GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 /*(DEBLOBBED)*/
73 #define bnx2x_init_block(bp, start, end) \
74   return (printk(KERN_ERR "%s: Missing Free firmware\n", bp->dev->name),\
75           -EINVAL)
76
77 /*(DEBLOBBED)*/
78
79 #define FW_FILE_NAME_E1         "/*(DEBLOBBED)*/"
80 #define FW_FILE_NAME_E1H        "/*(DEBLOBBED)*/"
81 #define FW_FILE_NAME_E2         "/*(DEBLOBBED)*/"
82 #define FW_FILE_NAME_E1_V15     "/*(DEBLOBBED)*/"
83 #define FW_FILE_NAME_E1H_V15    "/*(DEBLOBBED)*/"
84 #define FW_FILE_NAME_E2_V15     "/*(DEBLOBBED)*/"
85
86 /* Time in jiffies before concluding the transmitter is hung */
87 #define TX_TIMEOUT              (5*HZ)
88
89 MODULE_AUTHOR("Eliezer Tamir");
90 MODULE_DESCRIPTION("QLogic "
91                    "BCM57710/57711/57711E/"
92                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
93                    "57840/57840_MF Driver");
94 MODULE_LICENSE("GPL");
95 /*(DEBLOBBED)*/
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, 0444);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, 0444);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, 0444);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, 0444);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, 0444);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127         u32 xmac_addr;
128         u32 xmac_val;
129         u32 emac_addr;
130         u32 emac_val;
131         u32 umac_addr[2];
132         u32 umac_val[2];
133         u32 bmac_addr;
134         u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138         BCM57710 = 0,
139         BCM57711,
140         BCM57711E,
141         BCM57712,
142         BCM57712_MF,
143         BCM57712_VF,
144         BCM57800,
145         BCM57800_MF,
146         BCM57800_VF,
147         BCM57810,
148         BCM57810_MF,
149         BCM57810_VF,
150         BCM57840_4_10,
151         BCM57840_2_20,
152         BCM57840_MF,
153         BCM57840_VF,
154         BCM57811,
155         BCM57811_MF,
156         BCM57840_O,
157         BCM57840_MFO,
158         BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163         char *name;
164 } board_info[] = {
165         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
166         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
167         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
168         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
169         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
170         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
171         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
172         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
173         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
174         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
175         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
176         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
177         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
178         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
179         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
182         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
183         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
184         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
185         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
250 #endif
251
252 static const struct pci_device_id bnx2x_pci_tbl[] = {
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
271         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
273         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
275         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
277         { 0 }
278 };
279
280 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
281
282 const u32 dmae_reg_go_c[] = {
283         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
284         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
285         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
286         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
287 };
288
289 /* Global resources for unloading a previously loaded device */
290 #define BNX2X_PREV_WAIT_NEEDED 1
291 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
292 static LIST_HEAD(bnx2x_prev_list);
293
294 /* Forward declaration */
295 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
296 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
297 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
298
299 /****************************************************************************
300 * General service functions
301 ****************************************************************************/
302
303 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
304
305 static void __storm_memset_dma_mapping(struct bnx2x *bp,
306                                        u32 addr, dma_addr_t mapping)
307 {
308         REG_WR(bp,  addr, U64_LO(mapping));
309         REG_WR(bp,  addr + 4, U64_HI(mapping));
310 }
311
312 static void storm_memset_spq_addr(struct bnx2x *bp,
313                                   dma_addr_t mapping, u16 abs_fid)
314 {
315         u32 addr = XSEM_REG_FAST_MEMORY +
316                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
317
318         __storm_memset_dma_mapping(bp, addr, mapping);
319 }
320
321 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
322                                   u16 pf_id)
323 {
324         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
325                 pf_id);
326         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
327                 pf_id);
328         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
329                 pf_id);
330         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
331                 pf_id);
332 }
333
334 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
335                                  u8 enable)
336 {
337         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
338                 enable);
339         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
340                 enable);
341         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
342                 enable);
343         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
344                 enable);
345 }
346
347 static void storm_memset_eq_data(struct bnx2x *bp,
348                                  struct event_ring_data *eq_data,
349                                 u16 pfid)
350 {
351         size_t size = sizeof(struct event_ring_data);
352
353         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
354
355         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
356 }
357
358 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
359                                  u16 pfid)
360 {
361         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
362         REG_WR16(bp, addr, eq_prod);
363 }
364
365 /* used only at init
366  * locking is done by mcp
367  */
368 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
369 {
370         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
371         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
372         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
373                                PCICFG_VENDOR_ID_OFFSET);
374 }
375
376 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
377 {
378         u32 val;
379
380         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
382         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383                                PCICFG_VENDOR_ID_OFFSET);
384
385         return val;
386 }
387
388 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
389 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
390 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
391 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
392 #define DMAE_DP_DST_NONE        "dst_addr [none]"
393
394 static void bnx2x_dp_dmae(struct bnx2x *bp,
395                           struct dmae_command *dmae, int msglvl)
396 {
397         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
398         int i;
399
400         switch (dmae->opcode & DMAE_COMMAND_DST) {
401         case DMAE_CMD_DST_PCI:
402                 if (src_type == DMAE_CMD_SRC_PCI)
403                         DP(msglvl, "DMAE: opcode 0x%08x\n"
404                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
405                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
406                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
407                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
408                            dmae->comp_addr_hi, dmae->comp_addr_lo,
409                            dmae->comp_val);
410                 else
411                         DP(msglvl, "DMAE: opcode 0x%08x\n"
412                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
413                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
414                            dmae->opcode, dmae->src_addr_lo >> 2,
415                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
416                            dmae->comp_addr_hi, dmae->comp_addr_lo,
417                            dmae->comp_val);
418                 break;
419         case DMAE_CMD_DST_GRC:
420                 if (src_type == DMAE_CMD_SRC_PCI)
421                         DP(msglvl, "DMAE: opcode 0x%08x\n"
422                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
423                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
424                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
425                            dmae->len, dmae->dst_addr_lo >> 2,
426                            dmae->comp_addr_hi, dmae->comp_addr_lo,
427                            dmae->comp_val);
428                 else
429                         DP(msglvl, "DMAE: opcode 0x%08x\n"
430                            "src [%08x], len [%d*4], dst [%08x]\n"
431                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
432                            dmae->opcode, dmae->src_addr_lo >> 2,
433                            dmae->len, dmae->dst_addr_lo >> 2,
434                            dmae->comp_addr_hi, dmae->comp_addr_lo,
435                            dmae->comp_val);
436                 break;
437         default:
438                 if (src_type == DMAE_CMD_SRC_PCI)
439                         DP(msglvl, "DMAE: opcode 0x%08x\n"
440                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
441                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
442                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
443                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
444                            dmae->comp_val);
445                 else
446                         DP(msglvl, "DMAE: opcode 0x%08x\n"
447                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
448                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
449                            dmae->opcode, dmae->src_addr_lo >> 2,
450                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
451                            dmae->comp_val);
452                 break;
453         }
454
455         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
456                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
457                    i, *(((u32 *)dmae) + i));
458 }
459
460 /* copy command into DMAE command memory and set DMAE command go */
461 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
462 {
463         u32 cmd_offset;
464         int i;
465
466         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
467         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
468                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
469         }
470         REG_WR(bp, dmae_reg_go_c[idx], 1);
471 }
472
473 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
474 {
475         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
476                            DMAE_CMD_C_ENABLE);
477 }
478
479 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
480 {
481         return opcode & ~DMAE_CMD_SRC_RESET;
482 }
483
484 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
485                              bool with_comp, u8 comp_type)
486 {
487         u32 opcode = 0;
488
489         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
490                    (dst_type << DMAE_COMMAND_DST_SHIFT));
491
492         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
493
494         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
495         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
496                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
497         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
498
499 #ifdef __BIG_ENDIAN
500         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
501 #else
502         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
503 #endif
504         if (with_comp)
505                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
506         return opcode;
507 }
508
509 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
510                                       struct dmae_command *dmae,
511                                       u8 src_type, u8 dst_type)
512 {
513         memset(dmae, 0, sizeof(struct dmae_command));
514
515         /* set the opcode */
516         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
517                                          true, DMAE_COMP_PCI);
518
519         /* fill in the completion parameters */
520         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
521         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
522         dmae->comp_val = DMAE_COMP_VAL;
523 }
524
525 /* issue a dmae command over the init-channel and wait for completion */
526 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
527                                u32 *comp)
528 {
529         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
530         int rc = 0;
531
532         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
533
534         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
535          * as long as this code is called both from syscall context and
536          * from ndo_set_rx_mode() flow that may be called from BH.
537          */
538
539         spin_lock_bh(&bp->dmae_lock);
540
541         /* reset completion */
542         *comp = 0;
543
544         /* post the command on the channel used for initializations */
545         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
546
547         /* wait for completion */
548         udelay(5);
549         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
550
551                 if (!cnt ||
552                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
553                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
554                         BNX2X_ERR("DMAE timeout!\n");
555                         rc = DMAE_TIMEOUT;
556                         goto unlock;
557                 }
558                 cnt--;
559                 udelay(50);
560         }
561         if (*comp & DMAE_PCI_ERR_FLAG) {
562                 BNX2X_ERR("DMAE PCI error!\n");
563                 rc = DMAE_PCI_ERROR;
564         }
565
566 unlock:
567
568         spin_unlock_bh(&bp->dmae_lock);
569
570         return rc;
571 }
572
573 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
574                       u32 len32)
575 {
576         int rc;
577         struct dmae_command dmae;
578
579         if (!bp->dmae_ready) {
580                 u32 *data = bnx2x_sp(bp, wb_data[0]);
581
582                 if (CHIP_IS_E1(bp))
583                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
584                 else
585                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
586                 return;
587         }
588
589         /* set opcode and fixed command fields */
590         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
591
592         /* fill in addresses and len */
593         dmae.src_addr_lo = U64_LO(dma_addr);
594         dmae.src_addr_hi = U64_HI(dma_addr);
595         dmae.dst_addr_lo = dst_addr >> 2;
596         dmae.dst_addr_hi = 0;
597         dmae.len = len32;
598
599         /* issue the command and wait for completion */
600         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
601         if (rc) {
602                 BNX2X_ERR("DMAE returned failure %d\n", rc);
603 #ifdef BNX2X_STOP_ON_ERROR
604                 bnx2x_panic();
605 #endif
606         }
607 }
608
609 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
610 {
611         int rc;
612         struct dmae_command dmae;
613
614         if (!bp->dmae_ready) {
615                 u32 *data = bnx2x_sp(bp, wb_data[0]);
616                 int i;
617
618                 if (CHIP_IS_E1(bp))
619                         for (i = 0; i < len32; i++)
620                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
621                 else
622                         for (i = 0; i < len32; i++)
623                                 data[i] = REG_RD(bp, src_addr + i*4);
624
625                 return;
626         }
627
628         /* set opcode and fixed command fields */
629         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
630
631         /* fill in addresses and len */
632         dmae.src_addr_lo = src_addr >> 2;
633         dmae.src_addr_hi = 0;
634         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
635         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
636         dmae.len = len32;
637
638         /* issue the command and wait for completion */
639         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
640         if (rc) {
641                 BNX2X_ERR("DMAE returned failure %d\n", rc);
642 #ifdef BNX2X_STOP_ON_ERROR
643                 bnx2x_panic();
644 #endif
645         }
646 }
647
648 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
649                                       u32 addr, u32 len)
650 {
651         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
652         int offset = 0;
653
654         while (len > dmae_wr_max) {
655                 bnx2x_write_dmae(bp, phys_addr + offset,
656                                  addr + offset, dmae_wr_max);
657                 offset += dmae_wr_max * 4;
658                 len -= dmae_wr_max;
659         }
660
661         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
662 }
663
664 enum storms {
665            XSTORM,
666            TSTORM,
667            CSTORM,
668            USTORM,
669            MAX_STORMS
670 };
671
672 #define STORMS_NUM 4
673 #define REGS_IN_ENTRY 4
674
675 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
676                                               enum storms storm,
677                                               int entry)
678 {
679         switch (storm) {
680         case XSTORM:
681                 return XSTORM_ASSERT_LIST_OFFSET(entry);
682         case TSTORM:
683                 return TSTORM_ASSERT_LIST_OFFSET(entry);
684         case CSTORM:
685                 return CSTORM_ASSERT_LIST_OFFSET(entry);
686         case USTORM:
687                 return USTORM_ASSERT_LIST_OFFSET(entry);
688         case MAX_STORMS:
689         default:
690                 BNX2X_ERR("unknown storm\n");
691         }
692         return -EINVAL;
693 }
694
695 static int bnx2x_mc_assert(struct bnx2x *bp)
696 {
697         char last_idx;
698         int i, j, rc = 0;
699         enum storms storm;
700         u32 regs[REGS_IN_ENTRY];
701         u32 bar_storm_intmem[STORMS_NUM] = {
702                 BAR_XSTRORM_INTMEM,
703                 BAR_TSTRORM_INTMEM,
704                 BAR_CSTRORM_INTMEM,
705                 BAR_USTRORM_INTMEM
706         };
707         u32 storm_assert_list_index[STORMS_NUM] = {
708                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
709                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
710                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
711                 USTORM_ASSERT_LIST_INDEX_OFFSET
712         };
713         char *storms_string[STORMS_NUM] = {
714                 "XSTORM",
715                 "TSTORM",
716                 "CSTORM",
717                 "USTORM"
718         };
719
720         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
721                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
722                                    storm_assert_list_index[storm]);
723                 if (last_idx)
724                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
725                                   storms_string[storm], last_idx);
726
727                 /* print the asserts */
728                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
729                         /* read a single assert entry */
730                         for (j = 0; j < REGS_IN_ENTRY; j++)
731                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
732                                           bnx2x_get_assert_list_entry(bp,
733                                                                       storm,
734                                                                       i) +
735                                           sizeof(u32) * j);
736
737                         /* log entry if it contains a valid assert */
738                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
739                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
740                                           storms_string[storm], i, regs[3],
741                                           regs[2], regs[1], regs[0]);
742                                 rc++;
743                         } else {
744                                 break;
745                         }
746                 }
747         }
748
749         BNX2X_ERR("Chip Revision: %s, /*(DEBLOBBED)*/\n",
750                   CHIP_IS_E1(bp) ? "everest1" :
751                   CHIP_IS_E1H(bp) ? "everest1h" :
752                   CHIP_IS_E2(bp) ? "everest2" : "everest3"/*(DEBLOBBED)*/);
753
754         return rc;
755 }
756
757 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
758 #define SCRATCH_BUFFER_SIZE(bp) \
759         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
760
761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
762 {
763         u32 addr, val;
764         u32 mark, offset;
765         __be32 data[9];
766         int word;
767         u32 trace_shmem_base;
768         if (BP_NOMCP(bp)) {
769                 BNX2X_ERR("NO MCP - can not dump\n");
770                 return;
771         }
772         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
773                 (bp->common.bc_ver & 0xff0000) >> 16,
774                 (bp->common.bc_ver & 0xff00) >> 8,
775                 (bp->common.bc_ver & 0xff));
776
777         if (pci_channel_offline(bp->pdev)) {
778                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
779                 return;
780         }
781
782         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
783         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
784                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
785
786         if (BP_PATH(bp) == 0)
787                 trace_shmem_base = bp->common.shmem_base;
788         else
789                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
790
791         /* sanity */
792         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
793             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
794                                 SCRATCH_BUFFER_SIZE(bp)) {
795                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
796                           trace_shmem_base);
797                 return;
798         }
799
800         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
801
802         /* validate TRCB signature */
803         mark = REG_RD(bp, addr);
804         if (mark != MFW_TRACE_SIGNATURE) {
805                 BNX2X_ERR("Trace buffer signature is missing.");
806                 return ;
807         }
808
809         /* read cyclic buffer pointer */
810         addr += 4;
811         mark = REG_RD(bp, addr);
812         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
813         if (mark >= trace_shmem_base || mark < addr + 4) {
814                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
815                 return;
816         }
817         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
818
819         printk("%s", lvl);
820
821         /* dump buffer after the mark */
822         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
823                 for (word = 0; word < 8; word++)
824                         data[word] = htonl(REG_RD(bp, offset + 4*word));
825                 data[8] = 0x0;
826                 pr_cont("%s", (char *)data);
827         }
828
829         /* dump buffer before the mark */
830         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
831                 for (word = 0; word < 8; word++)
832                         data[word] = htonl(REG_RD(bp, offset + 4*word));
833                 data[8] = 0x0;
834                 pr_cont("%s", (char *)data);
835         }
836         printk("%s" "end of fw dump\n", lvl);
837 }
838
839 static void bnx2x_fw_dump(struct bnx2x *bp)
840 {
841         bnx2x_fw_dump_lvl(bp, KERN_ERR);
842 }
843
844 static void bnx2x_hc_int_disable(struct bnx2x *bp)
845 {
846         int port = BP_PORT(bp);
847         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
848         u32 val = REG_RD(bp, addr);
849
850         /* in E1 we must use only PCI configuration space to disable
851          * MSI/MSIX capability
852          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
853          */
854         if (CHIP_IS_E1(bp)) {
855                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856                  * Use mask register to prevent from HC sending interrupts
857                  * after we exit the function
858                  */
859                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
860
861                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
863                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
864         } else
865                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
867                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
868                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
869
870         DP(NETIF_MSG_IFDOWN,
871            "write %x to HC %d (addr 0x%x)\n",
872            val, port, addr);
873
874         REG_WR(bp, addr, val);
875         if (REG_RD(bp, addr) != val)
876                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
877 }
878
879 static void bnx2x_igu_int_disable(struct bnx2x *bp)
880 {
881         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
882
883         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
884                  IGU_PF_CONF_INT_LINE_EN |
885                  IGU_PF_CONF_ATTN_BIT_EN);
886
887         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
888
889         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896         if (bp->common.int_block == INT_BLOCK_HC)
897                 bnx2x_hc_int_disable(bp);
898         else
899                 bnx2x_igu_int_disable(bp);
900 }
901
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904         int i;
905         u16 j;
906         struct hc_sp_status_block_data sp_sb_data;
907         int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909         u16 start = 0, end = 0;
910         u8 cos;
911 #endif
912         if (IS_PF(bp) && disable_int)
913                 bnx2x_int_disable(bp);
914
915         bp->stats_state = STATS_STATE_DISABLED;
916         bp->eth_stats.unrecoverable_error++;
917         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918
919         BNX2X_ERR("begin crash dump -----------------\n");
920
921         /* Indices */
922         /* Common */
923         if (IS_PF(bp)) {
924                 struct host_sp_status_block *def_sb = bp->def_status_blk;
925                 int data_size, cstorm_offset;
926
927                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928                           bp->def_idx, bp->def_att_idx, bp->attn_state,
929                           bp->spq_prod_idx, bp->stats_counter);
930                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931                           def_sb->atten_status_block.attn_bits,
932                           def_sb->atten_status_block.attn_bits_ack,
933                           def_sb->atten_status_block.status_block_id,
934                           def_sb->atten_status_block.attn_bits_index);
935                 BNX2X_ERR("     def (");
936                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937                         pr_cont("0x%x%s",
938                                 def_sb->sp_sb.index_values[i],
939                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940
941                 data_size = sizeof(struct hc_sp_status_block_data) /
942                             sizeof(u32);
943                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944                 for (i = 0; i < data_size; i++)
945                         *((u32 *)&sp_sb_data + i) =
946                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947                                            i * sizeof(u32));
948
949                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950                         sp_sb_data.igu_sb_id,
951                         sp_sb_data.igu_seg_id,
952                         sp_sb_data.p_func.pf_id,
953                         sp_sb_data.p_func.vnic_id,
954                         sp_sb_data.p_func.vf_id,
955                         sp_sb_data.p_func.vf_valid,
956                         sp_sb_data.state);
957         }
958
959         for_each_eth_queue(bp, i) {
960                 struct bnx2x_fastpath *fp = &bp->fp[i];
961                 int loop;
962                 struct hc_status_block_data_e2 sb_data_e2;
963                 struct hc_status_block_data_e1x sb_data_e1x;
964                 struct hc_status_block_sm  *hc_sm_p =
965                         CHIP_IS_E1x(bp) ?
966                         sb_data_e1x.common.state_machine :
967                         sb_data_e2.common.state_machine;
968                 struct hc_index_data *hc_index_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.index_data :
971                         sb_data_e2.index_data;
972                 u8 data_size, cos;
973                 u32 *sb_data_p;
974                 struct bnx2x_fp_txdata txdata;
975
976                 if (!bp->fp)
977                         break;
978
979                 if (!fp->rx_cons_sb)
980                         continue;
981
982                 /* Rx */
983                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984                           i, fp->rx_bd_prod, fp->rx_bd_cons,
985                           fp->rx_comp_prod,
986                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988                           fp->rx_sge_prod, fp->last_max_sge,
989                           le16_to_cpu(fp->fp_hc_idx));
990
991                 /* Tx */
992                 for_each_cos_in_tx_queue(fp, cos)
993                 {
994                         if (!fp->txdata_ptr[cos])
995                                 break;
996
997                         txdata = *fp->txdata_ptr[cos];
998
999                         if (!txdata.tx_cons_sb)
1000                                 continue;
1001
1002                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003                                   i, txdata.tx_pkt_prod,
1004                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005                                   txdata.tx_bd_cons,
1006                                   le16_to_cpu(*txdata.tx_cons_sb));
1007                 }
1008
1009                 loop = CHIP_IS_E1x(bp) ?
1010                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012                 /* host sb data */
1013
1014                 if (IS_FCOE_FP(fp))
1015                         continue;
1016
1017                 BNX2X_ERR("     run indexes (");
1018                 for (j = 0; j < HC_SB_MAX_SM; j++)
1019                         pr_cont("0x%x%s",
1020                                fp->sb_running_index[j],
1021                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023                 BNX2X_ERR("     indexes (");
1024                 for (j = 0; j < loop; j++)
1025                         pr_cont("0x%x%s",
1026                                fp->sb_index_values[j],
1027                                (j == loop - 1) ? ")" : " ");
1028
1029                 /* VF cannot access FW refelection for status block */
1030                 if (IS_VF(bp))
1031                         continue;
1032
1033                 /* fw sb data */
1034                 data_size = CHIP_IS_E1x(bp) ?
1035                         sizeof(struct hc_status_block_data_e1x) :
1036                         sizeof(struct hc_status_block_data_e2);
1037                 data_size /= sizeof(u32);
1038                 sb_data_p = CHIP_IS_E1x(bp) ?
1039                         (u32 *)&sb_data_e1x :
1040                         (u32 *)&sb_data_e2;
1041                 /* copy sb data in here */
1042                 for (j = 0; j < data_size; j++)
1043                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045                                 j * sizeof(u32));
1046
1047                 if (!CHIP_IS_E1x(bp)) {
1048                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049                                 sb_data_e2.common.p_func.pf_id,
1050                                 sb_data_e2.common.p_func.vf_id,
1051                                 sb_data_e2.common.p_func.vf_valid,
1052                                 sb_data_e2.common.p_func.vnic_id,
1053                                 sb_data_e2.common.same_igu_sb_1b,
1054                                 sb_data_e2.common.state);
1055                 } else {
1056                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057                                 sb_data_e1x.common.p_func.pf_id,
1058                                 sb_data_e1x.common.p_func.vf_id,
1059                                 sb_data_e1x.common.p_func.vf_valid,
1060                                 sb_data_e1x.common.p_func.vnic_id,
1061                                 sb_data_e1x.common.same_igu_sb_1b,
1062                                 sb_data_e1x.common.state);
1063                 }
1064
1065                 /* SB_SMs data */
1066                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1067                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068                                 j, hc_sm_p[j].__flags,
1069                                 hc_sm_p[j].igu_sb_id,
1070                                 hc_sm_p[j].igu_seg_id,
1071                                 hc_sm_p[j].time_to_expire,
1072                                 hc_sm_p[j].timer_value);
1073                 }
1074
1075                 /* Indices data */
1076                 for (j = 0; j < loop; j++) {
1077                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078                                hc_index_p[j].flags,
1079                                hc_index_p[j].timeout);
1080                 }
1081         }
1082
1083 #ifdef BNX2X_STOP_ON_ERROR
1084         if (IS_PF(bp)) {
1085                 /* event queue */
1086                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087                 for (i = 0; i < NUM_EQ_DESC; i++) {
1088                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091                                   i, bp->eq_ring[i].message.opcode,
1092                                   bp->eq_ring[i].message.error);
1093                         BNX2X_ERR("data: %x %x %x\n",
1094                                   data[0], data[1], data[2]);
1095                 }
1096         }
1097
1098         /* Rings */
1099         /* Rx */
1100         for_each_valid_rx_queue(bp, i) {
1101                 struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103                 if (!bp->fp)
1104                         break;
1105
1106                 if (!fp->rx_cons_sb)
1107                         continue;
1108
1109                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111                 for (j = start; j != end; j = RX_BD(j + 1)) {
1112                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117                 }
1118
1119                 start = RX_SGE(fp->rx_sge_prod);
1120                 end = RX_SGE(fp->last_max_sge);
1121                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1122                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127                 }
1128
1129                 start = RCQ_BD(fp->rx_comp_cons - 10);
1130                 end = RCQ_BD(fp->rx_comp_cons + 503);
1131                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136                 }
1137         }
1138
1139         /* Tx */
1140         for_each_valid_tx_queue(bp, i) {
1141                 struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143                 if (!bp->fp)
1144                         break;
1145
1146                 for_each_cos_in_tx_queue(fp, cos) {
1147                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149                         if (!fp->txdata_ptr[cos])
1150                                 break;
1151
1152                         if (!txdata->tx_cons_sb)
1153                                 continue;
1154
1155                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157                         for (j = start; j != end; j = TX_BD(j + 1)) {
1158                                 struct sw_tx_bd *sw_bd =
1159                                         &txdata->tx_buf_ring[j];
1160
1161                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162                                           i, cos, j, sw_bd->skb,
1163                                           sw_bd->first_bd);
1164                         }
1165
1166                         start = TX_BD(txdata->tx_bd_cons - 10);
1167                         end = TX_BD(txdata->tx_bd_cons + 254);
1168                         for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172                                           i, cos, j, tx_bd[0], tx_bd[1],
1173                                           tx_bd[2], tx_bd[3]);
1174                         }
1175                 }
1176         }
1177 #endif
1178         if (IS_PF(bp)) {
1179                 int tmp_msg_en = bp->msg_enable;
1180
1181                 bnx2x_fw_dump(bp);
1182                 bp->msg_enable |= NETIF_MSG_HW;
1183                 BNX2X_ERR("Idle check (1st round) ----------\n");
1184                 bnx2x_idle_chk(bp);
1185                 BNX2X_ERR("Idle check (2nd round) ----------\n");
1186                 bnx2x_idle_chk(bp);
1187                 bp->msg_enable = tmp_msg_en;
1188                 bnx2x_mc_assert(bp);
1189         }
1190
1191         BNX2X_ERR("end crash dump -----------------\n");
1192 }
1193
1194 /*
1195  * FLR Support for E2
1196  *
1197  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198  * initialization.
1199  */
1200 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL       50      /* usec */
1202 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1203
1204 struct pbf_pN_buf_regs {
1205         int pN;
1206         u32 init_crd;
1207         u32 crd;
1208         u32 crd_freed;
1209 };
1210
1211 struct pbf_pN_cmd_regs {
1212         int pN;
1213         u32 lines_occup;
1214         u32 lines_freed;
1215 };
1216
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218                                      struct pbf_pN_buf_regs *regs,
1219                                      u32 poll_count)
1220 {
1221         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222         u32 cur_cnt = poll_count;
1223
1224         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225         crd = crd_start = REG_RD(bp, regs->crd);
1226         init_crd = REG_RD(bp, regs->init_crd);
1227
1228         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1230         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1231
1232         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233                (init_crd - crd_start))) {
1234                 if (cur_cnt--) {
1235                         udelay(FLR_WAIT_INTERVAL);
1236                         crd = REG_RD(bp, regs->crd);
1237                         crd_freed = REG_RD(bp, regs->crd_freed);
1238                 } else {
1239                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240                            regs->pN);
1241                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1242                            regs->pN, crd);
1243                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244                            regs->pN, crd_freed);
1245                         break;
1246                 }
1247         }
1248         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1250 }
1251
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253                                      struct pbf_pN_cmd_regs *regs,
1254                                      u32 poll_count)
1255 {
1256         u32 occup, to_free, freed, freed_start;
1257         u32 cur_cnt = poll_count;
1258
1259         occup = to_free = REG_RD(bp, regs->lines_occup);
1260         freed = freed_start = REG_RD(bp, regs->lines_freed);
1261
1262         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1263         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1264
1265         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266                 if (cur_cnt--) {
1267                         udelay(FLR_WAIT_INTERVAL);
1268                         occup = REG_RD(bp, regs->lines_occup);
1269                         freed = REG_RD(bp, regs->lines_freed);
1270                 } else {
1271                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272                            regs->pN);
1273                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1274                            regs->pN, occup);
1275                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276                            regs->pN, freed);
1277                         break;
1278                 }
1279         }
1280         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1282 }
1283
1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285                                     u32 expected, u32 poll_count)
1286 {
1287         u32 cur_cnt = poll_count;
1288         u32 val;
1289
1290         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291                 udelay(FLR_WAIT_INTERVAL);
1292
1293         return val;
1294 }
1295
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297                                     char *msg, u32 poll_cnt)
1298 {
1299         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300         if (val != 0) {
1301                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1302                 return 1;
1303         }
1304         return 0;
1305 }
1306
1307 /* Common routines with VF FLR cleanup */
1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1309 {
1310         /* adjust polling timeout */
1311         if (CHIP_REV_IS_EMUL(bp))
1312                 return FLR_POLL_CNT * 2000;
1313
1314         if (CHIP_REV_IS_FPGA(bp))
1315                 return FLR_POLL_CNT * 120;
1316
1317         return FLR_POLL_CNT;
1318 }
1319
1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1321 {
1322         struct pbf_pN_cmd_regs cmd_regs[] = {
1323                 {0, (CHIP_IS_E3B0(bp)) ?
1324                         PBF_REG_TQ_OCCUPANCY_Q0 :
1325                         PBF_REG_P0_TQ_OCCUPANCY,
1326                     (CHIP_IS_E3B0(bp)) ?
1327                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1329                 {1, (CHIP_IS_E3B0(bp)) ?
1330                         PBF_REG_TQ_OCCUPANCY_Q1 :
1331                         PBF_REG_P1_TQ_OCCUPANCY,
1332                     (CHIP_IS_E3B0(bp)) ?
1333                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1335                 {4, (CHIP_IS_E3B0(bp)) ?
1336                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1337                         PBF_REG_P4_TQ_OCCUPANCY,
1338                     (CHIP_IS_E3B0(bp)) ?
1339                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1341         };
1342
1343         struct pbf_pN_buf_regs buf_regs[] = {
1344                 {0, (CHIP_IS_E3B0(bp)) ?
1345                         PBF_REG_INIT_CRD_Q0 :
1346                         PBF_REG_P0_INIT_CRD ,
1347                     (CHIP_IS_E3B0(bp)) ?
1348                         PBF_REG_CREDIT_Q0 :
1349                         PBF_REG_P0_CREDIT,
1350                     (CHIP_IS_E3B0(bp)) ?
1351                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353                 {1, (CHIP_IS_E3B0(bp)) ?
1354                         PBF_REG_INIT_CRD_Q1 :
1355                         PBF_REG_P1_INIT_CRD,
1356                     (CHIP_IS_E3B0(bp)) ?
1357                         PBF_REG_CREDIT_Q1 :
1358                         PBF_REG_P1_CREDIT,
1359                     (CHIP_IS_E3B0(bp)) ?
1360                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362                 {4, (CHIP_IS_E3B0(bp)) ?
1363                         PBF_REG_INIT_CRD_LB_Q :
1364                         PBF_REG_P4_INIT_CRD,
1365                     (CHIP_IS_E3B0(bp)) ?
1366                         PBF_REG_CREDIT_LB_Q :
1367                         PBF_REG_P4_CREDIT,
1368                     (CHIP_IS_E3B0(bp)) ?
1369                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1371         };
1372
1373         int i;
1374
1375         /* Verify the command queues are flushed P0, P1, P4 */
1376         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1378
1379         /* Verify the transmission buffers are flushed P0, P1, P4 */
1380         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1382 }
1383
1384 #define OP_GEN_PARAM(param) \
1385         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1386
1387 #define OP_GEN_TYPE(type) \
1388         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1389
1390 #define OP_GEN_AGG_VECT(index) \
1391         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1392
1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1394 {
1395         u32 op_gen_command = 0;
1396         u32 comp_addr = BAR_CSTRORM_INTMEM +
1397                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398         int ret = 0;
1399
1400         if (REG_RD(bp, comp_addr)) {
1401                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1402                 return 1;
1403         }
1404
1405         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1406         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1407         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1408         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1409
1410         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1411         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1412
1413         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1414                 BNX2X_ERR("FW final cleanup did not succeed\n");
1415                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1416                    (REG_RD(bp, comp_addr)));
1417                 bnx2x_panic();
1418                 return 1;
1419         }
1420         /* Zero completion for next FLR */
1421         REG_WR(bp, comp_addr, 0);
1422
1423         return ret;
1424 }
1425
1426 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1427 {
1428         u16 status;
1429
1430         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1431         return status & PCI_EXP_DEVSTA_TRPND;
1432 }
1433
1434 /* PF FLR specific routines
1435 */
1436 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1437 {
1438         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1439         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1441                         "CFC PF usage counter timed out",
1442                         poll_cnt))
1443                 return 1;
1444
1445         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1446         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447                         DORQ_REG_PF_USAGE_CNT,
1448                         "DQ PF usage counter timed out",
1449                         poll_cnt))
1450                 return 1;
1451
1452         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1453         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1455                         "QM PF usage counter timed out",
1456                         poll_cnt))
1457                 return 1;
1458
1459         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1460         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1462                         "Timers VNIC usage counter timed out",
1463                         poll_cnt))
1464                 return 1;
1465         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1467                         "Timers NUM_SCANS usage counter timed out",
1468                         poll_cnt))
1469                 return 1;
1470
1471         /* Wait DMAE PF usage counter to zero */
1472         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1473                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1474                         "DMAE command register timed out",
1475                         poll_cnt))
1476                 return 1;
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1482 {
1483         u32 val;
1484
1485         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1486         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1487
1488         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1489         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1490
1491         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1492         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1493
1494         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1495         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1496
1497         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1498         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1499
1500         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1501         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1502
1503         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1504         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1505
1506         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1507         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1508            val);
1509 }
1510
1511 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1512 {
1513         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1514
1515         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1516
1517         /* Re-enable PF target read access */
1518         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1519
1520         /* Poll HW usage counters */
1521         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1522         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1523                 return -EBUSY;
1524
1525         /* Zero the igu 'trailing edge' and 'leading edge' */
1526
1527         /* Send the FW cleanup command */
1528         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1529                 return -EBUSY;
1530
1531         /* ATC cleanup */
1532
1533         /* Verify TX hw is flushed */
1534         bnx2x_tx_hw_flushed(bp, poll_cnt);
1535
1536         /* Wait 100ms (not adjusted according to platform) */
1537         msleep(100);
1538
1539         /* Verify no pending pci transactions */
1540         if (bnx2x_is_pcie_pending(bp->pdev))
1541                 BNX2X_ERR("PCIE Transactions still pending\n");
1542
1543         /* Debug */
1544         bnx2x_hw_enable_status(bp);
1545
1546         /*
1547          * Master enable - Due to WB DMAE writes performed before this
1548          * register is re-initialized as part of the regular function init
1549          */
1550         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1551
1552         return 0;
1553 }
1554
1555 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1556 {
1557         int port = BP_PORT(bp);
1558         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1559         u32 val = REG_RD(bp, addr);
1560         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1561         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1562         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1563
1564         if (msix) {
1565                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1566                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1567                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569                 if (single_msix)
1570                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1571         } else if (msi) {
1572                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1573                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1575                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576         } else {
1577                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1578                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1580                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1581
1582                 if (!CHIP_IS_E1(bp)) {
1583                         DP(NETIF_MSG_IFUP,
1584                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1585
1586                         REG_WR(bp, addr, val);
1587
1588                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1589                 }
1590         }
1591
1592         if (CHIP_IS_E1(bp))
1593                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1594
1595         DP(NETIF_MSG_IFUP,
1596            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1597            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1598
1599         REG_WR(bp, addr, val);
1600         /*
1601          * Ensure that HC_CONFIG is written before leading/trailing edge config
1602          */
1603         barrier();
1604
1605         if (!CHIP_IS_E1(bp)) {
1606                 /* init leading/trailing edge */
1607                 if (IS_MF(bp)) {
1608                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1609                         if (bp->port.pmf)
1610                                 /* enable nig and gpio3 attention */
1611                                 val |= 0x1100;
1612                 } else
1613                         val = 0xffff;
1614
1615                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1616                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1617         }
1618 }
1619
1620 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1621 {
1622         u32 val;
1623         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1624         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1625         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1626
1627         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1628
1629         if (msix) {
1630                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1631                          IGU_PF_CONF_SINGLE_ISR_EN);
1632                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1633                         IGU_PF_CONF_ATTN_BIT_EN);
1634
1635                 if (single_msix)
1636                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1637         } else if (msi) {
1638                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1639                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1640                         IGU_PF_CONF_ATTN_BIT_EN |
1641                         IGU_PF_CONF_SINGLE_ISR_EN);
1642         } else {
1643                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1644                 val |= (IGU_PF_CONF_INT_LINE_EN |
1645                         IGU_PF_CONF_ATTN_BIT_EN |
1646                         IGU_PF_CONF_SINGLE_ISR_EN);
1647         }
1648
1649         /* Clean previous status - need to configure igu prior to ack*/
1650         if ((!msix) || single_msix) {
1651                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1652                 bnx2x_ack_int(bp);
1653         }
1654
1655         val |= IGU_PF_CONF_FUNC_EN;
1656
1657         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1658            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1659
1660         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1661
1662         if (val & IGU_PF_CONF_INT_LINE_EN)
1663                 pci_intx(bp->pdev, true);
1664
1665         barrier();
1666
1667         /* init leading/trailing edge */
1668         if (IS_MF(bp)) {
1669                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1670                 if (bp->port.pmf)
1671                         /* enable nig and gpio3 attention */
1672                         val |= 0x1100;
1673         } else
1674                 val = 0xffff;
1675
1676         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1677         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1678 }
1679
1680 void bnx2x_int_enable(struct bnx2x *bp)
1681 {
1682         if (bp->common.int_block == INT_BLOCK_HC)
1683                 bnx2x_hc_int_enable(bp);
1684         else
1685                 bnx2x_igu_int_enable(bp);
1686 }
1687
1688 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1689 {
1690         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691         int i, offset;
1692
1693         if (disable_hw)
1694                 /* prevent the HW from sending interrupts */
1695                 bnx2x_int_disable(bp);
1696
1697         /* make sure all ISRs are done */
1698         if (msix) {
1699                 synchronize_irq(bp->msix_table[0].vector);
1700                 offset = 1;
1701                 if (CNIC_SUPPORT(bp))
1702                         offset++;
1703                 for_each_eth_queue(bp, i)
1704                         synchronize_irq(bp->msix_table[offset++].vector);
1705         } else
1706                 synchronize_irq(bp->pdev->irq);
1707
1708         /* make sure sp_task is not running */
1709         cancel_delayed_work(&bp->sp_task);
1710         cancel_delayed_work(&bp->period_task);
1711         flush_workqueue(bnx2x_wq);
1712 }
1713
1714 /* fast path */
1715
1716 /*
1717  * General service functions
1718  */
1719
1720 /* Return true if succeeded to acquire the lock */
1721 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1722 {
1723         u32 lock_status;
1724         u32 resource_bit = (1 << resource);
1725         int func = BP_FUNC(bp);
1726         u32 hw_lock_control_reg;
1727
1728         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729            "Trying to take a lock on resource %d\n", resource);
1730
1731         /* Validating that the resource is within range */
1732         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736                 return false;
1737         }
1738
1739         if (func <= 5)
1740                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741         else
1742                 hw_lock_control_reg =
1743                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1744
1745         /* Try to acquire the lock */
1746         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747         lock_status = REG_RD(bp, hw_lock_control_reg);
1748         if (lock_status & resource_bit)
1749                 return true;
1750
1751         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752            "Failed to get a lock on resource %d\n", resource);
1753         return false;
1754 }
1755
1756 /**
1757  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1758  *
1759  * @bp: driver handle
1760  *
1761  * Returns the recovery leader resource id according to the engine this function
1762  * belongs to. Currently only only 2 engines is supported.
1763  */
1764 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1765 {
1766         if (BP_PATH(bp))
1767                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768         else
1769                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1770 }
1771
1772 /**
1773  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1774  *
1775  * @bp: driver handle
1776  *
1777  * Tries to acquire a leader lock for current engine.
1778  */
1779 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1780 {
1781         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1782 }
1783
1784 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1785
1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1788 {
1789         /* Set the interrupt occurred bit for the sp-task to recognize it
1790          * must ack the interrupt and transition according to the IGU
1791          * state machine.
1792          */
1793         atomic_set(&bp->interrupt_occurred, 1);
1794
1795         /* The sp_task must execute only after this bit
1796          * is set, otherwise we will get out of sync and miss all
1797          * further interrupts. Hence, the barrier.
1798          */
1799         smp_wmb();
1800
1801         /* schedule sp_task to workqueue */
1802         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1803 }
1804
1805 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1806 {
1807         struct bnx2x *bp = fp->bp;
1808         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1812
1813         DP(BNX2X_MSG_SP,
1814            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1815            fp->index, cid, command, bp->state,
1816            rr_cqe->ramrod_cqe.ramrod_type);
1817
1818         /* If cid is within VF range, replace the slowpath object with the
1819          * one corresponding to this VF
1820          */
1821         if (cid >= BNX2X_FIRST_VF_CID  &&
1822             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1824
1825         switch (command) {
1826         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1829                 break;
1830
1831         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833                 drv_cmd = BNX2X_Q_CMD_SETUP;
1834                 break;
1835
1836         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839                 break;
1840
1841         case (RAMROD_CMD_ID_ETH_HALT):
1842                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843                 drv_cmd = BNX2X_Q_CMD_HALT;
1844                 break;
1845
1846         case (RAMROD_CMD_ID_ETH_TERMINATE):
1847                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849                 break;
1850
1851         case (RAMROD_CMD_ID_ETH_EMPTY):
1852                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1854                 break;
1855
1856         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859                 break;
1860
1861         default:
1862                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863                           command, fp->index);
1864                 return;
1865         }
1866
1867         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869                 /* q_obj->complete_cmd() failure means that this was
1870                  * an unexpected completion.
1871                  *
1872                  * In this case we don't want to increase the bp->spq_left
1873                  * because apparently we haven't sent this command the first
1874                  * place.
1875                  */
1876 #ifdef BNX2X_STOP_ON_ERROR
1877                 bnx2x_panic();
1878 #else
1879                 return;
1880 #endif
1881
1882         smp_mb__before_atomic();
1883         atomic_inc(&bp->cq_spq_left);
1884         /* push the change in bp->spq_left and towards the memory */
1885         smp_mb__after_atomic();
1886
1887         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1888
1889         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891                 /* if Q update ramrod is completed for last Q in AFEX vif set
1892                  * flow, then ACK MCP at the end
1893                  *
1894                  * mark pending ACK to MCP bit.
1895                  * prevent case that both bits are cleared.
1896                  * At the end of load/unload driver checks that
1897                  * sp_state is cleared, and this order prevents
1898                  * races
1899                  */
1900                 smp_mb__before_atomic();
1901                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902                 wmb();
1903                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904                 smp_mb__after_atomic();
1905
1906                 /* schedule the sp task as mcp ack is required */
1907                 bnx2x_schedule_sp_task(bp);
1908         }
1909
1910         return;
1911 }
1912
1913 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1914 {
1915         struct bnx2x *bp = netdev_priv(dev_instance);
1916         u16 status = bnx2x_ack_int(bp);
1917         u16 mask;
1918         int i;
1919         u8 cos;
1920
1921         /* Return here if interrupt is shared and it's not for us */
1922         if (unlikely(status == 0)) {
1923                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924                 return IRQ_NONE;
1925         }
1926         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1927
1928 #ifdef BNX2X_STOP_ON_ERROR
1929         if (unlikely(bp->panic))
1930                 return IRQ_HANDLED;
1931 #endif
1932
1933         for_each_eth_queue(bp, i) {
1934                 struct bnx2x_fastpath *fp = &bp->fp[i];
1935
1936                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937                 if (status & mask) {
1938                         /* Handle Rx or Tx according to SB id */
1939                         for_each_cos_in_tx_queue(fp, cos)
1940                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1942                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943                         status &= ~mask;
1944                 }
1945         }
1946
1947         if (CNIC_SUPPORT(bp)) {
1948                 mask = 0x2;
1949                 if (status & (mask | 0x1)) {
1950                         struct cnic_ops *c_ops = NULL;
1951
1952                         rcu_read_lock();
1953                         c_ops = rcu_dereference(bp->cnic_ops);
1954                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1955                                       CNIC_DRV_STATE_HANDLES_IRQ))
1956                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1957                         rcu_read_unlock();
1958
1959                         status &= ~mask;
1960                 }
1961         }
1962
1963         if (unlikely(status & 0x1)) {
1964
1965                 /* schedule sp task to perform default status block work, ack
1966                  * attentions and enable interrupts.
