
945 #endif
946                 M_DMA_ETHTX_SOP;
947
948         /* transmitting: set outbound options and length */
949
950         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
951                 V_DMA_DSCRB_PKT_SIZE(length);
952
953         /*
954          * fill in the context
955          */
956
957         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
958
959         /*
960          * point at next packet
961          */
962
963         d->sbdma_addptr = nextdsc;
964
965         /*
966          * Give the buffer to the DMA engine.
967          */
968
969         __raw_writeq(1, d->sbdma_dscrcnt);
970
971         return 0;                                       /* we did it */
972 }
973
974
975
976
977 /**********************************************************************
978  *  SBDMA_EMPTYRING(d)
979  *
980  *  Free all allocated sk_buffs on the specified DMA channel;
981  *
982  *  Input parameters:
983  *         d  - DMA channel
984  *
985  *  Return value:
986  *         nothing
987  ********************************************************************* */
988
989 static void sbdma_emptyring(struct sbmacdma *d)
990 {
991         int idx;
992         struct sk_buff *sb;
993
994         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
995                 sb = d->sbdma_ctxtable[idx];
996                 if (sb) {
997                         dev_kfree_skb(sb);
998                         d->sbdma_ctxtable[idx] = NULL;
999                 }
1000         }
1001 }
1002
1003
1004 /**********************************************************************
1005  *  SBDMA_FILLRING(d)
1006  *
1007  *  Fill the specified DMA channel (must be receive channel)
1008  *  with sk_buffs
1009  *
1010  *  Input parameters:
1011  *         sc - softc structure
1012  *          d - DMA channel
1013  *
1014  *  Return value:
1015  *         nothing
1016  ********************************************************************* */
1017
1018 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019 {
1020         int idx;
1021
1022         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024                         break;
1025         }
1026 }
1027
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device *netdev)
1030 {
1031         struct sbmac_softc *sc = netdev_priv(netdev);
1032         int irq = sc->sbm_dev->irq;
1033
1034         __raw_writeq(0, sc->sbm_imr);
1035
1036         sbmac_intr(irq, netdev);
1037
1038 #ifdef CONFIG_SBMAC_COALESCE
1039         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041         sc->sbm_imr);
1042 #else
1043         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045 #endif
1046 }
1047 #endif
1048
1049 /**********************************************************************
1050  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051  *
1052  *  Process "completed" receive buffers on the specified DMA channel.
1053  *
1054  *  Input parameters:
1055  *            sc - softc structure
1056  *             d - DMA channel context
1057  *    work_to_do - no. of packets to process before enabling interrupt
1058  *                 again (for NAPI)
1059  *          poll - 1: using polling (for NAPI)
1060  *
1061  *  Return value:
1062  *         nothing
1063  ********************************************************************* */
1064
1065 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066                             int work_to_do, int poll)
1067 {
1068         struct net_device *dev = sc->sbm_dev;
1069         int curidx;
1070         int hwidx;
1071         struct sbdmadscr *dsc;
1072         struct sk_buff *sb;
1073         int len;
1074         int work_done = 0;
1075         int dropped = 0;
1076
1077         prefetch(d);
1078
1079 again:
1080         /* Check if the HW dropped any frames */
1081         dev->stats.rx_fifo_errors
1082             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084
1085         while (work_to_do-- > 0) {
1086                 /*
1087                  * figure out where we are (as an index) and where
1088                  * the hardware is (also as an index)
1089                  *
1090                  * This could be done faster if (for example) the
1091                  * descriptor table was page-aligned and contiguous in
1092                  * both virtual and physical memory -- you could then
1093                  * just compare the low-order bits of the virtual address
1094                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095                  */
1096
1097                 dsc = d->sbdma_remptr;
1098                 curidx = dsc - d->sbdma_dscrtable;
1099
1100                 prefetch(dsc);
1101                 prefetch(&d->sbdma_ctxtable[curidx]);
1102
1103                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104                          d->sbdma_dscrtable_phys) /
1105                         sizeof(*d->sbdma_dscrtable);
1106
1107                 /*
1108                  * If they're the same, that means we've processed all
1109                  * of the descriptors up to (but not including) the one that
1110                  * the hardware is working on right now.
1111                  */
1112
1113                 if (curidx == hwidx)
1114                         goto done;
1115
1116                 /*
1117                  * Otherwise, get the packet's sk_buff ptr back
1118                  */
1119
1120                 sb = d->sbdma_ctxtable[curidx];
1121                 d->sbdma_ctxtable[curidx] = NULL;
1122
1123                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124
1125                 /*
1126                  * Check packet status.  If good, process it.
1127                  * If not, silently drop it and put it back on the
1128                  * receive ring.
1129                  */
1130
1131                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132
1133                         /*
1134                          * Add a new buffer to replace the old one.  If we fail
1135                          * to allocate a buffer, we're going to drop this
1136                          * packet and put it right back on the receive ring.
1137                          */
1138
1139                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140                                      -ENOBUFS)) {
1141                                 dev->stats.rx_dropped++;
1142                                 /* Re-add old buffer */
1143                                 sbdma_add_rcvbuffer(sc, d, sb);
1144                                 /* No point in continuing at the moment */
1145                                 printk(KERN_ERR "dropped packet (1)\n");
1146                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147                                 goto done;
1148                         } else {
1149                                 /*
1150                                  * Set length into the packet
1151                                  */
1152                                 skb_put(sb,len);
1153
1154                                 /*
1155                                  * Buffer has been replaced on the
1156                                  * receive ring.  Pass the buffer to
1157                                  * the kernel
1158                                  */
1159                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160                                 /* Check hw IPv4/TCP checksum if supported */
1161                                 if (sc->rx_hw_checksum == ENABLE) {
1162                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1165                                                 /* don't need to set sb->csum */
1166                                         } else {
1167                                                 skb_checksum_none_assert(sb);
1168                                         }
1169                                 }
1170                                 prefetch(sb->data);
1171                                 prefetch((const void *)(((char *)sb->data)+32));
1172                                 if (poll)
1173                                         dropped = netif_receive_skb(sb);
1174                                 else
1175                                         dropped = netif_rx(sb);
1176
1177                                 if (dropped == NET_RX_DROP) {
1178                                         dev->stats.rx_dropped++;
1179                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180                                         goto done;
1181                                 }
1182                                 else {
1183                                         dev->stats.rx_bytes += len;
1184                                         dev->stats.rx_packets++;
1185                                 }
1186                         }
1187                 } else {
1188                         /*
1189                          * Packet was mangled somehow.  Just drop it and
1190                          * put it back on the receive ring.
