GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec)
832 {
833         struct bcmgenet_priv *priv = netdev_priv(dev);
834         struct bcmgenet_rx_ring *ring;
835         unsigned int i;
836
837         ec->tx_max_coalesced_frames =
838                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839                                          DMA_MBUF_DONE_THRESH);
840         ec->rx_max_coalesced_frames =
841                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842                                          DMA_MBUF_DONE_THRESH);
843         ec->rx_coalesce_usecs =
844                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
845
846         for (i = 0; i < priv->hw_params->rx_queues; i++) {
847                 ring = &priv->rx_rings[i];
848                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
849         }
850         ring = &priv->rx_rings[DESC_INDEX];
851         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
852
853         return 0;
854 }
855
856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857                                      u32 usecs, u32 pkts)
858 {
859         struct bcmgenet_priv *priv = ring->priv;
860         unsigned int i = ring->index;
861         u32 reg;
862
863         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
864
865         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866         reg &= ~DMA_TIMEOUT_MASK;
867         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
869 }
870
871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872                                           struct ethtool_coalesce *ec)
873 {
874         struct dim_cq_moder moder;
875         u32 usecs, pkts;
876
877         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879         usecs = ring->rx_coalesce_usecs;
880         pkts = ring->rx_max_coalesced_frames;
881
882         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884                 usecs = moder.usec;
885                 pkts = moder.pkts;
886         }
887
888         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
890 }
891
892 static int bcmgenet_set_coalesce(struct net_device *dev,
893                                  struct ethtool_coalesce *ec)
894 {
895         struct bcmgenet_priv *priv = netdev_priv(dev);
896         unsigned int i;
897
898         /* Base system clock is 125Mhz, DMA timeout is this reference clock
899          * divided by 1024, which yields roughly 8.192us, our maximum value
900          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
901          */
902         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903             ec->tx_max_coalesced_frames == 0 ||
904             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906                 return -EINVAL;
907
908         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909                 return -EINVAL;
910
911         /* GENET TDMA hardware does not support a configurable timeout, but will
912          * always generate an interrupt either after MBDONE packets have been
913          * transmitted, or when the ring is empty.
914          */
915
916         /* Program all TX queues with the same values, as there is no
917          * ethtool knob to do coalescing on a per-queue basis
918          */
919         for (i = 0; i < priv->hw_params->tx_queues; i++)
920                 bcmgenet_tdma_ring_writel(priv, i,
921                                           ec->tx_max_coalesced_frames,
922                                           DMA_MBUF_DONE_THRESH);
923         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924                                   ec->tx_max_coalesced_frames,
925                                   DMA_MBUF_DONE_THRESH);
926
927         for (i = 0; i < priv->hw_params->rx_queues; i++)
928                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
930
931         return 0;
932 }
933
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936         BCMGENET_STAT_NETDEV = -1,
937         BCMGENET_STAT_MIB_RX,
938         BCMGENET_STAT_MIB_TX,
939         BCMGENET_STAT_RUNT,
940         BCMGENET_STAT_MISC,
941         BCMGENET_STAT_SOFT,
942 };
943
944 struct bcmgenet_stats {
945         char stat_string[ETH_GSTRING_LEN];
946         int stat_sizeof;
947         int stat_offset;
948         enum bcmgenet_stat_type type;
949         /* reg offset from UMAC base for misc counters */
950         u16 reg_offset;
951 };
952
953 #define STAT_NETDEV(m) { \
954         .stat_string = __stringify(m), \
955         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956         .stat_offset = offsetof(struct net_device_stats, m), \
957         .type = BCMGENET_STAT_NETDEV, \
958 }
959
960 #define STAT_GENET_MIB(str, m, _type) { \
961         .stat_string = str, \
962         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963         .stat_offset = offsetof(struct bcmgenet_priv, m), \
964         .type = _type, \
965 }
966
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
971
972 #define STAT_GENET_MISC(str, m, offset) { \
973         .stat_string = str, \
974         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975         .stat_offset = offsetof(struct bcmgenet_priv, m), \
976         .type = BCMGENET_STAT_MISC, \
977         .reg_offset = offset, \
978 }
979
980 #define STAT_GENET_Q(num) \
981         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982                         tx_rings[num].packets), \
983         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984                         tx_rings[num].bytes), \
985         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986                         rx_rings[num].bytes),    \
987         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988                         rx_rings[num].packets), \
989         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990                         rx_rings[num].errors), \
991         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992                         rx_rings[num].dropped)
993
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995  * between the end of TX stats and the beginning of the RX RUNT
996  */
997 #define BCMGENET_STAT_OFFSET    0xc
998
999 /* Hardware counters must be kept in sync because the order/offset
1000  * is important here (order in structure declaration = order in hardware)
1001  */
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003         /* general stats */
1004         STAT_NETDEV(rx_packets),
1005         STAT_NETDEV(tx_packets),
1006         STAT_NETDEV(rx_bytes),
1007         STAT_NETDEV(tx_bytes),
1008         STAT_NETDEV(rx_errors),
1009         STAT_NETDEV(tx_errors),
1010         STAT_NETDEV(rx_dropped),
1011         STAT_NETDEV(tx_dropped),
1012         STAT_NETDEV(multicast),
1013         /* UniMAC RSV counters */
1014         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043         /* UniMAC TSV counters */
1044         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073         /* UniMAC RUNT counters */
1074         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078         /* Misc UniMAC counters */
1079         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080                         UMAC_RBUF_OVFL_CNT_V1),
1081         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082                         UMAC_RBUF_ERR_CNT_V1),
1083         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089                             mib.tx_realloc_tsb_failed),
1090         /* Per TX queues */
1091         STAT_GENET_Q(0),
1092         STAT_GENET_Q(1),
1093         STAT_GENET_Q(2),
1094         STAT_GENET_Q(3),
1095         STAT_GENET_Q(16),
1096 };
1097
1098 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101                                  struct ethtool_drvinfo *info)
1102 {
1103         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104 }
1105
1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107 {
1108         switch (string_set) {
1109         case ETH_SS_STATS:
1110                 return BCMGENET_STATS_LEN;
1111         default:
1112                 return -EOPNOTSUPP;
1113         }
1114 }
1115
1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117                                  u8 *data)
1118 {
1119         int i;
1120
1121         switch (stringset) {
1122         case ETH_SS_STATS:
1123                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124                         memcpy(data + i * ETH_GSTRING_LEN,
1125                                bcmgenet_gstrings_stats[i].stat_string,
1126                                ETH_GSTRING_LEN);
1127                 }
1128                 break;
1129         }
1130 }
1131
1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133 {
1134         u16 new_offset;
1135         u32 val;
1136
1137         switch (offset) {
1138         case UMAC_RBUF_OVFL_CNT_V1:
1139                 if (GENET_IS_V2(priv))
1140                         new_offset = RBUF_OVFL_CNT_V2;
1141                 else
1142                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144                 val = bcmgenet_rbuf_readl(priv, new_offset);
1145                 /* clear if overflowed */
1146                 if (val == ~0)
1147                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1148                 break;
1149         case UMAC_RBUF_ERR_CNT_V1:
1150                 if (GENET_IS_V2(priv))
1151                         new_offset = RBUF_ERR_CNT_V2;
1152                 else
1153                         new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155                 val = bcmgenet_rbuf_readl(priv, new_offset);
1156                 /* clear if overflowed */
1157                 if (val == ~0)
1158                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1159                 break;
1160         default:
1161                 val = bcmgenet_umac_readl(priv, offset);
1162                 /* clear if overflowed */
1163                 if (val == ~0)
1164                         bcmgenet_umac_writel(priv, 0, offset);
1165                 break;
1166         }
1167
1168         return val;
1169 }
1170
1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172 {
1173         int i, j = 0;
1174
1175         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176                 const struct bcmgenet_stats *s;
1177                 u8 offset = 0;
1178                 u32 val = 0;
1179                 char *p;
1180
1181                 s = &bcmgenet_gstrings_stats[i];
1182                 switch (s->type) {
1183                 case BCMGENET_STAT_NETDEV:
1184                 case BCMGENET_STAT_SOFT:
1185                         continue;
1186                 case BCMGENET_STAT_RUNT:
1187                         offset += BCMGENET_STAT_OFFSET;
1188                         fallthrough;
1189                 case BCMGENET_STAT_MIB_TX:
1190                         offset += BCMGENET_STAT_OFFSET;
1191                         fallthrough;
1192                 case BCMGENET_STAT_MIB_RX:
1193                         val = bcmgenet_umac_readl(priv,
1194                                                   UMAC_MIB_START + j + offset);
1195                         offset = 0;     /* Reset Offset */
1196                         break;
1197                 case BCMGENET_STAT_MISC:
1198                         if (GENET_IS_V1(priv)) {
1199                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1200                                 /* clear if overflowed */
1201                                 if (val == ~0)
1202                                         bcmgenet_umac_writel(priv, 0,
1203                                                              s->reg_offset);
1204                         } else {
1205                                 val = bcmgenet_update_stat_misc(priv,
1206                                                                 s->reg_offset);
1207                         }
1208                         break;
1209                 }
1210
1211                 j += s->stat_sizeof;
1212                 p = (char *)priv + s->stat_offset;
1213                 *(u32 *)p = val;
1214         }
1215 }
1216
1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218                                        struct ethtool_stats *stats,
1219                                        u64 *data)
1220 {
1221         struct bcmgenet_priv *priv = netdev_priv(dev);
1222         int i;
1223
1224         if (netif_running(dev))
1225                 bcmgenet_update_mib_counters(priv);
1226
1227         dev->netdev_ops->ndo_get_stats(dev);
1228
1229         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230                 const struct bcmgenet_stats *s;
1231                 char *p;
1232
1233                 s = &bcmgenet_gstrings_stats[i];
1234                 if (s->type == BCMGENET_STAT_NETDEV)
1235                         p = (char *)&dev->stats;
1236                 else
1237                         p = (char *)priv;
1238                 p += s->stat_offset;
1239                 if (sizeof(unsigned long) != sizeof(u32) &&
1240                     s->stat_sizeof == sizeof(unsigned long))
1241                         data[i] = *(unsigned long *)p;
1242                 else
1243                         data[i] = *(u32 *)p;
1244         }
1245 }
1246
1247 void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1248                              bool tx_lpi_enabled)
1249 {
1250         struct bcmgenet_priv *priv = netdev_priv(dev);
1251         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1252         u32 reg;
1253
1254         if (enable && !priv->clk_eee_enabled) {
1255                 clk_prepare_enable(priv->clk_eee);
1256                 priv->clk_eee_enabled = true;
1257         }
1258
1259         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1260         if (enable)
1261                 reg |= EEE_EN;
1262         else
1263                 reg &= ~EEE_EN;
1264         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1265
1266         /* Enable EEE and switch to a 27Mhz clock automatically */
1267         reg = bcmgenet_readl(priv->base + off);
1268         if (tx_lpi_enabled)
1269                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1270         else
1271                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1272         bcmgenet_writel(reg, priv->base + off);
1273
1274         /* Do the same for thing for RBUF */
1275         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1276         if (enable)
1277                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1278         else
1279                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1280         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1281
1282         if (!enable && priv->clk_eee_enabled) {
1283                 clk_disable_unprepare(priv->clk_eee);
1284                 priv->clk_eee_enabled = false;
1285         }
1286
1287         priv->eee.eee_enabled = enable;
1288         priv->eee.eee_active = enable;
1289         priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1290 }
1291
1292 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1293 {
1294         struct bcmgenet_priv *priv = netdev_priv(dev);
1295         struct ethtool_eee *p = &priv->eee;
1296
1297         if (GENET_IS_V1(priv))
1298                 return -EOPNOTSUPP;
1299
1300         if (!dev->phydev)
1301                 return -ENODEV;
1302
1303         e->eee_enabled = p->eee_enabled;
1304         e->eee_active = p->eee_active;
1305         e->tx_lpi_enabled = p->tx_lpi_enabled;
1306         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1307
1308         return phy_ethtool_get_eee(dev->phydev, e);
1309 }
1310
1311 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1312 {
1313         struct bcmgenet_priv *priv = netdev_priv(dev);
1314         struct ethtool_eee *p = &priv->eee;
1315
1316         if (GENET_IS_V1(priv))
1317                 return -EOPNOTSUPP;
1318
1319         if (!dev->phydev)
1320                 return -ENODEV;
1321
1322         p->eee_enabled = e->eee_enabled;
1323
1324         if (!p->eee_enabled) {
1325                 bcmgenet_eee_enable_set(dev, false, false);
1326         } else {
1327                 p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1328                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1329                 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1330         }
1331
1332         return phy_ethtool_set_eee(dev->phydev, e);
1333 }
1334
1335 static int bcmgenet_validate_flow(struct net_device *dev,
1336                                   struct ethtool_rxnfc *cmd)
1337 {
1338         struct ethtool_usrip4_spec *l4_mask;