1967                  */
1968                 bnx2x_schedule_sp_task(bp);
1969
1970                 status &= ~0x1;
1971                 if (!status)
1972                         return IRQ_HANDLED;
1973         }
1974
1975         if (unlikely(status))
1976                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977                    status);
1978
1979         return IRQ_HANDLED;
1980 }
1981
1982 /* Link */
1983
1984 /*
1985  * General service functions
1986  */
1987
1988 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1989 {
1990         u32 lock_status;
1991         u32 resource_bit = (1 << resource);
1992         int func = BP_FUNC(bp);
1993         u32 hw_lock_control_reg;
1994         int cnt;
1995
1996         /* Validating that the resource is within range */
1997         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000                 return -EINVAL;
2001         }
2002
2003         if (func <= 5) {
2004                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005         } else {
2006                 hw_lock_control_reg =
2007                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2008         }
2009
2010         /* Validating that the resource is not already taken */
2011         lock_status = REG_RD(bp, hw_lock_control_reg);
2012         if (lock_status & resource_bit) {
2013                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2014                    lock_status, resource_bit);
2015                 return -EEXIST;
2016         }
2017
2018         /* Try for 5 second every 5ms */
2019         for (cnt = 0; cnt < 1000; cnt++) {
2020                 /* Try to acquire the lock */
2021                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022                 lock_status = REG_RD(bp, hw_lock_control_reg);
2023                 if (lock_status & resource_bit)
2024                         return 0;
2025
2026                 usleep_range(5000, 10000);
2027         }
2028         BNX2X_ERR("Timeout\n");
2029         return -EAGAIN;
2030 }
2031
2032 int bnx2x_release_leader_lock(struct bnx2x *bp)
2033 {
2034         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2035 }
2036
2037 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2038 {
2039         u32 lock_status;
2040         u32 resource_bit = (1 << resource);
2041         int func = BP_FUNC(bp);
2042         u32 hw_lock_control_reg;
2043
2044         /* Validating that the resource is within range */
2045         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048                 return -EINVAL;
2049         }
2050
2051         if (func <= 5) {
2052                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053         } else {
2054                 hw_lock_control_reg =
2055                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2056         }
2057
2058         /* Validating that the resource is currently taken */
2059         lock_status = REG_RD(bp, hw_lock_control_reg);
2060         if (!(lock_status & resource_bit)) {
2061                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062                           lock_status, resource_bit);
2063                 return -EFAULT;
2064         }
2065
2066         REG_WR(bp, hw_lock_control_reg, resource_bit);
2067         return 0;
2068 }
2069
2070 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2071 {
2072         /* The GPIO should be swapped if swap register is set and active */
2073         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075         int gpio_shift = gpio_num +
2076                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077         u32 gpio_mask = (1 << gpio_shift);
2078         u32 gpio_reg;
2079         int value;
2080
2081         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083                 return -EINVAL;
2084         }
2085
2086         /* read GPIO value */
2087         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2088
2089         /* get the requested pin value */
2090         if ((gpio_reg & gpio_mask) == gpio_mask)
2091                 value = 1;
2092         else
2093                 value = 0;
2094
2095         return value;
2096 }
2097
2098 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2099 {
2100         /* The GPIO should be swapped if swap register is set and active */
2101         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103         int gpio_shift = gpio_num +
2104                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105         u32 gpio_mask = (1 << gpio_shift);
2106         u32 gpio_reg;
2107
2108         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110                 return -EINVAL;
2111         }
2112
2113         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114         /* read GPIO and mask except the float bits */
2115         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2116
2117         switch (mode) {
2118         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119                 DP(NETIF_MSG_LINK,
2120                    "Set GPIO %d (shift %d) -> output low\n",
2121                    gpio_num, gpio_shift);
2122                 /* clear FLOAT and set CLR */
2123                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125                 break;
2126
2127         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128                 DP(NETIF_MSG_LINK,
2129                    "Set GPIO %d (shift %d) -> output high\n",
2130                    gpio_num, gpio_shift);
2131                 /* clear FLOAT and set SET */
2132                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134                 break;
2135
2136         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137                 DP(NETIF_MSG_LINK,
2138                    "Set GPIO %d (shift %d) -> input\n",
2139                    gpio_num, gpio_shift);
2140                 /* set FLOAT */
2141                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142                 break;
2143
2144         default:
2145                 break;
2146         }
2147
2148         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150
2151         return 0;
2152 }
2153
2154 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2155 {
2156         u32 gpio_reg = 0;
2157         int rc = 0;
2158
2159         /* Any port swapping should be handled by caller. */
2160
2161         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162         /* read GPIO and mask except the float bits */
2163         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2167
2168         switch (mode) {
2169         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171                 /* set CLR */
2172                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173                 break;
2174
2175         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177                 /* set SET */
2178                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179                 break;
2180
2181         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183                 /* set FLOAT */
2184                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185                 break;
2186
2187         default:
2188                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189                 rc = -EINVAL;
2190                 break;
2191         }
2192
2193         if (rc == 0)
2194                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2195
2196         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2197
2198         return rc;
2199 }
2200
2201 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2202 {
2203         /* The GPIO should be swapped if swap register is set and active */
2204         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206         int gpio_shift = gpio_num +
2207                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208         u32 gpio_mask = (1 << gpio_shift);
2209         u32 gpio_reg;
2210
2211         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213                 return -EINVAL;
2214         }
2215
2216         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217         /* read GPIO int */
2218         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2219
2220         switch (mode) {
2221         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222                 DP(NETIF_MSG_LINK,
2223                    "Clear GPIO INT %d (shift %d) -> output low\n",
2224                    gpio_num, gpio_shift);
2225                 /* clear SET and set CLR */
2226                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228                 break;
2229
2230         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231                 DP(NETIF_MSG_LINK,
2232                    "Set GPIO INT %d (shift %d) -> output high\n",
2233                    gpio_num, gpio_shift);
2234                 /* clear CLR and set SET */
2235                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237                 break;
2238
2239         default:
2240                 break;
2241         }
2242
2243         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2245
2246         return 0;
2247 }
2248
2249 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2250 {
2251         u32 spio_reg;
2252
2253         /* Only 2 SPIOs are configurable */
2254         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256                 return -EINVAL;
2257         }
2258
2259         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260         /* read SPIO and mask except the float bits */
2261         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2262
2263         switch (mode) {
2264         case MISC_SPIO_OUTPUT_LOW:
2265                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266                 /* clear FLOAT and set CLR */
2267                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2269                 break;
2270
2271         case MISC_SPIO_OUTPUT_HIGH:
2272                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273                 /* clear FLOAT and set SET */
2274                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2276                 break;
2277
2278         case MISC_SPIO_INPUT_HI_Z:
2279                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280                 /* set FLOAT */
2281                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282                 break;
2283
2284         default:
2285                 break;
2286         }
2287
2288         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2290
2291         return 0;
2292 }
2293
2294 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2295 {
2296         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2297
2298         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299                                            ADVERTISED_Pause);
2300         switch (bp->link_vars.ieee_fc &
2301                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304                                                   ADVERTISED_Pause);
2305                 break;
2306
2307         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309                 break;
2310
2311         default:
2312                 break;
2313         }
2314 }
2315
2316 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2317 {
2318         /* Initialize link parameters structure variables
2319          * It is recommended to turn off RX FC for jumbo frames
2320          *  for better performance
2321          */
2322         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324         else
2325                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2326 }
2327
2328 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2329 {
2330         u32 pause_enabled = 0;
2331
2332         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334                         pause_enabled = 1;
2335
2336                 REG_WR(bp, BAR_USTRORM_INTMEM +
2337                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338                        pause_enabled);
2339         }
2340
2341         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342            pause_enabled ? "enabled" : "disabled");
2343 }
2344
2345 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2346 {
2347         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2349
2350         if (!BP_NOMCP(bp)) {
2351                 bnx2x_set_requested_fc(bp);
2352                 bnx2x_acquire_phy_lock(bp);
2353
2354                 if (load_mode == LOAD_DIAG) {
2355                         struct link_params *lp = &bp->link_params;
2356                         lp->loopback_mode = LOOPBACK_XGXS;
2357                         /* Prefer doing PHY loopback at highest speed */
2358                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359                                 if (lp->speed_cap_mask[cfx_idx] &
2360                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361                                         lp->req_line_speed[cfx_idx] =
2362                                         SPEED_20000;
2363                                 else if (lp->speed_cap_mask[cfx_idx] &
2364                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365                                                 lp->req_line_speed[cfx_idx] =
2366                                                 SPEED_10000;
2367                                 else
2368                                         lp->req_line_speed[cfx_idx] =
2369                                         SPEED_1000;
2370                         }
2371                 }
2372
2373                 if (load_mode == LOAD_LOOPBACK_EXT) {
2374                         struct link_params *lp = &bp->link_params;
2375                         lp->loopback_mode = LOOPBACK_EXT;
2376                 }
2377
2378                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2379
2380                 bnx2x_release_phy_lock(bp);
2381
2382                 bnx2x_init_dropless_fc(bp);
2383
2384                 bnx2x_calc_fc_adv(bp);
2385
2386                 if (bp->link_vars.link_up) {
2387                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388                         bnx2x_link_report(bp);
2389                 }
2390                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392                 return rc;
2393         }
2394         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395         return -EINVAL;
2396 }
2397
2398 void bnx2x_link_set(struct bnx2x *bp)
2399 {
2400         if (!BP_NOMCP(bp)) {
2401                 bnx2x_acquire_phy_lock(bp);
2402                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403                 bnx2x_release_phy_lock(bp);
2404
2405                 bnx2x_init_dropless_fc(bp);
2406
2407                 bnx2x_calc_fc_adv(bp);
2408         } else
2409                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2410 }
2411
2412 static void bnx2x__link_reset(struct bnx2x *bp)
2413 {
2414         if (!BP_NOMCP(bp)) {
2415                 bnx2x_acquire_phy_lock(bp);
2416                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417                 bnx2x_release_phy_lock(bp);
2418         } else
2419                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2420 }
2421
2422 void bnx2x_force_link_reset(struct bnx2x *bp)
2423 {
2424         bnx2x_acquire_phy_lock(bp);
2425         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426         bnx2x_release_phy_lock(bp);
2427 }
2428
2429 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2430 {
2431         u8 rc = 0;
2432
2433         if (!BP_NOMCP(bp)) {
2434                 bnx2x_acquire_phy_lock(bp);
2435                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436                                      is_serdes);
2437                 bnx2x_release_phy_lock(bp);
2438         } else
2439                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2440
2441         return rc;
2442 }
2443
2444 /* Calculates the sum of vn_min_rates.
2445    It's needed for further normalizing of the min_rates.
2446    Returns:
2447      sum of vn_min_rates.
2448        or
2449      0 - if all the min_rates are 0.
2450      In the later case fairness algorithm should be deactivated.
2451      If not all min_rates are zero then those that are zeroes will be set to 1.
2452  */
2453 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454                                       struct cmng_init_input *input)
2455 {
2456         int all_zero = 1;
2457         int vn;
2458
2459         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460                 u32 vn_cfg = bp->mf_config[vn];
2461                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2463
2464                 /* Skip hidden vns */
2465                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466                         vn_min_rate = 0;
2467                 /* If min rate is zero - set it to 1 */
2468                 else if (!vn_min_rate)
2469                         vn_min_rate = DEF_MIN_RATE;
2470                 else
2471                         all_zero = 0;
2472
2473                 input->vnic_min_rate[vn] = vn_min_rate;
2474         }
2475
2476         /* if ETS or all min rates are zeros - disable fairness */
2477         if (BNX2X_IS_ETS_ENABLED(bp)) {
2478                 input->flags.cmng_enables &=
2479                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481         } else if (all_zero) {
2482                 input->flags.cmng_enables &=
2483                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484                 DP(NETIF_MSG_IFUP,
2485                    "All MIN values are zeroes fairness will be disabled\n");
2486         } else
2487                 input->flags.cmng_enables |=
2488                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489 }
2490
2491 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492                                     struct cmng_init_input *input)
2493 {
2494         u16 vn_max_rate;
2495         u32 vn_cfg = bp->mf_config[vn];
2496
2497         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498                 vn_max_rate = 0;
2499         else {
2500                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2501
2502                 if (IS_MF_PERCENT_BW(bp)) {
2503                         /* maxCfg in percents of linkspeed */
2504                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505                 } else /* SD modes */
2506                         /* maxCfg is absolute in 100Mb units */
2507                         vn_max_rate = maxCfg * 100;
2508         }
2509
2510         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2511
2512         input->vnic_max_rate[vn] = vn_max_rate;
2513 }
2514
2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2516 {
2517         if (CHIP_REV_IS_SLOW(bp))
2518                 return CMNG_FNS_NONE;
2519         if (IS_MF(bp))
2520                 return CMNG_FNS_MINMAX;
2521
2522         return CMNG_FNS_NONE;
2523 }
2524
2525 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2526 {
2527         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2528
2529         if (BP_NOMCP(bp))
2530                 return; /* what should be the default value in this case */
2531
2532         /* For 2 port configuration the absolute function number formula
2533          * is:
2534          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2535          *
2536          *      and there are 4 functions per port
2537          *
2538          * For 4 port configuration it is
2539          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2540          *
2541          *      and there are 2 functions per port
2542          */
2543         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2545
2546                 if (func >= E1H_FUNC_MAX)
2547                         break;
2548
2549                 bp->mf_config[vn] =
2550                         MF_CFG_RD(bp, func_mf_config[func].config);
2551         }
2552         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554                 bp->flags |= MF_FUNC_DIS;
2555         } else {
2556                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557                 bp->flags &= ~MF_FUNC_DIS;
2558         }
2559 }
2560
2561 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2562 {
2563         struct cmng_init_input input;
2564         memset(&input, 0, sizeof(struct cmng_init_input));
2565
2566         input.port_rate = bp->link_vars.line_speed;
2567
2568         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569                 int vn;
2570
2571                 /* read mf conf from shmem */
2572                 if (read_cfg)
2573                         bnx2x_read_mf_cfg(bp);
2574
2575                 /* vn_weight_sum and enable fairness if not 0 */
2576                 bnx2x_calc_vn_min(bp, &input);
2577
2578                 /* calculate and set min-max rate for each vn */
2579                 if (bp->port.pmf)
2580                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581                                 bnx2x_calc_vn_max(bp, vn, &input);
2582
2583                 /* always enable rate shaping and fairness */
2584                 input.flags.cmng_enables |=
2585                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2586
2587                 bnx2x_init_cmng(&input, &bp->cmng);
2588                 return;
2589         }
2590
2591         /* rate shaping and fairness are disabled */
2592         DP(NETIF_MSG_IFUP,
2593            "rate shaping and fairness are disabled\n");
2594 }
2595
2596 static void storm_memset_cmng(struct bnx2x *bp,
2597                               struct cmng_init *cmng,
2598                               u8 port)
2599 {
2600         int vn;
2601         size_t size = sizeof(struct cmng_struct_per_port);
2602
2603         u32 addr = BAR_XSTRORM_INTMEM +
2604                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2605
2606         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2607
2608         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609                 int func = func_by_vn(bp, vn);
2610
2611                 addr = BAR_XSTRORM_INTMEM +
2612                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613                 size = sizeof(struct rate_shaping_vars_per_vn);
2614                 __storm_memset_struct(bp, addr, size,
2615                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2616
2617                 addr = BAR_XSTRORM_INTMEM +
2618                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619                 size = sizeof(struct fairness_vars_per_vn);
2620                 __storm_memset_struct(bp, addr, size,
2621                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2622         }
2623 }
2624
2625 /* init cmng mode in HW according to local configuration */
2626 void bnx2x_set_local_cmng(struct bnx2x *bp)
2627 {
2628         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2629
2630         if (cmng_fns != CMNG_FNS_NONE) {
2631                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633         } else {
2634                 /* rate shaping and fairness are disabled */
2635                 DP(NETIF_MSG_IFUP,
2636                    "single function mode without fairness\n");
2637         }
2638 }
2639
2640 /* This function is called upon link interrupt */
2641 static void bnx2x_link_attn(struct bnx2x *bp)
2642 {
2643         /* Make sure that we are synced with the current statistics */
2644         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2645
2646         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2647
2648         bnx2x_init_dropless_fc(bp);
2649
2650         if (bp->link_vars.link_up) {
2651
2652                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653                         struct host_port_stats *pstats;
2654
2655                         pstats = bnx2x_sp(bp, port_stats);
2656                         /* reset old mac stats */
2657                         memset(&(pstats->mac_stx[0]), 0,
2658                                sizeof(struct mac_stx));
2659                 }
2660                 if (bp->state == BNX2X_STATE_OPEN)
2661                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2662         }
2663
2664         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665                 bnx2x_set_local_cmng(bp);
2666
2667         __bnx2x_link_report(bp);
2668
2669         if (IS_MF(bp))
2670                 bnx2x_link_sync_notify(bp);
2671 }
2672
2673 void bnx2x__link_status_update(struct bnx2x *bp)
2674 {
2675         if (bp->state != BNX2X_STATE_OPEN)
2676                 return;
2677
2678         /* read updated dcb configuration */
2679         if (IS_PF(bp)) {
2680                 bnx2x_dcbx_pmf_update(bp);
2681                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682                 if (bp->link_vars.link_up)
2683                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684                 else
2685                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686                         /* indicate link status */
2687                 bnx2x_link_report(bp);
2688
2689         } else { /* VF */
2690                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691                                           SUPPORTED_10baseT_Full |
2692                                           SUPPORTED_100baseT_Half |
2693                                           SUPPORTED_100baseT_Full |
2694                                           SUPPORTED_1000baseT_Full |
2695                                           SUPPORTED_2500baseX_Full |
2696                                           SUPPORTED_10000baseT_Full |
2697                                           SUPPORTED_TP |
2698                                           SUPPORTED_FIBRE |
2699                                           SUPPORTED_Autoneg |
2700                                           SUPPORTED_Pause |
2701                                           SUPPORTED_Asym_Pause);
2702                 bp->port.advertising[0] = bp->port.supported[0];
2703
2704                 bp->link_params.bp = bp;
2705                 bp->link_params.port = BP_PORT(bp);
2706                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708                 bp->link_params.req_line_speed[0] = SPEED_10000;
2709                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712                 bp->link_vars.line_speed = SPEED_10000;
2713                 bp->link_vars.link_status =
2714                         (LINK_STATUS_LINK_UP |
2715                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716                 bp->link_vars.link_up = 1;
2717                 bp->link_vars.duplex = DUPLEX_FULL;
2718                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719                 __bnx2x_link_report(bp);
2720
2721                 bnx2x_sample_bulletin(bp);
2722
2723                 /* if bulletin board did not have an update for link status
2724                  * __bnx2x_link_report will report current status
2725                  * but it will NOT duplicate report in case of already reported
2726                  * during sampling bulletin board.
2727                  */
2728                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2729         }
2730 }
2731
2732 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733                                   u16 vlan_val, u8 allowed_prio)
2734 {
2735         struct bnx2x_func_state_params func_params = {NULL};
2736         struct bnx2x_func_afex_update_params *f_update_params =
2737                 &func_params.params.afex_update;
2738
2739         func_params.f_obj = &bp->func_obj;
2740         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2741
2742         /* no need to wait for RAMROD completion, so don't
2743          * set RAMROD_COMP_WAIT flag
2744          */
2745
2746         f_update_params->vif_id = vifid;
2747         f_update_params->afex_default_vlan = vlan_val;
2748         f_update_params->allowed_priorities = allowed_prio;
2749
2750         /* if ramrod can not be sent, response to MCP immediately */
2751         if (bnx2x_func_state_change(bp, &func_params) < 0)
2752                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2753
2754         return 0;
2755 }
2756
2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758                                           u16 vif_index, u8 func_bit_map)
2759 {
2760         struct bnx2x_func_state_params func_params = {NULL};
2761         struct bnx2x_func_afex_viflists_params *update_params =
2762                 &func_params.params.afex_viflists;
2763         int rc;
2764         u32 drv_msg_code;
2765
2766         /* validate only LIST_SET and LIST_GET are received from switch */
2767         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769                           cmd_type);
2770
2771         func_params.f_obj = &bp->func_obj;
2772         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2773
2774         /* set parameters according to cmd_type */
2775         update_params->afex_vif_list_command = cmd_type;
2776         update_params->vif_list_index = vif_index;
2777         update_params->func_bit_map =
2778                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779         update_params->func_to_clear = 0;
2780         drv_msg_code =
2781                 (cmd_type == VIF_LIST_RULE_GET) ?
2782                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2784
2785         /* if ramrod can not be sent, respond to MCP immediately for
2786          * SET and GET requests (other are not triggered from MCP)
2787          */
2788         rc = bnx2x_func_state_change(bp, &func_params);
2789         if (rc < 0)
2790                 bnx2x_fw_command(bp, drv_msg_code, 0);
2791
2792         return 0;
2793 }
2794
2795 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2796 {
2797         struct afex_stats afex_stats;
2798         u32 func = BP_ABS_FUNC(bp);
2799         u32 mf_config;
2800         u16 vlan_val;
2801         u32 vlan_prio;
2802         u16 vif_id;
2803         u8 allowed_prio;
2804         u8 vlan_mode;
2805         u32 addr_to_write, vifid, addrs, stats_type, i;
2806
2807         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809                 DP(BNX2X_MSG_MCP,
2810                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2812         }
2813
2814         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817                 DP(BNX2X_MSG_MCP,
2818                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819                    vifid, addrs);
2820                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821                                                addrs);
2822         }
2823
2824         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825                 addr_to_write = SHMEM2_RD(bp,
2826                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827                 stats_type = SHMEM2_RD(bp,
2828                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2829
2830                 DP(BNX2X_MSG_MCP,
2831                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832                    addr_to_write);
2833
2834                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2835
2836                 /* write response to scratchpad, for MCP */
2837                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2839                                *(((u32 *)(&afex_stats))+i));
2840
2841                 /* send ack message to MCP */
2842                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2843         }
2844
2845         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847                 bp->mf_config[BP_VN(bp)] = mf_config;
2848                 DP(BNX2X_MSG_MCP,
2849                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850                    mf_config);
2851
2852                 /* if VIF_SET is "enabled" */
2853                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854                         /* set rate limit directly to internal RAM */
2855                         struct cmng_init_input cmng_input;
2856                         struct rate_shaping_vars_per_vn m_rs_vn;
2857                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858                         u32 addr = BAR_XSTRORM_INTMEM +
2859                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2860
2861                         bp->mf_config[BP_VN(bp)] = mf_config;
2862
2863                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864                         m_rs_vn.vn_counter.rate =
2865                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2866                         m_rs_vn.vn_counter.quota =
2867                                 (m_rs_vn.vn_counter.rate *
2868                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2869
2870                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2871
2872                         /* read relevant values from mf_cfg struct in shmem */
2873                         vif_id =
2874                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877                         vlan_val =
2878                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881                         vlan_prio = (mf_config &
2882                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885                         vlan_mode =
2886                                 (MF_CFG_RD(bp,
2887                                            func_mf_config[func].afex_config) &
2888                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890                         allowed_prio =
2891                                 (MF_CFG_RD(bp,
2892                                            func_mf_config[func].afex_config) &
2893                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2895
2896                         /* send ramrod to FW, return in case of failure */
2897                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898                                                    allowed_prio))
2899                                 return;
2900
2901                         bp->afex_def_vlan_tag = vlan_val;
2902                         bp->afex_vlan_mode = vlan_mode;
2903                 } else {
2904                         /* notify link down because BP->flags is disabled */
2905                         bnx2x_link_report(bp);
2906
2907                         /* send INVALID VIF ramrod to FW */
2908                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2909
2910                         /* Reset the default afex VLAN */
2911                         bp->afex_def_vlan_tag = -1;
2912                 }
2913         }
2914 }
2915
2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2917 {
2918         struct bnx2x_func_switch_update_params *switch_update_params;
2919         struct bnx2x_func_state_params func_params;
2920
2921         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922         switch_update_params = &func_params.params.switch_update;
2923         func_params.f_obj = &bp->func_obj;
2924         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2925
2926         /* Prepare parameters for function state transitions */
2927         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2928         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2929
2930         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2931                 int func = BP_ABS_FUNC(bp);
2932                 u32 val;
2933
2934                 /* Re-learn the S-tag from shmem */
2935                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2936                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2937                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2938                         bp->mf_ov = val;
2939                 } else {
2940                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2941                         goto fail;
2942                 }
2943
2944                 /* Configure new S-tag in LLH */
2945                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2946                        bp->mf_ov);
2947
2948                 /* Send Ramrod to update FW of change */
2949                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2950                           &switch_update_params->changes);
2951                 switch_update_params->vlan = bp->mf_ov;
2952
2953                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2954                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2955                                   bp->mf_ov);
2956                         goto fail;
2957                 } else {
2958                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2959                            bp->mf_ov);
2960                 }
2961         } else {
2962                 goto fail;
2963         }
2964
2965         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2966         return;
2967 fail:
2968         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2969 }
2970
2971 static void bnx2x_pmf_update(struct bnx2x *bp)
2972 {
2973         int port = BP_PORT(bp);
2974         u32 val;
2975
2976         bp->port.pmf = 1;
2977         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2978
2979         /*
2980          * We need the mb() to ensure the ordering between the writing to
2981          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2982          */
2983         smp_mb();
2984
2985         /* queue a periodic task */
2986         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2987
2988         bnx2x_dcbx_pmf_update(bp);
2989
2990         /* enable nig attention */
2991         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2992         if (bp->common.int_block == INT_BLOCK_HC) {
2993                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2994                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2995         } else if (!CHIP_IS_E1x(bp)) {
2996                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2997                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2998         }
2999
3000         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3001 }
3002
3003 /* end of Link */
3004
3005 /* slow path */
3006
3007 /*
3008  * General service functions
3009  */
3010
3011 /* send the MCP a request, block until there is a reply */
3012 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3013 {
3014         int mb_idx = BP_FW_MB_IDX(bp);
3015         u32 seq;
3016         u32 rc = 0;
3017         u32 cnt = 1;
3018         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3019
3020         mutex_lock(&bp->fw_mb_mutex);
3021         seq = ++bp->fw_seq;
3022         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3023         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3024
3025         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3026                         (command | seq), param);
3027
3028         do {
3029                 /* let the FW do it's magic ... */
3030                 msleep(delay);
3031
3032                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3033
3034                 /* Give the FW up to 5 second (500*10ms) */
3035         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3036
3037         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3038            cnt*delay, rc, seq);
3039
3040         /* is this a reply to our command? */
3041         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3042                 rc &= FW_MSG_CODE_MASK;
3043         else {
3044                 /* FW BUG! */
3045                 BNX2X_ERR("FW failed to respond!\n");
3046                 bnx2x_fw_dump(bp);
3047                 rc = 0;
3048         }
3049         mutex_unlock(&bp->fw_mb_mutex);
3050
3051         return rc;
3052 }
3053
3054 static void storm_memset_func_cfg(struct bnx2x *bp,
3055                                  struct tstorm_eth_function_common_config *tcfg,
3056                                  u16 abs_fid)
3057 {
3058         size_t size = sizeof(struct tstorm_eth_function_common_config);
3059
3060         u32 addr = BAR_TSTRORM_INTMEM +
3061                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3062
3063         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3064 }
3065
3066 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3067 {
3068         if (CHIP_IS_E1x(bp)) {
3069                 struct tstorm_eth_function_common_config tcfg = {0};
3070
3071                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3072         }
3073
3074         /* Enable the function in the FW */
3075         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3076         storm_memset_func_en(bp, p->func_id, 1);
3077
3078         /* spq */
3079         if (p->spq_active) {
3080                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3081                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3082                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3083         }
3084 }
3085
3086 /**
3087  * bnx2x_get_common_flags - Return common flags
3088  *
3089  * @bp:         device handle
3090  * @fp:         queue handle
3091  * @zero_stats: TRUE if statistics zeroing is needed
3092  *
3093  * Return the flags that are common for the Tx-only and not normal connections.
3094  */
3095 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3096                                             struct bnx2x_fastpath *fp,
3097                                             bool zero_stats)
3098 {
3099         unsigned long flags = 0;
3100
3101         /* PF driver will always initialize the Queue to an ACTIVE state */
3102         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3103
3104         /* tx only connections collect statistics (on the same index as the
3105          * parent connection). The statistics are zeroed when the parent
3106          * connection is initialized.
3107          */
3108
3109         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3110         if (zero_stats)
3111                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3112
3113         if (bp->flags & TX_SWITCHING)
3114                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3115
3116         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3117         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3118
3119 #ifdef BNX2X_STOP_ON_ERROR
3120         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3121 #endif
3122
3123         return flags;
3124 }
3125
3126 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3127                                        struct bnx2x_fastpath *fp,
3128                                        bool leading)
3129 {
3130         unsigned long flags = 0;
3131
3132         /* calculate other queue flags */
3133         if (IS_MF_SD(bp))
3134                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3135
3136         if (IS_FCOE_FP(fp)) {
3137                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3138                 /* For FCoE - force usage of default priority (for afex) */
3139                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3140         }
3141
3142         if (fp->mode != TPA_MODE_DISABLED) {
3143                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3144                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3145                 if (fp->mode == TPA_MODE_GRO)
3146                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3147         }
3148
3149         if (leading) {
3150                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3151                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3152         }
3153
3154         /* Always set HW VLAN stripping */
3155         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3156
3157         /* configure silent vlan removal */
3158         if (IS_MF_AFEX(bp))
3159                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3160
3161         return flags | bnx2x_get_common_flags(bp, fp, true);
3162 }
3163
3164 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3165         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3166         u8 cos)
3167 {
3168         gen_init->stat_id = bnx2x_stats_id(fp);
3169         gen_init->spcl_id = fp->cl_id;
3170
3171         /* Always use mini-jumbo MTU for FCoE L2 ring */
3172         if (IS_FCOE_FP(fp))
3173                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3174         else
3175                 gen_init->mtu = bp->dev->mtu;
3176
3177         gen_init->cos = cos;
3178
3179         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3180 }
3181
3182 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3183         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3184         struct bnx2x_rxq_setup_params *rxq_init)
3185 {
3186         u8 max_sge = 0;
3187         u16 sge_sz = 0;
3188         u16 tpa_agg_size = 0;
3189
3190         if (fp->mode != TPA_MODE_DISABLED) {
3191                 pause->sge_th_lo = SGE_TH_LO(bp);
3192                 pause->sge_th_hi = SGE_TH_HI(bp);
3193
3194                 /* validate SGE ring has enough to cross high threshold */
3195                 WARN_ON(bp->dropless_fc &&
3196                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3197                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3198
3199                 tpa_agg_size = TPA_AGG_SIZE;
3200                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3201                         SGE_PAGE_SHIFT;
3202                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3203                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3204                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3205         }
3206
3207         /* pause - not for e1 */
3208         if (!CHIP_IS_E1(bp)) {
3209                 pause->bd_th_lo = BD_TH_LO(bp);
3210                 pause->bd_th_hi = BD_TH_HI(bp);
3211
3212                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3213                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3214                 /*
3215                  * validate that rings have enough entries to cross
3216                  * high thresholds
3217                  */
3218                 WARN_ON(bp->dropless_fc &&
3219                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3220                                 bp->rx_ring_size);
3221                 WARN_ON(bp->dropless_fc &&
3222                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3223                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3224
3225                 pause->pri_map = 1;
3226         }
3227
3228         /* rxq setup */
3229         rxq_init->dscr_map = fp->rx_desc_mapping;
3230         rxq_init->sge_map = fp->rx_sge_mapping;
3231         rxq_init->rcq_map = fp->rx_comp_mapping;
3232         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3233
3234         /* This should be a maximum number of data bytes that may be
3235          * placed on the BD (not including paddings).
3236          */
3237         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3238                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3239
3240         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3241         rxq_init->tpa_agg_sz = tpa_agg_size;
3242         rxq_init->sge_buf_sz = sge_sz;
3243         rxq_init->max_sges_pkt = max_sge;
3244         rxq_init->rss_engine_id = BP_FUNC(bp);
3245         rxq_init->mcast_engine_id = BP_FUNC(bp);
3246
3247         /* Maximum number or simultaneous TPA aggregation for this Queue.
3248          *
3249          * For PF Clients it should be the maximum available number.
3250          * VF driver(s) may want to define it to a smaller value.
3251          */
3252         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3253
3254         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3255         rxq_init->fw_sb_id = fp->fw_sb_id;
3256
3257         if (IS_FCOE_FP(fp))
3258                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3259         else
3260                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3261         /* configure silent vlan removal
3262          * if multi function mode is afex, then mask default vlan
3263          */
3264         if (IS_MF_AFEX(bp)) {
3265                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3266                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3267         }
3268 }
3269
3270 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3271         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3272         u8 cos)
3273 {
3274         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3275         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3276         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3277         txq_init->fw_sb_id = fp->fw_sb_id;
3278
3279         /*
3280          * set the tss leading client id for TX classification ==
3281          * leading RSS client id
3282          */
3283         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3284
3285         if (IS_FCOE_FP(fp)) {
3286                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3287                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3288         }
3289 }
3290
3291 static void bnx2x_pf_init(struct bnx2x *bp)
3292 {
3293         struct bnx2x_func_init_params func_init = {0};
3294         struct event_ring_data eq_data = { {0} };
3295
3296         if (!CHIP_IS_E1x(bp)) {
3297                 /* reset IGU PF statistics: MSIX + ATTN */
3298                 /* PF */
3299                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3300                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3301                            (CHIP_MODE_IS_4_PORT(bp) ?
3302                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303                 /* ATTN */
3304                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3305                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3306                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3307                            (CHIP_MODE_IS_4_PORT(bp) ?
3308                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3309         }
3310
3311         func_init.spq_active = true;
3312         func_init.pf_id = BP_FUNC(bp);
3313         func_init.func_id = BP_FUNC(bp);
3314         func_init.spq_map = bp->spq_mapping;
3315         func_init.spq_prod = bp->spq_prod_idx;
3316
3317         bnx2x_func_init(bp, &func_init);
3318
3319         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3320
3321         /*
3322          * Congestion management values depend on the link rate
3323          * There is no active link so initial link rate is set to 10 Gbps.
3324          * When the link comes up The congestion management values are
3325          * re-calculated according to the actual link rate.
3326          */
3327         bp->link_vars.line_speed = SPEED_10000;
3328         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3329
3330         /* Only the PMF sets the HW */
3331         if (bp->port.pmf)
3332                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3333
3334         /* init Event Queue - PCI bus guarantees correct endianity*/
3335         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3336         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3337         eq_data.producer = bp->eq_prod;
3338         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3339         eq_data.sb_id = DEF_SB_ID;
3340         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3341 }
3342
3343 static void bnx2x_e1h_disable(struct bnx2x *bp)
3344 {
3345         int port = BP_PORT(bp);
3346
3347         bnx2x_tx_disable(bp);
3348
3349         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3350 }
3351
3352 static void bnx2x_e1h_enable(struct bnx2x *bp)
3353 {
3354         int port = BP_PORT(bp);
3355
3356         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3357                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3358
3359         /* Tx queue should be only re-enabled */
3360         netif_tx_wake_all_queues(bp->dev);
3361
3362         /*
3363          * Should not call netif_carrier_on since it will be called if the link
3364          * is up when checking for link state
3365          */
3366 }
3367
3368 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3369
3370 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3371 {
3372         struct eth_stats_info *ether_stat =
3373                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3374         struct bnx2x_vlan_mac_obj *mac_obj =
3375                 &bp->sp_objs->mac_obj;
3376         int i;
3377
3378         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3379                 ETH_STAT_INFO_VERSION_LEN);
3380
3381         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3382          * mac_local field in ether_stat struct. The base address is offset by 2
3383          * bytes to account for the field being 8 bytes but a mac address is
3384          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3385          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3386          * allocated by the ether_stat struct, so the macs will land in their
3387          * proper positions.
3388          */
3389         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3390                 memset(ether_stat->mac_local + i, 0,
3391                        sizeof(ether_stat->mac_local[0]));
3392         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3393                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3394                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3395                                 ETH_ALEN);
3396         ether_stat->mtu_size = bp->dev->mtu;
3397         if (bp->dev->features & NETIF_F_RXCSUM)
3398                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3399         if (bp->dev->features & NETIF_F_TSO)
3400                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3401         ether_stat->feature_flags |= bp->common.boot_mode;
3402
3403         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3404
3405         ether_stat->txq_size = bp->tx_ring_size;
3406         ether_stat->rxq_size = bp->rx_ring_size;
3407
3408 #ifdef CONFIG_BNX2X_SRIOV
3409         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3410 #endif
3411 }
3412
3413 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3414 {
3415         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3416         struct fcoe_stats_info *fcoe_stat =
3417                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3418
3419         if (!CNIC_LOADED(bp))
3420                 return;
3421
3422         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3423
3424         fcoe_stat->qos_priority =
3425                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3426
3427         /* insert FCoE stats from ramrod response */
3428         if (!NO_FCOE(bp)) {
3429                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3430                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431                         tstorm_queue_statistics;
3432
3433                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3434                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3435                         xstorm_queue_statistics;
3436
3437                 struct fcoe_statistics_params *fw_fcoe_stat =
3438                         &bp->fw_stats_data->fcoe;
3439
3440                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3441                           fcoe_stat->rx_bytes_lo,
3442                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3443
3444                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3446                           fcoe_stat->rx_bytes_lo,
3447                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3448
3449                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3451                           fcoe_stat->rx_bytes_lo,
3452                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3453
3454                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3456                           fcoe_stat->rx_bytes_lo,
3457                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3458
3459                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460                           fcoe_stat->rx_frames_lo,
3461                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3462
3463                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464                           fcoe_stat->rx_frames_lo,
3465                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3466
3467                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468                           fcoe_stat->rx_frames_lo,
3469                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3470
3471                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472                           fcoe_stat->rx_frames_lo,
3473                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3474
3475                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3476                           fcoe_stat->tx_bytes_lo,
3477                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3478
3479                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3481                           fcoe_stat->tx_bytes_lo,
3482                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3483
3484                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3486                           fcoe_stat->tx_bytes_lo,
3487                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3488
3489                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3491                           fcoe_stat->tx_bytes_lo,
3492                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3493
3494                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495                           fcoe_stat->tx_frames_lo,
3496                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3497
3498                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499                           fcoe_stat->tx_frames_lo,
3500                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3501
3502                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503                           fcoe_stat->tx_frames_lo,
3504                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3505
3506                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507                           fcoe_stat->tx_frames_lo,
3508                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3509         }
3510
3511         /* ask L5 driver to add data to the struct */
3512         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3513 }
3514
3515 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3516 {
3517         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3518         struct iscsi_stats_info *iscsi_stat =
3519                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3520
3521         if (!CNIC_LOADED(bp))
3522                 return;
3523
3524         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3525                ETH_ALEN);
3526
3527         iscsi_stat->qos_priority =
3528                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3529
3530         /* ask L5 driver to add data to the struct */
3531         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3532 }
3533
3534 /* called due to MCP event (on pmf):
3535  *      reread new bandwidth configuration
3536  *      configure FW
3537  *      notify others function about the change
3538  */
3539 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3540 {
3541         /* Workaround for MFW bug.
3542          * MFW is not supposed to generate BW attention in
3543          * single function mode.
3544          */
3545         if (!IS_MF(bp)) {
3546                 DP(BNX2X_MSG_MCP,
3547                    "Ignoring MF BW config in single function mode\n");
3548                 return;
3549         }
3550
3551         if (bp->link_vars.link_up) {
3552                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3553                 bnx2x_link_sync_notify(bp);
3554         }
3555         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3556 }
3557
3558 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3559 {
3560         bnx2x_config_mf_bw(bp);
3561         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3562 }
3563
3564 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3565 {
3566         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3567         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3568 }
3569
3570 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3571 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3572
3573 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3574 {
3575         enum drv_info_opcode op_code;
3576         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3577         bool release = false;
3578         int wait;
3579
3580         /* if drv_info version supported by MFW doesn't match - send NACK */
3581         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3582                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3583                 return;
3584         }
3585
3586         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3587                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3588
3589         /* Must prevent other flows from accessing drv_info_to_mcp */
3590         mutex_lock(&bp->drv_info_mutex);
3591
3592         memset(&bp->slowpath->drv_info_to_mcp, 0,
3593                sizeof(union drv_info_to_mcp));
3594
3595         switch (op_code) {
3596         case ETH_STATS_OPCODE:
3597                 bnx2x_drv_info_ether_stat(bp);
3598                 break;
3599         case FCOE_STATS_OPCODE:
3600                 bnx2x_drv_info_fcoe_stat(bp);
3601                 break;
3602         case ISCSI_STATS_OPCODE:
3603                 bnx2x_drv_info_iscsi_stat(bp);
3604                 break;
3605         default:
3606                 /* if op code isn't supported - send NACK */
3607                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3608                 goto out;
3609         }
3610
3611         /* if we got drv_info attn from MFW then these fields are defined in
3612          * shmem2 for sure
3613          */
3614         SHMEM2_WR(bp, drv_info_host_addr_lo,
3615                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3616         SHMEM2_WR(bp, drv_info_host_addr_hi,
3617                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3618
3619         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3620
3621         /* Since possible management wants both this and get_driver_version
3622          * need to wait until management notifies us it finished utilizing
3623          * the buffer.
3624          */
3625         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3626                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3627         } else if (!bp->drv_info_mng_owner) {
3628                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3629
3630                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3631                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3632
3633                         /* Management is done; need to clear indication */
3634                         if (indication & bit) {
3635                                 SHMEM2_WR(bp, mfw_drv_indication,
3636                                           indication & ~bit);
3637                                 release = true;
3638                                 break;
3639                         }
3640
3641                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3642                 }
3643         }
3644         if (!release) {
3645                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3646                 bp->drv_info_mng_owner = true;
3647         }
3648
3649 out:
3650         mutex_unlock(&bp->drv_info_mutex);
3651 }
3652
3653 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3654 {
3655         u8 vals[4];
3656         int i = 0;
3657
3658         if (bnx2x_format) {
3659                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3660                            &vals[0], &vals[1], &vals[2], &vals[3]);
3661                 if (i > 0)
3662                         vals[0] -= '0';
3663         } else {
3664                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3665                            &vals[0], &vals[1], &vals[2], &vals[3]);
3666         }
3667
3668         while (i < 4)
3669                 vals[i++] = 0;
3670
3671         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3672 }
3673
3674 void bnx2x_update_mng_version(struct bnx2x *bp)
3675 {
3676         u32 iscsiver = DRV_VER_NOT_LOADED;
3677         u32 fcoever = DRV_VER_NOT_LOADED;
3678         u32 ethver = DRV_VER_NOT_LOADED;
3679         int idx = BP_FW_MB_IDX(bp);
3680         u8 *version;
3681
3682         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3683                 return;
3684
3685         mutex_lock(&bp->drv_info_mutex);
3686         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3687         if (bp->drv_info_mng_owner)
3688                 goto out;
3689
3690         if (bp->state != BNX2X_STATE_OPEN)
3691                 goto out;
3692
3693         /* Parse ethernet driver version */
3694         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3695         if (!CNIC_LOADED(bp))
3696                 goto out;
3697
3698         /* Try getting storage driver version via cnic */
3699         memset(&bp->slowpath->drv_info_to_mcp, 0,
3700                sizeof(union drv_info_to_mcp));
3701         bnx2x_drv_info_iscsi_stat(bp);
3702         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3703         iscsiver = bnx2x_update_mng_version_utility(version, false);
3704
3705         memset(&bp->slowpath->drv_info_to_mcp, 0,
3706                sizeof(union drv_info_to_mcp));
3707         bnx2x_drv_info_fcoe_stat(bp);
3708         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3709         fcoever = bnx2x_update_mng_version_utility(version, false);
3710
3711 out:
3712         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3713         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3714         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3715
3716         mutex_unlock(&bp->drv_info_mutex);
3717
3718         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3719            ethver, iscsiver, fcoever);
3720 }
3721
3722 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3723 {
3724         u32 drv_ver;
3725         u32 valid_dump;
3726
3727         if (!SHMEM2_HAS(bp, drv_info))
3728                 return;
3729
3730         /* Update Driver load time, possibly broken in y2038 */
3731         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3732
3733         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3734         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3735
3736         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3737
3738         /* Check & notify On-Chip dump. */
3739         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3740
3741         if (valid_dump & FIRST_DUMP_VALID)
3742                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3743
3744         if (valid_dump & SECOND_DUMP_VALID)
3745                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3746 }
3747
3748 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3749 {
3750         u32 cmd_ok, cmd_fail;
3751
3752         /* sanity */
3753         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3754             event & DRV_STATUS_OEM_EVENT_MASK) {
3755                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3756                 return;
3757         }
3758
3759         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3760                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3761                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3762         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3763                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3764                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3765         }
3766
3767         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3768
3769         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3771                 /* This is the only place besides the function initialization
3772                  * where the bp->flags can change so it is done without any
3773                  * locks
3774                  */
3775                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3776                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3777                         bp->flags |= MF_FUNC_DIS;
3778
3779                         bnx2x_e1h_disable(bp);
3780                 } else {
3781                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3782                         bp->flags &= ~MF_FUNC_DIS;
3783
3784                         bnx2x_e1h_enable(bp);
3785                 }
3786                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3787                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3788         }
3789
3790         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3791                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3792                 bnx2x_config_mf_bw(bp);
3793                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3794                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3795         }
3796
3797         /* Report results to MCP */
3798         if (event)
3799                 bnx2x_fw_command(bp, cmd_fail, 0);
3800         else
3801                 bnx2x_fw_command(bp, cmd_ok, 0);
3802 }
3803
3804 /* must be called under the spq lock */
3805 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3806 {
3807         struct eth_spe *next_spe = bp->spq_prod_bd;
3808
3809         if (bp->spq_prod_bd == bp->spq_last_bd) {
3810                 bp->spq_prod_bd = bp->spq;
3811                 bp->spq_prod_idx = 0;
3812                 DP(BNX2X_MSG_SP, "end of spq\n");
3813         } else {
3814                 bp->spq_prod_bd++;
3815                 bp->spq_prod_idx++;
3816         }
3817         return next_spe;
3818 }
3819
3820 /* must be called under the spq lock */
3821 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3822 {
3823         int func = BP_FUNC(bp);
3824
3825         /*
3826          * Make sure that BD data is updated before writing the producer:
3827          * BD data is written to the memory, the producer is read from the
3828          * memory, thus we need a full memory barrier to ensure the ordering.
3829          */
3830         mb();
3831
3832         REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3833                          bp->spq_prod_idx);
3834 }
3835
3836 /**
3837  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3838  *
3839  * @cmd:        command to check
3840  * @cmd_type:   command type
3841  */
3842 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3843 {
3844         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3845             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3846             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3847             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3848             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3849             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3850             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3851                 return true;
3852         else
3853                 return false;
3854 }
3855
3856 /**
3857  * bnx2x_sp_post - place a single command on an SP ring
3858  *
3859  * @bp:         driver handle
3860  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3861  * @cid:        SW CID the command is related to
3862  * @data_hi:    command private data address (high 32 bits)
3863  * @data_lo:    command private data address (low 32 bits)
3864  * @cmd_type:   command type (e.g. NONE, ETH)
3865  *
3866  * SP data is handled as if it's always an address pair, thus data fields are
3867  * not swapped to little endian in upper functions. Instead this function swaps
3868  * data as if it's two u32 fields.
3869  */
3870 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3871                   u32 data_hi, u32 data_lo, int cmd_type)
3872 {
3873         struct eth_spe *spe;
3874         u16 type;
3875         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3876
3877 #ifdef BNX2X_STOP_ON_ERROR
3878         if (unlikely(bp->panic)) {
3879                 BNX2X_ERR("Can't post SP when there is panic\n");
3880                 return -EIO;
3881         }
3882 #endif
3883
3884         spin_lock_bh(&bp->spq_lock);
3885
3886         if (common) {
3887                 if (!atomic_read(&bp->eq_spq_left)) {
3888                         BNX2X_ERR("BUG! EQ ring full!\n");
3889                         spin_unlock_bh(&bp->spq_lock);
3890                         bnx2x_panic();
3891                         return -EBUSY;
3892                 }
3893         } else if (!atomic_read(&bp->cq_spq_left)) {
3894                         BNX2X_ERR("BUG! SPQ ring full!\n");
3895                         spin_unlock_bh(&bp->spq_lock);
3896                         bnx2x_panic();
3897                         return -EBUSY;
3898         }
3899
3900         spe = bnx2x_sp_get_next(bp);
3901
3902         /* CID needs port number to be encoded int it */
3903         spe->hdr.conn_and_cmd_data =
3904                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3905                                     HW_CID(bp, cid));
3906
3907         /* In some cases, type may already contain the func-id
3908          * mainly in SRIOV related use cases, so we add it here only
3909          * if it's not already set.
3910          */
3911         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3912                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3913                         SPE_HDR_CONN_TYPE;
3914                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3915                          SPE_HDR_FUNCTION_ID);
3916         } else {
3917                 type = cmd_type;
3918         }
3919
3920         spe->hdr.type = cpu_to_le16(type);
3921
3922         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3923         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3924
3925         /*
3926          * It's ok if the actual decrement is issued towards the memory
3927          * somewhere between the spin_lock and spin_unlock. Thus no
3928          * more explicit memory barrier is needed.
3929          */
3930         if (common)
3931                 atomic_dec(&bp->eq_spq_left);
3932         else
3933                 atomic_dec(&bp->cq_spq_left);
3934
3935         DP(BNX2X_MSG_SP,
3936            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3937            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3938            (u32)(U64_LO(bp->spq_mapping) +
3939            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3940            HW_CID(bp, cid), data_hi, data_lo, type,
3941            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3942
3943         bnx2x_sp_prod_update(bp);
3944         spin_unlock_bh(&bp->spq_lock);
3945         return 0;
3946 }
3947
3948 /* acquire split MCP access lock register */
3949 static int bnx2x_acquire_alr(struct bnx2x *bp)
3950 {
3951         u32 j, val;
3952         int rc = 0;
3953
3954         might_sleep();
3955         for (j = 0; j < 1000; j++) {
3956                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3957                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3958                 if (val & MCPR_ACCESS_LOCK_LOCK)
3959                         break;
3960
3961                 usleep_range(5000, 10000);
3962         }
3963         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3964                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3965                 rc = -EBUSY;
3966         }
3967
3968         return rc;
3969 }
3970
3971 /* release split MCP access lock register */
3972 static void bnx2x_release_alr(struct bnx2x *bp)
3973 {
3974         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3975 }
3976
3977 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3978 #define BNX2X_DEF_SB_IDX        0x0002
3979
3980 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3981 {
3982         struct host_sp_status_block *def_sb = bp->def_status_blk;
3983         u16 rc = 0;
3984
3985         barrier(); /* status block is written to by the chip */
3986         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3987                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3988                 rc |= BNX2X_DEF_SB_ATT_IDX;
3989         }
3990
3991         if (bp->def_idx != def_sb->sp_sb.running_index) {
3992                 bp->def_idx = def_sb->sp_sb.running_index;
3993                 rc |= BNX2X_DEF_SB_IDX;
3994         }
3995
3996         /* Do not reorder: indices reading should complete before handling */
3997         barrier();
3998         return rc;
3999 }
4000
4001 /*
4002  * slow path service functions
4003  */
4004
4005 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4006 {
4007         int port = BP_PORT(bp);
4008         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4009                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4010         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4011                                        NIG_REG_MASK_INTERRUPT_PORT0;
4012         u32 aeu_mask;
4013         u32 nig_mask = 0;
4014         u32 reg_addr;
4015
4016         if (bp->attn_state & asserted)
4017                 BNX2X_ERR("IGU ERROR\n");
4018
4019         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4020         aeu_mask = REG_RD(bp, aeu_addr);
4021
4022         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4023            aeu_mask, asserted);
4024         aeu_mask &= ~(asserted & 0x3ff);
4025         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4026
4027         REG_WR(bp, aeu_addr, aeu_mask);
4028         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4029
4030         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4031         bp->attn_state |= asserted;
4032         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4033
4034         if (asserted & ATTN_HARD_WIRED_MASK) {
4035                 if (asserted & ATTN_NIG_FOR_FUNC) {
4036
4037                         bnx2x_acquire_phy_lock(bp);
4038
4039                         /* save nig interrupt mask */
4040                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4041
4042                         /* If nig_mask is not set, no need to call the update
4043                          * function.
4044                          */
4045                         if (nig_mask) {
4046                                 REG_WR(bp, nig_int_mask_addr, 0);
4047
4048                                 bnx2x_link_attn(bp);
4049                         }
4050
4051                         /* handle unicore attn? */
4052                 }
4053                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4054                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4055
4056                 if (asserted & GPIO_2_FUNC)
4057                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4058
4059                 if (asserted & GPIO_3_FUNC)
4060                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4061
4062                 if (asserted & GPIO_4_FUNC)
4063                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4064
4065                 if (port == 0) {
4066                         if (asserted & ATTN_GENERAL_ATTN_1) {
4067                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4068                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4069                         }
4070                         if (asserted & ATTN_GENERAL_ATTN_2) {
4071                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4072                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4073                         }
4074                         if (asserted & ATTN_GENERAL_ATTN_3) {
4075                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4076                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4077                         }
4078                 } else {
4079                         if (asserted & ATTN_GENERAL_ATTN_4) {
4080                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4081                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4082                         }
4083                         if (asserted & ATTN_GENERAL_ATTN_5) {
4084                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4085                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4086                         }
4087                         if (asserted & ATTN_GENERAL_ATTN_6) {
4088                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4089                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4090                         }
4091                 }
4092
4093         } /* if hardwired */
4094
4095         if (bp->common.int_block == INT_BLOCK_HC)
4096                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4097                             COMMAND_REG_ATTN_BITS_SET);
4098         else
4099                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4100
4101         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4102            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4103         REG_WR(bp, reg_addr, asserted);
4104
4105         /* now set back the mask */
4106         if (asserted & ATTN_NIG_FOR_FUNC) {
4107                 /* Verify that IGU ack through BAR was written before restoring
4108                  * NIG mask. This loop should exit after 2-3 iterations max.