1191                          */
1192                         dev->stats.rx_errors++;
1193                         sbdma_add_rcvbuffer(sc, d, sb);
1194                 }
1195
1196
1197                 /*
1198                  * .. and advance to the next buffer.
1199                  */
1200
1201                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202                 work_done++;
1203         }
1204         if (!poll) {
1205                 work_to_do = 32;
1206                 goto again; /* collect fifo drop statistics again */
1207         }
1208 done:
1209         return work_done;
1210 }
1211
1212 /**********************************************************************
1213  *  SBDMA_TX_PROCESS(sc,d)
1214  *
1215  *  Process "completed" transmit buffers on the specified DMA channel.
1216  *  This is normally called within the interrupt service routine.
1217  *  Note that this isn't really ideal for priority channels, since
1218  *  it processes all of the packets on a given channel before
1219  *  returning.
1220  *
1221  *  Input parameters:
1222  *      sc - softc structure
1223  *       d - DMA channel context
1224  *    poll - 1: using polling (for NAPI)
1225  *
1226  *  Return value:
1227  *         nothing
1228  ********************************************************************* */
1229
1230 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231                              int poll)
1232 {
1233         struct net_device *dev = sc->sbm_dev;
1234         int curidx;
1235         int hwidx;
1236         struct sbdmadscr *dsc;
1237         struct sk_buff *sb;
1238         unsigned long flags;
1239         int packets_handled = 0;
1240
1241         spin_lock_irqsave(&(sc->sbm_lock), flags);
1242
1243         if (d->sbdma_remptr == d->sbdma_addptr)
1244           goto end_unlock;
1245
1246         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248
1249         for (;;) {
1250                 /*
1251                  * figure out where we are (as an index) and where
1252                  * the hardware is (also as an index)
1253                  *
1254                  * This could be done faster if (for example) the
1255                  * descriptor table was page-aligned and contiguous in
1256                  * both virtual and physical memory -- you could then
1257                  * just compare the low-order bits of the virtual address
1258                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259                  */
1260
1261                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262
1263                 /*
1264                  * If they're the same, that means we've processed all
1265                  * of the descriptors up to (but not including) the one that
1266                  * the hardware is working on right now.
1267                  */
1268
1269                 if (curidx == hwidx)
1270                         break;
1271
1272                 /*
1273                  * Otherwise, get the packet's sk_buff ptr back
1274                  */
1275
1276                 dsc = &(d->sbdma_dscrtable[curidx]);
1277                 sb = d->sbdma_ctxtable[curidx];
1278                 d->sbdma_ctxtable[curidx] = NULL;
1279
1280                 /*
1281                  * Stats
1282                  */
1283
1284                 dev->stats.tx_bytes += sb->len;
1285                 dev->stats.tx_packets++;
1286
1287                 /*
1288                  * for transmits, we just free buffers.
1289                  */
1290
1291                 dev_kfree_skb_irq(sb);
1292
1293                 /*
1294                  * .. and advance to the next buffer.
1295                  */
1296
1297                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298
1299                 packets_handled++;
1300
1301         }
1302
1303         /*
1304          * Decide if we should wake up the protocol or not.
1305          * Other drivers seem to do this when we reach a low
1306          * watermark on the transmit queue.
1307          */
1308
1309         if (packets_handled)
1310                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1311
1312 end_unlock:
1313         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314
1315 }
1316
1317
1318
1319 /**********************************************************************
1320  *  SBMAC_INITCTX(s)
1321  *
1322  *  Initialize an Ethernet context structure - this is called
1323  *  once per MAC on the 1250.  Memory is allocated here, so don't
1324  *  call it again from inside the ioctl routines that bring the
1325  *  interface up/down
1326  *
1327  *  Input parameters:
1328  *         s - sbmac context structure
1329  *
1330  *  Return value:
1331  *         0
1332  ********************************************************************* */
1333
1334 static int sbmac_initctx(struct sbmac_softc *s)
1335 {
1336
1337         /*
1338          * figure out the addresses of some ports
1339          */
1340
1341         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349
1350         /*
1351          * Initialize the DMA channels.  Right now, only one per MAC is used
1352          * Note: Only do this _once_, as it allocates memory from the kernel!
1353          */
1354
1355         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357
1358         /*
1359          * initial state is OFF
1360          */
1361
1362         s->sbm_state = sbmac_state_off;
1363
1364         return 0;
1365 }
1366
1367
1368 static void sbdma_uninitctx(struct sbmacdma *d)
1369 {
1370         if (d->sbdma_dscrtable_unaligned) {
1371                 kfree(d->sbdma_dscrtable_unaligned);
1372                 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1373         }
1374
1375         if (d->sbdma_ctxtable) {
1376                 kfree(d->sbdma_ctxtable);
1377                 d->sbdma_ctxtable = NULL;
1378         }
1379 }
1380
1381
1382 static void sbmac_uninitctx(struct sbmac_softc *sc)
1383 {
1384         sbdma_uninitctx(&(sc->sbm_txdma));
1385         sbdma_uninitctx(&(sc->sbm_rxdma));
1386 }
1387
1388
1389 /**********************************************************************
1390  *  SBMAC_CHANNEL_START(s)
1391  *
1392  *  Start packet processing on this MAC.
