GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76                                              void __iomem *d, u32 value)
77 {
78         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82                                             void __iomem *d)
83 {
84         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88                                     void __iomem *d,
89                                     dma_addr_t addr)
90 {
91         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93         /* Register writes to GISB bus can take couple hundred nanoseconds
94          * and are done for each packet, save these expensive writes unless
95          * the platform is explicitly configured for 64-bits/LPAE.
96          */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98         if (priv->hw_params->flags & GENET_HAS_40BITS)
99                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105                                void __iomem *d, dma_addr_t addr, u32 val)
106 {
107         dmadesc_set_length_status(priv, d, val);
108         dmadesc_set_addr(priv, d, addr);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112                                           void __iomem *d)
113 {
114         dma_addr_t addr;
115
116         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118         /* Register writes to GISB bus can take couple hundred nanoseconds
119          * and are done for each packet, save these expensive writes unless
120          * the platform is explicitly configured for 64-bits/LPAE.
121          */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123         if (priv->hw_params->flags & GENET_HAS_40BITS)
124                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126         return addr;
127 }
128
129 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132                                 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136         if (GENET_IS_V1(priv))
137                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138         else
139                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144         if (GENET_IS_V1(priv))
145                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146         else
147                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156         if (GENET_IS_V1(priv))
157                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158         else
159                 return __raw_readl(priv->base +
160                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165         if (GENET_IS_V1(priv))
166                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167         else
168                 __raw_writel(val, priv->base +
169                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174         if (GENET_IS_V1(priv))
175                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176         else
177                 return __raw_readl(priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183         if (GENET_IS_V1(priv))
184                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185         else
186                 __raw_writel(val, priv->base +
187                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192         DMA_RING_CFG = 0,
193         DMA_CTRL,
194         DMA_STATUS,
195         DMA_SCB_BURST_SIZE,
196         DMA_ARB_CTRL,
197         DMA_PRIORITY_0,
198         DMA_PRIORITY_1,
199         DMA_PRIORITY_2,
200         DMA_INDEX2RING_0,
201         DMA_INDEX2RING_1,
202         DMA_INDEX2RING_2,
203         DMA_INDEX2RING_3,
204         DMA_INDEX2RING_4,
205         DMA_INDEX2RING_5,
206         DMA_INDEX2RING_6,
207         DMA_INDEX2RING_7,
208         DMA_RING0_TIMEOUT,
209         DMA_RING1_TIMEOUT,
210         DMA_RING2_TIMEOUT,
211         DMA_RING3_TIMEOUT,
212         DMA_RING4_TIMEOUT,
213         DMA_RING5_TIMEOUT,
214         DMA_RING6_TIMEOUT,
215         DMA_RING7_TIMEOUT,
216         DMA_RING8_TIMEOUT,
217         DMA_RING9_TIMEOUT,
218         DMA_RING10_TIMEOUT,
219         DMA_RING11_TIMEOUT,
220         DMA_RING12_TIMEOUT,
221         DMA_RING13_TIMEOUT,
222         DMA_RING14_TIMEOUT,
223         DMA_RING15_TIMEOUT,
224         DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228         [DMA_RING_CFG]          = 0x00,
229         [DMA_CTRL]              = 0x04,
230         [DMA_STATUS]            = 0x08,
231         [DMA_SCB_BURST_SIZE]    = 0x0C,
232         [DMA_ARB_CTRL]          = 0x2C,
233         [DMA_PRIORITY_0]        = 0x30,
234         [DMA_PRIORITY_1]        = 0x34,
235         [DMA_PRIORITY_2]        = 0x38,
236         [DMA_RING0_TIMEOUT]     = 0x2C,
237         [DMA_RING1_TIMEOUT]     = 0x30,
238         [DMA_RING2_TIMEOUT]     = 0x34,
239         [DMA_RING3_TIMEOUT]     = 0x38,
240         [DMA_RING4_TIMEOUT]     = 0x3c,
241         [DMA_RING5_TIMEOUT]     = 0x40,
242         [DMA_RING6_TIMEOUT]     = 0x44,
243         [DMA_RING7_TIMEOUT]     = 0x48,
244         [DMA_RING8_TIMEOUT]     = 0x4c,
245         [DMA_RING9_TIMEOUT]     = 0x50,
246         [DMA_RING10_TIMEOUT]    = 0x54,
247         [DMA_RING11_TIMEOUT]    = 0x58,
248         [DMA_RING12_TIMEOUT]    = 0x5c,
249         [DMA_RING13_TIMEOUT]    = 0x60,
250         [DMA_RING14_TIMEOUT]    = 0x64,
251         [DMA_RING15_TIMEOUT]    = 0x68,
252         [DMA_RING16_TIMEOUT]    = 0x6C,
253         [DMA_INDEX2RING_0]      = 0x70,
254         [DMA_INDEX2RING_1]      = 0x74,
255         [DMA_INDEX2RING_2]      = 0x78,
256         [DMA_INDEX2RING_3]      = 0x7C,
257         [DMA_INDEX2RING_4]      = 0x80,
258         [DMA_INDEX2RING_5]      = 0x84,
259         [DMA_INDEX2RING_6]      = 0x88,
260         [DMA_INDEX2RING_7]      = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264         [DMA_RING_CFG]          = 0x00,
265         [DMA_CTRL]              = 0x04,
266         [DMA_STATUS]            = 0x08,
267         [DMA_SCB_BURST_SIZE]    = 0x0C,
268         [DMA_ARB_CTRL]          = 0x30,
269         [DMA_PRIORITY_0]        = 0x34,
270         [DMA_PRIORITY_1]        = 0x38,
271         [DMA_PRIORITY_2]        = 0x3C,
272         [DMA_RING0_TIMEOUT]     = 0x2C,
273         [DMA_RING1_TIMEOUT]     = 0x30,
274         [DMA_RING2_TIMEOUT]     = 0x34,
275         [DMA_RING3_TIMEOUT]     = 0x38,
276         [DMA_RING4_TIMEOUT]     = 0x3c,
277         [DMA_RING5_TIMEOUT]     = 0x40,
278         [DMA_RING6_TIMEOUT]     = 0x44,
279         [DMA_RING7_TIMEOUT]     = 0x48,
280         [DMA_RING8_TIMEOUT]     = 0x4c,
281         [DMA_RING9_TIMEOUT]     = 0x50,
282         [DMA_RING10_TIMEOUT]    = 0x54,
283         [DMA_RING11_TIMEOUT]    = 0x58,
284         [DMA_RING12_TIMEOUT]    = 0x5c,
285         [DMA_RING13_TIMEOUT]    = 0x60,
286         [DMA_RING14_TIMEOUT]    = 0x64,
287         [DMA_RING15_TIMEOUT]    = 0x68,
288         [DMA_RING16_TIMEOUT]    = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292         [DMA_CTRL]              = 0x00,
293         [DMA_STATUS]            = 0x04,
294         [DMA_SCB_BURST_SIZE]    = 0x0C,
295         [DMA_ARB_CTRL]          = 0x30,
296         [DMA_PRIORITY_0]        = 0x34,
297         [DMA_PRIORITY_1]        = 0x38,
298         [DMA_PRIORITY_2]        = 0x3C,
299         [DMA_RING0_TIMEOUT]     = 0x2C,
300         [DMA_RING1_TIMEOUT]     = 0x30,
301         [DMA_RING2_TIMEOUT]     = 0x34,
302         [DMA_RING3_TIMEOUT]     = 0x38,
303         [DMA_RING4_TIMEOUT]     = 0x3c,
304         [DMA_RING5_TIMEOUT]     = 0x40,
305         [DMA_RING6_TIMEOUT]     = 0x44,
306         [DMA_RING7_TIMEOUT]     = 0x48,
307         [DMA_RING8_TIMEOUT]     = 0x4c,
308         [DMA_RING9_TIMEOUT]     = 0x50,
309         [DMA_RING10_TIMEOUT]    = 0x54,
310         [DMA_RING11_TIMEOUT]    = 0x58,
311         [DMA_RING12_TIMEOUT]    = 0x5c,
312         [DMA_RING13_TIMEOUT]    = 0x60,
313         [DMA_RING14_TIMEOUT]    = 0x64,
314         [DMA_RING15_TIMEOUT]    = 0x68,
315         [DMA_RING16_TIMEOUT]    = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323         return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327                                       enum dma_reg r)
328 {
329         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334                                         u32 val, enum dma_reg r)
335 {
336         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341                                       enum dma_reg r)
342 {
343         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348                                         u32 val, enum dma_reg r)
349 {
350         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359         TDMA_READ_PTR = 0,
360         RDMA_WRITE_PTR = TDMA_READ_PTR,
361         TDMA_READ_PTR_HI,
362         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363         TDMA_CONS_INDEX,
364         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365         TDMA_PROD_INDEX,
366         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367         DMA_RING_BUF_SIZE,
368         DMA_START_ADDR,
369         DMA_START_ADDR_HI,
370         DMA_END_ADDR,
371         DMA_END_ADDR_HI,
372         DMA_MBUF_DONE_THRESH,
373         TDMA_FLOW_PERIOD,
374         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375         TDMA_WRITE_PTR,
376         RDMA_READ_PTR = TDMA_WRITE_PTR,
377         TDMA_WRITE_PTR_HI,
378         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387         [TDMA_READ_PTR]                 = 0x00,
388         [TDMA_READ_PTR_HI]              = 0x04,
389         [TDMA_CONS_INDEX]               = 0x08,
390         [TDMA_PROD_INDEX]               = 0x0C,
391         [DMA_RING_BUF_SIZE]             = 0x10,
392         [DMA_START_ADDR]                = 0x14,
393         [DMA_START_ADDR_HI]             = 0x18,
394         [DMA_END_ADDR]                  = 0x1C,
395         [DMA_END_ADDR_HI]               = 0x20,
396         [DMA_MBUF_DONE_THRESH]          = 0x24,
397         [TDMA_FLOW_PERIOD]              = 0x28,
398         [TDMA_WRITE_PTR]                = 0x2C,
399         [TDMA_WRITE_PTR_HI]             = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_CONS_INDEX]               = 0x04,
405         [TDMA_PROD_INDEX]               = 0x08,
406         [DMA_RING_BUF_SIZE]             = 0x0C,
407         [DMA_START_ADDR]                = 0x10,
408         [DMA_END_ADDR]                  = 0x14,
409         [DMA_MBUF_DONE_THRESH]          = 0x18,
410         [TDMA_FLOW_PERIOD]              = 0x1C,
411         [TDMA_WRITE_PTR]                = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418                                            unsigned int ring,
419                                            enum dma_ring_reg r)
420 {
421         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422                         (DMA_RING_SIZE * ring) +
423                         genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427                                              unsigned int ring, u32 val,
428                                              enum dma_ring_reg r)
429 {
430         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431                         (DMA_RING_SIZE * ring) +
432                         genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436                                            unsigned int ring,
437                                            enum dma_ring_reg r)
438 {
439         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445                                              unsigned int ring, u32 val,
446                                              enum dma_ring_reg r)
447 {
448         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449                         (DMA_RING_SIZE * ring) +
450                         genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_settings(struct net_device *dev,
454                                  struct ethtool_cmd *cmd)
455 {
456         struct bcmgenet_priv *priv = netdev_priv(dev);
457
458         if (!netif_running(dev))
459                 return -EINVAL;
460
461         if (!priv->phydev)
462                 return -ENODEV;
463
464         return phy_ethtool_gset(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_settings(struct net_device *dev,
468                                  struct ethtool_cmd *cmd)
469 {
470         struct bcmgenet_priv *priv = netdev_priv(dev);
471
472         if (!netif_running(dev))
473                 return -EINVAL;
474
475         if (!priv->phydev)
476                 return -ENODEV;
477
478         return phy_ethtool_sset(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482                                 netdev_features_t wanted)
483 {
484         struct bcmgenet_priv *priv = netdev_priv(dev);
485         u32 rbuf_chk_ctrl;
486         bool rx_csum_en;
487
488         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492         /* enable rx checksumming */
493         if (rx_csum_en)
494                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495         else
496                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497         priv->desc_rxchk_en = rx_csum_en;
498
499         /* If UniMAC forwards CRC, we need to skip over it to get
500          * a valid CHK bit to be set in the per-packet status word
501         */
502         if (rx_csum_en && priv->crc_fwd_en)
503                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504         else
505                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509         return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513                                 netdev_features_t wanted)
514 {
515         struct bcmgenet_priv *priv = netdev_priv(dev);
516         bool desc_64b_en;
517         u32 tbuf_ctrl, rbuf_ctrl;
518
519         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525         if (desc_64b_en) {
526                 tbuf_ctrl |= RBUF_64B_EN;
527                 rbuf_ctrl |= RBUF_64B_EN;
528         } else {
529                 tbuf_ctrl &= ~RBUF_64B_EN;
530                 rbuf_ctrl &= ~RBUF_64B_EN;
531         }
532         priv->desc_64b_en = desc_64b_en;
533
534         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537         return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541                                  netdev_features_t features)
542 {
543         netdev_features_t changed = features ^ dev->features;
544         netdev_features_t wanted = dev->wanted_features;
545         int ret = 0;
546
547         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548                 ret = bcmgenet_set_tx_csum(dev, wanted);
549         if (changed & (NETIF_F_RXCSUM))
550                 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552         return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557         struct bcmgenet_priv *priv = netdev_priv(dev);
558
559         return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564         struct bcmgenet_priv *priv = netdev_priv(dev);
565
566         priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570                                  struct ethtool_coalesce *ec)
571 {
572         struct bcmgenet_priv *priv = netdev_priv(dev);
573
574         ec->tx_max_coalesced_frames =
575                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576                                          DMA_MBUF_DONE_THRESH);
577         ec->rx_max_coalesced_frames =
578                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579                                          DMA_MBUF_DONE_THRESH);
580         ec->rx_coalesce_usecs =
581                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583         return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587                                  struct ethtool_coalesce *ec)
588 {
589         struct bcmgenet_priv *priv = netdev_priv(dev);
590         unsigned int i;
591         u32 reg;
592
593         /* Base system clock is 125Mhz, DMA timeout is this reference clock
594          * divided by 1024, which yields roughly 8.192us, our maximum value
595          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596          */
597         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598             ec->tx_max_coalesced_frames == 0 ||
599             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601                 return -EINVAL;
602
603         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604                 return -EINVAL;
605
606         /* GENET TDMA hardware does not support a configurable timeout, but will
607          * always generate an interrupt either after MBDONE packets have been
608          * transmitted, or when the ring is emtpy.