4109                  */
4110                 if (bp->common.int_block != INT_BLOCK_HC) {
4111                         u32 cnt = 0, igu_acked;
4112                         do {
4113                                 igu_acked = REG_RD(bp,
4114                                                    IGU_REG_ATTENTION_ACK_BITS);
4115                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4116                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4117                         if (!igu_acked)
4118                                 DP(NETIF_MSG_HW,
4119                                    "Failed to verify IGU ack on time\n");
4120                         barrier();
4121                 }
4122                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4123                 bnx2x_release_phy_lock(bp);
4124         }
4125 }
4126
4127 static void bnx2x_fan_failure(struct bnx2x *bp)
4128 {
4129         int port = BP_PORT(bp);
4130         u32 ext_phy_config;
4131         /* mark the failure */
4132         ext_phy_config =
4133                 SHMEM_RD(bp,
4134                          dev_info.port_hw_config[port].external_phy_config);
4135
4136         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4137         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4138         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4139                  ext_phy_config);
4140
4141         /* log the failure */
4142         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4143                             "Please contact OEM Support for assistance\n");
4144
4145         /* Schedule device reset (unload)
4146          * This is due to some boards consuming sufficient power when driver is
4147          * up to overheat if fan fails.
4148          */
4149         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4150 }
4151
4152 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4153 {
4154         int port = BP_PORT(bp);
4155         int reg_offset;
4156         u32 val;
4157
4158         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4159                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4160
4161         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4162
4163                 val = REG_RD(bp, reg_offset);
4164                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4165                 REG_WR(bp, reg_offset, val);
4166
4167                 BNX2X_ERR("SPIO5 hw attention\n");
4168
4169                 /* Fan failure attention */
4170                 bnx2x_hw_reset_phy(&bp->link_params);
4171                 bnx2x_fan_failure(bp);
4172         }
4173
4174         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4175                 bnx2x_acquire_phy_lock(bp);
4176                 bnx2x_handle_module_detect_int(&bp->link_params);
4177                 bnx2x_release_phy_lock(bp);
4178         }
4179
4180         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4181
4182                 val = REG_RD(bp, reg_offset);
4183                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4184                 REG_WR(bp, reg_offset, val);
4185
4186                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4187                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4188                 bnx2x_panic();
4189         }
4190 }
4191
4192 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4193 {
4194         u32 val;
4195
4196         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4197
4198                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4199                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4200                 /* DORQ discard attention */
4201                 if (val & 0x2)
4202                         BNX2X_ERR("FATAL error from DORQ\n");
4203         }
4204
4205         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4206
4207                 int port = BP_PORT(bp);
4208                 int reg_offset;
4209
4210                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4211                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4212
4213                 val = REG_RD(bp, reg_offset);
4214                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4215                 REG_WR(bp, reg_offset, val);
4216
4217                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4218                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4219                 bnx2x_panic();
4220         }
4221 }
4222
4223 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4224 {
4225         u32 val;
4226
4227         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4228
4229                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4230                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4231                 /* CFC error attention */
4232                 if (val & 0x2)
4233                         BNX2X_ERR("FATAL error from CFC\n");
4234         }
4235
4236         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4237                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4238                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4239                 /* RQ_USDMDP_FIFO_OVERFLOW */
4240                 if (val & 0x18000)
4241                         BNX2X_ERR("FATAL error from PXP\n");
4242
4243                 if (!CHIP_IS_E1x(bp)) {
4244                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4245                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4246                 }
4247         }
4248
4249         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4250
4251                 int port = BP_PORT(bp);
4252                 int reg_offset;
4253
4254                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4255                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4256
4257                 val = REG_RD(bp, reg_offset);
4258                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4259                 REG_WR(bp, reg_offset, val);
4260
4261                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4262                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4263                 bnx2x_panic();
4264         }
4265 }
4266
4267 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4268 {
4269         u32 val;
4270
4271         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4272
4273                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4274                         int func = BP_FUNC(bp);
4275
4276                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4277                         bnx2x_read_mf_cfg(bp);
4278                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4279                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4280                         val = SHMEM_RD(bp,
4281                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4282
4283                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4284                                    DRV_STATUS_OEM_EVENT_MASK))
4285                                 bnx2x_oem_event(bp,
4286                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4287                                                 DRV_STATUS_OEM_EVENT_MASK)));
4288
4289                         if (val & DRV_STATUS_SET_MF_BW)
4290                                 bnx2x_set_mf_bw(bp);
4291
4292                         if (val & DRV_STATUS_DRV_INFO_REQ)
4293                                 bnx2x_handle_drv_info_req(bp);
4294
4295                         if (val & DRV_STATUS_VF_DISABLED)
4296                                 bnx2x_schedule_iov_task(bp,
4297                                                         BNX2X_IOV_HANDLE_FLR);
4298
4299                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4300                                 bnx2x_pmf_update(bp);
4301
4302                         if (bp->port.pmf &&
4303                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4304                                 bp->dcbx_enabled > 0)
4305                                 /* start dcbx state machine */
4306                                 bnx2x_dcbx_set_params(bp,
4307                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4308                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4309                                 bnx2x_handle_afex_cmd(bp,
4310                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4311                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4312                                 bnx2x_handle_eee_event(bp);
4313
4314                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4315                                 bnx2x_schedule_sp_rtnl(bp,
4316                                         BNX2X_SP_RTNL_UPDATE_SVID, 0);
4317
4318                         if (bp->link_vars.periodic_flags &
4319                             PERIODIC_FLAGS_LINK_EVENT) {
4320                                 /*  sync with link */
4321                                 bnx2x_acquire_phy_lock(bp);
4322                                 bp->link_vars.periodic_flags &=
4323                                         ~PERIODIC_FLAGS_LINK_EVENT;
4324                                 bnx2x_release_phy_lock(bp);
4325                                 if (IS_MF(bp))
4326                                         bnx2x_link_sync_notify(bp);
4327                                 bnx2x_link_report(bp);
4328                         }
4329                         /* Always call it here: bnx2x_link_report() will
4330                          * prevent the link indication duplication.
4331                          */
4332                         bnx2x__link_status_update(bp);
4333                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4334
4335                         BNX2X_ERR("MC assert!\n");
4336                         bnx2x_mc_assert(bp);
4337                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4338                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4339                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4340                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4341                         bnx2x_panic();
4342
4343                 } else if (attn & BNX2X_MCP_ASSERT) {
4344
4345                         BNX2X_ERR("MCP assert!\n");
4346                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4347                         bnx2x_fw_dump(bp);
4348
4349                 } else
4350                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4351         }
4352
4353         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4354                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4355                 if (attn & BNX2X_GRC_TIMEOUT) {
4356                         val = CHIP_IS_E1(bp) ? 0 :
4357                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4358                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4359                 }
4360                 if (attn & BNX2X_GRC_RSV) {
4361                         val = CHIP_IS_E1(bp) ? 0 :
4362                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4363                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4364                 }
4365                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4366         }
4367 }
4368
4369 /*
4370  * Bits map:
4371  * 0-7   - Engine0 load counter.
4372  * 8-15  - Engine1 load counter.
4373  * 16    - Engine0 RESET_IN_PROGRESS bit.
4374  * 17    - Engine1 RESET_IN_PROGRESS bit.
4375  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4376  *         on the engine
4377  * 19    - Engine1 ONE_IS_LOADED.
4378  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4379  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4380  *         just the one belonging to its engine).
4381  *
4382  */
4383 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4384
4385 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4386 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4387 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4388 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4389 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4390 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4391 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4392
4393 /*
4394  * Set the GLOBAL_RESET bit.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 void bnx2x_set_reset_global(struct bnx2x *bp)
4399 {
4400         u32 val;
4401         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4404         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 }
4406
4407 /*
4408  * Clear the GLOBAL_RESET bit.
4409  *
4410  * Should be run under rtnl lock
4411  */
4412 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4413 {
4414         u32 val;
4415         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4418         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4419 }
4420
4421 /*
4422  * Checks the GLOBAL_RESET bit.
4423  *
4424  * should be run under rtnl lock
4425  */
4426 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4427 {
4428         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429
4430         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4431         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4432 }
4433
4434 /*
4435  * Clear RESET_IN_PROGRESS bit for the current engine.
4436  *
4437  * Should be run under rtnl lock
4438  */
4439 static void bnx2x_set_reset_done(struct bnx2x *bp)
4440 {
4441         u32 val;
4442         u32 bit = BP_PATH(bp) ?
4443                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4445         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4446
4447         /* Clear the bit */
4448         val &= ~bit;
4449         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4450
4451         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4452 }
4453
4454 /*
4455  * Set RESET_IN_PROGRESS for the current engine.
4456  *
4457  * should be run under rtnl lock
4458  */
4459 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4460 {
4461         u32 val;
4462         u32 bit = BP_PATH(bp) ?
4463                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4464         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4465         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466
4467         /* Set the bit */
4468         val |= bit;
4469         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4470         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4471 }
4472
4473 /*
4474  * Checks the RESET_IN_PROGRESS bit for the given engine.
4475  * should be run under rtnl lock
4476  */
4477 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4478 {
4479         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4480         u32 bit = engine ?
4481                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4482
4483         /* return false if bit is set */
4484         return (val & bit) ? false : true;
4485 }
4486
4487 /*
4488  * set pf load for the current pf.
4489  *
4490  * should be run under rtnl lock
4491  */
4492 void bnx2x_set_pf_load(struct bnx2x *bp)
4493 {
4494         u32 val1, val;
4495         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496                              BNX2X_PATH0_LOAD_CNT_MASK;
4497         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4499
4500         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4502
4503         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4504
4505         /* get the current counter value */
4506         val1 = (val & mask) >> shift;
4507
4508         /* set bit of that PF */
4509         val1 |= (1 << bp->pf_num);
4510
4511         /* clear the old value */
4512         val &= ~mask;
4513
4514         /* set the new one */
4515         val |= ((val1 << shift) & mask);
4516
4517         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4518         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4519 }
4520
4521 /**
4522  * bnx2x_clear_pf_load - clear pf load mark
4523  *
4524  * @bp:         driver handle
4525  *
4526  * Should be run under rtnl lock.
4527  * Decrements the load counter for the current engine. Returns
4528  * whether other functions are still loaded
4529  */
4530 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4531 {
4532         u32 val1, val;
4533         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4534                              BNX2X_PATH0_LOAD_CNT_MASK;
4535         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4536                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4537
4538         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4540         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4541
4542         /* get the current counter value */
4543         val1 = (val & mask) >> shift;
4544
4545         /* clear bit of that PF */
4546         val1 &= ~(1 << bp->pf_num);
4547
4548         /* clear the old value */
4549         val &= ~mask;
4550
4551         /* set the new one */
4552         val |= ((val1 << shift) & mask);
4553
4554         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4555         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4556         return val1 != 0;
4557 }
4558
4559 /*
4560  * Read the load status for the current engine.
4561  *
4562  * should be run under rtnl lock
4563  */
4564 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4565 {
4566         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4567                              BNX2X_PATH0_LOAD_CNT_MASK);
4568         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4569                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4570         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4571
4572         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4573
4574         val = (val & mask) >> shift;
4575
4576         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4577            engine, val);
4578
4579         return val != 0;
4580 }
4581
4582 static void _print_parity(struct bnx2x *bp, u32 reg)
4583 {
4584         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4585 }
4586
4587 static void _print_next_block(int idx, const char *blk)
4588 {
4589         pr_cont("%s%s", idx ? ", " : "", blk);
4590 }
4591
4592 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4593                                             int *par_num, bool print)
4594 {
4595         u32 cur_bit;
4596         bool res;
4597         int i;
4598
4599         res = false;
4600
4601         for (i = 0; sig; i++) {
4602                 cur_bit = (0x1UL << i);
4603                 if (sig & cur_bit) {
4604                         res |= true; /* Each bit is real error! */
4605
4606                         if (print) {
4607                                 switch (cur_bit) {
4608                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4609                                         _print_next_block((*par_num)++, "BRB");
4610                                         _print_parity(bp,
4611                                                       BRB1_REG_BRB1_PRTY_STS);
4612                                         break;
4613                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4614                                         _print_next_block((*par_num)++,
4615                                                           "PARSER");
4616                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4617                                         break;
4618                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4619                                         _print_next_block((*par_num)++, "TSDM");
4620                                         _print_parity(bp,
4621                                                       TSDM_REG_TSDM_PRTY_STS);
4622                                         break;
4623                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4624                                         _print_next_block((*par_num)++,
4625                                                           "SEARCHER");
4626                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4627                                         break;
4628                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4629                                         _print_next_block((*par_num)++, "TCM");
4630                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4631                                         break;
4632                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4633                                         _print_next_block((*par_num)++,
4634                                                           "TSEMI");
4635                                         _print_parity(bp,
4636                                                       TSEM_REG_TSEM_PRTY_STS_0);
4637                                         _print_parity(bp,
4638                                                       TSEM_REG_TSEM_PRTY_STS_1);
4639                                         break;
4640                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4641                                         _print_next_block((*par_num)++, "XPB");
4642                                         _print_parity(bp, GRCBASE_XPB +
4643                                                           PB_REG_PB_PRTY_STS);
4644                                         break;
4645                                 }
4646                         }
4647
4648                         /* Clear the bit */
4649                         sig &= ~cur_bit;
4650                 }
4651         }
4652
4653         return res;
4654 }
4655
4656 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4657                                             int *par_num, bool *global,
4658                                             bool print)
4659 {
4660         u32 cur_bit;
4661         bool res;
4662         int i;
4663
4664         res = false;
4665
4666         for (i = 0; sig; i++) {
4667                 cur_bit = (0x1UL << i);
4668                 if (sig & cur_bit) {
4669                         res |= true; /* Each bit is real error! */
4670                         switch (cur_bit) {
4671                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4672                                 if (print) {
4673                                         _print_next_block((*par_num)++, "PBF");
4674                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4675                                 }
4676                                 break;
4677                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4678                                 if (print) {
4679                                         _print_next_block((*par_num)++, "QM");
4680                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4681                                 }
4682                                 break;
4683                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4684                                 if (print) {
4685                                         _print_next_block((*par_num)++, "TM");
4686                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4687                                 }
4688                                 break;
4689                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4690                                 if (print) {
4691                                         _print_next_block((*par_num)++, "XSDM");
4692                                         _print_parity(bp,
4693                                                       XSDM_REG_XSDM_PRTY_STS);
4694                                 }
4695                                 break;
4696                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4697                                 if (print) {
4698                                         _print_next_block((*par_num)++, "XCM");
4699                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4700                                 }
4701                                 break;
4702                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4703                                 if (print) {
4704                                         _print_next_block((*par_num)++,
4705                                                           "XSEMI");
4706                                         _print_parity(bp,
4707                                                       XSEM_REG_XSEM_PRTY_STS_0);
4708                                         _print_parity(bp,
4709                                                       XSEM_REG_XSEM_PRTY_STS_1);
4710                                 }
4711                                 break;
4712                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4713                                 if (print) {
4714                                         _print_next_block((*par_num)++,
4715                                                           "DOORBELLQ");
4716                                         _print_parity(bp,
4717                                                       DORQ_REG_DORQ_PRTY_STS);
4718                                 }
4719                                 break;
4720                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4721                                 if (print) {
4722                                         _print_next_block((*par_num)++, "NIG");
4723                                         if (CHIP_IS_E1x(bp)) {
4724                                                 _print_parity(bp,
4725                                                         NIG_REG_NIG_PRTY_STS);
4726                                         } else {
4727                                                 _print_parity(bp,
4728                                                         NIG_REG_NIG_PRTY_STS_0);
4729                                                 _print_parity(bp,
4730                                                         NIG_REG_NIG_PRTY_STS_1);
4731                                         }
4732                                 }
4733                                 break;
4734                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4735                                 if (print)
4736                                         _print_next_block((*par_num)++,
4737                                                           "VAUX PCI CORE");
4738                                 *global = true;
4739                                 break;
4740                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4741                                 if (print) {
4742                                         _print_next_block((*par_num)++,
4743                                                           "DEBUG");
4744                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4745                                 }
4746                                 break;
4747                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4748                                 if (print) {
4749                                         _print_next_block((*par_num)++, "USDM");
4750                                         _print_parity(bp,
4751                                                       USDM_REG_USDM_PRTY_STS);
4752                                 }
4753                                 break;
4754                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4755                                 if (print) {
4756                                         _print_next_block((*par_num)++, "UCM");
4757                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4758                                 }
4759                                 break;
4760                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4761                                 if (print) {
4762                                         _print_next_block((*par_num)++,
4763                                                           "USEMI");
4764                                         _print_parity(bp,
4765                                                       USEM_REG_USEM_PRTY_STS_0);
4766                                         _print_parity(bp,
4767                                                       USEM_REG_USEM_PRTY_STS_1);
4768                                 }
4769                                 break;
4770                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4771                                 if (print) {
4772                                         _print_next_block((*par_num)++, "UPB");
4773                                         _print_parity(bp, GRCBASE_UPB +
4774                                                           PB_REG_PB_PRTY_STS);
4775                                 }
4776                                 break;
4777                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4778                                 if (print) {
4779                                         _print_next_block((*par_num)++, "CSDM");
4780                                         _print_parity(bp,
4781                                                       CSDM_REG_CSDM_PRTY_STS);
4782                                 }
4783                                 break;
4784                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4785                                 if (print) {
4786                                         _print_next_block((*par_num)++, "CCM");
4787                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4788                                 }
4789                                 break;
4790                         }
4791
4792                         /* Clear the bit */
4793                         sig &= ~cur_bit;
4794                 }
4795         }
4796
4797         return res;
4798 }
4799
4800 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4801                                             int *par_num, bool print)
4802 {
4803         u32 cur_bit;
4804         bool res;
4805         int i;
4806
4807         res = false;
4808
4809         for (i = 0; sig; i++) {
4810                 cur_bit = (0x1UL << i);
4811                 if (sig & cur_bit) {
4812                         res = true; /* Each bit is real error! */
4813                         if (print) {
4814                                 switch (cur_bit) {
4815                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4816                                         _print_next_block((*par_num)++,
4817                                                           "CSEMI");
4818                                         _print_parity(bp,
4819                                                       CSEM_REG_CSEM_PRTY_STS_0);
4820                                         _print_parity(bp,
4821                                                       CSEM_REG_CSEM_PRTY_STS_1);
4822                                         break;
4823                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4824                                         _print_next_block((*par_num)++, "PXP");
4825                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4826                                         _print_parity(bp,
4827                                                       PXP2_REG_PXP2_PRTY_STS_0);
4828                                         _print_parity(bp,
4829                                                       PXP2_REG_PXP2_PRTY_STS_1);
4830                                         break;
4831                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4832                                         _print_next_block((*par_num)++,
4833                                                           "PXPPCICLOCKCLIENT");
4834                                         break;
4835                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4836                                         _print_next_block((*par_num)++, "CFC");
4837                                         _print_parity(bp,
4838                                                       CFC_REG_CFC_PRTY_STS);
4839                                         break;
4840                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4841                                         _print_next_block((*par_num)++, "CDU");
4842                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4843                                         break;
4844                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4845                                         _print_next_block((*par_num)++, "DMAE");
4846                                         _print_parity(bp,
4847                                                       DMAE_REG_DMAE_PRTY_STS);
4848                                         break;
4849                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4850                                         _print_next_block((*par_num)++, "IGU");
4851                                         if (CHIP_IS_E1x(bp))
4852                                                 _print_parity(bp,
4853                                                         HC_REG_HC_PRTY_STS);
4854                                         else
4855                                                 _print_parity(bp,
4856                                                         IGU_REG_IGU_PRTY_STS);
4857                                         break;
4858                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4859                                         _print_next_block((*par_num)++, "MISC");
4860                                         _print_parity(bp,
4861                                                       MISC_REG_MISC_PRTY_STS);
4862                                         break;
4863                                 }
4864                         }
4865
4866                         /* Clear the bit */
4867                         sig &= ~cur_bit;
4868                 }
4869         }
4870
4871         return res;
4872 }
4873
4874 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4875                                             int *par_num, bool *global,
4876                                             bool print)
4877 {
4878         bool res = false;
4879         u32 cur_bit;
4880         int i;
4881
4882         for (i = 0; sig; i++) {
4883                 cur_bit = (0x1UL << i);
4884                 if (sig & cur_bit) {
4885                         switch (cur_bit) {
4886                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4887                                 if (print)
4888                                         _print_next_block((*par_num)++,
4889                                                           "MCP ROM");
4890                                 *global = true;
4891                                 res = true;
4892                                 break;
4893                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4894                                 if (print)
4895                                         _print_next_block((*par_num)++,
4896                                                           "MCP UMP RX");
4897                                 *global = true;
4898                                 res = true;
4899                                 break;
4900                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4901                                 if (print)
4902                                         _print_next_block((*par_num)++,
4903                                                           "MCP UMP TX");
4904                                 *global = true;
4905                                 res = true;
4906                                 break;
4907                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4908                                 (*par_num)++;
4909                                 /* clear latched SCPAD PATIRY from MCP */
4910                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4911                                        1UL << 10);
4912                                 break;
4913                         }
4914
4915                         /* Clear the bit */
4916                         sig &= ~cur_bit;
4917                 }
4918         }
4919
4920         return res;
4921 }
4922
4923 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4924                                             int *par_num, bool print)
4925 {
4926         u32 cur_bit;
4927         bool res;
4928         int i;
4929
4930         res = false;
4931
4932         for (i = 0; sig; i++) {
4933                 cur_bit = (0x1UL << i);
4934                 if (sig & cur_bit) {
4935                         res = true; /* Each bit is real error! */
4936                         if (print) {
4937                                 switch (cur_bit) {
4938                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4939                                         _print_next_block((*par_num)++,
4940                                                           "PGLUE_B");
4941                                         _print_parity(bp,
4942                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4943                                         break;
4944                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4945                                         _print_next_block((*par_num)++, "ATC");
4946                                         _print_parity(bp,
4947                                                       ATC_REG_ATC_PRTY_STS);
4948                                         break;
4949                                 }
4950                         }
4951                         /* Clear the bit */
4952                         sig &= ~cur_bit;
4953                 }
4954         }
4955
4956         return res;
4957 }
4958
4959 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4960                               u32 *sig)
4961 {
4962         bool res = false;
4963
4964         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4965             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4966             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4967             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4968             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4969                 int par_num = 0;
4970
4971                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4972                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4973                           sig[0] & HW_PRTY_ASSERT_SET_0,
4974                           sig[1] & HW_PRTY_ASSERT_SET_1,
4975                           sig[2] & HW_PRTY_ASSERT_SET_2,
4976                           sig[3] & HW_PRTY_ASSERT_SET_3,
4977                           sig[4] & HW_PRTY_ASSERT_SET_4);
4978                 if (print) {
4979                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4980                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4981                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4982                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4983                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4984                                 netdev_err(bp->dev,
4985                                            "Parity errors detected in blocks: ");
4986                         } else {
4987                                 print = false;
4988                         }
4989                 }
4990                 res |= bnx2x_check_blocks_with_parity0(bp,
4991                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4992                 res |= bnx2x_check_blocks_with_parity1(bp,
4993                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4994                 res |= bnx2x_check_blocks_with_parity2(bp,
4995                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4996                 res |= bnx2x_check_blocks_with_parity3(bp,
4997                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4998                 res |= bnx2x_check_blocks_with_parity4(bp,
4999                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5000
5001                 if (print)
5002                         pr_cont("\n");
5003         }
5004
5005         return res;
5006 }
5007
5008 /**
5009  * bnx2x_chk_parity_attn - checks for parity attentions.
5010  *
5011  * @bp:         driver handle
5012  * @global:     true if there was a global attention
5013  * @print:      show parity attention in syslog
5014  */
5015 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5016 {
5017         struct attn_route attn = { {0} };
5018         int port = BP_PORT(bp);
5019
5020         attn.sig[0] = REG_RD(bp,
5021                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5022                              port*4);
5023         attn.sig[1] = REG_RD(bp,
5024                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5025                              port*4);
5026         attn.sig[2] = REG_RD(bp,
5027                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5028                              port*4);
5029         attn.sig[3] = REG_RD(bp,
5030                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5031                              port*4);
5032         /* Since MCP attentions can't be disabled inside the block, we need to
5033          * read AEU registers to see whether they're currently disabled
5034          */
5035         attn.sig[3] &= ((REG_RD(bp,
5036                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5037                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5038                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5039                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5040
5041         if (!CHIP_IS_E1x(bp))
5042                 attn.sig[4] = REG_RD(bp,
5043                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5044                                      port*4);
5045
5046         return bnx2x_parity_attn(bp, global, print, attn.sig);
5047 }
5048
5049 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5050 {
5051         u32 val;
5052         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5053
5054                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5055                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5056                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5057                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5058                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5059                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5060                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5061                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5062                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5063                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5064                 if (val &
5065                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5066                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5067                 if (val &
5068                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5069                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5070                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5071                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5072                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5073                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5074                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5075                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5076         }
5077         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5078                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5079                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5080                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5081                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5082                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5083                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5084                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5085                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5086                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5087                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5088                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5089                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5090                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5091                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5092         }
5093
5094         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5095                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5096                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5097                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5099         }
5100 }
5101
5102 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5103 {
5104         struct attn_route attn, *group_mask;
5105         int port = BP_PORT(bp);
5106         int index;
5107         u32 reg_addr;
5108         u32 val;
5109         u32 aeu_mask;
5110         bool global = false;
5111
5112         /* need to take HW lock because MCP or other port might also
5113            try to handle this event */
5114         bnx2x_acquire_alr(bp);
5115
5116         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5117 #ifndef BNX2X_STOP_ON_ERROR
5118                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5119                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5120                 /* Disable HW interrupts */
5121                 bnx2x_int_disable(bp);
5122                 /* In case of parity errors don't handle attentions so that
5123                  * other function would "see" parity errors.
5124                  */
5125 #else
5126                 bnx2x_panic();
5127 #endif
5128                 bnx2x_release_alr(bp);
5129                 return;
5130         }
5131
5132         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5133         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5134         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5135         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5136         if (!CHIP_IS_E1x(bp))
5137                 attn.sig[4] =
5138                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5139         else
5140                 attn.sig[4] = 0;
5141
5142         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5143            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5144
5145         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5146                 if (deasserted & (1 << index)) {
5147                         group_mask = &bp->attn_group[index];
5148
5149                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5150                            index,
5151                            group_mask->sig[0], group_mask->sig[1],
5152                            group_mask->sig[2], group_mask->sig[3],
5153                            group_mask->sig[4]);
5154
5155                         bnx2x_attn_int_deasserted4(bp,
5156                                         attn.sig[4] & group_mask->sig[4]);
5157                         bnx2x_attn_int_deasserted3(bp,
5158                                         attn.sig[3] & group_mask->sig[3]);
5159                         bnx2x_attn_int_deasserted1(bp,
5160                                         attn.sig[1] & group_mask->sig[1]);
5161                         bnx2x_attn_int_deasserted2(bp,
5162                                         attn.sig[2] & group_mask->sig[2]);
5163                         bnx2x_attn_int_deasserted0(bp,
5164                                         attn.sig[0] & group_mask->sig[0]);
5165                 }
5166         }
5167
5168         bnx2x_release_alr(bp);
5169
5170         if (bp->common.int_block == INT_BLOCK_HC)
5171                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5172                             COMMAND_REG_ATTN_BITS_CLR);
5173         else
5174                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5175
5176         val = ~deasserted;
5177         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5178            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5179         REG_WR(bp, reg_addr, val);
5180
5181         if (~bp->attn_state & deasserted)
5182                 BNX2X_ERR("IGU ERROR\n");
5183
5184         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5185                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5186
5187         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5188         aeu_mask = REG_RD(bp, reg_addr);
5189
5190         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5191            aeu_mask, deasserted);
5192         aeu_mask |= (deasserted & 0x3ff);
5193         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5194
5195         REG_WR(bp, reg_addr, aeu_mask);
5196         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5197
5198         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5199         bp->attn_state &= ~deasserted;
5200         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5201 }
5202
5203 static void bnx2x_attn_int(struct bnx2x *bp)
5204 {
5205         /* read local copy of bits */
5206         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5207                                                                 attn_bits);
5208         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5209                                                                 attn_bits_ack);
5210         u32 attn_state = bp->attn_state;
5211
5212         /* look for changed bits */
5213         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5214         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5215
5216         DP(NETIF_MSG_HW,
5217            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5218            attn_bits, attn_ack, asserted, deasserted);
5219
5220         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5221                 BNX2X_ERR("BAD attention state\n");
5222
5223         /* handle bits that were raised */
5224         if (asserted)
5225                 bnx2x_attn_int_asserted(bp, asserted);
5226
5227         if (deasserted)
5228                 bnx2x_attn_int_deasserted(bp, deasserted);
5229 }
5230
5231 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5232                       u16 index, u8 op, u8 update)
5233 {
5234         u32 igu_addr = bp->igu_base_addr;
5235         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5236         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5237                              igu_addr);
5238 }
5239
5240 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5241 {
5242         /* No memory barriers */
5243         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5244 }
5245
5246 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5247                                       union event_ring_elem *elem)
5248 {
5249         u8 err = elem->message.error;
5250
5251         if (!bp->cnic_eth_dev.starting_cid  ||
5252             (cid < bp->cnic_eth_dev.starting_cid &&
5253             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5254                 return 1;
5255
5256         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5257
5258         if (unlikely(err)) {
5259
5260                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5261                           cid);
5262                 bnx2x_panic_dump(bp, false);
5263         }
5264         bnx2x_cnic_cfc_comp(bp, cid, err);
5265         return 0;
5266 }
5267
5268 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5269 {
5270         struct bnx2x_mcast_ramrod_params rparam;
5271         int rc;
5272
5273         memset(&rparam, 0, sizeof(rparam));
5274
5275         rparam.mcast_obj = &bp->mcast_obj;
5276
5277         netif_addr_lock_bh(bp->dev);
5278
5279         /* Clear pending state for the last command */
5280         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5281
5282         /* If there are pending mcast commands - send them */
5283         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5284                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5285                 if (rc < 0)
5286                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5287                                   rc);
5288         }
5289
5290         netif_addr_unlock_bh(bp->dev);
5291 }
5292
5293 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5294                                             union event_ring_elem *elem)
5295 {
5296         unsigned long ramrod_flags = 0;
5297         int rc = 0;
5298         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5299         u32 cid = echo & BNX2X_SWCID_MASK;
5300         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5301
5302         /* Always push next commands out, don't wait here */
5303         __set_bit(RAMROD_CONT, &ramrod_flags);
5304
5305         switch (echo >> BNX2X_SWCID_SHIFT) {
5306         case BNX2X_FILTER_MAC_PENDING:
5307                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5308                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5309                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5310                 else
5311                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5312
5313                 break;
5314         case BNX2X_FILTER_VLAN_PENDING:
5315                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5316                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5317                 break;
5318         case BNX2X_FILTER_MCAST_PENDING:
5319                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5320                 /* This is only relevant for 57710 where multicast MACs are
5321                  * configured as unicast MACs using the same ramrod.
5322                  */
5323                 bnx2x_handle_mcast_eqe(bp);
5324                 return;
5325         default:
5326                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5327                 return;
5328         }
5329
5330         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5331
5332         if (rc < 0)
5333                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5334         else if (rc > 0)
5335                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5336 }
5337
5338 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5339
5340 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5341 {
5342         netif_addr_lock_bh(bp->dev);
5343
5344         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5345
5346         /* Send rx_mode command again if was requested */
5347         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5348                 bnx2x_set_storm_rx_mode(bp);
5349         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5350                                     &bp->sp_state))
5351                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5352         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5353                                     &bp->sp_state))
5354                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5355
5356         netif_addr_unlock_bh(bp->dev);
5357 }
5358
5359 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5360                                               union event_ring_elem *elem)
5361 {
5362         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5363                 DP(BNX2X_MSG_SP,
5364                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5365                    elem->message.data.vif_list_event.func_bit_map);
5366                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5367                         elem->message.data.vif_list_event.func_bit_map);
5368         } else if (elem->message.data.vif_list_event.echo ==
5369                    VIF_LIST_RULE_SET) {
5370                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5371                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5372         }
5373 }
5374
5375 /* called with rtnl_lock */
5376 static void bnx2x_after_function_update(struct bnx2x *bp)
5377 {
5378         int q, rc;
5379         struct bnx2x_fastpath *fp;
5380         struct bnx2x_queue_state_params queue_params = {NULL};
5381         struct bnx2x_queue_update_params *q_update_params =
5382                 &queue_params.params.update;
5383
5384         /* Send Q update command with afex vlan removal values for all Qs */
5385         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5386
5387         /* set silent vlan removal values according to vlan mode */
5388         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5389                   &q_update_params->update_flags);
5390         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5391                   &q_update_params->update_flags);
5392         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5393
5394         /* in access mode mark mask and value are 0 to strip all vlans */
5395         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5396                 q_update_params->silent_removal_value = 0;
5397                 q_update_params->silent_removal_mask = 0;
5398         } else {
5399                 q_update_params->silent_removal_value =
5400                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5401                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5402         }
5403
5404         for_each_eth_queue(bp, q) {
5405                 /* Set the appropriate Queue object */
5406                 fp = &bp->fp[q];
5407                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409                 /* send the ramrod */
5410                 rc = bnx2x_queue_state_change(bp, &queue_params);
5411                 if (rc < 0)
5412                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5413                                   q);
5414         }
5415
5416         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5417                 fp = &bp->fp[FCOE_IDX(bp)];
5418                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5419
5420                 /* clear pending completion bit */
5421                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5422
5423                 /* mark latest Q bit */
5424                 smp_mb__before_atomic();
5425                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5426                 smp_mb__after_atomic();
5427
5428                 /* send Q update ramrod for FCoE Q */
5429                 rc = bnx2x_queue_state_change(bp, &queue_params);
5430                 if (rc < 0)
5431                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5432                                   q);
5433         } else {
5434                 /* If no FCoE ring - ACK MCP now */
5435                 bnx2x_link_report(bp);
5436                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5437         }
5438 }
5439
5440 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5441         struct bnx2x *bp, u32 cid)
5442 {
5443         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5444
5445         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5446                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5447         else
5448                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5449 }
5450
5451 static void bnx2x_eq_int(struct bnx2x *bp)
5452 {
5453         u16 hw_cons, sw_cons, sw_prod;
5454         union event_ring_elem *elem;
5455         u8 echo;
5456         u32 cid;
5457         u8 opcode;
5458         int rc, spqe_cnt = 0;
5459         struct bnx2x_queue_sp_obj *q_obj;
5460         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5461         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5462
5463         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5464
5465         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5466          * when we get the next-page we need to adjust so the loop
5467          * condition below will be met. The next element is the size of a
5468          * regular element and hence incrementing by 1
5469          */
5470         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5471                 hw_cons++;
5472
5473         /* This function may never run in parallel with itself for a
5474          * specific bp, thus there is no need in "paired" read memory
5475          * barrier here.
5476          */
5477         sw_cons = bp->eq_cons;
5478         sw_prod = bp->eq_prod;
5479
5480         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5481                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5482
5483         for (; sw_cons != hw_cons;
5484               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5485
5486                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5487
5488                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5489                 if (!rc) {
5490                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5491                            rc);
5492                         goto next_spqe;
5493                 }
5494
5495                 opcode = elem->message.opcode;
5496
5497                 /* handle eq element */
5498                 switch (opcode) {
5499                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5500                         bnx2x_vf_mbx_schedule(bp,
5501                                               &elem->message.data.vf_pf_event);
5502                         continue;
5503
5504                 case EVENT_RING_OPCODE_STAT_QUERY:
5505                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5506                                "got statistics comp event %d\n",
5507                                bp->stats_comp++);
5508                         /* nothing to do with stats comp */
5509                         goto next_spqe;
5510
5511                 case EVENT_RING_OPCODE_CFC_DEL:
5512                         /* handle according to cid range */
5513                         /*
5514                          * we may want to verify here that the bp state is
5515                          * HALTING
5516                          */
5517
5518                         /* elem CID originates from FW; actually LE */
5519                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5520
5521                         DP(BNX2X_MSG_SP,
5522                            "got delete ramrod for MULTI[%d]\n", cid);
5523
5524                         if (CNIC_LOADED(bp) &&
5525                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5526                                 goto next_spqe;
5527
5528                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5529
5530                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5531                                 break;
5532
5533                         goto next_spqe;
5534
5535                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5536                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5537                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5538                         if (f_obj->complete_cmd(bp, f_obj,
5539                                                 BNX2X_F_CMD_TX_STOP))
5540                                 break;
5541                         goto next_spqe;
5542
5543                 case EVENT_RING_OPCODE_START_TRAFFIC:
5544                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5545                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5546                         if (f_obj->complete_cmd(bp, f_obj,
5547                                                 BNX2X_F_CMD_TX_START))
5548                                 break;
5549                         goto next_spqe;
5550
5551                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5552                         echo = elem->message.data.function_update_event.echo;
5553                         if (echo == SWITCH_UPDATE) {
5554                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5555                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5556                                 if (f_obj->complete_cmd(
5557                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5558                                         break;
5559
5560                         } else {
5561                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5562
5563                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5564                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5565                                 f_obj->complete_cmd(bp, f_obj,
5566                                                     BNX2X_F_CMD_AFEX_UPDATE);
5567
5568                                 /* We will perform the Queues update from
5569                                  * sp_rtnl task as all Queue SP operations
5570                                  * should run under rtnl_lock.
5571                                  */
5572                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5573                         }
5574
5575                         goto next_spqe;
5576
5577                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5578                         f_obj->complete_cmd(bp, f_obj,
5579                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5580                         bnx2x_after_afex_vif_lists(bp, elem);
5581                         goto next_spqe;
5582                 case EVENT_RING_OPCODE_FUNCTION_START:
5583                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5584                            "got FUNC_START ramrod\n");
5585                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5586                                 break;
5587
5588                         goto next_spqe;
5589
5590                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5591                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592                            "got FUNC_STOP ramrod\n");
5593                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5594                                 break;
5595
5596                         goto next_spqe;
5597
5598                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5599                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5600                            "got set_timesync ramrod completion\n");
5601                         if (f_obj->complete_cmd(bp, f_obj,
5602                                                 BNX2X_F_CMD_SET_TIMESYNC))
5603                                 break;
5604                         goto next_spqe;
5605                 }
5606
5607                 switch (opcode | bp->state) {
5608                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5609                       BNX2X_STATE_OPEN):
5610                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5611                       BNX2X_STATE_OPENING_WAIT4_PORT):
5612                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5614                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5615                            SW_CID(elem->message.data.eth_event.echo));
5616                         rss_raw->clear_pending(rss_raw);
5617                         break;
5618
5619                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5620                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5621                 case (EVENT_RING_OPCODE_SET_MAC |
5622                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5623                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5624                       BNX2X_STATE_OPEN):
5625                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5626                       BNX2X_STATE_DIAG):
5627                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5629                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5630                         bnx2x_handle_classification_eqe(bp, elem);
5631                         break;
5632
5633                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5634                       BNX2X_STATE_OPEN):
5635                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5636                       BNX2X_STATE_DIAG):
5637                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5639                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5640                         bnx2x_handle_mcast_eqe(bp);
5641                         break;
5642
5643                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5644                       BNX2X_STATE_OPEN):
5645                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5646                       BNX2X_STATE_DIAG):
5647                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5648                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5649                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5650                         bnx2x_handle_rx_mode_eqe(bp);
5651                         break;
5652                 default:
5653                         /* unknown event log error and continue */
5654                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5655                                   elem->message.opcode, bp->state);
5656                 }
5657 next_spqe:
5658                 spqe_cnt++;
5659         } /* for */
5660
5661         smp_mb__before_atomic();
5662         atomic_add(spqe_cnt, &bp->eq_spq_left);
5663
5664         bp->eq_cons = sw_cons;
5665         bp->eq_prod = sw_prod;
5666         /* Make sure that above mem writes were issued towards the memory */
5667         smp_wmb();
5668
5669         /* update producer */
5670         bnx2x_update_eq_prod(bp, bp->eq_prod);
5671 }
5672
5673 static void bnx2x_sp_task(struct work_struct *work)
5674 {
5675         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5676
5677         DP(BNX2X_MSG_SP, "sp task invoked\n");
5678
5679         /* make sure the atomic interrupt_occurred has been written */
5680         smp_rmb();
5681         if (atomic_read(&bp->interrupt_occurred)) {
5682
5683                 /* what work needs to be performed? */
5684                 u16 status = bnx2x_update_dsb_idx(bp);
5685
5686                 DP(BNX2X_MSG_SP, "status %x\n", status);
5687                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5688                 atomic_set(&bp->interrupt_occurred, 0);
5689
5690                 /* HW attentions */
5691                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5692                         bnx2x_attn_int(bp);
5693                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5694                 }
5695
5696                 /* SP events: STAT_QUERY and others */
5697                 if (status & BNX2X_DEF_SB_IDX) {
5698                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5699
5700                         if (FCOE_INIT(bp) &&
5701                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5702                                 /* Prevent local bottom-halves from running as
5703                                  * we are going to change the local NAPI list.
5704                                  */
5705                                 local_bh_disable();
5706                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5707                                 local_bh_enable();
5708                         }
5709
5710                         /* Handle EQ completions */
5711                         bnx2x_eq_int(bp);
5712                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5713                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5714
5715                         status &= ~BNX2X_DEF_SB_IDX;
5716                 }
5717
5718                 /* if status is non zero then perhaps something went wrong */
5719                 if (unlikely(status))
5720                         DP(BNX2X_MSG_SP,
5721                            "got an unknown interrupt! (status 0x%x)\n", status);
5722
5723                 /* ack status block only if something was actually handled */
5724                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5725                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5726         }
5727
5728         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5729         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5730                                &bp->sp_state)) {
5731                 bnx2x_link_report(bp);
5732                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5733         }
5734 }
5735
5736 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5737 {
5738         struct net_device *dev = dev_instance;
5739         struct bnx2x *bp = netdev_priv(dev);
5740
5741         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5742                      IGU_INT_DISABLE, 0);
5743
5744 #ifdef BNX2X_STOP_ON_ERROR
5745         if (unlikely(bp->panic))
5746                 return IRQ_HANDLED;
5747 #endif
5748
5749         if (CNIC_LOADED(bp)) {
5750                 struct cnic_ops *c_ops;
5751
5752                 rcu_read_lock();
5753                 c_ops = rcu_dereference(bp->cnic_ops);
5754                 if (c_ops)
5755                         c_ops->cnic_handler(bp->cnic_data, NULL);
5756                 rcu_read_unlock();
5757         }
5758
5759         /* schedule sp task to perform default status block work, ack
5760          * attentions and enable interrupts.
5761          */
5762         bnx2x_schedule_sp_task(bp);
5763
5764         return IRQ_HANDLED;
5765 }
5766
5767 /* end of slow path */
5768
5769 void bnx2x_drv_pulse(struct bnx2x *bp)
5770 {
5771         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5772                  bp->fw_drv_pulse_wr_seq);
5773 }
5774
5775 static void bnx2x_timer(struct timer_list *t)
5776 {
5777         struct bnx2x *bp = from_timer(bp, t, timer);
5778
5779         if (!netif_running(bp->dev))
5780                 return;
5781
5782         if (IS_PF(bp) &&
5783             !BP_NOMCP(bp)) {
5784                 int mb_idx = BP_FW_MB_IDX(bp);
5785                 u16 drv_pulse;
5786                 u16 mcp_pulse;
5787
5788                 ++bp->fw_drv_pulse_wr_seq;
5789                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5790                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5791                 bnx2x_drv_pulse(bp);
5792
5793                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5794                              MCP_PULSE_SEQ_MASK);
5795                 /* The delta between driver pulse and mcp response
5796                  * should not get too big. If the MFW is more than 5 pulses
5797                  * behind, we should worry about it enough to generate an error
5798                  * log.
5799                  */
5800                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5801                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5802                                   drv_pulse, mcp_pulse);
5803         }
5804
5805         if (bp->state == BNX2X_STATE_OPEN)
5806                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5807
5808         /* sample pf vf bulletin board for new posts from pf */
5809         if (IS_VF(bp))
5810                 bnx2x_timer_sriov(bp);
5811
5812         mod_timer(&bp->timer, jiffies + bp->current_interval);
5813 }
5814
5815 /* end of Statistics */
5816
5817 /* nic init */
5818
5819 /*
5820  * nic init service functions
5821  */
5822
5823 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5824 {
5825         u32 i;
5826         if (!(len%4) && !(addr%4))
5827                 for (i = 0; i < len; i += 4)
5828                         REG_WR(bp, addr + i, fill);
5829         else
5830                 for (i = 0; i < len; i++)
5831                         REG_WR8(bp, addr + i, fill);
5832 }
5833
5834 /* helper: writes FP SP data to FW - data_size in dwords */
5835 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5836                                 int fw_sb_id,
5837                                 u32 *sb_data_p,
5838                                 u32 data_size)
5839 {
5840         int index;
5841         for (index = 0; index < data_size; index++)
5842                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5843                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5844                         sizeof(u32)*index,
5845                         *(sb_data_p + index));
5846 }
5847
5848 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5849 {
5850         u32 *sb_data_p;
5851         u32 data_size = 0;
5852         struct hc_status_block_data_e2 sb_data_e2;
5853         struct hc_status_block_data_e1x sb_data_e1x;
5854
5855         /* disable the function first */
5856         if (!CHIP_IS_E1x(bp)) {
5857                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5858                 sb_data_e2.common.state = SB_DISABLED;
5859                 sb_data_e2.common.p_func.vf_valid = false;
5860                 sb_data_p = (u32 *)&sb_data_e2;
5861                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5862         } else {
5863                 memset(&sb_data_e1x, 0,
5864                        sizeof(struct hc_status_block_data_e1x));
5865                 sb_data_e1x.common.state = SB_DISABLED;
5866                 sb_data_e1x.common.p_func.vf_valid = false;
5867                 sb_data_p = (u32 *)&sb_data_e1x;
5868                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5869         }
5870         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5871
5872         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5873                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5874                         CSTORM_STATUS_BLOCK_SIZE);
5875         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5876                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5877                         CSTORM_SYNC_BLOCK_SIZE);
5878 }
5879
5880 /* helper:  writes SP SB data to FW */
5881 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5882                 struct hc_sp_status_block_data *sp_sb_data)
5883 {
5884         int func = BP_FUNC(bp);
5885         int i;
5886         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5887                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5888                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5889                         i*sizeof(u32),
5890                         *((u32 *)sp_sb_data + i));
5891 }
5892
5893 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5894 {
5895         int func = BP_FUNC(bp);
5896         struct hc_sp_status_block_data sp_sb_data;
5897         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5898
5899         sp_sb_data.state = SB_DISABLED;
5900         sp_sb_data.p_func.vf_valid = false;
5901
5902         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5903
5904         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5905                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5906                         CSTORM_SP_STATUS_BLOCK_SIZE);
5907         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5908                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5909                         CSTORM_SP_SYNC_BLOCK_SIZE);
5910 }
5911
5912 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5913                                            int igu_sb_id, int igu_seg_id)
5914 {
5915         hc_sm->igu_sb_id = igu_sb_id;
5916         hc_sm->igu_seg_id = igu_seg_id;
5917         hc_sm->timer_value = 0xFF;
5918         hc_sm->time_to_expire = 0xFFFFFFFF;
5919 }
5920
5921 /* allocates state machine ids. */
5922 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5923 {
5924         /* zero out state machine indices */
5925         /* rx indices */
5926         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5927
5928         /* tx indices */
5929         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5930         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5931         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5932         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5933
5934         /* map indices */
5935         /* rx indices */
5936         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5937                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5938
5939         /* tx indices */
5940         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5941                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5943                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5944         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5945                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5947                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 }
5949
5950 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5951                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5952 {
5953         int igu_seg_id;
5954
5955         struct hc_status_block_data_e2 sb_data_e2;
5956         struct hc_status_block_data_e1x sb_data_e1x;
5957         struct hc_status_block_sm  *hc_sm_p;
5958         int data_size;
5959         u32 *sb_data_p;
5960
5961         if (CHIP_INT_MODE_IS_BC(bp))
5962                 igu_seg_id = HC_SEG_ACCESS_NORM;
5963         else
5964                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5965
5966         bnx2x_zero_fp_sb(bp, fw_sb_id);
5967
5968         if (!CHIP_IS_E1x(bp)) {
5969                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5970                 sb_data_e2.common.state = SB_ENABLED;
5971                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5972                 sb_data_e2.common.p_func.vf_id = vfid;
5973                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5974                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5975                 sb_data_e2.common.same_igu_sb_1b = true;
5976                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5977                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5978                 hc_sm_p = sb_data_e2.common.state_machine;
5979                 sb_data_p = (u32 *)&sb_data_e2;
5980                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5981                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5982         } else {
5983                 memset(&sb_data_e1x, 0,
5984                        sizeof(struct hc_status_block_data_e1x));
5985                 sb_data_e1x.common.state = SB_ENABLED;
5986                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5987                 sb_data_e1x.common.p_func.vf_id = 0xff;
5988                 sb_data_e1x.common.p_func.vf_valid = false;
5989                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5990                 sb_data_e1x.common.same_igu_sb_1b = true;
5991                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5992                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5993                 hc_sm_p = sb_data_e1x.common.state_machine;
5994                 sb_data_p = (u32 *)&sb_data_e1x;
5995                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5996                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5997         }
5998
5999         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6000                                        igu_sb_id, igu_seg_id);
6001         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6002                                        igu_sb_id, igu_seg_id);
6003
6004         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6005
6006         /* write indices to HW - PCI guarantees endianity of regpairs */
6007         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6008 }
6009
6010 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6011                                      u16 tx_usec, u16 rx_usec)
6012 {
6013         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6014                                     false, rx_usec);
6015         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6016                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6017                                        tx_usec);
6018         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6019                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6020                                        tx_usec);
6021         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6022                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6023                                        tx_usec);
6024 }
6025
6026 static void bnx2x_init_def_sb(struct bnx2x *bp)
6027 {
6028         struct host_sp_status_block *def_sb = bp->def_status_blk;
6029         dma_addr_t mapping = bp->def_status_blk_mapping;
6030         int igu_sp_sb_index;
6031         int igu_seg_id;
6032         int port = BP_PORT(bp);
6033         int func = BP_FUNC(bp);
6034         int reg_offset, reg_offset_en5;
6035         u64 section;
6036         int index;
6037         struct hc_sp_status_block_data sp_sb_data;
6038         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6039
6040         if (CHIP_INT_MODE_IS_BC(bp)) {
6041                 igu_sp_sb_index = DEF_SB_IGU_ID;
6042                 igu_seg_id = HC_SEG_ACCESS_DEF;
6043         } else {
6044                 igu_sp_sb_index = bp->igu_dsb_id;
6045                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6046         }
6047
6048         /* ATTN */
6049         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6050                                             atten_status_block);
6051         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6052
6053         bp->attn_state = 0;
6054
6055         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6056                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6057         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6058                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6059         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6060                 int sindex;
6061                 /* take care of sig[0]..sig[4] */
6062                 for (sindex = 0; sindex < 4; sindex++)
6063                         bp->attn_group[index].sig[sindex] =
6064                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6065
6066                 if (!CHIP_IS_E1x(bp))
6067                         /*
6068                          * enable5 is separate from the rest of the registers,
6069                          * and therefore the address skip is 4
6070                          * and not 16 between the different groups
6071                          */
6072                         bp->attn_group[index].sig[4] = REG_RD(bp,
6073                                         reg_offset_en5 + 0x4*index);
6074                 else
6075                         bp->attn_group[index].sig[4] = 0;
6076         }
6077
6078         if (bp->common.int_block == INT_BLOCK_HC) {
6079                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6080                                      HC_REG_ATTN_MSG0_ADDR_L);
6081
6082                 REG_WR(bp, reg_offset, U64_LO(section));
6083                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6084         } else if (!CHIP_IS_E1x(bp)) {
6085                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6086                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6087         }
6088
6089         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6090                                             sp_sb);
6091
6092         bnx2x_zero_sp_sb(bp);
6093
6094         /* PCI guarantees endianity of regpairs */
6095         sp_sb_data.state                = SB_ENABLED;
6096         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6097         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6098         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6099         sp_sb_data.igu_seg_id           = igu_seg_id;
6100         sp_sb_data.p_func.pf_id         = func;
6101         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6102         sp_sb_data.p_func.vf_id         = 0xff;
6103
6104         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6105
6106         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6107 }
6108
6109 void bnx2x_update_coalesce(struct bnx2x *bp)
6110 {
6111         int i;
6112
6113         for_each_eth_queue(bp, i)
6114                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6115                                          bp->tx_ticks, bp->rx_ticks);
6116 }
6117
6118 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6119 {
6120         spin_lock_init(&bp->spq_lock);
6121         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6122
6123         bp->spq_prod_idx = 0;
6124         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6125         bp->spq_prod_bd = bp->spq;
6126         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6127 }
6128
6129 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6130 {
6131         int i;
6132         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6133                 union event_ring_elem *elem =
6134                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6135
6136                 elem->next_page.addr.hi =
6137                         cpu_to_le32(U64_HI(bp->eq_mapping +
6138                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6139                 elem->next_page.addr.lo =
6140                         cpu_to_le32(U64_LO(bp->eq_mapping +
6141                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6142         }
6143         bp->eq_cons = 0;
6144         bp->eq_prod = NUM_EQ_DESC;
6145         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6146         /* we want a warning message before it gets wrought... */
6147         atomic_set(&bp->eq_spq_left,
6148                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6149 }
6150
6151 /* called with netif_addr_lock_bh() */
6152 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6153                                unsigned long rx_mode_flags,
6154                                unsigned long rx_accept_flags,
6155                                unsigned long tx_accept_flags,
6156                                unsigned long ramrod_flags)
6157 {
6158         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6159         int rc;
6160
6161         memset(&ramrod_param, 0, sizeof(ramrod_param));
6162
6163         /* Prepare ramrod parameters */
6164         ramrod_param.cid = 0;
6165         ramrod_param.cl_id = cl_id;
6166         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6167         ramrod_param.func_id = BP_FUNC(bp);
6168
6169         ramrod_param.pstate = &bp->sp_state;
6170         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6171
6172         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6173         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6174
6175         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6176
6177         ramrod_param.ramrod_flags = ramrod_flags;
6178         ramrod_param.rx_mode_flags = rx_mode_flags;
6179
6180         ramrod_param.rx_accept_flags = rx_accept_flags;
6181         ramrod_param.tx_accept_flags = tx_accept_flags;
6182
6183         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6184         if (rc < 0) {
6185                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6186                 return rc;
6187         }
6188
6189         return 0;
6190 }
6191
6192 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6193                                    unsigned long *rx_accept_flags,
6194                                    unsigned long *tx_accept_flags)
6195 {
6196         /* Clear the flags first */
6197         *rx_accept_flags = 0;
6198         *tx_accept_flags = 0;
6199
6200         switch (rx_mode) {
6201         case BNX2X_RX_MODE_NONE:
6202                 /*
6203                  * 'drop all' supersedes any accept flags that may have been
6204                  * passed to the function.
