GNU Linux-libre 4.14.295-gnu1
[releases.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT        4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY       0
56
57 #define GENET_Q16_RX_BD_CNT     \
58         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT     \
60         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH           2048
63 #define SKB_ALIGNMENT           32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
73                                 TOTAL_DESC * DMA_DESC_SIZE)
74
75 /* Forward declarations */
76 static void bcmgenet_set_rx_mode(struct net_device *dev);
77
78 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
79 {
80         /* MIPS chips strapped for BE will automagically configure the
81          * peripheral registers for CPU-native byte order.
82          */
83         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
84                 __raw_writel(value, offset);
85         else
86                 writel_relaxed(value, offset);
87 }
88
89 static inline u32 bcmgenet_readl(void __iomem *offset)
90 {
91         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
92                 return __raw_readl(offset);
93         else
94                 return readl_relaxed(offset);
95 }
96
97 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
98                                              void __iomem *d, u32 value)
99 {
100         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
101 }
102
103 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
104                                             void __iomem *d)
105 {
106         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
107 }
108
109 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
110                                     void __iomem *d,
111                                     dma_addr_t addr)
112 {
113         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
114
115         /* Register writes to GISB bus can take couple hundred nanoseconds
116          * and are done for each packet, save these expensive writes unless
117          * the platform is explicitly configured for 64-bits/LPAE.
118          */
119 #ifdef CONFIG_PHYS_ADDR_T_64BIT
120         if (priv->hw_params->flags & GENET_HAS_40BITS)
121                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
122 #endif
123 }
124
125 /* Combined address + length/status setter */
126 static inline void dmadesc_set(struct bcmgenet_priv *priv,
127                                void __iomem *d, dma_addr_t addr, u32 val)
128 {
129         dmadesc_set_addr(priv, d, addr);
130         dmadesc_set_length_status(priv, d, val);
131 }
132
133 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
134                                           void __iomem *d)
135 {
136         dma_addr_t addr;
137
138         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
139
140         /* Register writes to GISB bus can take couple hundred nanoseconds
141          * and are done for each packet, save these expensive writes unless
142          * the platform is explicitly configured for 64-bits/LPAE.
143          */
144 #ifdef CONFIG_PHYS_ADDR_T_64BIT
145         if (priv->hw_params->flags & GENET_HAS_40BITS)
146                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
147 #endif
148         return addr;
149 }
150
151 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
152
153 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
154                                 NETIF_MSG_LINK)
155
156 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
157 {
158         if (GENET_IS_V1(priv))
159                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
160         else
161                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
162 }
163
164 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
165 {
166         if (GENET_IS_V1(priv))
167                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
168         else
169                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
170 }
171
172 /* These macros are defined to deal with register map change
173  * between GENET1.1 and GENET2. Only those currently being used
174  * by driver are defined.
175  */
176 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
177 {
178         if (GENET_IS_V1(priv))
179                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
180         else
181                 return bcmgenet_readl(priv->base +
182                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
183 }
184
185 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
186 {
187         if (GENET_IS_V1(priv))
188                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
189         else
190                 bcmgenet_writel(val, priv->base +
191                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
192 }
193
194 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
195 {
196         if (GENET_IS_V1(priv))
197                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
198         else
199                 return bcmgenet_readl(priv->base +
200                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
201 }
202
203 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
204 {
205         if (GENET_IS_V1(priv))
206                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
207         else
208                 bcmgenet_writel(val, priv->base +
209                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
210 }
211
212 /* RX/TX DMA register accessors */
213 enum dma_reg {
214         DMA_RING_CFG = 0,
215         DMA_CTRL,
216         DMA_STATUS,
217         DMA_SCB_BURST_SIZE,
218         DMA_ARB_CTRL,
219         DMA_PRIORITY_0,
220         DMA_PRIORITY_1,
221         DMA_PRIORITY_2,
222         DMA_INDEX2RING_0,
223         DMA_INDEX2RING_1,
224         DMA_INDEX2RING_2,
225         DMA_INDEX2RING_3,
226         DMA_INDEX2RING_4,
227         DMA_INDEX2RING_5,
228         DMA_INDEX2RING_6,
229         DMA_INDEX2RING_7,
230         DMA_RING0_TIMEOUT,
231         DMA_RING1_TIMEOUT,
232         DMA_RING2_TIMEOUT,
233         DMA_RING3_TIMEOUT,
234         DMA_RING4_TIMEOUT,
235         DMA_RING5_TIMEOUT,
236         DMA_RING6_TIMEOUT,
237         DMA_RING7_TIMEOUT,
238         DMA_RING8_TIMEOUT,
239         DMA_RING9_TIMEOUT,
240         DMA_RING10_TIMEOUT,
241         DMA_RING11_TIMEOUT,
242         DMA_RING12_TIMEOUT,
243         DMA_RING13_TIMEOUT,
244         DMA_RING14_TIMEOUT,
245         DMA_RING15_TIMEOUT,
246         DMA_RING16_TIMEOUT,
247 };
248
249 static const u8 bcmgenet_dma_regs_v3plus[] = {
250         [DMA_RING_CFG]          = 0x00,
251         [DMA_CTRL]              = 0x04,
252         [DMA_STATUS]            = 0x08,
253         [DMA_SCB_BURST_SIZE]    = 0x0C,
254         [DMA_ARB_CTRL]          = 0x2C,
255         [DMA_PRIORITY_0]        = 0x30,
256         [DMA_PRIORITY_1]        = 0x34,
257         [DMA_PRIORITY_2]        = 0x38,
258         [DMA_RING0_TIMEOUT]     = 0x2C,
259         [DMA_RING1_TIMEOUT]     = 0x30,
260         [DMA_RING2_TIMEOUT]     = 0x34,
261         [DMA_RING3_TIMEOUT]     = 0x38,
262         [DMA_RING4_TIMEOUT]     = 0x3c,
263         [DMA_RING5_TIMEOUT]     = 0x40,
264         [DMA_RING6_TIMEOUT]     = 0x44,
265         [DMA_RING7_TIMEOUT]     = 0x48,
266         [DMA_RING8_TIMEOUT]     = 0x4c,
267         [DMA_RING9_TIMEOUT]     = 0x50,
268         [DMA_RING10_TIMEOUT]    = 0x54,
269         [DMA_RING11_TIMEOUT]    = 0x58,
270         [DMA_RING12_TIMEOUT]    = 0x5c,
271         [DMA_RING13_TIMEOUT]    = 0x60,
272         [DMA_RING14_TIMEOUT]    = 0x64,
273         [DMA_RING15_TIMEOUT]    = 0x68,
274         [DMA_RING16_TIMEOUT]    = 0x6C,
275         [DMA_INDEX2RING_0]      = 0x70,
276         [DMA_INDEX2RING_1]      = 0x74,
277         [DMA_INDEX2RING_2]      = 0x78,
278         [DMA_INDEX2RING_3]      = 0x7C,
279         [DMA_INDEX2RING_4]      = 0x80,
280         [DMA_INDEX2RING_5]      = 0x84,
281         [DMA_INDEX2RING_6]      = 0x88,
282         [DMA_INDEX2RING_7]      = 0x8C,
283 };
284
285 static const u8 bcmgenet_dma_regs_v2[] = {
286         [DMA_RING_CFG]          = 0x00,
287         [DMA_CTRL]              = 0x04,
288         [DMA_STATUS]            = 0x08,
289         [DMA_SCB_BURST_SIZE]    = 0x0C,
290         [DMA_ARB_CTRL]          = 0x30,
291         [DMA_PRIORITY_0]        = 0x34,
292         [DMA_PRIORITY_1]        = 0x38,
293         [DMA_PRIORITY_2]        = 0x3C,
294         [DMA_RING0_TIMEOUT]     = 0x2C,
295         [DMA_RING1_TIMEOUT]     = 0x30,
296         [DMA_RING2_TIMEOUT]     = 0x34,
297         [DMA_RING3_TIMEOUT]     = 0x38,
298         [DMA_RING4_TIMEOUT]     = 0x3c,
299         [DMA_RING5_TIMEOUT]     = 0x40,
300         [DMA_RING6_TIMEOUT]     = 0x44,
301         [DMA_RING7_TIMEOUT]     = 0x48,
302         [DMA_RING8_TIMEOUT]     = 0x4c,
303         [DMA_RING9_TIMEOUT]     = 0x50,
304         [DMA_RING10_TIMEOUT]    = 0x54,
305         [DMA_RING11_TIMEOUT]    = 0x58,
306         [DMA_RING12_TIMEOUT]    = 0x5c,
307         [DMA_RING13_TIMEOUT]    = 0x60,
308         [DMA_RING14_TIMEOUT]    = 0x64,
309         [DMA_RING15_TIMEOUT]    = 0x68,
310         [DMA_RING16_TIMEOUT]    = 0x6C,
311 };
312
313 static const u8 bcmgenet_dma_regs_v1[] = {
314         [DMA_CTRL]              = 0x00,
315         [DMA_STATUS]            = 0x04,
316         [DMA_SCB_BURST_SIZE]    = 0x0C,
317         [DMA_ARB_CTRL]          = 0x30,
318         [DMA_PRIORITY_0]        = 0x34,
319         [DMA_PRIORITY_1]        = 0x38,
320         [DMA_PRIORITY_2]        = 0x3C,
321         [DMA_RING0_TIMEOUT]     = 0x2C,
322         [DMA_RING1_TIMEOUT]     = 0x30,
323         [DMA_RING2_TIMEOUT]     = 0x34,
324         [DMA_RING3_TIMEOUT]     = 0x38,
325         [DMA_RING4_TIMEOUT]     = 0x3c,
326         [DMA_RING5_TIMEOUT]     = 0x40,
327         [DMA_RING6_TIMEOUT]     = 0x44,
328         [DMA_RING7_TIMEOUT]     = 0x48,
329         [DMA_RING8_TIMEOUT]     = 0x4c,
330         [DMA_RING9_TIMEOUT]     = 0x50,
331         [DMA_RING10_TIMEOUT]    = 0x54,
332         [DMA_RING11_TIMEOUT]    = 0x58,
333         [DMA_RING12_TIMEOUT]    = 0x5c,
334         [DMA_RING13_TIMEOUT]    = 0x60,
335         [DMA_RING14_TIMEOUT]    = 0x64,
336         [DMA_RING15_TIMEOUT]    = 0x68,
337         [DMA_RING16_TIMEOUT]    = 0x6C,
338 };
339
340 /* Set at runtime once bcmgenet version is known */
341 static const u8 *bcmgenet_dma_regs;
342
343 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
344 {
345         return netdev_priv(dev_get_drvdata(dev));
346 }
347
348 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
349                                       enum dma_reg r)
350 {
351         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
352                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
353 }
354
355 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
356                                         u32 val, enum dma_reg r)
357 {
358         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
359                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
360 }
361
362 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
363                                       enum dma_reg r)
364 {
365         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
366                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
367 }
368
369 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
370                                         u32 val, enum dma_reg r)
371 {
372         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
373                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
374 }
375
376 /* RDMA/TDMA ring registers and accessors
377  * we merge the common fields and just prefix with T/D the registers
378  * having different meaning depending on the direction
379  */
380 enum dma_ring_reg {
381         TDMA_READ_PTR = 0,
382         RDMA_WRITE_PTR = TDMA_READ_PTR,
383         TDMA_READ_PTR_HI,
384         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
385         TDMA_CONS_INDEX,
386         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
387         TDMA_PROD_INDEX,
388         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
389         DMA_RING_BUF_SIZE,
390         DMA_START_ADDR,
391         DMA_START_ADDR_HI,
392         DMA_END_ADDR,
393         DMA_END_ADDR_HI,
394         DMA_MBUF_DONE_THRESH,
395         TDMA_FLOW_PERIOD,
396         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
397         TDMA_WRITE_PTR,
398         RDMA_READ_PTR = TDMA_WRITE_PTR,
399         TDMA_WRITE_PTR_HI,
400         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
401 };
402
403 /* GENET v4 supports 40-bits pointer addressing
404  * for obvious reasons the LO and HI word parts
405  * are contiguous, but this offsets the other
406  * registers.