1393  *
1394  *  Input parameters:
1395  *         s - sbmac structure
1396  *
1397  *  Return value:
1398  *         nothing
1399  ********************************************************************* */
1400
1401 static void sbmac_channel_start(struct sbmac_softc *s)
1402 {
1403         uint64_t reg;
1404         void __iomem *port;
1405         uint64_t cfg,fifo,framecfg;
1406         int idx, th_value;
1407
1408         /*
1409          * Don't do this if running
1410          */
1411
1412         if (s->sbm_state == sbmac_state_on)
1413                 return;
1414
1415         /*
1416          * Bring the controller out of reset, but leave it off.
1417          */
1418
1419         __raw_writeq(0, s->sbm_macenable);
1420
1421         /*
1422          * Ignore all received packets
1423          */
1424
1425         __raw_writeq(0, s->sbm_rxfilter);
1426
1427         /*
1428          * Calculate values for various control registers.
1429          */
1430
1431         cfg = M_MAC_RETRY_EN |
1432                 M_MAC_TX_HOLD_SOP_EN |
1433                 V_MAC_TX_PAUSE_CNT_16K |
1434                 M_MAC_AP_STAT_EN |
1435                 M_MAC_FAST_SYNC |
1436                 M_MAC_SS_EN |
1437                 0;
1438
1439         /*
1440          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1441          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1442          * Use a larger RD_THRSH for gigabit
1443          */
1444         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1445                 th_value = 28;
1446         else
1447                 th_value = 64;
1448
1449         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1450                 ((s->sbm_speed == sbmac_speed_1000)
1451                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1452                 V_MAC_TX_RL_THRSH(4) |
1453                 V_MAC_RX_PL_THRSH(4) |
1454                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1455                 V_MAC_RX_RL_THRSH(8) |
1456                 0;
1457
1458         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1459                 V_MAC_MAX_FRAMESZ_DEFAULT |
1460                 V_MAC_BACKOFF_SEL(1);
1461
1462         /*
1463          * Clear out the hash address map
1464          */
1465
1466         port = s->sbm_base + R_MAC_HASH_BASE;
1467         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1468                 __raw_writeq(0, port);
1469                 port += sizeof(uint64_t);
1470         }
1471
1472         /*
1473          * Clear out the exact-match table
1474          */
1475
1476         port = s->sbm_base + R_MAC_ADDR_BASE;
1477         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1478                 __raw_writeq(0, port);
1479                 port += sizeof(uint64_t);
1480         }
1481
1482         /*
1483          * Clear out the DMA Channel mapping table registers
1484          */
1485
1486         port = s->sbm_base + R_MAC_CHUP0_BASE;
1487         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1488                 __raw_writeq(0, port);
1489                 port += sizeof(uint64_t);
1490         }
1491
1492
1493         port = s->sbm_base + R_MAC_CHLO0_BASE;
1494         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495                 __raw_writeq(0, port);
1496                 port += sizeof(uint64_t);
1497         }
1498
1499         /*
1500          * Program the hardware address.  It goes into the hardware-address
1501          * register as well as the first filter register.
1502          */
1503
1504         reg = sbmac_addr2reg(s->sbm_hwaddr);
1505
1506         port = s->sbm_base + R_MAC_ADDR_BASE;
1507         __raw_writeq(reg, port);
1508         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1509
1510         __raw_writeq(reg, port);
1511
1512         /*
1513          * Set the receive filter for no packets, and write values
1514          * to the various config registers
1515          */
1516
1517         __raw_writeq(0, s->sbm_rxfilter);
1518         __raw_writeq(0, s->sbm_imr);
1519         __raw_writeq(framecfg, s->sbm_framecfg);
1520         __raw_writeq(fifo, s->sbm_fifocfg);
1521         __raw_writeq(cfg, s->sbm_maccfg);
1522
1523         /*
1524          * Initialize DMA channels (rings should be ok now)
1525          */
1526
1527         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1528         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1529
1530         /*
1531          * Configure the speed, duplex, and flow control
1532          */
1533
1534         sbmac_set_speed(s,s->sbm_speed);
1535         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1536
1537         /*
1538          * Fill the receive ring
1539          */
1540
1541         sbdma_fillring(s, &(s->sbm_rxdma));
1542
1543         /*
1544          * Turn on the rest of the bits in the enable register
1545          */
1546
1547 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1548         __raw_writeq(M_MAC_RXDMA_EN0 |
1549                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1550 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1551         __raw_writeq(M_MAC_RXDMA_EN0 |
1552                        M_MAC_TXDMA_EN0 |
1553                        M_MAC_RX_ENABLE |
1554                        M_MAC_TX_ENABLE, s->sbm_macenable);
1555 #else
1556 #error invalid SiByte MAC configuration
1557 #endif
1558
1559 #ifdef CONFIG_SBMAC_COALESCE
1560         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1561                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1562 #else
1563         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1564                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1565 #endif
1566
1567         /*
1568          * Enable receiving unicasts and broadcasts
1569          */
1570
1571         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1572
1573         /*
1574          * we're running now.
1575          */
1576
1577         s->sbm_state = sbmac_state_on;
1578
1579         /*
1580          * Program multicast addresses
1581          */
1582
1583         sbmac_setmulti(s);
1584
1585         /*
1586          * If channel was in promiscuous mode before, turn that on
1587          */
1588
1589         if (s->sbm_devflags & IFF_PROMISC) {
1590                 sbmac_promiscuous_mode(s,1);
1591         }
1592
1593 }
1594
1595
1596 /**********************************************************************
1597  *  SBMAC_CHANNEL_STOP(s)
1598  *
1599  *  Stop packet processing on this MAC.