6205                  */
6206                 break;
6207         case BNX2X_RX_MODE_NORMAL:
6208                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6210                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211
6212                 /* internal switching mode */
6213                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6215                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216
6217                 if (bp->accept_any_vlan) {
6218                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220                 }
6221
6222                 break;
6223         case BNX2X_RX_MODE_ALLMULTI:
6224                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6225                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6226                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6227
6228                 /* internal switching mode */
6229                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6230                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6231                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6232
6233                 if (bp->accept_any_vlan) {
6234                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6235                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6236                 }
6237
6238                 break;
6239         case BNX2X_RX_MODE_PROMISC:
6240                 /* According to definition of SI mode, iface in promisc mode
6241                  * should receive matched and unmatched (in resolution of port)
6242                  * unicast packets.
6243                  */
6244                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6245                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6246                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6247                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6248
6249                 /* internal switching mode */
6250                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6251                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6252
6253                 if (IS_MF_SI(bp))
6254                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6255                 else
6256                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6257
6258                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6259                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6260
6261                 break;
6262         default:
6263                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6264                 return -EINVAL;
6265         }
6266
6267         return 0;
6268 }
6269
6270 /* called with netif_addr_lock_bh() */
6271 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6272 {
6273         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6274         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6275         int rc;
6276
6277         if (!NO_FCOE(bp))
6278                 /* Configure rx_mode of FCoE Queue */
6279                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6280
6281         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6282                                      &tx_accept_flags);
6283         if (rc)
6284                 return rc;
6285
6286         __set_bit(RAMROD_RX, &ramrod_flags);
6287         __set_bit(RAMROD_TX, &ramrod_flags);
6288
6289         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6290                                    rx_accept_flags, tx_accept_flags,
6291                                    ramrod_flags);
6292 }
6293
6294 static void bnx2x_init_internal_common(struct bnx2x *bp)
6295 {
6296         int i;
6297
6298         /* Zero this manually as its initialization is
6299            currently missing in the initTool */
6300         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6301                 REG_WR(bp, BAR_USTRORM_INTMEM +
6302                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6303         if (!CHIP_IS_E1x(bp)) {
6304                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6305                         CHIP_INT_MODE_IS_BC(bp) ?
6306                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6307         }
6308 }
6309
6310 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6311 {
6312         switch (load_code) {
6313         case FW_MSG_CODE_DRV_LOAD_COMMON:
6314         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6315                 bnx2x_init_internal_common(bp);
6316                 fallthrough;
6317
6318         case FW_MSG_CODE_DRV_LOAD_PORT:
6319                 /* nothing to do */
6320                 fallthrough;
6321
6322         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6323                 /* internal memory per function is
6324                    initialized inside bnx2x_pf_init */
6325                 break;
6326
6327         default:
6328                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6329                 break;
6330         }
6331 }
6332
6333 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6334 {
6335         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6336 }
6337
6338 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6339 {
6340         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6341 }
6342
6343 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6344 {
6345         if (CHIP_IS_E1x(fp->bp))
6346                 return BP_L_ID(fp->bp) + fp->index;
6347         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6348                 return bnx2x_fp_igu_sb_id(fp);
6349 }
6350
6351 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6352 {
6353         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6354         u8 cos;
6355         unsigned long q_type = 0;
6356         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6357         fp->rx_queue = fp_idx;
6358         fp->cid = fp_idx;
6359         fp->cl_id = bnx2x_fp_cl_id(fp);
6360         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6361         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6362         /* qZone id equals to FW (per path) client id */
6363         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6364
6365         /* init shortcut */
6366         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6367
6368         /* Setup SB indices */
6369         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6370
6371         /* Configure Queue State object */
6372         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6373         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6374
6375         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6376
6377         /* init tx data */
6378         for_each_cos_in_tx_queue(fp, cos) {
6379                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6380                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6381                                   FP_COS_TO_TXQ(fp, cos, bp),
6382                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6383                 cids[cos] = fp->txdata_ptr[cos]->cid;
6384         }
6385
6386         /* nothing more for vf to do here */
6387         if (IS_VF(bp))
6388                 return;
6389
6390         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6391                       fp->fw_sb_id, fp->igu_sb_id);
6392         bnx2x_update_fpsb_idx(fp);
6393         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6394                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6395                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6396
6397         /**
6398          * Configure classification DBs: Always enable Tx switching
6399          */
6400         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6401
6402         DP(NETIF_MSG_IFUP,
6403            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6404            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6405            fp->igu_sb_id);
6406 }
6407
6408 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6409 {
6410         int i;
6411
6412         for (i = 1; i <= NUM_TX_RINGS; i++) {
6413                 struct eth_tx_next_bd *tx_next_bd =
6414                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6415
6416                 tx_next_bd->addr_hi =
6417                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6418                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6419                 tx_next_bd->addr_lo =
6420                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6421                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6422         }
6423
6424         *txdata->tx_cons_sb = cpu_to_le16(0);
6425
6426         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6427         txdata->tx_db.data.zero_fill1 = 0;
6428         txdata->tx_db.data.prod = 0;
6429
6430         txdata->tx_pkt_prod = 0;
6431         txdata->tx_pkt_cons = 0;
6432         txdata->tx_bd_prod = 0;
6433         txdata->tx_bd_cons = 0;
6434         txdata->tx_pkt = 0;
6435 }
6436
6437 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6438 {
6439         int i;
6440
6441         for_each_tx_queue_cnic(bp, i)
6442                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6443 }
6444
6445 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6446 {
6447         int i;
6448         u8 cos;
6449
6450         for_each_eth_queue(bp, i)
6451                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6452                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6453 }
6454
6455 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6456 {
6457         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6458         unsigned long q_type = 0;
6459
6460         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6461         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6462                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6463         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6464         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6465         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6466         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6467         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6468                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6469                           fp);
6470
6471         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6472
6473         /* qZone id equals to FW (per path) client id */
6474         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6475         /* init shortcut */
6476         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6477                 bnx2x_rx_ustorm_prods_offset(fp);
6478
6479         /* Configure Queue State object */
6480         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6481         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6482
6483         /* No multi-CoS for FCoE L2 client */
6484         BUG_ON(fp->max_cos != 1);
6485
6486         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6487                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6488                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6489
6490         DP(NETIF_MSG_IFUP,
6491            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6492            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6493            fp->igu_sb_id);
6494 }
6495
6496 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6497 {
6498         if (!NO_FCOE(bp))
6499                 bnx2x_init_fcoe_fp(bp);
6500
6501         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6502                       BNX2X_VF_ID_INVALID, false,
6503                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6504
6505         /* ensure status block indices were read */
6506         rmb();
6507         bnx2x_init_rx_rings_cnic(bp);
6508         bnx2x_init_tx_rings_cnic(bp);
6509
6510         /* flush all */
6511         mb();
6512 }
6513
6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6515 {
6516         int i;
6517
6518         /* Setup NIC internals and enable interrupts */
6519         for_each_eth_queue(bp, i)
6520                 bnx2x_init_eth_fp(bp, i);
6521
6522         /* ensure status block indices were read */
6523         rmb();
6524         bnx2x_init_rx_rings(bp);
6525         bnx2x_init_tx_rings(bp);
6526
6527         if (IS_PF(bp)) {
6528                 /* Initialize MOD_ABS interrupts */
6529                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6530                                        bp->common.shmem_base,
6531                                        bp->common.shmem2_base, BP_PORT(bp));
6532
6533                 /* initialize the default status block and sp ring */
6534                 bnx2x_init_def_sb(bp);
6535                 bnx2x_update_dsb_idx(bp);
6536                 bnx2x_init_sp_ring(bp);
6537         } else {
6538                 bnx2x_memset_stats(bp);
6539         }
6540 }
6541
6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6543 {
6544         bnx2x_init_eq_ring(bp);
6545         bnx2x_init_internal(bp, load_code);
6546         bnx2x_pf_init(bp);
6547         bnx2x_stats_init(bp);
6548
6549         /* flush all before enabling interrupts */
6550         mb();
6551
6552         bnx2x_int_enable(bp);
6553
6554         /* Check for SPIO5 */
6555         bnx2x_attn_int_deasserted0(bp,
6556                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6557                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6558 }
6559
6560 /* gzip service functions */
6561 static int bnx2x_gunzip_init(struct bnx2x *bp)
6562 {
6563         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6564                                             &bp->gunzip_mapping, GFP_KERNEL);
6565         if (bp->gunzip_buf  == NULL)
6566                 goto gunzip_nomem1;
6567
6568         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6569         if (bp->strm  == NULL)
6570                 goto gunzip_nomem2;
6571
6572         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6573         if (bp->strm->workspace == NULL)
6574                 goto gunzip_nomem3;
6575
6576         return 0;
6577
6578 gunzip_nomem3:
6579         kfree(bp->strm);
6580         bp->strm = NULL;
6581
6582 gunzip_nomem2:
6583         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6584                           bp->gunzip_mapping);
6585         bp->gunzip_buf = NULL;
6586
6587 gunzip_nomem1:
6588         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6589         return -ENOMEM;
6590 }
6591
6592 static void bnx2x_gunzip_end(struct bnx2x *bp)
6593 {
6594         if (bp->strm) {
6595                 vfree(bp->strm->workspace);
6596                 kfree(bp->strm);
6597                 bp->strm = NULL;
6598         }
6599
6600         if (bp->gunzip_buf) {
6601                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6602                                   bp->gunzip_mapping);
6603                 bp->gunzip_buf = NULL;
6604         }
6605 }
6606
6607 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6608 {
6609         int n, rc;
6610
6611         /* check gzip header */
6612         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6613                 BNX2X_ERR("Bad gzip header\n");
6614                 return -EINVAL;
6615         }
6616
6617         n = 10;
6618
6619 #define FNAME                           0x8
6620
6621         if (zbuf[3] & FNAME)
6622                 while ((zbuf[n++] != 0) && (n < len));
6623
6624         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6625         bp->strm->avail_in = len - n;
6626         bp->strm->next_out = bp->gunzip_buf;
6627         bp->strm->avail_out = FW_BUF_SIZE;
6628
6629         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6630         if (rc != Z_OK)
6631                 return rc;
6632
6633         rc = zlib_inflate(bp->strm, Z_FINISH);
6634         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6635                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6636                            bp->strm->msg);
6637
6638         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6639         if (bp->gunzip_outlen & 0x3)
6640                 netdev_err(bp->dev,
6641                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6642                                 bp->gunzip_outlen);
6643         bp->gunzip_outlen >>= 2;
6644
6645         zlib_inflateEnd(bp->strm);
6646
6647         if (rc == Z_STREAM_END)
6648                 return 0;
6649
6650         return rc;
6651 }
6652
6653 /* nic load/unload */
6654
6655 /*
6656  * General service functions
6657  */
6658
6659 /* send a NIG loopback debug packet */
6660 static void bnx2x_lb_pckt(struct bnx2x *bp)
6661 {
6662         u32 wb_write[3];
6663
6664         /* Ethernet source and destination addresses */
6665         wb_write[0] = 0x55555555;
6666         wb_write[1] = 0x55555555;
6667         wb_write[2] = 0x20;             /* SOP */
6668         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6669
6670         /* NON-IP protocol */
6671         wb_write[0] = 0x09000000;
6672         wb_write[1] = 0x55555555;
6673         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6674         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6675 }
6676
6677 /* some of the internal memories
6678  * are not directly readable from the driver
6679  * to test them we send debug packets
6680  */
6681 static int bnx2x_int_mem_test(struct bnx2x *bp)
6682 {
6683         int factor;
6684         int count, i;
6685         u32 val = 0;
6686
6687         if (CHIP_REV_IS_FPGA(bp))
6688                 factor = 120;
6689         else if (CHIP_REV_IS_EMUL(bp))
6690                 factor = 200;
6691         else
6692                 factor = 1;
6693
6694         /* Disable inputs of parser neighbor blocks */
6695         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6696         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6697         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6698         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6699
6700         /*  Write 0 to parser credits for CFC search request */
6701         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6702
6703         /* send Ethernet packet */
6704         bnx2x_lb_pckt(bp);
6705
6706         /* TODO do i reset NIG statistic? */
6707         /* Wait until NIG register shows 1 packet of size 0x10 */
6708         count = 1000 * factor;
6709         while (count) {
6710
6711                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6712                 val = *bnx2x_sp(bp, wb_data[0]);
6713                 if (val == 0x10)
6714                         break;
6715
6716                 usleep_range(10000, 20000);
6717                 count--;
6718         }
6719         if (val != 0x10) {
6720                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6721                 return -1;
6722         }
6723
6724         /* Wait until PRS register shows 1 packet */
6725         count = 1000 * factor;
6726         while (count) {
6727                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728                 if (val == 1)
6729                         break;
6730
6731                 usleep_range(10000, 20000);
6732                 count--;
6733         }
6734         if (val != 0x1) {
6735                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6736                 return -2;
6737         }
6738
6739         /* Reset and init BRB, PRS */
6740         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6741         msleep(50);
6742         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6743         msleep(50);
6744         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6745         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6746
6747         DP(NETIF_MSG_HW, "part2\n");
6748
6749         /* Disable inputs of parser neighbor blocks */
6750         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6751         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6752         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6753         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6754
6755         /* Write 0 to parser credits for CFC search request */
6756         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6757
6758         /* send 10 Ethernet packets */
6759         for (i = 0; i < 10; i++)
6760                 bnx2x_lb_pckt(bp);
6761
6762         /* Wait until NIG register shows 10 + 1
6763            packets of size 11*0x10 = 0xb0 */
6764         count = 1000 * factor;
6765         while (count) {
6766
6767                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6768                 val = *bnx2x_sp(bp, wb_data[0]);
6769                 if (val == 0xb0)
6770                         break;
6771
6772                 usleep_range(10000, 20000);
6773                 count--;
6774         }
6775         if (val != 0xb0) {
6776                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6777                 return -3;
6778         }
6779
6780         /* Wait until PRS register shows 2 packets */
6781         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6782         if (val != 2)
6783                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6784
6785         /* Write 1 to parser credits for CFC search request */
6786         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6787
6788         /* Wait until PRS register shows 3 packets */
6789         msleep(10 * factor);
6790         /* Wait until NIG register shows 1 packet of size 0x10 */
6791         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792         if (val != 3)
6793                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794
6795         /* clear NIG EOP FIFO */
6796         for (i = 0; i < 11; i++)
6797                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6798         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6799         if (val != 1) {
6800                 BNX2X_ERR("clear of NIG failed\n");
6801                 return -4;
6802         }
6803
6804         /* Reset and init BRB, PRS, NIG */
6805         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6806         msleep(50);
6807         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6808         msleep(50);
6809         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6810         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6811         if (!CNIC_SUPPORT(bp))
6812                 /* set NIC mode */
6813                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6814
6815         /* Enable inputs of parser neighbor blocks */
6816         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6817         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6818         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6819         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6820
6821         DP(NETIF_MSG_HW, "done\n");
6822
6823         return 0; /* OK */
6824 }
6825
6826 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6827 {
6828         u32 val;
6829
6830         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6831         if (!CHIP_IS_E1x(bp))
6832                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6833         else
6834                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6835         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6836         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6837         /*
6838          * mask read length error interrupts in brb for parser
6839          * (parsing unit and 'checksum and crc' unit)
6840          * these errors are legal (PU reads fixed length and CAC can cause
6841          * read length error on truncated packets)
6842          */
6843         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6844         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6845         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6846         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6847         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6848         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6849 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6850 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6851         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6852         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6853         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6854 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6855 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6856         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6857         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6858         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6859         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6860 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6861 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6862
6863         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6864                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6865                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6866         if (!CHIP_IS_E1x(bp))
6867                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6868                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6869         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6870
6871         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6872         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6873         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6874 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6875
6876         if (!CHIP_IS_E1x(bp))
6877                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6878                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6879
6880         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6881         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6882 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6883         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6884 }
6885
6886 static void bnx2x_reset_common(struct bnx2x *bp)
6887 {
6888         u32 val = 0x1400;
6889
6890         /* reset_common */
6891         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6892                0xd3ffff7f);
6893
6894         if (CHIP_IS_E3(bp)) {
6895                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6896                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6897         }
6898
6899         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6900 }
6901
6902 static void bnx2x_setup_dmae(struct bnx2x *bp)
6903 {
6904         bp->dmae_ready = 0;
6905         spin_lock_init(&bp->dmae_lock);
6906 }
6907
6908 static void bnx2x_init_pxp(struct bnx2x *bp)
6909 {
6910         u16 devctl;
6911         int r_order, w_order;
6912
6913         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6914         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6915         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6916         if (bp->mrrs == -1)
6917                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6918         else {
6919                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6920                 r_order = bp->mrrs;
6921         }
6922
6923         bnx2x_init_pxp_arb(bp, r_order, w_order);
6924 }
6925
6926 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6927 {
6928         int is_required;
6929         u32 val;
6930         int port;
6931
6932         if (BP_NOMCP(bp))
6933                 return;
6934
6935         is_required = 0;
6936         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6937               SHARED_HW_CFG_FAN_FAILURE_MASK;
6938
6939         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6940                 is_required = 1;
6941
6942         /*
6943          * The fan failure mechanism is usually related to the PHY type since
6944          * the power consumption of the board is affected by the PHY. Currently,
6945          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6946          */
6947         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6948                 for (port = PORT_0; port < PORT_MAX; port++) {
6949                         is_required |=
6950                                 bnx2x_fan_failure_det_req(
6951                                         bp,
6952                                         bp->common.shmem_base,
6953                                         bp->common.shmem2_base,
6954                                         port);
6955                 }
6956
6957         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6958
6959         if (is_required == 0)
6960                 return;
6961
6962         /* Fan failure is indicated by SPIO 5 */
6963         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6964
6965         /* set to active low mode */
6966         val = REG_RD(bp, MISC_REG_SPIO_INT);
6967         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6968         REG_WR(bp, MISC_REG_SPIO_INT, val);
6969
6970         /* enable interrupt to signal the IGU */
6971         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6972         val |= MISC_SPIO_SPIO5;
6973         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6974 }
6975
6976 void bnx2x_pf_disable(struct bnx2x *bp)
6977 {
6978         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6979         val &= ~IGU_PF_CONF_FUNC_EN;
6980
6981         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6982         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6983         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6984 }
6985
6986 static void bnx2x__common_init_phy(struct bnx2x *bp)
6987 {
6988         u32 shmem_base[2], shmem2_base[2];
6989         /* Avoid common init in case MFW supports LFA */
6990         if (SHMEM2_RD(bp, size) >
6991             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6992                 return;
6993         shmem_base[0] =  bp->common.shmem_base;
6994         shmem2_base[0] = bp->common.shmem2_base;
6995         if (!CHIP_IS_E1x(bp)) {
6996                 shmem_base[1] =
6997                         SHMEM2_RD(bp, other_shmem_base_addr);
6998                 shmem2_base[1] =
6999                         SHMEM2_RD(bp, other_shmem2_base_addr);
7000         }
7001         bnx2x_acquire_phy_lock(bp);
7002         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7003                               bp->common.chip_id);
7004         bnx2x_release_phy_lock(bp);
7005 }
7006
7007 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7008 {
7009         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7010         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7011         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7012         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7013         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7014
7015         /* make sure this value is 0 */
7016         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7017
7018         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7019         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7020         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7021         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7022 }
7023
7024 static void bnx2x_set_endianity(struct bnx2x *bp)
7025 {
7026 #ifdef __BIG_ENDIAN
7027         bnx2x_config_endianity(bp, 1);
7028 #else
7029         bnx2x_config_endianity(bp, 0);
7030 #endif
7031 }
7032
7033 static void bnx2x_reset_endianity(struct bnx2x *bp)
7034 {
7035         bnx2x_config_endianity(bp, 0);
7036 }
7037
7038 /**
7039  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7040  *
7041  * @bp:         driver handle
7042  */
7043 static int bnx2x_init_hw_common(struct bnx2x *bp)
7044 {
7045         u32 val;
7046
7047         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7048
7049         /*
7050          * take the RESET lock to protect undi_unload flow from accessing
7051          * registers while we're resetting the chip
7052          */
7053         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7054
7055         bnx2x_reset_common(bp);
7056         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7057
7058         val = 0xfffc;
7059         if (CHIP_IS_E3(bp)) {
7060                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7061                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7062         }
7063         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7064
7065         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7066
7067         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7068
7069         if (!CHIP_IS_E1x(bp)) {
7070                 u8 abs_func_id;
7071
7072                 /**
7073                  * 4-port mode or 2-port mode we need to turn of master-enable
7074                  * for everyone, after that, turn it back on for self.
7075                  * so, we disregard multi-function or not, and always disable
7076                  * for all functions on the given path, this means 0,2,4,6 for
7077                  * path 0 and 1,3,5,7 for path 1
7078                  */
7079                 for (abs_func_id = BP_PATH(bp);
7080                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7081                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7082                                 REG_WR(bp,
7083                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7084                                     1);
7085                                 continue;
7086                         }
7087
7088                         bnx2x_pretend_func(bp, abs_func_id);
7089                         /* clear pf enable */
7090                         bnx2x_pf_disable(bp);
7091                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7092                 }
7093         }
7094
7095         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7096         if (CHIP_IS_E1(bp)) {
7097                 /* enable HW interrupt from PXP on USDM overflow
7098                    bit 16 on INT_MASK_0 */
7099                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7100         }
7101
7102         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7103         bnx2x_init_pxp(bp);
7104         bnx2x_set_endianity(bp);
7105         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7106
7107         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7108                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7109
7110         /* let the HW do it's magic ... */
7111         msleep(100);
7112         /* finish PXP init */
7113         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7114         if (val != 1) {
7115                 BNX2X_ERR("PXP2 CFG failed\n");
7116                 return -EBUSY;
7117         }
7118         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7119         if (val != 1) {
7120                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7121                 return -EBUSY;
7122         }
7123
7124         /* Timers bug workaround E2 only. We need to set the entire ILT to
7125          * have entries with value "0" and valid bit on.
7126          * This needs to be done by the first PF that is loaded in a path
7127          * (i.e. common phase)
7128          */
7129         if (!CHIP_IS_E1x(bp)) {
7130 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7131  * (i.e. vnic3) to start even if it is marked as "scan-off".
7132  * This occurs when a different function (func2,3) is being marked
7133  * as "scan-off". Real-life scenario for example: if a driver is being
7134  * load-unloaded while func6,7 are down. This will cause the timer to access
7135  * the ilt, translate to a logical address and send a request to read/write.
7136  * Since the ilt for the function that is down is not valid, this will cause
7137  * a translation error which is unrecoverable.
7138  * The Workaround is intended to make sure that when this happens nothing fatal
7139  * will occur. The workaround:
7140  *      1.  First PF driver which loads on a path will:
7141  *              a.  After taking the chip out of reset, by using pretend,
7142  *                  it will write "0" to the following registers of
7143  *                  the other vnics.
7144  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7145  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7146  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7147  *                  And for itself it will write '1' to
7148  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7149  *                  dmae-operations (writing to pram for example.)
7150  *                  note: can be done for only function 6,7 but cleaner this
7151  *                        way.
7152  *              b.  Write zero+valid to the entire ILT.
7153  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7154  *                  VNIC3 (of that port). The range allocated will be the
7155  *                  entire ILT. This is needed to prevent  ILT range error.
7156  *      2.  Any PF driver load flow:
7157  *              a.  ILT update with the physical addresses of the allocated
7158  *                  logical pages.
7159  *              b.  Wait 20msec. - note that this timeout is needed to make
7160  *                  sure there are no requests in one of the PXP internal
7161  *                  queues with "old" ILT addresses.
7162  *              c.  PF enable in the PGLC.
7163  *              d.  Clear the was_error of the PF in the PGLC. (could have
7164  *                  occurred while driver was down)
7165  *              e.  PF enable in the CFC (WEAK + STRONG)
7166  *              f.  Timers scan enable
7167  *      3.  PF driver unload flow:
7168  *              a.  Clear the Timers scan_en.
7169  *              b.  Polling for scan_on=0 for that PF.
7170  *              c.  Clear the PF enable bit in the PXP.
7171  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7172  *              e.  Write zero+valid to all ILT entries (The valid bit must
7173  *                  stay set)
7174  *              f.  If this is VNIC 3 of a port then also init
7175  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7176  *                  to the last entry in the ILT.
7177  *
7178  *      Notes:
7179  *      Currently the PF error in the PGLC is non recoverable.
7180  *      In the future the there will be a recovery routine for this error.
7181  *      Currently attention is masked.
7182  *      Having an MCP lock on the load/unload process does not guarantee that
7183  *      there is no Timer disable during Func6/7 enable. This is because the
7184  *      Timers scan is currently being cleared by the MCP on FLR.
7185  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7186  *      there is error before clearing it. But the flow above is simpler and
7187  *      more general.
7188  *      All ILT entries are written by zero+valid and not just PF6/7
7189  *      ILT entries since in the future the ILT entries allocation for
7190  *      PF-s might be dynamic.
7191  */
7192                 struct ilt_client_info ilt_cli;
7193                 struct bnx2x_ilt ilt;
7194                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7195                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7196
7197                 /* initialize dummy TM client */
7198                 ilt_cli.start = 0;
7199                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7200                 ilt_cli.client_num = ILT_CLIENT_TM;
7201
7202                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7203                  * Step 2: set the timers first/last ilt entry to point
7204                  * to the entire range to prevent ILT range error for 3rd/4th
7205                  * vnic (this code assumes existence of the vnic)
7206                  *
7207                  * both steps performed by call to bnx2x_ilt_client_init_op()
7208                  * with dummy TM client
7209                  *
7210                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7211                  * and his brother are split registers
7212                  */
7213                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7214                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7215                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7216
7217                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7218                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7219                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7220         }
7221
7222         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7223         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7224
7225         if (!CHIP_IS_E1x(bp)) {
7226                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7227                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7228                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7229
7230                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7231
7232                 /* let the HW do it's magic ... */
7233                 do {
7234                         msleep(200);
7235                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7236                 } while (factor-- && (val != 1));
7237
7238                 if (val != 1) {
7239                         BNX2X_ERR("ATC_INIT failed\n");
7240                         return -EBUSY;
7241                 }
7242         }
7243
7244         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7245
7246         bnx2x_iov_init_dmae(bp);
7247
7248         /* clean the DMAE memory */
7249         bp->dmae_ready = 1;
7250         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7251
7252         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7253
7254         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7255
7256         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7257
7258         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7259
7260         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7261         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7262         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7263         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7264
7265         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7266
7267         /* QM queues pointers table */
7268         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7269
7270         /* soft reset pulse */
7271         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7272         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7273
7274         if (CNIC_SUPPORT(bp))
7275                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7276
7277         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7278
7279         if (!CHIP_REV_IS_SLOW(bp))
7280                 /* enable hw interrupt from doorbell Q */
7281                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7282
7283         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7284
7285         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7286         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7287
7288         if (!CHIP_IS_E1(bp))
7289                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7290
7291         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7292                 if (IS_MF_AFEX(bp)) {
7293                         /* configure that VNTag and VLAN headers must be
7294                          * received in afex mode
7295                          */
7296                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7297                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7298                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7299                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7300                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7301                 } else {
7302                         /* Bit-map indicating which L2 hdrs may appear
7303                          * after the basic Ethernet header
7304                          */
7305                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7306                                bp->path_has_ovlan ? 7 : 6);
7307                 }
7308         }
7309
7310         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7311         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7312         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7313         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7314
7315         if (!CHIP_IS_E1x(bp)) {
7316                 /* reset VFC memories */
7317                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7318                            VFC_MEMORIES_RST_REG_CAM_RST |
7319                            VFC_MEMORIES_RST_REG_RAM_RST);
7320                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7321                            VFC_MEMORIES_RST_REG_CAM_RST |
7322                            VFC_MEMORIES_RST_REG_RAM_RST);
7323
7324                 msleep(20);
7325         }
7326
7327         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7328         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7329         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7330         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7331
7332         /* sync semi rtc */
7333         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7334                0x80000000);
7335         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7336                0x80000000);
7337
7338         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7339         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7340         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7341
7342         if (!CHIP_IS_E1x(bp)) {
7343                 if (IS_MF_AFEX(bp)) {
7344                         /* configure that VNTag and VLAN headers must be
7345                          * sent in afex mode
7346                          */
7347                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7348                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7349                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7350                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7351                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7352                 } else {
7353                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7354                                bp->path_has_ovlan ? 7 : 6);
7355                 }
7356         }
7357
7358         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7359
7360         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7361
7362         if (CNIC_SUPPORT(bp)) {
7363                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7364                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7365                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7366                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7367                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7368                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7369                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7370                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7371                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7372                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7373         }
7374         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7375
7376         if (sizeof(union cdu_context) != 1024)
7377                 /* we currently assume that a context is 1024 bytes */
7378                 dev_alert(&bp->pdev->dev,
7379                           "please adjust the size of cdu_context(%ld)\n",
7380                           (long)sizeof(union cdu_context));
7381
7382         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7383         val = (4 << 24) + (0 << 12) + 1024;
7384         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7385
7386         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7387         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7388         /* enable context validation interrupt from CFC */
7389         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7390
7391         /* set the thresholds to prevent CFC/CDU race */
7392         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7393
7394         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7395
7396         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7397                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7398
7399         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7400         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7401
7402         /* Reset PCIE errors for debug */
7403         REG_WR(bp, 0x2814, 0xffffffff);
7404         REG_WR(bp, 0x3820, 0xffffffff);
7405
7406         if (!CHIP_IS_E1x(bp)) {
7407                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7408                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7409                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7410                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7411                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7412                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7413                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7414                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7415                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7416                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7417                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7418         }
7419
7420         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7421         if (!CHIP_IS_E1(bp)) {
7422                 /* in E3 this done in per-port section */
7423                 if (!CHIP_IS_E3(bp))
7424                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7425         }
7426         if (CHIP_IS_E1H(bp))
7427                 /* not applicable for E2 (and above ...) */
7428                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7429
7430         if (CHIP_REV_IS_SLOW(bp))
7431                 msleep(200);
7432
7433         /* finish CFC init */
7434         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7435         if (val != 1) {
7436                 BNX2X_ERR("CFC LL_INIT failed\n");
7437                 return -EBUSY;
7438         }
7439         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7440         if (val != 1) {
7441                 BNX2X_ERR("CFC AC_INIT failed\n");
7442                 return -EBUSY;
7443         }
7444         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7445         if (val != 1) {
7446                 BNX2X_ERR("CFC CAM_INIT failed\n");
7447                 return -EBUSY;
7448         }
7449         REG_WR(bp, CFC_REG_DEBUG0, 0);
7450
7451         if (CHIP_IS_E1(bp)) {
7452                 /* read NIG statistic
7453                    to see if this is our first up since powerup */
7454                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7455                 val = *bnx2x_sp(bp, wb_data[0]);
7456
7457                 /* do internal memory self test */
7458                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7459                         BNX2X_ERR("internal mem self test failed\n");
7460                         return -EBUSY;
7461                 }
7462         }
7463
7464         bnx2x_setup_fan_failure_detection(bp);
7465
7466         /* clear PXP2 attentions */
7467         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7468
7469         bnx2x_enable_blocks_attention(bp);
7470         bnx2x_enable_blocks_parity(bp);
7471
7472         if (!BP_NOMCP(bp)) {
7473                 if (CHIP_IS_E1x(bp))
7474                         bnx2x__common_init_phy(bp);
7475         } else
7476                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7477
7478         if (SHMEM2_HAS(bp, netproc_fw_ver))
7479                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7480
7481         return 0;
7482 }
7483
7484 /**
7485  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7486  *
7487  * @bp:         driver handle
7488  */
7489 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7490 {
7491         int rc = bnx2x_init_hw_common(bp);
7492
7493         if (rc)
7494                 return rc;
7495
7496         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7497         if (!BP_NOMCP(bp))
7498                 bnx2x__common_init_phy(bp);
7499
7500         return 0;
7501 }
7502
7503 static int bnx2x_init_hw_port(struct bnx2x *bp)
7504 {
7505         int port = BP_PORT(bp);
7506         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7507         u32 low, high;
7508         u32 val, reg;
7509
7510         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7511
7512         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7513
7514         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7515         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7516         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7517
7518         /* Timers bug workaround: disables the pf_master bit in pglue at
7519          * common phase, we need to enable it here before any dmae access are
7520          * attempted. Therefore we manually added the enable-master to the
7521          * port phase (it also happens in the function phase)
7522          */
7523         if (!CHIP_IS_E1x(bp))
7524                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7525
7526         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7527         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7528         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7529         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7530
7531         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7532         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7533         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7534         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7535
7536         /* QM cid (connection) count */
7537         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7538
7539         if (CNIC_SUPPORT(bp)) {
7540                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7541                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7542                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7543         }
7544
7545         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7546
7547         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7548
7549         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7550
7551                 if (IS_MF(bp))
7552                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7553                 else if (bp->dev->mtu > 4096) {
7554                         if (bp->flags & ONE_PORT_FLAG)
7555                                 low = 160;
7556                         else {
7557                                 val = bp->dev->mtu;
7558                                 /* (24*1024 + val*4)/256 */
7559                                 low = 96 + (val/64) +
7560                                                 ((val % 64) ? 1 : 0);
7561                         }
7562                 } else
7563                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7564                 high = low + 56;        /* 14*1024/256 */
7565                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7566                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7567         }
7568
7569         if (CHIP_MODE_IS_4_PORT(bp))
7570                 REG_WR(bp, (BP_PORT(bp) ?
7571                             BRB1_REG_MAC_GUARANTIED_1 :
7572                             BRB1_REG_MAC_GUARANTIED_0), 40);
7573
7574         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7575         if (CHIP_IS_E3B0(bp)) {
7576                 if (IS_MF_AFEX(bp)) {
7577                         /* configure headers for AFEX mode */
7578                         REG_WR(bp, BP_PORT(bp) ?
7579                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7581                         REG_WR(bp, BP_PORT(bp) ?
7582                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7583                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7584                         REG_WR(bp, BP_PORT(bp) ?
7585                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7586                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7587                 } else {
7588                         /* Ovlan exists only if we are in multi-function +
7589                          * switch-dependent mode, in switch-independent there
7590                          * is no ovlan headers
7591                          */
7592                         REG_WR(bp, BP_PORT(bp) ?
7593                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7594                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7595                                (bp->path_has_ovlan ? 7 : 6));
7596                 }
7597         }
7598
7599         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7600         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7601         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7602         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7603
7604         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7605         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7606         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7607         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7608
7609         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7610         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7611
7612         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7613
7614         if (CHIP_IS_E1x(bp)) {
7615                 /* configure PBF to work without PAUSE mtu 9000 */
7616                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7617
7618                 /* update threshold */
7619                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7620                 /* update init credit */
7621                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7622
7623                 /* probe changes */
7624                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7625                 udelay(50);
7626                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7627         }
7628
7629         if (CNIC_SUPPORT(bp))
7630                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7631
7632         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7633         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7634
7635         if (CHIP_IS_E1(bp)) {
7636                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7637                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7638         }
7639         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7640
7641         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7642
7643         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7644         /* init aeu_mask_attn_func_0/1:
7645          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7646          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7647          *             bits 4-7 are used for "per vn group attention" */
7648         val = IS_MF(bp) ? 0xF7 : 0x7;
7649         /* Enable DCBX attention for all but E1 */
7650         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7651         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7652
7653         /* SCPAD_PARITY should NOT trigger close the gates */
7654         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7655         REG_WR(bp, reg,
7656                REG_RD(bp, reg) &
7657                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7658
7659         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7660         REG_WR(bp, reg,
7661                REG_RD(bp, reg) &
7662                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7663
7664         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7665
7666         if (!CHIP_IS_E1x(bp)) {
7667                 /* Bit-map indicating which L2 hdrs may appear after the
7668                  * basic Ethernet header
7669                  */
7670                 if (IS_MF_AFEX(bp))
7671                         REG_WR(bp, BP_PORT(bp) ?
7672                                NIG_REG_P1_HDRS_AFTER_BASIC :
7673                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7674                 else
7675                         REG_WR(bp, BP_PORT(bp) ?
7676                                NIG_REG_P1_HDRS_AFTER_BASIC :
7677                                NIG_REG_P0_HDRS_AFTER_BASIC,
7678                                IS_MF_SD(bp) ? 7 : 6);
7679
7680                 if (CHIP_IS_E3(bp))
7681                         REG_WR(bp, BP_PORT(bp) ?
7682                                    NIG_REG_LLH1_MF_MODE :
7683                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7684         }
7685         if (!CHIP_IS_E3(bp))
7686                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7687
7688         if (!CHIP_IS_E1(bp)) {
7689                 /* 0x2 disable mf_ov, 0x1 enable */
7690                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7691                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7692
7693                 if (!CHIP_IS_E1x(bp)) {
7694                         val = 0;
7695                         switch (bp->mf_mode) {
7696                         case MULTI_FUNCTION_SD:
7697                                 val = 1;
7698                                 break;
7699                         case MULTI_FUNCTION_SI:
7700                         case MULTI_FUNCTION_AFEX:
7701                                 val = 2;
7702                                 break;
7703                         }
7704
7705                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7706                                                   NIG_REG_LLH0_CLS_TYPE), val);
7707                 }
7708                 {
7709                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7710                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7711                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7712                 }
7713         }
7714
7715         /* If SPIO5 is set to generate interrupts, enable it for this port */
7716         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7717         if (val & MISC_SPIO_SPIO5) {
7718                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7719                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7720                 val = REG_RD(bp, reg_addr);
7721                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7722                 REG_WR(bp, reg_addr, val);
7723         }
7724
7725         if (CHIP_IS_E3B0(bp))
7726                 bp->flags |= PTP_SUPPORTED;
7727
7728         return 0;
7729 }
7730
7731 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7732 {
7733         int reg;
7734         u32 wb_write[2];
7735
7736         if (CHIP_IS_E1(bp))
7737                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7738         else
7739                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7740
7741         wb_write[0] = ONCHIP_ADDR1(addr);
7742         wb_write[1] = ONCHIP_ADDR2(addr);
7743         REG_WR_DMAE(bp, reg, wb_write, 2);
7744 }
7745
7746 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7747 {
7748         u32 data, ctl, cnt = 100;
7749         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7750         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7751         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7752         u32 sb_bit =  1 << (idu_sb_id%32);
7753         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7754         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7755
7756         /* Not supported in BC mode */
7757         if (CHIP_INT_MODE_IS_BC(bp))
7758                 return;
7759
7760         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7761                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7762                 IGU_REGULAR_CLEANUP_SET                         |
7763                 IGU_REGULAR_BCLEANUP;
7764
7765         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7766               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7767               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7768
7769         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7770                          data, igu_addr_data);
7771         REG_WR(bp, igu_addr_data, data);
7772         barrier();
7773         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7774                           ctl, igu_addr_ctl);
7775         REG_WR(bp, igu_addr_ctl, ctl);
7776         barrier();
7777
7778         /* wait for clean up to finish */
7779         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7780                 msleep(20);
7781
7782         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7783                 DP(NETIF_MSG_HW,
7784                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7786         }
7787 }
7788
7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7790 {
7791         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7792 }
7793
7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7795 {
7796         u32 i, base = FUNC_ILT_BASE(func);
7797         for (i = base; i < base + ILT_PER_FUNC; i++)
7798                 bnx2x_ilt_wr(bp, i, 0);
7799 }
7800
7801 static void bnx2x_init_searcher(struct bnx2x *bp)
7802 {
7803         int port = BP_PORT(bp);
7804         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7805         /* T1 hash bits value determines the T1 number of entries */
7806         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7807 }
7808
7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7810 {
7811         int rc;
7812         struct bnx2x_func_state_params func_params = {NULL};
7813         struct bnx2x_func_switch_update_params *switch_update_params =
7814                 &func_params.params.switch_update;
7815
7816         /* Prepare parameters for function state transitions */
7817         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7818         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7819
7820         func_params.f_obj = &bp->func_obj;
7821         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7822
7823         /* Function parameters */
7824         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7825                   &switch_update_params->changes);
7826         if (suspend)
7827                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7828                           &switch_update_params->changes);
7829
7830         rc = bnx2x_func_state_change(bp, &func_params);
7831
7832         return rc;
7833 }
7834
7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7836 {
7837         int rc, i, port = BP_PORT(bp);
7838         int vlan_en = 0, mac_en[NUM_MACS];
7839
7840         /* Close input from network */
7841         if (bp->mf_mode == SINGLE_FUNCTION) {
7842                 bnx2x_set_rx_filter(&bp->link_params, 0);
7843         } else {
7844                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7845                                    NIG_REG_LLH0_FUNC_EN);
7846                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7847                           NIG_REG_LLH0_FUNC_EN, 0);
7848                 for (i = 0; i < NUM_MACS; i++) {
7849                         mac_en[i] = REG_RD(bp, port ?
7850                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7851                                               4 * i) :
7852                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7853                                               4 * i));
7854                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7855                                               4 * i) :
7856                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7857                 }
7858         }
7859
7860         /* Close BMC to host */
7861         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7862                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7863
7864         /* Suspend Tx switching to the PF. Completion of this ramrod
7865          * further guarantees that all the packets of that PF / child
7866          * VFs in BRB were processed by the Parser, so it is safe to
7867          * change the NIC_MODE register.
7868          */
7869         rc = bnx2x_func_switch_update(bp, 1);
7870         if (rc) {
7871                 BNX2X_ERR("Can't suspend tx-switching!\n");
7872                 return rc;
7873         }
7874
7875         /* Change NIC_MODE register */
7876         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7877
7878         /* Open input from network */
7879         if (bp->mf_mode == SINGLE_FUNCTION) {
7880                 bnx2x_set_rx_filter(&bp->link_params, 1);
7881         } else {
7882                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7883                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7884                 for (i = 0; i < NUM_MACS; i++) {
7885                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7886                                               4 * i) :
7887                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7888                                   mac_en[i]);
7889                 }
7890         }
7891
7892         /* Enable BMC to host */
7893         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7894                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7895
7896         /* Resume Tx switching to the PF */
7897         rc = bnx2x_func_switch_update(bp, 0);
7898         if (rc) {
7899                 BNX2X_ERR("Can't resume tx-switching!\n");
7900                 return rc;
7901         }
7902
7903         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7904         return 0;
7905 }
7906
7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7908 {
7909         int rc;
7910
7911         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7912
7913         if (CONFIGURE_NIC_MODE(bp)) {
7914                 /* Configure searcher as part of function hw init */
7915                 bnx2x_init_searcher(bp);
7916
7917                 /* Reset NIC mode */
7918                 rc = bnx2x_reset_nic_mode(bp);
7919                 if (rc)
7920                         BNX2X_ERR("Can't change NIC mode!\n");
7921                 return rc;
7922         }
7923
7924         return 0;
7925 }
7926
7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929  * the addresses of the transaction, resulting in was-error bit set in the pci
7930  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931  * to clear the interrupt which detected this from the pglueb and the was done
7932  * bit
7933  */
7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7935 {
7936         if (!CHIP_IS_E1x(bp))
7937                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7938                        1 << BP_ABS_FUNC(bp));
7939 }
7940
7941 static int bnx2x_init_hw_func(struct bnx2x *bp)
7942 {
7943         int port = BP_PORT(bp);
7944         int func = BP_FUNC(bp);
7945         int init_phase = PHASE_PF0 + func;
7946         struct bnx2x_ilt *ilt = BP_ILT(bp);
7947         u16 cdu_ilt_start;
7948         u32 addr, val;
7949         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7950         int i, main_mem_width, rc;
7951
7952         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7953
7954         /* FLR cleanup - hmmm */
7955         if (!CHIP_IS_E1x(bp)) {
7956                 rc = bnx2x_pf_flr_clnup(bp);
7957                 if (rc) {
7958                         bnx2x_fw_dump(bp);
7959                         return rc;
7960                 }
7961         }
7962
7963         /* set MSI reconfigure capability */
7964         if (bp->common.int_block == INT_BLOCK_HC) {
7965                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7966                 val = REG_RD(bp, addr);
7967                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7968                 REG_WR(bp, addr, val);
7969         }
7970
7971         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7972         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7973
7974         ilt = BP_ILT(bp);
7975         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7976
7977         if (IS_SRIOV(bp))
7978                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7979         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7980
7981         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982          * those of the VFs, so start line should be reset
7983          */
7984         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7986                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7987                 ilt->lines[cdu_ilt_start + i].page_mapping =
7988                         bp->context[i].cxt_mapping;
7989                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7990         }
7991
7992         bnx2x_ilt_init_op(bp, INITOP_SET);
7993
7994         if (!CONFIGURE_NIC_MODE(bp)) {
7995                 bnx2x_init_searcher(bp);
7996                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7997                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7998         } else {
7999                 /* Set NIC mode */
8000                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8001                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8002         }
8003
8004         if (!CHIP_IS_E1x(bp)) {
8005                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8006
8007                 /* Turn on a single ISR mode in IGU if driver is going to use
8008                  * INT#x or MSI
8009                  */
8010                 if (!(bp->flags & USING_MSIX_FLAG))
8011                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8012                 /*
8013                  * Timers workaround bug: function init part.