407  */
408 static const u8 genet_dma_ring_regs_v4[] = {
409         [TDMA_READ_PTR]                 = 0x00,
410         [TDMA_READ_PTR_HI]              = 0x04,
411         [TDMA_CONS_INDEX]               = 0x08,
412         [TDMA_PROD_INDEX]               = 0x0C,
413         [DMA_RING_BUF_SIZE]             = 0x10,
414         [DMA_START_ADDR]                = 0x14,
415         [DMA_START_ADDR_HI]             = 0x18,
416         [DMA_END_ADDR]                  = 0x1C,
417         [DMA_END_ADDR_HI]               = 0x20,
418         [DMA_MBUF_DONE_THRESH]          = 0x24,
419         [TDMA_FLOW_PERIOD]              = 0x28,
420         [TDMA_WRITE_PTR]                = 0x2C,
421         [TDMA_WRITE_PTR_HI]             = 0x30,
422 };
423
424 static const u8 genet_dma_ring_regs_v123[] = {
425         [TDMA_READ_PTR]                 = 0x00,
426         [TDMA_CONS_INDEX]               = 0x04,
427         [TDMA_PROD_INDEX]               = 0x08,
428         [DMA_RING_BUF_SIZE]             = 0x0C,
429         [DMA_START_ADDR]                = 0x10,
430         [DMA_END_ADDR]                  = 0x14,
431         [DMA_MBUF_DONE_THRESH]          = 0x18,
432         [TDMA_FLOW_PERIOD]              = 0x1C,
433         [TDMA_WRITE_PTR]                = 0x20,
434 };
435
436 /* Set at runtime once GENET version is known */
437 static const u8 *genet_dma_ring_regs;
438
439 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
440                                            unsigned int ring,
441                                            enum dma_ring_reg r)
442 {
443         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
444                               (DMA_RING_SIZE * ring) +
445                               genet_dma_ring_regs[r]);
446 }
447
448 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
449                                              unsigned int ring, u32 val,
450                                              enum dma_ring_reg r)
451 {
452         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
453                         (DMA_RING_SIZE * ring) +
454                         genet_dma_ring_regs[r]);
455 }
456
457 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
458                                            unsigned int ring,
459                                            enum dma_ring_reg r)
460 {
461         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
462                               (DMA_RING_SIZE * ring) +
463                               genet_dma_ring_regs[r]);
464 }
465
466 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
467                                              unsigned int ring, u32 val,
468                                              enum dma_ring_reg r)
469 {
470         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
471                         (DMA_RING_SIZE * ring) +
472                         genet_dma_ring_regs[r]);
473 }
474
475 static int bcmgenet_begin(struct net_device *dev)
476 {
477         struct bcmgenet_priv *priv = netdev_priv(dev);
478
479         /* Turn on the clock */
480         return clk_prepare_enable(priv->clk);
481 }
482
483 static void bcmgenet_complete(struct net_device *dev)
484 {
485         struct bcmgenet_priv *priv = netdev_priv(dev);
486
487         /* Turn off the clock */
488         clk_disable_unprepare(priv->clk);
489 }
490
491 static int bcmgenet_get_link_ksettings(struct net_device *dev,
492                                        struct ethtool_link_ksettings *cmd)
493 {
494         struct bcmgenet_priv *priv = netdev_priv(dev);
495
496         if (!netif_running(dev))
497                 return -EINVAL;
498
499         if (!priv->phydev)
500                 return -ENODEV;
501
502         phy_ethtool_ksettings_get(priv->phydev, cmd);
503
504         return 0;
505 }
506
507 static int bcmgenet_set_link_ksettings(struct net_device *dev,
508                                        const struct ethtool_link_ksettings *cmd)
509 {
510         struct bcmgenet_priv *priv = netdev_priv(dev);
511
512         if (!netif_running(dev))
513                 return -EINVAL;
514
515         if (!priv->phydev)
516                 return -ENODEV;
517
518         return phy_ethtool_ksettings_set(priv->phydev, cmd);
519 }
520
521 static int bcmgenet_set_rx_csum(struct net_device *dev,
522                                 netdev_features_t wanted)
523 {
524         struct bcmgenet_priv *priv = netdev_priv(dev);
525         u32 rbuf_chk_ctrl;
526         bool rx_csum_en;
527
528         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
529
530         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
531
532         /* enable rx checksumming */
533         if (rx_csum_en)
534                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
535         else
536                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
537         priv->desc_rxchk_en = rx_csum_en;
538
539         /* If UniMAC forwards CRC, we need to skip over it to get
540          * a valid CHK bit to be set in the per-packet status word
541         */
542         if (rx_csum_en && priv->crc_fwd_en)
543                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
544         else
545                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
546
547         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
548
549         return 0;
550 }
551
552 static int bcmgenet_set_tx_csum(struct net_device *dev,
553                                 netdev_features_t wanted)
554 {
555         struct bcmgenet_priv *priv = netdev_priv(dev);
556         bool desc_64b_en;
557         u32 tbuf_ctrl, rbuf_ctrl;
558
559         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
560         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
561
562         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
563
564         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
565         if (desc_64b_en) {
566                 tbuf_ctrl |= RBUF_64B_EN;
567                 rbuf_ctrl |= RBUF_64B_EN;
568         } else {
569                 tbuf_ctrl &= ~RBUF_64B_EN;
570                 rbuf_ctrl &= ~RBUF_64B_EN;
571         }
572         priv->desc_64b_en = desc_64b_en;
573
574         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
575         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
576
577         return 0;
578 }
579
580 static int bcmgenet_set_features(struct net_device *dev,
581                                  netdev_features_t features)
582 {
583         netdev_features_t changed = features ^ dev->features;
584         netdev_features_t wanted = dev->wanted_features;
585         int ret = 0;
586
587         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
588                 ret = bcmgenet_set_tx_csum(dev, wanted);
589         if (changed & (NETIF_F_RXCSUM))
590                 ret = bcmgenet_set_rx_csum(dev, wanted);
591
592         return ret;
593 }
594
595 static u32 bcmgenet_get_msglevel(struct net_device *dev)
596 {
597         struct bcmgenet_priv *priv = netdev_priv(dev);
598
599         return priv->msg_enable;
600 }
601
602 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
603 {
604         struct bcmgenet_priv *priv = netdev_priv(dev);
605
606         priv->msg_enable = level;
607 }
608
609 static int bcmgenet_get_coalesce(struct net_device *dev,
610                                  struct ethtool_coalesce *ec)
611 {
612         struct bcmgenet_priv *priv = netdev_priv(dev);
613
614         ec->tx_max_coalesced_frames =
615                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
616                                          DMA_MBUF_DONE_THRESH);
617         ec->rx_max_coalesced_frames =
618                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
619                                          DMA_MBUF_DONE_THRESH);
620         ec->rx_coalesce_usecs =
621                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
622
623         return 0;
624 }
625
626 static int bcmgenet_set_coalesce(struct net_device *dev,
627                                  struct ethtool_coalesce *ec)
628 {
629         struct bcmgenet_priv *priv = netdev_priv(dev);
630         unsigned int i;
631         u32 reg;
632
633         /* Base system clock is 125Mhz, DMA timeout is this reference clock
634          * divided by 1024, which yields roughly 8.192us, our maximum value
635          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
636          */
637         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
638             ec->tx_max_coalesced_frames == 0 ||
639             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
640             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
641                 return -EINVAL;
642
643         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
644                 return -EINVAL;
645
646         /* GENET TDMA hardware does not support a configurable timeout, but will
647          * always generate an interrupt either after MBDONE packets have been
648          * transmitted, or when the ring is empty.
649          */
650         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
651             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
652                 return -EOPNOTSUPP;
653
654         /* Program all TX queues with the same values, as there is no
655          * ethtool knob to do coalescing on a per-queue basis
656          */
657         for (i = 0; i < priv->hw_params->tx_queues; i++)
658                 bcmgenet_tdma_ring_writel(priv, i,
659                                           ec->tx_max_coalesced_frames,
660                                           DMA_MBUF_DONE_THRESH);
661         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
662                                   ec->tx_max_coalesced_frames,
663                                   DMA_MBUF_DONE_THRESH);
664
665         for (i = 0; i < priv->hw_params->rx_queues; i++) {
666                 bcmgenet_rdma_ring_writel(priv, i,
667                                           ec->rx_max_coalesced_frames,
668                                           DMA_MBUF_DONE_THRESH);
669
670                 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
671                 reg &= ~DMA_TIMEOUT_MASK;
672                 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
673                 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
674         }
675
676         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
677                                   ec->rx_max_coalesced_frames,
678                                   DMA_MBUF_DONE_THRESH);
679
680         reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
681         reg &= ~DMA_TIMEOUT_MASK;
682         reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
683         bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
684
685         return 0;
686 }
687
688 /* standard ethtool support functions. */
689 enum bcmgenet_stat_type {
690         BCMGENET_STAT_NETDEV = -1,
691         BCMGENET_STAT_MIB_RX,
692         BCMGENET_STAT_MIB_TX,
693         BCMGENET_STAT_RUNT,
694         BCMGENET_STAT_MISC,
695         BCMGENET_STAT_SOFT,
696 };
697
698 struct bcmgenet_stats {
699         char stat_string[ETH_GSTRING_LEN];
700         int stat_sizeof;
701         int stat_offset;
702         enum bcmgenet_stat_type type;
703         /* reg offset from UMAC base for misc counters */
704         u16 reg_offset;
705 };
706
707 #define STAT_NETDEV(m) { \
708         .stat_string = __stringify(m), \
709         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
710         .stat_offset = offsetof(struct net_device_stats, m), \
711         .type = BCMGENET_STAT_NETDEV, \
712 }
713
714 #define STAT_GENET_MIB(str, m, _type) { \
715         .stat_string = str, \
716         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
717         .stat_offset = offsetof(struct bcmgenet_priv, m), \
718         .type = _type, \
719 }
720
721 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
722 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
723 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
724 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
725
726 #define STAT_GENET_MISC(str, m, offset) { \
727         .stat_string = str, \
728         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
729         .stat_offset = offsetof(struct bcmgenet_priv, m), \
730         .type = BCMGENET_STAT_MISC, \
731         .reg_offset = offset, \
732 }
733
734 #define STAT_GENET_Q(num) \
735         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
736                         tx_rings[num].packets), \
737         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
738                         tx_rings[num].bytes), \
739         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
740                         rx_rings[num].bytes),    \
741         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
742                         rx_rings[num].packets), \
743         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
744                         rx_rings[num].errors), \
745         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
746                         rx_rings[num].dropped)
747
748 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
749  * between the end of TX stats and the beginning of the RX RUNT
750  */
751 #define BCMGENET_STAT_OFFSET    0xc
752
753 /* Hardware counters must be kept in sync because the order/offset
754  * is important here (order in structure declaration = order in hardware)
755  */
756 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
757         /* general stats */
758         STAT_NETDEV(rx_packets),
759         STAT_NETDEV(tx_packets),
760         STAT_NETDEV(rx_bytes),
761         STAT_NETDEV(tx_bytes),
762         STAT_NETDEV(rx_errors),
763         STAT_NETDEV(tx_errors),
764         STAT_NETDEV(rx_dropped),
765         STAT_NETDEV(tx_dropped),
766         STAT_NETDEV(multicast),
767         /* UniMAC RSV counters */
768         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
769         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
770         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
771         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
772         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
773         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
774         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
775         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
776         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
777         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
778         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
779         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
780         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
781         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
782         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
783         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
784         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
785         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
786         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
787         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
788         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
789         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
790         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
791         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
792         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
793         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
794         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
795         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
796         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
797         /* UniMAC TSV counters */
798         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
799         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
800         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
801         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
802         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
803         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
804         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
805         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
806         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
807         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
808         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
809         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
810         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
811         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
812         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
813         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
814         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
815         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
816         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
817         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
818         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
819         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
820         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
821         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
822         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
823         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
824         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
825         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
826         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
827         /* UniMAC RUNT counters */
828         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
829         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
830         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
831         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
832         /* Misc UniMAC counters */
833         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
834                         UMAC_RBUF_OVFL_CNT_V1),
835         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
836                         UMAC_RBUF_ERR_CNT_V1),
837         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
838         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
839         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
840         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
841         /* Per TX queues */
842         STAT_GENET_Q(0),
843         STAT_GENET_Q(1),
844         STAT_GENET_Q(2),
845         STAT_GENET_Q(3),
846         STAT_GENET_Q(16),
847 };
848
849 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
850
851 static void bcmgenet_get_drvinfo(struct net_device *dev,
852                                  struct ethtool_drvinfo *info)
853 {
854         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
855         strlcpy(info->version, "v2.0", sizeof(info->version));
856 }
857
858 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
859 {
860         switch (string_set) {
861         case ETH_SS_STATS:
862                 return BCMGENET_STATS_LEN;
863         default:
864                 return -EOPNOTSUPP;
865         }
866 }
867
868 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
869                                  u8 *data)
870 {
871         int i;
872
873         switch (stringset) {
874         case ETH_SS_STATS:
875                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
876                         memcpy(data + i * ETH_GSTRING_LEN,
877                                bcmgenet_gstrings_stats[i].stat_string,
878                                ETH_GSTRING_LEN);
879                 }
880                 break;
881         }
882 }
883
884 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
885 {
886         u16 new_offset;
887         u32 val;
888
889         switch (offset) {
890         case UMAC_RBUF_OVFL_CNT_V1:
891                 if (GENET_IS_V2(priv))
892                         new_offset = RBUF_OVFL_CNT_V2;
893                 else
894                         new_offset = RBUF_OVFL_CNT_V3PLUS;
895
896                 val = bcmgenet_rbuf_readl(priv, new_offset);
897                 /* clear if overflowed */
898                 if (val == ~0)
899                         bcmgenet_rbuf_writel(priv, 0, new_offset);
900                 break;
901         case UMAC_RBUF_ERR_CNT_V1:
902                 if (GENET_IS_V2(priv))
903                         new_offset = RBUF_ERR_CNT_V2;
904                 else
905                         new_offset = RBUF_ERR_CNT_V3PLUS;
906
907                 val = bcmgenet_rbuf_readl(priv, new_offset);
908                 /* clear if overflowed */
909                 if (val == ~0)
910                         bcmgenet_rbuf_writel(priv, 0, new_offset);
911                 break;
912         default:
913                 val = bcmgenet_umac_readl(priv, offset);
914                 /* clear if overflowed */
915                 if (val == ~0)
916                         bcmgenet_umac_writel(priv, 0, offset);
917                 break;
918         }
919
920         return val;