609          */
610         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612                 return -EOPNOTSUPP;
613
614         /* Program all TX queues with the same values, as there is no
615          * ethtool knob to do coalescing on a per-queue basis
616          */
617         for (i = 0; i < priv->hw_params->tx_queues; i++)
618                 bcmgenet_tdma_ring_writel(priv, i,
619                                           ec->tx_max_coalesced_frames,
620                                           DMA_MBUF_DONE_THRESH);
621         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622                                   ec->tx_max_coalesced_frames,
623                                   DMA_MBUF_DONE_THRESH);
624
625         for (i = 0; i < priv->hw_params->rx_queues; i++) {
626                 bcmgenet_rdma_ring_writel(priv, i,
627                                           ec->rx_max_coalesced_frames,
628                                           DMA_MBUF_DONE_THRESH);
629
630                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631                 reg &= ~DMA_TIMEOUT_MASK;
632                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634         }
635
636         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637                                   ec->rx_max_coalesced_frames,
638                                   DMA_MBUF_DONE_THRESH);
639
640         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641         reg &= ~DMA_TIMEOUT_MASK;
642         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644
645         return 0;
646 }
647
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650         BCMGENET_STAT_NETDEV = -1,
651         BCMGENET_STAT_MIB_RX,
652         BCMGENET_STAT_MIB_TX,
653         BCMGENET_STAT_RUNT,
654         BCMGENET_STAT_MISC,
655         BCMGENET_STAT_SOFT,
656 };
657
658 struct bcmgenet_stats {
659         char stat_string[ETH_GSTRING_LEN];
660         int stat_sizeof;
661         int stat_offset;
662         enum bcmgenet_stat_type type;
663         /* reg offset from UMAC base for misc counters */
664         u16 reg_offset;
665 };
666
667 #define STAT_NETDEV(m) { \
668         .stat_string = __stringify(m), \
669         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670         .stat_offset = offsetof(struct net_device_stats, m), \
671         .type = BCMGENET_STAT_NETDEV, \
672 }
673
674 #define STAT_GENET_MIB(str, m, _type) { \
675         .stat_string = str, \
676         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677         .stat_offset = offsetof(struct bcmgenet_priv, m), \
678         .type = _type, \
679 }
680
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685
686 #define STAT_GENET_MISC(str, m, offset) { \
687         .stat_string = str, \
688         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689         .stat_offset = offsetof(struct bcmgenet_priv, m), \
690         .type = BCMGENET_STAT_MISC, \
691         .reg_offset = offset, \
692 }
693
694
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET    0xc
699
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704         /* general stats */
705         STAT_NETDEV(rx_packets),
706         STAT_NETDEV(tx_packets),
707         STAT_NETDEV(rx_bytes),
708         STAT_NETDEV(tx_bytes),
709         STAT_NETDEV(rx_errors),
710         STAT_NETDEV(tx_errors),
711         STAT_NETDEV(rx_dropped),
712         STAT_NETDEV(tx_dropped),
713         STAT_NETDEV(multicast),
714         /* UniMAC RSV counters */
715         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744         /* UniMAC TSV counters */
745         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774         /* UniMAC RUNT counters */
775         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779         /* Misc UniMAC counters */
780         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781                         UMAC_RBUF_OVFL_CNT_V1),
782         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
783                         UMAC_RBUF_ERR_CNT_V1),
784         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
785         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
786         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
787         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
788 };
789
790 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
791
792 static void bcmgenet_get_drvinfo(struct net_device *dev,
793                                  struct ethtool_drvinfo *info)
794 {
795         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
796         strlcpy(info->version, "v2.0", sizeof(info->version));
797 }
798
799 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
800 {
801         switch (string_set) {
802         case ETH_SS_STATS:
803                 return BCMGENET_STATS_LEN;
804         default:
805                 return -EOPNOTSUPP;
806         }
807 }
808
809 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
810                                  u8 *data)
811 {
812         int i;
813
814         switch (stringset) {
815         case ETH_SS_STATS:
816                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
817                         memcpy(data + i * ETH_GSTRING_LEN,
818                                bcmgenet_gstrings_stats[i].stat_string,
819                                ETH_GSTRING_LEN);
820                 }
821                 break;
822         }
823 }
824
825 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
826 {
827         u16 new_offset;
828         u32 val;
829
830         switch (offset) {
831         case UMAC_RBUF_OVFL_CNT_V1:
832                 if (GENET_IS_V2(priv))
833                         new_offset = RBUF_OVFL_CNT_V2;
834                 else
835                         new_offset = RBUF_OVFL_CNT_V3PLUS;
836
837                 val = bcmgenet_rbuf_readl(priv, new_offset);
838                 /* clear if overflowed */
839                 if (val == ~0)
840                         bcmgenet_rbuf_writel(priv, 0, new_offset);
841                 break;
842         case UMAC_RBUF_ERR_CNT_V1:
843                 if (GENET_IS_V2(priv))
844                         new_offset = RBUF_ERR_CNT_V2;
845                 else
846                         new_offset = RBUF_ERR_CNT_V3PLUS;
847
848                 val = bcmgenet_rbuf_readl(priv, new_offset);
849                 /* clear if overflowed */
850                 if (val == ~0)
851                         bcmgenet_rbuf_writel(priv, 0, new_offset);
852                 break;
853         default:
854                 val = bcmgenet_umac_readl(priv, offset);
855                 /* clear if overflowed */
856                 if (val == ~0)
857                         bcmgenet_umac_writel(priv, 0, offset);
858                 break;
859         }
860
861         return val;
862 }
863
864 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
865 {
866         int i, j = 0;
867
868         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
869                 const struct bcmgenet_stats *s;
870                 u8 offset = 0;
871                 u32 val = 0;
872                 char *p;
873
874                 s = &bcmgenet_gstrings_stats[i];
875                 switch (s->type) {
876                 case BCMGENET_STAT_NETDEV:
877                 case BCMGENET_STAT_SOFT:
878                         continue;
879                 case BCMGENET_STAT_RUNT:
880                         offset += BCMGENET_STAT_OFFSET;
881                         /* fall through */
882                 case BCMGENET_STAT_MIB_TX:
883                         offset += BCMGENET_STAT_OFFSET;
884                         /* fall through */
885                 case BCMGENET_STAT_MIB_RX:
886                         val = bcmgenet_umac_readl(priv,
887                                                   UMAC_MIB_START + j + offset);
888                         offset = 0;     /* Reset Offset */
889                         break;
890                 case BCMGENET_STAT_MISC:
891                         if (GENET_IS_V1(priv)) {
892                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
893                                 /* clear if overflowed */
894                                 if (val == ~0)
895                                         bcmgenet_umac_writel(priv, 0,
896                                                              s->reg_offset);
897                         } else {
898                                 val = bcmgenet_update_stat_misc(priv,
899                                                                 s->reg_offset);
900                         }
901                         break;
902                 }
903
904                 j += s->stat_sizeof;
905                 p = (char *)priv + s->stat_offset;
906                 *(u32 *)p = val;
907         }
908 }
909
910 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
911                                        struct ethtool_stats *stats,
912                                        u64 *data)
913 {
914         struct bcmgenet_priv *priv = netdev_priv(dev);
915         int i;
916
917         if (netif_running(dev))
918                 bcmgenet_update_mib_counters(priv);
919
920         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
921                 const struct bcmgenet_stats *s;
922                 char *p;
923
924                 s = &bcmgenet_gstrings_stats[i];
925                 if (s->type == BCMGENET_STAT_NETDEV)
926                         p = (char *)&dev->stats;
927                 else
928                         p = (char *)priv;
929                 p += s->stat_offset;
930                 if (sizeof(unsigned long) != sizeof(u32) &&
931                     s->stat_sizeof == sizeof(unsigned long))
932                         data[i] = *(unsigned long *)p;
933                 else
934                         data[i] = *(u32 *)p;
935         }
936 }
937
938 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
939 {
940         struct bcmgenet_priv *priv = netdev_priv(dev);
941         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
942         u32 reg;
943
944         if (enable && !priv->clk_eee_enabled) {
945                 clk_prepare_enable(priv->clk_eee);
946                 priv->clk_eee_enabled = true;
947         }
948
949         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
950         if (enable)
951                 reg |= EEE_EN;
952         else
953                 reg &= ~EEE_EN;
954         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
955
956         /* Enable EEE and switch to a 27Mhz clock automatically */
957         reg = __raw_readl(priv->base + off);
958         if (enable)
959                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
960         else
961                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
962         __raw_writel(reg, priv->base + off);
963
964         /* Do the same for thing for RBUF */
965         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
966         if (enable)
967                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
968         else
969                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
970         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
971
972         if (!enable && priv->clk_eee_enabled) {
973                 clk_disable_unprepare(priv->clk_eee);
974                 priv->clk_eee_enabled = false;
975         }
976
977         priv->eee.eee_enabled = enable;
978         priv->eee.eee_active = enable;
979 }
980
981 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
982 {
983         struct bcmgenet_priv *priv = netdev_priv(dev);
984         struct ethtool_eee *p = &priv->eee;
985
986         if (GENET_IS_V1(priv))
987                 return -EOPNOTSUPP;
988
989         e->eee_enabled = p->eee_enabled;
990         e->eee_active = p->eee_active;
991         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
992
993         return phy_ethtool_get_eee(priv->phydev, e);
994 }
995
996 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
997 {
998         struct bcmgenet_priv *priv = netdev_priv(dev);
999         struct ethtool_eee *p = &priv->eee;
1000         int ret = 0;
1001
1002         if (GENET_IS_V1(priv))
1003                 return -EOPNOTSUPP;
1004
1005         p->eee_enabled = e->eee_enabled;
1006
1007         if (!p->eee_enabled) {
1008                 bcmgenet_eee_enable_set(dev, false);
1009         } else {
1010                 ret = phy_init_eee(priv->phydev, 0);
1011                 if (ret) {
1012                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1013                         return ret;
1014                 }
1015
1016                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1017                 bcmgenet_eee_enable_set(dev, true);
1018         }
1019
1020         return phy_ethtool_set_eee(priv->phydev, e);
1021 }
1022
1023 static int bcmgenet_nway_reset(struct net_device *dev)
1024 {
1025         struct bcmgenet_priv *priv = netdev_priv(dev);
1026
1027         return genphy_restart_aneg(priv->phydev);
1028 }
1029
1030 /* standard ethtool support functions. */
1031 static struct ethtool_ops bcmgenet_ethtool_ops = {
1032         .get_strings            = bcmgenet_get_strings,
1033         .get_sset_count         = bcmgenet_get_sset_count,
1034         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1035         .get_settings           = bcmgenet_get_settings,
1036         .set_settings           = bcmgenet_set_settings,
1037         .get_drvinfo            = bcmgenet_get_drvinfo,
1038         .get_link               = ethtool_op_get_link,
1039         .get_msglevel           = bcmgenet_get_msglevel,
1040         .set_msglevel           = bcmgenet_set_msglevel,
1041         .get_wol                = bcmgenet_get_wol,
1042         .set_wol                = bcmgenet_set_wol,
1043         .get_eee                = bcmgenet_get_eee,
1044         .set_eee                = bcmgenet_set_eee,
1045         .nway_reset             = bcmgenet_nway_reset,
1046         .get_coalesce           = bcmgenet_get_coalesce,
1047         .set_coalesce           = bcmgenet_set_coalesce,
1048 };
1049
1050 /* Power down the unimac, based on mode. */
1051 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1052                                 enum bcmgenet_power_mode mode)
1053 {
1054         int ret = 0;
1055         u32 reg;
1056
1057         switch (mode) {
1058         case GENET_POWER_CABLE_SENSE:
1059                 phy_detach(priv->phydev);
1060                 break;
1061
1062         case GENET_POWER_WOL_MAGIC:
1063                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1064                 break;
1065
1066         case GENET_POWER_PASSIVE:
1067                 /* Power down LED */
1068                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1069                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1070                         reg |= (EXT_PWR_DOWN_PHY |
1071                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1072                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1073
1074                         bcmgenet_phy_power_set(priv->dev, false);
1075                 }
1076                 break;
1077         default:
1078                 break;
1079         }
1080
1081         return ret;
1082 }
1083
1084 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1085                               enum bcmgenet_power_mode mode)