8014                  * Need to wait 20msec after initializing ILT,
8015                  * needed to make sure there are no requests in
8016                  * one of the PXP internal queues with "old" ILT addresses
8017                  */
8018                 msleep(20);
8019                 /*
8020                  * Master enable - Due to WB DMAE writes performed before this
8021                  * register is re-initialized as part of the regular function
8022                  * init
8023                  */
8024                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8025                 /* Enable the function in IGU */
8026                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8027         }
8028
8029         bp->dmae_ready = 1;
8030
8031         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8032
8033         bnx2x_clean_pglue_errors(bp);
8034
8035         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8036         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8037         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8038         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8039         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8040         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8041         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8042         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8043         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8044         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8045         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8046         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8047         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8048
8049         if (!CHIP_IS_E1x(bp))
8050                 REG_WR(bp, QM_REG_PF_EN, 1);
8051
8052         if (!CHIP_IS_E1x(bp)) {
8053                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8057         }
8058         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8059
8060         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8061         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8062         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8063
8064         bnx2x_iov_init_dq(bp);
8065
8066         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8067         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8068         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8069         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8070         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8071         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8072         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8073         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8074         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8075         if (!CHIP_IS_E1x(bp))
8076                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8077
8078         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8079
8080         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8081
8082         if (!CHIP_IS_E1x(bp))
8083                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8084
8085         if (IS_MF(bp)) {
8086                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8087                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8088                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8089                                bp->mf_ov);
8090                 }
8091         }
8092
8093         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8094
8095         /* HC init per function */
8096         if (bp->common.int_block == INT_BLOCK_HC) {
8097                 if (CHIP_IS_E1H(bp)) {
8098                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8099
8100                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8101                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8102                 }
8103                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8104
8105         } else {
8106                 int num_segs, sb_idx, prod_offset;
8107
8108                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109
8110                 if (!CHIP_IS_E1x(bp)) {
8111                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8112                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8113                 }
8114
8115                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8116
8117                 if (!CHIP_IS_E1x(bp)) {
8118                         int dsb_idx = 0;
8119                         /**
8120                          * Producer memory:
8121                          * E2 mode: address 0-135 match to the mapping memory;
8122                          * 136 - PF0 default prod; 137 - PF1 default prod;
8123                          * 138 - PF2 default prod; 139 - PF3 default prod;
8124                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8125                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8126                          * 144-147 reserved.
8127                          *
8128                          * E1.5 mode - In backward compatible mode;
8129                          * for non default SB; each even line in the memory
8130                          * holds the U producer and each odd line hold
8131                          * the C producer. The first 128 producers are for
8132                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133                          * producers are for the DSB for each PF.
8134                          * Each PF has five segments: (the order inside each
8135                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137                          * 144-147 attn prods;
8138                          */
8139                         /* non-default-status-blocks */
8140                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8141                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8142                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8143                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8144                                         num_segs;
8145
8146                                 for (i = 0; i < num_segs; i++) {
8147                                         addr = IGU_REG_PROD_CONS_MEMORY +
8148                                                         (prod_offset + i) * 4;
8149                                         REG_WR(bp, addr, 0);
8150                                 }
8151                                 /* send consumer update with value 0 */
8152                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8153                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8154                                 bnx2x_igu_clear_sb(bp,
8155                                                    bp->igu_base_sb + sb_idx);
8156                         }
8157
8158                         /* default-status-blocks */
8159                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8160                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8161
8162                         if (CHIP_MODE_IS_4_PORT(bp))
8163                                 dsb_idx = BP_FUNC(bp);
8164                         else
8165                                 dsb_idx = BP_VN(bp);
8166
8167                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8168                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8169                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8170
8171                         /*
8172                          * igu prods come in chunks of E1HVN_MAX (4) -
8173                          * does not matters what is the current chip mode
8174                          */
8175                         for (i = 0; i < (num_segs * E1HVN_MAX);
8176                              i += E1HVN_MAX) {
8177                                 addr = IGU_REG_PROD_CONS_MEMORY +
8178                                                         (prod_offset + i)*4;
8179                                 REG_WR(bp, addr, 0);
8180                         }
8181                         /* send consumer update with 0 */
8182                         if (CHIP_INT_MODE_IS_BC(bp)) {
8183                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8185                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8187                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8188                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8189                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8191                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193                         } else {
8194                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8196                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8198                         }
8199                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8200
8201                         /* !!! These should become driver const once
8202                            rf-tool supports split-68 const */
8203                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8204                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8205                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8206                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8207                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8208                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8209                 }
8210         }
8211
8212         /* Reset PCIE errors for debug */
8213         REG_WR(bp, 0x2114, 0xffffffff);
8214         REG_WR(bp, 0x2120, 0xffffffff);
8215
8216         if (CHIP_IS_E1x(bp)) {
8217                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8218                 main_mem_base = HC_REG_MAIN_MEMORY +
8219                                 BP_PORT(bp) * (main_mem_size * 4);
8220                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8221                 main_mem_width = 8;
8222
8223                 val = REG_RD(bp, main_mem_prty_clr);
8224                 if (val)
8225                         DP(NETIF_MSG_HW,
8226                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8227                            val);
8228
8229                 /* Clear "false" parity errors in MSI-X table */
8230                 for (i = main_mem_base;
8231                      i < main_mem_base + main_mem_size * 4;
8232                      i += main_mem_width) {
8233                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8234                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8235                                          i, main_mem_width / 4);
8236                 }
8237                 /* Clear HC parity attention */
8238                 REG_RD(bp, main_mem_prty_clr);
8239         }
8240
8241 #ifdef BNX2X_STOP_ON_ERROR
8242         /* Enable STORMs SP logging */
8243         REG_WR8(bp, BAR_USTRORM_INTMEM +
8244                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8245         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8246                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8247         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8248                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8249         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8250                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8251 #endif
8252
8253         bnx2x_phy_probe(&bp->link_params);
8254
8255         return 0;
8256 }
8257
8258 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8259 {
8260         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8261
8262         if (!CHIP_IS_E1x(bp))
8263                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8264                                sizeof(struct host_hc_status_block_e2));
8265         else
8266                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8267                                sizeof(struct host_hc_status_block_e1x));
8268
8269         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8270 }
8271
8272 void bnx2x_free_mem(struct bnx2x *bp)
8273 {
8274         int i;
8275
8276         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8277                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8278
8279         if (IS_VF(bp))
8280                 return;
8281
8282         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8283                        sizeof(struct host_sp_status_block));
8284
8285         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8286                        sizeof(struct bnx2x_slowpath));
8287
8288         for (i = 0; i < L2_ILT_LINES(bp); i++)
8289                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8290                                bp->context[i].size);
8291         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8292
8293         BNX2X_FREE(bp->ilt->lines);
8294
8295         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8296
8297         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8298                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8299
8300         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8301
8302         bnx2x_iov_free_mem(bp);
8303 }
8304
8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8306 {
8307         if (!CHIP_IS_E1x(bp)) {
8308                 /* size = the status block + ramrod buffers */
8309                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310                                                     sizeof(struct host_hc_status_block_e2));
8311                 if (!bp->cnic_sb.e2_sb)
8312                         goto alloc_mem_err;
8313         } else {
8314                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315                                                      sizeof(struct host_hc_status_block_e1x));
8316                 if (!bp->cnic_sb.e1x_sb)
8317                         goto alloc_mem_err;
8318         }
8319
8320         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8321                 /* allocate searcher T2 table, as it wasn't allocated before */
8322                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8323                 if (!bp->t2)
8324                         goto alloc_mem_err;
8325         }
8326
8327         /* write address to which L5 should insert its values */
8328         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8329                 &bp->slowpath->drv_info_to_mcp;
8330
8331         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8332                 goto alloc_mem_err;
8333
8334         return 0;
8335
8336 alloc_mem_err:
8337         bnx2x_free_mem_cnic(bp);
8338         BNX2X_ERR("Can't allocate memory\n");
8339         return -ENOMEM;
8340 }
8341
8342 int bnx2x_alloc_mem(struct bnx2x *bp)
8343 {
8344         int i, allocated, context_size;
8345
8346         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8347                 /* allocate searcher T2 table */
8348                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8349                 if (!bp->t2)
8350                         goto alloc_mem_err;
8351         }
8352
8353         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8354                                              sizeof(struct host_sp_status_block));
8355         if (!bp->def_status_blk)
8356                 goto alloc_mem_err;
8357
8358         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8359                                        sizeof(struct bnx2x_slowpath));
8360         if (!bp->slowpath)
8361                 goto alloc_mem_err;
8362
8363         /* Allocate memory for CDU context:
8364          * This memory is allocated separately and not in the generic ILT
8365          * functions because CDU differs in few aspects:
8366          * 1. There are multiple entities allocating memory for context -
8367          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368          * its own ILT lines.
8369          * 2. Since CDU page-size is not a single 4KB page (which is the case
8370          * for the other ILT clients), to be efficient we want to support
8371          * allocation of sub-page-size in the last entry.
8372          * 3. Context pointers are used by the driver to pass to FW / update
8373          * the context (for the other ILT clients the pointers are used just to
8374          * free the memory during unload).
8375          */
8376         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8377
8378         for (i = 0, allocated = 0; allocated < context_size; i++) {
8379                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8380                                           (context_size - allocated));
8381                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8382                                                       bp->context[i].size);
8383                 if (!bp->context[i].vcxt)
8384                         goto alloc_mem_err;
8385                 allocated += bp->context[i].size;
8386         }
8387         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8388                                  GFP_KERNEL);
8389         if (!bp->ilt->lines)
8390                 goto alloc_mem_err;
8391
8392         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8393                 goto alloc_mem_err;
8394
8395         if (bnx2x_iov_alloc_mem(bp))
8396                 goto alloc_mem_err;
8397
8398         /* Slow path ring */
8399         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8400         if (!bp->spq)
8401                 goto alloc_mem_err;
8402
8403         /* EQ */
8404         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8405                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8406         if (!bp->eq_ring)
8407                 goto alloc_mem_err;
8408
8409         return 0;
8410
8411 alloc_mem_err:
8412         bnx2x_free_mem(bp);
8413         BNX2X_ERR("Can't allocate memory\n");
8414         return -ENOMEM;
8415 }
8416
8417 /*
8418  * Init service functions
8419  */
8420
8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8422                       struct bnx2x_vlan_mac_obj *obj, bool set,
8423                       int mac_type, unsigned long *ramrod_flags)
8424 {
8425         int rc;
8426         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8427
8428         memset(&ramrod_param, 0, sizeof(ramrod_param));
8429
8430         /* Fill general parameters */
8431         ramrod_param.vlan_mac_obj = obj;
8432         ramrod_param.ramrod_flags = *ramrod_flags;
8433
8434         /* Fill a user request section if needed */
8435         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8436                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8437
8438                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8439
8440                 /* Set the command: ADD or DEL */
8441                 if (set)
8442                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8443                 else
8444                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8445         }
8446
8447         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8448
8449         if (rc == -EEXIST) {
8450                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8451                 /* do not treat adding same MAC as error */
8452                 rc = 0;
8453         } else if (rc < 0)
8454                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8455
8456         return rc;
8457 }
8458
8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8460                        struct bnx2x_vlan_mac_obj *obj, bool set,
8461                        unsigned long *ramrod_flags)
8462 {
8463         int rc;
8464         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8465
8466         memset(&ramrod_param, 0, sizeof(ramrod_param));
8467
8468         /* Fill general parameters */
8469         ramrod_param.vlan_mac_obj = obj;
8470         ramrod_param.ramrod_flags = *ramrod_flags;
8471
8472         /* Fill a user request section if needed */
8473         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8474                 ramrod_param.user_req.u.vlan.vlan = vlan;
8475                 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8476                 /* Set the command: ADD or DEL */
8477                 if (set)
8478                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8479                 else
8480                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8481         }
8482
8483         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8484
8485         if (rc == -EEXIST) {
8486                 /* Do not treat adding same vlan as error. */
8487                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8488                 rc = 0;
8489         } else if (rc < 0) {
8490                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8491         }
8492
8493         return rc;
8494 }
8495
8496 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8497 {
8498         struct bnx2x_vlan_entry *vlan;
8499
8500         /* Mark that hw forgot all entries */
8501         list_for_each_entry(vlan, &bp->vlan_reg, link)
8502                 vlan->hw = false;
8503
8504         bp->vlan_cnt = 0;
8505 }
8506
8507 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8508 {
8509         struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8510         unsigned long ramrod_flags = 0, vlan_flags = 0;
8511         int rc;
8512
8513         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8514         __set_bit(BNX2X_VLAN, &vlan_flags);
8515         rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8516         if (rc)
8517                 return rc;
8518
8519         bnx2x_clear_vlan_info(bp);
8520
8521         return 0;
8522 }
8523
8524 int bnx2x_del_all_macs(struct bnx2x *bp,
8525                        struct bnx2x_vlan_mac_obj *mac_obj,
8526                        int mac_type, bool wait_for_comp)
8527 {
8528         int rc;
8529         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8530
8531         /* Wait for completion of requested */
8532         if (wait_for_comp)
8533                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8534
8535         /* Set the mac type of addresses we want to clear */
8536         __set_bit(mac_type, &vlan_mac_flags);
8537
8538         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8539         if (rc < 0)
8540                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8541
8542         return rc;
8543 }
8544
8545 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8546 {
8547         if (IS_PF(bp)) {
8548                 unsigned long ramrod_flags = 0;
8549
8550                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8551                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8552                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8553                                          &bp->sp_objs->mac_obj, set,
8554                                          BNX2X_ETH_MAC, &ramrod_flags);
8555         } else { /* vf */
8556                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8557                                              bp->fp->index, set);
8558         }
8559 }
8560
8561 int bnx2x_setup_leading(struct bnx2x *bp)
8562 {
8563         if (IS_PF(bp))
8564                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8565         else /* VF */
8566                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8567 }
8568
8569 /**
8570  * bnx2x_set_int_mode - configure interrupt mode
8571  *
8572  * @bp:         driver handle
8573  *
8574  * In case of MSI-X it will also try to enable MSI-X.
8575  */
8576 int bnx2x_set_int_mode(struct bnx2x *bp)
8577 {
8578         int rc = 0;
8579
8580         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8581                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8582                 return -EINVAL;
8583         }
8584
8585         switch (int_mode) {
8586         case BNX2X_INT_MODE_MSIX:
8587                 /* attempt to enable msix */
8588                 rc = bnx2x_enable_msix(bp);
8589
8590                 /* msix attained */
8591                 if (!rc)
8592                         return 0;
8593
8594                 /* vfs use only msix */
8595                 if (rc && IS_VF(bp))
8596                         return rc;
8597
8598                 /* failed to enable multiple MSI-X */
8599                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8600                                bp->num_queues,
8601                                1 + bp->num_cnic_queues);
8602
8603                 fallthrough;
8604         case BNX2X_INT_MODE_MSI:
8605                 bnx2x_enable_msi(bp);
8606
8607                 fallthrough;
8608         case BNX2X_INT_MODE_INTX:
8609                 bp->num_ethernet_queues = 1;
8610                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8611                 BNX2X_DEV_INFO("set number of queues to 1\n");
8612                 break;
8613         default:
8614                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8615                 return -EINVAL;
8616         }
8617         return 0;
8618 }
8619
8620 /* must be called prior to any HW initializations */
8621 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8622 {
8623         if (IS_SRIOV(bp))
8624                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8625         return L2_ILT_LINES(bp);
8626 }
8627
8628 void bnx2x_ilt_set_info(struct bnx2x *bp)
8629 {
8630         struct ilt_client_info *ilt_client;
8631         struct bnx2x_ilt *ilt = BP_ILT(bp);
8632         u16 line = 0;
8633
8634         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8635         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8636
8637         /* CDU */
8638         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8639         ilt_client->client_num = ILT_CLIENT_CDU;
8640         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8641         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8642         ilt_client->start = line;
8643         line += bnx2x_cid_ilt_lines(bp);
8644
8645         if (CNIC_SUPPORT(bp))
8646                 line += CNIC_ILT_LINES;
8647         ilt_client->end = line - 1;
8648
8649         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650            ilt_client->start,
8651            ilt_client->end,
8652            ilt_client->page_size,
8653            ilt_client->flags,
8654            ilog2(ilt_client->page_size >> 12));
8655
8656         /* QM */
8657         if (QM_INIT(bp->qm_cid_count)) {
8658                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8659                 ilt_client->client_num = ILT_CLIENT_QM;
8660                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8661                 ilt_client->flags = 0;
8662                 ilt_client->start = line;
8663
8664                 /* 4 bytes for each cid */
8665                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8666                                                          QM_ILT_PAGE_SZ);
8667
8668                 ilt_client->end = line - 1;
8669
8670                 DP(NETIF_MSG_IFUP,
8671                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8672                    ilt_client->start,
8673                    ilt_client->end,
8674                    ilt_client->page_size,
8675                    ilt_client->flags,
8676                    ilog2(ilt_client->page_size >> 12));
8677         }
8678
8679         if (CNIC_SUPPORT(bp)) {
8680                 /* SRC */
8681                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8682                 ilt_client->client_num = ILT_CLIENT_SRC;
8683                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8684                 ilt_client->flags = 0;
8685                 ilt_client->start = line;
8686                 line += SRC_ILT_LINES;
8687                 ilt_client->end = line - 1;
8688
8689                 DP(NETIF_MSG_IFUP,
8690                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8691                    ilt_client->start,
8692                    ilt_client->end,
8693                    ilt_client->page_size,
8694                    ilt_client->flags,
8695                    ilog2(ilt_client->page_size >> 12));
8696
8697                 /* TM */
8698                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8699                 ilt_client->client_num = ILT_CLIENT_TM;
8700                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8701                 ilt_client->flags = 0;
8702                 ilt_client->start = line;
8703                 line += TM_ILT_LINES;
8704                 ilt_client->end = line - 1;
8705
8706                 DP(NETIF_MSG_IFUP,
8707                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8708                    ilt_client->start,
8709                    ilt_client->end,
8710                    ilt_client->page_size,
8711                    ilt_client->flags,
8712                    ilog2(ilt_client->page_size >> 12));
8713         }
8714
8715         BUG_ON(line > ILT_MAX_LINES);
8716 }
8717
8718 /**
8719  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8720  *
8721  * @bp:                 driver handle
8722  * @fp:                 pointer to fastpath
8723  * @init_params:        pointer to parameters structure
8724  *
8725  * parameters configured:
8726  *      - HC configuration
8727  *      - Queue's CDU context
8728  */
8729 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8730         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8731 {
8732         u8 cos;
8733         int cxt_index, cxt_offset;
8734
8735         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8736         if (!IS_FCOE_FP(fp)) {
8737                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8738                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8739
8740                 /* If HC is supported, enable host coalescing in the transition
8741                  * to INIT state.
8742                  */
8743                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8744                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8745
8746                 /* HC rate */
8747                 init_params->rx.hc_rate = bp->rx_ticks ?
8748                         (1000000 / bp->rx_ticks) : 0;
8749                 init_params->tx.hc_rate = bp->tx_ticks ?
8750                         (1000000 / bp->tx_ticks) : 0;
8751
8752                 /* FW SB ID */
8753                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8754                         fp->fw_sb_id;
8755
8756                 /*
8757                  * CQ index among the SB indices: FCoE clients uses the default
8758                  * SB, therefore it's different.
8759                  */
8760                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8761                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8762         }
8763
8764         /* set maximum number of COSs supported by this queue */
8765         init_params->max_cos = fp->max_cos;
8766
8767         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8768             fp->index, init_params->max_cos);
8769
8770         /* set the context pointers queue object */
8771         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8772                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8773                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8774                                 ILT_PAGE_CIDS);
8775                 init_params->cxts[cos] =
8776                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8777         }
8778 }
8779
8780 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8781                         struct bnx2x_queue_state_params *q_params,
8782                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8783                         int tx_index, bool leading)
8784 {
8785         memset(tx_only_params, 0, sizeof(*tx_only_params));
8786
8787         /* Set the command */
8788         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8789
8790         /* Set tx-only QUEUE flags: don't zero statistics */
8791         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8792
8793         /* choose the index of the cid to send the slow path on */
8794         tx_only_params->cid_index = tx_index;
8795
8796         /* Set general TX_ONLY_SETUP parameters */
8797         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8798
8799         /* Set Tx TX_ONLY_SETUP parameters */
8800         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8801
8802         DP(NETIF_MSG_IFUP,
8803            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8804            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8805            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8806            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8807
8808         /* send the ramrod */
8809         return bnx2x_queue_state_change(bp, q_params);
8810 }
8811
8812 /**
8813  * bnx2x_setup_queue - setup queue
8814  *
8815  * @bp:         driver handle
8816  * @fp:         pointer to fastpath
8817  * @leading:    is leading
8818  *
8819  * This function performs 2 steps in a Queue state machine
8820  *      actually: 1) RESET->INIT 2) INIT->SETUP
8821  */
8822
8823 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8824                        bool leading)
8825 {
8826         struct bnx2x_queue_state_params q_params = {NULL};
8827         struct bnx2x_queue_setup_params *setup_params =
8828                                                 &q_params.params.setup;
8829         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8830                                                 &q_params.params.tx_only;
8831         int rc;
8832         u8 tx_index;
8833
8834         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8835
8836         /* reset IGU state skip FCoE L2 queue */
8837         if (!IS_FCOE_FP(fp))
8838                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8839                              IGU_INT_ENABLE, 0);
8840
8841         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8842         /* We want to wait for completion in this context */
8843         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8844
8845         /* Prepare the INIT parameters */
8846         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8847
8848         /* Set the command */
8849         q_params.cmd = BNX2X_Q_CMD_INIT;
8850
8851         /* Change the state to INIT */
8852         rc = bnx2x_queue_state_change(bp, &q_params);
8853         if (rc) {
8854                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8855                 return rc;
8856         }
8857
8858         DP(NETIF_MSG_IFUP, "init complete\n");
8859
8860         /* Now move the Queue to the SETUP state... */
8861         memset(setup_params, 0, sizeof(*setup_params));
8862
8863         /* Set QUEUE flags */
8864         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8865
8866         /* Set general SETUP parameters */
8867         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8868                                 FIRST_TX_COS_INDEX);
8869
8870         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8871                             &setup_params->rxq_params);
8872
8873         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8874                            FIRST_TX_COS_INDEX);
8875
8876         /* Set the command */
8877         q_params.cmd = BNX2X_Q_CMD_SETUP;
8878
8879         if (IS_FCOE_FP(fp))
8880                 bp->fcoe_init = true;
8881
8882         /* Change the state to SETUP */
8883         rc = bnx2x_queue_state_change(bp, &q_params);
8884         if (rc) {
8885                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8886                 return rc;
8887         }
8888
8889         /* loop through the relevant tx-only indices */
8890         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8891               tx_index < fp->max_cos;
8892               tx_index++) {
8893
8894                 /* prepare and send tx-only ramrod*/
8895                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8896                                           tx_only_params, tx_index, leading);
8897                 if (rc) {
8898                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8899                                   fp->index, tx_index);
8900                         return rc;
8901                 }
8902         }
8903
8904         return rc;
8905 }
8906
8907 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8908 {
8909         struct bnx2x_fastpath *fp = &bp->fp[index];
8910         struct bnx2x_fp_txdata *txdata;
8911         struct bnx2x_queue_state_params q_params = {NULL};
8912         int rc, tx_index;
8913
8914         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8915
8916         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8917         /* We want to wait for completion in this context */
8918         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8919
8920         /* close tx-only connections */
8921         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8922              tx_index < fp->max_cos;
8923              tx_index++){
8924
8925                 /* ascertain this is a normal queue*/
8926                 txdata = fp->txdata_ptr[tx_index];
8927
8928                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8929                                                         txdata->txq_index);
8930
8931                 /* send halt terminate on tx-only connection */
8932                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8933                 memset(&q_params.params.terminate, 0,
8934                        sizeof(q_params.params.terminate));
8935                 q_params.params.terminate.cid_index = tx_index;
8936
8937                 rc = bnx2x_queue_state_change(bp, &q_params);
8938                 if (rc)
8939                         return rc;
8940
8941                 /* send halt terminate on tx-only connection */
8942                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8943                 memset(&q_params.params.cfc_del, 0,
8944                        sizeof(q_params.params.cfc_del));
8945                 q_params.params.cfc_del.cid_index = tx_index;
8946                 rc = bnx2x_queue_state_change(bp, &q_params);
8947                 if (rc)
8948                         return rc;
8949         }
8950         /* Stop the primary connection: */
8951         /* ...halt the connection */
8952         q_params.cmd = BNX2X_Q_CMD_HALT;
8953         rc = bnx2x_queue_state_change(bp, &q_params);
8954         if (rc)
8955                 return rc;
8956
8957         /* ...terminate the connection */
8958         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8959         memset(&q_params.params.terminate, 0,
8960                sizeof(q_params.params.terminate));
8961         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8962         rc = bnx2x_queue_state_change(bp, &q_params);
8963         if (rc)
8964                 return rc;
8965         /* ...delete cfc entry */
8966         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8967         memset(&q_params.params.cfc_del, 0,
8968                sizeof(q_params.params.cfc_del));
8969         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8970         return bnx2x_queue_state_change(bp, &q_params);
8971 }
8972
8973 static void bnx2x_reset_func(struct bnx2x *bp)
8974 {
8975         int port = BP_PORT(bp);
8976         int func = BP_FUNC(bp);
8977         int i;
8978
8979         /* Disable the function in the FW */
8980         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8981         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8982         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8983         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8984
8985         /* FP SBs */
8986         for_each_eth_queue(bp, i) {
8987                 struct bnx2x_fastpath *fp = &bp->fp[i];
8988                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8989                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8990                            SB_DISABLED);
8991         }
8992
8993         if (CNIC_LOADED(bp))
8994                 /* CNIC SB */
8995                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8996                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8997                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8998
8999         /* SP SB */
9000         REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9002                 SB_DISABLED);
9003
9004         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9005                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9006                        0);
9007
9008         /* Configure IGU */
9009         if (bp->common.int_block == INT_BLOCK_HC) {
9010                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9011                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9012         } else {
9013                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9014                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9015         }
9016
9017         if (CNIC_LOADED(bp)) {
9018                 /* Disable Timer scan */
9019                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9020                 /*
9021                  * Wait for at least 10ms and up to 2 second for the timers
9022                  * scan to complete
9023                  */
9024                 for (i = 0; i < 200; i++) {
9025                         usleep_range(10000, 20000);
9026                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9027                                 break;
9028                 }
9029         }
9030         /* Clear ILT */
9031         bnx2x_clear_func_ilt(bp, func);
9032
9033         /* Timers workaround bug for E2: if this is vnic-3,
9034          * we need to set the entire ilt range for this timers.
9035          */
9036         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9037                 struct ilt_client_info ilt_cli;
9038                 /* use dummy TM client */
9039                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9040                 ilt_cli.start = 0;
9041                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9042                 ilt_cli.client_num = ILT_CLIENT_TM;
9043
9044                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9045         }
9046
9047         /* this assumes that reset_port() called before reset_func()*/
9048         if (!CHIP_IS_E1x(bp))
9049                 bnx2x_pf_disable(bp);
9050
9051         bp->dmae_ready = 0;
9052 }
9053
9054 static void bnx2x_reset_port(struct bnx2x *bp)
9055 {
9056         int port = BP_PORT(bp);
9057         u32 val;
9058
9059         /* Reset physical Link */
9060         bnx2x__link_reset(bp);
9061
9062         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9063
9064         /* Do not rcv packets to BRB */
9065         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9066         /* Do not direct rcv packets that are not for MCP to the BRB */
9067         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9068                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9069
9070         /* Configure AEU */
9071         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9072
9073         msleep(100);
9074         /* Check for BRB port occupancy */
9075         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9076         if (val)
9077                 DP(NETIF_MSG_IFDOWN,
9078                    "BRB1 is not empty  %d blocks are occupied\n", val);
9079
9080         /* TODO: Close Doorbell port? */
9081 }
9082
9083 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9084 {
9085         struct bnx2x_func_state_params func_params = {NULL};
9086
9087         /* Prepare parameters for function state transitions */
9088         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9089
9090         func_params.f_obj = &bp->func_obj;
9091         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9092
9093         func_params.params.hw_init.load_phase = load_code;
9094
9095         return bnx2x_func_state_change(bp, &func_params);
9096 }
9097
9098 static int bnx2x_func_stop(struct bnx2x *bp)
9099 {
9100         struct bnx2x_func_state_params func_params = {NULL};
9101         int rc;
9102
9103         /* Prepare parameters for function state transitions */
9104         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9105         func_params.f_obj = &bp->func_obj;
9106         func_params.cmd = BNX2X_F_CMD_STOP;
9107
9108         /*
9109          * Try to stop the function the 'good way'. If fails (in case
9110          * of a parity error during bnx2x_chip_cleanup()) and we are
9111          * not in a debug mode, perform a state transaction in order to
9112          * enable further HW_RESET transaction.
9113          */
9114         rc = bnx2x_func_state_change(bp, &func_params);
9115         if (rc) {
9116 #ifdef BNX2X_STOP_ON_ERROR
9117                 return rc;
9118 #else
9119                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9120                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9121                 return bnx2x_func_state_change(bp, &func_params);
9122 #endif
9123         }
9124
9125         return 0;
9126 }
9127
9128 /**
9129  * bnx2x_send_unload_req - request unload mode from the MCP.
9130  *
9131  * @bp:                 driver handle
9132  * @unload_mode:        requested function's unload mode
9133  *
9134  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9135  */
9136 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9137 {
9138         u32 reset_code = 0;
9139         int port = BP_PORT(bp);
9140
9141         /* Select the UNLOAD request mode */
9142         if (unload_mode == UNLOAD_NORMAL)
9143                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9144
9145         else if (bp->flags & NO_WOL_FLAG)
9146                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9147
9148         else if (bp->wol) {
9149                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9150                 u8 *mac_addr = bp->dev->dev_addr;
9151                 struct pci_dev *pdev = bp->pdev;
9152                 u32 val;
9153                 u16 pmc;
9154
9155                 /* The mac address is written to entries 1-4 to
9156                  * preserve entry 0 which is used by the PMF
9157                  */
9158                 u8 entry = (BP_VN(bp) + 1)*8;
9159
9160                 val = (mac_addr[0] << 8) | mac_addr[1];
9161                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9162
9163                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9164                       (mac_addr[4] << 8) | mac_addr[5];
9165                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9166
9167                 /* Enable the PME and clear the status */
9168                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9169                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9170                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9171
9172                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9173
9174         } else
9175                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9176
9177         /* Send the request to the MCP */
9178         if (!BP_NOMCP(bp))
9179                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9180         else {
9181                 int path = BP_PATH(bp);
9182
9183                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9184                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9185                    bnx2x_load_count[path][2]);
9186                 bnx2x_load_count[path][0]--;
9187                 bnx2x_load_count[path][1 + port]--;
9188                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9189                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9190                    bnx2x_load_count[path][2]);
9191                 if (bnx2x_load_count[path][0] == 0)
9192                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9193                 else if (bnx2x_load_count[path][1 + port] == 0)
9194                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9195                 else
9196                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9197         }
9198
9199         return reset_code;
9200 }
9201
9202 /**
9203  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9204  *
9205  * @bp:         driver handle
9206  * @keep_link:          true iff link should be kept up
9207  */
9208 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9209 {
9210         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9211
9212         /* Report UNLOAD_DONE to MCP */
9213         if (!BP_NOMCP(bp))
9214                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9215 }
9216
9217 static int bnx2x_func_wait_started(struct bnx2x *bp)
9218 {
9219         int tout = 50;
9220         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9221
9222         if (!bp->port.pmf)
9223                 return 0;
9224
9225         /*
9226          * (assumption: No Attention from MCP at this stage)
9227          * PMF probably in the middle of TX disable/enable transaction
9228          * 1. Sync IRS for default SB
9229          * 2. Sync SP queue - this guarantees us that attention handling started
9230          * 3. Wait, that TX disable/enable transaction completes
9231          *
9232          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9233          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9234          * received completion for the transaction the state is TX_STOPPED.
9235          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9236          * transaction.
9237          */
9238
9239         /* make sure default SB ISR is done */
9240         if (msix)
9241                 synchronize_irq(bp->msix_table[0].vector);
9242         else
9243                 synchronize_irq(bp->pdev->irq);
9244
9245         flush_workqueue(bnx2x_wq);
9246         flush_workqueue(bnx2x_iov_wq);
9247
9248         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9249                                 BNX2X_F_STATE_STARTED && tout--)
9250                 msleep(20);
9251
9252         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9253                                                 BNX2X_F_STATE_STARTED) {
9254 #ifdef BNX2X_STOP_ON_ERROR
9255                 BNX2X_ERR("Wrong function state\n");
9256                 return -EBUSY;
9257 #else
9258                 /*
9259                  * Failed to complete the transaction in a "good way"
9260                  * Force both transactions with CLR bit
9261                  */
9262                 struct bnx2x_func_state_params func_params = {NULL};
9263
9264                 DP(NETIF_MSG_IFDOWN,
9265                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9266
9267                 func_params.f_obj = &bp->func_obj;
9268                 __set_bit(RAMROD_DRV_CLR_ONLY,
9269                                         &func_params.ramrod_flags);
9270
9271                 /* STARTED-->TX_ST0PPED */
9272                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9273                 bnx2x_func_state_change(bp, &func_params);
9274
9275                 /* TX_ST0PPED-->STARTED */
9276                 func_params.cmd = BNX2X_F_CMD_TX_START;
9277                 return bnx2x_func_state_change(bp, &func_params);
9278 #endif
9279         }
9280
9281         return 0;
9282 }
9283
9284 static void bnx2x_disable_ptp(struct bnx2x *bp)
9285 {
9286         int port = BP_PORT(bp);
9287
9288         /* Disable sending PTP packets to host */
9289         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9290                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9291
9292         /* Reset PTP event detection rules */
9293         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9294                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9295         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9296                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9297         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9298                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9299         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9300                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9301
9302         /* Disable the PTP feature */
9303         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9304                NIG_REG_P0_PTP_EN, 0x0);
9305 }
9306
9307 /* Called during unload, to stop PTP-related stuff */
9308 static void bnx2x_stop_ptp(struct bnx2x *bp)
9309 {
9310         /* Cancel PTP work queue. Should be done after the Tx queues are
9311          * drained to prevent additional scheduling.
9312          */
9313         cancel_work_sync(&bp->ptp_task);
9314
9315         if (bp->ptp_tx_skb) {
9316                 dev_kfree_skb_any(bp->ptp_tx_skb);
9317                 bp->ptp_tx_skb = NULL;
9318         }
9319
9320         /* Disable PTP in HW */
9321         bnx2x_disable_ptp(bp);
9322
9323         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9324 }
9325
9326 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9327 {
9328         int port = BP_PORT(bp);
9329         int i, rc = 0;
9330         u8 cos;
9331         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9332         u32 reset_code;
9333
9334         /* Wait until tx fastpath tasks complete */
9335         for_each_tx_queue(bp, i) {
9336                 struct bnx2x_fastpath *fp = &bp->fp[i];
9337
9338                 for_each_cos_in_tx_queue(fp, cos)
9339                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9340 #ifdef BNX2X_STOP_ON_ERROR
9341                 if (rc)
9342                         return;
9343 #endif
9344         }
9345
9346         /* Give HW time to discard old tx messages */
9347         usleep_range(1000, 2000);
9348
9349         /* Clean all ETH MACs */
9350         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9351                                 false);
9352         if (rc < 0)
9353                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9354
9355         /* Clean up UC list  */
9356         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9357                                 true);
9358         if (rc < 0)
9359                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9360                           rc);
9361
9362         /* The whole *vlan_obj structure may be not initialized if VLAN
9363          * filtering offload is not supported by hardware. Currently this is
9364          * true for all hardware covered by CHIP_IS_E1x().
9365          */
9366         if (!CHIP_IS_E1x(bp)) {
9367                 /* Remove all currently configured VLANs */
9368                 rc = bnx2x_del_all_vlans(bp);
9369                 if (rc < 0)
9370                         BNX2X_ERR("Failed to delete all VLANs\n");
9371         }
9372
9373         /* Disable LLH */
9374         if (!CHIP_IS_E1(bp))
9375                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9376
9377         /* Set "drop all" (stop Rx).
9378          * We need to take a netif_addr_lock() here in order to prevent
9379          * a race between the completion code and this code.
9380          */
9381         netif_addr_lock_bh(bp->dev);
9382         /* Schedule the rx_mode command */
9383         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9384                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9385         else if (bp->slowpath)
9386                 bnx2x_set_storm_rx_mode(bp);
9387
9388         /* Cleanup multicast configuration */
9389         rparam.mcast_obj = &bp->mcast_obj;
9390         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9391         if (rc < 0)
9392                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9393
9394         netif_addr_unlock_bh(bp->dev);
9395
9396         bnx2x_iov_chip_cleanup(bp);
9397
9398         /*
9399          * Send the UNLOAD_REQUEST to the MCP. This will return if
9400          * this function should perform FUNC, PORT or COMMON HW
9401          * reset.
9402          */
9403         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9404
9405         /*
9406          * (assumption: No Attention from MCP at this stage)
9407          * PMF probably in the middle of TX disable/enable transaction
9408          */
9409         rc = bnx2x_func_wait_started(bp);
9410         if (rc) {
9411                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9412 #ifdef BNX2X_STOP_ON_ERROR
9413                 return;
9414 #endif
9415         }
9416
9417         /* Close multi and leading connections
9418          * Completions for ramrods are collected in a synchronous way
9419          */
9420         for_each_eth_queue(bp, i)
9421                 if (bnx2x_stop_queue(bp, i))
9422 #ifdef BNX2X_STOP_ON_ERROR
9423                         return;
9424 #else
9425                         goto unload_error;
9426 #endif
9427
9428         if (CNIC_LOADED(bp)) {
9429                 for_each_cnic_queue(bp, i)
9430                         if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9432                                 return;
9433 #else
9434                                 goto unload_error;
9435 #endif
9436         }
9437
9438         /* If SP settings didn't get completed so far - something
9439          * very wrong has happen.
9440          */
9441         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9442                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9443
9444 #ifndef BNX2X_STOP_ON_ERROR
9445 unload_error:
9446 #endif
9447         rc = bnx2x_func_stop(bp);
9448         if (rc) {
9449                 BNX2X_ERR("Function stop failed!\n");
9450 #ifdef BNX2X_STOP_ON_ERROR
9451                 return;
9452 #endif
9453         }
9454
9455         /* stop_ptp should be after the Tx queues are drained to prevent
9456          * scheduling to the cancelled PTP work queue. It should also be after
9457          * function stop ramrod is sent, since as part of this ramrod FW access
9458          * PTP registers.
9459          */
9460         if (bp->flags & PTP_SUPPORTED) {
9461                 bnx2x_stop_ptp(bp);
9462                 if (bp->ptp_clock) {
9463                         ptp_clock_unregister(bp->ptp_clock);
9464                         bp->ptp_clock = NULL;
9465                 }
9466         }
9467
9468         /* Disable HW interrupts, NAPI */
9469         bnx2x_netif_stop(bp, 1);
9470         /* Delete all NAPI objects */
9471         bnx2x_del_all_napi(bp);
9472         if (CNIC_LOADED(bp))
9473                 bnx2x_del_all_napi_cnic(bp);
9474
9475         /* Release IRQs */
9476         bnx2x_free_irq(bp);
9477
9478         /* Reset the chip, unless PCI function is offline. If we reach this
9479          * point following a PCI error handling, it means device is really
9480          * in a bad state and we're about to remove it, so reset the chip
9481          * is not a good idea.
9482          */
9483         if (!pci_channel_offline(bp->pdev)) {
9484                 rc = bnx2x_reset_hw(bp, reset_code);
9485                 if (rc)
9486                         BNX2X_ERR("HW_RESET failed\n");
9487         }
9488
9489         /* Report UNLOAD_DONE to MCP */
9490         bnx2x_send_unload_done(bp, keep_link);
9491 }
9492
9493 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9494 {
9495         u32 val;
9496
9497         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9498
9499         if (CHIP_IS_E1(bp)) {
9500                 int port = BP_PORT(bp);
9501                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9502                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9503
9504                 val = REG_RD(bp, addr);
9505                 val &= ~(0x300);
9506                 REG_WR(bp, addr, val);
9507         } else {
9508                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9509                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9510                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9511                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9512         }
9513 }
9514
9515 /* Close gates #2, #3 and #4: */
9516 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9517 {
9518         u32 val;
9519
9520         /* Gates #2 and #4a are closed/opened for "not E1" only */
9521         if (!CHIP_IS_E1(bp)) {
9522                 /* #4 */
9523                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9524                 /* #2 */
9525                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9526         }
9527
9528         /* #3 */
9529         if (CHIP_IS_E1x(bp)) {
9530                 /* Prevent interrupts from HC on both ports */
9531                 val = REG_RD(bp, HC_REG_CONFIG_1);
9532                 REG_WR(bp, HC_REG_CONFIG_1,
9533                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9534                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9535
9536                 val = REG_RD(bp, HC_REG_CONFIG_0);
9537                 REG_WR(bp, HC_REG_CONFIG_0,
9538                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9539                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9540         } else {
9541                 /* Prevent incoming interrupts in IGU */
9542                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9543
9544                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9545                        (!close) ?
9546                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9547                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9548         }
9549
9550         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9551                 close ? "closing" : "opening");
9552 }
9553
9554 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9555
9556 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9557 {
9558         /* Do some magic... */
9559         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9560         *magic_val = val & SHARED_MF_CLP_MAGIC;
9561         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9562 }
9563
9564 /**
9565  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9566  *
9567  * @bp:         driver handle
9568  * @magic_val:  old value of the `magic' bit.
9569  */
9570 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9571 {
9572         /* Restore the `magic' bit value... */
9573         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9574         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9575                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9576 }
9577
9578 /**
9579  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9580  *
9581  * @bp:         driver handle
9582  * @magic_val:  old value of 'magic' bit.
9583  *
9584  * Takes care of CLP configurations.
9585  */
9586 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9587 {
9588         u32 shmem;
9589         u32 validity_offset;
9590
9591         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9592
9593         /* Set `magic' bit in order to save MF config */
9594         if (!CHIP_IS_E1(bp))
9595                 bnx2x_clp_reset_prep(bp, magic_val);
9596
9597         /* Get shmem offset */
9598         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9599         validity_offset =
9600                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9601
9602         /* Clear validity map flags */
9603         if (shmem > 0)
9604                 REG_WR(bp, shmem + validity_offset, 0);
9605 }
9606
9607 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9608 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9609
9610 /**
9611  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9612  *
9613  * @bp: driver handle
9614  */
9615 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9616 {
9617         /* special handling for emulation and FPGA,
9618            wait 10 times longer */
9619         if (CHIP_REV_IS_SLOW(bp))
9620                 msleep(MCP_ONE_TIMEOUT*10);
9621         else
9622                 msleep(MCP_ONE_TIMEOUT);
9623 }
9624
9625 /*
9626  * initializes bp->common.shmem_base and waits for validity signature to appear
9627  */
9628 static int bnx2x_init_shmem(struct bnx2x *bp)
9629 {
9630         int cnt = 0;
9631         u32 val = 0;
9632
9633         do {
9634                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9635
9636                 /* If we read all 0xFFs, means we are in PCI error state and
9637                  * should bail out to avoid crashes on adapter's FW reads.
9638                  */
9639                 if (bp->common.shmem_base == 0xFFFFFFFF) {
9640                         bp->flags |= NO_MCP_FLAG;
9641                         return -ENODEV;
9642                 }
9643
9644                 if (bp->common.shmem_base) {
9645                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9646                         if (val & SHR_MEM_VALIDITY_MB)
9647                                 return 0;
9648                 }
9649
9650                 bnx2x_mcp_wait_one(bp);
9651
9652         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9653
9654         BNX2X_ERR("BAD MCP validity signature\n");
9655
9656         return -ENODEV;
9657 }
9658
9659 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9660 {
9661         int rc = bnx2x_init_shmem(bp);
9662
9663         /* Restore the `magic' bit value */
9664         if (!CHIP_IS_E1(bp))
9665                 bnx2x_clp_reset_done(bp, magic_val);
9666
9667         return rc;
9668 }
9669
9670 static void bnx2x_pxp_prep(struct bnx2x *bp)
9671 {
9672         if (!CHIP_IS_E1(bp)) {
9673                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9674                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9675         }
9676 }
9677
9678 /*
9679  * Reset the whole chip except for:
9680  *      - PCIE core
9681  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9682  *              one reset bit)
9683  *      - IGU
9684  *      - MISC (including AEU)
9685  *      - GRC
9686  *      - RBCN, RBCP
9687  */
9688 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9689 {
9690         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9691         u32 global_bits2, stay_reset2;
9692
9693         /*
9694          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9695          * (per chip) blocks.
9696          */
9697         global_bits2 =
9698                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9699                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9700
9701         /* Don't reset the following blocks.
9702          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9703          *            reset, as in 4 port device they might still be owned
9704          *            by the MCP (there is only one leader per path).
9705          */
9706         not_reset_mask1 =
9707                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9708                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9709                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9710
9711         not_reset_mask2 =
9712                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9713                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9714                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9715                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9716                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9717                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9718                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9719                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9720                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9721                 MISC_REGISTERS_RESET_REG_2_PGLC |
9722                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9723                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9724                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9725                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9726                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9727                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9728
9729         /*
9730          * Keep the following blocks in reset:
9731          *  - all xxMACs are handled by the bnx2x_link code.
9732          */
9733         stay_reset2 =
9734                 MISC_REGISTERS_RESET_REG_2_XMAC |
9735                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9736
9737         /* Full reset masks according to the chip */
9738         reset_mask1 = 0xffffffff;
9739
9740         if (CHIP_IS_E1(bp))
9741                 reset_mask2 = 0xffff;
9742         else if (CHIP_IS_E1H(bp))
9743                 reset_mask2 = 0x1ffff;
9744         else if (CHIP_IS_E2(bp))
9745                 reset_mask2 = 0xfffff;
9746         else /* CHIP_IS_E3 */
9747                 reset_mask2 = 0x3ffffff;
9748
9749         /* Don't reset global blocks unless we need to */
9750         if (!global)
9751                 reset_mask2 &= ~global_bits2;
9752
9753         /*
9754          * In case of attention in the QM, we need to reset PXP
9755          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9756          * because otherwise QM reset would release 'close the gates' shortly
9757          * before resetting the PXP, then the PSWRQ would send a write
9758          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9759          * read the payload data from PSWWR, but PSWWR would not
9760          * respond. The write queue in PGLUE would stuck, dmae commands
9761          * would not return. Therefore it's important to reset the second
9762          * reset register (containing the
9763          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9764          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9765          * bit).
9766          */
9767         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9768                reset_mask2 & (~not_reset_mask2));
9769
9770         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9771                reset_mask1 & (~not_reset_mask1));
9772
9773         barrier();
9774
9775         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9776                reset_mask2 & (~stay_reset2));
9777
9778         barrier();
9779
9780         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9781 }
9782
9783 /**
9784  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9785  * It should get cleared in no more than 1s.
9786  *
9787  * @bp: driver handle
9788  *
9789  * It should get cleared in no more than 1s. Returns 0 if
9790  * pending writes bit gets cleared.
9791  */
9792 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9793 {
9794         u32 cnt = 1000;
9795         u32 pend_bits = 0;
9796
9797         do {
9798                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9799
9800                 if (pend_bits == 0)
9801                         break;
9802
9803                 usleep_range(1000, 2000);
9804         } while (cnt-- > 0);
9805
9806         if (cnt <= 0) {
9807                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9808                           pend_bits);
9809                 return -EBUSY;
9810         }
9811
9812         return 0;
9813 }
9814
9815 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9816 {
9817         int cnt = 1000;
9818         u32 val = 0;
9819         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9820         u32 tags_63_32 = 0;
9821
9822         /* Empty the Tetris buffer, wait for 1s */
9823         do {
9824                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9825                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9826                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9827                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9828                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9829                 if (CHIP_IS_E3(bp))
9830                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9831
9832                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9833                     ((port_is_idle_0 & 0x1) == 0x1) &&
9834                     ((port_is_idle_1 & 0x1) == 0x1) &&
9835                     (pgl_exp_rom2 == 0xffffffff) &&
9836                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9837                         break;
9838                 usleep_range(1000, 2000);
9839         } while (cnt-- > 0);
9840
9841         if (cnt <= 0) {
9842                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9843                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9844                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9845                           pgl_exp_rom2);
9846                 return -EAGAIN;
9847         }
9848
9849         barrier();
9850
9851         /* Close gates #2, #3 and #4 */
9852         bnx2x_set_234_gates(bp, true);
9853
9854         /* Poll for IGU VQs for 57712 and newer chips */
9855         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9856                 return -EAGAIN;
9857
9858         /* TBD: Indicate that "process kill" is in progress to MCP */
9859
9860         /* Clear "unprepared" bit */
9861         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9862         barrier();
9863
9864         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9865          * PSWHST, GRC and PSWRD Tetris buffer.