921 }
922
923 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
924 {
925         int i, j = 0;
926
927         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
928                 const struct bcmgenet_stats *s;
929                 u8 offset = 0;
930                 u32 val = 0;
931                 char *p;
932
933                 s = &bcmgenet_gstrings_stats[i];
934                 switch (s->type) {
935                 case BCMGENET_STAT_NETDEV:
936                 case BCMGENET_STAT_SOFT:
937                         continue;
938                 case BCMGENET_STAT_RUNT:
939                         offset += BCMGENET_STAT_OFFSET;
940                         /* fall through */
941                 case BCMGENET_STAT_MIB_TX:
942                         offset += BCMGENET_STAT_OFFSET;
943                         /* fall through */
944                 case BCMGENET_STAT_MIB_RX:
945                         val = bcmgenet_umac_readl(priv,
946                                                   UMAC_MIB_START + j + offset);
947                         offset = 0;     /* Reset Offset */
948                         break;
949                 case BCMGENET_STAT_MISC:
950                         if (GENET_IS_V1(priv)) {
951                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
952                                 /* clear if overflowed */
953                                 if (val == ~0)
954                                         bcmgenet_umac_writel(priv, 0,
955                                                              s->reg_offset);
956                         } else {
957                                 val = bcmgenet_update_stat_misc(priv,
958                                                                 s->reg_offset);
959                         }
960                         break;
961                 }
962
963                 j += s->stat_sizeof;
964                 p = (char *)priv + s->stat_offset;
965                 *(u32 *)p = val;
966         }
967 }
968
969 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
970                                        struct ethtool_stats *stats,
971                                        u64 *data)
972 {
973         struct bcmgenet_priv *priv = netdev_priv(dev);
974         int i;
975
976         if (netif_running(dev))
977                 bcmgenet_update_mib_counters(priv);
978
979         dev->netdev_ops->ndo_get_stats(dev);
980
981         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
982                 const struct bcmgenet_stats *s;
983                 char *p;
984
985                 s = &bcmgenet_gstrings_stats[i];
986                 if (s->type == BCMGENET_STAT_NETDEV)
987                         p = (char *)&dev->stats;
988                 else
989                         p = (char *)priv;
990                 p += s->stat_offset;
991                 if (sizeof(unsigned long) != sizeof(u32) &&
992                     s->stat_sizeof == sizeof(unsigned long))
993                         data[i] = *(unsigned long *)p;
994                 else
995                         data[i] = *(u32 *)p;
996         }
997 }
998
999 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1000 {
1001         struct bcmgenet_priv *priv = netdev_priv(dev);
1002         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1003         u32 reg;
1004
1005         if (enable && !priv->clk_eee_enabled) {
1006                 clk_prepare_enable(priv->clk_eee);
1007                 priv->clk_eee_enabled = true;
1008         }
1009
1010         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1011         if (enable)
1012                 reg |= EEE_EN;
1013         else
1014                 reg &= ~EEE_EN;
1015         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1016
1017         /* Enable EEE and switch to a 27Mhz clock automatically */
1018         reg = bcmgenet_readl(priv->base + off);
1019         if (enable)
1020                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1021         else
1022                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1023         bcmgenet_writel(reg, priv->base + off);
1024
1025         /* Do the same for thing for RBUF */
1026         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1027         if (enable)
1028                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1029         else
1030                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1031         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1032
1033         if (!enable && priv->clk_eee_enabled) {
1034                 clk_disable_unprepare(priv->clk_eee);
1035                 priv->clk_eee_enabled = false;
1036         }
1037
1038         priv->eee.eee_enabled = enable;
1039         priv->eee.eee_active = enable;
1040 }
1041
1042 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1043 {
1044         struct bcmgenet_priv *priv = netdev_priv(dev);
1045         struct ethtool_eee *p = &priv->eee;
1046
1047         if (GENET_IS_V1(priv))
1048                 return -EOPNOTSUPP;
1049
1050         e->eee_enabled = p->eee_enabled;
1051         e->eee_active = p->eee_active;
1052         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1053
1054         return phy_ethtool_get_eee(priv->phydev, e);
1055 }
1056
1057 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1058 {
1059         struct bcmgenet_priv *priv = netdev_priv(dev);
1060         struct ethtool_eee *p = &priv->eee;
1061         int ret = 0;
1062
1063         if (GENET_IS_V1(priv))
1064                 return -EOPNOTSUPP;
1065
1066         p->eee_enabled = e->eee_enabled;
1067
1068         if (!p->eee_enabled) {
1069                 bcmgenet_eee_enable_set(dev, false);
1070         } else {
1071                 ret = phy_init_eee(priv->phydev, 0);
1072                 if (ret) {
1073                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1074                         return ret;
1075                 }
1076
1077                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1078                 bcmgenet_eee_enable_set(dev, true);
1079         }
1080
1081         return phy_ethtool_set_eee(priv->phydev, e);
1082 }
1083
1084 /* standard ethtool support functions. */
1085 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1086         .begin                  = bcmgenet_begin,
1087         .complete               = bcmgenet_complete,
1088         .get_strings            = bcmgenet_get_strings,
1089         .get_sset_count         = bcmgenet_get_sset_count,
1090         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1091         .get_drvinfo            = bcmgenet_get_drvinfo,
1092         .get_link               = ethtool_op_get_link,
1093         .get_msglevel           = bcmgenet_get_msglevel,
1094         .set_msglevel           = bcmgenet_set_msglevel,
1095         .get_wol                = bcmgenet_get_wol,
1096         .set_wol                = bcmgenet_set_wol,
1097         .get_eee                = bcmgenet_get_eee,
1098         .set_eee                = bcmgenet_set_eee,
1099         .nway_reset             = phy_ethtool_nway_reset,
1100         .get_coalesce           = bcmgenet_get_coalesce,
1101         .set_coalesce           = bcmgenet_set_coalesce,
1102         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1103         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1104 };
1105
1106 /* Power down the unimac, based on mode. */
1107 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1108                                 enum bcmgenet_power_mode mode)
1109 {
1110         int ret = 0;
1111         u32 reg;
1112
1113         switch (mode) {
1114         case GENET_POWER_CABLE_SENSE:
1115                 phy_detach(priv->phydev);
1116                 break;
1117
1118         case GENET_POWER_WOL_MAGIC:
1119                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1120                 break;
1121
1122         case GENET_POWER_PASSIVE:
1123                 /* Power down LED */
1124                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1125                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1126                         if (GENET_IS_V5(priv))
1127                                 reg |= EXT_PWR_DOWN_PHY_EN |
1128                                        EXT_PWR_DOWN_PHY_RD |
1129                                        EXT_PWR_DOWN_PHY_SD |
1130                                        EXT_PWR_DOWN_PHY_RX |
1131                                        EXT_PWR_DOWN_PHY_TX |
1132                                        EXT_IDDQ_GLBL_PWR;
1133                         else
1134                                 reg |= EXT_PWR_DOWN_PHY;
1135
1136                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1137                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1138
1139                         bcmgenet_phy_power_set(priv->dev, false);
1140                 }
1141                 break;
1142         default:
1143                 break;
1144         }
1145
1146         return ret;
1147 }
1148
1149 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1150                               enum bcmgenet_power_mode mode)
1151 {
1152         u32 reg;
1153
1154         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1155                 return;
1156
1157         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1158
1159         switch (mode) {
1160         case GENET_POWER_PASSIVE:
1161                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1162                          EXT_ENERGY_DET_MASK);
1163                 if (GENET_IS_V5(priv)) {
1164                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1165                                  EXT_PWR_DOWN_PHY_RD |
1166                                  EXT_PWR_DOWN_PHY_SD |
1167                                  EXT_PWR_DOWN_PHY_RX |
1168                                  EXT_PWR_DOWN_PHY_TX |
1169                                  EXT_IDDQ_GLBL_PWR);
1170                         reg |=   EXT_PHY_RESET;
1171                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1172                         mdelay(1);
1173
1174                         reg &=  ~EXT_PHY_RESET;
1175                 } else {
1176                         reg &= ~EXT_PWR_DOWN_PHY;
1177                         reg |= EXT_PWR_DN_EN_LD;
1178                 }
1179                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1180                 bcmgenet_phy_power_set(priv->dev, true);
1181                 bcmgenet_mii_reset(priv->dev);
1182                 break;
1183
1184         case GENET_POWER_CABLE_SENSE:
1185                 /* enable APD */
1186                 if (!GENET_IS_V5(priv)) {
1187                         reg |= EXT_PWR_DN_EN_LD;
1188                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1189                 }
1190                 break;
1191         case GENET_POWER_WOL_MAGIC:
1192                 bcmgenet_wol_power_up_cfg(priv, mode);
1193                 return;
1194         default:
1195                 break;
1196         }
1197 }
1198
1199 /* ioctl handle special commands that are not present in ethtool. */
1200 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1201 {
1202         struct bcmgenet_priv *priv = netdev_priv(dev);
1203
1204         if (!netif_running(dev))
1205                 return -EINVAL;
1206
1207         if (!priv->phydev)
1208                 return -ENODEV;
1209
1210         return phy_mii_ioctl(priv->phydev, rq, cmd);
1211 }
1212
1213 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1214                                          struct bcmgenet_tx_ring *ring)
1215 {
1216         struct enet_cb *tx_cb_ptr;
1217
1218         tx_cb_ptr = ring->cbs;
1219         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1220
1221         /* Advancing local write pointer */
1222         if (ring->write_ptr == ring->end_ptr)
1223                 ring->write_ptr = ring->cb_ptr;
1224         else
1225                 ring->write_ptr++;
1226
1227         return tx_cb_ptr;
1228 }
1229
1230 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1231                                          struct bcmgenet_tx_ring *ring)
1232 {
1233         struct enet_cb *tx_cb_ptr;
1234
1235         tx_cb_ptr = ring->cbs;
1236         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1237
1238         /* Rewinding local write pointer */
1239         if (ring->write_ptr == ring->cb_ptr)
1240                 ring->write_ptr = ring->end_ptr;
1241         else
1242                 ring->write_ptr--;
1243
1244         return tx_cb_ptr;
1245 }
1246
1247 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1248 {
1249         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1250                                  INTRL2_CPU_MASK_SET);
1251 }
1252
1253 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1254 {
1255         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1256                                  INTRL2_CPU_MASK_CLEAR);
1257 }
1258
1259 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1260 {
1261         bcmgenet_intrl2_1_writel(ring->priv,
1262                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1263                                  INTRL2_CPU_MASK_SET);
1264 }
1265
1266 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1267 {
1268         bcmgenet_intrl2_1_writel(ring->priv,
1269                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1270                                  INTRL2_CPU_MASK_CLEAR);
1271 }
1272
1273 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1274 {
1275         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1276                                  INTRL2_CPU_MASK_SET);
1277 }
1278
1279 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1280 {
1281         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1282                                  INTRL2_CPU_MASK_CLEAR);
1283 }
1284
1285 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1286 {
1287         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1288                                  INTRL2_CPU_MASK_CLEAR);
1289 }
1290
1291 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1292 {
1293         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1294                                  INTRL2_CPU_MASK_SET);
1295 }
1296
1297 /* Simple helper to free a transmit control block's resources
1298  * Returns an skb when the last transmit control block associated with the
1299  * skb is freed.  The skb should be freed by the caller if necessary.
1300  */
1301 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1302                                            struct enet_cb *cb)
1303 {
1304         struct sk_buff *skb;
1305
1306         skb = cb->skb;
1307
1308         if (skb) {
1309                 cb->skb = NULL;
1310                 if (cb == GENET_CB(skb)->first_cb)
1311                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1312                                          dma_unmap_len(cb, dma_len),
1313                                          DMA_TO_DEVICE);
1314                 else
1315                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1316                                        dma_unmap_len(cb, dma_len),
1317                                        DMA_TO_DEVICE);
1318                 dma_unmap_addr_set(cb, dma_addr, 0);
1319
1320                 if (cb == GENET_CB(skb)->last_cb)
1321                         return skb;
1322
1323         } else if (dma_unmap_addr(cb, dma_addr)) {
1324                 dma_unmap_page(dev,
1325                                dma_unmap_addr(cb, dma_addr),
1326                                dma_unmap_len(cb, dma_len),
1327                                DMA_TO_DEVICE);
1328                 dma_unmap_addr_set(cb, dma_addr, 0);
1329         }
1330
1331         return 0;
1332 }
1333
1334 /* Simple helper to free a receive control block's resources */
1335 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1336                                            struct enet_cb *cb)
1337 {
1338         struct sk_buff *skb;
1339
1340         skb = cb->skb;
1341         cb->skb = NULL;
1342
1343         if (dma_unmap_addr(cb, dma_addr)) {
1344                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1345                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1346                 dma_unmap_addr_set(cb, dma_addr, 0);
1347         }
1348
1349         return skb;
1350 }
1351
1352 /* Unlocked version of the reclaim routine */
1353 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1354                                           struct bcmgenet_tx_ring *ring)
1355 {
1356         struct bcmgenet_priv *priv = netdev_priv(dev);
1357         unsigned int txbds_processed = 0;
1358         unsigned int bytes_compl = 0;
1359         unsigned int pkts_compl = 0;
1360         unsigned int txbds_ready;
1361         unsigned int c_index;
1362         struct sk_buff *skb;
1363
1364         /* Clear status before servicing to reduce spurious interrupts */
1365         if (ring->index == DESC_INDEX)
1366                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1367                                          INTRL2_CPU_CLEAR);
1368         else
1369                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1370                                          INTRL2_CPU_CLEAR);
1371
1372         /* Compute how many buffers are transmitted since last xmit call */
1373         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1374                 & DMA_C_INDEX_MASK;
1375         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1376
1377         netif_dbg(priv, tx_done, dev,
1378                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1379                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1380
1381         /* Reclaim transmitted buffers */
1382         while (txbds_processed < txbds_ready) {
1383                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1384                                           &priv->tx_cbs[ring->clean_ptr]);
1385                 if (skb) {
1386                         pkts_compl++;
1387                         bytes_compl += GENET_CB(skb)->bytes_sent;
1388                         dev_consume_skb_any(skb);
1389                 }
1390
1391                 txbds_processed++;
1392                 if (likely(ring->clean_ptr < ring->end_ptr))
1393                         ring->clean_ptr++;
1394                 else
1395                         ring->clean_ptr = ring->cb_ptr;
1396         }
1397
1398         ring->free_bds += txbds_processed;
1399         ring->c_index = c_index;
1400
1401         ring->packets += pkts_compl;
1402         ring->bytes += bytes_compl;
1403
1404         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1405                                   pkts_compl, bytes_compl);
1406
1407         return txbds_processed;
1408 }
1409
1410 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1411                                 struct bcmgenet_tx_ring *ring)
1412 {
1413         unsigned int released;
1414         unsigned long flags;
1415
1416         spin_lock_irqsave(&ring->lock, flags);
1417         released = __bcmgenet_tx_reclaim(dev, ring);
1418         spin_unlock_irqrestore(&ring->lock, flags);
1419
1420         return released;
1421 }
1422
1423 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1424 {
1425         struct bcmgenet_tx_ring *ring =
1426                 container_of(napi, struct bcmgenet_tx_ring, napi);
1427         unsigned int work_done = 0;
1428         struct netdev_queue *txq;
1429         unsigned long flags;
1430
1431         spin_lock_irqsave(&ring->lock, flags);
1432         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1433         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1434                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1435                 netif_tx_wake_queue(txq);
1436         }
1437         spin_unlock_irqrestore(&ring->lock, flags);
1438
1439         if (work_done == 0) {
1440                 napi_complete(napi);
1441                 ring->int_enable(ring);
1442
1443                 return 0;
1444         }
1445
1446         return budget;
1447 }
1448
1449 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1450 {
1451         struct bcmgenet_priv *priv = netdev_priv(dev);
1452         int i;
1453
1454         if (netif_is_multiqueue(dev)) {
1455                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1456                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1457         }
1458
1459         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1460 }
1461
1462 /* Reallocate the SKB to put enough headroom in front of it and insert
1463  * the transmit checksum offsets in the descriptors
1464  */
1465 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1466                                             struct sk_buff *skb)
1467 {
1468         struct status_64 *status = NULL;
1469         struct sk_buff *new_skb;
1470         u16 offset;
1471         u8 ip_proto;
1472         u16 ip_ver;
1473         u32 tx_csum_info;
1474
1475         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1476                 /* If 64 byte status block enabled, must make sure skb has
1477                  * enough headroom for us to insert 64B status block.