1339         struct ethhdr *eth_mask;
1340
1341         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1342                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1343                            cmd->fs.location);
1344                 return -EINVAL;
1345         }
1346
1347         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1348         case IP_USER_FLOW:
1349                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1350                 /* don't allow mask which isn't valid */
1351                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1352                     VALIDATE_MASK(l4_mask->ip4dst) ||
1353                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1354                     VALIDATE_MASK(l4_mask->proto) ||
1355                     VALIDATE_MASK(l4_mask->ip_ver) ||
1356                     VALIDATE_MASK(l4_mask->tos)) {
1357                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1358                         return -EINVAL;
1359                 }
1360                 break;
1361         case ETHER_FLOW:
1362                 eth_mask = &cmd->fs.m_u.ether_spec;
1363                 /* don't allow mask which isn't valid */
1364                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1365                     VALIDATE_MASK(eth_mask->h_source) ||
1366                     VALIDATE_MASK(eth_mask->h_proto)) {
1367                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1368                         return -EINVAL;
1369                 }
1370                 break;
1371         default:
1372                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1373                            cmd->fs.flow_type);
1374                 return -EINVAL;
1375         }
1376
1377         if ((cmd->fs.flow_type & FLOW_EXT)) {
1378                 /* don't allow mask which isn't valid */
1379                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1380                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1381                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1382                         return -EINVAL;
1383                 }
1384                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1385                         netdev_err(dev, "rxnfc: user-def not supported\n");
1386                         return -EINVAL;
1387                 }
1388         }
1389
1390         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1391                 /* don't allow mask which isn't valid */
1392                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1393                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1394                         return -EINVAL;
1395                 }
1396         }
1397
1398         return 0;
1399 }
1400
1401 static int bcmgenet_insert_flow(struct net_device *dev,
1402                                 struct ethtool_rxnfc *cmd)
1403 {
1404         struct bcmgenet_priv *priv = netdev_priv(dev);
1405         struct bcmgenet_rxnfc_rule *loc_rule;
1406         int err;
1407
1408         if (priv->hw_params->hfb_filter_size < 128) {
1409                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1410                 return -EINVAL;
1411         }
1412
1413         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1414             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1415                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1416                            cmd->fs.ring_cookie);
1417                 return -EINVAL;
1418         }
1419
1420         err = bcmgenet_validate_flow(dev, cmd);
1421         if (err)
1422                 return err;
1423
1424         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1425         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1426                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1427         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1428                 list_del(&loc_rule->list);
1429                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1430         }
1431         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1432         memcpy(&loc_rule->fs, &cmd->fs,
1433                sizeof(struct ethtool_rx_flow_spec));
1434
1435         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1436
1437         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1438
1439         return 0;
1440 }
1441
1442 static int bcmgenet_delete_flow(struct net_device *dev,
1443                                 struct ethtool_rxnfc *cmd)
1444 {
1445         struct bcmgenet_priv *priv = netdev_priv(dev);
1446         struct bcmgenet_rxnfc_rule *rule;
1447         int err = 0;
1448
1449         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1450                 return -EINVAL;
1451
1452         rule = &priv->rxnfc_rules[cmd->fs.location];
1453         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1454                 err =  -ENOENT;
1455                 goto out;
1456         }
1457
1458         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1459                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1460         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1461                 list_del(&rule->list);
1462                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1463         }
1464         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1465         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1466
1467 out:
1468         return err;
1469 }
1470
1471 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1472 {
1473         struct bcmgenet_priv *priv = netdev_priv(dev);
1474         int err = 0;
1475
1476         switch (cmd->cmd) {
1477         case ETHTOOL_SRXCLSRLINS:
1478                 err = bcmgenet_insert_flow(dev, cmd);
1479                 break;
1480         case ETHTOOL_SRXCLSRLDEL:
1481                 err = bcmgenet_delete_flow(dev, cmd);
1482                 break;
1483         default:
1484                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1485                             cmd->cmd);
1486                 return -EINVAL;
1487         }
1488
1489         return err;
1490 }
1491
1492 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1493                              int loc)
1494 {
1495         struct bcmgenet_priv *priv = netdev_priv(dev);
1496         struct bcmgenet_rxnfc_rule *rule;
1497         int err = 0;
1498
1499         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1500                 return -EINVAL;
1501
1502         rule = &priv->rxnfc_rules[loc];
1503         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1504                 err = -ENOENT;
1505         else
1506                 memcpy(&cmd->fs, &rule->fs,
1507                        sizeof(struct ethtool_rx_flow_spec));
1508
1509         return err;
1510 }
1511
1512 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1513 {
1514         struct list_head *pos;
1515         int res = 0;
1516
1517         list_for_each(pos, &priv->rxnfc_list)
1518                 res++;
1519
1520         return res;
1521 }
1522
1523 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1524                               u32 *rule_locs)
1525 {
1526         struct bcmgenet_priv *priv = netdev_priv(dev);
1527         struct bcmgenet_rxnfc_rule *rule;
1528         int err = 0;
1529         int i = 0;
1530
1531         switch (cmd->cmd) {
1532         case ETHTOOL_GRXRINGS:
1533                 cmd->data = priv->hw_params->rx_queues ?: 1;
1534                 break;
1535         case ETHTOOL_GRXCLSRLCNT:
1536                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1537                 cmd->data = MAX_NUM_OF_FS_RULES;
1538                 break;
1539         case ETHTOOL_GRXCLSRULE:
1540                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1541                 break;
1542         case ETHTOOL_GRXCLSRLALL:
1543                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1544                         if (i < cmd->rule_cnt)
1545                                 rule_locs[i++] = rule->fs.location;
1546                 cmd->rule_cnt = i;
1547                 cmd->data = MAX_NUM_OF_FS_RULES;
1548                 break;
1549         default:
1550                 err = -EOPNOTSUPP;
1551                 break;
1552         }
1553
1554         return err;
1555 }
1556
1557 /* standard ethtool support functions. */
1558 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1559         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1560                                      ETHTOOL_COALESCE_MAX_FRAMES |
1561                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1562         .begin                  = bcmgenet_begin,
1563         .complete               = bcmgenet_complete,
1564         .get_strings            = bcmgenet_get_strings,
1565         .get_sset_count         = bcmgenet_get_sset_count,
1566         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1567         .get_drvinfo            = bcmgenet_get_drvinfo,
1568         .get_link               = ethtool_op_get_link,
1569         .get_msglevel           = bcmgenet_get_msglevel,
1570         .set_msglevel           = bcmgenet_set_msglevel,
1571         .get_wol                = bcmgenet_get_wol,
1572         .set_wol                = bcmgenet_set_wol,
1573         .get_eee                = bcmgenet_get_eee,
1574         .set_eee                = bcmgenet_set_eee,
1575         .nway_reset             = phy_ethtool_nway_reset,
1576         .get_coalesce           = bcmgenet_get_coalesce,
1577         .set_coalesce           = bcmgenet_set_coalesce,
1578         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1579         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1580         .get_ts_info            = ethtool_op_get_ts_info,
1581         .get_rxnfc              = bcmgenet_get_rxnfc,
1582         .set_rxnfc              = bcmgenet_set_rxnfc,
1583 };
1584
1585 /* Power down the unimac, based on mode. */
1586 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1587                                 enum bcmgenet_power_mode mode)
1588 {
1589         int ret = 0;
1590         u32 reg;
1591
1592         switch (mode) {
1593         case GENET_POWER_CABLE_SENSE:
1594                 phy_detach(priv->dev->phydev);
1595                 break;
1596
1597         case GENET_POWER_WOL_MAGIC:
1598                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1599                 break;
1600
1601         case GENET_POWER_PASSIVE:
1602                 /* Power down LED */
1603                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1604                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1605                         if (GENET_IS_V5(priv))
1606                                 reg |= EXT_PWR_DOWN_PHY_EN |
1607                                        EXT_PWR_DOWN_PHY_RD |
1608                                        EXT_PWR_DOWN_PHY_SD |
1609                                        EXT_PWR_DOWN_PHY_RX |
1610                                        EXT_PWR_DOWN_PHY_TX |
1611                                        EXT_IDDQ_GLBL_PWR;
1612                         else
1613                                 reg |= EXT_PWR_DOWN_PHY;
1614
1615                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1616                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1617
1618                         bcmgenet_phy_power_set(priv->dev, false);
1619                 }
1620                 break;
1621         default:
1622                 break;
1623         }
1624
1625         return ret;
1626 }
1627
1628 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1629                               enum bcmgenet_power_mode mode)
1630 {
1631         u32 reg;
1632
1633         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1634                 return;
1635
1636         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1637
1638         switch (mode) {
1639         case GENET_POWER_PASSIVE:
1640                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1641                          EXT_ENERGY_DET_MASK);
1642                 if (GENET_IS_V5(priv)) {
1643                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1644                                  EXT_PWR_DOWN_PHY_RD |
1645                                  EXT_PWR_DOWN_PHY_SD |
1646                                  EXT_PWR_DOWN_PHY_RX |
1647                                  EXT_PWR_DOWN_PHY_TX |
1648                                  EXT_IDDQ_GLBL_PWR);
1649                         reg |=   EXT_PHY_RESET;
1650                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1651                         mdelay(1);
1652
1653                         reg &=  ~EXT_PHY_RESET;
1654                 } else {
1655                         reg &= ~EXT_PWR_DOWN_PHY;
1656                         reg |= EXT_PWR_DN_EN_LD;
1657                 }
1658                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1659                 bcmgenet_phy_power_set(priv->dev, true);
1660                 break;
1661
1662         case GENET_POWER_CABLE_SENSE:
1663                 /* enable APD */
1664                 if (!GENET_IS_V5(priv)) {
1665                         reg |= EXT_PWR_DN_EN_LD;
1666                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1667                 }
1668                 break;
1669         case GENET_POWER_WOL_MAGIC:
1670                 bcmgenet_wol_power_up_cfg(priv, mode);
1671                 return;
1672         default:
1673                 break;
1674         }
1675 }
1676
1677 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1678                                          struct bcmgenet_tx_ring *ring)
1679 {
1680         struct enet_cb *tx_cb_ptr;
1681
1682         tx_cb_ptr = ring->cbs;
1683         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1684
1685         /* Advancing local write pointer */
1686         if (ring->write_ptr == ring->end_ptr)
1687                 ring->write_ptr = ring->cb_ptr;
1688         else
1689                 ring->write_ptr++;
1690
1691         return tx_cb_ptr;
1692 }
1693
1694 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1695                                          struct bcmgenet_tx_ring *ring)
1696 {
1697         struct enet_cb *tx_cb_ptr;
1698
1699         tx_cb_ptr = ring->cbs;
1700         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1701
1702         /* Rewinding local write pointer */
1703         if (ring->write_ptr == ring->cb_ptr)
1704                 ring->write_ptr = ring->end_ptr;
1705         else
1706                 ring->write_ptr--;
1707
1708         return tx_cb_ptr;
1709 }
1710
1711 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1712 {
1713         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1714                                  INTRL2_CPU_MASK_SET);
1715 }
1716
1717 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1718 {
1719         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1720                                  INTRL2_CPU_MASK_CLEAR);
1721 }
1722
1723 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1724 {
1725         bcmgenet_intrl2_1_writel(ring->priv,
1726                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1727                                  INTRL2_CPU_MASK_SET);
1728 }
1729
1730 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1731 {
1732         bcmgenet_intrl2_1_writel(ring->priv,
1733                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1734                                  INTRL2_CPU_MASK_CLEAR);
1735 }
1736
1737 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1738 {
1739         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1740                                  INTRL2_CPU_MASK_SET);
1741 }
1742
1743 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1744 {
1745         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1746                                  INTRL2_CPU_MASK_CLEAR);
1747 }
1748
1749 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1750 {
1751         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1752                                  INTRL2_CPU_MASK_CLEAR);
1753 }
1754
1755 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1756 {
1757         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1758                                  INTRL2_CPU_MASK_SET);
1759 }
1760
1761 /* Simple helper to free a transmit control block's resources
1762  * Returns an skb when the last transmit control block associated with the
1763  * skb is freed.  The skb should be freed by the caller if necessary.