1600  *
1601  *  Input parameters:
1602  *         s - sbmac structure
1603  *
1604  *  Return value:
1605  *         nothing
1606  ********************************************************************* */
1607
1608 static void sbmac_channel_stop(struct sbmac_softc *s)
1609 {
1610         /* don't do this if already stopped */
1611
1612         if (s->sbm_state == sbmac_state_off)
1613                 return;
1614
1615         /* don't accept any packets, disable all interrupts */
1616
1617         __raw_writeq(0, s->sbm_rxfilter);
1618         __raw_writeq(0, s->sbm_imr);
1619
1620         /* Turn off ticker */
1621
1622         /* XXX */
1623
1624         /* turn off receiver and transmitter */
1625
1626         __raw_writeq(0, s->sbm_macenable);
1627
1628         /* We're stopped now. */
1629
1630         s->sbm_state = sbmac_state_off;
1631
1632         /*
1633          * Stop DMA channels (rings should be ok now)
1634          */
1635
1636         sbdma_channel_stop(&(s->sbm_rxdma));
1637         sbdma_channel_stop(&(s->sbm_txdma));
1638
1639         /* Empty the receive and transmit rings */
1640
1641         sbdma_emptyring(&(s->sbm_rxdma));
1642         sbdma_emptyring(&(s->sbm_txdma));
1643
1644 }
1645
1646 /**********************************************************************
1647  *  SBMAC_SET_CHANNEL_STATE(state)
1648  *
1649  *  Set the channel's state ON or OFF
1650  *
1651  *  Input parameters:
1652  *         state - new state
1653  *
1654  *  Return value:
1655  *         old state
1656  ********************************************************************* */
1657 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1658                                                 enum sbmac_state state)
1659 {
1660         enum sbmac_state oldstate = sc->sbm_state;
1661
1662         /*
1663          * If same as previous state, return
1664          */
1665
1666         if (state == oldstate) {
1667                 return oldstate;
1668         }
1669
1670         /*
1671          * If new state is ON, turn channel on
1672          */
1673
1674         if (state == sbmac_state_on) {
1675                 sbmac_channel_start(sc);
1676         }
1677         else {
1678                 sbmac_channel_stop(sc);
1679         }
1680
1681         /*
1682          * Return previous state
1683          */
1684
1685         return oldstate;
1686 }
1687
1688
1689 /**********************************************************************
1690  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1691  *
1692  *  Turn on or off promiscuous mode
1693  *
1694  *  Input parameters:
1695  *         sc - softc
1696  *      onoff - 1 to turn on, 0 to turn off
1697  *
1698  *  Return value:
1699  *         nothing
1700  ********************************************************************* */
1701
1702 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1703 {
1704         uint64_t reg;
1705
1706         if (sc->sbm_state != sbmac_state_on)
1707                 return;
1708
1709         if (onoff) {
1710                 reg = __raw_readq(sc->sbm_rxfilter);
1711                 reg |= M_MAC_ALLPKT_EN;
1712                 __raw_writeq(reg, sc->sbm_rxfilter);
1713         }
1714         else {
1715                 reg = __raw_readq(sc->sbm_rxfilter);
1716                 reg &= ~M_MAC_ALLPKT_EN;
1717                 __raw_writeq(reg, sc->sbm_rxfilter);
1718         }
1719 }
1720
1721 /**********************************************************************
1722  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1723  *
1724  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1725  *
1726  *  Input parameters:
1727  *         sc - softc
1728  *
1729  *  Return value:
1730  *         nothing
1731  ********************************************************************* */
1732
1733 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1734 {
1735         uint64_t reg;
1736
1737         /* Hard code the off set to 15 for now */
1738         reg = __raw_readq(sc->sbm_rxfilter);
1739         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1740         __raw_writeq(reg, sc->sbm_rxfilter);
1741
1742         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1743            later does.  */
1744         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1745                 sc->rx_hw_checksum = DISABLE;
1746         } else {
1747                 sc->rx_hw_checksum = ENABLE;
1748         }
1749 }
1750
1751
1752 /**********************************************************************
1753  *  SBMAC_ADDR2REG(ptr)
1754  *
1755  *  Convert six bytes into the 64-bit register value that
1756  *  we typically write into the SBMAC's address/mcast registers
1757  *
1758  *  Input parameters:
1759  *         ptr - pointer to 6 bytes
1760  *
1761  *  Return value:
1762  *         register value
1763  ********************************************************************* */
1764
1765 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1766 {
1767         uint64_t reg = 0;
1768
1769         ptr += 6;
1770
1771         reg |= (uint64_t) *(--ptr);
1772         reg <<= 8;
1773         reg |= (uint64_t) *(--ptr);
1774         reg <<= 8;
1775         reg |= (uint64_t) *(--ptr);
1776         reg <<= 8;
1777         reg |= (uint64_t) *(--ptr);
1778         reg <<= 8;
1779         reg |= (uint64_t) *(--ptr);
1780         reg <<= 8;
1781         reg |= (uint64_t) *(--ptr);
1782
1783         return reg;
1784 }
1785
1786
1787 /**********************************************************************
1788  *  SBMAC_SET_SPEED(s,speed)
1789  *
1790  *  Configure LAN speed for the specified MAC.
1791  *  Warning: must be called when MAC is off!