1478                  */
1479                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1480                 dev_kfree_skb(skb);
1481                 if (!new_skb) {
1482                         dev->stats.tx_dropped++;
1483                         return NULL;
1484                 }
1485                 skb = new_skb;
1486         }
1487
1488         skb_push(skb, sizeof(*status));
1489         status = (struct status_64 *)skb->data;
1490
1491         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1492                 ip_ver = htons(skb->protocol);
1493                 switch (ip_ver) {
1494                 case ETH_P_IP:
1495                         ip_proto = ip_hdr(skb)->protocol;
1496                         break;
1497                 case ETH_P_IPV6:
1498                         ip_proto = ipv6_hdr(skb)->nexthdr;
1499                         break;
1500                 default:
1501                         return skb;
1502                 }
1503
1504                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1505                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1506                                 (offset + skb->csum_offset);
1507
1508                 /* Set the length valid bit for TCP and UDP and just set
1509                  * the special UDP flag for IPv4, else just set to 0.
1510                  */
1511                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1512                         tx_csum_info |= STATUS_TX_CSUM_LV;
1513                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1514                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1515                 } else {
1516                         tx_csum_info = 0;
1517                 }
1518
1519                 status->tx_csum_info = tx_csum_info;
1520         }
1521
1522         return skb;
1523 }
1524
1525 static void bcmgenet_hide_tsb(struct sk_buff *skb)
1526 {
1527         __skb_pull(skb, sizeof(struct status_64));
1528 }
1529
1530 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1531 {
1532         struct bcmgenet_priv *priv = netdev_priv(dev);
1533         struct device *kdev = &priv->pdev->dev;
1534         struct bcmgenet_tx_ring *ring = NULL;
1535         struct enet_cb *tx_cb_ptr;
1536         struct netdev_queue *txq;
1537         unsigned long flags = 0;
1538         int nr_frags, index;
1539         dma_addr_t mapping;
1540         unsigned int size;
1541         skb_frag_t *frag;
1542         u32 len_stat;
1543         int ret;
1544         int i;
1545
1546         index = skb_get_queue_mapping(skb);
1547         /* Mapping strategy:
1548          * queue_mapping = 0, unclassified, packet xmited through ring16
1549          * queue_mapping = 1, goes to ring 0. (highest priority queue
1550          * queue_mapping = 2, goes to ring 1.
1551          * queue_mapping = 3, goes to ring 2.
1552          * queue_mapping = 4, goes to ring 3.
1553          */
1554         if (index == 0)
1555                 index = DESC_INDEX;
1556         else
1557                 index -= 1;
1558
1559         ring = &priv->tx_rings[index];
1560         txq = netdev_get_tx_queue(dev, ring->queue);
1561
1562         nr_frags = skb_shinfo(skb)->nr_frags;
1563
1564         spin_lock_irqsave(&ring->lock, flags);
1565         if (ring->free_bds <= (nr_frags + 1)) {
1566                 if (!netif_tx_queue_stopped(txq)) {
1567                         netif_tx_stop_queue(txq);
1568                         netdev_err(dev,
1569                                    "%s: tx ring %d full when queue %d awake\n",
1570                                    __func__, index, ring->queue);
1571                 }
1572                 ret = NETDEV_TX_BUSY;
1573                 goto out;
1574         }
1575
1576         /* Retain how many bytes will be sent on the wire, without TSB inserted
1577          * by transmit checksum offload
1578          */
1579         GENET_CB(skb)->bytes_sent = skb->len;
1580
1581         /* set the SKB transmit checksum */
1582         if (priv->desc_64b_en) {
1583                 skb = bcmgenet_put_tx_csum(dev, skb);
1584                 if (!skb) {
1585                         ret = NETDEV_TX_OK;
1586                         goto out;
1587                 }
1588         }
1589
1590         for (i = 0; i <= nr_frags; i++) {
1591                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1592
1593                 if (unlikely(!tx_cb_ptr))
1594                         BUG();
1595
1596                 if (!i) {
1597                         /* Transmit single SKB or head of fragment list */
1598                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1599                         size = skb_headlen(skb);
1600                         mapping = dma_map_single(kdev, skb->data, size,
1601                                                  DMA_TO_DEVICE);
1602                 } else {
1603                         /* xmit fragment */
1604                         frag = &skb_shinfo(skb)->frags[i - 1];
1605                         size = skb_frag_size(frag);
1606                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1607                                                    DMA_TO_DEVICE);
1608                 }
1609
1610                 ret = dma_mapping_error(kdev, mapping);
1611                 if (ret) {
1612                         priv->mib.tx_dma_failed++;
1613                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1614                         ret = NETDEV_TX_OK;
1615                         goto out_unmap_frags;
1616                 }
1617                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1618                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1619
1620                 tx_cb_ptr->skb = skb;
1621
1622                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1623                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1624
1625                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
1626                  * will need to restore software padding of "runt" packets
1627                  */
1628                 if (!i) {
1629                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1630                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1631                                 len_stat |= DMA_TX_DO_CSUM;
1632                 }
1633                 if (i == nr_frags)
1634                         len_stat |= DMA_EOP;
1635
1636                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1637         }
1638
1639         GENET_CB(skb)->last_cb = tx_cb_ptr;
1640
1641         bcmgenet_hide_tsb(skb);
1642         skb_tx_timestamp(skb);
1643
1644         /* Decrement total BD count and advance our write pointer */
1645         ring->free_bds -= nr_frags + 1;
1646         ring->prod_index += nr_frags + 1;
1647         ring->prod_index &= DMA_P_INDEX_MASK;
1648
1649         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1650
1651         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1652                 netif_tx_stop_queue(txq);
1653
1654         if (!skb->xmit_more || netif_xmit_stopped(txq))
1655                 /* Packets are ready, update producer index */
1656                 bcmgenet_tdma_ring_writel(priv, ring->index,
1657                                           ring->prod_index, TDMA_PROD_INDEX);
1658 out:
1659         spin_unlock_irqrestore(&ring->lock, flags);
1660
1661         return ret;
1662
1663 out_unmap_frags:
1664         /* Back up for failed control block mapping */
1665         bcmgenet_put_txcb(priv, ring);
1666
1667         /* Unmap successfully mapped control blocks */
1668         while (i-- > 0) {
1669                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1670                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1671         }
1672
1673         dev_kfree_skb(skb);
1674         goto out;
1675 }
1676
1677 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1678                                           struct enet_cb *cb)
1679 {
1680         struct device *kdev = &priv->pdev->dev;
1681         struct sk_buff *skb;
1682         struct sk_buff *rx_skb;
1683         dma_addr_t mapping;
1684
1685         /* Allocate a new Rx skb */
1686         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1687                                  GFP_ATOMIC | __GFP_NOWARN);
1688         if (!skb) {
1689                 priv->mib.alloc_rx_buff_failed++;
1690                 netif_err(priv, rx_err, priv->dev,
1691                           "%s: Rx skb allocation failed\n", __func__);
1692                 return NULL;
1693         }
1694
1695         /* DMA-map the new Rx skb */
1696         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1697                                  DMA_FROM_DEVICE);
1698         if (dma_mapping_error(kdev, mapping)) {
1699                 priv->mib.rx_dma_failed++;
1700                 dev_kfree_skb_any(skb);
1701                 netif_err(priv, rx_err, priv->dev,
1702                           "%s: Rx skb DMA mapping failed\n", __func__);
1703                 return NULL;
1704         }
1705
1706         /* Grab the current Rx skb from the ring and DMA-unmap it */
1707         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1708
1709         /* Put the new Rx skb on the ring */
1710         cb->skb = skb;
1711         dma_unmap_addr_set(cb, dma_addr, mapping);
1712         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1713         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1714
1715         /* Return the current Rx skb to caller */
1716         return rx_skb;
1717 }
1718
1719 /* bcmgenet_desc_rx - descriptor based rx process.
1720  * this could be called from bottom half, or from NAPI polling method.
1721  */
1722 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1723                                      unsigned int budget)
1724 {
1725         struct bcmgenet_priv *priv = ring->priv;
1726         struct net_device *dev = priv->dev;
1727         struct enet_cb *cb;
1728         struct sk_buff *skb;
1729         u32 dma_length_status;
1730         unsigned long dma_flag;
1731         int len;
1732         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1733         unsigned int p_index, mask;
1734         unsigned int discards;
1735         unsigned int chksum_ok = 0;
1736
1737         /* Clear status before servicing to reduce spurious interrupts */
1738         if (ring->index == DESC_INDEX) {
1739                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1740                                          INTRL2_CPU_CLEAR);
1741         } else {
1742                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1743                 bcmgenet_intrl2_1_writel(priv,
1744                                          mask,
1745                                          INTRL2_CPU_CLEAR);
1746         }
1747
1748         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1749
1750         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1751                    DMA_P_INDEX_DISCARD_CNT_MASK;
1752         if (discards > ring->old_discards) {
1753                 discards = discards - ring->old_discards;
1754                 ring->errors += discards;
1755                 ring->old_discards += discards;
1756
1757                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1758                 if (ring->old_discards >= 0xC000) {
1759                         ring->old_discards = 0;
1760                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1761                                                   RDMA_PROD_INDEX);
1762                 }
1763         }
1764
1765         p_index &= DMA_P_INDEX_MASK;
1766         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1767
1768         netif_dbg(priv, rx_status, dev,
1769                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1770
1771         while ((rxpktprocessed < rxpkttoprocess) &&
1772                (rxpktprocessed < budget)) {
1773                 cb = &priv->rx_cbs[ring->read_ptr];
1774                 skb = bcmgenet_rx_refill(priv, cb);
1775
1776                 if (unlikely(!skb)) {
1777                         ring->dropped++;
1778                         goto next;
1779                 }
1780
1781                 if (!priv->desc_64b_en) {
1782                         dma_length_status =
1783                                 dmadesc_get_length_status(priv, cb->bd_addr);
1784                 } else {
1785                         struct status_64 *status;
1786
1787                         status = (struct status_64 *)skb->data;
1788                         dma_length_status = status->length_status;
1789                 }
1790
1791                 /* DMA flags and length are still valid no matter how
1792                  * we got the Receive Status Vector (64B RSB or register)
1793                  */
1794                 dma_flag = dma_length_status & 0xffff;
1795                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1796
1797                 netif_dbg(priv, rx_status, dev,
1798                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1799                           __func__, p_index, ring->c_index,
1800                           ring->read_ptr, dma_length_status);
1801
1802                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1803                         netif_err(priv, rx_status, dev,
1804                                   "dropping fragmented packet!\n");
1805                         ring->errors++;
1806                         dev_kfree_skb_any(skb);
1807                         goto next;
1808                 }
1809
1810                 /* report errors */
1811                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1812                                                 DMA_RX_OV |
1813                                                 DMA_RX_NO |
1814                                                 DMA_RX_LG |
1815                                                 DMA_RX_RXER))) {
1816                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1817                                   (unsigned int)dma_flag);
1818                         if (dma_flag & DMA_RX_CRC_ERROR)
1819                                 dev->stats.rx_crc_errors++;
1820                         if (dma_flag & DMA_RX_OV)
1821                                 dev->stats.rx_over_errors++;
1822                         if (dma_flag & DMA_RX_NO)
1823                                 dev->stats.rx_frame_errors++;
1824                         if (dma_flag & DMA_RX_LG)
1825                                 dev->stats.rx_length_errors++;
1826                         dev->stats.rx_errors++;
1827                         dev_kfree_skb_any(skb);
1828                         goto next;
1829                 } /* error packet */
1830
1831                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1832                              priv->desc_rxchk_en;
1833
1834                 skb_put(skb, len);
1835                 if (priv->desc_64b_en) {
1836                         skb_pull(skb, 64);
1837                         len -= 64;
1838                 }
1839
1840                 if (likely(chksum_ok))
1841                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1842
1843                 /* remove hardware 2bytes added for IP alignment */
1844                 skb_pull(skb, 2);
1845                 len -= 2;
1846
1847                 if (priv->crc_fwd_en) {
1848                         skb_trim(skb, len - ETH_FCS_LEN);
1849                         len -= ETH_FCS_LEN;
1850                 }
1851
1852                 /*Finish setting up the received SKB and send it to the kernel*/
1853                 skb->protocol = eth_type_trans(skb, priv->dev);
1854                 ring->packets++;
1855                 ring->bytes += len;
1856                 if (dma_flag & DMA_RX_MULT)
1857                         dev->stats.multicast++;
1858
1859                 /* Notify kernel */
1860                 napi_gro_receive(&ring->napi, skb);
1861                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1862
1863 next:
1864                 rxpktprocessed++;
1865                 if (likely(ring->read_ptr < ring->end_ptr))
1866                         ring->read_ptr++;
1867                 else
1868                         ring->read_ptr = ring->cb_ptr;
1869
1870                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1871                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1872         }
1873
1874         return rxpktprocessed;
1875 }
1876
1877 /* Rx NAPI polling method */
1878 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1879 {
1880         struct bcmgenet_rx_ring *ring = container_of(napi,
1881                         struct bcmgenet_rx_ring, napi);
1882         unsigned int work_done;
1883
1884         work_done = bcmgenet_desc_rx(ring, budget);
1885
1886         if (work_done < budget) {
1887                 napi_complete_done(napi, work_done);
1888                 ring->int_enable(ring);
1889         }
1890
1891         return work_done;
1892 }
1893
1894 /* Assign skb to RX DMA descriptor. */
1895 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1896                                      struct bcmgenet_rx_ring *ring)
1897 {
1898         struct enet_cb *cb;
1899         struct sk_buff *skb;
1900         int i;
1901
1902         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1903
1904         /* loop here for each buffer needing assign */
1905         for (i = 0; i < ring->size; i++) {
1906                 cb = ring->cbs + i;
1907                 skb = bcmgenet_rx_refill(priv, cb);
1908                 if (skb)
1909                         dev_consume_skb_any(skb);
1910                 if (!cb->skb)
1911                         return -ENOMEM;
1912         }
1913
1914         return 0;
1915 }
1916
1917 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1918 {
1919         struct sk_buff *skb;
1920         struct enet_cb *cb;
1921         int i;
1922
1923         for (i = 0; i < priv->num_rx_bds; i++) {
1924                 cb = &priv->rx_cbs[i];