9866          */
9867         usleep_range(1000, 2000);
9868
9869         /* Prepare to chip reset: */
9870         /* MCP */
9871         if (global)
9872                 bnx2x_reset_mcp_prep(bp, &val);
9873
9874         /* PXP */
9875         bnx2x_pxp_prep(bp);
9876         barrier();
9877
9878         /* reset the chip */
9879         bnx2x_process_kill_chip_reset(bp, global);
9880         barrier();
9881
9882         /* clear errors in PGB */
9883         if (!CHIP_IS_E1x(bp))
9884                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9885
9886         /* Recover after reset: */
9887         /* MCP */
9888         if (global && bnx2x_reset_mcp_comp(bp, val))
9889                 return -EAGAIN;
9890
9891         /* TBD: Add resetting the NO_MCP mode DB here */
9892
9893         /* Open the gates #2, #3 and #4 */
9894         bnx2x_set_234_gates(bp, false);
9895
9896         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9897          * reset state, re-enable attentions. */
9898
9899         return 0;
9900 }
9901
9902 static int bnx2x_leader_reset(struct bnx2x *bp)
9903 {
9904         int rc = 0;
9905         bool global = bnx2x_reset_is_global(bp);
9906         u32 load_code;
9907
9908         /* if not going to reset MCP - load "fake" driver to reset HW while
9909          * driver is owner of the HW
9910          */
9911         if (!global && !BP_NOMCP(bp)) {
9912                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9913                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9914                 if (!load_code) {
9915                         BNX2X_ERR("MCP response failure, aborting\n");
9916                         rc = -EAGAIN;
9917                         goto exit_leader_reset;
9918                 }
9919                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9920                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9921                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9922                         rc = -EAGAIN;
9923                         goto exit_leader_reset2;
9924                 }
9925                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9926                 if (!load_code) {
9927                         BNX2X_ERR("MCP response failure, aborting\n");
9928                         rc = -EAGAIN;
9929                         goto exit_leader_reset2;
9930                 }
9931         }
9932
9933         /* Try to recover after the failure */
9934         if (bnx2x_process_kill(bp, global)) {
9935                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9936                           BP_PATH(bp));
9937                 rc = -EAGAIN;
9938                 goto exit_leader_reset2;
9939         }
9940
9941         /*
9942          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9943          * state.
9944          */
9945         bnx2x_set_reset_done(bp);
9946         if (global)
9947                 bnx2x_clear_reset_global(bp);
9948
9949 exit_leader_reset2:
9950         /* unload "fake driver" if it was loaded */
9951         if (!global && !BP_NOMCP(bp)) {
9952                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9953                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9954         }
9955 exit_leader_reset:
9956         bp->is_leader = 0;
9957         bnx2x_release_leader_lock(bp);
9958         smp_mb();
9959         return rc;
9960 }
9961
9962 static void bnx2x_recovery_failed(struct bnx2x *bp)
9963 {
9964         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9965
9966         /* Disconnect this device */
9967         netif_device_detach(bp->dev);
9968
9969         /*
9970          * Block ifup for all function on this engine until "process kill"
9971          * or power cycle.
9972          */
9973         bnx2x_set_reset_in_progress(bp);
9974
9975         /* Shut down the power */
9976         bnx2x_set_power_state(bp, PCI_D3hot);
9977
9978         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9979
9980         smp_mb();
9981 }
9982
9983 /*
9984  * Assumption: runs under rtnl lock. This together with the fact
9985  * that it's called only from bnx2x_sp_rtnl() ensure that it
9986  * will never be called when netif_running(bp->dev) is false.
9987  */
9988 static void bnx2x_parity_recover(struct bnx2x *bp)
9989 {
9990         u32 error_recovered, error_unrecovered;
9991         bool is_parity, global = false;
9992 #ifdef CONFIG_BNX2X_SRIOV
9993         int vf_idx;
9994
9995         for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9996                 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9997
9998                 if (vf)
9999                         vf->state = VF_LOST;
10000         }
10001 #endif
10002         DP(NETIF_MSG_HW, "Handling parity\n");
10003         while (1) {
10004                 switch (bp->recovery_state) {
10005                 case BNX2X_RECOVERY_INIT:
10006                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10007                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10008                         WARN_ON(!is_parity);
10009
10010                         /* Try to get a LEADER_LOCK HW lock */
10011                         if (bnx2x_trylock_leader_lock(bp)) {
10012                                 bnx2x_set_reset_in_progress(bp);
10013                                 /*
10014                                  * Check if there is a global attention and if
10015                                  * there was a global attention, set the global
10016                                  * reset bit.
10017                                  */
10018
10019                                 if (global)
10020                                         bnx2x_set_reset_global(bp);
10021
10022                                 bp->is_leader = 1;
10023                         }
10024
10025                         /* Stop the driver */
10026                         /* If interface has been removed - break */
10027                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10028                                 return;
10029
10030                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
10031
10032                         /* Ensure "is_leader", MCP command sequence and
10033                          * "recovery_state" update values are seen on other
10034                          * CPUs.
10035                          */
10036                         smp_mb();
10037                         break;
10038
10039                 case BNX2X_RECOVERY_WAIT:
10040                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10041                         if (bp->is_leader) {
10042                                 int other_engine = BP_PATH(bp) ? 0 : 1;
10043                                 bool other_load_status =
10044                                         bnx2x_get_load_status(bp, other_engine);
10045                                 bool load_status =
10046                                         bnx2x_get_load_status(bp, BP_PATH(bp));
10047                                 global = bnx2x_reset_is_global(bp);
10048
10049                                 /*
10050                                  * In case of a parity in a global block, let
10051                                  * the first leader that performs a
10052                                  * leader_reset() reset the global blocks in
10053                                  * order to clear global attentions. Otherwise
10054                                  * the gates will remain closed for that
10055                                  * engine.
10056                                  */
10057                                 if (load_status ||
10058                                     (global && other_load_status)) {
10059                                         /* Wait until all other functions get
10060                                          * down.
10061                                          */
10062                                         schedule_delayed_work(&bp->sp_rtnl_task,
10063                                                                 HZ/10);
10064                                         return;
10065                                 } else {
10066                                         /* If all other functions got down -
10067                                          * try to bring the chip back to
10068                                          * normal. In any case it's an exit
10069                                          * point for a leader.
10070                                          */
10071                                         if (bnx2x_leader_reset(bp)) {
10072                                                 bnx2x_recovery_failed(bp);
10073                                                 return;
10074                                         }
10075
10076                                         /* If we are here, means that the
10077                                          * leader has succeeded and doesn't
10078                                          * want to be a leader any more. Try
10079                                          * to continue as a none-leader.
10080                                          */
10081                                         break;
10082                                 }
10083                         } else { /* non-leader */
10084                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10085                                         /* Try to get a LEADER_LOCK HW lock as
10086                                          * long as a former leader may have
10087                                          * been unloaded by the user or
10088                                          * released a leadership by another
10089                                          * reason.
10090                                          */
10091                                         if (bnx2x_trylock_leader_lock(bp)) {
10092                                                 /* I'm a leader now! Restart a
10093                                                  * switch case.
10094                                                  */
10095                                                 bp->is_leader = 1;
10096                                                 break;
10097                                         }
10098
10099                                         schedule_delayed_work(&bp->sp_rtnl_task,
10100                                                                 HZ/10);
10101                                         return;
10102
10103                                 } else {
10104                                         /*
10105                                          * If there was a global attention, wait
10106                                          * for it to be cleared.
10107                                          */
10108                                         if (bnx2x_reset_is_global(bp)) {
10109                                                 schedule_delayed_work(
10110                                                         &bp->sp_rtnl_task,
10111                                                         HZ/10);
10112                                                 return;
10113                                         }
10114
10115                                         error_recovered =
10116                                           bp->eth_stats.recoverable_error;
10117                                         error_unrecovered =
10118                                           bp->eth_stats.unrecoverable_error;
10119                                         bp->recovery_state =
10120                                                 BNX2X_RECOVERY_NIC_LOADING;
10121                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10122                                                 error_unrecovered++;
10123                                                 netdev_err(bp->dev,
10124                                                            "Recovery failed. Power cycle needed\n");
10125                                                 /* Disconnect this device */
10126                                                 netif_device_detach(bp->dev);
10127                                                 /* Shut down the power */
10128                                                 bnx2x_set_power_state(
10129                                                         bp, PCI_D3hot);
10130                                                 smp_mb();
10131                                         } else {
10132                                                 bp->recovery_state =
10133                                                         BNX2X_RECOVERY_DONE;
10134                                                 error_recovered++;
10135                                                 smp_mb();
10136                                         }
10137                                         bp->eth_stats.recoverable_error =
10138                                                 error_recovered;
10139                                         bp->eth_stats.unrecoverable_error =
10140                                                 error_unrecovered;
10141
10142                                         return;
10143                                 }
10144                         }
10145                 default:
10146                         return;
10147                 }
10148         }
10149 }
10150
10151 static int bnx2x_udp_port_update(struct bnx2x *bp)
10152 {
10153         struct bnx2x_func_switch_update_params *switch_update_params;
10154         struct bnx2x_func_state_params func_params = {NULL};
10155         u16 vxlan_port = 0, geneve_port = 0;
10156         int rc;
10157
10158         switch_update_params = &func_params.params.switch_update;
10159
10160         /* Prepare parameters for function state transitions */
10161         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10162         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10163
10164         func_params.f_obj = &bp->func_obj;
10165         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10166
10167         /* Function parameters */
10168         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10169                   &switch_update_params->changes);
10170
10171         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10172                 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10173                 switch_update_params->geneve_dst_port = geneve_port;
10174         }
10175
10176         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10177                 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10178                 switch_update_params->vxlan_dst_port = vxlan_port;
10179         }
10180
10181         /* Re-enable inner-rss for the offloaded UDP tunnels */
10182         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10183                   &switch_update_params->changes);
10184
10185         rc = bnx2x_func_state_change(bp, &func_params);
10186         if (rc)
10187                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10188                           vxlan_port, geneve_port, rc);
10189         else
10190                 DP(BNX2X_MSG_SP,
10191                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10192                    vxlan_port, geneve_port);
10193
10194         return rc;
10195 }
10196
10197 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10198 {
10199         struct bnx2x *bp = netdev_priv(netdev);
10200         struct udp_tunnel_info ti;
10201
10202         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10203         bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10204
10205         return bnx2x_udp_port_update(bp);
10206 }
10207
10208 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10209         .sync_table     = bnx2x_udp_tunnel_sync,
10210         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10211                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10212         .tables         = {
10213                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10214                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10215         },
10216 };
10217
10218 static int bnx2x_close(struct net_device *dev);
10219
10220 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10221  * scheduled on a general queue in order to prevent a dead lock.
10222  */
10223 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10224 {
10225         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10226
10227         rtnl_lock();
10228
10229         if (!netif_running(bp->dev)) {
10230                 rtnl_unlock();
10231                 return;
10232         }
10233
10234         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10235 #ifdef BNX2X_STOP_ON_ERROR
10236                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10237                           "you will need to reboot when done\n");
10238                 goto sp_rtnl_not_reset;
10239 #endif
10240                 /*
10241                  * Clear all pending SP commands as we are going to reset the
10242                  * function anyway.
10243                  */
10244                 bp->sp_rtnl_state = 0;
10245                 smp_mb();
10246
10247                 bnx2x_parity_recover(bp);
10248
10249                 rtnl_unlock();
10250                 return;
10251         }
10252
10253         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10254 #ifdef BNX2X_STOP_ON_ERROR
10255                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10256                           "you will need to reboot when done\n");
10257                 goto sp_rtnl_not_reset;
10258 #endif
10259
10260                 /*
10261                  * Clear all pending SP commands as we are going to reset the
10262                  * function anyway.
10263                  */
10264                 bp->sp_rtnl_state = 0;
10265                 smp_mb();
10266
10267                 /* Immediately indicate link as down */
10268                 bp->link_vars.link_up = 0;
10269                 bp->force_link_down = true;
10270                 netif_carrier_off(bp->dev);
10271                 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10272
10273                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274                 /* When ret value shows failure of allocation failure,
10275                  * the nic is rebooted again. If open still fails, a error
10276                  * message to notify the user.
10277                  */
10278                 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10279                         bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10280                         if (bnx2x_nic_load(bp, LOAD_NORMAL))
10281                                 BNX2X_ERR("Open the NIC fails again!\n");
10282                 }
10283                 rtnl_unlock();
10284                 return;
10285         }
10286 #ifdef BNX2X_STOP_ON_ERROR
10287 sp_rtnl_not_reset:
10288 #endif
10289         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10290                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10291         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10292                 bnx2x_after_function_update(bp);
10293         /*
10294          * in case of fan failure we need to reset id if the "stop on error"
10295          * debug flag is set, since we trying to prevent permanent overheating
10296          * damage
10297          */
10298         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10299                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10300                 netif_device_detach(bp->dev);
10301                 bnx2x_close(bp->dev);
10302                 rtnl_unlock();
10303                 return;
10304         }
10305
10306         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10307                 DP(BNX2X_MSG_SP,
10308                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10309                 bnx2x_vfpf_set_mcast(bp->dev);
10310         }
10311         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10312                                &bp->sp_rtnl_state)){
10313                 if (netif_carrier_ok(bp->dev)) {
10314                         bnx2x_tx_disable(bp);
10315                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10316                 }
10317         }
10318
10319         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10320                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10321                 bnx2x_set_rx_mode_inner(bp);
10322         }
10323
10324         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10325                                &bp->sp_rtnl_state))
10326                 bnx2x_pf_set_vfs_vlan(bp);
10327
10328         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10329                 bnx2x_dcbx_stop_hw_tx(bp);
10330                 bnx2x_dcbx_resume_hw_tx(bp);
10331         }
10332
10333         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10334                                &bp->sp_rtnl_state))
10335                 bnx2x_update_mng_version(bp);
10336
10337         if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10338                 bnx2x_handle_update_svid_cmd(bp);
10339
10340         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10341          * can be called from other contexts as well)
10342          */
10343         rtnl_unlock();
10344
10345         /* enable SR-IOV if applicable */
10346         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10347                                                &bp->sp_rtnl_state)) {
10348                 bnx2x_disable_sriov(bp);
10349                 bnx2x_enable_sriov(bp);
10350         }
10351 }
10352
10353 static void bnx2x_period_task(struct work_struct *work)
10354 {
10355         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10356
10357         if (!netif_running(bp->dev))
10358                 goto period_task_exit;
10359
10360         if (CHIP_REV_IS_SLOW(bp)) {
10361                 BNX2X_ERR("period task called on emulation, ignoring\n");
10362                 goto period_task_exit;
10363         }
10364
10365         bnx2x_acquire_phy_lock(bp);
10366         /*
10367          * The barrier is needed to ensure the ordering between the writing to
10368          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10369          * the reading here.
10370          */
10371         smp_mb();
10372         if (bp->port.pmf) {
10373                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10374
10375                 /* Re-queue task in 1 sec */
10376                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10377         }
10378
10379         bnx2x_release_phy_lock(bp);
10380 period_task_exit:
10381         return;
10382 }
10383
10384 /*
10385  * Init service functions
10386  */
10387
10388 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10389 {
10390         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10391         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10392         return base + (BP_ABS_FUNC(bp)) * stride;
10393 }
10394
10395 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10396                                          u8 port, u32 reset_reg,
10397                                          struct bnx2x_mac_vals *vals)
10398 {
10399         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10400         u32 base_addr;
10401
10402         if (!(mask & reset_reg))
10403                 return false;
10404
10405         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10406         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10407         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10408         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10409         REG_WR(bp, vals->umac_addr[port], 0);
10410
10411         return true;
10412 }
10413
10414 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10415                                         struct bnx2x_mac_vals *vals)
10416 {
10417         u32 val, base_addr, offset, mask, reset_reg;
10418         bool mac_stopped = false;
10419         u8 port = BP_PORT(bp);
10420
10421         /* reset addresses as they also mark which values were changed */
10422         memset(vals, 0, sizeof(*vals));
10423
10424         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10425
10426         if (!CHIP_IS_E3(bp)) {
10427                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10428                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10429                 if ((mask & reset_reg) && val) {
10430                         u32 wb_data[2];
10431                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10432                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10433                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10434                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10435                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10436
10437                         /*
10438                          * use rd/wr since we cannot use dmae. This is safe
10439                          * since MCP won't access the bus due to the request
10440                          * to unload, and no function on the path can be
10441                          * loaded at this time.
10442                          */
10443                         wb_data[0] = REG_RD(bp, base_addr + offset);
10444                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10445                         vals->bmac_addr = base_addr + offset;
10446                         vals->bmac_val[0] = wb_data[0];
10447                         vals->bmac_val[1] = wb_data[1];
10448                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10449                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10450                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10451                 }
10452                 BNX2X_DEV_INFO("Disable emac Rx\n");
10453                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10454                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10455                 REG_WR(bp, vals->emac_addr, 0);
10456                 mac_stopped = true;
10457         } else {
10458                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10459                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10460                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10461                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10462                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10463                                val & ~(1 << 1));
10464                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10465                                val | (1 << 1));
10466                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10467                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10468                         REG_WR(bp, vals->xmac_addr, 0);
10469                         mac_stopped = true;
10470                 }
10471
10472                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10473                                                             reset_reg, vals);
10474                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10475                                                             reset_reg, vals);
10476         }
10477
10478         if (mac_stopped)
10479                 msleep(20);
10480 }
10481
10482 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10483 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10484                                         0x1848 + ((f) << 4))
10485 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10486 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10487 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10488
10489 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10490 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10491 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10492
10493 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10494 {
10495         /* UNDI marks its presence in DORQ -
10496          * it initializes CID offset for normal bell to 0x7
10497          */
10498         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10499             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10500                 return false;
10501
10502         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10503                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10504                 return true;
10505         }
10506
10507         return false;
10508 }
10509
10510 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10511 {
10512         u16 rcq, bd;
10513         u32 addr, tmp_reg;
10514
10515         if (BP_FUNC(bp) < 2)
10516                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10517         else
10518                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10519
10520         tmp_reg = REG_RD(bp, addr);
10521         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10522         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10523
10524         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10525         REG_WR(bp, addr, tmp_reg);
10526
10527         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10528                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10529 }
10530
10531 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10532 {
10533         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10534                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10535         if (!rc) {
10536                 BNX2X_ERR("MCP response failure, aborting\n");
10537                 return -EBUSY;
10538         }
10539
10540         return 0;
10541 }
10542
10543 static struct bnx2x_prev_path_list *
10544                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10545 {
10546         struct bnx2x_prev_path_list *tmp_list;
10547
10548         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10549                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10550                     bp->pdev->bus->number == tmp_list->bus &&
10551                     BP_PATH(bp) == tmp_list->path)
10552                         return tmp_list;
10553
10554         return NULL;
10555 }
10556
10557 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10558 {
10559         struct bnx2x_prev_path_list *tmp_list;
10560         int rc;
10561
10562         rc = down_interruptible(&bnx2x_prev_sem);
10563         if (rc) {
10564                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10565                 return rc;
10566         }
10567
10568         tmp_list = bnx2x_prev_path_get_entry(bp);
10569         if (tmp_list) {
10570                 tmp_list->aer = 1;
10571                 rc = 0;
10572         } else {
10573                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10574                           BP_PATH(bp));
10575         }
10576
10577         up(&bnx2x_prev_sem);
10578
10579         return rc;
10580 }
10581
10582 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10583 {
10584         struct bnx2x_prev_path_list *tmp_list;
10585         bool rc = false;
10586
10587         if (down_trylock(&bnx2x_prev_sem))
10588                 return false;
10589
10590         tmp_list = bnx2x_prev_path_get_entry(bp);
10591         if (tmp_list) {
10592                 if (tmp_list->aer) {
10593                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10594                            BP_PATH(bp));
10595                 } else {
10596                         rc = true;
10597                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10598                                        BP_PATH(bp));
10599                 }
10600         }
10601
10602         up(&bnx2x_prev_sem);
10603
10604         return rc;
10605 }
10606
10607 bool bnx2x_port_after_undi(struct bnx2x *bp)
10608 {
10609         struct bnx2x_prev_path_list *entry;
10610         bool val;
10611
10612         down(&bnx2x_prev_sem);
10613
10614         entry = bnx2x_prev_path_get_entry(bp);
10615         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10616
10617         up(&bnx2x_prev_sem);
10618
10619         return val;
10620 }
10621
10622 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10623 {
10624         struct bnx2x_prev_path_list *tmp_list;
10625         int rc;
10626
10627         rc = down_interruptible(&bnx2x_prev_sem);
10628         if (rc) {
10629                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10630                 return rc;
10631         }
10632
10633         /* Check whether the entry for this path already exists */
10634         tmp_list = bnx2x_prev_path_get_entry(bp);
10635         if (tmp_list) {
10636                 if (!tmp_list->aer) {
10637                         BNX2X_ERR("Re-Marking the path.\n");
10638                 } else {
10639                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10640                            BP_PATH(bp));
10641                         tmp_list->aer = 0;
10642                 }
10643                 up(&bnx2x_prev_sem);
10644                 return 0;
10645         }
10646         up(&bnx2x_prev_sem);
10647
10648         /* Create an entry for this path and add it */
10649         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10650         if (!tmp_list) {
10651                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10652                 return -ENOMEM;
10653         }
10654
10655         tmp_list->bus = bp->pdev->bus->number;
10656         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10657         tmp_list->path = BP_PATH(bp);
10658         tmp_list->aer = 0;
10659         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10660
10661         rc = down_interruptible(&bnx2x_prev_sem);
10662         if (rc) {
10663                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10664                 kfree(tmp_list);
10665         } else {
10666                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10667                    BP_PATH(bp));
10668                 list_add(&tmp_list->list, &bnx2x_prev_list);
10669                 up(&bnx2x_prev_sem);
10670         }
10671
10672         return rc;
10673 }
10674
10675 static int bnx2x_do_flr(struct bnx2x *bp)
10676 {
10677         struct pci_dev *dev = bp->pdev;
10678
10679         if (CHIP_IS_E1x(bp)) {
10680                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10681                 return -EINVAL;
10682         }
10683
10684         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10685         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10686                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10687                           bp->common.bc_ver);
10688                 return -EINVAL;
10689         }
10690
10691         if (!pci_wait_for_pending_transaction(dev))
10692                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10693
10694         BNX2X_DEV_INFO("Initiating FLR\n");
10695         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10696
10697         return 0;
10698 }
10699
10700 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10701 {
10702         int rc;
10703
10704         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10705
10706         /* Test if previous unload process was already finished for this path */
10707         if (bnx2x_prev_is_path_marked(bp))
10708                 return bnx2x_prev_mcp_done(bp);
10709
10710         BNX2X_DEV_INFO("Path is unmarked\n");
10711
10712         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10713         if (bnx2x_prev_is_after_undi(bp))
10714                 goto out;
10715
10716         /* If function has FLR capabilities, and existing FW version matches
10717          * the one required, then FLR will be sufficient to clean any residue
10718          * left by previous driver
10719          */
10720         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10721
10722         if (!rc) {
10723                 /* fw version is good */
10724                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10725                 rc = bnx2x_do_flr(bp);
10726         }
10727
10728         if (!rc) {
10729                 /* FLR was performed */
10730                 BNX2X_DEV_INFO("FLR successful\n");
10731                 return 0;
10732         }
10733
10734         BNX2X_DEV_INFO("Could not FLR\n");
10735
10736 out:
10737         /* Close the MCP request, return failure*/
10738         rc = bnx2x_prev_mcp_done(bp);
10739         if (!rc)
10740                 rc = BNX2X_PREV_WAIT_NEEDED;
10741
10742         return rc;
10743 }
10744
10745 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10746 {
10747         u32 reset_reg, tmp_reg = 0, rc;
10748         bool prev_undi = false;
10749         struct bnx2x_mac_vals mac_vals;
10750
10751         /* It is possible a previous function received 'common' answer,
10752          * but hasn't loaded yet, therefore creating a scenario of
10753          * multiple functions receiving 'common' on the same path.
10754          */
10755         BNX2X_DEV_INFO("Common unload Flow\n");
10756
10757         memset(&mac_vals, 0, sizeof(mac_vals));
10758
10759         if (bnx2x_prev_is_path_marked(bp))
10760                 return bnx2x_prev_mcp_done(bp);
10761
10762         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10763
10764         /* Reset should be performed after BRB is emptied */
10765         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10766                 u32 timer_count = 1000;
10767
10768                 /* Close the MAC Rx to prevent BRB from filling up */
10769                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10770
10771                 /* close LLH filters for both ports towards the BRB */
10772                 bnx2x_set_rx_filter(&bp->link_params, 0);
10773                 bp->link_params.port ^= 1;
10774                 bnx2x_set_rx_filter(&bp->link_params, 0);
10775                 bp->link_params.port ^= 1;
10776
10777                 /* Check if the UNDI driver was previously loaded */
10778                 if (bnx2x_prev_is_after_undi(bp)) {
10779                         prev_undi = true;
10780                         /* clear the UNDI indication */
10781                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10782                         /* clear possible idle check errors */
10783                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10784                 }
10785                 if (!CHIP_IS_E1x(bp))
10786                         /* block FW from writing to host */
10787                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10788
10789                 /* wait until BRB is empty */
10790                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10791                 while (timer_count) {
10792                         u32 prev_brb = tmp_reg;
10793
10794                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10795                         if (!tmp_reg)
10796                                 break;
10797
10798                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10799
10800                         /* reset timer as long as BRB actually gets emptied */
10801                         if (prev_brb > tmp_reg)
10802                                 timer_count = 1000;
10803                         else
10804                                 timer_count--;
10805
10806                         /* If UNDI resides in memory, manually increment it */
10807                         if (prev_undi)
10808                                 bnx2x_prev_unload_undi_inc(bp, 1);
10809
10810                         udelay(10);
10811                 }
10812
10813                 if (!timer_count)
10814                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10815         }
10816
10817         /* No packets are in the pipeline, path is ready for reset */
10818         bnx2x_reset_common(bp);
10819
10820         if (mac_vals.xmac_addr)
10821                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10822         if (mac_vals.umac_addr[0])
10823                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10824         if (mac_vals.umac_addr[1])
10825                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10826         if (mac_vals.emac_addr)
10827                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10828         if (mac_vals.bmac_addr) {
10829                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10830                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10831         }
10832
10833         rc = bnx2x_prev_mark_path(bp, prev_undi);
10834         if (rc) {
10835                 bnx2x_prev_mcp_done(bp);
10836                 return rc;
10837         }
10838
10839         return bnx2x_prev_mcp_done(bp);
10840 }
10841
10842 static int bnx2x_prev_unload(struct bnx2x *bp)
10843 {
10844         int time_counter = 10;
10845         u32 rc, fw, hw_lock_reg, hw_lock_val;
10846         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10847
10848         /* clear hw from errors which may have resulted from an interrupted
10849          * dmae transaction.
10850          */
10851         bnx2x_clean_pglue_errors(bp);
10852
10853         /* Release previously held locks */
10854         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10855                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10856                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10857
10858         hw_lock_val = REG_RD(bp, hw_lock_reg);
10859         if (hw_lock_val) {
10860                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10861                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10862                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10863                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10864                 }
10865
10866                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10867                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10868         } else
10869                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10870
10871         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10872                 BNX2X_DEV_INFO("Release previously held alr\n");
10873                 bnx2x_release_alr(bp);
10874         }
10875
10876         do {
10877                 int aer = 0;
10878                 /* Lock MCP using an unload request */
10879                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10880                 if (!fw) {
10881                         BNX2X_ERR("MCP response failure, aborting\n");
10882                         rc = -EBUSY;
10883                         break;
10884                 }
10885
10886                 rc = down_interruptible(&bnx2x_prev_sem);
10887                 if (rc) {
10888                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10889                                   rc);
10890                 } else {
10891                         /* If Path is marked by EEH, ignore unload status */
10892                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10893                                  bnx2x_prev_path_get_entry(bp)->aer);
10894                         up(&bnx2x_prev_sem);
10895                 }
10896
10897                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10898                         rc = bnx2x_prev_unload_common(bp);
10899                         break;
10900                 }
10901
10902                 /* non-common reply from MCP might require looping */
10903                 rc = bnx2x_prev_unload_uncommon(bp);
10904                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10905                         break;
10906
10907                 msleep(20);
10908         } while (--time_counter);
10909
10910         if (!time_counter || rc) {
10911                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10912                 rc = -EPROBE_DEFER;
10913         }
10914
10915         /* Mark function if its port was used to boot from SAN */
10916         if (bnx2x_port_after_undi(bp))
10917                 bp->link_params.feature_config_flags |=
10918                         FEATURE_CONFIG_BOOT_FROM_SAN;
10919
10920         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10921
10922         return rc;
10923 }
10924
10925 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10926 {
10927         u32 val, val2, val3, val4, id, boot_mode;
10928         u16 pmc;
10929
10930         /* Get the chip revision id and number. */
10931         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10932         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10933         id = ((val & 0xffff) << 16);
10934         val = REG_RD(bp, MISC_REG_CHIP_REV);
10935         id |= ((val & 0xf) << 12);
10936
10937         /* Metal is read from PCI regs, but we can't access >=0x400 from
10938          * the configuration space (so we need to reg_rd)
10939          */
10940         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10941         id |= (((val >> 24) & 0xf) << 4);
10942         val = REG_RD(bp, MISC_REG_BOND_ID);
10943         id |= (val & 0xf);
10944         bp->common.chip_id = id;
10945
10946         /* force 57811 according to MISC register */
10947         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10948                 if (CHIP_IS_57810(bp))
10949                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10950                                 (bp->common.chip_id & 0x0000FFFF);
10951                 else if (CHIP_IS_57810_MF(bp))
10952                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10953                                 (bp->common.chip_id & 0x0000FFFF);
10954                 bp->common.chip_id |= 0x1;
10955         }
10956
10957         /* Set doorbell size */
10958         bp->db_size = (1 << BNX2X_DB_SHIFT);
10959
10960         if (!CHIP_IS_E1x(bp)) {
10961                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10962                 if ((val & 1) == 0)
10963                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10964                 else
10965                         val = (val >> 1) & 1;
10966                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10967                                                        "2_PORT_MODE");
10968                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10969                                                  CHIP_2_PORT_MODE;
10970
10971                 if (CHIP_MODE_IS_4_PORT(bp))
10972                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10973                 else
10974                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10975         } else {
10976                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10977                 bp->pfid = bp->pf_num;                  /* 0..7 */
10978         }
10979
10980         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10981
10982         bp->link_params.chip_id = bp->common.chip_id;
10983         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10984
10985         val = (REG_RD(bp, 0x2874) & 0x55);
10986         if ((bp->common.chip_id & 0x1) ||
10987             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10988                 bp->flags |= ONE_PORT_FLAG;
10989                 BNX2X_DEV_INFO("single port device\n");
10990         }
10991
10992         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10993         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10994                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10995         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10996                        bp->common.flash_size, bp->common.flash_size);
10997
10998         bnx2x_init_shmem(bp);
10999
11000         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11001                                         MISC_REG_GENERIC_CR_1 :
11002                                         MISC_REG_GENERIC_CR_0));
11003
11004         bp->link_params.shmem_base = bp->common.shmem_base;
11005         bp->link_params.shmem2_base = bp->common.shmem2_base;
11006         if (SHMEM2_RD(bp, size) >
11007             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11008                 bp->link_params.lfa_base =
11009                 REG_RD(bp, bp->common.shmem2_base +
11010                        (u32)offsetof(struct shmem2_region,
11011                                      lfa_host_addr[BP_PORT(bp)]));
11012         else
11013                 bp->link_params.lfa_base = 0;
11014         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11015                        bp->common.shmem_base, bp->common.shmem2_base);
11016
11017         if (!bp->common.shmem_base) {
11018                 BNX2X_DEV_INFO("MCP not active\n");
11019                 bp->flags |= NO_MCP_FLAG;
11020                 return;
11021         }
11022
11023         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11024         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11025
11026         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11027                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11028                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11029
11030         bp->link_params.feature_config_flags = 0;
11031         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11032         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11033                 bp->link_params.feature_config_flags |=
11034                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035         else
11036                 bp->link_params.feature_config_flags &=
11037                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11038
11039         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11040         bp->common.bc_ver = val;
11041         BNX2X_DEV_INFO("bc_ver %X\n", val);
11042         if (val < BNX2X_BC_VER) {
11043                 /* for now only warn
11044                  * later we might need to enforce this */
11045                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11046                           BNX2X_BC_VER, val);
11047         }
11048         bp->link_params.feature_config_flags |=
11049                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11050                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11051
11052         bp->link_params.feature_config_flags |=
11053                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11054                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11055         bp->link_params.feature_config_flags |=
11056                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11057                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11058         bp->link_params.feature_config_flags |=
11059                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11060                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11061
11062         bp->link_params.feature_config_flags |=
11063                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11064                 FEATURE_CONFIG_MT_SUPPORT : 0;
11065
11066         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11067                         BC_SUPPORTS_PFC_STATS : 0;
11068
11069         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11070                         BC_SUPPORTS_FCOE_FEATURES : 0;
11071
11072         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11073                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11074
11075         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11076                         BC_SUPPORTS_RMMOD_CMD : 0;
11077
11078         boot_mode = SHMEM_RD(bp,
11079                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11080                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11081         switch (boot_mode) {
11082         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11083                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11084                 break;
11085         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11086                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11087                 break;
11088         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11089                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11090                 break;
11091         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11092                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11093                 break;
11094         }
11095
11096         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11097         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11098
11099         BNX2X_DEV_INFO("%sWoL capable\n",
11100                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11101
11102         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11103         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11104         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11105         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11106
11107         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11108                  val, val2, val3, val4);
11109 }
11110
11111 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11112 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11113
11114 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11115 {
11116         int pfid = BP_FUNC(bp);
11117         int igu_sb_id;
11118         u32 val;
11119         u8 fid, igu_sb_cnt = 0;
11120
11121         bp->igu_base_sb = 0xff;
11122         if (CHIP_INT_MODE_IS_BC(bp)) {
11123                 int vn = BP_VN(bp);
11124                 igu_sb_cnt = bp->igu_sb_cnt;
11125                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11126                         FP_SB_MAX_E1x;
11127
11128                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11129                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11130
11131                 return 0;
11132         }
11133
11134         /* IGU in normal mode - read CAM */
11135         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11136              igu_sb_id++) {
11137                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11138                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11139                         continue;
11140                 fid = IGU_FID(val);
11141                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11142                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11143                                 continue;
11144                         if (IGU_VEC(val) == 0)
11145                                 /* default status block */
11146                                 bp->igu_dsb_id = igu_sb_id;
11147                         else {
11148                                 if (bp->igu_base_sb == 0xff)
11149                                         bp->igu_base_sb = igu_sb_id;
11150                                 igu_sb_cnt++;
11151                         }
11152                 }
11153         }
11154
11155 #ifdef CONFIG_PCI_MSI
11156         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11157          * optional that number of CAM entries will not be equal to the value
11158          * advertised in PCI.
11159          * Driver should use the minimal value of both as the actual status
11160          * block count
11161          */
11162         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11163 #endif
11164
11165         if (igu_sb_cnt == 0) {
11166                 BNX2X_ERR("CAM configuration error\n");
11167                 return -EINVAL;
11168         }
11169
11170         return 0;
11171 }
11172
11173 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11174 {
11175         int cfg_size = 0, idx, port = BP_PORT(bp);
11176
11177         /* Aggregation of supported attributes of all external phys */
11178         bp->port.supported[0] = 0;
11179         bp->port.supported[1] = 0;
11180         switch (bp->link_params.num_phys) {
11181         case 1:
11182                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11183                 cfg_size = 1;
11184                 break;
11185         case 2:
11186                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11187                 cfg_size = 1;
11188                 break;
11189         case 3:
11190                 if (bp->link_params.multi_phy_config &
11191                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11192                         bp->port.supported[1] =
11193                                 bp->link_params.phy[EXT_PHY1].supported;
11194                         bp->port.supported[0] =
11195                                 bp->link_params.phy[EXT_PHY2].supported;
11196                 } else {
11197                         bp->port.supported[0] =
11198                                 bp->link_params.phy[EXT_PHY1].supported;
11199                         bp->port.supported[1] =
11200                                 bp->link_params.phy[EXT_PHY2].supported;
11201                 }
11202                 cfg_size = 2;
11203                 break;
11204         }
11205
11206         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11207                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11208                            SHMEM_RD(bp,
11209                            dev_info.port_hw_config[port].external_phy_config),
11210                            SHMEM_RD(bp,
11211                            dev_info.port_hw_config[port].external_phy_config2));
11212                 return;
11213         }
11214
11215         if (CHIP_IS_E3(bp))
11216                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11217         else {
11218                 switch (switch_cfg) {
11219                 case SWITCH_CFG_1G:
11220                         bp->port.phy_addr = REG_RD(
11221                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11222                         break;
11223                 case SWITCH_CFG_10G:
11224                         bp->port.phy_addr = REG_RD(
11225                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11226                         break;
11227                 default:
11228                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11229                                   bp->port.link_config[0]);
11230                         return;
11231                 }
11232         }
11233         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11234         /* mask what we support according to speed_cap_mask per configuration */
11235         for (idx = 0; idx < cfg_size; idx++) {
11236                 if (!(bp->link_params.speed_cap_mask[idx] &
11237                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11238                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11239
11240                 if (!(bp->link_params.speed_cap_mask[idx] &
11241                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11242                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11243
11244                 if (!(bp->link_params.speed_cap_mask[idx] &
11245                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11246                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11247
11248                 if (!(bp->link_params.speed_cap_mask[idx] &
11249                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11250                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11251
11252                 if (!(bp->link_params.speed_cap_mask[idx] &
11253                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11254                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11255                                                      SUPPORTED_1000baseT_Full);
11256
11257                 if (!(bp->link_params.speed_cap_mask[idx] &
11258                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11259                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11260
11261                 if (!(bp->link_params.speed_cap_mask[idx] &
11262                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11263                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11264
11265                 if (!(bp->link_params.speed_cap_mask[idx] &
11266                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11267                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11268         }
11269
11270         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11271                        bp->port.supported[1]);
11272 }
11273
11274 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11275 {
11276         u32 link_config, idx, cfg_size = 0;
11277         bp->port.advertising[0] = 0;
11278         bp->port.advertising[1] = 0;
11279         switch (bp->link_params.num_phys) {
11280         case 1:
11281         case 2:
11282                 cfg_size = 1;
11283                 break;
11284         case 3:
11285                 cfg_size = 2;
11286                 break;
11287         }
11288         for (idx = 0; idx < cfg_size; idx++) {
11289                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11290                 link_config = bp->port.link_config[idx];
11291                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11292                 case PORT_FEATURE_LINK_SPEED_AUTO:
11293                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11294                                 bp->link_params.req_line_speed[idx] =
11295                                         SPEED_AUTO_NEG;
11296                                 bp->port.advertising[idx] |=
11297                                         bp->port.supported[idx];
11298                                 if (bp->link_params.phy[EXT_PHY1].type ==
11299                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11300                                         bp->port.advertising[idx] |=
11301                                         (SUPPORTED_100baseT_Half |
11302                                          SUPPORTED_100baseT_Full);
11303                         } else {
11304                                 /* force 10G, no AN */
11305                                 bp->link_params.req_line_speed[idx] =
11306                                         SPEED_10000;
11307                                 bp->port.advertising[idx] |=
11308                                         (ADVERTISED_10000baseT_Full |
11309                                          ADVERTISED_FIBRE);
11310                                 continue;
11311                         }
11312                         break;
11313
11314                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11315                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11316                                 bp->link_params.req_line_speed[idx] =
11317                                         SPEED_10;
11318                                 bp->port.advertising[idx] |=
11319                                         (ADVERTISED_10baseT_Full |
11320                                          ADVERTISED_TP);
11321                         } else {
11322                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11323                                             link_config,
11324                                     bp->link_params.speed_cap_mask[idx]);
11325                                 return;
11326                         }
11327                         break;
11328
11329                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11330                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11331                                 bp->link_params.req_line_speed[idx] =
11332                                         SPEED_10;
11333                                 bp->link_params.req_duplex[idx] =
11334                                         DUPLEX_HALF;
11335                                 bp->port.advertising[idx] |=
11336                                         (ADVERTISED_10baseT_Half |
11337                                          ADVERTISED_TP);
11338                         } else {
11339                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11340                                             link_config,
11341                                           bp->link_params.speed_cap_mask[idx]);
11342                                 return;
11343                         }
11344                         break;
11345
11346                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11347                         if (bp->port.supported[idx] &
11348                             SUPPORTED_100baseT_Full) {
11349                                 bp->link_params.req_line_speed[idx] =
11350                                         SPEED_100;
11351                                 bp->port.advertising[idx] |=
11352                                         (ADVERTISED_100baseT_Full |
11353                                          ADVERTISED_TP);
11354                         } else {
11355                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11356                                             link_config,
11357                                           bp->link_params.speed_cap_mask[idx]);
11358                                 return;
11359                         }
11360                         break;
11361
11362                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11363                         if (bp->port.supported[idx] &
11364                             SUPPORTED_100baseT_Half) {
11365                                 bp->link_params.req_line_speed[idx] =
11366                                                                 SPEED_100;
11367                                 bp->link_params.req_duplex[idx] =
11368                                                                 DUPLEX_HALF;
11369                                 bp->port.advertising[idx] |=
11370                                         (ADVERTISED_100baseT_Half |
11371                                          ADVERTISED_TP);
11372                         } else {
11373                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11374                                     link_config,
11375                                     bp->link_params.speed_cap_mask[idx]);
11376                                 return;
11377                         }
11378                         break;
11379
11380                 case PORT_FEATURE_LINK_SPEED_1G:
11381                         if (bp->port.supported[idx] &
11382                             SUPPORTED_1000baseT_Full) {
11383                                 bp->link_params.req_line_speed[idx] =
11384                                         SPEED_1000;
11385                                 bp->port.advertising[idx] |=
11386                                         (ADVERTISED_1000baseT_Full |
11387                                          ADVERTISED_TP);
11388                         } else if (bp->port.supported[idx] &
11389                                    SUPPORTED_1000baseKX_Full) {
11390                                 bp->link_params.req_line_speed[idx] =
11391                                         SPEED_1000;
11392                                 bp->port.advertising[idx] |=
11393                                         ADVERTISED_1000baseKX_Full;
11394                         } else {
11395                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11396                                     link_config,
11397                                     bp->link_params.speed_cap_mask[idx]);
11398                                 return;
11399                         }
11400                         break;
11401
11402                 case PORT_FEATURE_LINK_SPEED_2_5G:
11403                         if (bp->port.supported[idx] &
11404                             SUPPORTED_2500baseX_Full) {
11405                                 bp->link_params.req_line_speed[idx] =
11406                                         SPEED_2500;
11407                                 bp->port.advertising[idx] |=
11408                                         (ADVERTISED_2500baseX_Full |
11409                                                 ADVERTISED_TP);
11410                         } else {
11411                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11412                                     link_config,
11413                                     bp->link_params.speed_cap_mask[idx]);
11414                                 return;
11415                         }
11416                         break;
11417
11418                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11419                         if (bp->port.supported[idx] &
11420                             SUPPORTED_10000baseT_Full) {
11421                                 bp->link_params.req_line_speed[idx] =
11422                                         SPEED_10000;
11423                                 bp->port.advertising[idx] |=
11424                                         (ADVERTISED_10000baseT_Full |
11425                                                 ADVERTISED_FIBRE);
11426                         } else if (bp->port.supported[idx] &
11427                                    SUPPORTED_10000baseKR_Full) {
11428                                 bp->link_params.req_line_speed[idx] =
11429                                         SPEED_10000;
11430                                 bp->port.advertising[idx] |=
11431                                         (ADVERTISED_10000baseKR_Full |
11432                                                 ADVERTISED_FIBRE);
11433                         } else {
11434                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11435                                     link_config,
11436                                     bp->link_params.speed_cap_mask[idx]);
11437                                 return;
11438                         }
11439                         break;
11440                 case PORT_FEATURE_LINK_SPEED_20G:
11441                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11442
11443                         break;
11444                 default:
11445                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11446                                   link_config);
11447                                 bp->link_params.req_line_speed[idx] =
11448                                                         SPEED_AUTO_NEG;
11449                                 bp->port.advertising[idx] =
11450                                                 bp->port.supported[idx];
11451                         break;
11452                 }
11453
11454                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11455                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11456                 if (bp->link_params.req_flow_ctrl[idx] ==
11457                     BNX2X_FLOW_CTRL_AUTO) {
11458                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11459                                 bp->link_params.req_flow_ctrl[idx] =
11460                                                         BNX2X_FLOW_CTRL_NONE;
11461                         else
11462                                 bnx2x_set_requested_fc(bp);
11463                 }
11464
11465                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11466                                bp->link_params.req_line_speed[idx],
11467                                bp->link_params.req_duplex[idx],
11468                                bp->link_params.req_flow_ctrl[idx],
11469                                bp->port.advertising[idx]);
11470         }
11471 }
11472
11473 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11474 {
11475         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11476         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11477         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11478         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11479 }
11480
11481 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11482 {
11483         int port = BP_PORT(bp);
11484         u32 config;
11485         u32 ext_phy_type, ext_phy_config, eee_mode;
11486
11487         bp->link_params.bp = bp;
11488         bp->link_params.port = port;
11489
11490         bp->link_params.lane_config =
11491                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11492
11493         bp->link_params.speed_cap_mask[0] =
11494                 SHMEM_RD(bp,
11495                          dev_info.port_hw_config[port].speed_capability_mask) &
11496                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11497         bp->link_params.speed_cap_mask[1] =
11498                 SHMEM_RD(bp,
11499                          dev_info.port_hw_config[port].speed_capability_mask2) &
11500                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11501         bp->port.link_config[0] =
11502                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11503
11504         bp->port.link_config[1] =
11505                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11506
11507         bp->link_params.multi_phy_config =
11508                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11509         /* If the device is capable of WoL, set the default state according
11510          * to the HW
11511          */
11512         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11513         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11514                    (config & PORT_FEATURE_WOL_ENABLED));
11515
11516         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11518                 bp->flags |= NO_ISCSI_FLAG;
11519         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11520             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11521                 bp->flags |= NO_FCOE_FLAG;
11522
11523         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11524                        bp->link_params.lane_config,
11525                        bp->link_params.speed_cap_mask[0],
11526                        bp->port.link_config[0]);
11527
11528         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11529                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11530         bnx2x_phy_probe(&bp->link_params);
11531         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11532
11533         bnx2x_link_settings_requested(bp);
11534
11535         /*
11536          * If connected directly, work with the internal PHY, otherwise, work
11537          * with the external PHY
11538          */
11539         ext_phy_config =
11540                 SHMEM_RD(bp,
11541                          dev_info.port_hw_config[port].external_phy_config);
11542         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11543         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11544                 bp->mdio.prtad = bp->port.phy_addr;
11545
11546         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11547                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11548                 bp->mdio.prtad =
11549                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11550
11551         /* Configure link feature according to nvram value */
11552         eee_mode = (((SHMEM_RD(bp, dev_info.
11553                       port_feature_config[port].eee_power_mode)) &
11554                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11555                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11556         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11557                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11558                                            EEE_MODE_ENABLE_LPI |
11559                                            EEE_MODE_OUTPUT_TIME;
11560         } else {
11561                 bp->link_params.eee_mode = 0;
11562         }
11563 }
11564
11565 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11566 {
11567         u32 no_flags = NO_ISCSI_FLAG;
11568         int port = BP_PORT(bp);
11569         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11570                                 drv_lic_key[port].max_iscsi_conn);
11571
11572         if (!CNIC_SUPPORT(bp)) {
11573                 bp->flags |= no_flags;
11574                 return;
11575         }
11576
11577         /* Get the number of maximum allowed iSCSI connections */
11578         bp->cnic_eth_dev.max_iscsi_conn =
11579                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11580                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11581
11582         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11583                        bp->cnic_eth_dev.max_iscsi_conn);
11584
11585         /*
11586          * If maximum allowed number of connections is zero -
11587          * disable the feature.
11588          */
11589         if (!bp->cnic_eth_dev.max_iscsi_conn)
11590                 bp->flags |= no_flags;
11591 }
11592
11593 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11594 {
11595         /* Port info */
11596         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11597                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11598         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11599                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11600
11601         /* Node info */
11602         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11603                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11604         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11605                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11606 }
11607
11608 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11609 {
11610         u8 count = 0;
11611
11612         if (IS_MF(bp)) {
11613                 u8 fid;
11614
11615                 /* iterate over absolute function ids for this path: */
11616                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11617                         if (IS_MF_SD(bp)) {
11618                                 u32 cfg = MF_CFG_RD(bp,
11619                                                     func_mf_config[fid].config);
11620
11621                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11622                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11623                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11624                                         count++;
11625                         } else {
11626                                 u32 cfg = MF_CFG_RD(bp,
11627                                                     func_ext_config[fid].
11628                                                                       func_cfg);
11629
11630                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11631                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11632                                         count++;
11633                         }
11634                 }
11635         } else { /* SF */
11636                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11637
11638                 for (port = 0; port < port_cnt; port++) {
11639                         u32 lic = SHMEM_RD(bp,
11640                                            drv_lic_key[port].max_fcoe_conn) ^
11641                                   FW_ENCODE_32BIT_PATTERN;
11642                         if (lic)
11643                                 count++;
11644                 }
11645         }
11646
11647         return count;
11648 }
11649
11650 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11651 {
11652         int port = BP_PORT(bp);
11653         int func = BP_ABS_FUNC(bp);
11654         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11655                                 drv_lic_key[port].max_fcoe_conn);
11656         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11657
11658         if (!CNIC_SUPPORT(bp)) {
11659                 bp->flags |= NO_FCOE_FLAG;
11660                 return;
11661         }
11662
11663         /* Get the number of maximum allowed FCoE connections */
11664         bp->cnic_eth_dev.max_fcoe_conn =
11665                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11666                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11667
11668         /* Calculate the number of maximum allowed FCoE tasks */
11669         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11670
11671         /* check if FCoE resources must be shared between different functions */
11672         if (num_fcoe_func)
11673                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11674
11675         /* Read the WWN: */
11676         if (!IS_MF(bp)) {
11677                 /* Port info */
11678                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11679                         SHMEM_RD(bp,
11680                                  dev_info.port_hw_config[port].
11681                                  fcoe_wwn_port_name_upper);
11682                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11683                         SHMEM_RD(bp,
11684                                  dev_info.port_hw_config[port].
11685                                  fcoe_wwn_port_name_lower);
11686
11687                 /* Node info */
11688                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11689                         SHMEM_RD(bp,
11690                                  dev_info.port_hw_config[port].