1792  *
1793  *  Input parameters:
1794  *         s - sbmac structure
1795  *         speed - speed to set MAC to (see enum sbmac_speed)
1796  *
1797  *  Return value:
1798  *         1 if successful
1799  *      0 indicates invalid parameters
1800  ********************************************************************* */
1801
1802 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1803 {
1804         uint64_t cfg;
1805         uint64_t framecfg;
1806
1807         /*
1808          * Save new current values
1809          */
1810
1811         s->sbm_speed = speed;
1812
1813         if (s->sbm_state == sbmac_state_on)
1814                 return 0;       /* save for next restart */
1815
1816         /*
1817          * Read current register values
1818          */
1819
1820         cfg = __raw_readq(s->sbm_maccfg);
1821         framecfg = __raw_readq(s->sbm_framecfg);
1822
1823         /*
1824          * Mask out the stuff we want to change
1825          */
1826
1827         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1828         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1829                       M_MAC_SLOT_SIZE);
1830
1831         /*
1832          * Now add in the new bits
1833          */
1834
1835         switch (speed) {
1836         case sbmac_speed_10:
1837                 framecfg |= V_MAC_IFG_RX_10 |
1838                         V_MAC_IFG_TX_10 |
1839                         K_MAC_IFG_THRSH_10 |
1840                         V_MAC_SLOT_SIZE_10;
1841                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1842                 break;
1843
1844         case sbmac_speed_100:
1845                 framecfg |= V_MAC_IFG_RX_100 |
1846                         V_MAC_IFG_TX_100 |
1847                         V_MAC_IFG_THRSH_100 |
1848                         V_MAC_SLOT_SIZE_100;
1849                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1850                 break;
1851
1852         case sbmac_speed_1000:
1853                 framecfg |= V_MAC_IFG_RX_1000 |
1854                         V_MAC_IFG_TX_1000 |
1855                         V_MAC_IFG_THRSH_1000 |
1856                         V_MAC_SLOT_SIZE_1000;
1857                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1858                 break;
1859
1860         default:
1861                 return 0;
1862         }
1863
1864         /*
1865          * Send the bits back to the hardware
1866          */
1867
1868         __raw_writeq(framecfg, s->sbm_framecfg);
1869         __raw_writeq(cfg, s->sbm_maccfg);
1870
1871         return 1;
1872 }
1873
1874 /**********************************************************************
1875  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1876  *
1877  *  Set Ethernet duplex and flow control options for this MAC
1878  *  Warning: must be called when MAC is off!
1879  *
1880  *  Input parameters:
1881  *         s - sbmac structure
1882  *         duplex - duplex setting (see enum sbmac_duplex)
1883  *         fc - flow control setting (see enum sbmac_fc)
1884  *
1885  *  Return value:
1886  *         1 if ok
1887  *         0 if an invalid parameter combination was specified
1888  ********************************************************************* */
1889
1890 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1891                             enum sbmac_fc fc)
1892 {
1893         uint64_t cfg;
1894
1895         /*
1896          * Save new current values
1897          */
1898
1899         s->sbm_duplex = duplex;
1900         s->sbm_fc = fc;
1901
1902         if (s->sbm_state == sbmac_state_on)
1903                 return 0;       /* save for next restart */
1904
1905         /*
1906          * Read current register values
1907          */
1908
1909         cfg = __raw_readq(s->sbm_maccfg);
1910
1911         /*
1912          * Mask off the stuff we're about to change
1913          */
1914
1915         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1916
1917
1918         switch (duplex) {
1919         case sbmac_duplex_half:
1920                 switch (fc) {
1921                 case sbmac_fc_disabled:
1922                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1923                         break;
1924
1925                 case sbmac_fc_collision:
1926                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1927                         break;
1928
1929                 case sbmac_fc_carrier:
1930                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1931                         break;
1932
1933                 case sbmac_fc_frame:            /* not valid in half duplex */
1934                 default:                        /* invalid selection */
1935                         return 0;
1936                 }
1937                 break;
1938
1939         case sbmac_duplex_full:
1940                 switch (fc) {
1941                 case sbmac_fc_disabled:
1942                         cfg |= V_MAC_FC_CMD_DISABLED;
1943                         break;
1944
1945                 case sbmac_fc_frame:
1946                         cfg |= V_MAC_FC_CMD_ENABLED;
1947                         break;
1948
1949                 case sbmac_fc_collision:        /* not valid in full duplex */
1950                 case sbmac_fc_carrier:          /* not valid in full duplex */
1951                 default:
1952                         return 0;
1953                 }
1954                 break;
1955         default:
1956                 return 0;
1957         }
1958
1959         /*
1960          * Send the bits back to the hardware
1961          */
1962
1963         __raw_writeq(cfg, s->sbm_maccfg);
1964
1965         return 1;
1966 }
1967
1968
1969
1970
1971 /**********************************************************************
1972  *  SBMAC_INTR()
1973  *
1974  *  Interrupt handler for MAC interrupts
1975  *
1976  *  Input parameters:
1977  *         MAC structure
1978  *
1979  *  Return value:
1980  *         nothing
1981  ********************************************************************* */
1982 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1983 {
1984         struct net_device *dev = (struct net_device *) dev_instance;
1985         struct sbmac_softc *sc = netdev_priv(dev);
1986         uint64_t isr;
1987         int handled = 0;
1988
1989         /*
1990          * Read the ISR (this clears the bits in the real
1991          * register, except for counter addr)
1992          */
1993
1994         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1995
1996         if (isr == 0)
1997                 return IRQ_RETVAL(0);
1998         handled = 1;
1999
2000         /*
2001          * Transmits on channel 0
2002          */
2003
2004         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2005                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2006
2007         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2008                 if (napi_schedule_prep(&sc->napi)) {
2009                         __raw_writeq(0, sc->sbm_imr);
2010                         __napi_schedule(&sc->napi);
2011                         /* Depend on the exit from poll to reenable intr */
2012                 }
2013                 else {
2014                         /* may leave some packets behind */
2015                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
2016                                          SBMAC_MAX_RXDESCR * 2, 0);
2017                 }
2018         }
2019         return IRQ_RETVAL(handled);
2020 }
2021
2022 /**********************************************************************
2023  *  SBMAC_START_TX(skb,dev)
2024  *
2025  *  Start output on the specified interface.  Basically, we
2026  *  queue as many buffers as we can until the ring fills up, or
2027  *  we run off the end of the queue, whichever comes first.
2028  *
2029  *  Input parameters:
2030  *
2031  *
2032  *  Return value:
2033  *         nothing
2034  ********************************************************************* */
2035 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2036 {
2037         struct sbmac_softc *sc = netdev_priv(dev);
2038         unsigned long flags;
2039
2040         /* lock eth irq */
2041         spin_lock_irqsave(&sc->sbm_lock, flags);
2042
2043         /*
2044          * Put the buffer on the transmit ring.  If we
2045          * don't have room, stop the queue.