1925
1926                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1927                 if (skb)
1928                         dev_consume_skb_any(skb);
1929         }
1930 }
1931
1932 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1933 {
1934         u32 reg;
1935
1936         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1937         if (enable)
1938                 reg |= mask;
1939         else
1940                 reg &= ~mask;
1941         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1942
1943         /* UniMAC stops on a packet boundary, wait for a full-size packet
1944          * to be processed
1945          */
1946         if (enable == 0)
1947                 usleep_range(1000, 2000);
1948 }
1949
1950 static int reset_umac(struct bcmgenet_priv *priv)
1951 {
1952         struct device *kdev = &priv->pdev->dev;
1953         unsigned int timeout = 0;
1954         u32 reg;
1955
1956         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1957         bcmgenet_rbuf_ctrl_set(priv, 0);
1958         udelay(10);
1959
1960         /* disable MAC while updating its registers */
1961         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1962
1963         /* issue soft reset, wait for it to complete */
1964         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1965         while (timeout++ < 1000) {
1966                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1967                 if (!(reg & CMD_SW_RESET))
1968                         return 0;
1969
1970                 udelay(1);
1971         }
1972
1973         if (timeout == 1000) {
1974                 dev_err(kdev,
1975                         "timeout waiting for MAC to come out of reset\n");
1976                 return -ETIMEDOUT;
1977         }
1978
1979         return 0;
1980 }
1981
1982 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1983 {
1984         /* Mask all interrupts.*/
1985         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1986         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1987         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1988         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1989 }
1990
1991 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1992 {
1993         u32 int0_enable = 0;
1994
1995         /* Monitor cable plug/unplugged event for internal PHY, external PHY
1996          * and MoCA PHY
1997          */
1998         if (priv->internal_phy) {
1999                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2000                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2001                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2002         } else if (priv->ext_phy) {
2003                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2004         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2005                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2006                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2007         }
2008         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2009 }
2010
2011 static int init_umac(struct bcmgenet_priv *priv)
2012 {
2013         struct device *kdev = &priv->pdev->dev;
2014         int ret;
2015         u32 reg;
2016         u32 int0_enable = 0;
2017
2018         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2019
2020         ret = reset_umac(priv);
2021         if (ret)
2022                 return ret;
2023
2024         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2025         /* clear tx/rx counter */
2026         bcmgenet_umac_writel(priv,
2027                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2028                              UMAC_MIB_CTRL);
2029         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2030
2031         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2032
2033         /* init rx registers, enable ip header optimization */
2034         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2035         reg |= RBUF_ALIGN_2B;
2036         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2037
2038         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2039                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2040
2041         bcmgenet_intr_disable(priv);
2042
2043         /* Configure backpressure vectors for MoCA */
2044         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2045                 reg = bcmgenet_bp_mc_get(priv);
2046                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2047
2048                 /* bp_mask: back pressure mask */
2049                 if (netif_is_multiqueue(priv->dev))
2050                         reg |= priv->hw_params->bp_in_mask;
2051                 else
2052                         reg &= ~priv->hw_params->bp_in_mask;
2053                 bcmgenet_bp_mc_set(priv, reg);
2054         }
2055
2056         /* Enable MDIO interrupts on GENET v3+ */
2057         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2058                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2059
2060         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2061
2062         dev_dbg(kdev, "done init umac\n");
2063
2064         return 0;
2065 }
2066
2067 /* Initialize a Tx ring along with corresponding hardware registers */
2068 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2069                                   unsigned int index, unsigned int size,
2070                                   unsigned int start_ptr, unsigned int end_ptr)
2071 {
2072         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2073         u32 words_per_bd = WORDS_PER_BD(priv);
2074         u32 flow_period_val = 0;
2075
2076         spin_lock_init(&ring->lock);
2077         ring->priv = priv;
2078         ring->index = index;
2079         if (index == DESC_INDEX) {
2080                 ring->queue = 0;
2081                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2082                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2083         } else {
2084                 ring->queue = index + 1;
2085                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2086                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2087         }
2088         ring->cbs = priv->tx_cbs + start_ptr;
2089         ring->size = size;
2090         ring->clean_ptr = start_ptr;
2091         ring->c_index = 0;
2092         ring->free_bds = size;
2093         ring->write_ptr = start_ptr;
2094         ring->cb_ptr = start_ptr;
2095         ring->end_ptr = end_ptr - 1;
2096         ring->prod_index = 0;
2097
2098         /* Set flow period for ring != 16 */
2099         if (index != DESC_INDEX)
2100                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2101
2102         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2103         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2104         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2105         /* Disable rate control for now */
2106         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2107                                   TDMA_FLOW_PERIOD);
2108         bcmgenet_tdma_ring_writel(priv, index,
2109                                   ((size << DMA_RING_SIZE_SHIFT) |
2110                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2111
2112         /* Set start and end address, read and write pointers */
2113         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2114                                   DMA_START_ADDR);
2115         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2116                                   TDMA_READ_PTR);
2117         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2118                                   TDMA_WRITE_PTR);
2119         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2120                                   DMA_END_ADDR);
2121 }
2122
2123 /* Initialize a RDMA ring */
2124 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2125                                  unsigned int index, unsigned int size,
2126                                  unsigned int start_ptr, unsigned int end_ptr)
2127 {
2128         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2129         u32 words_per_bd = WORDS_PER_BD(priv);
2130         int ret;
2131
2132         ring->priv = priv;
2133         ring->index = index;
2134         if (index == DESC_INDEX) {
2135                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2136                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2137         } else {
2138                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2139                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2140         }
2141         ring->cbs = priv->rx_cbs + start_ptr;
2142         ring->size = size;
2143         ring->c_index = 0;
2144         ring->read_ptr = start_ptr;
2145         ring->cb_ptr = start_ptr;
2146         ring->end_ptr = end_ptr - 1;
2147
2148         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2149         if (ret)
2150                 return ret;
2151
2152         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2153         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2154         bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2155         bcmgenet_rdma_ring_writel(priv, index,
2156                                   ((size << DMA_RING_SIZE_SHIFT) |
2157                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2158         bcmgenet_rdma_ring_writel(priv, index,
2159                                   (DMA_FC_THRESH_LO <<
2160                                    DMA_XOFF_THRESHOLD_SHIFT) |
2161                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2162
2163         /* Set start and end address, read and write pointers */
2164         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2165                                   DMA_START_ADDR);
2166         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2167                                   RDMA_READ_PTR);
2168         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2169                                   RDMA_WRITE_PTR);
2170         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2171                                   DMA_END_ADDR);
2172
2173         return ret;
2174 }
2175
2176 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2177 {
2178         unsigned int i;
2179         struct bcmgenet_tx_ring *ring;
2180
2181         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2182                 ring = &priv->tx_rings[i];
2183                 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2184         }
2185
2186         ring = &priv->tx_rings[DESC_INDEX];
2187         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2188 }
2189
2190 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2191 {
2192         unsigned int i;
2193         u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2194         u32 int1_enable = 0;
2195         struct bcmgenet_tx_ring *ring;
2196
2197         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2198                 ring = &priv->tx_rings[i];
2199                 napi_enable(&ring->napi);
2200                 int1_enable |= (1 << i);
2201         }
2202
2203         ring = &priv->tx_rings[DESC_INDEX];
2204         napi_enable(&ring->napi);
2205
2206         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2207         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2208 }
2209
2210 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2211 {
2212         unsigned int i;
2213         u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2214         u32 int1_disable = 0xffff;
2215         struct bcmgenet_tx_ring *ring;
2216
2217         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2218         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2219
2220         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2221                 ring = &priv->tx_rings[i];
2222                 napi_disable(&ring->napi);
2223         }
2224
2225         ring = &priv->tx_rings[DESC_INDEX];
2226         napi_disable(&ring->napi);
2227 }
2228
2229 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2230 {
2231         unsigned int i;
2232         struct bcmgenet_tx_ring *ring;
2233
2234         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2235                 ring = &priv->tx_rings[i];
2236                 netif_napi_del(&ring->napi);
2237         }
2238
2239         ring = &priv->tx_rings[DESC_INDEX];
2240         netif_napi_del(&ring->napi);
2241 }
2242
2243 /* Initialize Tx queues
2244  *
2245  * Queues 0-3 are priority-based, each one has 32 descriptors,
2246  * with queue 0 being the highest priority queue.
2247  *
2248  * Queue 16 is the default Tx queue with
2249  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2250  *
2251  * The transmit control block pool is then partitioned as follows:
2252  * - Tx queue 0 uses tx_cbs[0..31]
2253  * - Tx queue 1 uses tx_cbs[32..63]
2254  * - Tx queue 2 uses tx_cbs[64..95]
2255  * - Tx queue 3 uses tx_cbs[96..127]
2256  * - Tx queue 16 uses tx_cbs[128..255]
2257  */
2258 static void bcmgenet_init_tx_queues(struct net_device *dev)
2259 {
2260         struct bcmgenet_priv *priv = netdev_priv(dev);
2261         u32 i, dma_enable;
2262         u32 dma_ctrl, ring_cfg;
2263         u32 dma_priority[3] = {0, 0, 0};
2264
2265         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2266         dma_enable = dma_ctrl & DMA_EN;
2267         dma_ctrl &= ~DMA_EN;
2268         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2269
2270         dma_ctrl = 0;
2271         ring_cfg = 0;
2272
2273         /* Enable strict priority arbiter mode */
2274         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2275
2276         /* Initialize Tx priority queues */
2277         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2278                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2279                                       i * priv->hw_params->tx_bds_per_q,
2280                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2281                 ring_cfg |= (1 << i);
2282                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2283                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2284                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2285         }
2286
2287         /* Initialize Tx default queue 16 */
2288         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2289                               priv->hw_params->tx_queues *
2290                               priv->hw_params->tx_bds_per_q,
2291                               TOTAL_DESC);
2292         ring_cfg |= (1 << DESC_INDEX);
2293         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2294         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2295                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2296                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2297
2298         /* Set Tx queue priorities */
2299         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2300         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2301         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2302
2303         /* Initialize Tx NAPI */
2304         bcmgenet_init_tx_napi(priv);
2305
2306         /* Enable Tx queues */
2307         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2308
2309         /* Enable Tx DMA */
2310         if (dma_enable)
2311                 dma_ctrl |= DMA_EN;
2312         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2313 }
2314
2315 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2316 {
2317         unsigned int i;
2318         struct bcmgenet_rx_ring *ring;
2319
2320         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2321                 ring = &priv->rx_rings[i];
2322                 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2323         }
2324
2325         ring = &priv->rx_rings[DESC_INDEX];
2326         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2327 }
2328
2329 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2330 {
2331         unsigned int i;
2332         u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2333         u32 int1_enable = 0;
2334         struct bcmgenet_rx_ring *ring;
2335
2336         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2337                 ring = &priv->rx_rings[i];
2338                 napi_enable(&ring->napi);
2339                 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2340         }
2341
2342         ring = &priv->rx_rings[DESC_INDEX];
2343         napi_enable(&ring->napi);
2344
2345         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2346         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2347 }
2348
2349 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2350 {
2351         unsigned int i;
2352         u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2353         u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2354         struct bcmgenet_rx_ring *ring;
2355
2356         bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2357         bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2358
2359         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2360                 ring = &priv->rx_rings[i];
2361                 napi_disable(&ring->napi);
2362         }
2363
2364         ring = &priv->rx_rings[DESC_INDEX];
2365         napi_disable(&ring->napi);
2366 }
2367
2368 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2369 {
2370         unsigned int i;
2371         struct bcmgenet_rx_ring *ring;
2372
2373         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2374                 ring = &priv->rx_rings[i];
2375                 netif_napi_del(&ring->napi);
2376         }
2377
2378         ring = &priv->rx_rings[DESC_INDEX];
2379         netif_napi_del(&ring->napi);
2380 }
2381
2382 /* Initialize Rx queues
2383  *
2384  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2385  * used to direct traffic to these queues.