1764  */
1765 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1766                                            struct enet_cb *cb)
1767 {
1768         struct sk_buff *skb;
1769
1770         skb = cb->skb;
1771
1772         if (skb) {
1773                 cb->skb = NULL;
1774                 if (cb == GENET_CB(skb)->first_cb)
1775                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1776                                          dma_unmap_len(cb, dma_len),
1777                                          DMA_TO_DEVICE);
1778                 else
1779                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1780                                        dma_unmap_len(cb, dma_len),
1781                                        DMA_TO_DEVICE);
1782                 dma_unmap_addr_set(cb, dma_addr, 0);
1783
1784                 if (cb == GENET_CB(skb)->last_cb)
1785                         return skb;
1786
1787         } else if (dma_unmap_addr(cb, dma_addr)) {
1788                 dma_unmap_page(dev,
1789                                dma_unmap_addr(cb, dma_addr),
1790                                dma_unmap_len(cb, dma_len),
1791                                DMA_TO_DEVICE);
1792                 dma_unmap_addr_set(cb, dma_addr, 0);
1793         }
1794
1795         return NULL;
1796 }
1797
1798 /* Simple helper to free a receive control block's resources */
1799 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1800                                            struct enet_cb *cb)
1801 {
1802         struct sk_buff *skb;
1803
1804         skb = cb->skb;
1805         cb->skb = NULL;
1806
1807         if (dma_unmap_addr(cb, dma_addr)) {
1808                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1809                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1810                 dma_unmap_addr_set(cb, dma_addr, 0);
1811         }
1812
1813         return skb;
1814 }
1815
1816 /* Unlocked version of the reclaim routine */
1817 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1818                                           struct bcmgenet_tx_ring *ring)
1819 {
1820         struct bcmgenet_priv *priv = netdev_priv(dev);
1821         unsigned int txbds_processed = 0;
1822         unsigned int bytes_compl = 0;
1823         unsigned int pkts_compl = 0;
1824         unsigned int txbds_ready;
1825         unsigned int c_index;
1826         struct sk_buff *skb;
1827
1828         /* Clear status before servicing to reduce spurious interrupts */
1829         if (ring->index == DESC_INDEX)
1830                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1831                                          INTRL2_CPU_CLEAR);
1832         else
1833                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1834                                          INTRL2_CPU_CLEAR);
1835
1836         /* Compute how many buffers are transmitted since last xmit call */
1837         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1838                 & DMA_C_INDEX_MASK;
1839         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1840
1841         netif_dbg(priv, tx_done, dev,
1842                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1843                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1844
1845         /* Reclaim transmitted buffers */
1846         while (txbds_processed < txbds_ready) {
1847                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1848                                           &priv->tx_cbs[ring->clean_ptr]);
1849                 if (skb) {
1850                         pkts_compl++;
1851                         bytes_compl += GENET_CB(skb)->bytes_sent;
1852                         dev_consume_skb_any(skb);
1853                 }
1854
1855                 txbds_processed++;
1856                 if (likely(ring->clean_ptr < ring->end_ptr))
1857                         ring->clean_ptr++;
1858                 else
1859                         ring->clean_ptr = ring->cb_ptr;
1860         }
1861
1862         ring->free_bds += txbds_processed;
1863         ring->c_index = c_index;
1864
1865         ring->packets += pkts_compl;
1866         ring->bytes += bytes_compl;
1867
1868         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1869                                   pkts_compl, bytes_compl);
1870
1871         return txbds_processed;
1872 }
1873
1874 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1875                                 struct bcmgenet_tx_ring *ring)
1876 {
1877         unsigned int released;
1878
1879         spin_lock_bh(&ring->lock);
1880         released = __bcmgenet_tx_reclaim(dev, ring);
1881         spin_unlock_bh(&ring->lock);
1882
1883         return released;
1884 }
1885
1886 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1887 {
1888         struct bcmgenet_tx_ring *ring =
1889                 container_of(napi, struct bcmgenet_tx_ring, napi);
1890         unsigned int work_done = 0;
1891         struct netdev_queue *txq;
1892
1893         spin_lock(&ring->lock);
1894         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1895         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1896                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1897                 netif_tx_wake_queue(txq);
1898         }
1899         spin_unlock(&ring->lock);
1900
1901         if (work_done == 0) {
1902                 napi_complete(napi);
1903                 ring->int_enable(ring);
1904
1905                 return 0;
1906         }
1907
1908         return budget;
1909 }
1910
1911 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1912 {
1913         struct bcmgenet_priv *priv = netdev_priv(dev);
1914         int i;
1915
1916         if (netif_is_multiqueue(dev)) {
1917                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1918                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1919         }
1920
1921         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1922 }
1923
1924 /* Reallocate the SKB to put enough headroom in front of it and insert
1925  * the transmit checksum offsets in the descriptors
1926  */
1927 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1928                                         struct sk_buff *skb)
1929 {
1930         struct bcmgenet_priv *priv = netdev_priv(dev);
1931         struct status_64 *status = NULL;
1932         struct sk_buff *new_skb;
1933         u16 offset;
1934         u8 ip_proto;
1935         __be16 ip_ver;
1936         u32 tx_csum_info;
1937
1938         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1939                 /* If 64 byte status block enabled, must make sure skb has
1940                  * enough headroom for us to insert 64B status block.
1941                  */
1942                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1943                 if (!new_skb) {
1944                         dev_kfree_skb_any(skb);
1945                         priv->mib.tx_realloc_tsb_failed++;
1946                         dev->stats.tx_dropped++;
1947                         return NULL;
1948                 }
1949                 dev_consume_skb_any(skb);
1950                 skb = new_skb;
1951                 priv->mib.tx_realloc_tsb++;
1952         }
1953
1954         skb_push(skb, sizeof(*status));
1955         status = (struct status_64 *)skb->data;
1956
1957         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1958                 ip_ver = skb->protocol;
1959                 switch (ip_ver) {
1960                 case htons(ETH_P_IP):
1961                         ip_proto = ip_hdr(skb)->protocol;
1962                         break;
1963                 case htons(ETH_P_IPV6):
1964                         ip_proto = ipv6_hdr(skb)->nexthdr;
1965                         break;
1966                 default:
1967                         /* don't use UDP flag */
1968                         ip_proto = 0;
1969                         break;
1970                 }
1971
1972                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1973                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1974                                 (offset + skb->csum_offset) |
1975                                 STATUS_TX_CSUM_LV;
1976
1977                 /* Set the special UDP flag for UDP */
1978                 if (ip_proto == IPPROTO_UDP)
1979                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1980
1981                 status->tx_csum_info = tx_csum_info;
1982         }
1983
1984         return skb;
1985 }
1986
1987 static void bcmgenet_hide_tsb(struct sk_buff *skb)
1988 {
1989         __skb_pull(skb, sizeof(struct status_64));
1990 }
1991
1992 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1993 {
1994         struct bcmgenet_priv *priv = netdev_priv(dev);
1995         struct device *kdev = &priv->pdev->dev;
1996         struct bcmgenet_tx_ring *ring = NULL;
1997         struct enet_cb *tx_cb_ptr;
1998         struct netdev_queue *txq;
1999         int nr_frags, index;
2000         dma_addr_t mapping;
2001         unsigned int size;
2002         skb_frag_t *frag;
2003         u32 len_stat;
2004         int ret;
2005         int i;
2006
2007         index = skb_get_queue_mapping(skb);
2008         /* Mapping strategy:
2009          * queue_mapping = 0, unclassified, packet xmited through ring16
2010          * queue_mapping = 1, goes to ring 0. (highest priority queue
2011          * queue_mapping = 2, goes to ring 1.
2012          * queue_mapping = 3, goes to ring 2.
2013          * queue_mapping = 4, goes to ring 3.
2014          */
2015         if (index == 0)
2016                 index = DESC_INDEX;
2017         else
2018                 index -= 1;
2019
2020         ring = &priv->tx_rings[index];
2021         txq = netdev_get_tx_queue(dev, ring->queue);
2022
2023         nr_frags = skb_shinfo(skb)->nr_frags;
2024
2025         spin_lock(&ring->lock);
2026         if (ring->free_bds <= (nr_frags + 1)) {
2027                 if (!netif_tx_queue_stopped(txq)) {
2028                         netif_tx_stop_queue(txq);
2029                         netdev_err(dev,
2030                                    "%s: tx ring %d full when queue %d awake\n",
2031                                    __func__, index, ring->queue);
2032                 }
2033                 ret = NETDEV_TX_BUSY;
2034                 goto out;
2035         }
2036
2037         /* Retain how many bytes will be sent on the wire, without TSB inserted
2038          * by transmit checksum offload
2039          */
2040         GENET_CB(skb)->bytes_sent = skb->len;
2041
2042         /* add the Transmit Status Block */
2043         skb = bcmgenet_add_tsb(dev, skb);
2044         if (!skb) {
2045                 ret = NETDEV_TX_OK;
2046                 goto out;
2047         }
2048
2049         for (i = 0; i <= nr_frags; i++) {
2050                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2051
2052                 BUG_ON(!tx_cb_ptr);
2053
2054                 if (!i) {
2055                         /* Transmit single SKB or head of fragment list */
2056                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2057                         size = skb_headlen(skb);
2058                         mapping = dma_map_single(kdev, skb->data, size,
2059                                                  DMA_TO_DEVICE);
2060                 } else {
2061                         /* xmit fragment */
2062                         frag = &skb_shinfo(skb)->frags[i - 1];
2063                         size = skb_frag_size(frag);
2064                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2065                                                    DMA_TO_DEVICE);
2066                 }
2067
2068                 ret = dma_mapping_error(kdev, mapping);
2069                 if (ret) {
2070                         priv->mib.tx_dma_failed++;
2071                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2072                         ret = NETDEV_TX_OK;
2073                         goto out_unmap_frags;
2074                 }
2075                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2076                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2077
2078                 tx_cb_ptr->skb = skb;
2079
2080                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2081                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2082
2083                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2084                  * will need to restore software padding of "runt" packets
2085                  */
2086                 len_stat |= DMA_TX_APPEND_CRC;
2087
2088                 if (!i) {
2089                         len_stat |= DMA_SOP;
2090                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2091                                 len_stat |= DMA_TX_DO_CSUM;
2092                 }
2093                 if (i == nr_frags)
2094                         len_stat |= DMA_EOP;
2095
2096                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2097         }
2098
2099         GENET_CB(skb)->last_cb = tx_cb_ptr;
2100
2101         bcmgenet_hide_tsb(skb);
2102         skb_tx_timestamp(skb);
2103
2104         /* Decrement total BD count and advance our write pointer */
2105         ring->free_bds -= nr_frags + 1;
2106         ring->prod_index += nr_frags + 1;
2107         ring->prod_index &= DMA_P_INDEX_MASK;
2108
2109         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2110
2111         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2112                 netif_tx_stop_queue(txq);
2113
2114         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2115                 /* Packets are ready, update producer index */
2116                 bcmgenet_tdma_ring_writel(priv, ring->index,
2117                                           ring->prod_index, TDMA_PROD_INDEX);
2118 out:
2119         spin_unlock(&ring->lock);
2120
2121         return ret;
2122
2123 out_unmap_frags:
2124         /* Back up for failed control block mapping */
2125         bcmgenet_put_txcb(priv, ring);
2126
2127         /* Unmap successfully mapped control blocks */
2128         while (i-- > 0) {
2129                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2130                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2131         }
2132
2133         dev_kfree_skb(skb);
2134         goto out;
2135 }
2136
2137 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2138                                           struct enet_cb *cb)
2139 {
2140         struct device *kdev = &priv->pdev->dev;
2141         struct sk_buff *skb;
2142         struct sk_buff *rx_skb;
2143         dma_addr_t mapping;
2144
2145         /* Allocate a new Rx skb */
2146         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2147                                  GFP_ATOMIC | __GFP_NOWARN);
2148         if (!skb) {
2149                 priv->mib.alloc_rx_buff_failed++;
2150                 netif_err(priv, rx_err, priv->dev,
2151                           "%s: Rx skb allocation failed\n", __func__);
2152                 return NULL;
2153         }
2154
2155         /* DMA-map the new Rx skb */
2156         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2157                                  DMA_FROM_DEVICE);
2158         if (dma_mapping_error(kdev, mapping)) {
2159                 priv->mib.rx_dma_failed++;
2160                 dev_kfree_skb_any(skb);
2161                 netif_err(priv, rx_err, priv->dev,
2162                           "%s: Rx skb DMA mapping failed\n", __func__);
2163                 return NULL;
2164         }
2165
2166         /* Grab the current Rx skb from the ring and DMA-unmap it */
2167         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2168
2169         /* Put the new Rx skb on the ring */
2170         cb->skb = skb;
2171         dma_unmap_addr_set(cb, dma_addr, mapping);
2172         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2173         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2174
2175         /* Return the current Rx skb to caller */
2176         return rx_skb;
2177 }
2178
2179 /* bcmgenet_desc_rx - descriptor based rx process.
2180  * this could be called from bottom half, or from NAPI polling method.