2046          */
2047
2048         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2049                 /* XXX save skb that we could not send */
2050                 netif_stop_queue(dev);
2051                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2052
2053                 return NETDEV_TX_BUSY;
2054         }
2055
2056         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2057
2058         return NETDEV_TX_OK;
2059 }
2060
2061 /**********************************************************************
2062  *  SBMAC_SETMULTI(sc)
2063  *
2064  *  Reprogram the multicast table into the hardware, given
2065  *  the list of multicasts associated with the interface
2066  *  structure.
2067  *
2068  *  Input parameters:
2069  *         sc - softc
2070  *
2071  *  Return value:
2072  *         nothing
2073  ********************************************************************* */
2074
2075 static void sbmac_setmulti(struct sbmac_softc *sc)
2076 {
2077         uint64_t reg;
2078         void __iomem *port;
2079         int idx;
2080         struct netdev_hw_addr *ha;
2081         struct net_device *dev = sc->sbm_dev;
2082
2083         /*
2084          * Clear out entire multicast table.  We do this by nuking
2085          * the entire hash table and all the direct matches except
2086          * the first one, which is used for our station address
2087          */
2088
2089         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2090                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2091                 __raw_writeq(0, port);
2092         }
2093
2094         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2095                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2096                 __raw_writeq(0, port);
2097         }
2098
2099         /*
2100          * Clear the filter to say we don't want any multicasts.
2101          */
2102
2103         reg = __raw_readq(sc->sbm_rxfilter);
2104         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2105         __raw_writeq(reg, sc->sbm_rxfilter);
2106
2107         if (dev->flags & IFF_ALLMULTI) {
2108                 /*
2109                  * Enable ALL multicasts.  Do this by inverting the
2110                  * multicast enable bit.
2111                  */
2112                 reg = __raw_readq(sc->sbm_rxfilter);
2113                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2114                 __raw_writeq(reg, sc->sbm_rxfilter);
2115                 return;
2116         }
2117
2118
2119         /*
2120          * Progam new multicast entries.  For now, only use the
2121          * perfect filter.  In the future we'll need to use the
2122          * hash filter if the perfect filter overflows
2123          */
2124
2125         /* XXX only using perfect filter for now, need to use hash
2126          * XXX if the table overflows */
2127
2128         idx = 1;                /* skip station address */
2129         netdev_for_each_mc_addr(ha, dev) {
2130                 if (idx == MAC_ADDR_COUNT)
2131                         break;
2132                 reg = sbmac_addr2reg(ha->addr);
2133                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2134                 __raw_writeq(reg, port);
2135                 idx++;
2136         }
2137
2138         /*
2139          * Enable the "accept multicast bits" if we programmed at least one
2140          * multicast.
2141          */
2142
2143         if (idx > 1) {
2144                 reg = __raw_readq(sc->sbm_rxfilter);
2145                 reg |= M_MAC_MCAST_EN;
2146                 __raw_writeq(reg, sc->sbm_rxfilter);
2147         }
2148 }
2149
2150 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2151 {
2152         if (new_mtu >  ENET_PACKET_SIZE)
2153                 return -EINVAL;
2154         _dev->mtu = new_mtu;
2155         pr_info("changing the mtu to %d\n", new_mtu);
2156         return 0;
2157 }
2158
2159 static const struct net_device_ops sbmac_netdev_ops = {
2160         .ndo_open               = sbmac_open,
2161         .ndo_stop               = sbmac_close,
2162         .ndo_start_xmit         = sbmac_start_tx,
2163         .ndo_set_rx_mode        = sbmac_set_rx_mode,
2164         .ndo_tx_timeout         = sbmac_tx_timeout,
2165         .ndo_do_ioctl           = sbmac_mii_ioctl,
2166         .ndo_change_mtu         = sb1250_change_mtu,
2167         .ndo_validate_addr      = eth_validate_addr,
2168         .ndo_set_mac_address    = eth_mac_addr,
2169 #ifdef CONFIG_NET_POLL_CONTROLLER
2170         .ndo_poll_controller    = sbmac_netpoll,
2171 #endif
2172 };
2173
2174 /**********************************************************************
2175  *  SBMAC_INIT(dev)
2176  *
2177  *  Attach routine - init hardware and hook ourselves into linux
2178  *
2179  *  Input parameters:
2180  *         dev - net_device structure
2181  *
2182  *  Return value:
2183  *         status
2184  ********************************************************************* */
2185
2186 static int sbmac_init(struct platform_device *pldev, long long base)
2187 {
2188         struct net_device *dev = platform_get_drvdata(pldev);
2189         int idx = pldev->id;
2190         struct sbmac_softc *sc = netdev_priv(dev);
2191         unsigned char *eaddr;
2192         uint64_t ea_reg;
2193         int i;
2194         int err;
2195
2196         sc->sbm_dev = dev;
2197         sc->sbe_idx = idx;
2198
2199         eaddr = sc->sbm_hwaddr;
2200
2201         /*
2202          * Read the ethernet address.  The firmware left this programmed
2203          * for us in the ethernet address register for each mac.
2204          */
2205
2206         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2207         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2208         for (i = 0; i < 6; i++) {
2209                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2210                 ea_reg >>= 8;
2211         }
2212
2213         for (i = 0; i < 6; i++) {
2214                 dev->dev_addr[i] = eaddr[i];
2215         }
2216
2217         /*
2218          * Initialize context (get pointers to registers and stuff), then
2219          * allocate the memory for the descriptor tables.