2386  *
2387  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2388  */
2389 static int bcmgenet_init_rx_queues(struct net_device *dev)
2390 {
2391         struct bcmgenet_priv *priv = netdev_priv(dev);
2392         u32 i;
2393         u32 dma_enable;
2394         u32 dma_ctrl;
2395         u32 ring_cfg;
2396         int ret;
2397
2398         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2399         dma_enable = dma_ctrl & DMA_EN;
2400         dma_ctrl &= ~DMA_EN;
2401         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2402
2403         dma_ctrl = 0;
2404         ring_cfg = 0;
2405
2406         /* Initialize Rx priority queues */
2407         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2408                 ret = bcmgenet_init_rx_ring(priv, i,
2409                                             priv->hw_params->rx_bds_per_q,
2410                                             i * priv->hw_params->rx_bds_per_q,
2411                                             (i + 1) *
2412                                             priv->hw_params->rx_bds_per_q);
2413                 if (ret)
2414                         return ret;
2415
2416                 ring_cfg |= (1 << i);
2417                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2418         }
2419
2420         /* Initialize Rx default queue 16 */
2421         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2422                                     priv->hw_params->rx_queues *
2423                                     priv->hw_params->rx_bds_per_q,
2424                                     TOTAL_DESC);
2425         if (ret)
2426                 return ret;
2427
2428         ring_cfg |= (1 << DESC_INDEX);
2429         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2430
2431         /* Initialize Rx NAPI */
2432         bcmgenet_init_rx_napi(priv);
2433
2434         /* Enable rings */
2435         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2436
2437         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2438         if (dma_enable)
2439                 dma_ctrl |= DMA_EN;
2440         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2441
2442         return 0;
2443 }
2444
2445 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2446 {
2447         int ret = 0;
2448         int timeout = 0;
2449         u32 reg;
2450         u32 dma_ctrl;
2451         int i;
2452
2453         /* Disable TDMA to stop add more frames in TX DMA */
2454         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2455         reg &= ~DMA_EN;
2456         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2457
2458         /* Check TDMA status register to confirm TDMA is disabled */
2459         while (timeout++ < DMA_TIMEOUT_VAL) {
2460                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2461                 if (reg & DMA_DISABLED)
2462                         break;
2463
2464                 udelay(1);
2465         }
2466
2467         if (timeout == DMA_TIMEOUT_VAL) {
2468                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2469                 ret = -ETIMEDOUT;
2470         }
2471
2472         /* Wait 10ms for packet drain in both tx and rx dma */
2473         usleep_range(10000, 20000);
2474
2475         /* Disable RDMA */
2476         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2477         reg &= ~DMA_EN;
2478         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2479
2480         timeout = 0;
2481         /* Check RDMA status register to confirm RDMA is disabled */
2482         while (timeout++ < DMA_TIMEOUT_VAL) {
2483                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2484                 if (reg & DMA_DISABLED)
2485                         break;
2486
2487                 udelay(1);
2488         }
2489
2490         if (timeout == DMA_TIMEOUT_VAL) {
2491                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2492                 ret = -ETIMEDOUT;
2493         }
2494
2495         dma_ctrl = 0;
2496         for (i = 0; i < priv->hw_params->rx_queues; i++)
2497                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2498         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2499         reg &= ~dma_ctrl;
2500         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2501
2502         dma_ctrl = 0;
2503         for (i = 0; i < priv->hw_params->tx_queues; i++)
2504                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2505         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2506         reg &= ~dma_ctrl;
2507         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2508
2509         return ret;
2510 }
2511
2512 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2513 {
2514         struct netdev_queue *txq;
2515         struct sk_buff *skb;
2516         struct enet_cb *cb;
2517         int i;
2518
2519         bcmgenet_fini_rx_napi(priv);
2520         bcmgenet_fini_tx_napi(priv);
2521
2522         /* disable DMA */
2523         bcmgenet_dma_teardown(priv);
2524
2525         for (i = 0; i < priv->num_tx_bds; i++) {
2526                 cb = priv->tx_cbs + i;
2527                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2528                 if (skb)
2529                         dev_kfree_skb(skb);
2530         }
2531
2532         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2533                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2534                 netdev_tx_reset_queue(txq);
2535         }
2536
2537         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2538         netdev_tx_reset_queue(txq);
2539
2540         bcmgenet_free_rx_buffers(priv);
2541         kfree(priv->rx_cbs);
2542         kfree(priv->tx_cbs);
2543 }
2544
2545 /* init_edma: Initialize DMA control register */
2546 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2547 {
2548         int ret;
2549         unsigned int i;
2550         struct enet_cb *cb;
2551
2552         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2553
2554         /* Initialize common Rx ring structures */
2555         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2556         priv->num_rx_bds = TOTAL_DESC;
2557         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2558                                GFP_KERNEL);
2559         if (!priv->rx_cbs)
2560                 return -ENOMEM;
2561
2562         for (i = 0; i < priv->num_rx_bds; i++) {
2563                 cb = priv->rx_cbs + i;
2564                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2565         }
2566
2567         /* Initialize common TX ring structures */
2568         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2569         priv->num_tx_bds = TOTAL_DESC;
2570         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2571                                GFP_KERNEL);
2572         if (!priv->tx_cbs) {
2573                 kfree(priv->rx_cbs);
2574                 return -ENOMEM;
2575         }
2576
2577         for (i = 0; i < priv->num_tx_bds; i++) {
2578                 cb = priv->tx_cbs + i;
2579                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2580         }
2581
2582         /* Init rDma */
2583         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2584
2585         /* Initialize Rx queues */
2586         ret = bcmgenet_init_rx_queues(priv->dev);
2587         if (ret) {
2588                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2589                 bcmgenet_free_rx_buffers(priv);
2590                 kfree(priv->rx_cbs);
2591                 kfree(priv->tx_cbs);
2592                 return ret;
2593         }
2594
2595         /* Init tDma */
2596         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2597
2598         /* Initialize Tx queues */
2599         bcmgenet_init_tx_queues(priv->dev);
2600
2601         return 0;
2602 }
2603
2604 /* Interrupt bottom half */
2605 static void bcmgenet_irq_task(struct work_struct *work)
2606 {
2607         unsigned long flags;
2608         unsigned int status;
2609         struct bcmgenet_priv *priv = container_of(
2610                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2611
2612         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2613
2614         spin_lock_irqsave(&priv->lock, flags);
2615         status = priv->irq0_stat;
2616         priv->irq0_stat = 0;
2617         spin_unlock_irqrestore(&priv->lock, flags);
2618
2619         if (status & UMAC_IRQ_MPD_R) {
2620                 netif_dbg(priv, wol, priv->dev,
2621                           "magic packet detected, waking up\n");
2622                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2623         }
2624
2625         if (status & UMAC_IRQ_PHY_DET_R &&
2626             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2627                 phy_init_hw(priv->dev->phydev);
2628                 genphy_config_aneg(priv->dev->phydev);
2629         }
2630
2631         /* Link UP/DOWN event */
2632         if (status & UMAC_IRQ_LINK_EVENT)
2633                 phy_mac_interrupt(priv->phydev,
2634                                   !!(status & UMAC_IRQ_LINK_UP));
2635 }
2636
2637 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2638 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2639 {
2640         struct bcmgenet_priv *priv = dev_id;
2641         struct bcmgenet_rx_ring *rx_ring;
2642         struct bcmgenet_tx_ring *tx_ring;
2643         unsigned int index, status;
2644
2645         /* Read irq status */
2646         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2647                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2648
2649         /* clear interrupts */
2650         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2651
2652         netif_dbg(priv, intr, priv->dev,
2653                   "%s: IRQ=0x%x\n", __func__, status);
2654
2655         /* Check Rx priority queue interrupts */
2656         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2657                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2658                         continue;
2659
2660                 rx_ring = &priv->rx_rings[index];
2661
2662                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2663                         rx_ring->int_disable(rx_ring);
2664                         __napi_schedule_irqoff(&rx_ring->napi);
2665                 }
2666         }
2667
2668         /* Check Tx priority queue interrupts */
2669         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2670                 if (!(status & BIT(index)))
2671                         continue;
2672
2673                 tx_ring = &priv->tx_rings[index];
2674
2675                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2676                         tx_ring->int_disable(tx_ring);
2677                         __napi_schedule_irqoff(&tx_ring->napi);
2678                 }
2679         }
2680
2681         return IRQ_HANDLED;
2682 }
2683
2684 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2685 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2686 {
2687         struct bcmgenet_priv *priv = dev_id;
2688         struct bcmgenet_rx_ring *rx_ring;
2689         struct bcmgenet_tx_ring *tx_ring;
2690         unsigned int status;
2691         unsigned long flags;
2692
2693         /* Read irq status */
2694         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2695                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2696
2697         /* clear interrupts */
2698         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2699
2700         netif_dbg(priv, intr, priv->dev,
2701                   "IRQ=0x%x\n", status);
2702
2703         if (status & UMAC_IRQ_RXDMA_DONE) {
2704                 rx_ring = &priv->rx_rings[DESC_INDEX];
2705
2706                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2707                         rx_ring->int_disable(rx_ring);
2708                         __napi_schedule_irqoff(&rx_ring->napi);
2709                 }
2710         }
2711
2712         if (status & UMAC_IRQ_TXDMA_DONE) {
2713                 tx_ring = &priv->tx_rings[DESC_INDEX];
2714
2715                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2716                         tx_ring->int_disable(tx_ring);
2717                         __napi_schedule_irqoff(&tx_ring->napi);
2718                 }
2719         }
2720
2721         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2722                                 UMAC_IRQ_PHY_DET_F |
2723                                 UMAC_IRQ_LINK_EVENT |
2724                                 UMAC_IRQ_HFB_SM |
2725                                 UMAC_IRQ_HFB_MM)) {
2726                 /* all other interested interrupts handled in bottom half */
2727                 schedule_work(&priv->bcmgenet_irq_work);
2728         }
2729
2730         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2731                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2732                 wake_up(&priv->wq);
2733         }
2734
2735         /* all other interested interrupts handled in bottom half */
2736         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_MPD_R | UMAC_IRQ_PHY_DET_R);
2737         if (status) {
2738                 /* Save irq status for bottom-half processing. */
2739                 spin_lock_irqsave(&priv->lock, flags);
2740                 priv->irq0_stat |= status;
2741                 spin_unlock_irqrestore(&priv->lock, flags);
2742
2743                 schedule_work(&priv->bcmgenet_irq_work);
2744         }
2745
2746         return IRQ_HANDLED;
2747 }
2748
2749 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2750 {
2751         struct bcmgenet_priv *priv = dev_id;
2752
2753         pm_wakeup_event(&priv->pdev->dev, 0);
2754
2755         return IRQ_HANDLED;
2756 }
2757
2758 #ifdef CONFIG_NET_POLL_CONTROLLER
2759 static void bcmgenet_poll_controller(struct net_device *dev)
2760 {
2761         struct bcmgenet_priv *priv = netdev_priv(dev);
2762
2763         /* Invoke the main RX/TX interrupt handler */
2764         disable_irq(priv->irq0);
2765         bcmgenet_isr0(priv->irq0, priv);
2766         enable_irq(priv->irq0);
2767
2768         /* And the interrupt handler for RX/TX priority queues */
2769         disable_irq(priv->irq1);
2770         bcmgenet_isr1(priv->irq1, priv);
2771         enable_irq(priv->irq1);
2772 }
2773 #endif
2774
2775 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2776 {
2777         u32 reg;
2778
2779         reg = bcmgenet_rbuf_ctrl_get(priv);
2780         reg |= BIT(1);
2781         bcmgenet_rbuf_ctrl_set(priv, reg);
2782         udelay(10);
2783
2784         reg &= ~BIT(1);
2785         bcmgenet_rbuf_ctrl_set(priv, reg);
2786         udelay(10);
2787 }
2788
2789 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2790                                  unsigned char *addr)
2791 {
2792         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2793                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2794         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2795 }
2796
2797 /* Returns a reusable dma control register value */
2798 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2799 {
2800         unsigned int i;
2801         u32 reg;
2802         u32 dma_ctrl;
2803
2804         /* disable DMA */
2805         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2806         for (i = 0; i < priv->hw_params->tx_queues; i++)
2807                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2808         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2809         reg &= ~dma_ctrl;
2810         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2811
2812         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2813         for (i = 0; i < priv->hw_params->rx_queues; i++)
2814                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2815         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2816         reg &= ~dma_ctrl;
2817         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2818
2819         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2820         udelay(10);
2821         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2822
2823         return dma_ctrl;
2824 }
2825
2826 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2827 {
2828         u32 reg;
2829
2830         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2831         reg |= dma_ctrl;
2832         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2833
2834         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2835         reg |= dma_ctrl;
2836         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2837 }
2838
2839 /* bcmgenet_hfb_clear
2840  *
2841  * Clear Hardware Filter Block and disable all filtering.