11691                                  fcoe_wwn_node_name_upper);
11692                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11693                         SHMEM_RD(bp,
11694                                  dev_info.port_hw_config[port].
11695                                  fcoe_wwn_node_name_lower);
11696         } else if (!IS_MF_SD(bp)) {
11697                 /* Read the WWN info only if the FCoE feature is enabled for
11698                  * this function.
11699                  */
11700                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11701                         bnx2x_get_ext_wwn_info(bp, func);
11702         } else {
11703                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11704                         bnx2x_get_ext_wwn_info(bp, func);
11705         }
11706
11707         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11708
11709         /*
11710          * If maximum allowed number of connections is zero -
11711          * disable the feature.
11712          */
11713         if (!bp->cnic_eth_dev.max_fcoe_conn) {
11714                 bp->flags |= NO_FCOE_FLAG;
11715                 eth_zero_addr(bp->fip_mac);
11716         }
11717 }
11718
11719 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11720 {
11721         /*
11722          * iSCSI may be dynamically disabled but reading
11723          * info here we will decrease memory usage by driver
11724          * if the feature is disabled for good
11725          */
11726         bnx2x_get_iscsi_info(bp);
11727         bnx2x_get_fcoe_info(bp);
11728 }
11729
11730 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11731 {
11732         u32 val, val2;
11733         int func = BP_ABS_FUNC(bp);
11734         int port = BP_PORT(bp);
11735         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11736         u8 *fip_mac = bp->fip_mac;
11737
11738         if (IS_MF(bp)) {
11739                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11740                  * FCoE MAC then the appropriate feature should be disabled.
11741                  * In non SD mode features configuration comes from struct
11742                  * func_ext_config.
11743                  */
11744                 if (!IS_MF_SD(bp)) {
11745                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11746                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11747                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11748                                                  iscsi_mac_addr_upper);
11749                                 val = MF_CFG_RD(bp, func_ext_config[func].
11750                                                 iscsi_mac_addr_lower);
11751                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11752                                 BNX2X_DEV_INFO
11753                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11754                         } else {
11755                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11756                         }
11757
11758                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11759                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11760                                                  fcoe_mac_addr_upper);
11761                                 val = MF_CFG_RD(bp, func_ext_config[func].
11762                                                 fcoe_mac_addr_lower);
11763                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11764                                 BNX2X_DEV_INFO
11765                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11766                         } else {
11767                                 bp->flags |= NO_FCOE_FLAG;
11768                         }
11769
11770                         bp->mf_ext_config = cfg;
11771
11772                 } else { /* SD MODE */
11773                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11774                                 /* use primary mac as iscsi mac */
11775                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11776
11777                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11778                                 BNX2X_DEV_INFO
11779                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11780                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11781                                 /* use primary mac as fip mac */
11782                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11783                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11784                                 BNX2X_DEV_INFO
11785                                         ("Read FIP MAC: %pM\n", fip_mac);
11786                         }
11787                 }
11788
11789                 /* If this is a storage-only interface, use SAN mac as
11790                  * primary MAC. Notice that for SD this is already the case,
11791                  * as the SAN mac was copied from the primary MAC.
11792                  */
11793                 if (IS_MF_FCOE_AFEX(bp))
11794                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11795         } else {
11796                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11797                                 iscsi_mac_upper);
11798                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11799                                iscsi_mac_lower);
11800                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11801
11802                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803                                 fcoe_fip_mac_upper);
11804                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805                                fcoe_fip_mac_lower);
11806                 bnx2x_set_mac_buf(fip_mac, val, val2);
11807         }
11808
11809         /* Disable iSCSI OOO if MAC configuration is invalid. */
11810         if (!is_valid_ether_addr(iscsi_mac)) {
11811                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11812                 eth_zero_addr(iscsi_mac);
11813         }
11814
11815         /* Disable FCoE if MAC configuration is invalid. */
11816         if (!is_valid_ether_addr(fip_mac)) {
11817                 bp->flags |= NO_FCOE_FLAG;
11818                 eth_zero_addr(bp->fip_mac);
11819         }
11820 }
11821
11822 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11823 {
11824         u32 val, val2;
11825         int func = BP_ABS_FUNC(bp);
11826         int port = BP_PORT(bp);
11827
11828         /* Zero primary MAC configuration */
11829         eth_zero_addr(bp->dev->dev_addr);
11830
11831         if (BP_NOMCP(bp)) {
11832                 BNX2X_ERROR("warning: random MAC workaround active\n");
11833                 eth_hw_addr_random(bp->dev);
11834         } else if (IS_MF(bp)) {
11835                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11836                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11837                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11838                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11839                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11840
11841                 if (CNIC_SUPPORT(bp))
11842                         bnx2x_get_cnic_mac_hwinfo(bp);
11843         } else {
11844                 /* in SF read MACs from port configuration */
11845                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11846                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11847                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11848
11849                 if (CNIC_SUPPORT(bp))
11850                         bnx2x_get_cnic_mac_hwinfo(bp);
11851         }
11852
11853         if (!BP_NOMCP(bp)) {
11854                 /* Read physical port identifier from shmem */
11855                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11856                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11857                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11858                 bp->flags |= HAS_PHYS_PORT_ID;
11859         }
11860
11861         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11862
11863         if (!is_valid_ether_addr(bp->dev->dev_addr))
11864                 dev_err(&bp->pdev->dev,
11865                         "bad Ethernet MAC address configuration: %pM\n"
11866                         "change it manually before bringing up the appropriate network interface\n",
11867                         bp->dev->dev_addr);
11868 }
11869
11870 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11871 {
11872         int tmp;
11873         u32 cfg;
11874
11875         if (IS_VF(bp))
11876                 return false;
11877
11878         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11879                 /* Take function: tmp = func */
11880                 tmp = BP_ABS_FUNC(bp);
11881                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11882                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11883         } else {
11884                 /* Take port: tmp = port */
11885                 tmp = BP_PORT(bp);
11886                 cfg = SHMEM_RD(bp,
11887                                dev_info.port_hw_config[tmp].generic_features);
11888                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11889         }
11890         return cfg;
11891 }
11892
11893 static void validate_set_si_mode(struct bnx2x *bp)
11894 {
11895         u8 func = BP_ABS_FUNC(bp);
11896         u32 val;
11897
11898         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11899
11900         /* check for legal mac (upper bytes) */
11901         if (val != 0xffff) {
11902                 bp->mf_mode = MULTI_FUNCTION_SI;
11903                 bp->mf_config[BP_VN(bp)] =
11904                         MF_CFG_RD(bp, func_mf_config[func].config);
11905         } else
11906                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11907 }
11908
11909 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11910 {
11911         int /*abs*/func = BP_ABS_FUNC(bp);
11912         int vn;
11913         u32 val = 0, val2 = 0;
11914         int rc = 0;
11915
11916         /* Validate that chip access is feasible */
11917         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11918                 dev_err(&bp->pdev->dev,
11919                         "Chip read returns all Fs. Preventing probe from continuing\n");
11920                 return -EINVAL;
11921         }
11922
11923         bnx2x_get_common_hwinfo(bp);
11924
11925         /*
11926          * initialize IGU parameters
11927          */
11928         if (CHIP_IS_E1x(bp)) {
11929                 bp->common.int_block = INT_BLOCK_HC;
11930
11931                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11932                 bp->igu_base_sb = 0;
11933         } else {
11934                 bp->common.int_block = INT_BLOCK_IGU;
11935
11936                 /* do not allow device reset during IGU info processing */
11937                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11938
11939                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11940
11941                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11942                         int tout = 5000;
11943
11944                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11945
11946                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11947                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11948                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11949
11950                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951                                 tout--;
11952                                 usleep_range(1000, 2000);
11953                         }
11954
11955                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11956                                 dev_err(&bp->pdev->dev,
11957                                         "FORCING Normal Mode failed!!!\n");
11958                                 bnx2x_release_hw_lock(bp,
11959                                                       HW_LOCK_RESOURCE_RESET);
11960                                 return -EPERM;
11961                         }
11962                 }
11963
11964                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11965                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11966                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11967                 } else
11968                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11969
11970                 rc = bnx2x_get_igu_cam_info(bp);
11971                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11972                 if (rc)
11973                         return rc;
11974         }
11975
11976         /*
11977          * set base FW non-default (fast path) status block id, this value is
11978          * used to initialize the fw_sb_id saved on the fp/queue structure to
11979          * determine the id used by the FW.
11980          */
11981         if (CHIP_IS_E1x(bp))
11982                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11983         else /*
11984               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11985               * the same queue are indicated on the same IGU SB). So we prefer
11986               * FW and IGU SBs to be the same value.
11987               */
11988                 bp->base_fw_ndsb = bp->igu_base_sb;
11989
11990         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11991                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11992                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11993
11994         /*
11995          * Initialize MF configuration
11996          */
11997         bp->mf_ov = 0;
11998         bp->mf_mode = 0;
11999         bp->mf_sub_mode = 0;
12000         vn = BP_VN(bp);
12001
12002         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12003                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12004                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12005                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12006
12007                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12008                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12009                 else
12010                         bp->common.mf_cfg_base = bp->common.shmem_base +
12011                                 offsetof(struct shmem_region, func_mb) +
12012                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12013                 /*
12014                  * get mf configuration:
12015                  * 1. Existence of MF configuration
12016                  * 2. MAC address must be legal (check only upper bytes)
12017                  *    for  Switch-Independent mode;
12018                  *    OVLAN must be legal for Switch-Dependent mode
12019                  * 3. SF_MODE configures specific MF mode
12020                  */
12021                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12022                         /* get mf configuration */
12023                         val = SHMEM_RD(bp,
12024                                        dev_info.shared_feature_config.config);
12025                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12026
12027                         switch (val) {
12028                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12029                                 validate_set_si_mode(bp);
12030                                 break;
12031                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12032                                 if ((!CHIP_IS_E1x(bp)) &&
12033                                     (MF_CFG_RD(bp, func_mf_config[func].
12034                                                mac_upper) != 0xffff) &&
12035                                     (SHMEM2_HAS(bp,
12036                                                 afex_driver_support))) {
12037                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12038                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12039                                                 func_mf_config[func].config);
12040                                 } else {
12041                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12042                                 }
12043                                 break;
12044                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12045                                 /* get OV configuration */
12046                                 val = MF_CFG_RD(bp,
12047                                         func_mf_config[FUNC_0].e1hov_tag);
12048                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12049
12050                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12051                                         bp->mf_mode = MULTI_FUNCTION_SD;
12052                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12053                                                 func_mf_config[func].config);
12054                                 } else
12055                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12056                                 break;
12057                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12058                                 bp->mf_mode = MULTI_FUNCTION_SD;
12059                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12060                                 bp->mf_config[vn] =
12061                                         MF_CFG_RD(bp,
12062                                                   func_mf_config[func].config);
12063
12064                                 if (SHMEM2_HAS(bp, mtu_size)) {
12065                                         int mtu_idx = BP_FW_MB_IDX(bp);
12066                                         u16 mtu_size;
12067                                         u32 mtu;
12068
12069                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12070                                         mtu_size = (u16)mtu;
12071                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12072                                            mtu_size, mtu);
12073
12074                                         /* if valid: update device mtu */
12075                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12076                                             (mtu_size <=
12077                                              ETH_MAX_JUMBO_PACKET_SIZE))
12078                                                 bp->dev->mtu = mtu_size;
12079                                 }
12080                                 break;
12081                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12082                                 bp->mf_mode = MULTI_FUNCTION_SD;
12083                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12084                                 bp->mf_config[vn] =
12085                                         MF_CFG_RD(bp,
12086                                                   func_mf_config[func].config);
12087                                 break;
12088                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12089                                 bp->mf_config[vn] = 0;
12090                                 break;
12091                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12092                                 val2 = SHMEM_RD(bp,
12093                                         dev_info.shared_hw_config.config_3);
12094                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12095                                 switch (val2) {
12096                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12097                                         validate_set_si_mode(bp);
12098                                         bp->mf_sub_mode =
12099                                                         SUB_MF_MODE_NPAR1_DOT_5;
12100                                         break;
12101                                 default:
12102                                         /* Unknown configuration */
12103                                         bp->mf_config[vn] = 0;
12104                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12105                                                        val);
12106                                 }
12107                                 break;
12108                         default:
12109                                 /* Unknown configuration: reset mf_config */
12110                                 bp->mf_config[vn] = 0;
12111                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12112                         }
12113                 }
12114
12115                 BNX2X_DEV_INFO("%s function mode\n",
12116                                IS_MF(bp) ? "multi" : "single");
12117
12118                 switch (bp->mf_mode) {
12119                 case MULTI_FUNCTION_SD:
12120                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12121                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12122                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12123                                 bp->mf_ov = val;
12124                                 bp->path_has_ovlan = true;
12125
12126                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12127                                                func, bp->mf_ov, bp->mf_ov);
12128                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12129                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12130                                 dev_err(&bp->pdev->dev,
12131                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12132                                         func);
12133                                 bp->path_has_ovlan = true;
12134                         } else {
12135                                 dev_err(&bp->pdev->dev,
12136                                         "No valid MF OV for func %d, aborting\n",
12137                                         func);
12138                                 return -EPERM;
12139                         }
12140                         break;
12141                 case MULTI_FUNCTION_AFEX:
12142                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12143                         break;
12144                 case MULTI_FUNCTION_SI:
12145                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12146                                        func);
12147                         break;
12148                 default:
12149                         if (vn) {
12150                                 dev_err(&bp->pdev->dev,
12151                                         "VN %d is in a single function mode, aborting\n",
12152                                         vn);
12153                                 return -EPERM;
12154                         }
12155                         break;
12156                 }
12157
12158                 /* check if other port on the path needs ovlan:
12159                  * Since MF configuration is shared between ports
12160                  * Possible mixed modes are only
12161                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12162                  */
12163                 if (CHIP_MODE_IS_4_PORT(bp) &&
12164                     !bp->path_has_ovlan &&
12165                     !IS_MF(bp) &&
12166                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12167                         u8 other_port = !BP_PORT(bp);
12168                         u8 other_func = BP_PATH(bp) + 2*other_port;
12169                         val = MF_CFG_RD(bp,
12170                                         func_mf_config[other_func].e1hov_tag);
12171                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12172                                 bp->path_has_ovlan = true;
12173                 }
12174         }
12175
12176         /* adjust igu_sb_cnt to MF for E1H */
12177         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12178                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12179
12180         /* port info */
12181         bnx2x_get_port_hwinfo(bp);
12182
12183         /* Get MAC addresses */
12184         bnx2x_get_mac_hwinfo(bp);
12185
12186         bnx2x_get_cnic_info(bp);
12187
12188         return rc;
12189 }
12190
12191 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12192 {
12193         int cnt, i, block_end, rodi;
12194         char vpd_start[BNX2X_VPD_LEN+1];
12195         char str_id_reg[VENDOR_ID_LEN+1];
12196         char str_id_cap[VENDOR_ID_LEN+1];
12197         char *vpd_data;
12198         char *vpd_extended_data = NULL;
12199         u8 len;
12200
12201         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12202         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12203
12204         if (cnt < BNX2X_VPD_LEN)
12205                 goto out_not_found;
12206
12207         /* VPD RO tag should be first tag after identifier string, hence
12208          * we should be able to find it in first BNX2X_VPD_LEN chars
12209          */
12210         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12211                              PCI_VPD_LRDT_RO_DATA);
12212         if (i < 0)
12213                 goto out_not_found;
12214
12215         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12216                     pci_vpd_lrdt_size(&vpd_start[i]);
12217
12218         i += PCI_VPD_LRDT_TAG_SIZE;
12219
12220         if (block_end > BNX2X_VPD_LEN) {
12221                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12222                 if (vpd_extended_data  == NULL)
12223                         goto out_not_found;
12224
12225                 /* read rest of vpd image into vpd_extended_data */
12226                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12227                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12228                                    block_end - BNX2X_VPD_LEN,
12229                                    vpd_extended_data + BNX2X_VPD_LEN);
12230                 if (cnt < (block_end - BNX2X_VPD_LEN))
12231                         goto out_not_found;
12232                 vpd_data = vpd_extended_data;
12233         } else
12234                 vpd_data = vpd_start;
12235
12236         /* now vpd_data holds full vpd content in both cases */
12237
12238         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12239                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12240         if (rodi < 0)
12241                 goto out_not_found;
12242
12243         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12244
12245         if (len != VENDOR_ID_LEN)
12246                 goto out_not_found;
12247
12248         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12249
12250         /* vendor specific info */
12251         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12252         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12253         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12254             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12255
12256                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12257                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12258                 if (rodi >= 0) {
12259                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12260
12261                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12262
12263                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12264                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12265                                 bp->fw_ver[len] = ' ';
12266                         }
12267                 }
12268                 kfree(vpd_extended_data);
12269                 return;
12270         }
12271 out_not_found:
12272         kfree(vpd_extended_data);
12273         return;
12274 }
12275
12276 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12277 {
12278         u32 flags = 0;
12279
12280         if (CHIP_REV_IS_FPGA(bp))
12281                 SET_FLAGS(flags, MODE_FPGA);
12282         else if (CHIP_REV_IS_EMUL(bp))
12283                 SET_FLAGS(flags, MODE_EMUL);
12284         else
12285                 SET_FLAGS(flags, MODE_ASIC);
12286
12287         if (CHIP_MODE_IS_4_PORT(bp))
12288                 SET_FLAGS(flags, MODE_PORT4);
12289         else
12290                 SET_FLAGS(flags, MODE_PORT2);
12291
12292         if (CHIP_IS_E2(bp))
12293                 SET_FLAGS(flags, MODE_E2);
12294         else if (CHIP_IS_E3(bp)) {
12295                 SET_FLAGS(flags, MODE_E3);
12296                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12297                         SET_FLAGS(flags, MODE_E3_A0);
12298                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12299                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12300         }
12301
12302         if (IS_MF(bp)) {
12303                 SET_FLAGS(flags, MODE_MF);
12304                 switch (bp->mf_mode) {
12305                 case MULTI_FUNCTION_SD:
12306                         SET_FLAGS(flags, MODE_MF_SD);
12307                         break;
12308                 case MULTI_FUNCTION_SI:
12309                         SET_FLAGS(flags, MODE_MF_SI);
12310                         break;
12311                 case MULTI_FUNCTION_AFEX:
12312                         SET_FLAGS(flags, MODE_MF_AFEX);
12313                         break;
12314                 }
12315         } else
12316                 SET_FLAGS(flags, MODE_SF);
12317
12318 #if defined(__LITTLE_ENDIAN)
12319         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12320 #else /*(__BIG_ENDIAN)*/
12321         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12322 #endif
12323         INIT_MODE_FLAGS(bp) = flags;
12324 }
12325
12326 static int bnx2x_init_bp(struct bnx2x *bp)
12327 {
12328         int func;
12329         int rc;
12330
12331         mutex_init(&bp->port.phy_mutex);
12332         mutex_init(&bp->fw_mb_mutex);
12333         mutex_init(&bp->drv_info_mutex);
12334         sema_init(&bp->stats_lock, 1);
12335         bp->drv_info_mng_owner = false;
12336         INIT_LIST_HEAD(&bp->vlan_reg);
12337
12338         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12339         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12340         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12341         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12342         if (IS_PF(bp)) {
12343                 rc = bnx2x_get_hwinfo(bp);
12344                 if (rc)
12345                         return rc;
12346         } else {
12347                 eth_zero_addr(bp->dev->dev_addr);
12348         }
12349
12350         bnx2x_set_modes_bitmap(bp);
12351
12352         rc = bnx2x_alloc_mem_bp(bp);
12353         if (rc)
12354                 return rc;
12355
12356         bnx2x_read_fwinfo(bp);
12357
12358         func = BP_FUNC(bp);
12359
12360         /* need to reset chip if undi was active */
12361         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12362                 /* init fw_seq */
12363                 bp->fw_seq =
12364                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12365                                                         DRV_MSG_SEQ_NUMBER_MASK;
12366                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12367
12368                 rc = bnx2x_prev_unload(bp);
12369                 if (rc) {
12370                         bnx2x_free_mem_bp(bp);
12371                         return rc;
12372                 }
12373         }
12374
12375         if (CHIP_REV_IS_FPGA(bp))
12376                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12377
12378         if (BP_NOMCP(bp) && (func == 0))
12379                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12380
12381         bp->disable_tpa = disable_tpa;
12382         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12383         /* Reduce memory usage in kdump environment by disabling TPA */
12384         bp->disable_tpa |= is_kdump_kernel();
12385
12386         /* Set TPA flags */
12387         if (bp->disable_tpa) {
12388                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12389                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12390         }
12391
12392         if (CHIP_IS_E1(bp))
12393                 bp->dropless_fc = false;
12394         else
12395                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12396
12397         bp->mrrs = mrrs;
12398
12399         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12400         if (IS_VF(bp))
12401                 bp->rx_ring_size = MAX_RX_AVAIL;
12402
12403         /* make sure that the numbers are in the right granularity */
12404         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12405         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12406
12407         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12408
12409         timer_setup(&bp->timer, bnx2x_timer, 0);
12410         bp->timer.expires = jiffies + bp->current_interval;
12411
12412         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414             SHMEM2_HAS(bp, dcbx_en) &&
12415             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419                 bnx2x_dcbx_init_params(bp);
12420         } else {
12421                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422         }
12423
12424         if (CHIP_IS_E1x(bp))
12425                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426         else
12427                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428
12429         /* multiple tx priority */
12430         if (IS_VF(bp))
12431                 bp->max_cos = 1;
12432         else if (CHIP_IS_E1x(bp))
12433                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436         else if (CHIP_IS_E3B0(bp))
12437                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438         else
12439                 BNX2X_ERR("unknown chip %x revision %x\n",
12440                           CHIP_NUM(bp), CHIP_REV(bp));
12441         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442
12443         /* We need at least one default status block for slow-path events,
12444          * second status block for the L2 queue, and a third status block for
12445          * CNIC if supported.
12446          */
12447         if (IS_VF(bp))
12448                 bp->min_msix_vec_cnt = 1;
12449         else if (CNIC_SUPPORT(bp))
12450                 bp->min_msix_vec_cnt = 3;
12451         else /* PF w/o cnic */
12452                 bp->min_msix_vec_cnt = 2;
12453         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454
12455         bp->dump_preset_idx = 1;
12456
12457         return rc;
12458 }
12459
12460 /****************************************************************************
12461 * General service functions
12462 ****************************************************************************/
12463
12464 /*
12465  * net_device service functions
12466  */
12467
12468 /* called with rtnl_lock */
12469 static int bnx2x_open(struct net_device *dev)
12470 {
12471         struct bnx2x *bp = netdev_priv(dev);
12472         int rc;
12473
12474         bp->stats_init = true;
12475
12476         netif_carrier_off(dev);
12477
12478         bnx2x_set_power_state(bp, PCI_D0);
12479
12480         /* If parity had happen during the unload, then attentions
12481          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12482          * want the first function loaded on the current engine to
12483          * complete the recovery.
12484          * Parity recovery is only relevant for PF driver.
12485          */
12486         if (IS_PF(bp)) {
12487                 int other_engine = BP_PATH(bp) ? 0 : 1;
12488                 bool other_load_status, load_status;
12489                 bool global = false;
12490
12491                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12492                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12493                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12494                     bnx2x_chk_parity_attn(bp, &global, true)) {
12495                         do {
12496                                 /* If there are attentions and they are in a
12497                                  * global blocks, set the GLOBAL_RESET bit
12498                                  * regardless whether it will be this function
12499                                  * that will complete the recovery or not.
12500                                  */
12501                                 if (global)
12502                                         bnx2x_set_reset_global(bp);
12503
12504                                 /* Only the first function on the current
12505                                  * engine should try to recover in open. In case
12506                                  * of attentions in global blocks only the first
12507                                  * in the chip should try to recover.
12508                                  */
12509                                 if ((!load_status &&
12510                                      (!global || !other_load_status)) &&
12511                                       bnx2x_trylock_leader_lock(bp) &&
12512                                       !bnx2x_leader_reset(bp)) {
12513                                         netdev_info(bp->dev,
12514                                                     "Recovered in open\n");
12515                                         break;
12516                                 }
12517
12518                                 /* recovery has failed... */
12519                                 bnx2x_set_power_state(bp, PCI_D3hot);
12520                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12521
12522                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12523                                           "If you still see this message after a few retries then power cycle is required.\n");
12524
12525                                 return -EAGAIN;
12526                         } while (0);
12527                 }
12528         }
12529
12530         bp->recovery_state = BNX2X_RECOVERY_DONE;
12531         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12532         if (rc)
12533                 return rc;
12534
12535         return 0;
12536 }
12537
12538 /* called with rtnl_lock */
12539 static int bnx2x_close(struct net_device *dev)
12540 {
12541         struct bnx2x *bp = netdev_priv(dev);
12542
12543         /* Unload the driver, release IRQs */
12544         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12545
12546         return 0;
12547 }
12548
12549 struct bnx2x_mcast_list_elem_group
12550 {
12551         struct list_head mcast_group_link;
12552         struct bnx2x_mcast_list_elem mcast_elems[];
12553 };
12554
12555 #define MCAST_ELEMS_PER_PG \
12556         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12557         sizeof(struct bnx2x_mcast_list_elem))
12558
12559 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12560 {
12561         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12562
12563         while (!list_empty(mcast_group_list)) {
12564                 current_mcast_group = list_first_entry(mcast_group_list,
12565                                       struct bnx2x_mcast_list_elem_group,
12566                                       mcast_group_link);
12567                 list_del(&current_mcast_group->mcast_group_link);
12568                 free_page((unsigned long)current_mcast_group);
12569         }
12570 }
12571
12572 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12573                                       struct bnx2x_mcast_ramrod_params *p,
12574                                       struct list_head *mcast_group_list)
12575 {
12576         struct bnx2x_mcast_list_elem *mc_mac;
12577         struct netdev_hw_addr *ha;
12578         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12579         int mc_count = netdev_mc_count(bp->dev);
12580         int offset = 0;
12581
12582         INIT_LIST_HEAD(&p->mcast_list);
12583         netdev_for_each_mc_addr(ha, bp->dev) {
12584                 if (!offset) {
12585                         current_mcast_group =
12586                                 (struct bnx2x_mcast_list_elem_group *)
12587                                 __get_free_page(GFP_ATOMIC);
12588                         if (!current_mcast_group) {
12589                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12590                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12591                                 return -ENOMEM;
12592                         }
12593                         list_add(&current_mcast_group->mcast_group_link,
12594                                  mcast_group_list);
12595                 }
12596                 mc_mac = &current_mcast_group->mcast_elems[offset];
12597                 mc_mac->mac = bnx2x_mc_addr(ha);
12598                 list_add_tail(&mc_mac->link, &p->mcast_list);
12599                 offset++;
12600                 if (offset == MCAST_ELEMS_PER_PG)
12601                         offset = 0;
12602         }
12603         p->mcast_list_len = mc_count;
12604         return 0;
12605 }
12606
12607 /**
12608  * bnx2x_set_uc_list - configure a new unicast MACs list.
12609  *
12610  * @bp: driver handle
12611  *
12612  * We will use zero (0) as a MAC type for these MACs.
12613  */
12614 static int bnx2x_set_uc_list(struct bnx2x *bp)
12615 {
12616         int rc;
12617         struct net_device *dev = bp->dev;
12618         struct netdev_hw_addr *ha;
12619         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12620         unsigned long ramrod_flags = 0;
12621
12622         /* First schedule a cleanup up of old configuration */
12623         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12624         if (rc < 0) {
12625                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12626                 return rc;
12627         }
12628
12629         netdev_for_each_uc_addr(ha, dev) {
12630                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12631                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12632                 if (rc == -EEXIST) {
12633                         DP(BNX2X_MSG_SP,
12634                            "Failed to schedule ADD operations: %d\n", rc);
12635                         /* do not treat adding same MAC as error */
12636                         rc = 0;
12637
12638                 } else if (rc < 0) {
12639
12640                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12641                                   rc);
12642                         return rc;
12643                 }
12644         }
12645
12646         /* Execute the pending commands */
12647         __set_bit(RAMROD_CONT, &ramrod_flags);
12648         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12649                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12650 }
12651
12652 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12653 {
12654         LIST_HEAD(mcast_group_list);
12655         struct net_device *dev = bp->dev;
12656         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657         int rc = 0;
12658
12659         rparam.mcast_obj = &bp->mcast_obj;
12660
12661         /* first, clear all configured multicast MACs */
12662         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12663         if (rc < 0) {
12664                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12665                 return rc;
12666         }
12667
12668         /* then, configure a new MACs list */
12669         if (netdev_mc_count(dev)) {
12670                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12671                 if (rc)
12672                         return rc;
12673
12674                 /* Now add the new MACs */
12675                 rc = bnx2x_config_mcast(bp, &rparam,
12676                                         BNX2X_MCAST_CMD_ADD);
12677                 if (rc < 0)
12678                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12679                                   rc);
12680
12681                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12682         }
12683
12684         return rc;
12685 }
12686
12687 static int bnx2x_set_mc_list(struct bnx2x *bp)
12688 {
12689         LIST_HEAD(mcast_group_list);
12690         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12691         struct net_device *dev = bp->dev;
12692         int rc = 0;
12693
12694         /* On older adapters, we need to flush and re-add filters */
12695         if (CHIP_IS_E1x(bp))
12696                 return bnx2x_set_mc_list_e1x(bp);
12697
12698         rparam.mcast_obj = &bp->mcast_obj;
12699
12700         if (netdev_mc_count(dev)) {
12701                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12702                 if (rc)
12703                         return rc;
12704
12705                 /* Override the curently configured set of mc filters */
12706                 rc = bnx2x_config_mcast(bp, &rparam,
12707                                         BNX2X_MCAST_CMD_SET);
12708                 if (rc < 0)
12709                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12710                                   rc);
12711
12712                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12713         } else {
12714                 /* If no mc addresses are required, flush the configuration */
12715                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12716                 if (rc < 0)
12717                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12718                                   rc);
12719         }
12720
12721         return rc;
12722 }
12723
12724 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12725 static void bnx2x_set_rx_mode(struct net_device *dev)
12726 {
12727         struct bnx2x *bp = netdev_priv(dev);
12728
12729         if (bp->state != BNX2X_STATE_OPEN) {
12730                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12731                 return;
12732         } else {
12733                 /* Schedule an SP task to handle rest of change */
12734                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12735                                        NETIF_MSG_IFUP);
12736         }
12737 }
12738
12739 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12740 {
12741         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12742
12743         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12744
12745         netif_addr_lock_bh(bp->dev);
12746
12747         if (bp->dev->flags & IFF_PROMISC) {
12748                 rx_mode = BNX2X_RX_MODE_PROMISC;
12749         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12750                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12751                     CHIP_IS_E1(bp))) {
12752                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12753         } else {
12754                 if (IS_PF(bp)) {
12755                         /* some multicasts */
12756                         if (bnx2x_set_mc_list(bp) < 0)
12757                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12758
12759                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12760                         netif_addr_unlock_bh(bp->dev);
12761                         if (bnx2x_set_uc_list(bp) < 0)
12762                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12763                         netif_addr_lock_bh(bp->dev);
12764                 } else {
12765                         /* configuring mcast to a vf involves sleeping (when we
12766                          * wait for the pf's response).
12767                          */
12768                         bnx2x_schedule_sp_rtnl(bp,
12769                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12770                 }
12771         }
12772
12773         bp->rx_mode = rx_mode;
12774         /* handle ISCSI SD mode */
12775         if (IS_MF_ISCSI_ONLY(bp))
12776                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12777
12778         /* Schedule the rx_mode command */
12779         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12780                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12781                 netif_addr_unlock_bh(bp->dev);
12782                 return;
12783         }
12784
12785         if (IS_PF(bp)) {
12786                 bnx2x_set_storm_rx_mode(bp);
12787                 netif_addr_unlock_bh(bp->dev);
12788         } else {
12789                 /* VF will need to request the PF to make this change, and so
12790                  * the VF needs to release the bottom-half lock prior to the
12791                  * request (as it will likely require sleep on the VF side)
12792                  */
12793                 netif_addr_unlock_bh(bp->dev);
12794                 bnx2x_vfpf_storm_rx_mode(bp);
12795         }
12796 }
12797
12798 /* called with rtnl_lock */
12799 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12800                            int devad, u16 addr)
12801 {
12802         struct bnx2x *bp = netdev_priv(netdev);
12803         u16 value;
12804         int rc;
12805
12806         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12807            prtad, devad, addr);
12808
12809         /* The HW expects different devad if CL22 is used */
12810         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12811
12812         bnx2x_acquire_phy_lock(bp);
12813         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12814         bnx2x_release_phy_lock(bp);
12815         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12816
12817         if (!rc)
12818                 rc = value;
12819         return rc;
12820 }
12821
12822 /* called with rtnl_lock */
12823 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12824                             u16 addr, u16 value)
12825 {
12826         struct bnx2x *bp = netdev_priv(netdev);
12827         int rc;
12828
12829         DP(NETIF_MSG_LINK,
12830            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12831            prtad, devad, addr, value);
12832
12833         /* The HW expects different devad if CL22 is used */
12834         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12835
12836         bnx2x_acquire_phy_lock(bp);
12837         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12838         bnx2x_release_phy_lock(bp);
12839         return rc;
12840 }
12841
12842 /* called with rtnl_lock */
12843 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12844 {
12845         struct bnx2x *bp = netdev_priv(dev);
12846         struct mii_ioctl_data *mdio = if_mii(ifr);
12847
12848         if (!netif_running(dev))
12849                 return -EAGAIN;
12850
12851         switch (cmd) {
12852         case SIOCSHWTSTAMP:
12853                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12854         default:
12855                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12856                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12857                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12858         }
12859 }
12860
12861 static int bnx2x_validate_addr(struct net_device *dev)
12862 {
12863         struct bnx2x *bp = netdev_priv(dev);
12864
12865         /* query the bulletin board for mac address configured by the PF */
12866         if (IS_VF(bp))
12867                 bnx2x_sample_bulletin(bp);
12868
12869         if (!is_valid_ether_addr(dev->dev_addr)) {
12870                 BNX2X_ERR("Non-valid Ethernet address\n");
12871                 return -EADDRNOTAVAIL;
12872         }
12873         return 0;
12874 }
12875
12876 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12877                                   struct netdev_phys_item_id *ppid)
12878 {
12879         struct bnx2x *bp = netdev_priv(netdev);
12880
12881         if (!(bp->flags & HAS_PHYS_PORT_ID))
12882                 return -EOPNOTSUPP;
12883
12884         ppid->id_len = sizeof(bp->phys_port_id);
12885         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12886
12887         return 0;
12888 }
12889
12890 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12891                                               struct net_device *dev,
12892                                               netdev_features_t features)
12893 {
12894         /*
12895          * A skb with gso_size + header length > 9700 will cause a
12896          * firmware panic. Drop GSO support.
12897          *
12898          * Eventually the upper layer should not pass these packets down.
12899          *
12900          * For speed, if the gso_size is <= 9000, assume there will
12901          * not be 700 bytes of headers and pass it through. Only do a
12902          * full (slow) validation if the gso_size is > 9000.
12903          *
12904          * (Due to the way SKB_BY_FRAGS works this will also do a full
12905          * validation in that case.)
12906          */
12907         if (unlikely(skb_is_gso(skb) &&
12908                      (skb_shinfo(skb)->gso_size > 9000) &&
12909                      !skb_gso_validate_mac_len(skb, 9700)))
12910                 features &= ~NETIF_F_GSO_MASK;
12911
12912         features = vlan_features_check(skb, features);
12913         return vxlan_features_check(skb, features);
12914 }
12915
12916 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12917 {
12918         int rc;
12919
12920         if (IS_PF(bp)) {
12921                 unsigned long ramrod_flags = 0;
12922
12923                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12924                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12925                                         add, &ramrod_flags);
12926         } else {
12927                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12928         }
12929
12930         return rc;
12931 }
12932
12933 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12934 {
12935         struct bnx2x_vlan_entry *vlan;
12936         int rc = 0;
12937
12938         /* Configure all non-configured entries */
12939         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12940                 if (vlan->hw)
12941                         continue;
12942
12943                 if (bp->vlan_cnt >= bp->vlan_credit)
12944                         return -ENOBUFS;
12945
12946                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12947                 if (rc) {
12948                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12949                         return rc;
12950                 }
12951
12952                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12953                 vlan->hw = true;
12954                 bp->vlan_cnt++;
12955         }
12956
12957         return 0;
12958 }
12959
12960 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12961 {
12962         bool need_accept_any_vlan;
12963
12964         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12965
12966         if (bp->accept_any_vlan != need_accept_any_vlan) {
12967                 bp->accept_any_vlan = need_accept_any_vlan;
12968                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12969                    bp->accept_any_vlan ? "raised" : "cleared");
12970                 if (set_rx_mode) {
12971                         if (IS_PF(bp))
12972                                 bnx2x_set_rx_mode_inner(bp);
12973                         else
12974                                 bnx2x_vfpf_storm_rx_mode(bp);
12975                 }
12976         }
12977 }
12978
12979 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12980 {
12981         /* Don't set rx mode here. Our caller will do it. */
12982         bnx2x_vlan_configure(bp, false);
12983
12984         return 0;
12985 }
12986
12987 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12988 {
12989         struct bnx2x *bp = netdev_priv(dev);
12990         struct bnx2x_vlan_entry *vlan;
12991
12992         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12993
12994         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12995         if (!vlan)
12996                 return -ENOMEM;
12997
12998         vlan->vid = vid;
12999         vlan->hw = false;
13000         list_add_tail(&vlan->link, &bp->vlan_reg);
13001
13002         if (netif_running(dev))
13003                 bnx2x_vlan_configure(bp, true);
13004
13005         return 0;
13006 }
13007
13008 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13009 {
13010         struct bnx2x *bp = netdev_priv(dev);
13011         struct bnx2x_vlan_entry *vlan;
13012         bool found = false;
13013         int rc = 0;
13014
13015         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13016
13017         list_for_each_entry(vlan, &bp->vlan_reg, link)
13018                 if (vlan->vid == vid) {
13019                         found = true;
13020                         break;
13021                 }
13022
13023         if (!found) {
13024                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13025                 return -EINVAL;
13026         }
13027
13028         if (netif_running(dev) && vlan->hw) {
13029                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13030                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13031                 bp->vlan_cnt--;
13032         }
13033
13034         list_del(&vlan->link);
13035         kfree(vlan);
13036
13037         if (netif_running(dev))
13038                 bnx2x_vlan_configure(bp, true);
13039
13040         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13041
13042         return rc;
13043 }
13044
13045 static const struct net_device_ops bnx2x_netdev_ops = {
13046         .ndo_open               = bnx2x_open,
13047         .ndo_stop               = bnx2x_close,
13048         .ndo_start_xmit         = bnx2x_start_xmit,
13049         .ndo_select_queue       = bnx2x_select_queue,
13050         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13051         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13052         .ndo_validate_addr      = bnx2x_validate_addr,
13053         .ndo_do_ioctl           = bnx2x_ioctl,
13054         .ndo_change_mtu         = bnx2x_change_mtu,
13055         .ndo_fix_features       = bnx2x_fix_features,
13056         .ndo_set_features       = bnx2x_set_features,
13057         .ndo_tx_timeout         = bnx2x_tx_timeout,
13058         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13059         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13060         .ndo_setup_tc           = __bnx2x_setup_tc,
13061 #ifdef CONFIG_BNX2X_SRIOV
13062         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13063         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13064         .ndo_get_vf_config      = bnx2x_get_vf_config,
13065         .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13066 #endif
13067 #ifdef NETDEV_FCOE_WWNN
13068         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13069 #endif
13070
13071         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13072         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13073         .ndo_features_check     = bnx2x_features_check,
13074         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
13075         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
13076 };
13077
13078 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13079 {
13080         struct device *dev = &bp->pdev->dev;
13081
13082         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13083             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13084                 dev_err(dev, "System does not support DMA, aborting\n");
13085                 return -EIO;
13086         }
13087
13088         return 0;
13089 }
13090
13091 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13092 {
13093         if (bp->flags & AER_ENABLED) {
13094                 pci_disable_pcie_error_reporting(bp->pdev);
13095                 bp->flags &= ~AER_ENABLED;
13096         }
13097 }
13098
13099 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13100                           struct net_device *dev, unsigned long board_type)
13101 {
13102         int rc;
13103         u32 pci_cfg_dword;
13104         bool chip_is_e1x = (board_type == BCM57710 ||
13105                             board_type == BCM57711 ||
13106                             board_type == BCM57711E);
13107
13108         SET_NETDEV_DEV(dev, &pdev->dev);
13109
13110         bp->dev = dev;
13111         bp->pdev = pdev;
13112
13113         rc = pci_enable_device(pdev);
13114         if (rc) {
13115                 dev_err(&bp->pdev->dev,
13116                         "Cannot enable PCI device, aborting\n");
13117                 goto err_out;
13118         }
13119
13120         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13121                 dev_err(&bp->pdev->dev,
13122                         "Cannot find PCI device base address, aborting\n");
13123                 rc = -ENODEV;
13124                 goto err_out_disable;
13125         }
13126
13127         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13128                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13129                 rc = -ENODEV;
13130                 goto err_out_disable;
13131         }
13132
13133         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13134         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13135             PCICFG_REVESION_ID_ERROR_VAL) {
13136                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13137                 rc = -ENODEV;
13138                 goto err_out_disable;
13139         }
13140
13141         if (atomic_read(&pdev->enable_cnt) == 1) {
13142                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13143                 if (rc) {
13144                         dev_err(&bp->pdev->dev,
13145                                 "Cannot obtain PCI resources, aborting\n");
13146                         goto err_out_disable;
13147                 }
13148
13149                 pci_set_master(pdev);
13150                 pci_save_state(pdev);
13151         }
13152
13153         if (IS_PF(bp)) {
13154                 if (!pdev->pm_cap) {
13155                         dev_err(&bp->pdev->dev,
13156                                 "Cannot find power management capability, aborting\n");
13157                         rc = -EIO;
13158                         goto err_out_release;
13159                 }
13160         }
13161
13162         if (!pci_is_pcie(pdev)) {
13163                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13164                 rc = -EIO;
13165                 goto err_out_release;
13166         }
13167
13168         rc = bnx2x_set_coherency_mask(bp);
13169         if (rc)
13170                 goto err_out_release;
13171
13172         dev->mem_start = pci_resource_start(pdev, 0);
13173         dev->base_addr = dev->mem_start;
13174         dev->mem_end = pci_resource_end(pdev, 0);
13175
13176         dev->irq = pdev->irq;
13177
13178         bp->regview = pci_ioremap_bar(pdev, 0);
13179         if (!bp->regview) {
13180                 dev_err(&bp->pdev->dev,
13181                         "Cannot map register space, aborting\n");
13182                 rc = -ENOMEM;
13183                 goto err_out_release;
13184         }
13185
13186         /* In E1/E1H use pci device function given by kernel.
13187          * In E2/E3 read physical function from ME register since these chips
13188          * support Physical Device Assignment where kernel BDF maybe arbitrary
13189          * (depending on hypervisor).
13190          */
13191         if (chip_is_e1x) {
13192                 bp->pf_num = PCI_FUNC(pdev->devfn);
13193         } else {
13194                 /* chip is E2/3*/
13195                 pci_read_config_dword(bp->pdev,
13196                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13197                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13198                                   ME_REG_ABS_PF_NUM_SHIFT);
13199         }
13200         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13201
13202         /* clean indirect addresses */
13203         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13204                                PCICFG_VENDOR_ID_OFFSET);
13205
13206         /* Set PCIe reset type to fundamental for EEH recovery */
13207         pdev->needs_freset = 1;
13208
13209         /* AER (Advanced Error reporting) configuration */
13210         rc = pci_enable_pcie_error_reporting(pdev);
13211         if (!rc)
13212                 bp->flags |= AER_ENABLED;
13213         else
13214                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13215
13216         /*
13217          * Clean the following indirect addresses for all functions since it
13218          * is not used by the driver.
13219          */
13220         if (IS_PF(bp)) {
13221                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13222                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13223                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13224                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13225
13226                 if (chip_is_e1x) {
13227                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13228                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13229                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13230                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13231                 }
13232
13233                 /* Enable internal target-read (in case we are probed after PF
13234                  * FLR). Must be done prior to any BAR read access. Only for
13235                  * 57712 and up
13236                  */
13237                 if (!chip_is_e1x)
13238                         REG_WR(bp,
13239                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13240         }
13241
13242         dev->watchdog_timeo = TX_TIMEOUT;
13243
13244         dev->netdev_ops = &bnx2x_netdev_ops;
13245         bnx2x_set_ethtool_ops(bp, dev);
13246
13247         dev->priv_flags |= IFF_UNICAST_FLT;
13248
13249         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13250                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13251                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13252                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13253         if (!chip_is_e1x) {
13254                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13255                                     NETIF_F_GSO_IPXIP4 |
13256                                     NETIF_F_GSO_UDP_TUNNEL |
13257                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13258                                     NETIF_F_GSO_PARTIAL;
13259
13260                 dev->hw_enc_features =
13261                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13262                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13263                         NETIF_F_GSO_IPXIP4 |
13264                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13265                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13266                         NETIF_F_GSO_PARTIAL;
13267
13268                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13269                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13270
13271                 if (IS_PF(bp))
13272                         dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13273         }
13274
13275         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13276                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13277
13278         if (IS_PF(bp)) {
13279                 if (chip_is_e1x)
13280                         bp->accept_any_vlan = true;
13281                 else
13282                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13283         }
13284         /* For VF we'll know whether to enable VLAN filtering after
13285          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13286          */
13287
13288         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13289         dev->features |= NETIF_F_HIGHDMA;
13290         if (dev->features & NETIF_F_LRO)
13291                 dev->features &= ~NETIF_F_GRO_HW;
13292
13293         /* Add Loopback capability to the device */
13294         dev->hw_features |= NETIF_F_LOOPBACK;
13295
13296 #ifdef BCM_DCBNL
13297         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13298 #endif
13299
13300         /* MTU range, 46 - 9600 */
13301         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13302         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13303
13304         /* get_port_hwinfo() will set prtad and mmds properly */
13305         bp->mdio.prtad = MDIO_PRTAD_NONE;
13306         bp->mdio.mmds = 0;
13307         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13308         bp->mdio.dev = dev;
13309         bp->mdio.mdio_read = bnx2x_mdio_read;
13310         bp->mdio.mdio_write = bnx2x_mdio_write;
13311
13312         return 0;
13313
13314 err_out_release:
13315         if (atomic_read(&pdev->enable_cnt) == 1)
13316                 pci_release_regions(pdev);
13317
13318 err_out_disable:
13319         pci_disable_device(pdev);
13320
13321 err_out:
13322         return rc;
13323 }
13324
13325 /*(DEBLOBBED)*/
13326
13327 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13328 {
13329         const __be32 *source = (const __be32 *)_source;
13330         u32 *target = (u32 *)_target;
13331         u32 i;
13332
13333         for (i = 0; i < n/4; i++)
13334                 target[i] = be32_to_cpu(source[i]);
13335 }
13336
13337 /*
13338    Ops array is stored in the following format:
13339    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13340  */
13341 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13342 {
13343         const __be32 *source = (const __be32 *)_source;
13344         struct raw_op *target = (struct raw_op *)_target;
13345         u32 i, j, tmp;
13346
13347         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13348                 tmp = be32_to_cpu(source[j]);
13349                 target[i].op = (tmp >> 24) & 0xff;
13350                 target[i].offset = tmp & 0xffffff;
13351                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13352         }
13353 }
13354
13355 /* IRO array is stored in the following format:
13356  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13357  */
13358 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13359 {
13360         const __be32 *source = (const __be32 *)_source;
13361         struct iro *target = (struct iro *)_target;
13362         u32 i, j, tmp;
13363
13364         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13365                 target[i].base = be32_to_cpu(source[j]);
13366                 j++;
13367                 tmp = be32_to_cpu(source[j]);
13368                 target[i].m1 = (tmp >> 16) & 0xffff;
13369                 target[i].m2 = tmp & 0xffff;
13370                 j++;
13371                 tmp = be32_to_cpu(source[j]);
13372                 target[i].m3 = (tmp >> 16) & 0xffff;
13373                 target[i].size = tmp & 0xffff;
13374                 j++;
13375         }
13376 }
13377
13378 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13379 {
13380         const __be16 *source = (const __be16 *)_source;
13381         u16 *target = (u16 *)_target;
13382         u32 i;
13383
13384         for (i = 0; i < n/2; i++)
13385                 target[i] = be16_to_cpu(source[i]);
13386 }
13387
13388 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13389 do {                                                                    \
13390         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13391         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13392         if (!bp->arr)                                                   \
13393                 goto lbl;                                               \
13394         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13395              (u8 *)bp->arr, len);                                       \
13396 } while (0)
13397
13398 static int bnx2x_init_firmware(struct bnx2x *bp)
13399 {
13400         const char *fw_file_name, *fw_file_name_v15;
13401         struct bnx2x_fw_file_hdr *fw_hdr;
13402         int rc;
13403
13404         if (bp->firmware)
13405                 return 0;
13406
13407         if (CHIP_IS_E1(bp)) {
13408                 fw_file_name = FW_FILE_NAME_E1;
13409                 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13410         } else if (CHIP_IS_E1H(bp)) {
13411                 fw_file_name = FW_FILE_NAME_E1H;
13412                 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13413         } else if (!CHIP_IS_E1x(bp)) {
13414                 fw_file_name = FW_FILE_NAME_E2;
13415                 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13416         } else {
13417                 BNX2X_ERR("Unsupported chip revision\n");
13418                 return -EINVAL;
13419         }
13420
13421         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13422
13423         rc = reject_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13424         if (rc) {
13425                 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13426
13427                 /* try to load prev version */
13428                 rc = reject_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13429
13430                 if (rc)
13431                         goto request_firmware_exit;
13432
13433                 /*(DEBLOBBED)*/
13434         } else {
13435                 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13436                 /*(DEBLOBBED)*/
13437         }
13438
13439         /*(DEBLOBBED)*/
13440
13441         /*(DEBLOBBED)*/
13442         if (rc) {
13443                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13444                 goto request_firmware_exit;
13445         }
13446
13447         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13448
13449         /* Initialize the pointers to the init arrays */
13450         /* Blob */
13451         rc = -ENOMEM;
13452         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13453
13454         /* Opcodes */
13455         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13456
13457         /* Offsets */
13458         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13459                             be16_to_cpu_n);
13460
13461         /* STORMs firmware */
13462         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13463                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13464         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13465                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13466         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13467                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13468         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13469                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13470         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13471                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13472         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13473                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13474         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13475                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13476         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13477                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13478         /* IRO */
13479         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13480
13481         return 0;
13482
13483 iro_alloc_err:
13484         kfree(bp->init_ops_offsets);
13485 init_offsets_alloc_err:
13486         kfree(bp->init_ops);
13487 init_ops_alloc_err:
13488         kfree(bp->init_data);
13489 request_firmware_exit:
13490         release_firmware(bp->firmware);
13491         bp->firmware = NULL;
13492
13493         return rc;
13494 }
13495
13496 static void bnx2x_release_firmware(struct bnx2x *bp)
13497 {
13498         kfree(bp->init_ops_offsets);
13499         kfree(bp->init_ops);
13500         kfree(bp->init_data);
13501         release_firmware(bp->firmware);
13502         bp->firmware = NULL;
13503 }
13504
13505 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13506         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13507         .init_hw_cmn      = bnx2x_init_hw_common,
13508         .init_hw_port     = bnx2x_init_hw_port,
13509         .init_hw_func     = bnx2x_init_hw_func,
13510
13511         .reset_hw_cmn     = bnx2x_reset_common,
13512         .reset_hw_port    = bnx2x_reset_port,
13513         .reset_hw_func    = bnx2x_reset_func,
13514
13515         .gunzip_init      = bnx2x_gunzip_init,
13516         .gunzip_end       = bnx2x_gunzip_end,
13517
13518         .init_fw          = bnx2x_init_firmware,
13519         .release_fw       = bnx2x_release_firmware,
13520 };
13521
13522 void bnx2x__init_func_obj(struct bnx2x *bp)
13523 {
13524         /* Prepare DMAE related driver resources */
13525         bnx2x_setup_dmae(bp);
13526
13527         bnx2x_init_func_obj(bp, &bp->func_obj,
13528                             bnx2x_sp(bp, func_rdata),
13529                             bnx2x_sp_mapping(bp, func_rdata),
13530                             bnx2x_sp(bp, func_afex_rdata),
13531                             bnx2x_sp_mapping(bp, func_afex_rdata),
13532                             &bnx2x_func_sp_drv);
13533 }
13534
13535 /* must be called after sriov-enable */
13536 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13537 {
13538         int cid_count = BNX2X_L2_MAX_CID(bp);
13539
13540         if (IS_SRIOV(bp))
13541                 cid_count += BNX2X_VF_CIDS;
13542
13543         if (CNIC_SUPPORT(bp))
13544                 cid_count += CNIC_CID_MAX;
13545
13546         return roundup(cid_count, QM_CID_ROUND);
13547 }
13548
13549 /**
13550  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13551  * @pdev: pci device
13552  * @cnic_cnt: count
13553  *
13554  */
13555 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13556 {
13557         int index;
13558         u16 control = 0;
13559
13560         /*
13561          * If MSI-X is not supported - return number of SBs needed to support
13562          * one fast path queue: one FP queue + SB for CNIC
13563          */
13564         if (!pdev->msix_cap) {
13565                 dev_info(&pdev->dev, "no msix capability found\n");
13566                 return 1 + cnic_cnt;
13567         }
13568         dev_info(&pdev->dev, "msix capability found\n");
13569
13570         /*
13571          * The value in the PCI configuration space is the index of the last
13572          * entry, namely one less than the actual size of the table, which is
13573          * exactly what we want to return from this function: number of all SBs
13574          * without the default SB.