1086 {
1087         u32 reg;
1088
1089         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1090                 return;
1091
1092         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1093
1094         switch (mode) {
1095         case GENET_POWER_PASSIVE:
1096                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1097                          EXT_PWR_DOWN_BIAS | EXT_ENERGY_DET_MASK);
1098                 /* fallthrough */
1099         case GENET_POWER_CABLE_SENSE:
1100                 /* enable APD */
1101                 reg |= EXT_PWR_DN_EN_LD;
1102                 break;
1103         case GENET_POWER_WOL_MAGIC:
1104                 bcmgenet_wol_power_up_cfg(priv, mode);
1105                 return;
1106         default:
1107                 break;
1108         }
1109
1110         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1111         if (mode == GENET_POWER_PASSIVE) {
1112                 bcmgenet_phy_power_set(priv->dev, true);
1113                 bcmgenet_mii_reset(priv->dev);
1114         }
1115 }
1116
1117 /* ioctl handle special commands that are not present in ethtool. */
1118 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1119 {
1120         struct bcmgenet_priv *priv = netdev_priv(dev);
1121         int val = 0;
1122
1123         if (!netif_running(dev))
1124                 return -EINVAL;
1125
1126         switch (cmd) {
1127         case SIOCGMIIPHY:
1128         case SIOCGMIIREG:
1129         case SIOCSMIIREG:
1130                 if (!priv->phydev)
1131                         val = -ENODEV;
1132                 else
1133                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
1134                 break;
1135
1136         default:
1137                 val = -EINVAL;
1138                 break;
1139         }
1140
1141         return val;
1142 }
1143
1144 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1145                                          struct bcmgenet_tx_ring *ring)
1146 {
1147         struct enet_cb *tx_cb_ptr;
1148
1149         tx_cb_ptr = ring->cbs;
1150         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1151
1152         /* Advancing local write pointer */
1153         if (ring->write_ptr == ring->end_ptr)
1154                 ring->write_ptr = ring->cb_ptr;
1155         else
1156                 ring->write_ptr++;
1157
1158         return tx_cb_ptr;
1159 }
1160
1161 /* Simple helper to free a control block's resources */
1162 static void bcmgenet_free_cb(struct enet_cb *cb)
1163 {
1164         dev_kfree_skb_any(cb->skb);
1165         cb->skb = NULL;
1166         dma_unmap_addr_set(cb, dma_addr, 0);
1167 }
1168
1169 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1170 {
1171         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1172                                  INTRL2_CPU_MASK_SET);
1173 }
1174
1175 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1176 {
1177         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1178                                  INTRL2_CPU_MASK_CLEAR);
1179 }
1180
1181 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1182 {
1183         bcmgenet_intrl2_1_writel(ring->priv,
1184                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1185                                  INTRL2_CPU_MASK_SET);
1186 }
1187
1188 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1189 {
1190         bcmgenet_intrl2_1_writel(ring->priv,
1191                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1192                                  INTRL2_CPU_MASK_CLEAR);
1193 }
1194
1195 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1196 {
1197         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1198                                  INTRL2_CPU_MASK_SET);
1199 }
1200
1201 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1202 {
1203         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1204                                  INTRL2_CPU_MASK_CLEAR);
1205 }
1206
1207 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1208 {
1209         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1210                                  INTRL2_CPU_MASK_CLEAR);
1211 }
1212
1213 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1214 {
1215         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1216                                  INTRL2_CPU_MASK_SET);
1217 }
1218
1219 /* Unlocked version of the reclaim routine */
1220 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1221                                           struct bcmgenet_tx_ring *ring)
1222 {
1223         struct bcmgenet_priv *priv = netdev_priv(dev);
1224         struct device *kdev = &priv->pdev->dev;
1225         struct enet_cb *tx_cb_ptr;
1226         struct netdev_queue *txq;
1227         unsigned int pkts_compl = 0;
1228         unsigned int c_index;
1229         unsigned int txbds_ready;
1230         unsigned int txbds_processed = 0;
1231
1232         /* Compute how many buffers are transmitted since last xmit call */
1233         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1234         c_index &= DMA_C_INDEX_MASK;
1235
1236         if (likely(c_index >= ring->c_index))
1237                 txbds_ready = c_index - ring->c_index;
1238         else
1239                 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1240
1241         netif_dbg(priv, tx_done, dev,
1242                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1243                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1244
1245         /* Reclaim transmitted buffers */
1246         while (txbds_processed < txbds_ready) {
1247                 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1248                 if (tx_cb_ptr->skb) {
1249                         pkts_compl++;
1250                         dev->stats.tx_packets++;
1251                         dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1252                         dma_unmap_single(kdev,
1253                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1254                                          dma_unmap_len(tx_cb_ptr, dma_len),
1255                                          DMA_TO_DEVICE);
1256                         bcmgenet_free_cb(tx_cb_ptr);
1257                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1258                         dev->stats.tx_bytes +=
1259                                 dma_unmap_len(tx_cb_ptr, dma_len);
1260                         dma_unmap_page(kdev,
1261                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1262                                        dma_unmap_len(tx_cb_ptr, dma_len),
1263                                        DMA_TO_DEVICE);
1264                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1265                 }
1266
1267                 txbds_processed++;
1268                 if (likely(ring->clean_ptr < ring->end_ptr))
1269                         ring->clean_ptr++;
1270                 else
1271                         ring->clean_ptr = ring->cb_ptr;
1272         }
1273
1274         ring->free_bds += txbds_processed;
1275         ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1276
1277         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1278                 txq = netdev_get_tx_queue(dev, ring->queue);
1279                 if (netif_tx_queue_stopped(txq))
1280                         netif_tx_wake_queue(txq);
1281         }
1282
1283         return pkts_compl;
1284 }
1285
1286 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1287                                 struct bcmgenet_tx_ring *ring)
1288 {
1289         unsigned int released;
1290         unsigned long flags;
1291
1292         spin_lock_irqsave(&ring->lock, flags);
1293         released = __bcmgenet_tx_reclaim(dev, ring);
1294         spin_unlock_irqrestore(&ring->lock, flags);
1295
1296         return released;
1297 }
1298
1299 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1300 {
1301         struct bcmgenet_tx_ring *ring =
1302                 container_of(napi, struct bcmgenet_tx_ring, napi);
1303         unsigned int work_done = 0;
1304
1305         work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1306
1307         if (work_done == 0) {
1308                 napi_complete(napi);
1309                 ring->int_enable(ring);
1310
1311                 return 0;
1312         }
1313
1314         return budget;
1315 }
1316
1317 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1318 {
1319         struct bcmgenet_priv *priv = netdev_priv(dev);
1320         int i;
1321
1322         if (netif_is_multiqueue(dev)) {
1323                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1324                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1325         }
1326
1327         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1328 }
1329
1330 /* Transmits a single SKB (either head of a fragment or a single SKB)
1331  * caller must hold priv->lock
1332  */
1333 static int bcmgenet_xmit_single(struct net_device *dev,
1334                                 struct sk_buff *skb,
1335                                 u16 dma_desc_flags,
1336                                 struct bcmgenet_tx_ring *ring)
1337 {
1338         struct bcmgenet_priv *priv = netdev_priv(dev);
1339         struct device *kdev = &priv->pdev->dev;
1340         struct enet_cb *tx_cb_ptr;
1341         unsigned int skb_len;
1342         dma_addr_t mapping;
1343         u32 length_status;
1344         int ret;
1345
1346         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1347
1348         if (unlikely(!tx_cb_ptr))
1349                 BUG();
1350
1351         tx_cb_ptr->skb = skb;
1352
1353         skb_len = skb_headlen(skb);
1354
1355         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1356         ret = dma_mapping_error(kdev, mapping);
1357         if (ret) {
1358                 priv->mib.tx_dma_failed++;
1359                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1360                 dev_kfree_skb(skb);
1361                 return ret;
1362         }
1363
1364         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1365         dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1366         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1367                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1368                         DMA_TX_APPEND_CRC;
1369
1370         if (skb->ip_summed == CHECKSUM_PARTIAL)
1371                 length_status |= DMA_TX_DO_CSUM;
1372
1373         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1374
1375         return 0;
1376 }
1377
1378 /* Transmit a SKB fragment */
1379 static int bcmgenet_xmit_frag(struct net_device *dev,
1380                               skb_frag_t *frag,
1381                               u16 dma_desc_flags,
1382                               struct bcmgenet_tx_ring *ring)
1383 {
1384         struct bcmgenet_priv *priv = netdev_priv(dev);
1385         struct device *kdev = &priv->pdev->dev;
1386         struct enet_cb *tx_cb_ptr;
1387         dma_addr_t mapping;
1388         int ret;
1389
1390         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1391
1392         if (unlikely(!tx_cb_ptr))
1393                 BUG();
1394         tx_cb_ptr->skb = NULL;
1395
1396         mapping = skb_frag_dma_map(kdev, frag, 0,
1397                                    skb_frag_size(frag), DMA_TO_DEVICE);
1398         ret = dma_mapping_error(kdev, mapping);
1399         if (ret) {
1400                 priv->mib.tx_dma_failed++;
1401                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1402                           __func__);
1403                 return ret;
1404         }
1405
1406         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1407         dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1408
1409         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1410                     (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1411                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1412
1413         return 0;
1414 }
1415
1416 /* Reallocate the SKB to put enough headroom in front of it and insert
1417  * the transmit checksum offsets in the descriptors
1418  */
1419 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1420                                             struct sk_buff *skb)
1421 {
1422         struct status_64 *status = NULL;
1423         struct sk_buff *new_skb;
1424         u16 offset;
1425         u8 ip_proto;
1426         u16 ip_ver;
1427         u32 tx_csum_info;
1428
1429         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1430                 /* If 64 byte status block enabled, must make sure skb has
1431                  * enough headroom for us to insert 64B status block.
1432                  */
1433                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1434                 dev_kfree_skb(skb);
1435                 if (!new_skb) {
1436                         dev->stats.tx_dropped++;
1437                         return NULL;
1438                 }
1439                 skb = new_skb;
1440         }
1441
1442         skb_push(skb, sizeof(*status));
1443         status = (struct status_64 *)skb->data;
1444
1445         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1446                 ip_ver = htons(skb->protocol);
1447                 switch (ip_ver) {
1448                 case ETH_P_IP:
1449                         ip_proto = ip_hdr(skb)->protocol;
1450                         break;
1451                 case ETH_P_IPV6:
1452                         ip_proto = ipv6_hdr(skb)->nexthdr;
1453                         break;
1454                 default:
1455                         return skb;
1456                 }
1457
1458                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1459                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1460                                 (offset + skb->csum_offset);
1461
1462                 /* Set the length valid bit for TCP and UDP and just set
1463                  * the special UDP flag for IPv4, else just set to 0.
1464                  */
1465                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1466                         tx_csum_info |= STATUS_TX_CSUM_LV;
1467                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1468                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1469                 } else {
1470                         tx_csum_info = 0;
1471                 }
1472
1473                 status->tx_csum_info = tx_csum_info;
1474         }
1475
1476         return skb;
1477 }
1478
1479 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1480 {
1481         struct bcmgenet_priv *priv = netdev_priv(dev);
1482         struct bcmgenet_tx_ring *ring = NULL;
1483         struct netdev_queue *txq;
1484         unsigned long flags = 0;
1485         int nr_frags, index;
1486         u16 dma_desc_flags;
1487         int ret;
1488         int i;
1489
1490         index = skb_get_queue_mapping(skb);
1491         /* Mapping strategy:
1492          * queue_mapping = 0, unclassified, packet xmited through ring16
1493          * queue_mapping = 1, goes to ring 0. (highest priority queue
1494          * queue_mapping = 2, goes to ring 1.
1495          * queue_mapping = 3, goes to ring 2.
1496          * queue_mapping = 4, goes to ring 3.