2181  */
2182 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2183                                      unsigned int budget)
2184 {
2185         struct bcmgenet_priv *priv = ring->priv;
2186         struct net_device *dev = priv->dev;
2187         struct enet_cb *cb;
2188         struct sk_buff *skb;
2189         u32 dma_length_status;
2190         unsigned long dma_flag;
2191         int len;
2192         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2193         unsigned int bytes_processed = 0;
2194         unsigned int p_index, mask;
2195         unsigned int discards;
2196
2197         /* Clear status before servicing to reduce spurious interrupts */
2198         if (ring->index == DESC_INDEX) {
2199                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2200                                          INTRL2_CPU_CLEAR);
2201         } else {
2202                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2203                 bcmgenet_intrl2_1_writel(priv,
2204                                          mask,
2205                                          INTRL2_CPU_CLEAR);
2206         }
2207
2208         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2209
2210         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2211                    DMA_P_INDEX_DISCARD_CNT_MASK;
2212         if (discards > ring->old_discards) {
2213                 discards = discards - ring->old_discards;
2214                 ring->errors += discards;
2215                 ring->old_discards += discards;
2216
2217                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2218                 if (ring->old_discards >= 0xC000) {
2219                         ring->old_discards = 0;
2220                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2221                                                   RDMA_PROD_INDEX);
2222                 }
2223         }
2224
2225         p_index &= DMA_P_INDEX_MASK;
2226         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2227
2228         netif_dbg(priv, rx_status, dev,
2229                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2230
2231         while ((rxpktprocessed < rxpkttoprocess) &&
2232                (rxpktprocessed < budget)) {
2233                 struct status_64 *status;
2234                 __be16 rx_csum;
2235
2236                 cb = &priv->rx_cbs[ring->read_ptr];
2237                 skb = bcmgenet_rx_refill(priv, cb);
2238
2239                 if (unlikely(!skb)) {
2240                         ring->dropped++;
2241                         goto next;
2242                 }
2243
2244                 status = (struct status_64 *)skb->data;
2245                 dma_length_status = status->length_status;
2246                 if (dev->features & NETIF_F_RXCSUM) {
2247                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2248                         if (rx_csum) {
2249                                 skb->csum = (__force __wsum)ntohs(rx_csum);
2250                                 skb->ip_summed = CHECKSUM_COMPLETE;
2251                         }
2252                 }
2253
2254                 /* DMA flags and length are still valid no matter how
2255                  * we got the Receive Status Vector (64B RSB or register)
2256                  */
2257                 dma_flag = dma_length_status & 0xffff;
2258                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2259
2260                 netif_dbg(priv, rx_status, dev,
2261                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2262                           __func__, p_index, ring->c_index,
2263                           ring->read_ptr, dma_length_status);
2264
2265                 if (unlikely(len > RX_BUF_LENGTH)) {
2266                         netif_err(priv, rx_status, dev, "oversized packet\n");
2267                         dev->stats.rx_length_errors++;
2268                         dev->stats.rx_errors++;
2269                         dev_kfree_skb_any(skb);
2270                         goto next;
2271                 }
2272
2273                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2274                         netif_err(priv, rx_status, dev,
2275                                   "dropping fragmented packet!\n");
2276                         ring->errors++;
2277                         dev_kfree_skb_any(skb);
2278                         goto next;
2279                 }
2280
2281                 /* report errors */
2282                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2283                                                 DMA_RX_OV |
2284                                                 DMA_RX_NO |
2285                                                 DMA_RX_LG |
2286                                                 DMA_RX_RXER))) {
2287                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2288                                   (unsigned int)dma_flag);
2289                         if (dma_flag & DMA_RX_CRC_ERROR)
2290                                 dev->stats.rx_crc_errors++;
2291                         if (dma_flag & DMA_RX_OV)
2292                                 dev->stats.rx_over_errors++;
2293                         if (dma_flag & DMA_RX_NO)
2294                                 dev->stats.rx_frame_errors++;
2295                         if (dma_flag & DMA_RX_LG)
2296                                 dev->stats.rx_length_errors++;
2297                         dev->stats.rx_errors++;
2298                         dev_kfree_skb_any(skb);
2299                         goto next;
2300                 } /* error packet */
2301
2302                 skb_put(skb, len);
2303
2304                 /* remove RSB and hardware 2bytes added for IP alignment */
2305                 skb_pull(skb, 66);
2306                 len -= 66;
2307
2308                 if (priv->crc_fwd_en) {
2309                         skb_trim(skb, len - ETH_FCS_LEN);
2310                         len -= ETH_FCS_LEN;
2311                 }
2312
2313                 bytes_processed += len;
2314
2315                 /*Finish setting up the received SKB and send it to the kernel*/
2316                 skb->protocol = eth_type_trans(skb, priv->dev);
2317                 ring->packets++;
2318                 ring->bytes += len;
2319                 if (dma_flag & DMA_RX_MULT)
2320                         dev->stats.multicast++;
2321
2322                 /* Notify kernel */
2323                 napi_gro_receive(&ring->napi, skb);
2324                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2325
2326 next:
2327                 rxpktprocessed++;
2328                 if (likely(ring->read_ptr < ring->end_ptr))
2329                         ring->read_ptr++;
2330                 else
2331                         ring->read_ptr = ring->cb_ptr;
2332
2333                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2334                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2335         }
2336
2337         ring->dim.bytes = bytes_processed;
2338         ring->dim.packets = rxpktprocessed;
2339
2340         return rxpktprocessed;
2341 }
2342
2343 /* Rx NAPI polling method */
2344 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2345 {
2346         struct bcmgenet_rx_ring *ring = container_of(napi,
2347                         struct bcmgenet_rx_ring, napi);
2348         struct dim_sample dim_sample = {};
2349         unsigned int work_done;
2350
2351         work_done = bcmgenet_desc_rx(ring, budget);
2352
2353         if (work_done < budget) {
2354                 napi_complete_done(napi, work_done);
2355                 ring->int_enable(ring);
2356         }
2357
2358         if (ring->dim.use_dim) {
2359                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2360                                   ring->dim.bytes, &dim_sample);
2361                 net_dim(&ring->dim.dim, dim_sample);
2362         }
2363
2364         return work_done;
2365 }
2366
2367 static void bcmgenet_dim_work(struct work_struct *work)
2368 {
2369         struct dim *dim = container_of(work, struct dim, work);
2370         struct bcmgenet_net_dim *ndim =
2371                         container_of(dim, struct bcmgenet_net_dim, dim);
2372         struct bcmgenet_rx_ring *ring =
2373                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2374         struct dim_cq_moder cur_profile =
2375                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2376
2377         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2378         dim->state = DIM_START_MEASURE;
2379 }
2380
2381 /* Assign skb to RX DMA descriptor. */
2382 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2383                                      struct bcmgenet_rx_ring *ring)
2384 {
2385         struct enet_cb *cb;
2386         struct sk_buff *skb;
2387         int i;
2388
2389         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2390
2391         /* loop here for each buffer needing assign */
2392         for (i = 0; i < ring->size; i++) {
2393                 cb = ring->cbs + i;
2394                 skb = bcmgenet_rx_refill(priv, cb);
2395                 if (skb)
2396                         dev_consume_skb_any(skb);
2397                 if (!cb->skb)
2398                         return -ENOMEM;
2399         }
2400
2401         return 0;
2402 }
2403
2404 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2405 {
2406         struct sk_buff *skb;
2407         struct enet_cb *cb;
2408         int i;
2409
2410         for (i = 0; i < priv->num_rx_bds; i++) {
2411                 cb = &priv->rx_cbs[i];
2412
2413                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2414                 if (skb)
2415                         dev_consume_skb_any(skb);
2416         }
2417 }
2418
2419 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2420 {
2421         u32 reg;
2422
2423         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2424         if (reg & CMD_SW_RESET)
2425                 return;
2426         if (enable)
2427                 reg |= mask;
2428         else
2429                 reg &= ~mask;
2430         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2431
2432         /* UniMAC stops on a packet boundary, wait for a full-size packet
2433          * to be processed
2434          */
2435         if (enable == 0)
2436                 usleep_range(1000, 2000);
2437 }
2438
2439 static void reset_umac(struct bcmgenet_priv *priv)
2440 {
2441         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2442         bcmgenet_rbuf_ctrl_set(priv, 0);
2443         udelay(10);
2444
2445         /* issue soft reset and disable MAC while updating its registers */
2446         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2447         udelay(2);
2448 }
2449
2450 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2451 {
2452         /* Mask all interrupts.*/
2453         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2454         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2455         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2456         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2457 }
2458
2459 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2460 {
2461         u32 int0_enable = 0;
2462
2463         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2464          * and MoCA PHY
2465          */
2466         if (priv->internal_phy) {
2467                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2468                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2469                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2470         } else if (priv->ext_phy) {
2471                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2472         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2473                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2474                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2475         }
2476         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2477 }
2478
2479 static void init_umac(struct bcmgenet_priv *priv)
2480 {
2481         struct device *kdev = &priv->pdev->dev;
2482         u32 reg;
2483         u32 int0_enable = 0;
2484
2485         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2486
2487         reset_umac(priv);
2488
2489         /* clear tx/rx counter */
2490         bcmgenet_umac_writel(priv,
2491                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2492                              UMAC_MIB_CTRL);
2493         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2494
2495         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2496
2497         /* init tx registers, enable TSB */
2498         reg = bcmgenet_tbuf_ctrl_get(priv);
2499         reg |= TBUF_64B_EN;
2500         bcmgenet_tbuf_ctrl_set(priv, reg);
2501
2502         /* init rx registers, enable ip header optimization and RSB */
2503         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2504         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2505         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2506
2507         /* enable rx checksumming */
2508         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2509         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2510         /* If UniMAC forwards CRC, we need to skip over it to get
2511          * a valid CHK bit to be set in the per-packet status word
2512          */
2513         if (priv->crc_fwd_en)
2514                 reg |= RBUF_SKIP_FCS;
2515         else
2516                 reg &= ~RBUF_SKIP_FCS;
2517         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2518
2519         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2520                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2521
2522         bcmgenet_intr_disable(priv);
2523
2524         /* Configure backpressure vectors for MoCA */
2525         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2526                 reg = bcmgenet_bp_mc_get(priv);
2527                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2528
2529                 /* bp_mask: back pressure mask */
2530                 if (netif_is_multiqueue(priv->dev))
2531                         reg |= priv->hw_params->bp_in_mask;
2532                 else
2533                         reg &= ~priv->hw_params->bp_in_mask;
2534                 bcmgenet_bp_mc_set(priv, reg);
2535         }
2536
2537         /* Enable MDIO interrupts on GENET v3+ */
2538         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2539                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2540
2541         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2542
2543         dev_dbg(kdev, "done init umac\n");
2544 }
2545
2546 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2547                               void (*cb)(struct work_struct *work))
2548 {
2549         struct bcmgenet_net_dim *dim = &ring->dim;
2550
2551         INIT_WORK(&dim->dim.work, cb);
2552         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2553         dim->event_ctr = 0;
2554         dim->packets = 0;
2555         dim->bytes = 0;
2556 }
2557
2558 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2559 {
2560         struct bcmgenet_net_dim *dim = &ring->dim;
2561         struct dim_cq_moder moder;
2562         u32 usecs, pkts;
2563
2564         usecs = ring->rx_coalesce_usecs;
2565         pkts = ring->rx_max_coalesced_frames;
2566
2567         /* If DIM was enabled, re-apply default parameters */
2568         if (dim->use_dim) {
2569                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2570                 usecs = moder.usec;
2571                 pkts = moder.pkts;
2572         }
2573
2574         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2575 }
2576
2577 /* Initialize a Tx ring along with corresponding hardware registers */
2578 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2579                                   unsigned int index, unsigned int size,
2580                                   unsigned int start_ptr, unsigned int end_ptr)
2581 {
2582         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2583         u32 words_per_bd = WORDS_PER_BD(priv);
2584         u32 flow_period_val = 0;
2585
2586         spin_lock_init(&ring->lock);
2587         ring->priv = priv;
2588         ring->index = index;
2589         if (index == DESC_INDEX) {
2590                 ring->queue = 0;
2591                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2592                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2593         } else {
2594                 ring->queue = index + 1;
2595                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2596                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2597         }
2598         ring->cbs = priv->tx_cbs + start_ptr;
2599         ring->size = size;
2600         ring->clean_ptr = start_ptr;
2601         ring->c_index = 0;
2602         ring->free_bds = size;
2603         ring->write_ptr = start_ptr;
2604         ring->cb_ptr = start_ptr;
2605         ring->end_ptr = end_ptr - 1;
2606         ring->prod_index = 0;
2607
2608         /* Set flow period for ring != 16 */
2609         if (index != DESC_INDEX)
2610                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2611
2612         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2613         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2614         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2615         /* Disable rate control for now */
2616         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2617                                   TDMA_FLOW_PERIOD);
2618         bcmgenet_tdma_ring_writel(priv, index,
2619                                   ((size << DMA_RING_SIZE_SHIFT) |
2620                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2621
2622         /* Set start and end address, read and write pointers */
2623         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2624                                   DMA_START_ADDR);
2625         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2626                                   TDMA_READ_PTR);
2627         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2628                                   TDMA_WRITE_PTR);
2629         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2630                                   DMA_END_ADDR);
2631
2632         /* Initialize Tx NAPI */
2633         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2634                           NAPI_POLL_WEIGHT);
2635 }
2636
2637 /* Initialize a RDMA ring */
2638 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2639                                  unsigned int index, unsigned int size,
2640                                  unsigned int start_ptr, unsigned int end_ptr)
2641 {
2642         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2643         u32 words_per_bd = WORDS_PER_BD(priv);
2644         int ret;
2645
2646         ring->priv = priv;
2647         ring->index = index;
2648         if (index == DESC_INDEX) {
2649                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2650                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2651         } else {
2652                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2653                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2654         }
2655         ring->cbs = priv->rx_cbs + start_ptr;
2656         ring->size = size;
2657         ring->c_index = 0;
2658         ring->read_ptr = start_ptr;
2659         ring->cb_ptr = start_ptr;
2660         ring->end_ptr = end_ptr - 1;
2661
2662         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2663         if (ret)
2664                 return ret;
2665
2666         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2667         bcmgenet_init_rx_coalesce(ring);
2668
2669         /* Initialize Rx NAPI */
2670         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2671                        NAPI_POLL_WEIGHT);
2672
2673         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2674         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2675         bcmgenet_rdma_ring_writel(priv, index,
2676                                   ((size << DMA_RING_SIZE_SHIFT) |
2677                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2678         bcmgenet_rdma_ring_writel(priv, index,
2679                                   (DMA_FC_THRESH_LO <<
2680                                    DMA_XOFF_THRESHOLD_SHIFT) |
2681                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2682
2683         /* Set start and end address, read and write pointers */
2684         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2685                                   DMA_START_ADDR);
2686         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2687                                   RDMA_READ_PTR);
2688         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2689                                   RDMA_WRITE_PTR);
2690         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2691                                   DMA_END_ADDR);
2692
2693         return ret;
2694 }
2695
2696 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2697 {
2698         unsigned int i;
2699         struct bcmgenet_tx_ring *ring;
2700
2701         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2702                 ring = &priv->tx_rings[i];
2703                 napi_enable(&ring->napi);
2704                 ring->int_enable(ring);
2705         }
2706
2707         ring = &priv->tx_rings[DESC_INDEX];
2708         napi_enable(&ring->napi);
2709         ring->int_enable(ring);
2710 }
2711
2712 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2713 {
2714         unsigned int i;
2715         struct bcmgenet_tx_ring *ring;
2716
2717         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2718                 ring = &priv->tx_rings[i];
2719                 napi_disable(&ring->napi);
2720         }
2721
2722         ring = &priv->tx_rings[DESC_INDEX];
2723         napi_disable(&ring->napi);
2724 }
2725
2726 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2727 {
2728         unsigned int i;
2729         struct bcmgenet_tx_ring *ring;
2730
2731         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2732                 ring = &priv->tx_rings[i];
2733                 netif_napi_del(&ring->napi);
2734         }
2735
2736         ring = &priv->tx_rings[DESC_INDEX];
2737         netif_napi_del(&ring->napi);
2738 }
2739
2740 /* Initialize Tx queues
2741  *
2742  * Queues 0-3 are priority-based, each one has 32 descriptors,
2743  * with queue 0 being the highest priority queue.