2842  */
2843 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2844 {
2845         u32 i;
2846
2847         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2848         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2849         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2850
2851         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2852                 bcmgenet_rdma_writel(priv, 0x0, i);
2853
2854         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2855                 bcmgenet_hfb_reg_writel(priv, 0x0,
2856                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2857
2858         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2859                         priv->hw_params->hfb_filter_size; i++)
2860                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2861 }
2862
2863 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2864 {
2865         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2866                 return;
2867
2868         bcmgenet_hfb_clear(priv);
2869 }
2870
2871 static void bcmgenet_netif_start(struct net_device *dev)
2872 {
2873         struct bcmgenet_priv *priv = netdev_priv(dev);
2874
2875         /* Start the network engine */
2876         bcmgenet_set_rx_mode(dev);
2877         bcmgenet_enable_rx_napi(priv);
2878         bcmgenet_enable_tx_napi(priv);
2879
2880         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2881
2882         netif_tx_start_all_queues(dev);
2883
2884         /* Monitor link interrupts now */
2885         bcmgenet_link_intr_enable(priv);
2886
2887         phy_start(priv->phydev);
2888 }
2889
2890 static int bcmgenet_open(struct net_device *dev)
2891 {
2892         struct bcmgenet_priv *priv = netdev_priv(dev);
2893         unsigned long dma_ctrl;
2894         u32 reg;
2895         int ret;
2896
2897         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2898
2899         /* Turn on the clock */
2900         clk_prepare_enable(priv->clk);
2901
2902         /* If this is an internal GPHY, power it back on now, before UniMAC is
2903          * brought out of reset as absolutely no UniMAC activity is allowed
2904          */
2905         if (priv->internal_phy)
2906                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2907
2908         /* take MAC out of reset */
2909         bcmgenet_umac_reset(priv);
2910
2911         ret = init_umac(priv);
2912         if (ret)
2913                 goto err_clk_disable;
2914
2915         /* disable ethernet MAC while updating its registers */
2916         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2917
2918         /* Make sure we reflect the value of CRC_CMD_FWD */
2919         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2920         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2921
2922         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2923
2924         /* Disable RX/TX DMA and flush TX queues */
2925         dma_ctrl = bcmgenet_dma_disable(priv);
2926
2927         /* Reinitialize TDMA and RDMA and SW housekeeping */
2928         ret = bcmgenet_init_dma(priv);
2929         if (ret) {
2930                 netdev_err(dev, "failed to initialize DMA\n");
2931                 goto err_clk_disable;
2932         }
2933
2934         /* Always enable ring 16 - descriptor ring */
2935         bcmgenet_enable_dma(priv, dma_ctrl);
2936
2937         /* HFB init */
2938         bcmgenet_hfb_init(priv);
2939
2940         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2941                           dev->name, priv);
2942         if (ret < 0) {
2943                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2944                 goto err_fini_dma;
2945         }
2946
2947         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2948                           dev->name, priv);
2949         if (ret < 0) {
2950                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2951                 goto err_irq0;
2952         }
2953
2954         ret = bcmgenet_mii_probe(dev);
2955         if (ret) {
2956                 netdev_err(dev, "failed to connect to PHY\n");
2957                 goto err_irq1;
2958         }
2959
2960         bcmgenet_netif_start(dev);
2961
2962         return 0;
2963
2964 err_irq1:
2965         free_irq(priv->irq1, priv);
2966 err_irq0:
2967         free_irq(priv->irq0, priv);
2968 err_fini_dma:
2969         bcmgenet_fini_dma(priv);
2970 err_clk_disable:
2971         if (priv->internal_phy)
2972                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2973         clk_disable_unprepare(priv->clk);
2974         return ret;
2975 }
2976
2977 static void bcmgenet_netif_stop(struct net_device *dev)
2978 {
2979         struct bcmgenet_priv *priv = netdev_priv(dev);
2980
2981         netif_tx_stop_all_queues(dev);
2982         phy_stop(priv->phydev);
2983         bcmgenet_intr_disable(priv);
2984         bcmgenet_disable_rx_napi(priv);
2985         bcmgenet_disable_tx_napi(priv);
2986
2987         /* Wait for pending work items to complete. Since interrupts are
2988          * disabled no new work will be scheduled.
2989          */
2990         cancel_work_sync(&priv->bcmgenet_irq_work);
2991
2992         priv->old_link = -1;
2993         priv->old_speed = -1;
2994         priv->old_duplex = -1;
2995         priv->old_pause = -1;
2996 }
2997
2998 static int bcmgenet_close(struct net_device *dev)
2999 {
3000         struct bcmgenet_priv *priv = netdev_priv(dev);
3001         int ret;
3002
3003         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3004
3005         bcmgenet_netif_stop(dev);
3006
3007         /* Really kill the PHY state machine and disconnect from it */
3008         phy_disconnect(priv->phydev);
3009
3010         /* Disable MAC receive */
3011         umac_enable_set(priv, CMD_RX_EN, false);
3012
3013         ret = bcmgenet_dma_teardown(priv);
3014         if (ret)
3015                 return ret;
3016
3017         /* Disable MAC transmit. TX DMA disabled must be done before this */
3018         umac_enable_set(priv, CMD_TX_EN, false);
3019
3020         /* tx reclaim */
3021         bcmgenet_tx_reclaim_all(dev);
3022         bcmgenet_fini_dma(priv);
3023
3024         free_irq(priv->irq0, priv);
3025         free_irq(priv->irq1, priv);
3026
3027         if (priv->internal_phy)
3028                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3029
3030         clk_disable_unprepare(priv->clk);
3031
3032         return ret;
3033 }
3034
3035 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3036 {
3037         struct bcmgenet_priv *priv = ring->priv;
3038         u32 p_index, c_index, intsts, intmsk;
3039         struct netdev_queue *txq;
3040         unsigned int free_bds;
3041         unsigned long flags;
3042         bool txq_stopped;
3043
3044         if (!netif_msg_tx_err(priv))
3045                 return;
3046
3047         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3048
3049         spin_lock_irqsave(&ring->lock, flags);
3050         if (ring->index == DESC_INDEX) {
3051                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3052                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3053         } else {
3054                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3055                 intmsk = 1 << ring->index;
3056         }
3057         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3058         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3059         txq_stopped = netif_tx_queue_stopped(txq);
3060         free_bds = ring->free_bds;
3061         spin_unlock_irqrestore(&ring->lock, flags);
3062
3063         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3064                   "TX queue status: %s, interrupts: %s\n"
3065                   "(sw)free_bds: %d (sw)size: %d\n"
3066                   "(sw)p_index: %d (hw)p_index: %d\n"
3067                   "(sw)c_index: %d (hw)c_index: %d\n"
3068                   "(sw)clean_p: %d (sw)write_p: %d\n"
3069                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3070                   ring->index, ring->queue,
3071                   txq_stopped ? "stopped" : "active",
3072                   intsts & intmsk ? "enabled" : "disabled",
3073                   free_bds, ring->size,
3074                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3075                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3076                   ring->clean_ptr, ring->write_ptr,
3077                   ring->cb_ptr, ring->end_ptr);
3078 }
3079
3080 static void bcmgenet_timeout(struct net_device *dev)
3081 {
3082         struct bcmgenet_priv *priv = netdev_priv(dev);
3083         u32 int0_enable = 0;
3084         u32 int1_enable = 0;
3085         unsigned int q;
3086
3087         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3088
3089         for (q = 0; q < priv->hw_params->tx_queues; q++)
3090                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3091         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3092
3093         bcmgenet_tx_reclaim_all(dev);
3094
3095         for (q = 0; q < priv->hw_params->tx_queues; q++)
3096                 int1_enable |= (1 << q);
3097
3098         int0_enable = UMAC_IRQ_TXDMA_DONE;
3099
3100         /* Re-enable TX interrupts if disabled */
3101         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3102         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3103
3104         netif_trans_update(dev);
3105
3106         dev->stats.tx_errors++;
3107
3108         netif_tx_wake_all_queues(dev);
3109 }
3110
3111 #define MAX_MDF_FILTER  17
3112
3113 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3114                                          unsigned char *addr,
3115                                          int *i)
3116 {
3117         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3118                              UMAC_MDF_ADDR + (*i * 4));
3119         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3120                              addr[4] << 8 | addr[5],
3121                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3122         *i += 2;
3123 }
3124
3125 static void bcmgenet_set_rx_mode(struct net_device *dev)
3126 {
3127         struct bcmgenet_priv *priv = netdev_priv(dev);
3128         struct netdev_hw_addr *ha;
3129         int i, nfilter;
3130         u32 reg;
3131
3132         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3133
3134         /* Number of filters needed */
3135         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3136
3137         /*
3138          * Turn on promicuous mode for three scenarios
3139          * 1. IFF_PROMISC flag is set
3140          * 2. IFF_ALLMULTI flag is set
3141          * 3. The number of filters needed exceeds the number filters
3142          *    supported by the hardware.
3143         */
3144         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3145         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3146             (nfilter > MAX_MDF_FILTER)) {
3147                 reg |= CMD_PROMISC;
3148                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3149                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3150                 return;
3151         } else {
3152                 reg &= ~CMD_PROMISC;
3153                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3154         }
3155
3156         /* update MDF filter */
3157         i = 0;
3158         /* Broadcast */
3159         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3160         /* my own address.*/
3161         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3162
3163         /* Unicast */
3164         netdev_for_each_uc_addr(ha, dev)
3165                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3166
3167         /* Multicast */
3168         netdev_for_each_mc_addr(ha, dev)
3169                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3170
3171         /* Enable filters */
3172         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3173         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3174 }
3175
3176 /* Set the hardware MAC address. */
3177 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3178 {
3179         struct sockaddr *addr = p;
3180
3181         /* Setting the MAC address at the hardware level is not possible
3182          * without disabling the UniMAC RX/TX enable bits.
3183          */
3184         if (netif_running(dev))
3185                 return -EBUSY;
3186
3187         ether_addr_copy(dev->dev_addr, addr->sa_data);
3188
3189         return 0;
3190 }
3191
3192 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3193 {
3194         struct bcmgenet_priv *priv = netdev_priv(dev);
3195         unsigned long tx_bytes = 0, tx_packets = 0;
3196         unsigned long rx_bytes = 0, rx_packets = 0;
3197         unsigned long rx_errors = 0, rx_dropped = 0;
3198         struct bcmgenet_tx_ring *tx_ring;
3199         struct bcmgenet_rx_ring *rx_ring;
3200         unsigned int q;
3201
3202         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3203                 tx_ring = &priv->tx_rings[q];
3204                 tx_bytes += tx_ring->bytes;
3205                 tx_packets += tx_ring->packets;
3206         }
3207         tx_ring = &priv->tx_rings[DESC_INDEX];
3208         tx_bytes += tx_ring->bytes;
3209         tx_packets += tx_ring->packets;
3210
3211         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3212                 rx_ring = &priv->rx_rings[q];
3213
3214                 rx_bytes += rx_ring->bytes;
3215                 rx_packets += rx_ring->packets;
3216                 rx_errors += rx_ring->errors;
3217                 rx_dropped += rx_ring->dropped;
3218         }
3219         rx_ring = &priv->rx_rings[DESC_INDEX];
3220         rx_bytes += rx_ring->bytes;
3221         rx_packets += rx_ring->packets;
3222         rx_errors += rx_ring->errors;
3223         rx_dropped += rx_ring->dropped;
3224
3225         dev->stats.tx_bytes = tx_bytes;
3226         dev->stats.tx_packets = tx_packets;
3227         dev->stats.rx_bytes = rx_bytes;
3228         dev->stats.rx_packets = rx_packets;
3229         dev->stats.rx_errors = rx_errors;
3230         dev->stats.rx_missed_errors = rx_errors;
3231         dev->stats.rx_dropped = rx_dropped;
3232         return &dev->stats;
3233 }
3234
3235 static const struct net_device_ops bcmgenet_netdev_ops = {
3236         .ndo_open               = bcmgenet_open,
3237         .ndo_stop               = bcmgenet_close,
3238         .ndo_start_xmit         = bcmgenet_xmit,
3239         .ndo_tx_timeout         = bcmgenet_timeout,
3240         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3241         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3242         .ndo_do_ioctl           = bcmgenet_ioctl,
3243         .ndo_set_features       = bcmgenet_set_features,
3244 #ifdef CONFIG_NET_POLL_CONTROLLER
3245         .ndo_poll_controller    = bcmgenet_poll_controller,
3246 #endif
3247         .ndo_get_stats          = bcmgenet_get_stats,
3248 };
3249
3250 /* Array of GENET hardware parameters/characteristics */
3251 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3252         [GENET_V1] = {
3253                 .tx_queues = 0,
3254                 .tx_bds_per_q = 0,
3255                 .rx_queues = 0,
3256                 .rx_bds_per_q = 0,
3257                 .bp_in_en_shift = 16,
3258                 .bp_in_mask = 0xffff,
3259                 .hfb_filter_cnt = 16,
3260                 .qtag_mask = 0x1F,
3261                 .hfb_offset = 0x1000,
3262                 .rdma_offset = 0x2000,
3263                 .tdma_offset = 0x3000,
3264                 .words_per_bd = 2,
3265         },
3266         [GENET_V2] = {
3267                 .tx_queues = 4,
3268                 .tx_bds_per_q = 32,
3269                 .rx_queues = 0,
3270                 .rx_bds_per_q = 0,
3271                 .bp_in_en_shift = 16,
3272                 .bp_in_mask = 0xffff,
3273                 .hfb_filter_cnt = 16,
3274                 .qtag_mask = 0x1F,
3275                 .tbuf_offset = 0x0600,
3276                 .hfb_offset = 0x1000,
3277                 .hfb_reg_offset = 0x2000,
3278                 .rdma_offset = 0x3000,
3279                 .tdma_offset = 0x4000,
3280                 .words_per_bd = 2,
3281                 .flags = GENET_HAS_EXT,
3282         },
3283         [GENET_V3] = {
3284                 .tx_queues = 4,
3285                 .tx_bds_per_q = 32,
3286                 .rx_queues = 0,
3287                 .rx_bds_per_q = 0,
3288                 .bp_in_en_shift = 17,
3289                 .bp_in_mask = 0x1ffff,
3290                 .hfb_filter_cnt = 48,
3291                 .hfb_filter_size = 128,
3292                 .qtag_mask = 0x3F,
3293                 .tbuf_offset = 0x0600,
3294                 .hfb_offset = 0x8000,
3295                 .hfb_reg_offset = 0xfc00,
3296                 .rdma_offset = 0x10000,
3297                 .tdma_offset = 0x11000,
3298                 .words_per_bd = 2,
3299                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3300                          GENET_HAS_MOCA_LINK_DET,
3301         },
3302         [GENET_V4] = {
3303                 .tx_queues = 4,
3304                 .tx_bds_per_q = 32,
3305                 .rx_queues = 0,
3306                 .rx_bds_per_q = 0,
3307                 .bp_in_en_shift = 17,
3308                 .bp_in_mask = 0x1ffff,
3309                 .hfb_filter_cnt = 48,
3310                 .hfb_filter_size = 128,
3311                 .qtag_mask = 0x3F,
3312                 .tbuf_offset = 0x0600,
3313                 .hfb_offset = 0x8000,
3314                 .hfb_reg_offset = 0xfc00,
3315                 .rdma_offset = 0x2000,
3316                 .tdma_offset = 0x4000,
3317                 .words_per_bd = 3,
3318                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3319                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3320         },
3321         [GENET_V5] = {
3322                 .tx_queues = 4,
3323                 .tx_bds_per_q = 32,
3324                 .rx_queues = 0,
3325                 .rx_bds_per_q = 0,
3326                 .bp_in_en_shift = 17,
3327                 .bp_in_mask = 0x1ffff,
3328                 .hfb_filter_cnt = 48,
3329                 .hfb_filter_size = 128,
3330                 .qtag_mask = 0x3F,
3331                 .tbuf_offset = 0x0600,
3332                 .hfb_offset = 0x8000,
3333                 .hfb_reg_offset = 0xfc00,
3334                 .rdma_offset = 0x2000,
3335                 .tdma_offset = 0x4000,
3336                 .words_per_bd = 3,
3337                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3338                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3339         },
3340 };
3341
3342 /* Infer hardware parameters from the detected GENET version */
3343 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3344 {
3345         struct bcmgenet_hw_params *params;
3346         u32 reg;
3347         u8 major;
3348         u16 gphy_rev;
3349
3350         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3351                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3352                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3353                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3354         } else if (GENET_IS_V3(priv)) {
3355                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3356                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3357                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3358         } else if (GENET_IS_V2(priv)) {
3359                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3360                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3361                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3362         } else if (GENET_IS_V1(priv)) {
3363                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3364                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3365                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3366         }
3367
3368         /* enum genet_version starts at 1 */
3369         priv->hw_params = &bcmgenet_hw_params[priv->version];
3370         params = priv->hw_params;
3371
3372         /* Read GENET HW version */
3373         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3374         major = (reg >> 24 & 0x0f);
3375         if (major == 6)
3376                 major = 5;
3377         else if (major == 5)
3378                 major = 4;
3379         else if (major == 0)
3380                 major = 1;
3381         if (major != priv->version) {
3382                 dev_err(&priv->pdev->dev,
3383                         "GENET version mismatch, got: %d, configured for: %d\n",
3384                         major, priv->version);
3385         }
3386
3387         /* Print the GENET core version */
3388         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3389                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3390
3391         /* Store the integrated PHY revision for the MDIO probing function
3392          * to pass this information to the PHY driver. The PHY driver expects
3393          * to find the PHY major revision in bits 15:8 while the GENET register
3394          * stores that information in bits 7:0, account for that.