1497          */
1498         if (index == 0)
1499                 index = DESC_INDEX;
1500         else
1501                 index -= 1;
1502
1503         nr_frags = skb_shinfo(skb)->nr_frags;
1504         ring = &priv->tx_rings[index];
1505         txq = netdev_get_tx_queue(dev, ring->queue);
1506
1507         spin_lock_irqsave(&ring->lock, flags);
1508         if (ring->free_bds <= nr_frags + 1) {
1509                 netif_tx_stop_queue(txq);
1510                 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1511                            __func__, index, ring->queue);
1512                 ret = NETDEV_TX_BUSY;
1513                 goto out;
1514         }
1515
1516         if (skb_padto(skb, ETH_ZLEN)) {
1517                 ret = NETDEV_TX_OK;
1518                 goto out;
1519         }
1520
1521         /* set the SKB transmit checksum */
1522         if (priv->desc_64b_en) {
1523                 skb = bcmgenet_put_tx_csum(dev, skb);
1524                 if (!skb) {
1525                         ret = NETDEV_TX_OK;
1526                         goto out;
1527                 }
1528         }
1529
1530         dma_desc_flags = DMA_SOP;
1531         if (nr_frags == 0)
1532                 dma_desc_flags |= DMA_EOP;
1533
1534         /* Transmit single SKB or head of fragment list */
1535         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1536         if (ret) {
1537                 ret = NETDEV_TX_OK;
1538                 goto out;
1539         }
1540
1541         /* xmit fragment */
1542         for (i = 0; i < nr_frags; i++) {
1543                 ret = bcmgenet_xmit_frag(dev,
1544                                          &skb_shinfo(skb)->frags[i],
1545                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1546                                          ring);
1547                 if (ret) {
1548                         ret = NETDEV_TX_OK;
1549                         goto out;
1550                 }
1551         }
1552
1553         skb_tx_timestamp(skb);
1554
1555         /* Decrement total BD count and advance our write pointer */
1556         ring->free_bds -= nr_frags + 1;
1557         ring->prod_index += nr_frags + 1;
1558         ring->prod_index &= DMA_P_INDEX_MASK;
1559
1560         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1561                 netif_tx_stop_queue(txq);
1562
1563         if (!skb->xmit_more || netif_xmit_stopped(txq))
1564                 /* Packets are ready, update producer index */
1565                 bcmgenet_tdma_ring_writel(priv, ring->index,
1566                                           ring->prod_index, TDMA_PROD_INDEX);
1567 out:
1568         spin_unlock_irqrestore(&ring->lock, flags);
1569
1570         return ret;
1571 }
1572
1573 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1574                                           struct enet_cb *cb)
1575 {
1576         struct device *kdev = &priv->pdev->dev;
1577         struct sk_buff *skb;
1578         struct sk_buff *rx_skb;
1579         dma_addr_t mapping;
1580
1581         /* Allocate a new Rx skb */
1582         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1583                                  GFP_ATOMIC | __GFP_NOWARN);
1584         if (!skb) {
1585                 priv->mib.alloc_rx_buff_failed++;
1586                 netif_err(priv, rx_err, priv->dev,
1587                           "%s: Rx skb allocation failed\n", __func__);
1588                 return NULL;
1589         }
1590
1591         /* DMA-map the new Rx skb */
1592         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1593                                  DMA_FROM_DEVICE);
1594         if (dma_mapping_error(kdev, mapping)) {
1595                 priv->mib.rx_dma_failed++;
1596                 dev_kfree_skb_any(skb);
1597                 netif_err(priv, rx_err, priv->dev,
1598                           "%s: Rx skb DMA mapping failed\n", __func__);
1599                 return NULL;
1600         }
1601
1602         /* Grab the current Rx skb from the ring and DMA-unmap it */
1603         rx_skb = cb->skb;
1604         if (likely(rx_skb))
1605                 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1606                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1607
1608         /* Put the new Rx skb on the ring */
1609         cb->skb = skb;
1610         dma_unmap_addr_set(cb, dma_addr, mapping);
1611         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1612
1613         /* Return the current Rx skb to caller */
1614         return rx_skb;
1615 }
1616
1617 /* bcmgenet_desc_rx - descriptor based rx process.
1618  * this could be called from bottom half, or from NAPI polling method.
1619  */
1620 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1621                                      unsigned int budget)
1622 {
1623         struct bcmgenet_priv *priv = ring->priv;
1624         struct net_device *dev = priv->dev;
1625         struct enet_cb *cb;
1626         struct sk_buff *skb;
1627         u32 dma_length_status;
1628         unsigned long dma_flag;
1629         int len;
1630         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1631         unsigned int p_index;
1632         unsigned int discards;
1633         unsigned int chksum_ok = 0;
1634
1635         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1636
1637         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1638                    DMA_P_INDEX_DISCARD_CNT_MASK;
1639         if (discards > ring->old_discards) {
1640                 discards = discards - ring->old_discards;
1641                 dev->stats.rx_missed_errors += discards;
1642                 dev->stats.rx_errors += discards;
1643                 ring->old_discards += discards;
1644
1645                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1646                 if (ring->old_discards >= 0xC000) {
1647                         ring->old_discards = 0;
1648                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1649                                                   RDMA_PROD_INDEX);
1650                 }
1651         }
1652
1653         p_index &= DMA_P_INDEX_MASK;
1654
1655         if (likely(p_index >= ring->c_index))
1656                 rxpkttoprocess = p_index - ring->c_index;
1657         else
1658                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1659                                  p_index;
1660
1661         netif_dbg(priv, rx_status, dev,
1662                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1663
1664         while ((rxpktprocessed < rxpkttoprocess) &&
1665                (rxpktprocessed < budget)) {
1666                 cb = &priv->rx_cbs[ring->read_ptr];
1667                 skb = bcmgenet_rx_refill(priv, cb);
1668
1669                 if (unlikely(!skb)) {
1670                         dev->stats.rx_dropped++;
1671                         goto next;
1672                 }
1673
1674                 if (!priv->desc_64b_en) {
1675                         dma_length_status =
1676                                 dmadesc_get_length_status(priv, cb->bd_addr);
1677                 } else {
1678                         struct status_64 *status;
1679
1680                         status = (struct status_64 *)skb->data;
1681                         dma_length_status = status->length_status;
1682                 }
1683
1684                 /* DMA flags and length are still valid no matter how
1685                  * we got the Receive Status Vector (64B RSB or register)
1686                  */
1687                 dma_flag = dma_length_status & 0xffff;
1688                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1689
1690                 netif_dbg(priv, rx_status, dev,
1691                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1692                           __func__, p_index, ring->c_index,
1693                           ring->read_ptr, dma_length_status);
1694
1695                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1696                         netif_err(priv, rx_status, dev,
1697                                   "dropping fragmented packet!\n");
1698                         dev->stats.rx_errors++;
1699                         dev_kfree_skb_any(skb);
1700                         goto next;
1701                 }
1702
1703                 /* report errors */
1704                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1705                                                 DMA_RX_OV |
1706                                                 DMA_RX_NO |
1707                                                 DMA_RX_LG |
1708                                                 DMA_RX_RXER))) {
1709                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1710                                   (unsigned int)dma_flag);
1711                         if (dma_flag & DMA_RX_CRC_ERROR)
1712                                 dev->stats.rx_crc_errors++;
1713                         if (dma_flag & DMA_RX_OV)
1714                                 dev->stats.rx_over_errors++;
1715                         if (dma_flag & DMA_RX_NO)
1716                                 dev->stats.rx_frame_errors++;
1717                         if (dma_flag & DMA_RX_LG)
1718                                 dev->stats.rx_length_errors++;
1719                         dev->stats.rx_errors++;
1720                         dev_kfree_skb_any(skb);
1721                         goto next;
1722                 } /* error packet */
1723
1724                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1725                              priv->desc_rxchk_en;
1726
1727                 skb_put(skb, len);
1728                 if (priv->desc_64b_en) {
1729                         skb_pull(skb, 64);
1730                         len -= 64;
1731                 }
1732
1733                 if (likely(chksum_ok))
1734                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1735
1736                 /* remove hardware 2bytes added for IP alignment */
1737                 skb_pull(skb, 2);
1738                 len -= 2;
1739
1740                 if (priv->crc_fwd_en) {
1741                         skb_trim(skb, len - ETH_FCS_LEN);
1742                         len -= ETH_FCS_LEN;
1743                 }
1744
1745                 /*Finish setting up the received SKB and send it to the kernel*/
1746                 skb->protocol = eth_type_trans(skb, priv->dev);
1747                 dev->stats.rx_packets++;
1748                 dev->stats.rx_bytes += len;
1749                 if (dma_flag & DMA_RX_MULT)
1750                         dev->stats.multicast++;
1751
1752                 /* Notify kernel */
1753                 napi_gro_receive(&ring->napi, skb);
1754                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1755
1756 next:
1757                 rxpktprocessed++;
1758                 if (likely(ring->read_ptr < ring->end_ptr))
1759                         ring->read_ptr++;
1760                 else
1761                         ring->read_ptr = ring->cb_ptr;
1762
1763                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1764                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1765         }
1766
1767         return rxpktprocessed;
1768 }
1769
1770 /* Rx NAPI polling method */
1771 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1772 {
1773         struct bcmgenet_rx_ring *ring = container_of(napi,
1774                         struct bcmgenet_rx_ring, napi);
1775         unsigned int work_done;
1776
1777         work_done = bcmgenet_desc_rx(ring, budget);
1778
1779         if (work_done < budget) {
1780                 napi_complete(napi);
1781                 ring->int_enable(ring);
1782         }
1783
1784         return work_done;
1785 }
1786
1787 /* Assign skb to RX DMA descriptor. */
1788 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1789                                      struct bcmgenet_rx_ring *ring)
1790 {
1791         struct enet_cb *cb;
1792         struct sk_buff *skb;
1793         int i;
1794
1795         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1796
1797         /* loop here for each buffer needing assign */
1798         for (i = 0; i < ring->size; i++) {
1799                 cb = ring->cbs + i;
1800                 skb = bcmgenet_rx_refill(priv, cb);
1801                 if (skb)
1802                         dev_kfree_skb_any(skb);
1803                 if (!cb->skb)
1804                         return -ENOMEM;
1805         }
1806
1807         return 0;
1808 }
1809
1810 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1811 {
1812         struct device *kdev = &priv->pdev->dev;
1813         struct enet_cb *cb;
1814         int i;
1815
1816         for (i = 0; i < priv->num_rx_bds; i++) {
1817                 cb = &priv->rx_cbs[i];
1818
1819                 if (dma_unmap_addr(cb, dma_addr)) {
1820                         dma_unmap_single(kdev,
1821                                          dma_unmap_addr(cb, dma_addr),
1822                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1823                         dma_unmap_addr_set(cb, dma_addr, 0);
1824                 }
1825
1826                 if (cb->skb)
1827                         bcmgenet_free_cb(cb);
1828         }
1829 }
1830
1831 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1832 {
1833         u32 reg;
1834
1835         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1836         if (enable)
1837                 reg |= mask;
1838         else
1839                 reg &= ~mask;
1840         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1841
1842         /* UniMAC stops on a packet boundary, wait for a full-size packet
1843          * to be processed
1844          */
1845         if (enable == 0)
1846                 usleep_range(1000, 2000);
1847 }
1848
1849 static int reset_umac(struct bcmgenet_priv *priv)
1850 {
1851         struct device *kdev = &priv->pdev->dev;
1852         unsigned int timeout = 0;
1853         u32 reg;
1854
1855         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1856         bcmgenet_rbuf_ctrl_set(priv, 0);
1857         udelay(10);
1858
1859         /* disable MAC while updating its registers */
1860         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1861
1862         /* issue soft reset, wait for it to complete */
1863         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1864         while (timeout++ < 1000) {
1865                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1866                 if (!(reg & CMD_SW_RESET))
1867                         return 0;
1868
1869                 udelay(1);
1870         }
1871
1872         if (timeout == 1000) {
1873                 dev_err(kdev,
1874                         "timeout waiting for MAC to come out of reset\n");
1875                 return -ETIMEDOUT;
1876         }
1877
1878         return 0;
1879 }
1880
1881 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1882 {
1883         /* Mask all interrupts.*/
1884         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1885         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1886         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1887         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1888         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1889         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1890 }