2220          */
2221
2222         sbmac_initctx(sc);
2223
2224         /*
2225          * Set up Linux device callins
2226          */
2227
2228         spin_lock_init(&(sc->sbm_lock));
2229
2230         dev->netdev_ops = &sbmac_netdev_ops;
2231         dev->watchdog_timeo = TX_TIMEOUT;
2232
2233         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2234
2235         dev->irq                = UNIT_INT(idx);
2236
2237         /* This is needed for PASS2 for Rx H/W checksum feature */
2238         sbmac_set_iphdr_offset(sc);
2239
2240         sc->mii_bus = mdiobus_alloc();
2241         if (sc->mii_bus == NULL) {
2242                 err = -ENOMEM;
2243                 goto uninit_ctx;
2244         }
2245
2246         sc->mii_bus->name = sbmac_mdio_string;
2247         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2248                 pldev->name, idx);
2249         sc->mii_bus->priv = sc;
2250         sc->mii_bus->read = sbmac_mii_read;
2251         sc->mii_bus->write = sbmac_mii_write;
2252
2253         sc->mii_bus->parent = &pldev->dev;
2254         /*
2255          * Probe PHY address
2256          */
2257         err = mdiobus_register(sc->mii_bus);
2258         if (err) {
2259                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2260                        dev->name);
2261                 goto free_mdio;
2262         }
2263         platform_set_drvdata(pldev, sc->mii_bus);
2264
2265         err = register_netdev(dev);
2266         if (err) {
2267                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2268                        sbmac_string, idx);
2269                 goto unreg_mdio;
2270         }
2271
2272         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2273
2274         if (sc->rx_hw_checksum == ENABLE)
2275                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2276
2277         /*
2278          * Display Ethernet address (this is called during the config
2279          * process so we need to finish off the config message that
2280          * was being displayed)
2281          */
2282         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2283                dev->name, base, eaddr);
2284
2285         return 0;
2286 unreg_mdio:
2287         mdiobus_unregister(sc->mii_bus);
2288 free_mdio:
2289         mdiobus_free(sc->mii_bus);
2290 uninit_ctx:
2291         sbmac_uninitctx(sc);
2292         return err;
2293 }
2294
2295
2296 static int sbmac_open(struct net_device *dev)
2297 {
2298         struct sbmac_softc *sc = netdev_priv(dev);
2299         int err;
2300
2301         if (debug > 1)
2302                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2303
2304         /*
2305          * map/route interrupt (clear status first, in case something
2306          * weird is pending; we haven't initialized the mac registers
2307          * yet)
2308          */
2309
2310         __raw_readq(sc->sbm_isr);
2311         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2312         if (err) {
2313                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2314                        dev->irq);
2315                 goto out_err;
2316         }
2317
2318         sc->sbm_speed = sbmac_speed_none;
2319         sc->sbm_duplex = sbmac_duplex_none;
2320         sc->sbm_fc = sbmac_fc_none;
2321         sc->sbm_pause = -1;
2322         sc->sbm_link = 0;
2323
2324         /*
2325          * Attach to the PHY
2326          */
2327         err = sbmac_mii_probe(dev);
2328         if (err)
2329                 goto out_unregister;
2330
2331         /*
2332          * Turn on the channel
2333          */
2334
2335         sbmac_set_channel_state(sc,sbmac_state_on);
2336
2337         netif_start_queue(dev);
2338
2339         sbmac_set_rx_mode(dev);
2340
2341         phy_start(sc->phy_dev);
2342
2343         napi_enable(&sc->napi);
2344
2345         return 0;
2346
2347 out_unregister:
2348         free_irq(dev->irq, dev);
2349 out_err:
2350         return err;
2351 }
2352
2353 static int sbmac_mii_probe(struct net_device *dev)
2354 {
2355         struct sbmac_softc *sc = netdev_priv(dev);
2356         struct phy_device *phy_dev;
2357
2358         phy_dev = phy_find_first(sc->mii_bus);
2359         if (!phy_dev) {
2360                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2361                 return -ENXIO;
2362         }
2363
2364         phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2365                               &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2366         if (IS_ERR(phy_dev)) {
2367                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2368                 return PTR_ERR(phy_dev);
2369         }
2370
2371         /* Remove any features not supported by the controller */
2372         phy_dev->supported &= SUPPORTED_10baseT_Half |
2373                               SUPPORTED_10baseT_Full |
2374                               SUPPORTED_100baseT_Half |
2375                               SUPPORTED_100baseT_Full |
2376                               SUPPORTED_1000baseT_Half |
2377                               SUPPORTED_1000baseT_Full |
2378                               SUPPORTED_Autoneg |
2379                               SUPPORTED_MII |
2380                               SUPPORTED_Pause |
2381                               SUPPORTED_Asym_Pause;
2382
2383         phy_attached_info(phy_dev);
2384
2385         phy_dev->advertising = phy_dev->supported;
2386
2387         sc->phy_dev = phy_dev;
2388
2389         return 0;
2390 }
2391
2392
2393 static void sbmac_mii_poll(struct net_device *dev)
2394 {
2395         struct sbmac_softc *sc = netdev_priv(dev);
2396         struct phy_device *phy_dev = sc->phy_dev;
2397         unsigned long flags;
2398         enum sbmac_fc fc;
2399         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2400
2401         link_chg = (sc->sbm_link != phy_dev->link);
2402         speed_chg = (sc->sbm_speed != phy_dev->speed);
2403         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2404         pause_chg = (sc->sbm_pause != phy_dev->pause);
2405
2406         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2407                 return;                                 /* Hmmm... */
2408
2409         if (!phy_dev->link) {
2410                 if (link_chg) {
2411                         sc->sbm_link = phy_dev->link;
2412                         sc->sbm_speed = sbmac_speed_none;
2413                         sc->sbm_duplex = sbmac_duplex_none;
2414                         sc->sbm_fc = sbmac_fc_disabled;
2415                         sc->sbm_pause = -1;
2416                         pr_info("%s: link unavailable\n", dev->name);
2417                 }
2418                 return;
2419         }
2420
2421         if (phy_dev->duplex == DUPLEX_FULL) {
2422                 if (phy_dev->pause)
2423                         fc = sbmac_fc_frame;
2424                 else
2425                         fc = sbmac_fc_disabled;
2426         } else
2427                 fc = sbmac_fc_collision;
2428         fc_chg = (sc->sbm_fc != fc);
2429
2430         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2431                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2432
2433         spin_lock_irqsave(&sc->sbm_lock, flags);
2434
2435         sc->sbm_speed = phy_dev->speed;
2436         sc->sbm_duplex = phy_dev->duplex;
2437         sc->sbm_fc = fc;
2438         sc->sbm_pause = phy_dev->pause;
2439         sc->sbm_link = phy_dev->link;
2440
2441         if ((speed_chg || duplex_chg || fc_chg) &&
2442             sc->sbm_state != sbmac_state_off) {
2443                 /*
2444                  * something changed, restart the channel
2445                  */
2446                 if (debug > 1)
2447                         pr_debug("%s: restarting channel "
2448                                  "because PHY state changed\n", dev->name);
2449                 sbmac_channel_stop(sc);
2450                 sbmac_channel_start(sc);
2451         }
2452
2453         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2454 }
2455
2456
2457 static void sbmac_tx_timeout (struct net_device *dev)
2458 {
2459         struct sbmac_softc *sc = netdev_priv(dev);
2460         unsigned long flags;
2461
2462         spin_lock_irqsave(&sc->sbm_lock, flags);
2463
2464
2465         netif_trans_update(dev); /* prevent tx timeout */
2466         dev->stats.tx_errors++;
2467
2468         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2469
2470         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2471 }
2472
2473
2474
2475
2476 static void sbmac_set_rx_mode(struct net_device *dev)
2477 {
2478         unsigned long flags;
2479         struct sbmac_softc *sc = netdev_priv(dev);
2480
2481         spin_lock_irqsave(&sc->sbm_lock, flags);
2482         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2483                 /*
2484                  * Promiscuous changed.