3395          *
3396          * On newer chips, starting with PHY revision G0, a new scheme is
3397          * deployed similar to the Starfighter 2 switch with GPHY major
3398          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3399          * is reserved as well as special value 0x01ff, we have a small
3400          * heuristic to check for the new GPHY revision and re-arrange things
3401          * so the GPHY driver is happy.
3402          */
3403         gphy_rev = reg & 0xffff;
3404
3405         if (GENET_IS_V5(priv)) {
3406                 /* The EPHY revision should come from the MDIO registers of
3407                  * the PHY not from GENET.
3408                  */
3409                 if (gphy_rev != 0) {
3410                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3411                                 gphy_rev);
3412                 }
3413         /* This is reserved so should require special treatment */
3414         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3415                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3416                 return;
3417         /* This is the good old scheme, just GPHY major, no minor nor patch */
3418         } else if ((gphy_rev & 0xf0) != 0) {
3419                 priv->gphy_rev = gphy_rev << 8;
3420         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3421         } else if ((gphy_rev & 0xff00) != 0) {
3422                 priv->gphy_rev = gphy_rev;
3423         }
3424
3425 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3426         if (!(params->flags & GENET_HAS_40BITS))
3427                 pr_warn("GENET does not support 40-bits PA\n");
3428 #endif
3429
3430         pr_debug("Configuration for version: %d\n"
3431                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3432                 "BP << en: %2d, BP msk: 0x%05x\n"
3433                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3434                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3435                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3436                 "Words/BD: %d\n",
3437                 priv->version,
3438                 params->tx_queues, params->tx_bds_per_q,
3439                 params->rx_queues, params->rx_bds_per_q,
3440                 params->bp_in_en_shift, params->bp_in_mask,
3441                 params->hfb_filter_cnt, params->qtag_mask,
3442                 params->tbuf_offset, params->hfb_offset,
3443                 params->hfb_reg_offset,
3444                 params->rdma_offset, params->tdma_offset,
3445                 params->words_per_bd);
3446 }
3447
3448 static const struct of_device_id bcmgenet_match[] = {
3449         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3450         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3451         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3452         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3453         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3454         { },
3455 };
3456 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3457
3458 static int bcmgenet_probe(struct platform_device *pdev)
3459 {
3460         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3461         struct device_node *dn = pdev->dev.of_node;
3462         const struct of_device_id *of_id = NULL;
3463         struct bcmgenet_priv *priv;
3464         struct net_device *dev;
3465         const void *macaddr;
3466         struct resource *r;
3467         int err = -EIO;
3468         const char *phy_mode_str;
3469
3470         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3471         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3472                                  GENET_MAX_MQ_CNT + 1);
3473         if (!dev) {
3474                 dev_err(&pdev->dev, "can't allocate net device\n");
3475                 return -ENOMEM;
3476         }
3477
3478         if (dn) {
3479                 of_id = of_match_node(bcmgenet_match, dn);
3480                 if (!of_id)
3481                         return -EINVAL;
3482         }
3483
3484         priv = netdev_priv(dev);
3485         priv->irq0 = platform_get_irq(pdev, 0);
3486         priv->irq1 = platform_get_irq(pdev, 1);
3487         priv->wol_irq = platform_get_irq(pdev, 2);
3488         if (!priv->irq0 || !priv->irq1) {
3489                 dev_err(&pdev->dev, "can't find IRQs\n");
3490                 err = -EINVAL;
3491                 goto err;
3492         }
3493
3494         if (dn) {
3495                 macaddr = of_get_mac_address(dn);
3496                 if (!macaddr) {
3497                         dev_err(&pdev->dev, "can't find MAC address\n");
3498                         err = -EINVAL;
3499                         goto err;
3500                 }
3501         } else {
3502                 macaddr = pd->mac_address;
3503         }
3504
3505         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3506         priv->base = devm_ioremap_resource(&pdev->dev, r);
3507         if (IS_ERR(priv->base)) {
3508                 err = PTR_ERR(priv->base);
3509                 goto err;
3510         }
3511
3512         spin_lock_init(&priv->lock);
3513
3514         SET_NETDEV_DEV(dev, &pdev->dev);
3515         dev_set_drvdata(&pdev->dev, dev);
3516         ether_addr_copy(dev->dev_addr, macaddr);
3517         dev->watchdog_timeo = 2 * HZ;
3518         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3519         dev->netdev_ops = &bcmgenet_netdev_ops;
3520
3521         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3522
3523         /* Set hardware features */
3524         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3525                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3526
3527         /* Request the WOL interrupt and advertise suspend if available */
3528         priv->wol_irq_disabled = true;
3529         if (priv->wol_irq > 0) {
3530                 err = devm_request_irq(&pdev->dev, priv->wol_irq,
3531                                        bcmgenet_wol_isr, 0, dev->name, priv);
3532                 if (!err)
3533                         device_set_wakeup_capable(&pdev->dev, 1);
3534         }
3535
3536         /* Set the needed headroom to account for any possible
3537          * features enabling/disabling at runtime
3538          */
3539         dev->needed_headroom += 64;
3540
3541         netdev_boot_setup_check(dev);
3542
3543         priv->dev = dev;
3544         priv->pdev = pdev;
3545         if (of_id)
3546                 priv->version = (enum bcmgenet_version)of_id->data;
3547         else
3548                 priv->version = pd->genet_version;
3549
3550         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3551         if (IS_ERR(priv->clk)) {
3552                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3553                 priv->clk = NULL;
3554         }
3555
3556         clk_prepare_enable(priv->clk);
3557
3558         bcmgenet_set_hw_params(priv);
3559
3560         /* Mii wait queue */
3561         init_waitqueue_head(&priv->wq);
3562         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3563         priv->rx_buf_len = RX_BUF_LENGTH;
3564         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3565
3566         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3567         if (IS_ERR(priv->clk_wol)) {
3568                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3569                 priv->clk_wol = NULL;
3570         }
3571
3572         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3573         if (IS_ERR(priv->clk_eee)) {
3574                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3575                 priv->clk_eee = NULL;
3576         }
3577
3578         /* If this is an internal GPHY, power it on now, before UniMAC is
3579          * brought out of reset as absolutely no UniMAC activity is allowed
3580          */
3581         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3582             !strcasecmp(phy_mode_str, "internal"))
3583                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3584
3585         err = reset_umac(priv);
3586         if (err)
3587                 goto err_clk_disable;
3588
3589         err = bcmgenet_mii_init(dev);
3590         if (err)
3591                 goto err_clk_disable;
3592
3593         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3594          * just the ring 16 descriptor based TX
3595          */
3596         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3597         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3598
3599         /* libphy will determine the link state */
3600         netif_carrier_off(dev);
3601
3602         /* Turn off the main clock, WOL clock is handled separately */
3603         clk_disable_unprepare(priv->clk);
3604
3605         err = register_netdev(dev);
3606         if (err) {
3607                 bcmgenet_mii_exit(dev);
3608                 goto err;
3609         }
3610
3611         return err;
3612
3613 err_clk_disable:
3614         clk_disable_unprepare(priv->clk);
3615 err:
3616         free_netdev(dev);
3617         return err;
3618 }
3619
3620 static int bcmgenet_remove(struct platform_device *pdev)
3621 {
3622         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3623
3624         dev_set_drvdata(&pdev->dev, NULL);
3625         unregister_netdev(priv->dev);
3626         bcmgenet_mii_exit(priv->dev);
3627         free_netdev(priv->dev);
3628
3629         return 0;
3630 }
3631
3632 #ifdef CONFIG_PM_SLEEP
3633 static int bcmgenet_suspend(struct device *d)
3634 {
3635         struct net_device *dev = dev_get_drvdata(d);
3636         struct bcmgenet_priv *priv = netdev_priv(dev);
3637         int ret;
3638
3639         if (!netif_running(dev))
3640                 return 0;
3641
3642         bcmgenet_netif_stop(dev);
3643
3644         if (!device_may_wakeup(d))
3645                 phy_suspend(priv->phydev);
3646
3647         netif_device_detach(dev);
3648
3649         /* Disable MAC receive */
3650         umac_enable_set(priv, CMD_RX_EN, false);
3651
3652         ret = bcmgenet_dma_teardown(priv);
3653         if (ret)
3654                 return ret;
3655
3656         /* Disable MAC transmit. TX DMA disabled must be done before this */
3657         umac_enable_set(priv, CMD_TX_EN, false);
3658
3659         /* tx reclaim */
3660         bcmgenet_tx_reclaim_all(dev);
3661         bcmgenet_fini_dma(priv);
3662
3663         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3664         if (device_may_wakeup(d) && priv->wolopts) {
3665                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3666                 clk_prepare_enable(priv->clk_wol);
3667         } else if (priv->internal_phy) {
3668                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3669         }
3670
3671         /* Turn off the clocks */
3672         clk_disable_unprepare(priv->clk);
3673
3674         return ret;
3675 }
3676
3677 static int bcmgenet_resume(struct device *d)
3678 {
3679         struct net_device *dev = dev_get_drvdata(d);
3680         struct bcmgenet_priv *priv = netdev_priv(dev);
3681         unsigned long dma_ctrl;
3682         int ret;
3683
3684         if (!netif_running(dev))
3685                 return 0;
3686
3687         /* Turn on the clock */
3688         ret = clk_prepare_enable(priv->clk);
3689         if (ret)
3690                 return ret;
3691
3692         /* If this is an internal GPHY, power it back on now, before UniMAC is
3693          * brought out of reset as absolutely no UniMAC activity is allowed
3694          */
3695         if (priv->internal_phy)
3696                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3697
3698         bcmgenet_umac_reset(priv);
3699
3700         ret = init_umac(priv);
3701         if (ret)
3702                 goto out_clk_disable;
3703
3704         /* From WOL-enabled suspend, switch to regular clock */
3705         if (priv->wolopts)
3706                 clk_disable_unprepare(priv->clk_wol);
3707
3708         phy_init_hw(priv->phydev);
3709         /* Speed settings must be restored */
3710         genphy_config_aneg(dev->phydev);
3711         bcmgenet_mii_config(priv->dev, false);
3712
3713         /* disable ethernet MAC while updating its registers */
3714         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3715
3716         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3717
3718         if (priv->wolopts)
3719                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3720
3721         /* Disable RX/TX DMA and flush TX queues */
3722         dma_ctrl = bcmgenet_dma_disable(priv);
3723
3724         /* Reinitialize TDMA and RDMA and SW housekeeping */
3725         ret = bcmgenet_init_dma(priv);
3726         if (ret) {
3727                 netdev_err(dev, "failed to initialize DMA\n");
3728                 goto out_clk_disable;
3729         }
3730
3731         /* Always enable ring 16 - descriptor ring */
3732         bcmgenet_enable_dma(priv, dma_ctrl);
3733
3734         netif_device_attach(dev);
3735
3736         if (!device_may_wakeup(d))
3737                 phy_resume(priv->phydev);
3738
3739         if (priv->eee.eee_enabled)
3740                 bcmgenet_eee_enable_set(dev, true);
3741
3742         bcmgenet_netif_start(dev);
3743
3744         return 0;
3745
3746 out_clk_disable:
3747         if (priv->internal_phy)
3748                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3749         clk_disable_unprepare(priv->clk);
3750         return ret;
3751 }
3752 #endif /* CONFIG_PM_SLEEP */
3753
3754 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3755
3756 static struct platform_driver bcmgenet_driver = {
3757         .probe  = bcmgenet_probe,
3758         .remove = bcmgenet_remove,
3759         .driver = {
3760                 .name   = "bcmgenet",
3761                 .of_match_table = bcmgenet_match,
3762                 .pm     = &bcmgenet_pm_ops,
3763         },
3764 };
3765 module_platform_driver(bcmgenet_driver);
3766
3767 MODULE_AUTHOR("Broadcom Corporation");
3768 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3769 MODULE_ALIAS("platform:bcmgenet");
3770 MODULE_LICENSE("GPL");
3771 MODULE_SOFTDEP("pre: mdio-bcm-unimac");