1891
1892 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1893 {
1894         u32 int0_enable = 0;
1895
1896         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1897          * and MoCA PHY
1898          */
1899         if (priv->internal_phy) {
1900                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1901         } else if (priv->ext_phy) {
1902                 int0_enable |= UMAC_IRQ_LINK_EVENT;
1903         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1904                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1905                         int0_enable |= UMAC_IRQ_LINK_EVENT;
1906         }
1907         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1908 }
1909
1910 static int init_umac(struct bcmgenet_priv *priv)
1911 {
1912         struct device *kdev = &priv->pdev->dev;
1913         int ret;
1914         u32 reg;
1915         u32 int0_enable = 0;
1916         u32 int1_enable = 0;
1917         int i;
1918
1919         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1920
1921         ret = reset_umac(priv);
1922         if (ret)
1923                 return ret;
1924
1925         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1926         /* clear tx/rx counter */
1927         bcmgenet_umac_writel(priv,
1928                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1929                              UMAC_MIB_CTRL);
1930         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1931
1932         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1933
1934         /* init rx registers, enable ip header optimization */
1935         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1936         reg |= RBUF_ALIGN_2B;
1937         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1938
1939         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1940                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1941
1942         bcmgenet_intr_disable(priv);
1943
1944         /* Enable Rx default queue 16 interrupts */
1945         int0_enable |= UMAC_IRQ_RXDMA_DONE;
1946
1947         /* Enable Tx default queue 16 interrupts */
1948         int0_enable |= UMAC_IRQ_TXDMA_DONE;
1949
1950         /* Configure backpressure vectors for MoCA */
1951         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1952                 reg = bcmgenet_bp_mc_get(priv);
1953                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1954
1955                 /* bp_mask: back pressure mask */
1956                 if (netif_is_multiqueue(priv->dev))
1957                         reg |= priv->hw_params->bp_in_mask;
1958                 else
1959                         reg &= ~priv->hw_params->bp_in_mask;
1960                 bcmgenet_bp_mc_set(priv, reg);
1961         }
1962
1963         /* Enable MDIO interrupts on GENET v3+ */
1964         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1965                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1966
1967         /* Enable Rx priority queue interrupts */
1968         for (i = 0; i < priv->hw_params->rx_queues; ++i)
1969                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1970
1971         /* Enable Tx priority queue interrupts */
1972         for (i = 0; i < priv->hw_params->tx_queues; ++i)
1973                 int1_enable |= (1 << i);
1974
1975         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1976         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1977
1978         /* Enable rx/tx engine.*/
1979         dev_dbg(kdev, "done init umac\n");
1980
1981         return 0;
1982 }
1983
1984 /* Initialize a Tx ring along with corresponding hardware registers */
1985 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1986                                   unsigned int index, unsigned int size,
1987                                   unsigned int start_ptr, unsigned int end_ptr)
1988 {
1989         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1990         u32 words_per_bd = WORDS_PER_BD(priv);
1991         u32 flow_period_val = 0;
1992
1993         spin_lock_init(&ring->lock);
1994         ring->priv = priv;
1995         ring->index = index;
1996         if (index == DESC_INDEX) {
1997                 ring->queue = 0;
1998                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1999                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2000         } else {
2001                 ring->queue = index + 1;
2002                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2003                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2004         }
2005         ring->cbs = priv->tx_cbs + start_ptr;
2006         ring->size = size;
2007         ring->clean_ptr = start_ptr;
2008         ring->c_index = 0;
2009         ring->free_bds = size;
2010         ring->write_ptr = start_ptr;
2011         ring->cb_ptr = start_ptr;
2012         ring->end_ptr = end_ptr - 1;
2013         ring->prod_index = 0;
2014
2015         /* Set flow period for ring != 16 */
2016         if (index != DESC_INDEX)
2017                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2018
2019         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2020         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2021         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2022         /* Disable rate control for now */
2023         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2024                                   TDMA_FLOW_PERIOD);
2025         bcmgenet_tdma_ring_writel(priv, index,
2026                                   ((size << DMA_RING_SIZE_SHIFT) |
2027                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2028
2029         /* Set start and end address, read and write pointers */
2030         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2031                                   DMA_START_ADDR);
2032         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2033                                   TDMA_READ_PTR);
2034         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2035                                   TDMA_WRITE_PTR);
2036         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2037                                   DMA_END_ADDR);
2038 }
2039
2040 /* Initialize a RDMA ring */
2041 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2042                                  unsigned int index, unsigned int size,
2043                                  unsigned int start_ptr, unsigned int end_ptr)
2044 {
2045         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2046         u32 words_per_bd = WORDS_PER_BD(priv);
2047         int ret;
2048
2049         ring->priv = priv;
2050         ring->index = index;
2051         if (index == DESC_INDEX) {
2052                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2053                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2054         } else {
2055                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2056                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2057         }
2058         ring->cbs = priv->rx_cbs + start_ptr;
2059         ring->size = size;
2060         ring->c_index = 0;
2061         ring->read_ptr = start_ptr;
2062         ring->cb_ptr = start_ptr;
2063         ring->end_ptr = end_ptr - 1;
2064
2065         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2066         if (ret)
2067                 return ret;
2068
2069         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2070         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2071         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2072         bcmgenet_rdma_ring_writel(priv, index,
2073                                   ((size << DMA_RING_SIZE_SHIFT) |
2074                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2075         bcmgenet_rdma_ring_writel(priv, index,
2076                                   (DMA_FC_THRESH_LO <<
2077                                    DMA_XOFF_THRESHOLD_SHIFT) |
2078                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2079
2080         /* Set start and end address, read and write pointers */
2081         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2082                                   DMA_START_ADDR);
2083         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2084                                   RDMA_READ_PTR);
2085         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2086                                   RDMA_WRITE_PTR);
2087         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2088                                   DMA_END_ADDR);
2089
2090         return ret;
2091 }
2092
2093 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2094 {
2095         unsigned int i;
2096         struct bcmgenet_tx_ring *ring;
2097
2098         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2099                 ring = &priv->tx_rings[i];
2100                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2101         }
2102
2103         ring = &priv->tx_rings[DESC_INDEX];
2104         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2105 }
2106
2107 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2108 {
2109         unsigned int i;
2110         struct bcmgenet_tx_ring *ring;
2111
2112         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2113                 ring = &priv->tx_rings[i];
2114                 napi_enable(&ring->napi);
2115         }
2116
2117         ring = &priv->tx_rings[DESC_INDEX];
2118         napi_enable(&ring->napi);
2119 }
2120
2121 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2122 {
2123         unsigned int i;
2124         struct bcmgenet_tx_ring *ring;
2125
2126         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2127                 ring = &priv->tx_rings[i];
2128                 napi_disable(&ring->napi);
2129         }
2130
2131         ring = &priv->tx_rings[DESC_INDEX];
2132         napi_disable(&ring->napi);
2133 }
2134
2135 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2136 {
2137         unsigned int i;
2138         struct bcmgenet_tx_ring *ring;
2139
2140         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2141                 ring = &priv->tx_rings[i];
2142                 netif_napi_del(&ring->napi);
2143         }
2144
2145         ring = &priv->tx_rings[DESC_INDEX];
2146         netif_napi_del(&ring->napi);
2147 }
2148
2149 /* Initialize Tx queues
2150  *
2151  * Queues 0-3 are priority-based, each one has 32 descriptors,
2152  * with queue 0 being the highest priority queue.
2153  *
2154  * Queue 16 is the default Tx queue with
2155  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2156  *
2157  * The transmit control block pool is then partitioned as follows:
2158  * - Tx queue 0 uses tx_cbs[0..31]
2159  * - Tx queue 1 uses tx_cbs[32..63]
2160  * - Tx queue 2 uses tx_cbs[64..95]
2161  * - Tx queue 3 uses tx_cbs[96..127]
2162  * - Tx queue 16 uses tx_cbs[128..255]
2163  */
2164 static void bcmgenet_init_tx_queues(struct net_device *dev)
2165 {
2166         struct bcmgenet_priv *priv = netdev_priv(dev);
2167         u32 i, dma_enable;
2168         u32 dma_ctrl, ring_cfg;
2169         u32 dma_priority[3] = {0, 0, 0};
2170
2171         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2172         dma_enable = dma_ctrl & DMA_EN;
2173         dma_ctrl &= ~DMA_EN;
2174         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2175
2176         dma_ctrl = 0;
2177         ring_cfg = 0;
2178
2179         /* Enable strict priority arbiter mode */
2180         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2181
2182         /* Initialize Tx priority queues */
2183         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2184                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2185                                       i * priv->hw_params->tx_bds_per_q,
2186                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2187                 ring_cfg |= (1 << i);
2188                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2189                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2190                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2191         }
2192
2193         /* Initialize Tx default queue 16 */
2194         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2195                               priv->hw_params->tx_queues *
2196                               priv->hw_params->tx_bds_per_q,
2197                               TOTAL_DESC);
2198         ring_cfg |= (1 << DESC_INDEX);
2199         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2200         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2201                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2202                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2203
2204         /* Set Tx queue priorities */
2205         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2206         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2207         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2208
2209         /* Initialize Tx NAPI */
2210         bcmgenet_init_tx_napi(priv);
2211
2212         /* Enable Tx queues */
2213         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2214
2215         /* Enable Tx DMA */
2216         if (dma_enable)
2217                 dma_ctrl |= DMA_EN;
2218         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2219 }
2220
2221 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2222 {
2223         unsigned int i;
2224         struct bcmgenet_rx_ring *ring;
2225
2226         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2227                 ring = &priv->rx_rings[i];
2228                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2229         }
2230
2231         ring = &priv->rx_rings[DESC_INDEX];
2232         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2233 }
2234
2235 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2236 {
2237         unsigned int i;
2238         struct bcmgenet_rx_ring *ring;
2239
2240         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2241                 ring = &priv->rx_rings[i];
2242                 napi_enable(&ring->napi);
2243         }
2244
2245         ring = &priv->rx_rings[DESC_INDEX];
2246         napi_enable(&ring->napi);
2247 }
2248
2249 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2250 {
2251         unsigned int i;
2252         struct bcmgenet_rx_ring *ring;
2253
2254         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2255                 ring = &priv->rx_rings[i];
2256                 napi_disable(&ring->napi);
2257         }
2258
2259         ring = &priv->rx_rings[DESC_INDEX];
2260         napi_disable(&ring->napi);
2261 }
2262
2263 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2264 {
2265         unsigned int i;
2266         struct bcmgenet_rx_ring *ring;
2267
2268         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2269                 ring = &priv->rx_rings[i];
2270                 netif_napi_del(&ring->napi);
2271         }
2272
2273         ring = &priv->rx_rings[DESC_INDEX];
2274         netif_napi_del(&ring->napi);
2275 }
2276
2277 /* Initialize Rx queues
2278  *
2279  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2280  * used to direct traffic to these queues.