2744  *
2745  * Queue 16 is the default Tx queue with
2746  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2747  *
2748  * The transmit control block pool is then partitioned as follows:
2749  * - Tx queue 0 uses tx_cbs[0..31]
2750  * - Tx queue 1 uses tx_cbs[32..63]
2751  * - Tx queue 2 uses tx_cbs[64..95]
2752  * - Tx queue 3 uses tx_cbs[96..127]
2753  * - Tx queue 16 uses tx_cbs[128..255]
2754  */
2755 static void bcmgenet_init_tx_queues(struct net_device *dev)
2756 {
2757         struct bcmgenet_priv *priv = netdev_priv(dev);
2758         u32 i, dma_enable;
2759         u32 dma_ctrl, ring_cfg;
2760         u32 dma_priority[3] = {0, 0, 0};
2761
2762         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2763         dma_enable = dma_ctrl & DMA_EN;
2764         dma_ctrl &= ~DMA_EN;
2765         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2766
2767         dma_ctrl = 0;
2768         ring_cfg = 0;
2769
2770         /* Enable strict priority arbiter mode */
2771         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2772
2773         /* Initialize Tx priority queues */
2774         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2775                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2776                                       i * priv->hw_params->tx_bds_per_q,
2777                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2778                 ring_cfg |= (1 << i);
2779                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2780                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2781                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2782         }
2783
2784         /* Initialize Tx default queue 16 */
2785         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2786                               priv->hw_params->tx_queues *
2787                               priv->hw_params->tx_bds_per_q,
2788                               TOTAL_DESC);
2789         ring_cfg |= (1 << DESC_INDEX);
2790         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2791         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2792                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2793                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2794
2795         /* Set Tx queue priorities */
2796         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2797         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2798         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2799
2800         /* Enable Tx queues */
2801         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2802
2803         /* Enable Tx DMA */
2804         if (dma_enable)
2805                 dma_ctrl |= DMA_EN;
2806         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2807 }
2808
2809 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2810 {
2811         unsigned int i;
2812         struct bcmgenet_rx_ring *ring;
2813
2814         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2815                 ring = &priv->rx_rings[i];
2816                 napi_enable(&ring->napi);
2817                 ring->int_enable(ring);
2818         }
2819
2820         ring = &priv->rx_rings[DESC_INDEX];
2821         napi_enable(&ring->napi);
2822         ring->int_enable(ring);
2823 }
2824
2825 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2826 {
2827         unsigned int i;
2828         struct bcmgenet_rx_ring *ring;
2829
2830         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2831                 ring = &priv->rx_rings[i];
2832                 napi_disable(&ring->napi);
2833                 cancel_work_sync(&ring->dim.dim.work);
2834         }
2835
2836         ring = &priv->rx_rings[DESC_INDEX];
2837         napi_disable(&ring->napi);
2838         cancel_work_sync(&ring->dim.dim.work);
2839 }
2840
2841 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2842 {
2843         unsigned int i;
2844         struct bcmgenet_rx_ring *ring;
2845
2846         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2847                 ring = &priv->rx_rings[i];
2848                 netif_napi_del(&ring->napi);
2849         }
2850
2851         ring = &priv->rx_rings[DESC_INDEX];
2852         netif_napi_del(&ring->napi);
2853 }
2854
2855 /* Initialize Rx queues
2856  *
2857  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2858  * used to direct traffic to these queues.
2859  *
2860  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2861  */
2862 static int bcmgenet_init_rx_queues(struct net_device *dev)
2863 {
2864         struct bcmgenet_priv *priv = netdev_priv(dev);
2865         u32 i;
2866         u32 dma_enable;
2867         u32 dma_ctrl;
2868         u32 ring_cfg;
2869         int ret;
2870
2871         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2872         dma_enable = dma_ctrl & DMA_EN;
2873         dma_ctrl &= ~DMA_EN;
2874         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2875
2876         dma_ctrl = 0;
2877         ring_cfg = 0;
2878
2879         /* Initialize Rx priority queues */
2880         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2881                 ret = bcmgenet_init_rx_ring(priv, i,
2882                                             priv->hw_params->rx_bds_per_q,
2883                                             i * priv->hw_params->rx_bds_per_q,
2884                                             (i + 1) *
2885                                             priv->hw_params->rx_bds_per_q);
2886                 if (ret)
2887                         return ret;
2888
2889                 ring_cfg |= (1 << i);
2890                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2891         }
2892
2893         /* Initialize Rx default queue 16 */
2894         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2895                                     priv->hw_params->rx_queues *
2896                                     priv->hw_params->rx_bds_per_q,
2897                                     TOTAL_DESC);
2898         if (ret)
2899                 return ret;
2900
2901         ring_cfg |= (1 << DESC_INDEX);
2902         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2903
2904         /* Enable rings */
2905         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2906
2907         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2908         if (dma_enable)
2909                 dma_ctrl |= DMA_EN;
2910         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2911
2912         return 0;
2913 }
2914
2915 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2916 {
2917         int ret = 0;
2918         int timeout = 0;
2919         u32 reg;
2920         u32 dma_ctrl;
2921         int i;
2922
2923         /* Disable TDMA to stop add more frames in TX DMA */
2924         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2925         reg &= ~DMA_EN;
2926         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2927
2928         /* Check TDMA status register to confirm TDMA is disabled */
2929         while (timeout++ < DMA_TIMEOUT_VAL) {
2930                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2931                 if (reg & DMA_DISABLED)
2932                         break;
2933
2934                 udelay(1);
2935         }
2936
2937         if (timeout == DMA_TIMEOUT_VAL) {
2938                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2939                 ret = -ETIMEDOUT;
2940         }
2941
2942         /* Wait 10ms for packet drain in both tx and rx dma */
2943         usleep_range(10000, 20000);
2944
2945         /* Disable RDMA */
2946         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2947         reg &= ~DMA_EN;
2948         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2949
2950         timeout = 0;
2951         /* Check RDMA status register to confirm RDMA is disabled */
2952         while (timeout++ < DMA_TIMEOUT_VAL) {
2953                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2954                 if (reg & DMA_DISABLED)
2955                         break;
2956
2957                 udelay(1);
2958         }
2959
2960         if (timeout == DMA_TIMEOUT_VAL) {
2961                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2962                 ret = -ETIMEDOUT;
2963         }
2964
2965         dma_ctrl = 0;
2966         for (i = 0; i < priv->hw_params->rx_queues; i++)
2967                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2968         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2969         reg &= ~dma_ctrl;
2970         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2971
2972         dma_ctrl = 0;
2973         for (i = 0; i < priv->hw_params->tx_queues; i++)
2974                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2975         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2976         reg &= ~dma_ctrl;
2977         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2978
2979         return ret;
2980 }
2981
2982 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2983 {
2984         struct netdev_queue *txq;
2985         int i;
2986
2987         bcmgenet_fini_rx_napi(priv);
2988         bcmgenet_fini_tx_napi(priv);
2989
2990         for (i = 0; i < priv->num_tx_bds; i++)
2991                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2992                                                   priv->tx_cbs + i));
2993
2994         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2995                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2996                 netdev_tx_reset_queue(txq);
2997         }
2998
2999         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3000         netdev_tx_reset_queue(txq);
3001
3002         bcmgenet_free_rx_buffers(priv);
3003         kfree(priv->rx_cbs);
3004         kfree(priv->tx_cbs);
3005 }
3006
3007 /* init_edma: Initialize DMA control register */
3008 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3009 {
3010         int ret;
3011         unsigned int i;
3012         struct enet_cb *cb;
3013
3014         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3015
3016         /* Initialize common Rx ring structures */
3017         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3018         priv->num_rx_bds = TOTAL_DESC;
3019         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3020                                GFP_KERNEL);
3021         if (!priv->rx_cbs)
3022                 return -ENOMEM;
3023
3024         for (i = 0; i < priv->num_rx_bds; i++) {
3025                 cb = priv->rx_cbs + i;
3026                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3027         }
3028
3029         /* Initialize common TX ring structures */
3030         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3031         priv->num_tx_bds = TOTAL_DESC;
3032         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3033                                GFP_KERNEL);
3034         if (!priv->tx_cbs) {
3035                 kfree(priv->rx_cbs);
3036                 return -ENOMEM;
3037         }
3038
3039         for (i = 0; i < priv->num_tx_bds; i++) {
3040                 cb = priv->tx_cbs + i;
3041                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3042         }
3043
3044         /* Init rDma */
3045         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3046                              DMA_SCB_BURST_SIZE);
3047
3048         /* Initialize Rx queues */
3049         ret = bcmgenet_init_rx_queues(priv->dev);
3050         if (ret) {
3051                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3052                 bcmgenet_free_rx_buffers(priv);
3053                 kfree(priv->rx_cbs);
3054                 kfree(priv->tx_cbs);
3055                 return ret;
3056         }
3057
3058         /* Init tDma */
3059         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3060                              DMA_SCB_BURST_SIZE);
3061
3062         /* Initialize Tx queues */
3063         bcmgenet_init_tx_queues(priv->dev);
3064
3065         return 0;
3066 }
3067
3068 /* Interrupt bottom half */
3069 static void bcmgenet_irq_task(struct work_struct *work)
3070 {
3071         unsigned int status;
3072         struct bcmgenet_priv *priv = container_of(
3073                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3074
3075         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3076
3077         spin_lock_irq(&priv->lock);
3078         status = priv->irq0_stat;
3079         priv->irq0_stat = 0;
3080         spin_unlock_irq(&priv->lock);
3081
3082         if (status & UMAC_IRQ_PHY_DET_R &&
3083             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3084                 phy_init_hw(priv->dev->phydev);
3085                 genphy_config_aneg(priv->dev->phydev);
3086         }
3087
3088         /* Link UP/DOWN event */
3089         if (status & UMAC_IRQ_LINK_EVENT)
3090                 phy_mac_interrupt(priv->dev->phydev);
3091
3092 }
3093
3094 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3095 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3096 {
3097         struct bcmgenet_priv *priv = dev_id;
3098         struct bcmgenet_rx_ring *rx_ring;
3099         struct bcmgenet_tx_ring *tx_ring;
3100         unsigned int index, status;
3101
3102         /* Read irq status */
3103         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3104                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3105
3106         /* clear interrupts */
3107         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3108
3109         netif_dbg(priv, intr, priv->dev,
3110                   "%s: IRQ=0x%x\n", __func__, status);
3111
3112         /* Check Rx priority queue interrupts */
3113         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3114                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3115                         continue;
3116
3117                 rx_ring = &priv->rx_rings[index];
3118                 rx_ring->dim.event_ctr++;
3119
3120                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3121                         rx_ring->int_disable(rx_ring);
3122                         __napi_schedule_irqoff(&rx_ring->napi);
3123                 }
3124         }
3125
3126         /* Check Tx priority queue interrupts */
3127         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3128                 if (!(status & BIT(index)))
3129                         continue;
3130
3131                 tx_ring = &priv->tx_rings[index];
3132
3133                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3134                         tx_ring->int_disable(tx_ring);
3135                         __napi_schedule_irqoff(&tx_ring->napi);
3136                 }
3137         }
3138
3139         return IRQ_HANDLED;
3140 }
3141
3142 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3143 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3144 {