2485                  */
2486
2487                 if (dev->flags & IFF_PROMISC) {
2488                         sbmac_promiscuous_mode(sc,1);
2489                 }
2490                 else {
2491                         sbmac_promiscuous_mode(sc,0);
2492                 }
2493         }
2494         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2495
2496         /*
2497          * Program the multicasts.  Do this every time.
2498          */
2499
2500         sbmac_setmulti(sc);
2501
2502 }
2503
2504 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2505 {
2506         struct sbmac_softc *sc = netdev_priv(dev);
2507
2508         if (!netif_running(dev) || !sc->phy_dev)
2509                 return -EINVAL;
2510
2511         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2512 }
2513
2514 static int sbmac_close(struct net_device *dev)
2515 {
2516         struct sbmac_softc *sc = netdev_priv(dev);
2517
2518         napi_disable(&sc->napi);
2519
2520         phy_stop(sc->phy_dev);
2521
2522         sbmac_set_channel_state(sc, sbmac_state_off);
2523
2524         netif_stop_queue(dev);
2525
2526         if (debug > 1)
2527                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2528
2529         phy_disconnect(sc->phy_dev);
2530         sc->phy_dev = NULL;
2531         free_irq(dev->irq, dev);
2532
2533         sbdma_emptyring(&(sc->sbm_txdma));
2534         sbdma_emptyring(&(sc->sbm_rxdma));
2535
2536         return 0;
2537 }
2538
2539 static int sbmac_poll(struct napi_struct *napi, int budget)
2540 {
2541         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2542         int work_done;
2543
2544         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2545         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2546
2547         if (work_done < budget) {
2548                 napi_complete(napi);
2549
2550 #ifdef CONFIG_SBMAC_COALESCE
2551                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2552                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2553                              sc->sbm_imr);
2554 #else
2555                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2556                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2557 #endif
2558         }
2559
2560         return work_done;
2561 }
2562
2563
2564 static int sbmac_probe(struct platform_device *pldev)
2565 {
2566         struct net_device *dev;
2567         struct sbmac_softc *sc;
2568         void __iomem *sbm_base;
2569         struct resource *res;
2570         u64 sbmac_orig_hwaddr;
2571         int err;
2572
2573         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2574         BUG_ON(!res);
2575         sbm_base = ioremap_nocache(res->start, resource_size(res));
2576         if (!sbm_base) {
2577                 printk(KERN_ERR "%s: unable to map device registers\n",
2578                        dev_name(&pldev->dev));
2579                 err = -ENOMEM;
2580                 goto out_out;
2581         }
2582
2583         /*
2584          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2585          * value for us by the firmware if we're going to use this MAC.
2586          * If we find a zero, skip this MAC.
2587          */
2588         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2589         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2590                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2591         if (sbmac_orig_hwaddr == 0) {
2592                 err = 0;
2593                 goto out_unmap;
2594         }
2595
2596         /*
2597          * Okay, cool.  Initialize this MAC.
2598          */
2599         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2600         if (!dev) {
2601                 err = -ENOMEM;
2602                 goto out_unmap;
2603         }
2604
2605         platform_set_drvdata(pldev, dev);
2606         SET_NETDEV_DEV(dev, &pldev->dev);
2607
2608         sc = netdev_priv(dev);
2609         sc->sbm_base = sbm_base;
2610
2611         err = sbmac_init(pldev, res->start);
2612         if (err)
2613                 goto out_kfree;
2614
2615         return 0;
2616
2617 out_kfree:
2618         free_netdev(dev);
2619         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2620
2621 out_unmap:
2622         iounmap(sbm_base);
2623
2624 out_out:
2625         return err;
2626 }
2627
2628 static int __exit sbmac_remove(struct platform_device *pldev)
2629 {
2630         struct net_device *dev = platform_get_drvdata(pldev);
2631         struct sbmac_softc *sc = netdev_priv(dev);
2632
2633         unregister_netdev(dev);
2634         sbmac_uninitctx(sc);
2635         mdiobus_unregister(sc->mii_bus);
2636         mdiobus_free(sc->mii_bus);
2637         iounmap(sc->sbm_base);
2638         free_netdev(dev);
2639
2640         return 0;
2641 }
2642
2643 static struct platform_driver sbmac_driver = {
2644         .probe = sbmac_probe,
2645         .remove = __exit_p(sbmac_remove),
2646         .driver = {
2647                 .name = sbmac_string,
2648         },
2649 };
2650
2651 module_platform_driver(sbmac_driver);