2281  *
2282  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2283  */
2284 static int bcmgenet_init_rx_queues(struct net_device *dev)
2285 {
2286         struct bcmgenet_priv *priv = netdev_priv(dev);
2287         u32 i;
2288         u32 dma_enable;
2289         u32 dma_ctrl;
2290         u32 ring_cfg;
2291         int ret;
2292
2293         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2294         dma_enable = dma_ctrl & DMA_EN;
2295         dma_ctrl &= ~DMA_EN;
2296         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2297
2298         dma_ctrl = 0;
2299         ring_cfg = 0;
2300
2301         /* Initialize Rx priority queues */
2302         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2303                 ret = bcmgenet_init_rx_ring(priv, i,
2304                                             priv->hw_params->rx_bds_per_q,
2305                                             i * priv->hw_params->rx_bds_per_q,
2306                                             (i + 1) *
2307                                             priv->hw_params->rx_bds_per_q);
2308                 if (ret)
2309                         return ret;
2310
2311                 ring_cfg |= (1 << i);
2312                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2313         }
2314
2315         /* Initialize Rx default queue 16 */
2316         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2317                                     priv->hw_params->rx_queues *
2318                                     priv->hw_params->rx_bds_per_q,
2319                                     TOTAL_DESC);
2320         if (ret)
2321                 return ret;
2322
2323         ring_cfg |= (1 << DESC_INDEX);
2324         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2325
2326         /* Initialize Rx NAPI */
2327         bcmgenet_init_rx_napi(priv);
2328
2329         /* Enable rings */
2330         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2331
2332         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2333         if (dma_enable)
2334                 dma_ctrl |= DMA_EN;
2335         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2336
2337         return 0;
2338 }
2339
2340 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2341 {
2342         int ret = 0;
2343         int timeout = 0;
2344         u32 reg;
2345         u32 dma_ctrl;
2346         int i;
2347
2348         /* Disable TDMA to stop add more frames in TX DMA */
2349         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2350         reg &= ~DMA_EN;
2351         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2352
2353         /* Check TDMA status register to confirm TDMA is disabled */
2354         while (timeout++ < DMA_TIMEOUT_VAL) {
2355                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2356                 if (reg & DMA_DISABLED)
2357                         break;
2358
2359                 udelay(1);
2360         }
2361
2362         if (timeout == DMA_TIMEOUT_VAL) {
2363                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2364                 ret = -ETIMEDOUT;
2365         }
2366
2367         /* Wait 10ms for packet drain in both tx and rx dma */
2368         usleep_range(10000, 20000);
2369
2370         /* Disable RDMA */
2371         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2372         reg &= ~DMA_EN;
2373         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2374
2375         timeout = 0;
2376         /* Check RDMA status register to confirm RDMA is disabled */
2377         while (timeout++ < DMA_TIMEOUT_VAL) {
2378                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2379                 if (reg & DMA_DISABLED)
2380                         break;
2381
2382                 udelay(1);
2383         }
2384
2385         if (timeout == DMA_TIMEOUT_VAL) {
2386                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2387                 ret = -ETIMEDOUT;
2388         }
2389
2390         dma_ctrl = 0;
2391         for (i = 0; i < priv->hw_params->rx_queues; i++)
2392                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2393         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2394         reg &= ~dma_ctrl;
2395         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2396
2397         dma_ctrl = 0;
2398         for (i = 0; i < priv->hw_params->tx_queues; i++)
2399                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2400         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2401         reg &= ~dma_ctrl;
2402         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2403
2404         return ret;
2405 }
2406
2407 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2408 {
2409         int i;
2410
2411         bcmgenet_fini_rx_napi(priv);
2412         bcmgenet_fini_tx_napi(priv);
2413
2414         /* disable DMA */
2415         bcmgenet_dma_teardown(priv);
2416
2417         for (i = 0; i < priv->num_tx_bds; i++) {
2418                 if (priv->tx_cbs[i].skb != NULL) {
2419                         dev_kfree_skb(priv->tx_cbs[i].skb);
2420                         priv->tx_cbs[i].skb = NULL;
2421                 }
2422         }
2423
2424         bcmgenet_free_rx_buffers(priv);
2425         kfree(priv->rx_cbs);
2426         kfree(priv->tx_cbs);
2427 }
2428
2429 /* init_edma: Initialize DMA control register */
2430 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2431 {
2432         int ret;
2433         unsigned int i;
2434         struct enet_cb *cb;
2435
2436         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2437
2438         /* Initialize common Rx ring structures */
2439         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2440         priv->num_rx_bds = TOTAL_DESC;
2441         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2442                                GFP_KERNEL);
2443         if (!priv->rx_cbs)
2444                 return -ENOMEM;
2445
2446         for (i = 0; i < priv->num_rx_bds; i++) {
2447                 cb = priv->rx_cbs + i;
2448                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2449         }
2450
2451         /* Initialize common TX ring structures */
2452         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2453         priv->num_tx_bds = TOTAL_DESC;
2454         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2455                                GFP_KERNEL);
2456         if (!priv->tx_cbs) {
2457                 kfree(priv->rx_cbs);
2458                 return -ENOMEM;
2459         }
2460
2461         for (i = 0; i < priv->num_tx_bds; i++) {
2462                 cb = priv->tx_cbs + i;
2463                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2464         }
2465
2466         /* Init rDma */
2467         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2468
2469         /* Initialize Rx queues */
2470         ret = bcmgenet_init_rx_queues(priv->dev);
2471         if (ret) {
2472                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2473                 bcmgenet_free_rx_buffers(priv);
2474                 kfree(priv->rx_cbs);
2475                 kfree(priv->tx_cbs);
2476                 return ret;
2477         }
2478
2479         /* Init tDma */
2480         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2481
2482         /* Initialize Tx queues */
2483         bcmgenet_init_tx_queues(priv->dev);
2484
2485         return 0;
2486 }
2487
2488 /* Interrupt bottom half */
2489 static void bcmgenet_irq_task(struct work_struct *work)
2490 {
2491         struct bcmgenet_priv *priv = container_of(
2492                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2493
2494         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2495
2496         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2497                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2498                 netif_dbg(priv, wol, priv->dev,
2499                           "magic packet detected, waking up\n");
2500                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2501         }
2502
2503         /* Link UP/DOWN event */
2504         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2505             (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2506                 phy_mac_interrupt(priv->phydev,
2507                                   !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2508                 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2509         }
2510 }
2511
2512 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2513 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2514 {
2515         struct bcmgenet_priv *priv = dev_id;
2516         struct bcmgenet_rx_ring *rx_ring;
2517         struct bcmgenet_tx_ring *tx_ring;
2518         unsigned int index;
2519
2520         /* Save irq status for bottom-half processing. */
2521         priv->irq1_stat =
2522                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2523                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2524
2525         /* clear interrupts */
2526         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2527
2528         netif_dbg(priv, intr, priv->dev,
2529                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2530
2531         /* Check Rx priority queue interrupts */
2532         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2533                 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2534                         continue;
2535
2536                 rx_ring = &priv->rx_rings[index];
2537
2538                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2539                         rx_ring->int_disable(rx_ring);
2540                         __napi_schedule(&rx_ring->napi);
2541                 }
2542         }
2543
2544         /* Check Tx priority queue interrupts */
2545         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2546                 if (!(priv->irq1_stat & BIT(index)))
2547                         continue;
2548
2549                 tx_ring = &priv->tx_rings[index];
2550
2551                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2552                         tx_ring->int_disable(tx_ring);
2553                         __napi_schedule(&tx_ring->napi);
2554                 }
2555         }
2556
2557         return IRQ_HANDLED;
2558 }
2559
2560 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2561 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2562 {
2563         struct bcmgenet_priv *priv = dev_id;
2564         struct bcmgenet_rx_ring *rx_ring;
2565         struct bcmgenet_tx_ring *tx_ring;
2566
2567         /* Save irq status for bottom-half processing. */
2568         priv->irq0_stat =
2569                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2570                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2571
2572         /* clear interrupts */
2573         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2574
2575         netif_dbg(priv, intr, priv->dev,
2576                   "IRQ=0x%x\n", priv->irq0_stat);
2577
2578         if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2579                 rx_ring = &priv->rx_rings[DESC_INDEX];
2580
2581                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2582                         rx_ring->int_disable(rx_ring);
2583                         __napi_schedule(&rx_ring->napi);
2584                 }
2585         }
2586
2587         if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2588                 tx_ring = &priv->tx_rings[DESC_INDEX];
2589
2590                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2591                         tx_ring->int_disable(tx_ring);
2592                         __napi_schedule(&tx_ring->napi);
2593                 }
2594         }
2595
2596         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2597                                 UMAC_IRQ_PHY_DET_F |
2598                                 UMAC_IRQ_LINK_EVENT |
2599                                 UMAC_IRQ_HFB_SM |
2600                                 UMAC_IRQ_HFB_MM |
2601                                 UMAC_IRQ_MPD_R)) {
2602                 /* all other interested interrupts handled in bottom half */
2603                 schedule_work(&priv->bcmgenet_irq_work);
2604         }
2605
2606         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2607             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2608                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2609                 wake_up(&priv->wq);
2610         }
2611
2612         return IRQ_HANDLED;
2613 }
2614
2615 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2616 {
2617         struct bcmgenet_priv *priv = dev_id;
2618
2619         pm_wakeup_event(&priv->pdev->dev, 0);
2620
2621         return IRQ_HANDLED;
2622 }
2623
2624 #ifdef CONFIG_NET_POLL_CONTROLLER
2625 static void bcmgenet_poll_controller(struct net_device *dev)
2626 {
2627         struct bcmgenet_priv *priv = netdev_priv(dev);
2628
2629         /* Invoke the main RX/TX interrupt handler */
2630         disable_irq(priv->irq0);
2631         bcmgenet_isr0(priv->irq0, priv);
2632         enable_irq(priv->irq0);
2633
2634         /* And the interrupt handler for RX/TX priority queues */
2635         disable_irq(priv->irq1);
2636         bcmgenet_isr1(priv->irq1, priv);
2637         enable_irq(priv->irq1);
2638 }
2639 #endif
2640
2641 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2642 {
2643         u32 reg;
2644
2645         reg = bcmgenet_rbuf_ctrl_get(priv);
2646         reg |= BIT(1);
2647         bcmgenet_rbuf_ctrl_set(priv, reg);
2648         udelay(10);
2649
2650         reg &= ~BIT(1);
2651         bcmgenet_rbuf_ctrl_set(priv, reg);
2652         udelay(10);
2653 }
2654
2655 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2656                                  unsigned char *addr)
2657 {
2658         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2659                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2660         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2661 }
2662
2663 /* Returns a reusable dma control register value */
2664 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2665 {
2666         unsigned int i;
2667         u32 reg;
2668         u32 dma_ctrl;
2669
2670         /* disable DMA */
2671         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2672         for (i = 0; i < priv->hw_params->tx_queues; i++)
2673                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2674         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2675         reg &= ~dma_ctrl;
2676         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2677
2678         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2679         for (i = 0; i < priv->hw_params->rx_queues; i++)
2680                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2681         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2682         reg &= ~dma_ctrl;
2683         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2684
2685         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2686         udelay(10);
2687         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2688
2689         return dma_ctrl;
2690 }
2691
2692 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2693 {
2694         u32 reg;
2695
2696         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2697         reg |= dma_ctrl;
2698         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2699
2700         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2701         reg |= dma_ctrl;
2702         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2703 }
2704
2705 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2706                                            u32 f_index)
2707 {
2708         u32 offset;
2709         u32 reg;
2710
2711         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2712         reg = bcmgenet_hfb_reg_readl(priv, offset);
2713         return !!(reg & (1 << (f_index % 32)));
2714 }
2715
2716 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2717 {
2718         u32 offset;
2719         u32 reg;
2720
2721         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2722         reg = bcmgenet_hfb_reg_readl(priv, offset);
2723         reg |= (1 << (f_index % 32));
2724         bcmgenet_hfb_reg_writel(priv, reg, offset);
2725 }
2726
2727 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2728                                                      u32 f_index, u32 rx_queue)
2729 {
2730         u32 offset;
2731         u32 reg;
2732
2733         offset = f_index / 8;
2734         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2735         reg &= ~(0xF << (4 * (f_index % 8)));
2736         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2737         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2738 }
2739
2740 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2741                                            u32 f_index, u32 f_length)
2742 {
2743         u32 offset;
2744         u32 reg;
2745
2746         offset = HFB_FLT_LEN_V3PLUS +
2747                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2748                  sizeof(u32);
2749         reg = bcmgenet_hfb_reg_readl(priv, offset);
2750         reg &= ~(0xFF << (8 * (f_index % 4)));
2751         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2752         bcmgenet_hfb_reg_writel(priv, reg, offset);
2753 }
2754
2755 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2756 {
2757         u32 f_index;
2758
2759         for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2760                 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2761                         return f_index;
2762
2763         return -ENOMEM;
2764 }
2765
2766 /* bcmgenet_hfb_add_filter
2767  *
2768  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2769  * desired Rx queue.
2770  *
2771  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2772  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2773  *
2774  * bits 31:20 - unused
2775  * bit  19    - nibble 0 match enable
2776  * bit  18    - nibble 1 match enable
2777  * bit  17    - nibble 2 match enable
2778  * bit  16    - nibble 3 match enable
2779  * bits 15:12 - nibble 0 data
2780  * bits 11:8  - nibble 1 data
2781  * bits 7:4   - nibble 2 data
2782  * bits 3:0   - nibble 3 data
2783  *
2784  * Example:
2785  * In order to match:
2786  * - Ethernet frame type = 0x0800 (IP)
2787  * - IP version field = 4
2788  * - IP protocol field = 0x11 (UDP)
2789  *
2790  * The following filter is needed:
2791  * u32 hfb_filter_ipv4_udp[] = {
2792  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2793  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2794  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2795  * };
2796  *
2797  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2798  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2799  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2800  */
2801 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2802                             u32 f_length, u32 rx_queue)
2803 {
2804         int f_index;
2805         u32 i;
2806
2807         f_index = bcmgenet_hfb_find_unused_filter(priv);
2808         if (f_index < 0)
2809                 return -ENOMEM;
2810
2811         if (f_length > priv->hw_params->hfb_filter_size)
2812                 return -EINVAL;
2813
2814         for (i = 0; i < f_length; i++)
2815                 bcmgenet_hfb_writel(priv, f_data[i],
2816                         (f_index * priv->hw_params->hfb_filter_size + i) *
2817                         sizeof(u32));
2818
2819         bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2820         bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2821         bcmgenet_hfb_enable_filter(priv, f_index);
2822         bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2823
2824         return 0;
2825 }
2826
2827 /* bcmgenet_hfb_clear
2828  *
2829  * Clear Hardware Filter Block and disable all filtering.