3145         struct bcmgenet_priv *priv = dev_id;
3146         struct bcmgenet_rx_ring *rx_ring;
3147         struct bcmgenet_tx_ring *tx_ring;
3148         unsigned int status;
3149         unsigned long flags;
3150
3151         /* Read irq status */
3152         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3153                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3154
3155         /* clear interrupts */
3156         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3157
3158         netif_dbg(priv, intr, priv->dev,
3159                   "IRQ=0x%x\n", status);
3160
3161         if (status & UMAC_IRQ_RXDMA_DONE) {
3162                 rx_ring = &priv->rx_rings[DESC_INDEX];
3163                 rx_ring->dim.event_ctr++;
3164
3165                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3166                         rx_ring->int_disable(rx_ring);
3167                         __napi_schedule_irqoff(&rx_ring->napi);
3168                 }
3169         }
3170
3171         if (status & UMAC_IRQ_TXDMA_DONE) {
3172                 tx_ring = &priv->tx_rings[DESC_INDEX];
3173
3174                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3175                         tx_ring->int_disable(tx_ring);
3176                         __napi_schedule_irqoff(&tx_ring->napi);
3177                 }
3178         }
3179
3180         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3181                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3182                 wake_up(&priv->wq);
3183         }
3184
3185         /* all other interested interrupts handled in bottom half */
3186         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3187         if (status) {
3188                 /* Save irq status for bottom-half processing. */
3189                 spin_lock_irqsave(&priv->lock, flags);
3190                 priv->irq0_stat |= status;
3191                 spin_unlock_irqrestore(&priv->lock, flags);
3192
3193                 schedule_work(&priv->bcmgenet_irq_work);
3194         }
3195
3196         return IRQ_HANDLED;
3197 }
3198
3199 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3200 {
3201         /* Acknowledge the interrupt */
3202         return IRQ_HANDLED;
3203 }
3204
3205 #ifdef CONFIG_NET_POLL_CONTROLLER
3206 static void bcmgenet_poll_controller(struct net_device *dev)
3207 {
3208         struct bcmgenet_priv *priv = netdev_priv(dev);
3209
3210         /* Invoke the main RX/TX interrupt handler */
3211         disable_irq(priv->irq0);
3212         bcmgenet_isr0(priv->irq0, priv);
3213         enable_irq(priv->irq0);
3214
3215         /* And the interrupt handler for RX/TX priority queues */
3216         disable_irq(priv->irq1);
3217         bcmgenet_isr1(priv->irq1, priv);
3218         enable_irq(priv->irq1);
3219 }
3220 #endif
3221
3222 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3223 {
3224         u32 reg;
3225
3226         reg = bcmgenet_rbuf_ctrl_get(priv);
3227         reg |= BIT(1);
3228         bcmgenet_rbuf_ctrl_set(priv, reg);
3229         udelay(10);
3230
3231         reg &= ~BIT(1);
3232         bcmgenet_rbuf_ctrl_set(priv, reg);
3233         udelay(10);
3234 }
3235
3236 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3237                                  unsigned char *addr)
3238 {
3239         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3240         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3241 }
3242
3243 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3244                                  unsigned char *addr)
3245 {
3246         u32 addr_tmp;
3247
3248         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3249         put_unaligned_be32(addr_tmp, &addr[0]);
3250         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3251         put_unaligned_be16(addr_tmp, &addr[4]);
3252 }
3253
3254 /* Returns a reusable dma control register value */
3255 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3256 {
3257         unsigned int i;
3258         u32 reg;
3259         u32 dma_ctrl;
3260
3261         /* disable DMA */
3262         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3263         for (i = 0; i < priv->hw_params->tx_queues; i++)
3264                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3265         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3266         reg &= ~dma_ctrl;
3267         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3268
3269         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3270         for (i = 0; i < priv->hw_params->rx_queues; i++)
3271                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3272         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3273         reg &= ~dma_ctrl;
3274         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3275
3276         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3277         udelay(10);
3278         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3279
3280         return dma_ctrl;
3281 }
3282
3283 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3284 {
3285         u32 reg;
3286
3287         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3288         reg |= dma_ctrl;
3289         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3290
3291         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3292         reg |= dma_ctrl;
3293         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3294 }
3295
3296 static void bcmgenet_netif_start(struct net_device *dev)
3297 {
3298         struct bcmgenet_priv *priv = netdev_priv(dev);
3299
3300         /* Start the network engine */
3301         bcmgenet_set_rx_mode(dev);
3302         bcmgenet_enable_rx_napi(priv);
3303
3304         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3305
3306         bcmgenet_enable_tx_napi(priv);
3307
3308         /* Monitor link interrupts now */
3309         bcmgenet_link_intr_enable(priv);
3310
3311         phy_start(dev->phydev);
3312 }
3313
3314 static int bcmgenet_open(struct net_device *dev)
3315 {
3316         struct bcmgenet_priv *priv = netdev_priv(dev);
3317         unsigned long dma_ctrl;
3318         int ret;
3319
3320         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3321
3322         /* Turn on the clock */
3323         clk_prepare_enable(priv->clk);
3324
3325         /* If this is an internal GPHY, power it back on now, before UniMAC is
3326          * brought out of reset as absolutely no UniMAC activity is allowed
3327          */
3328         if (priv->internal_phy)
3329                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3330
3331         /* take MAC out of reset */
3332         bcmgenet_umac_reset(priv);
3333
3334         init_umac(priv);
3335
3336         /* Apply features again in case we changed them while interface was
3337          * down
3338          */
3339         bcmgenet_set_features(dev, dev->features);
3340
3341         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3342
3343         /* Disable RX/TX DMA and flush TX queues */
3344         dma_ctrl = bcmgenet_dma_disable(priv);
3345
3346         /* Reinitialize TDMA and RDMA and SW housekeeping */
3347         ret = bcmgenet_init_dma(priv);
3348         if (ret) {
3349                 netdev_err(dev, "failed to initialize DMA\n");
3350                 goto err_clk_disable;
3351         }
3352
3353         /* Always enable ring 16 - descriptor ring */
3354         bcmgenet_enable_dma(priv, dma_ctrl);
3355
3356         /* HFB init */
3357         bcmgenet_hfb_init(priv);
3358
3359         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3360                           dev->name, priv);
3361         if (ret < 0) {
3362                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3363                 goto err_fini_dma;
3364         }
3365
3366         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3367                           dev->name, priv);
3368         if (ret < 0) {
3369                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3370                 goto err_irq0;
3371         }
3372
3373         ret = bcmgenet_mii_probe(dev);
3374         if (ret) {
3375                 netdev_err(dev, "failed to connect to PHY\n");
3376                 goto err_irq1;
3377         }
3378
3379         bcmgenet_netif_start(dev);
3380
3381         netif_tx_start_all_queues(dev);
3382
3383         return 0;
3384
3385 err_irq1:
3386         free_irq(priv->irq1, priv);
3387 err_irq0:
3388         free_irq(priv->irq0, priv);
3389 err_fini_dma:
3390         bcmgenet_dma_teardown(priv);
3391         bcmgenet_fini_dma(priv);
3392 err_clk_disable:
3393         if (priv->internal_phy)
3394                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3395         clk_disable_unprepare(priv->clk);
3396         return ret;
3397 }
3398
3399 static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3400 {
3401         struct bcmgenet_priv *priv = netdev_priv(dev);
3402
3403         bcmgenet_disable_tx_napi(priv);
3404         netif_tx_disable(dev);
3405
3406         /* Disable MAC receive */
3407         umac_enable_set(priv, CMD_RX_EN, false);
3408
3409         bcmgenet_dma_teardown(priv);
3410
3411         /* Disable MAC transmit. TX DMA disabled must be done before this */
3412         umac_enable_set(priv, CMD_TX_EN, false);
3413
3414         if (stop_phy)
3415                 phy_stop(dev->phydev);
3416         bcmgenet_disable_rx_napi(priv);
3417         bcmgenet_intr_disable(priv);
3418
3419         /* Wait for pending work items to complete. Since interrupts are
3420          * disabled no new work will be scheduled.
3421          */
3422         cancel_work_sync(&priv->bcmgenet_irq_work);
3423
3424         priv->old_link = -1;
3425         priv->old_speed = -1;
3426         priv->old_duplex = -1;
3427         priv->old_pause = -1;
3428
3429         /* tx reclaim */
3430         bcmgenet_tx_reclaim_all(dev);
3431         bcmgenet_fini_dma(priv);
3432 }
3433
3434 static int bcmgenet_close(struct net_device *dev)
3435 {
3436         struct bcmgenet_priv *priv = netdev_priv(dev);
3437         int ret = 0;
3438
3439         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3440
3441         bcmgenet_netif_stop(dev, false);
3442
3443         /* Really kill the PHY state machine and disconnect from it */
3444         phy_disconnect(dev->phydev);
3445
3446         free_irq(priv->irq0, priv);
3447         free_irq(priv->irq1, priv);
3448
3449         if (priv->internal_phy)
3450                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3451
3452         clk_disable_unprepare(priv->clk);
3453
3454         return ret;
3455 }
3456
3457 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3458 {
3459         struct bcmgenet_priv *priv = ring->priv;
3460         u32 p_index, c_index, intsts, intmsk;
3461         struct netdev_queue *txq;
3462         unsigned int free_bds;
3463         bool txq_stopped;
3464
3465         if (!netif_msg_tx_err(priv))
3466                 return;
3467
3468         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3469
3470         spin_lock(&ring->lock);
3471         if (ring->index == DESC_INDEX) {
3472                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3473                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3474         } else {
3475                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3476                 intmsk = 1 << ring->index;
3477         }
3478         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3479         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3480         txq_stopped = netif_tx_queue_stopped(txq);
3481         free_bds = ring->free_bds;
3482         spin_unlock(&ring->lock);
3483
3484         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3485                   "TX queue status: %s, interrupts: %s\n"
3486                   "(sw)free_bds: %d (sw)size: %d\n"
3487                   "(sw)p_index: %d (hw)p_index: %d\n"
3488                   "(sw)c_index: %d (hw)c_index: %d\n"
3489                   "(sw)clean_p: %d (sw)write_p: %d\n"
3490                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3491                   ring->index, ring->queue,
3492                   txq_stopped ? "stopped" : "active",
3493                   intsts & intmsk ? "enabled" : "disabled",
3494                   free_bds, ring->size,
3495                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3496                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3497                   ring->clean_ptr, ring->write_ptr,
3498                   ring->cb_ptr, ring->end_ptr);
3499 }
3500
3501 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3502 {
3503         struct bcmgenet_priv *priv = netdev_priv(dev);
3504         u32 int0_enable = 0;
3505         u32 int1_enable = 0;
3506         unsigned int q;
3507
3508         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3509
3510         for (q = 0; q < priv->hw_params->tx_queues; q++)
3511                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3512         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3513
3514         bcmgenet_tx_reclaim_all(dev);
3515
3516         for (q = 0; q < priv->hw_params->tx_queues; q++)
3517                 int1_enable |= (1 << q);
3518
3519         int0_enable = UMAC_IRQ_TXDMA_DONE;
3520
3521         /* Re-enable TX interrupts if disabled */
3522         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3523         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3524
3525         netif_trans_update(dev);
3526
3527         dev->stats.tx_errors++;
3528
3529         netif_tx_wake_all_queues(dev);
3530 }
3531
3532 #define MAX_MDF_FILTER  17
3533
3534 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3535                                          unsigned char *addr,
3536                                          int *i)
3537 {
3538         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3539                              UMAC_MDF_ADDR + (*i * 4));
3540         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3541                              addr[4] << 8 | addr[5],
3542                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3543         *i += 2;
3544 }
3545
3546 static void bcmgenet_set_rx_mode(struct net_device *dev)
3547 {
3548         struct bcmgenet_priv *priv = netdev_priv(dev);
3549         struct netdev_hw_addr *ha;
3550         int i, nfilter;
3551         u32 reg;
3552
3553         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3554
3555         /* Number of filters needed */
3556         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3557
3558         /*
3559          * Turn on promicuous mode for three scenarios
3560          * 1. IFF_PROMISC flag is set
3561          * 2. IFF_ALLMULTI flag is set
3562          * 3. The number of filters needed exceeds the number filters
3563          *    supported by the hardware.
3564         */
3565         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3566         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3567             (nfilter > MAX_MDF_FILTER)) {
3568                 reg |= CMD_PROMISC;
3569                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3570                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3571                 return;
3572         } else {
3573                 reg &= ~CMD_PROMISC;
3574                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3575         }
3576
3577         /* update MDF filter */
3578         i = 0;
3579         /* Broadcast */
3580         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3581         /* my own address.*/
3582         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3583
3584         /* Unicast */
3585         netdev_for_each_uc_addr(ha, dev)
3586                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3587
3588         /* Multicast */
3589         netdev_for_each_mc_addr(ha, dev)
3590                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3591
3592         /* Enable filters */
3593         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3594         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3595 }
3596
3597 /* Set the hardware MAC address. */
3598 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3599 {
3600         struct sockaddr *addr = p;
3601
3602         /* Setting the MAC address at the hardware level is not possible
3603          * without disabling the UniMAC RX/TX enable bits.
3604          */
3605         if (netif_running(dev))
3606                 return -EBUSY;
3607
3608         ether_addr_copy(dev->dev_addr, addr->sa_data);
3609
3610         return 0;
3611 }
3612
3613 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3614 {
3615         struct bcmgenet_priv *priv = netdev_priv(dev);
3616         unsigned long tx_bytes = 0, tx_packets = 0;
3617         unsigned long rx_bytes = 0, rx_packets = 0;
3618         unsigned long rx_errors = 0, rx_dropped = 0;
3619         struct bcmgenet_tx_ring *tx_ring;
3620         struct bcmgenet_rx_ring *rx_ring;
3621         unsigned int q;
3622
3623         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3624                 tx_ring = &priv->tx_rings[q];
3625                 tx_bytes += tx_ring->bytes;
3626                 tx_packets += tx_ring->packets;
3627         }
3628         tx_ring = &priv->tx_rings[DESC_INDEX];
3629         tx_bytes += tx_ring->bytes;
3630         tx_packets += tx_ring->packets;
3631
3632         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3633                 rx_ring = &priv->rx_rings[q];
3634
3635                 rx_bytes += rx_ring->bytes;
3636                 rx_packets += rx_ring->packets;
3637                 rx_errors += rx_ring->errors;
3638                 rx_dropped += rx_ring->dropped;
3639         }
3640         rx_ring = &priv->rx_rings[DESC_INDEX];
3641         rx_bytes += rx_ring->bytes;
3642         rx_packets += rx_ring->packets;
3643         rx_errors += rx_ring->errors;
3644         rx_dropped += rx_ring->dropped;
3645
3646         dev->stats.tx_bytes = tx_bytes;
3647         dev->stats.tx_packets = tx_packets;
3648         dev->stats.rx_bytes = rx_bytes;
3649         dev->stats.rx_packets = rx_packets;
3650         dev->stats.rx_errors = rx_errors;
3651         dev->stats.rx_missed_errors = rx_errors;
3652         dev->stats.rx_dropped = rx_dropped;
3653         return &dev->stats;
3654 }
3655
3656 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3657 {
3658         struct bcmgenet_priv *priv = netdev_priv(dev);
3659
3660         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3661             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3662                 return -EOPNOTSUPP;
3663
3664         if (new_carrier)
3665                 netif_carrier_on(dev);
3666         else
3667                 netif_carrier_off(dev);
3668
3669         return 0;
3670 }
3671
3672 static const struct net_device_ops bcmgenet_netdev_ops = {
3673         .ndo_open               = bcmgenet_open,
3674         .ndo_stop               = bcmgenet_close,
3675         .ndo_start_xmit         = bcmgenet_xmit,
3676         .ndo_tx_timeout         = bcmgenet_timeout,
3677         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3678         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3679         .ndo_do_ioctl           = phy_do_ioctl_running,
3680         .ndo_set_features       = bcmgenet_set_features,
3681 #ifdef CONFIG_NET_POLL_CONTROLLER
3682         .ndo_poll_controller    = bcmgenet_poll_controller,
3683 #endif
3684         .ndo_get_stats          = bcmgenet_get_stats,
3685         .ndo_change_carrier     = bcmgenet_change_carrier,
3686 };
3687
3688 /* Array of GENET hardware parameters/characteristics */
3689 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3690         [GENET_V1] = {
3691                 .tx_queues = 0,
3692                 .tx_bds_per_q = 0,
3693                 .rx_queues = 0,
3694                 .rx_bds_per_q = 0,
3695                 .bp_in_en_shift = 16,
3696                 .bp_in_mask = 0xffff,
3697                 .hfb_filter_cnt = 16,
3698                 .qtag_mask = 0x1F,
3699                 .hfb_offset = 0x1000,
3700                 .rdma_offset = 0x2000,
3701                 .tdma_offset = 0x3000,
3702                 .words_per_bd = 2,
3703         },
3704         [GENET_V2] = {
3705                 .tx_queues = 4,
3706                 .tx_bds_per_q = 32,
3707                 .rx_queues = 0,
3708                 .rx_bds_per_q = 0,
3709                 .bp_in_en_shift = 16,
3710                 .bp_in_mask = 0xffff,
3711                 .hfb_filter_cnt = 16,
3712                 .qtag_mask = 0x1F,
3713                 .tbuf_offset = 0x0600,
3714                 .hfb_offset = 0x1000,
3715                 .hfb_reg_offset = 0x2000,
3716                 .rdma_offset = 0x3000,
3717                 .tdma_offset = 0x4000,
3718                 .words_per_bd = 2,
3719                 .flags = GENET_HAS_EXT,
3720         },
3721         [GENET_V3] = {
3722                 .tx_queues = 4,
3723                 .tx_bds_per_q = 32,
3724                 .rx_queues = 0,
3725                 .rx_bds_per_q = 0,
3726                 .bp_in_en_shift = 17,
3727                 .bp_in_mask = 0x1ffff,
3728                 .hfb_filter_cnt = 48,
3729                 .hfb_filter_size = 128,
3730                 .qtag_mask = 0x3F,
3731                 .tbuf_offset = 0x0600,
3732                 .hfb_offset = 0x8000,
3733                 .hfb_reg_offset = 0xfc00,
3734                 .rdma_offset = 0x10000,
3735                 .tdma_offset = 0x11000,
3736                 .words_per_bd = 2,
3737                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3738                          GENET_HAS_MOCA_LINK_DET,
3739         },
3740         [GENET_V4] = {
3741                 .tx_queues = 4,
3742                 .tx_bds_per_q = 32,
3743                 .rx_queues = 0,
3744                 .rx_bds_per_q = 0,
3745                 .bp_in_en_shift = 17,
3746                 .bp_in_mask = 0x1ffff,
3747                 .hfb_filter_cnt = 48,
3748                 .hfb_filter_size = 128,
3749                 .qtag_mask = 0x3F,
3750                 .tbuf_offset = 0x0600,
3751                 .hfb_offset = 0x8000,
3752                 .hfb_reg_offset = 0xfc00,
3753                 .rdma_offset = 0x2000,
3754                 .tdma_offset = 0x4000,
3755                 .words_per_bd = 3,
3756                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3757                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3758         },
3759         [GENET_V5] = {
3760                 .tx_queues = 4,
3761                 .tx_bds_per_q = 32,
3762                 .rx_queues = 0,
3763                 .rx_bds_per_q = 0,
3764                 .bp_in_en_shift = 17,
3765                 .bp_in_mask = 0x1ffff,
3766                 .hfb_filter_cnt = 48,
3767                 .hfb_filter_size = 128,
3768                 .qtag_mask = 0x3F,
3769                 .tbuf_offset = 0x0600,
3770                 .hfb_offset = 0x8000,
3771                 .hfb_reg_offset = 0xfc00,
3772                 .rdma_offset = 0x2000,
3773                 .tdma_offset = 0x4000,
3774                 .words_per_bd = 3,
3775                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3776                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3777         },
3778 };
3779
3780 /* Infer hardware parameters from the detected GENET version */
3781 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3782 {
3783         struct bcmgenet_hw_params *params;
3784         u32 reg;
3785         u8 major;
3786         u16 gphy_rev;
3787
3788         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3789                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3790                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3791         } else if (GENET_IS_V3(priv)) {
3792                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3793                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3794         } else if (GENET_IS_V2(priv)) {
3795                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3796                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3797         } else if (GENET_IS_V1(priv)) {
3798                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3799                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3800         }
3801
3802         /* enum genet_version starts at 1 */
3803         priv->hw_params = &bcmgenet_hw_params[priv->version];
3804         params = priv->hw_params;
3805
3806         /* Read GENET HW version */
3807         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3808         major = (reg >> 24 & 0x0f);
3809         if (major == 6)
3810                 major = 5;
3811         else if (major == 5)
3812                 major = 4;
3813         else if (major == 0)
3814                 major = 1;
3815         if (major != priv->version) {
3816                 dev_err(&priv->pdev->dev,
3817                         "GENET version mismatch, got: %d, configured for: %d\n",
3818                         major, priv->version);
3819         }
3820
3821         /* Print the GENET core version */
3822         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3823                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3824
3825         /* Store the integrated PHY revision for the MDIO probing function
3826          * to pass this information to the PHY driver. The PHY driver expects
3827          * to find the PHY major revision in bits 15:8 while the GENET register
3828          * stores that information in bits 7:0, account for that.
3829          *
3830          * On newer chips, starting with PHY revision G0, a new scheme is
3831          * deployed similar to the Starfighter 2 switch with GPHY major
3832          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3833          * is reserved as well as special value 0x01ff, we have a small
3834          * heuristic to check for the new GPHY revision and re-arrange things
3835          * so the GPHY driver is happy.
3836          */
3837         gphy_rev = reg & 0xffff;
3838
3839         if (GENET_IS_V5(priv)) {
3840                 /* The EPHY revision should come from the MDIO registers of
3841                  * the PHY not from GENET.