2830  */
2831 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2832 {
2833         u32 i;
2834
2835         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2836         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2837         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2838
2839         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2840                 bcmgenet_rdma_writel(priv, 0x0, i);
2841
2842         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2843                 bcmgenet_hfb_reg_writel(priv, 0x0,
2844                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2845
2846         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2847                         priv->hw_params->hfb_filter_size; i++)
2848                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2849 }
2850
2851 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2852 {
2853         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2854                 return;
2855
2856         bcmgenet_hfb_clear(priv);
2857 }
2858
2859 static void bcmgenet_netif_start(struct net_device *dev)
2860 {
2861         struct bcmgenet_priv *priv = netdev_priv(dev);
2862
2863         /* Start the network engine */
2864         bcmgenet_enable_rx_napi(priv);
2865         bcmgenet_enable_tx_napi(priv);
2866
2867         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2868
2869         netif_tx_start_all_queues(dev);
2870
2871         /* Monitor link interrupts now */
2872         bcmgenet_link_intr_enable(priv);
2873
2874         phy_start(priv->phydev);
2875 }
2876
2877 static int bcmgenet_open(struct net_device *dev)
2878 {
2879         struct bcmgenet_priv *priv = netdev_priv(dev);
2880         unsigned long dma_ctrl;
2881         u32 reg;
2882         int ret;
2883
2884         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2885
2886         /* Turn on the clock */
2887         clk_prepare_enable(priv->clk);
2888
2889         /* If this is an internal GPHY, power it back on now, before UniMAC is
2890          * brought out of reset as absolutely no UniMAC activity is allowed
2891          */
2892         if (priv->internal_phy)
2893                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2894
2895         /* take MAC out of reset */
2896         bcmgenet_umac_reset(priv);
2897
2898         ret = init_umac(priv);
2899         if (ret)
2900                 goto err_clk_disable;
2901
2902         /* disable ethernet MAC while updating its registers */
2903         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2904
2905         /* Make sure we reflect the value of CRC_CMD_FWD */
2906         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2907         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2908
2909         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2910
2911         /* Disable RX/TX DMA and flush TX queues */
2912         dma_ctrl = bcmgenet_dma_disable(priv);
2913
2914         /* Reinitialize TDMA and RDMA and SW housekeeping */
2915         ret = bcmgenet_init_dma(priv);
2916         if (ret) {
2917                 netdev_err(dev, "failed to initialize DMA\n");
2918                 goto err_clk_disable;
2919         }
2920
2921         /* Always enable ring 16 - descriptor ring */
2922         bcmgenet_enable_dma(priv, dma_ctrl);
2923
2924         /* HFB init */
2925         bcmgenet_hfb_init(priv);
2926
2927         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2928                           dev->name, priv);
2929         if (ret < 0) {
2930                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2931                 goto err_fini_dma;
2932         }
2933
2934         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2935                           dev->name, priv);
2936         if (ret < 0) {
2937                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2938                 goto err_irq0;
2939         }
2940
2941         ret = bcmgenet_mii_probe(dev);
2942         if (ret) {
2943                 netdev_err(dev, "failed to connect to PHY\n");
2944                 goto err_irq1;
2945         }
2946
2947         bcmgenet_netif_start(dev);
2948
2949         return 0;
2950
2951 err_irq1:
2952         free_irq(priv->irq1, priv);
2953 err_irq0:
2954         free_irq(priv->irq0, priv);
2955 err_fini_dma:
2956         bcmgenet_fini_dma(priv);
2957 err_clk_disable:
2958         if (priv->internal_phy)
2959                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2960         clk_disable_unprepare(priv->clk);
2961         return ret;
2962 }
2963
2964 static void bcmgenet_netif_stop(struct net_device *dev)
2965 {
2966         struct bcmgenet_priv *priv = netdev_priv(dev);
2967
2968         netif_tx_stop_all_queues(dev);
2969         phy_stop(priv->phydev);
2970         bcmgenet_intr_disable(priv);
2971         bcmgenet_disable_rx_napi(priv);
2972         bcmgenet_disable_tx_napi(priv);
2973
2974         /* Wait for pending work items to complete. Since interrupts are
2975          * disabled no new work will be scheduled.
2976          */
2977         cancel_work_sync(&priv->bcmgenet_irq_work);
2978
2979         priv->old_link = -1;
2980         priv->old_speed = -1;
2981         priv->old_duplex = -1;
2982         priv->old_pause = -1;
2983 }
2984
2985 static int bcmgenet_close(struct net_device *dev)
2986 {
2987         struct bcmgenet_priv *priv = netdev_priv(dev);
2988         int ret;
2989
2990         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2991
2992         bcmgenet_netif_stop(dev);
2993
2994         /* Really kill the PHY state machine and disconnect from it */
2995         phy_disconnect(priv->phydev);
2996
2997         /* Disable MAC receive */
2998         umac_enable_set(priv, CMD_RX_EN, false);
2999
3000         ret = bcmgenet_dma_teardown(priv);
3001         if (ret)
3002                 return ret;
3003
3004         /* Disable MAC transmit. TX DMA disabled have to done before this */
3005         umac_enable_set(priv, CMD_TX_EN, false);
3006
3007         /* tx reclaim */
3008         bcmgenet_tx_reclaim_all(dev);
3009         bcmgenet_fini_dma(priv);
3010
3011         free_irq(priv->irq0, priv);
3012         free_irq(priv->irq1, priv);
3013
3014         if (priv->internal_phy)
3015                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3016
3017         clk_disable_unprepare(priv->clk);
3018
3019         return ret;
3020 }
3021
3022 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3023 {
3024         struct bcmgenet_priv *priv = ring->priv;
3025         u32 p_index, c_index, intsts, intmsk;
3026         struct netdev_queue *txq;
3027         unsigned int free_bds;
3028         unsigned long flags;
3029         bool txq_stopped;
3030
3031         if (!netif_msg_tx_err(priv))
3032                 return;
3033
3034         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3035
3036         spin_lock_irqsave(&ring->lock, flags);
3037         if (ring->index == DESC_INDEX) {
3038                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3039                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3040         } else {
3041                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3042                 intmsk = 1 << ring->index;
3043         }
3044         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3045         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3046         txq_stopped = netif_tx_queue_stopped(txq);
3047         free_bds = ring->free_bds;
3048         spin_unlock_irqrestore(&ring->lock, flags);
3049
3050         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3051                   "TX queue status: %s, interrupts: %s\n"
3052                   "(sw)free_bds: %d (sw)size: %d\n"
3053                   "(sw)p_index: %d (hw)p_index: %d\n"
3054                   "(sw)c_index: %d (hw)c_index: %d\n"
3055                   "(sw)clean_p: %d (sw)write_p: %d\n"
3056                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3057                   ring->index, ring->queue,
3058                   txq_stopped ? "stopped" : "active",
3059                   intsts & intmsk ? "enabled" : "disabled",
3060                   free_bds, ring->size,
3061                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3062                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3063                   ring->clean_ptr, ring->write_ptr,
3064                   ring->cb_ptr, ring->end_ptr);
3065 }
3066
3067 static void bcmgenet_timeout(struct net_device *dev)
3068 {
3069         struct bcmgenet_priv *priv = netdev_priv(dev);
3070         u32 int0_enable = 0;
3071         u32 int1_enable = 0;
3072         unsigned int q;
3073
3074         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3075
3076         for (q = 0; q < priv->hw_params->tx_queues; q++)
3077                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3078         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3079
3080         bcmgenet_tx_reclaim_all(dev);
3081
3082         for (q = 0; q < priv->hw_params->tx_queues; q++)
3083                 int1_enable |= (1 << q);
3084
3085         int0_enable = UMAC_IRQ_TXDMA_DONE;
3086
3087         /* Re-enable TX interrupts if disabled */
3088         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3089         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3090
3091         dev->trans_start = jiffies;
3092
3093         dev->stats.tx_errors++;
3094
3095         netif_tx_wake_all_queues(dev);
3096 }
3097
3098 #define MAX_MDF_FILTER  17
3099
3100 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3101                                          unsigned char *addr,
3102                                          int *i)
3103 {
3104         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3105                              UMAC_MDF_ADDR + (*i * 4));
3106         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3107                              addr[4] << 8 | addr[5],
3108                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3109         *i += 2;
3110 }
3111
3112 static void bcmgenet_set_rx_mode(struct net_device *dev)
3113 {
3114         struct bcmgenet_priv *priv = netdev_priv(dev);
3115         struct netdev_hw_addr *ha;
3116         int i, nfilter;
3117         u32 reg;
3118
3119         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3120
3121         /* Number of filters needed */
3122         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3123
3124         /*
3125          * Turn on promicuous mode for three scenarios
3126          * 1. IFF_PROMISC flag is set
3127          * 2. IFF_ALLMULTI flag is set
3128          * 3. The number of filters needed exceeds the number filters
3129          *    supported by the hardware.
3130         */
3131         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3132         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3133             (nfilter > MAX_MDF_FILTER)) {
3134                 reg |= CMD_PROMISC;
3135                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3136                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3137                 return;
3138         } else {
3139                 reg &= ~CMD_PROMISC;
3140                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3141         }
3142
3143         /* update MDF filter */
3144         i = 0;
3145         /* Broadcast */
3146         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3147         /* my own address.*/
3148         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3149
3150         /* Unicast */
3151         netdev_for_each_uc_addr(ha, dev)
3152                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3153
3154         /* Multicast */
3155         netdev_for_each_mc_addr(ha, dev)
3156                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3157
3158         /* Enable filters */
3159         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3160         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3161 }
3162
3163 /* Set the hardware MAC address. */
3164 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3165 {
3166         struct sockaddr *addr = p;
3167
3168         /* Setting the MAC address at the hardware level is not possible
3169          * without disabling the UniMAC RX/TX enable bits.
3170          */
3171         if (netif_running(dev))
3172                 return -EBUSY;
3173
3174         ether_addr_copy(dev->dev_addr, addr->sa_data);
3175
3176         return 0;
3177 }
3178
3179 static const struct net_device_ops bcmgenet_netdev_ops = {
3180         .ndo_open               = bcmgenet_open,
3181         .ndo_stop               = bcmgenet_close,
3182         .ndo_start_xmit         = bcmgenet_xmit,
3183         .ndo_tx_timeout         = bcmgenet_timeout,
3184         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3185         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3186         .ndo_do_ioctl           = bcmgenet_ioctl,
3187         .ndo_set_features       = bcmgenet_set_features,
3188 #ifdef CONFIG_NET_POLL_CONTROLLER
3189         .ndo_poll_controller    = bcmgenet_poll_controller,
3190 #endif
3191 };
3192
3193 /* Array of GENET hardware parameters/characteristics */
3194 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3195         [GENET_V1] = {
3196                 .tx_queues = 0,
3197                 .tx_bds_per_q = 0,
3198                 .rx_queues = 0,
3199                 .rx_bds_per_q = 0,
3200                 .bp_in_en_shift = 16,
3201                 .bp_in_mask = 0xffff,
3202                 .hfb_filter_cnt = 16,
3203                 .qtag_mask = 0x1F,
3204                 .hfb_offset = 0x1000,
3205                 .rdma_offset = 0x2000,
3206                 .tdma_offset = 0x3000,
3207                 .words_per_bd = 2,
3208         },
3209         [GENET_V2] = {
3210                 .tx_queues = 4,
3211                 .tx_bds_per_q = 32,
3212                 .rx_queues = 0,
3213                 .rx_bds_per_q = 0,
3214                 .bp_in_en_shift = 16,
3215                 .bp_in_mask = 0xffff,
3216                 .hfb_filter_cnt = 16,
3217                 .qtag_mask = 0x1F,
3218                 .tbuf_offset = 0x0600,
3219                 .hfb_offset = 0x1000,
3220                 .hfb_reg_offset = 0x2000,
3221                 .rdma_offset = 0x3000,
3222                 .tdma_offset = 0x4000,
3223                 .words_per_bd = 2,
3224                 .flags = GENET_HAS_EXT,
3225         },
3226         [GENET_V3] = {
3227                 .tx_queues = 4,
3228                 .tx_bds_per_q = 32,
3229                 .rx_queues = 0,
3230                 .rx_bds_per_q = 0,
3231                 .bp_in_en_shift = 17,
3232                 .bp_in_mask = 0x1ffff,
3233                 .hfb_filter_cnt = 48,
3234                 .hfb_filter_size = 128,
3235                 .qtag_mask = 0x3F,
3236                 .tbuf_offset = 0x0600,
3237                 .hfb_offset = 0x8000,
3238                 .hfb_reg_offset = 0xfc00,
3239                 .rdma_offset = 0x10000,
3240                 .tdma_offset = 0x11000,
3241                 .words_per_bd = 2,
3242                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3243                          GENET_HAS_MOCA_LINK_DET,
3244         },
3245         [GENET_V4] = {
3246                 .tx_queues = 4,
3247                 .tx_bds_per_q = 32,
3248                 .rx_queues = 0,
3249                 .rx_bds_per_q = 0,
3250                 .bp_in_en_shift = 17,
3251                 .bp_in_mask = 0x1ffff,
3252                 .hfb_filter_cnt = 48,
3253                 .hfb_filter_size = 128,
3254                 .qtag_mask = 0x3F,
3255                 .tbuf_offset = 0x0600,
3256                 .hfb_offset = 0x8000,
3257                 .hfb_reg_offset = 0xfc00,
3258                 .rdma_offset = 0x2000,
3259                 .tdma_offset = 0x4000,
3260                 .words_per_bd = 3,
3261                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3262                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3263         },
3264 };
3265
3266 /* Infer hardware parameters from the detected GENET version */
3267 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3268 {
3269         struct bcmgenet_hw_params *params;
3270         u32 reg;
3271         u8 major;
3272         u16 gphy_rev;
3273
3274         if (GENET_IS_V4(priv)) {
3275                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3276                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3277                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3278                 priv->version = GENET_V4;
3279         } else if (GENET_IS_V3(priv)) {
3280                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3281                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3282                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3283                 priv->version = GENET_V3;
3284         } else if (GENET_IS_V2(priv)) {
3285                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3286                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3287                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3288                 priv->version = GENET_V2;
3289         } else if (GENET_IS_V1(priv)) {
3290                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3291                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3292                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3293                 priv->version = GENET_V1;
3294         }
3295
3296         /* enum genet_version starts at 1 */
3297         priv->hw_params = &bcmgenet_hw_params[priv->version];
3298         params = priv->hw_params;
3299
3300         /* Read GENET HW version */
3301         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3302         major = (reg >> 24 & 0x0f);
3303         if (major == 5)
3304                 major = 4;
3305         else if (major == 0)
3306                 major = 1;
3307         if (major != priv->version) {
3308                 dev_err(&priv->pdev->dev,
3309                         "GENET version mismatch, got: %d, configured for: %d\n",
3310                         major, priv->version);
3311         }
3312
3313         /* Print the GENET core version */
3314         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3315                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3316
3317         /* Store the integrated PHY revision for the MDIO probing function
3318          * to pass this information to the PHY driver. The PHY driver expects
3319          * to find the PHY major revision in bits 15:8 while the GENET register
3320          * stores that information in bits 7:0, account for that.