3842                  */
3843                 if (gphy_rev != 0) {
3844                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3845                                 gphy_rev);
3846                 }
3847         /* This is reserved so should require special treatment */
3848         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3849                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3850                 return;
3851         /* This is the good old scheme, just GPHY major, no minor nor patch */
3852         } else if ((gphy_rev & 0xf0) != 0) {
3853                 priv->gphy_rev = gphy_rev << 8;
3854         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3855         } else if ((gphy_rev & 0xff00) != 0) {
3856                 priv->gphy_rev = gphy_rev;
3857         }
3858
3859 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3860         if (!(params->flags & GENET_HAS_40BITS))
3861                 pr_warn("GENET does not support 40-bits PA\n");
3862 #endif
3863
3864         pr_debug("Configuration for version: %d\n"
3865                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3866                 "BP << en: %2d, BP msk: 0x%05x\n"
3867                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3868                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3869                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3870                 "Words/BD: %d\n",
3871                 priv->version,
3872                 params->tx_queues, params->tx_bds_per_q,
3873                 params->rx_queues, params->rx_bds_per_q,
3874                 params->bp_in_en_shift, params->bp_in_mask,
3875                 params->hfb_filter_cnt, params->qtag_mask,
3876                 params->tbuf_offset, params->hfb_offset,
3877                 params->hfb_reg_offset,
3878                 params->rdma_offset, params->tdma_offset,
3879                 params->words_per_bd);
3880 }
3881
3882 struct bcmgenet_plat_data {
3883         enum bcmgenet_version version;
3884         u32 dma_max_burst_length;
3885 };
3886
3887 static const struct bcmgenet_plat_data v1_plat_data = {
3888         .version = GENET_V1,
3889         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3890 };
3891
3892 static const struct bcmgenet_plat_data v2_plat_data = {
3893         .version = GENET_V2,
3894         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3895 };
3896
3897 static const struct bcmgenet_plat_data v3_plat_data = {
3898         .version = GENET_V3,
3899         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3900 };
3901
3902 static const struct bcmgenet_plat_data v4_plat_data = {
3903         .version = GENET_V4,
3904         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3905 };
3906
3907 static const struct bcmgenet_plat_data v5_plat_data = {
3908         .version = GENET_V5,
3909         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3910 };
3911
3912 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3913         .version = GENET_V5,
3914         .dma_max_burst_length = 0x08,
3915 };
3916
3917 static const struct of_device_id bcmgenet_match[] = {
3918         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3919         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3920         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3921         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3922         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3923         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3924         { },
3925 };
3926 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3927
3928 static int bcmgenet_probe(struct platform_device *pdev)
3929 {
3930         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3931         const struct bcmgenet_plat_data *pdata;
3932         struct bcmgenet_priv *priv;
3933         struct net_device *dev;
3934         unsigned int i;
3935         int err = -EIO;
3936
3937         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3938         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3939                                  GENET_MAX_MQ_CNT + 1);
3940         if (!dev) {
3941                 dev_err(&pdev->dev, "can't allocate net device\n");
3942                 return -ENOMEM;
3943         }
3944
3945         priv = netdev_priv(dev);
3946         priv->irq0 = platform_get_irq(pdev, 0);
3947         if (priv->irq0 < 0) {
3948                 err = priv->irq0;
3949                 goto err;
3950         }
3951         priv->irq1 = platform_get_irq(pdev, 1);
3952         if (priv->irq1 < 0) {
3953                 err = priv->irq1;
3954                 goto err;
3955         }
3956         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3957         if (priv->wol_irq == -EPROBE_DEFER) {
3958                 err = priv->wol_irq;
3959                 goto err;
3960         }
3961
3962         priv->base = devm_platform_ioremap_resource(pdev, 0);
3963         if (IS_ERR(priv->base)) {
3964                 err = PTR_ERR(priv->base);
3965                 goto err;
3966         }
3967
3968         spin_lock_init(&priv->lock);
3969
3970         SET_NETDEV_DEV(dev, &pdev->dev);
3971         dev_set_drvdata(&pdev->dev, dev);
3972         dev->watchdog_timeo = 2 * HZ;
3973         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3974         dev->netdev_ops = &bcmgenet_netdev_ops;
3975
3976         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3977
3978         /* Set default features */
3979         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3980                          NETIF_F_RXCSUM;
3981         dev->hw_features |= dev->features;
3982         dev->vlan_features |= dev->features;
3983
3984         /* Request the WOL interrupt and advertise suspend if available */
3985         priv->wol_irq_disabled = true;
3986         if (priv->wol_irq > 0) {
3987                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
3988                                        bcmgenet_wol_isr, 0, dev->name, priv);
3989                 if (!err)
3990                         device_set_wakeup_capable(&pdev->dev, 1);
3991         }
3992
3993         /* Set the needed headroom to account for any possible
3994          * features enabling/disabling at runtime
3995          */
3996         dev->needed_headroom += 64;
3997
3998         netdev_boot_setup_check(dev);
3999
4000         priv->dev = dev;
4001         priv->pdev = pdev;
4002
4003         pdata = device_get_match_data(&pdev->dev);
4004         if (pdata) {
4005                 priv->version = pdata->version;
4006                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4007         } else {
4008                 priv->version = pd->genet_version;
4009                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4010         }
4011
4012         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4013         if (IS_ERR(priv->clk)) {
4014                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4015                 err = PTR_ERR(priv->clk);
4016                 goto err;
4017         }
4018
4019         err = clk_prepare_enable(priv->clk);
4020         if (err)
4021                 goto err;
4022
4023         bcmgenet_set_hw_params(priv);
4024
4025         err = -EIO;
4026         if (priv->hw_params->flags & GENET_HAS_40BITS)
4027                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4028         if (err)
4029                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4030         if (err)
4031                 goto err_clk_disable;
4032
4033         /* Mii wait queue */
4034         init_waitqueue_head(&priv->wq);
4035         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4036         priv->rx_buf_len = RX_BUF_LENGTH;
4037         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4038
4039         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4040         if (IS_ERR(priv->clk_wol)) {
4041                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4042                 err = PTR_ERR(priv->clk_wol);
4043                 goto err_clk_disable;
4044         }
4045
4046         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4047         if (IS_ERR(priv->clk_eee)) {
4048                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4049                 err = PTR_ERR(priv->clk_eee);
4050                 goto err_clk_disable;
4051         }
4052
4053         /* If this is an internal GPHY, power it on now, before UniMAC is
4054          * brought out of reset as absolutely no UniMAC activity is allowed
4055          */
4056         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4057                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4058
4059         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4060                 ether_addr_copy(dev->dev_addr, pd->mac_address);
4061         else
4062                 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4063                         if (has_acpi_companion(&pdev->dev))
4064                                 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4065
4066         if (!is_valid_ether_addr(dev->dev_addr)) {
4067                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4068                 eth_hw_addr_random(dev);
4069         }
4070
4071         reset_umac(priv);
4072
4073         err = bcmgenet_mii_init(dev);
4074         if (err)
4075                 goto err_clk_disable;
4076
4077         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4078          * just the ring 16 descriptor based TX
4079          */
4080         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4081         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4082
4083         /* Set default coalescing parameters */
4084         for (i = 0; i < priv->hw_params->rx_queues; i++)
4085                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4086         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4087
4088         /* libphy will determine the link state */
4089         netif_carrier_off(dev);
4090
4091         /* Turn off the main clock, WOL clock is handled separately */
4092         clk_disable_unprepare(priv->clk);
4093
4094         err = register_netdev(dev);
4095         if (err) {
4096                 bcmgenet_mii_exit(dev);
4097                 goto err;
4098         }
4099
4100         return err;
4101
4102 err_clk_disable:
4103         clk_disable_unprepare(priv->clk);
4104 err:
4105         free_netdev(dev);
4106         return err;
4107 }
4108
4109 static int bcmgenet_remove(struct platform_device *pdev)
4110 {
4111         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4112
4113         dev_set_drvdata(&pdev->dev, NULL);
4114         unregister_netdev(priv->dev);
4115         bcmgenet_mii_exit(priv->dev);
4116         free_netdev(priv->dev);
4117
4118         return 0;
4119 }
4120
4121 static void bcmgenet_shutdown(struct platform_device *pdev)
4122 {
4123         bcmgenet_remove(pdev);
4124 }
4125
4126 #ifdef CONFIG_PM_SLEEP
4127 static int bcmgenet_resume_noirq(struct device *d)
4128 {
4129         struct net_device *dev = dev_get_drvdata(d);
4130         struct bcmgenet_priv *priv = netdev_priv(dev);
4131         int ret;
4132         u32 reg;
4133
4134         if (!netif_running(dev))
4135                 return 0;
4136
4137         /* Turn on the clock */
4138         ret = clk_prepare_enable(priv->clk);
4139         if (ret)
4140                 return ret;
4141
4142         if (device_may_wakeup(d) && priv->wolopts) {
4143                 /* Account for Wake-on-LAN events and clear those events
4144                  * (Some devices need more time between enabling the clocks
4145                  *  and the interrupt register reflecting the wake event so
4146                  *  read the register twice)
4147                  */
4148                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4149                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4150                 if (reg & UMAC_IRQ_WAKE_EVENT)
4151                         pm_wakeup_event(&priv->pdev->dev, 0);
4152         }
4153
4154         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4155
4156         return 0;
4157 }
4158
4159 static int bcmgenet_resume(struct device *d)
4160 {
4161         struct net_device *dev = dev_get_drvdata(d);
4162         struct bcmgenet_priv *priv = netdev_priv(dev);
4163         struct bcmgenet_rxnfc_rule *rule;
4164         unsigned long dma_ctrl;
4165         int ret;
4166
4167         if (!netif_running(dev))
4168                 return 0;
4169
4170         /* From WOL-enabled suspend, switch to regular clock */
4171         if (device_may_wakeup(d) && priv->wolopts)
4172                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4173
4174         /* If this is an internal GPHY, power it back on now, before UniMAC is
4175          * brought out of reset as absolutely no UniMAC activity is allowed
4176          */
4177         if (priv->internal_phy)
4178                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4179
4180         bcmgenet_umac_reset(priv);
4181
4182         init_umac(priv);
4183
4184         phy_init_hw(dev->phydev);
4185
4186         /* Speed settings must be restored */
4187         genphy_config_aneg(dev->phydev);
4188         bcmgenet_mii_config(priv->dev, false);
4189
4190         /* Restore enabled features */
4191         bcmgenet_set_features(dev, dev->features);
4192
4193         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4194
4195         /* Restore hardware filters */
4196         bcmgenet_hfb_clear(priv);
4197         list_for_each_entry(rule, &priv->rxnfc_list, list)
4198                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4199                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4200
4201         /* Disable RX/TX DMA and flush TX queues */
4202         dma_ctrl = bcmgenet_dma_disable(priv);
4203
4204         /* Reinitialize TDMA and RDMA and SW housekeeping */
4205         ret = bcmgenet_init_dma(priv);
4206         if (ret) {
4207                 netdev_err(dev, "failed to initialize DMA\n");
4208                 goto out_clk_disable;
4209         }
4210
4211         /* Always enable ring 16 - descriptor ring */
4212         bcmgenet_enable_dma(priv, dma_ctrl);
4213
4214         if (!device_may_wakeup(d))
4215                 phy_resume(dev->phydev);
4216
4217         bcmgenet_netif_start(dev);
4218
4219         netif_device_attach(dev);
4220
4221         return 0;
4222
4223 out_clk_disable:
4224         if (priv->internal_phy)
4225                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4226         clk_disable_unprepare(priv->clk);
4227         return ret;
4228 }
4229
4230 static int bcmgenet_suspend(struct device *d)
4231 {
4232         struct net_device *dev = dev_get_drvdata(d);
4233         struct bcmgenet_priv *priv = netdev_priv(dev);
4234
4235         if (!netif_running(dev))
4236                 return 0;
4237
4238         netif_device_detach(dev);
4239
4240         bcmgenet_netif_stop(dev, true);
4241
4242         if (!device_may_wakeup(d))
4243                 phy_suspend(dev->phydev);
4244
4245         /* Disable filtering */
4246         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4247
4248         return 0;
4249 }
4250
4251 static int bcmgenet_suspend_noirq(struct device *d)
4252 {
4253         struct net_device *dev = dev_get_drvdata(d);
4254         struct bcmgenet_priv *priv = netdev_priv(dev);
4255         int ret = 0;
4256
4257         if (!netif_running(dev))
4258                 return 0;
4259
4260         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4261         if (device_may_wakeup(d) && priv->wolopts)
4262                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4263         else if (priv->internal_phy)
4264                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4265
4266         /* Let the framework handle resumption and leave the clocks on */
4267         if (ret)
4268                 return ret;
4269
4270         /* Turn off the clocks */
4271         clk_disable_unprepare(priv->clk);
4272
4273         return 0;
4274 }
4275 #else
4276 #define bcmgenet_suspend        NULL
4277 #define bcmgenet_suspend_noirq  NULL
4278 #define bcmgenet_resume         NULL
4279 #define bcmgenet_resume_noirq   NULL
4280 #endif /* CONFIG_PM_SLEEP */
4281
4282 static const struct dev_pm_ops bcmgenet_pm_ops = {
4283         .suspend        = bcmgenet_suspend,
4284         .suspend_noirq  = bcmgenet_suspend_noirq,
4285         .resume         = bcmgenet_resume,
4286         .resume_noirq   = bcmgenet_resume_noirq,
4287 };
4288
4289 static const struct acpi_device_id genet_acpi_match[] = {
4290         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4291         { },
4292 };
4293 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4294
4295 static struct platform_driver bcmgenet_driver = {
4296         .probe  = bcmgenet_probe,
4297         .remove = bcmgenet_remove,
4298         .shutdown = bcmgenet_shutdown,
4299         .driver = {
4300                 .name   = "bcmgenet",
4301                 .of_match_table = bcmgenet_match,
4302                 .pm     = &bcmgenet_pm_ops,
4303                 .acpi_match_table = genet_acpi_match,
4304         },
4305 };
4306 module_platform_driver(bcmgenet_driver);
4307
4308 MODULE_AUTHOR("Broadcom Corporation");
4309 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4310 MODULE_ALIAS("platform:bcmgenet");
4311 MODULE_LICENSE("GPL");
4312 MODULE_SOFTDEP("pre: mdio-bcm-unimac");