3321          *
3322          * On newer chips, starting with PHY revision G0, a new scheme is
3323          * deployed similar to the Starfighter 2 switch with GPHY major
3324          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3325          * is reserved as well as special value 0x01ff, we have a small
3326          * heuristic to check for the new GPHY revision and re-arrange things
3327          * so the GPHY driver is happy.
3328          */
3329         gphy_rev = reg & 0xffff;
3330
3331         /* This is reserved so should require special treatment */
3332         if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3333                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3334                 return;
3335         }
3336
3337         /* This is the good old scheme, just GPHY major, no minor nor patch */
3338         if ((gphy_rev & 0xf0) != 0)
3339                 priv->gphy_rev = gphy_rev << 8;
3340
3341         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3342         else if ((gphy_rev & 0xff00) != 0)
3343                 priv->gphy_rev = gphy_rev;
3344
3345 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3346         if (!(params->flags & GENET_HAS_40BITS))
3347                 pr_warn("GENET does not support 40-bits PA\n");
3348 #endif
3349
3350         pr_debug("Configuration for version: %d\n"
3351                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3352                 "BP << en: %2d, BP msk: 0x%05x\n"
3353                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3354                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3355                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3356                 "Words/BD: %d\n",
3357                 priv->version,
3358                 params->tx_queues, params->tx_bds_per_q,
3359                 params->rx_queues, params->rx_bds_per_q,
3360                 params->bp_in_en_shift, params->bp_in_mask,
3361                 params->hfb_filter_cnt, params->qtag_mask,
3362                 params->tbuf_offset, params->hfb_offset,
3363                 params->hfb_reg_offset,
3364                 params->rdma_offset, params->tdma_offset,
3365                 params->words_per_bd);
3366 }
3367
3368 static const struct of_device_id bcmgenet_match[] = {
3369         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3370         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3371         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3372         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3373         { },
3374 };
3375 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3376
3377 static int bcmgenet_probe(struct platform_device *pdev)
3378 {
3379         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3380         struct device_node *dn = pdev->dev.of_node;
3381         const struct of_device_id *of_id = NULL;
3382         struct bcmgenet_priv *priv;
3383         struct net_device *dev;
3384         const void *macaddr;
3385         struct resource *r;
3386         int err = -EIO;
3387         const char *phy_mode_str;
3388
3389         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3390         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3391                                  GENET_MAX_MQ_CNT + 1);
3392         if (!dev) {
3393                 dev_err(&pdev->dev, "can't allocate net device\n");
3394                 return -ENOMEM;
3395         }
3396
3397         if (dn) {
3398                 of_id = of_match_node(bcmgenet_match, dn);
3399                 if (!of_id)
3400                         return -EINVAL;
3401         }
3402
3403         priv = netdev_priv(dev);
3404         priv->irq0 = platform_get_irq(pdev, 0);
3405         priv->irq1 = platform_get_irq(pdev, 1);
3406         priv->wol_irq = platform_get_irq(pdev, 2);
3407         if (!priv->irq0 || !priv->irq1) {
3408                 dev_err(&pdev->dev, "can't find IRQs\n");
3409                 err = -EINVAL;
3410                 goto err;
3411         }
3412
3413         if (dn) {
3414                 macaddr = of_get_mac_address(dn);
3415                 if (!macaddr) {
3416                         dev_err(&pdev->dev, "can't find MAC address\n");
3417                         err = -EINVAL;
3418                         goto err;
3419                 }
3420         } else {
3421                 macaddr = pd->mac_address;
3422         }
3423
3424         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3425         priv->base = devm_ioremap_resource(&pdev->dev, r);
3426         if (IS_ERR(priv->base)) {
3427                 err = PTR_ERR(priv->base);
3428                 goto err;
3429         }
3430
3431         SET_NETDEV_DEV(dev, &pdev->dev);
3432         dev_set_drvdata(&pdev->dev, dev);
3433         ether_addr_copy(dev->dev_addr, macaddr);
3434         dev->watchdog_timeo = 2 * HZ;
3435         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3436         dev->netdev_ops = &bcmgenet_netdev_ops;
3437
3438         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3439
3440         /* Set hardware features */
3441         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3442                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3443
3444         /* Request the WOL interrupt and advertise suspend if available */
3445         priv->wol_irq_disabled = true;
3446         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3447                                dev->name, priv);
3448         if (!err)
3449                 device_set_wakeup_capable(&pdev->dev, 1);
3450
3451         /* Set the needed headroom to account for any possible
3452          * features enabling/disabling at runtime
3453          */
3454         dev->needed_headroom += 64;
3455
3456         netdev_boot_setup_check(dev);
3457
3458         priv->dev = dev;
3459         priv->pdev = pdev;
3460         if (of_id)
3461                 priv->version = (enum bcmgenet_version)of_id->data;
3462         else
3463                 priv->version = pd->genet_version;
3464
3465         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3466         if (IS_ERR(priv->clk)) {
3467                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3468                 priv->clk = NULL;
3469         }
3470
3471         clk_prepare_enable(priv->clk);
3472
3473         bcmgenet_set_hw_params(priv);
3474
3475         /* Mii wait queue */
3476         init_waitqueue_head(&priv->wq);
3477         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3478         priv->rx_buf_len = RX_BUF_LENGTH;
3479         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3480
3481         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3482         if (IS_ERR(priv->clk_wol)) {
3483                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3484                 priv->clk_wol = NULL;
3485         }
3486
3487         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3488         if (IS_ERR(priv->clk_eee)) {
3489                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3490                 priv->clk_eee = NULL;
3491         }
3492
3493         /* If this is an internal GPHY, power it on now, before UniMAC is
3494          * brought out of reset as absolutely no UniMAC activity is allowed
3495          */
3496         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3497             !strcasecmp(phy_mode_str, "internal"))
3498                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3499
3500         err = reset_umac(priv);
3501         if (err)
3502                 goto err_clk_disable;
3503
3504         err = bcmgenet_mii_init(dev);
3505         if (err)
3506                 goto err_clk_disable;
3507
3508         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3509          * just the ring 16 descriptor based TX
3510          */
3511         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3512         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3513
3514         /* libphy will determine the link state */
3515         netif_carrier_off(dev);
3516
3517         /* Turn off the main clock, WOL clock is handled separately */
3518         clk_disable_unprepare(priv->clk);
3519
3520         err = register_netdev(dev);
3521         if (err) {
3522                 bcmgenet_mii_exit(dev);
3523                 goto err;
3524         }
3525
3526         return err;
3527
3528 err_clk_disable:
3529         clk_disable_unprepare(priv->clk);
3530 err:
3531         free_netdev(dev);
3532         return err;
3533 }
3534
3535 static int bcmgenet_remove(struct platform_device *pdev)
3536 {
3537         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3538
3539         dev_set_drvdata(&pdev->dev, NULL);
3540         unregister_netdev(priv->dev);
3541         bcmgenet_mii_exit(priv->dev);
3542         free_netdev(priv->dev);
3543
3544         return 0;
3545 }
3546
3547 #ifdef CONFIG_PM_SLEEP
3548 static int bcmgenet_suspend(struct device *d)
3549 {
3550         struct net_device *dev = dev_get_drvdata(d);
3551         struct bcmgenet_priv *priv = netdev_priv(dev);
3552         int ret;
3553
3554         if (!netif_running(dev))
3555                 return 0;
3556
3557         bcmgenet_netif_stop(dev);
3558
3559         if (!device_may_wakeup(d))
3560                 phy_suspend(priv->phydev);
3561
3562         netif_device_detach(dev);
3563
3564         /* Disable MAC receive */
3565         umac_enable_set(priv, CMD_RX_EN, false);
3566
3567         ret = bcmgenet_dma_teardown(priv);
3568         if (ret)
3569                 return ret;
3570
3571         /* Disable MAC transmit. TX DMA disabled have to done before this */
3572         umac_enable_set(priv, CMD_TX_EN, false);
3573
3574         /* tx reclaim */
3575         bcmgenet_tx_reclaim_all(dev);
3576         bcmgenet_fini_dma(priv);
3577
3578         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3579         if (device_may_wakeup(d) && priv->wolopts) {
3580                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3581                 clk_prepare_enable(priv->clk_wol);
3582         } else if (priv->internal_phy) {
3583                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3584         }
3585
3586         /* Turn off the clocks */
3587         clk_disable_unprepare(priv->clk);
3588
3589         return ret;
3590 }
3591
3592 static int bcmgenet_resume(struct device *d)
3593 {
3594         struct net_device *dev = dev_get_drvdata(d);
3595         struct bcmgenet_priv *priv = netdev_priv(dev);
3596         unsigned long dma_ctrl;
3597         int ret;
3598
3599         if (!netif_running(dev))
3600                 return 0;
3601
3602         /* Turn on the clock */
3603         ret = clk_prepare_enable(priv->clk);
3604         if (ret)
3605                 return ret;
3606
3607         /* If this is an internal GPHY, power it back on now, before UniMAC is
3608          * brought out of reset as absolutely no UniMAC activity is allowed
3609          */
3610         if (priv->internal_phy)
3611                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3612
3613         bcmgenet_umac_reset(priv);
3614
3615         ret = init_umac(priv);
3616         if (ret)
3617                 goto out_clk_disable;
3618
3619         /* From WOL-enabled suspend, switch to regular clock */
3620         if (priv->wolopts)
3621                 clk_disable_unprepare(priv->clk_wol);
3622
3623         phy_init_hw(priv->phydev);
3624         /* Speed settings must be restored */
3625         bcmgenet_mii_config(priv->dev);
3626
3627         /* disable ethernet MAC while updating its registers */
3628         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3629
3630         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3631
3632         if (priv->wolopts)
3633                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3634
3635         /* Disable RX/TX DMA and flush TX queues */
3636         dma_ctrl = bcmgenet_dma_disable(priv);
3637
3638         /* Reinitialize TDMA and RDMA and SW housekeeping */
3639         ret = bcmgenet_init_dma(priv);
3640         if (ret) {
3641                 netdev_err(dev, "failed to initialize DMA\n");
3642                 goto out_clk_disable;
3643         }
3644
3645         /* Always enable ring 16 - descriptor ring */
3646         bcmgenet_enable_dma(priv, dma_ctrl);
3647
3648         netif_device_attach(dev);
3649
3650         if (!device_may_wakeup(d))
3651                 phy_resume(priv->phydev);
3652
3653         if (priv->eee.eee_enabled)
3654                 bcmgenet_eee_enable_set(dev, true);
3655
3656         bcmgenet_netif_start(dev);
3657
3658         return 0;
3659
3660 out_clk_disable:
3661         if (priv->internal_phy)
3662                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3663         clk_disable_unprepare(priv->clk);
3664         return ret;
3665 }
3666 #endif /* CONFIG_PM_SLEEP */
3667
3668 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3669
3670 static struct platform_driver bcmgenet_driver = {
3671         .probe  = bcmgenet_probe,
3672         .remove = bcmgenet_remove,
3673         .driver = {
3674                 .name   = "bcmgenet",
3675                 .of_match_table = bcmgenet_match,
3676                 .pm     = &bcmgenet_pm_ops,
3677         },
3678 };
3679 module_platform_driver(bcmgenet_driver);
3680
3681 MODULE_AUTHOR("Broadcom Corporation");
3682 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3683 MODULE_ALIAS("platform:bcmgenet");
3684 MODULE_LICENSE("GPL");