13575          * For VFs there is no default SB, then we return (index+1).
13576          */
13577         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13578
13579         index = control & PCI_MSIX_FLAGS_QSIZE;
13580
13581         return index;
13582 }
13583
13584 static int set_max_cos_est(int chip_id)
13585 {
13586         switch (chip_id) {
13587         case BCM57710:
13588         case BCM57711:
13589         case BCM57711E:
13590                 return BNX2X_MULTI_TX_COS_E1X;
13591         case BCM57712:
13592         case BCM57712_MF:
13593                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13594         case BCM57800:
13595         case BCM57800_MF:
13596         case BCM57810:
13597         case BCM57810_MF:
13598         case BCM57840_4_10:
13599         case BCM57840_2_20:
13600         case BCM57840_O:
13601         case BCM57840_MFO:
13602         case BCM57840_MF:
13603         case BCM57811:
13604         case BCM57811_MF:
13605                 return BNX2X_MULTI_TX_COS_E3B0;
13606         case BCM57712_VF:
13607         case BCM57800_VF:
13608         case BCM57810_VF:
13609         case BCM57840_VF:
13610         case BCM57811_VF:
13611                 return 1;
13612         default:
13613                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13614                 return -ENODEV;
13615         }
13616 }
13617
13618 static int set_is_vf(int chip_id)
13619 {
13620         switch (chip_id) {
13621         case BCM57712_VF:
13622         case BCM57800_VF:
13623         case BCM57810_VF:
13624         case BCM57840_VF:
13625         case BCM57811_VF:
13626                 return true;
13627         default:
13628                 return false;
13629         }
13630 }
13631
13632 /* nig_tsgen registers relative address */
13633 #define tsgen_ctrl 0x0
13634 #define tsgen_freecount 0x10
13635 #define tsgen_synctime_t0 0x20
13636 #define tsgen_offset_t0 0x28
13637 #define tsgen_drift_t0 0x30
13638 #define tsgen_synctime_t1 0x58
13639 #define tsgen_offset_t1 0x60
13640 #define tsgen_drift_t1 0x68
13641
13642 /* FW workaround for setting drift */
13643 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13644                                           int best_val, int best_period)
13645 {
13646         struct bnx2x_func_state_params func_params = {NULL};
13647         struct bnx2x_func_set_timesync_params *set_timesync_params =
13648                 &func_params.params.set_timesync;
13649
13650         /* Prepare parameters for function state transitions */
13651         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13652         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13653
13654         func_params.f_obj = &bp->func_obj;
13655         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13656
13657         /* Function parameters */
13658         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13659         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13660         set_timesync_params->add_sub_drift_adjust_value =
13661                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13662         set_timesync_params->drift_adjust_value = best_val;
13663         set_timesync_params->drift_adjust_period = best_period;
13664
13665         return bnx2x_func_state_change(bp, &func_params);
13666 }
13667
13668 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13669 {
13670         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13671         int rc;
13672         int drift_dir = 1;
13673         int val, period, period1, period2, dif, dif1, dif2;
13674         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13675
13676         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13677
13678         if (!netif_running(bp->dev)) {
13679                 DP(BNX2X_MSG_PTP,
13680                    "PTP adjfreq called while the interface is down\n");
13681                 return -ENETDOWN;
13682         }
13683
13684         if (ppb < 0) {
13685                 ppb = -ppb;
13686                 drift_dir = 0;
13687         }
13688
13689         if (ppb == 0) {
13690                 best_val = 1;
13691                 best_period = 0x1FFFFFF;
13692         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13693                 best_val = 31;
13694                 best_period = 1;
13695         } else {
13696                 /* Changed not to allow val = 8, 16, 24 as these values
13697                  * are not supported in workaround.
13698                  */
13699                 for (val = 0; val <= 31; val++) {
13700                         if ((val & 0x7) == 0)
13701                                 continue;
13702                         period1 = val * 1000000 / ppb;
13703                         period2 = period1 + 1;
13704                         if (period1 != 0)
13705                                 dif1 = ppb - (val * 1000000 / period1);
13706                         else
13707                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13708                         if (dif1 < 0)
13709                                 dif1 = -dif1;
13710                         dif2 = ppb - (val * 1000000 / period2);
13711                         if (dif2 < 0)
13712                                 dif2 = -dif2;
13713                         dif = (dif1 < dif2) ? dif1 : dif2;
13714                         period = (dif1 < dif2) ? period1 : period2;
13715                         if (dif < best_dif) {
13716                                 best_dif = dif;
13717                                 best_val = val;
13718                                 best_period = period;
13719                         }
13720                 }
13721         }
13722
13723         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13724                                             best_period);
13725         if (rc) {
13726                 BNX2X_ERR("Failed to set drift\n");
13727                 return -EFAULT;
13728         }
13729
13730         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13731            best_period);
13732
13733         return 0;
13734 }
13735
13736 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13737 {
13738         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13739
13740         if (!netif_running(bp->dev)) {
13741                 DP(BNX2X_MSG_PTP,
13742                    "PTP adjtime called while the interface is down\n");
13743                 return -ENETDOWN;
13744         }
13745
13746         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13747
13748         timecounter_adjtime(&bp->timecounter, delta);
13749
13750         return 0;
13751 }
13752
13753 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13754 {
13755         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13756         u64 ns;
13757
13758         if (!netif_running(bp->dev)) {
13759                 DP(BNX2X_MSG_PTP,
13760                    "PTP gettime called while the interface is down\n");
13761                 return -ENETDOWN;
13762         }
13763
13764         ns = timecounter_read(&bp->timecounter);
13765
13766         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13767
13768         *ts = ns_to_timespec64(ns);
13769
13770         return 0;
13771 }
13772
13773 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13774                              const struct timespec64 *ts)
13775 {
13776         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13777         u64 ns;
13778
13779         if (!netif_running(bp->dev)) {
13780                 DP(BNX2X_MSG_PTP,
13781                    "PTP settime called while the interface is down\n");
13782                 return -ENETDOWN;
13783         }
13784
13785         ns = timespec64_to_ns(ts);
13786
13787         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13788
13789         /* Re-init the timecounter */
13790         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13791
13792         return 0;
13793 }
13794
13795 /* Enable (or disable) ancillary features of the phc subsystem */
13796 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13797                             struct ptp_clock_request *rq, int on)
13798 {
13799         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13800
13801         BNX2X_ERR("PHC ancillary features are not supported\n");
13802         return -ENOTSUPP;
13803 }
13804
13805 void bnx2x_register_phc(struct bnx2x *bp)
13806 {
13807         /* Fill the ptp_clock_info struct and register PTP clock*/
13808         bp->ptp_clock_info.owner = THIS_MODULE;
13809         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13810         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13811         bp->ptp_clock_info.n_alarm = 0;
13812         bp->ptp_clock_info.n_ext_ts = 0;
13813         bp->ptp_clock_info.n_per_out = 0;
13814         bp->ptp_clock_info.pps = 0;
13815         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13816         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13817         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13818         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13819         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13820
13821         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13822         if (IS_ERR(bp->ptp_clock)) {
13823                 bp->ptp_clock = NULL;
13824                 BNX2X_ERR("PTP clock registration failed\n");
13825         }
13826 }
13827
13828 static int bnx2x_init_one(struct pci_dev *pdev,
13829                                     const struct pci_device_id *ent)
13830 {
13831         struct net_device *dev = NULL;
13832         struct bnx2x *bp;
13833         int rc, max_non_def_sbs;
13834         int rx_count, tx_count, rss_count, doorbell_size;
13835         int max_cos_est;
13836         bool is_vf;
13837         int cnic_cnt;
13838
13839         /* Management FW 'remembers' living interfaces. Allow it some time
13840          * to forget previously living interfaces, allowing a proper re-load.
13841          */
13842         if (is_kdump_kernel()) {
13843                 ktime_t now = ktime_get_boottime();
13844                 ktime_t fw_ready_time = ktime_set(5, 0);
13845
13846                 if (ktime_before(now, fw_ready_time))
13847                         msleep(ktime_ms_delta(fw_ready_time, now));
13848         }
13849
13850         /* An estimated maximum supported CoS number according to the chip
13851          * version.
13852          * We will try to roughly estimate the maximum number of CoSes this chip
13853          * may support in order to minimize the memory allocated for Tx
13854          * netdev_queue's. This number will be accurately calculated during the
13855          * initialization of bp->max_cos based on the chip versions AND chip
13856          * revision in the bnx2x_init_bp().
13857          */
13858         max_cos_est = set_max_cos_est(ent->driver_data);
13859         if (max_cos_est < 0)
13860                 return max_cos_est;
13861         is_vf = set_is_vf(ent->driver_data);
13862         cnic_cnt = is_vf ? 0 : 1;
13863
13864         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13865
13866         /* add another SB for VF as it has no default SB */
13867         max_non_def_sbs += is_vf ? 1 : 0;
13868
13869         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13870         rss_count = max_non_def_sbs - cnic_cnt;
13871
13872         if (rss_count < 1)
13873                 return -EINVAL;
13874
13875         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13876         rx_count = rss_count + cnic_cnt;
13877
13878         /* Maximum number of netdev Tx queues:
13879          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13880          */
13881         tx_count = rss_count * max_cos_est + cnic_cnt;
13882
13883         /* dev zeroed in init_etherdev */
13884         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13885         if (!dev)
13886                 return -ENOMEM;
13887
13888         bp = netdev_priv(dev);
13889
13890         bp->flags = 0;
13891         if (is_vf)
13892                 bp->flags |= IS_VF_FLAG;
13893
13894         bp->igu_sb_cnt = max_non_def_sbs;
13895         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13896         bp->msg_enable = debug;
13897         bp->cnic_support = cnic_cnt;
13898         bp->cnic_probe = bnx2x_cnic_probe;
13899
13900         pci_set_drvdata(pdev, dev);
13901
13902         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13903         if (rc < 0) {
13904                 free_netdev(dev);
13905                 return rc;
13906         }
13907
13908         BNX2X_DEV_INFO("This is a %s function\n",
13909                        IS_PF(bp) ? "physical" : "virtual");
13910         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13911         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13912         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13913                        tx_count, rx_count);
13914
13915         rc = bnx2x_init_bp(bp);
13916         if (rc)
13917                 goto init_one_exit;
13918
13919         /* Map doorbells here as we need the real value of bp->max_cos which
13920          * is initialized in bnx2x_init_bp() to determine the number of
13921          * l2 connections.
13922          */
13923         if (IS_VF(bp)) {
13924                 bp->doorbells = bnx2x_vf_doorbells(bp);
13925                 rc = bnx2x_vf_pci_alloc(bp);
13926                 if (rc)
13927                         goto init_one_freemem;
13928         } else {
13929                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13930                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13931                         dev_err(&bp->pdev->dev,
13932                                 "Cannot map doorbells, bar size too small, aborting\n");
13933                         rc = -ENOMEM;
13934                         goto init_one_freemem;
13935                 }
13936                 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13937                                                 doorbell_size);
13938         }
13939         if (!bp->doorbells) {
13940                 dev_err(&bp->pdev->dev,
13941                         "Cannot map doorbell space, aborting\n");
13942                 rc = -ENOMEM;
13943                 goto init_one_freemem;
13944         }
13945
13946         if (IS_VF(bp)) {
13947                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13948                 if (rc)
13949                         goto init_one_freemem;
13950
13951 #ifdef CONFIG_BNX2X_SRIOV
13952                 /* VF with OLD Hypervisor or old PF do not support filtering */
13953                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13954                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13955                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13956                 }
13957 #endif
13958         }
13959
13960         /* Enable SRIOV if capability found in configuration space */
13961         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13962         if (rc)
13963                 goto init_one_freemem;
13964
13965         /* calc qm_cid_count */
13966         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13967         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13968
13969         /* disable FCOE L2 queue for E1x*/
13970         if (CHIP_IS_E1x(bp))
13971                 bp->flags |= NO_FCOE_FLAG;
13972
13973         /* Set bp->num_queues for MSI-X mode*/
13974         bnx2x_set_num_queues(bp);
13975
13976         /* Configure interrupt mode: try to enable MSI-X/MSI if
13977          * needed.
13978          */
13979         rc = bnx2x_set_int_mode(bp);
13980         if (rc) {
13981                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13982                 goto init_one_freemem;
13983         }
13984         BNX2X_DEV_INFO("set interrupts successfully\n");
13985
13986         /* register the net device */
13987         rc = register_netdev(dev);
13988         if (rc) {
13989                 dev_err(&pdev->dev, "Cannot register net device\n");
13990                 goto init_one_freemem;
13991         }
13992         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13993
13994         if (!NO_FCOE(bp)) {
13995                 /* Add storage MAC address */
13996                 rtnl_lock();
13997                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13998                 rtnl_unlock();
13999         }
14000         BNX2X_DEV_INFO(
14001                "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14002                board_info[ent->driver_data].name,
14003                (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14004                dev->base_addr, bp->pdev->irq, dev->dev_addr);
14005         pcie_print_link_status(bp->pdev);
14006
14007         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14008                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14009
14010         return 0;
14011
14012 init_one_freemem:
14013         bnx2x_free_mem_bp(bp);
14014
14015 init_one_exit:
14016         bnx2x_disable_pcie_error_reporting(bp);
14017
14018         if (bp->regview)
14019                 iounmap(bp->regview);
14020
14021         if (IS_PF(bp) && bp->doorbells)
14022                 iounmap(bp->doorbells);
14023
14024         free_netdev(dev);
14025
14026         if (atomic_read(&pdev->enable_cnt) == 1)
14027                 pci_release_regions(pdev);
14028
14029         pci_disable_device(pdev);
14030
14031         return rc;
14032 }
14033
14034 static void __bnx2x_remove(struct pci_dev *pdev,
14035                            struct net_device *dev,
14036                            struct bnx2x *bp,
14037                            bool remove_netdev)
14038 {
14039         /* Delete storage MAC address */
14040         if (!NO_FCOE(bp)) {
14041                 rtnl_lock();
14042                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14043                 rtnl_unlock();
14044         }
14045
14046 #ifdef BCM_DCBNL
14047         /* Delete app tlvs from dcbnl */
14048         bnx2x_dcbnl_update_applist(bp, true);
14049 #endif
14050
14051         if (IS_PF(bp) &&
14052             !BP_NOMCP(bp) &&
14053             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14054                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14055
14056         /* Close the interface - either directly or implicitly */
14057         if (remove_netdev) {
14058                 unregister_netdev(dev);
14059         } else {
14060                 rtnl_lock();
14061                 dev_close(dev);
14062                 rtnl_unlock();
14063         }
14064
14065         bnx2x_iov_remove_one(bp);
14066
14067         /* Power on: we can't let PCI layer write to us while we are in D3 */
14068         if (IS_PF(bp)) {
14069                 bnx2x_set_power_state(bp, PCI_D0);
14070                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14071
14072                 /* Set endianity registers to reset values in case next driver
14073                  * boots in different endianty environment.
14074                  */
14075                 bnx2x_reset_endianity(bp);
14076         }
14077
14078         /* Disable MSI/MSI-X */
14079         bnx2x_disable_msi(bp);
14080
14081         /* Power off */
14082         if (IS_PF(bp))
14083                 bnx2x_set_power_state(bp, PCI_D3hot);
14084
14085         /* Make sure RESET task is not scheduled before continuing */
14086         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14087
14088         /* send message via vfpf channel to release the resources of this vf */
14089         if (IS_VF(bp))
14090                 bnx2x_vfpf_release(bp);
14091
14092         /* Assumes no further PCIe PM changes will occur */
14093         if (system_state == SYSTEM_POWER_OFF) {
14094                 pci_wake_from_d3(pdev, bp->wol);
14095                 pci_set_power_state(pdev, PCI_D3hot);
14096         }
14097
14098         bnx2x_disable_pcie_error_reporting(bp);
14099         if (remove_netdev) {
14100                 if (bp->regview)
14101                         iounmap(bp->regview);
14102
14103                 /* For vfs, doorbells are part of the regview and were unmapped
14104                  * along with it. FW is only loaded by PF.
14105                  */
14106                 if (IS_PF(bp)) {
14107                         if (bp->doorbells)
14108                                 iounmap(bp->doorbells);
14109
14110                         bnx2x_release_firmware(bp);
14111                 } else {
14112                         bnx2x_vf_pci_dealloc(bp);
14113                 }
14114                 bnx2x_free_mem_bp(bp);
14115
14116                 free_netdev(dev);
14117
14118                 if (atomic_read(&pdev->enable_cnt) == 1)
14119                         pci_release_regions(pdev);
14120
14121                 pci_disable_device(pdev);
14122         }
14123 }
14124
14125 static void bnx2x_remove_one(struct pci_dev *pdev)
14126 {
14127         struct net_device *dev = pci_get_drvdata(pdev);
14128         struct bnx2x *bp;
14129
14130         if (!dev) {
14131                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14132                 return;
14133         }
14134         bp = netdev_priv(dev);
14135
14136         __bnx2x_remove(pdev, dev, bp, true);
14137 }
14138
14139 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14140 {
14141         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14142
14143         bp->rx_mode = BNX2X_RX_MODE_NONE;
14144
14145         if (CNIC_LOADED(bp))
14146                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14147
14148         /* Stop Tx */
14149         bnx2x_tx_disable(bp);
14150         netdev_reset_tc(bp->dev);
14151
14152         del_timer_sync(&bp->timer);
14153         cancel_delayed_work_sync(&bp->sp_task);
14154         cancel_delayed_work_sync(&bp->period_task);
14155
14156         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14157                 bp->stats_state = STATS_STATE_DISABLED;
14158                 up(&bp->stats_lock);
14159         }
14160
14161         bnx2x_save_statistics(bp);
14162
14163         netif_carrier_off(bp->dev);
14164
14165         return 0;
14166 }
14167
14168 /**
14169  * bnx2x_io_error_detected - called when PCI error is detected
14170  * @pdev: Pointer to PCI device
14171  * @state: The current pci connection state
14172  *
14173  * This function is called after a PCI bus error affecting
14174  * this device has been detected.
14175  */
14176 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14177                                                 pci_channel_state_t state)
14178 {
14179         struct net_device *dev = pci_get_drvdata(pdev);
14180         struct bnx2x *bp = netdev_priv(dev);
14181
14182         rtnl_lock();
14183
14184         BNX2X_ERR("IO error detected\n");
14185
14186         netif_device_detach(dev);
14187
14188         if (state == pci_channel_io_perm_failure) {
14189                 rtnl_unlock();
14190                 return PCI_ERS_RESULT_DISCONNECT;
14191         }
14192
14193         if (netif_running(dev))
14194                 bnx2x_eeh_nic_unload(bp);
14195
14196         bnx2x_prev_path_mark_eeh(bp);
14197
14198         pci_disable_device(pdev);
14199
14200         rtnl_unlock();
14201
14202         /* Request a slot reset */
14203         return PCI_ERS_RESULT_NEED_RESET;
14204 }
14205
14206 /**
14207  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14208  * @pdev: Pointer to PCI device
14209  *
14210  * Restart the card from scratch, as if from a cold-boot.
14211  */
14212 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14213 {
14214         struct net_device *dev = pci_get_drvdata(pdev);
14215         struct bnx2x *bp = netdev_priv(dev);
14216         int i;
14217
14218         rtnl_lock();
14219         BNX2X_ERR("IO slot reset initializing...\n");
14220         if (pci_enable_device(pdev)) {
14221                 dev_err(&pdev->dev,
14222                         "Cannot re-enable PCI device after reset\n");
14223                 rtnl_unlock();
14224                 return PCI_ERS_RESULT_DISCONNECT;
14225         }
14226
14227         pci_set_master(pdev);
14228         pci_restore_state(pdev);
14229         pci_save_state(pdev);
14230
14231         if (netif_running(dev))
14232                 bnx2x_set_power_state(bp, PCI_D0);
14233
14234         if (netif_running(dev)) {
14235                 BNX2X_ERR("IO slot reset --> driver unload\n");
14236
14237                 /* MCP should have been reset; Need to wait for validity */
14238                 if (bnx2x_init_shmem(bp)) {
14239                         rtnl_unlock();
14240                         return PCI_ERS_RESULT_DISCONNECT;
14241                 }
14242
14243                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14244                         u32 v;
14245
14246                         v = SHMEM2_RD(bp,
14247                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14248                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14249                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14250                 }
14251                 bnx2x_drain_tx_queues(bp);
14252                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14253                 bnx2x_netif_stop(bp, 1);
14254                 bnx2x_del_all_napi(bp);
14255
14256                 if (CNIC_LOADED(bp))
14257                         bnx2x_del_all_napi_cnic(bp);
14258
14259                 bnx2x_free_irq(bp);
14260
14261                 /* Report UNLOAD_DONE to MCP */
14262                 bnx2x_send_unload_done(bp, true);
14263
14264                 bp->sp_state = 0;
14265                 bp->port.pmf = 0;
14266
14267                 bnx2x_prev_unload(bp);
14268
14269                 /* We should have reseted the engine, so It's fair to
14270                  * assume the FW will no longer write to the bnx2x driver.
14271                  */
14272                 bnx2x_squeeze_objects(bp);
14273                 bnx2x_free_skbs(bp);
14274                 for_each_rx_queue(bp, i)
14275                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14276                 bnx2x_free_fp_mem(bp);
14277                 bnx2x_free_mem(bp);
14278
14279                 bp->state = BNX2X_STATE_CLOSED;
14280         }
14281
14282         rtnl_unlock();
14283
14284         return PCI_ERS_RESULT_RECOVERED;
14285 }
14286
14287 /**
14288  * bnx2x_io_resume - called when traffic can start flowing again
14289  * @pdev: Pointer to PCI device
14290  *
14291  * This callback is called when the error recovery driver tells us that
14292  * its OK to resume normal operation.
14293  */
14294 static void bnx2x_io_resume(struct pci_dev *pdev)
14295 {
14296         struct net_device *dev = pci_get_drvdata(pdev);
14297         struct bnx2x *bp = netdev_priv(dev);
14298
14299         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14300                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14301                 return;
14302         }
14303
14304         rtnl_lock();
14305
14306         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14307                                                         DRV_MSG_SEQ_NUMBER_MASK;
14308
14309         if (netif_running(dev)) {
14310                 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
14311                         netdev_err(bp->dev, "Error during driver initialization, try unloading/reloading the driver\n");
14312                         goto done;
14313                 }
14314         }
14315
14316         netif_device_attach(dev);
14317
14318 done:
14319         rtnl_unlock();
14320 }
14321
14322 static const struct pci_error_handlers bnx2x_err_handler = {
14323         .error_detected = bnx2x_io_error_detected,
14324         .slot_reset     = bnx2x_io_slot_reset,
14325         .resume         = bnx2x_io_resume,
14326 };
14327
14328 static void bnx2x_shutdown(struct pci_dev *pdev)
14329 {
14330         struct net_device *dev = pci_get_drvdata(pdev);
14331         struct bnx2x *bp;
14332
14333         if (!dev)
14334                 return;
14335
14336         bp = netdev_priv(dev);
14337         if (!bp)
14338                 return;
14339
14340         rtnl_lock();
14341         netif_device_detach(dev);
14342         rtnl_unlock();
14343
14344         /* Don't remove the netdevice, as there are scenarios which will cause
14345          * the kernel to hang, e.g., when trying to remove bnx2i while the
14346          * rootfs is mounted from SAN.
14347          */
14348         __bnx2x_remove(pdev, dev, bp, false);
14349 }
14350
14351 static struct pci_driver bnx2x_pci_driver = {
14352         .name        = DRV_MODULE_NAME,
14353         .id_table    = bnx2x_pci_tbl,
14354         .probe       = bnx2x_init_one,
14355         .remove      = bnx2x_remove_one,
14356         .driver.pm   = &bnx2x_pm_ops,
14357         .err_handler = &bnx2x_err_handler,
14358 #ifdef CONFIG_BNX2X_SRIOV
14359         .sriov_configure = bnx2x_sriov_configure,
14360 #endif
14361         .shutdown    = bnx2x_shutdown,
14362 };
14363
14364 static int __init bnx2x_init(void)
14365 {
14366         int ret;
14367
14368         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14369         if (bnx2x_wq == NULL) {
14370                 pr_err("Cannot create workqueue\n");
14371                 return -ENOMEM;
14372         }
14373         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14374         if (!bnx2x_iov_wq) {
14375                 pr_err("Cannot create iov workqueue\n");
14376                 destroy_workqueue(bnx2x_wq);
14377                 return -ENOMEM;
14378         }
14379
14380         ret = pci_register_driver(&bnx2x_pci_driver);
14381         if (ret) {
14382                 pr_err("Cannot register driver\n");
14383                 destroy_workqueue(bnx2x_wq);
14384                 destroy_workqueue(bnx2x_iov_wq);
14385         }
14386         return ret;
14387 }
14388
14389 static void __exit bnx2x_cleanup(void)
14390 {
14391         struct list_head *pos, *q;
14392
14393         pci_unregister_driver(&bnx2x_pci_driver);
14394
14395         destroy_workqueue(bnx2x_wq);
14396         destroy_workqueue(bnx2x_iov_wq);
14397
14398         /* Free globally allocated resources */
14399         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14400                 struct bnx2x_prev_path_list *tmp =
14401                         list_entry(pos, struct bnx2x_prev_path_list, list);
14402                 list_del(pos);
14403                 kfree(tmp);
14404         }
14405 }
14406
14407 void bnx2x_notify_link_changed(struct bnx2x *bp)
14408 {
14409         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14410 }
14411
14412 module_init(bnx2x_init);
14413 module_exit(bnx2x_cleanup);
14414
14415 /**
14416  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14417  * @bp:         driver handle
14418  *
14419  * This function will wait until the ramrod completion returns.
14420  * Return 0 if success, -ENODEV if ramrod doesn't return.
14421  */
14422 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14423 {
14424         unsigned long ramrod_flags = 0;
14425
14426         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14427         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14428                                  &bp->iscsi_l2_mac_obj, true,
14429                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14430 }
14431
14432 /* count denotes the number of new completions we have seen */
14433 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14434 {
14435         struct eth_spe *spe;
14436         int cxt_index, cxt_offset;
14437
14438 #ifdef BNX2X_STOP_ON_ERROR
14439         if (unlikely(bp->panic))
14440                 return;
14441 #endif
14442
14443         spin_lock_bh(&bp->spq_lock);
14444         BUG_ON(bp->cnic_spq_pending < count);
14445         bp->cnic_spq_pending -= count;
14446
14447         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14448                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14449                                 & SPE_HDR_CONN_TYPE) >>
14450                                 SPE_HDR_CONN_TYPE_SHIFT;
14451                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14452                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14453
14454                 /* Set validation for iSCSI L2 client before sending SETUP
14455                  *  ramrod
14456                  */
14457                 if (type == ETH_CONNECTION_TYPE) {
14458                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14459                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14460                                         ILT_PAGE_CIDS;
14461                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14462                                         (cxt_index * ILT_PAGE_CIDS);
14463                                 bnx2x_set_ctx_validation(bp,
14464                                         &bp->context[cxt_index].
14465                                                          vcxt[cxt_offset].eth,
14466                                         BNX2X_ISCSI_ETH_CID(bp));
14467                         }
14468                 }
14469
14470                 /*
14471                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14472                  * and in the air. We also check that number of outstanding
14473                  * COMMON ramrods is not more than the EQ and SPQ can
14474                  * accommodate.
14475                  */
14476                 if (type == ETH_CONNECTION_TYPE) {
14477                         if (!atomic_read(&bp->cq_spq_left))
14478                                 break;
14479                         else
14480                                 atomic_dec(&bp->cq_spq_left);
14481                 } else if (type == NONE_CONNECTION_TYPE) {
14482                         if (!atomic_read(&bp->eq_spq_left))
14483                                 break;
14484                         else
14485                                 atomic_dec(&bp->eq_spq_left);
14486                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14487                            (type == FCOE_CONNECTION_TYPE)) {
14488                         if (bp->cnic_spq_pending >=
14489                             bp->cnic_eth_dev.max_kwqe_pending)
14490                                 break;
14491                         else
14492                                 bp->cnic_spq_pending++;
14493                 } else {
14494                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14495                         bnx2x_panic();
14496                         break;
14497                 }
14498
14499                 spe = bnx2x_sp_get_next(bp);
14500                 *spe = *bp->cnic_kwq_cons;
14501
14502                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14503                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14504
14505                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14506                         bp->cnic_kwq_cons = bp->cnic_kwq;
14507                 else
14508                         bp->cnic_kwq_cons++;
14509         }
14510         bnx2x_sp_prod_update(bp);
14511         spin_unlock_bh(&bp->spq_lock);
14512 }
14513
14514 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14515                                struct kwqe_16 *kwqes[], u32 count)
14516 {
14517         struct bnx2x *bp = netdev_priv(dev);
14518         int i;
14519
14520 #ifdef BNX2X_STOP_ON_ERROR
14521         if (unlikely(bp->panic)) {
14522                 BNX2X_ERR("Can't post to SP queue while panic\n");
14523                 return -EIO;
14524         }
14525 #endif
14526
14527         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14528             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14529                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14530                 return -EAGAIN;
14531         }
14532
14533         spin_lock_bh(&bp->spq_lock);
14534
14535         for (i = 0; i < count; i++) {
14536                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14537
14538                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14539                         break;
14540
14541                 *bp->cnic_kwq_prod = *spe;
14542
14543                 bp->cnic_kwq_pending++;
14544
14545                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14546                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14547                    spe->data.update_data_addr.hi,
14548                    spe->data.update_data_addr.lo,
14549                    bp->cnic_kwq_pending);
14550
14551                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14552                         bp->cnic_kwq_prod = bp->cnic_kwq;
14553                 else
14554                         bp->cnic_kwq_prod++;
14555         }
14556
14557         spin_unlock_bh(&bp->spq_lock);
14558
14559         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14560                 bnx2x_cnic_sp_post(bp, 0);
14561
14562         return i;
14563 }
14564
14565 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14566 {
14567         struct cnic_ops *c_ops;
14568         int rc = 0;
14569
14570         mutex_lock(&bp->cnic_mutex);
14571         c_ops = rcu_dereference_protected(bp->cnic_ops,
14572                                           lockdep_is_held(&bp->cnic_mutex));
14573         if (c_ops)
14574                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14575         mutex_unlock(&bp->cnic_mutex);
14576
14577         return rc;
14578 }
14579
14580 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14581 {
14582         struct cnic_ops *c_ops;
14583         int rc = 0;
14584
14585         rcu_read_lock();
14586         c_ops = rcu_dereference(bp->cnic_ops);
14587         if (c_ops)
14588                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14589         rcu_read_unlock();
14590
14591         return rc;
14592 }
14593
14594 /*
14595  * for commands that have no data
14596  */
14597 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14598 {
14599         struct cnic_ctl_info ctl = {0};
14600
14601         ctl.cmd = cmd;
14602
14603         return bnx2x_cnic_ctl_send(bp, &ctl);
14604 }
14605
14606 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14607 {
14608         struct cnic_ctl_info ctl = {0};
14609
14610         /* first we tell CNIC and only then we count this as a completion */
14611         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14612         ctl.data.comp.cid = cid;
14613         ctl.data.comp.error = err;
14614
14615         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14616         bnx2x_cnic_sp_post(bp, 0);
14617 }
14618
14619 /* Called with netif_addr_lock_bh() taken.
14620  * Sets an rx_mode config for an iSCSI ETH client.
14621  * Doesn't block.
14622  * Completion should be checked outside.
14623  */
14624 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14625 {
14626         unsigned long accept_flags = 0, ramrod_flags = 0;
14627         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14628         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14629
14630         if (start) {
14631                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14632                  * because it's the only way for UIO Queue to accept
14633                  * multicasts (in non-promiscuous mode only one Queue per
14634                  * function will receive multicast packets (leading in our
14635                  * case).
14636                  */
14637                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14638                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14639                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14640                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14641
14642                 /* Clear STOP_PENDING bit if START is requested */
14643                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14644
14645                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14646         } else
14647                 /* Clear START_PENDING bit if STOP is requested */
14648                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14649
14650         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14651                 set_bit(sched_state, &bp->sp_state);
14652         else {
14653                 __set_bit(RAMROD_RX, &ramrod_flags);
14654                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14655                                     ramrod_flags);
14656         }
14657 }
14658
14659 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14660 {
14661         struct bnx2x *bp = netdev_priv(dev);
14662         int rc = 0;
14663
14664         switch (ctl->cmd) {
14665         case DRV_CTL_CTXTBL_WR_CMD: {
14666                 u32 index = ctl->data.io.offset;
14667                 dma_addr_t addr = ctl->data.io.dma_addr;
14668
14669                 bnx2x_ilt_wr(bp, index, addr);
14670                 break;
14671         }
14672
14673         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14674                 int count = ctl->data.credit.credit_count;
14675
14676                 bnx2x_cnic_sp_post(bp, count);
14677                 break;
14678         }
14679
14680         /* rtnl_lock is held.  */
14681         case DRV_CTL_START_L2_CMD: {
14682                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14683                 unsigned long sp_bits = 0;
14684
14685                 /* Configure the iSCSI classification object */
14686                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14687                                    cp->iscsi_l2_client_id,
14688                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14689                                    bnx2x_sp(bp, mac_rdata),
14690                                    bnx2x_sp_mapping(bp, mac_rdata),
14691                                    BNX2X_FILTER_MAC_PENDING,
14692                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14693                                    &bp->macs_pool);
14694
14695                 /* Set iSCSI MAC address */
14696                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14697                 if (rc)
14698                         break;
14699
14700                 barrier();
14701
14702                 /* Start accepting on iSCSI L2 ring */
14703
14704                 netif_addr_lock_bh(dev);
14705                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14706                 netif_addr_unlock_bh(dev);
14707
14708                 /* bits to wait on */
14709                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14710                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14711
14712                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14713                         BNX2X_ERR("rx_mode completion timed out!\n");
14714
14715                 break;
14716         }
14717
14718         /* rtnl_lock is held.  */
14719         case DRV_CTL_STOP_L2_CMD: {
14720                 unsigned long sp_bits = 0;
14721
14722                 /* Stop accepting on iSCSI L2 ring */
14723                 netif_addr_lock_bh(dev);
14724                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14725                 netif_addr_unlock_bh(dev);
14726
14727                 /* bits to wait on */
14728                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14729                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14730
14731                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14732                         BNX2X_ERR("rx_mode completion timed out!\n");
14733
14734                 barrier();
14735
14736                 /* Unset iSCSI L2 MAC */
14737                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14738                                         BNX2X_ISCSI_ETH_MAC, true);
14739                 break;
14740         }
14741         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14742                 int count = ctl->data.credit.credit_count;
14743
14744                 smp_mb__before_atomic();
14745                 atomic_add(count, &bp->cq_spq_left);
14746                 smp_mb__after_atomic();
14747                 break;
14748         }
14749         case DRV_CTL_ULP_REGISTER_CMD: {
14750                 int ulp_type = ctl->data.register_data.ulp_type;
14751
14752                 if (CHIP_IS_E3(bp)) {
14753                         int idx = BP_FW_MB_IDX(bp);
14754                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14755                         int path = BP_PATH(bp);
14756                         int port = BP_PORT(bp);
14757                         int i;
14758                         u32 scratch_offset;
14759                         u32 *host_addr;
14760
14761                         /* first write capability to shmem2 */
14762                         if (ulp_type == CNIC_ULP_ISCSI)
14763                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14764                         else if (ulp_type == CNIC_ULP_FCOE)
14765                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14766                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14767
14768                         if ((ulp_type != CNIC_ULP_FCOE) ||
14769                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14770                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14771                                 break;
14772
14773                         /* if reached here - should write fcoe capabilities */
14774                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14775                         if (!scratch_offset)
14776                                 break;
14777                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14778                                                    fcoe_features[path][port]);
14779                         host_addr = (u32 *) &(ctl->data.register_data.
14780                                               fcoe_features);
14781                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14782                              i += 4)
14783                                 REG_WR(bp, scratch_offset + i,
14784                                        *(host_addr + i/4));
14785                 }
14786                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14787                 break;
14788         }
14789
14790         case DRV_CTL_ULP_UNREGISTER_CMD: {
14791                 int ulp_type = ctl->data.ulp_type;
14792
14793                 if (CHIP_IS_E3(bp)) {
14794                         int idx = BP_FW_MB_IDX(bp);
14795                         u32 cap;
14796
14797                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14798                         if (ulp_type == CNIC_ULP_ISCSI)
14799                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14800                         else if (ulp_type == CNIC_ULP_FCOE)
14801                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14802                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14803                 }
14804                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14805                 break;
14806         }
14807
14808         default:
14809                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14810                 rc = -EINVAL;
14811         }
14812
14813         /* For storage-only interfaces, change driver state */
14814         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14815                 switch (ctl->drv_state) {
14816                 case DRV_NOP:
14817                         break;
14818                 case DRV_ACTIVE:
14819                         bnx2x_set_os_driver_state(bp,
14820                                                   OS_DRIVER_STATE_ACTIVE);
14821                         break;
14822                 case DRV_INACTIVE:
14823                         bnx2x_set_os_driver_state(bp,
14824                                                   OS_DRIVER_STATE_DISABLED);
14825                         break;
14826                 case DRV_UNLOADED:
14827                         bnx2x_set_os_driver_state(bp,
14828                                                   OS_DRIVER_STATE_NOT_LOADED);
14829                         break;
14830                 default:
14831                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14832                 }
14833         }
14834
14835         return rc;
14836 }
14837
14838 static int bnx2x_get_fc_npiv(struct net_device *dev,
14839                              struct cnic_fc_npiv_tbl *cnic_tbl)
14840 {
14841         struct bnx2x *bp = netdev_priv(dev);
14842         struct bdn_fc_npiv_tbl *tbl = NULL;
14843         u32 offset, entries;
14844         int rc = -EINVAL;
14845         int i;
14846
14847         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14848                 goto out;
14849
14850         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14851
14852         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14853         if (!tbl) {
14854                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14855                 goto out;
14856         }
14857
14858         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14859         if (!offset) {
14860                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14861                 goto out;
14862         }
14863         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14864
14865         /* Read the table contents from nvram */
14866         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14867                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14868                 goto out;
14869         }
14870
14871         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14872          * the number of entries back to cpu endianness.
14873          */
14874         entries = tbl->fc_npiv_cfg.num_of_npiv;
14875         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14876         tbl->fc_npiv_cfg.num_of_npiv = entries;
14877
14878         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14879                 DP(BNX2X_MSG_MCP,
14880                    "No FC-NPIV table [valid, simply not present]\n");
14881                 goto out;
14882         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14883                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14884                           tbl->fc_npiv_cfg.num_of_npiv);
14885                 goto out;
14886         } else {
14887                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14888                    tbl->fc_npiv_cfg.num_of_npiv);
14889         }
14890
14891         /* Copy the data into cnic-provided struct */
14892         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14893         for (i = 0; i < cnic_tbl->count; i++) {
14894                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14895                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14896         }
14897
14898         rc = 0;
14899 out:
14900         kfree(tbl);
14901         return rc;
14902 }
14903
14904 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14905 {
14906         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14907
14908         if (bp->flags & USING_MSIX_FLAG) {
14909                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14910                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14911                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14912         } else {
14913                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14914                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14915         }
14916         if (!CHIP_IS_E1x(bp))
14917                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14918         else
14919                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14920
14921         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14922         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14923         cp->irq_arr[1].status_blk = bp->def_status_blk;
14924         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14925         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14926
14927         cp->num_irq = 2;
14928 }
14929
14930 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14931 {
14932         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14933
14934         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14935                              bnx2x_cid_ilt_lines(bp);
14936         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14937         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14938         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14939
14940         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14941            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14942            cp->iscsi_l2_cid);
14943
14944         if (NO_ISCSI_OOO(bp))
14945                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14946 }
14947
14948 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14949                                void *data)
14950 {
14951         struct bnx2x *bp = netdev_priv(dev);
14952         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14953         int rc;
14954
14955         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14956
14957         if (ops == NULL) {
14958                 BNX2X_ERR("NULL ops received\n");
14959                 return -EINVAL;
14960         }
14961
14962         if (!CNIC_SUPPORT(bp)) {
14963                 BNX2X_ERR("Can't register CNIC when not supported\n");
14964                 return -EOPNOTSUPP;
14965         }
14966
14967         if (!CNIC_LOADED(bp)) {
14968                 rc = bnx2x_load_cnic(bp);
14969                 if (rc) {
14970                         BNX2X_ERR("CNIC-related load failed\n");
14971                         return rc;
14972                 }
14973         }
14974
14975         bp->cnic_enabled = true;
14976
14977         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14978         if (!bp->cnic_kwq)
14979                 return -ENOMEM;
14980
14981         bp->cnic_kwq_cons = bp->cnic_kwq;
14982         bp->cnic_kwq_prod = bp->cnic_kwq;
14983         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14984
14985         bp->cnic_spq_pending = 0;
14986         bp->cnic_kwq_pending = 0;
14987
14988         bp->cnic_data = data;
14989
14990         cp->num_irq = 0;
14991         cp->drv_state |= CNIC_DRV_STATE_REGD;
14992         cp->iro_arr = bp->iro_arr;
14993
14994         bnx2x_setup_cnic_irq_info(bp);
14995
14996         rcu_assign_pointer(bp->cnic_ops, ops);
14997
14998         /* Schedule driver to read CNIC driver versions */
14999         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15000
15001         return 0;
15002 }
15003
15004 static int bnx2x_unregister_cnic(struct net_device *dev)
15005 {
15006         struct bnx2x *bp = netdev_priv(dev);
15007         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15008
15009         mutex_lock(&bp->cnic_mutex);
15010         cp->drv_state = 0;
15011         RCU_INIT_POINTER(bp->cnic_ops, NULL);
15012         mutex_unlock(&bp->cnic_mutex);
15013         synchronize_rcu();
15014         bp->cnic_enabled = false;
15015         kfree(bp->cnic_kwq);
15016         bp->cnic_kwq = NULL;
15017
15018         return 0;
15019 }
15020
15021 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15022 {
15023         struct bnx2x *bp = netdev_priv(dev);
15024         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15025
15026         /* If both iSCSI and FCoE are disabled - return NULL in
15027          * order to indicate CNIC that it should not try to work
15028          * with this device.
15029          */
15030         if (NO_ISCSI(bp) && NO_FCOE(bp))
15031                 return NULL;
15032
15033         cp->drv_owner = THIS_MODULE;
15034         cp->chip_id = CHIP_ID(bp);
15035         cp->pdev = bp->pdev;
15036         cp->io_base = bp->regview;
15037         cp->io_base2 = bp->doorbells;
15038         cp->max_kwqe_pending = 8;
15039         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15040         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15041                              bnx2x_cid_ilt_lines(bp);
15042         cp->ctx_tbl_len = CNIC_ILT_LINES;
15043         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15044         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15045         cp->drv_ctl = bnx2x_drv_ctl;
15046         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15047         cp->drv_register_cnic = bnx2x_register_cnic;
15048         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15049         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15050         cp->iscsi_l2_client_id =
15051                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15052         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15053
15054         if (NO_ISCSI_OOO(bp))
15055                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15056
15057         if (NO_ISCSI(bp))
15058                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15059
15060         if (NO_FCOE(bp))
15061                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15062
15063         BNX2X_DEV_INFO(
15064                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15065            cp->ctx_blk_size,
15066            cp->ctx_tbl_offset,
15067            cp->ctx_tbl_len,
15068            cp->starting_cid);
15069         return cp;
15070 }
15071
15072 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15073 {
15074         struct bnx2x *bp = fp->bp;
15075         u32 offset = BAR_USTRORM_INTMEM;
15076
15077         if (IS_VF(bp))
15078                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15079         else if (!CHIP_IS_E1x(bp))
15080                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15081         else
15082                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15083
15084         return offset;
15085 }
15086
15087 /* called only on E1H or E2.
15088  * When pretending to be PF, the pretend value is the function number 0...7
15089  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15090  * combination
15091  */
15092 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15093 {
15094         u32 pretend_reg;
15095
15096         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15097                 return -1;
15098
15099         /* get my own pretend register */
15100         pretend_reg = bnx2x_get_pretend_reg(bp);
15101         REG_WR(bp, pretend_reg, pretend_func_val);
15102         REG_RD(bp, pretend_reg);
15103         return 0;
15104 }
15105
15106 static void bnx2x_ptp_task(struct work_struct *work)
15107 {
15108         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15109         int port = BP_PORT(bp);
15110         u32 val_seq;
15111         u64 timestamp, ns;
15112         struct skb_shared_hwtstamps shhwtstamps;
15113         bool bail = true;
15114         int i;
15115
15116         /* FW may take a while to complete timestamping; try a bit and if it's
15117          * still not complete, may indicate an error state - bail out then.
15118          */
15119         for (i = 0; i < 10; i++) {
15120                 /* Read Tx timestamp registers */
15121                 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15122                                  NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15123                 if (val_seq & 0x10000) {
15124                         bail = false;
15125                         break;
15126                 }
15127                 msleep(1 << i);
15128         }
15129
15130         if (!bail) {
15131                 /* There is a valid timestamp value */
15132                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15133                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15134                 timestamp <<= 32;
15135                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15136                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15137                 /* Reset timestamp register to allow new timestamp */
15138                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15139                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15140                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15141
15142                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15143                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15144                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15145
15146                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15147                    timestamp, ns);
15148         } else {
15149                 DP(BNX2X_MSG_PTP,
15150                    "Tx timestamp is not recorded (register read=%u)\n",
15151                    val_seq);
15152                 bp->eth_stats.ptp_skip_tx_ts++;
15153         }
15154
15155         dev_kfree_skb_any(bp->ptp_tx_skb);
15156         bp->ptp_tx_skb = NULL;
15157 }
15158
15159 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15160 {
15161         int port = BP_PORT(bp);
15162         u64 timestamp, ns;
15163
15164         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15165                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15166         timestamp <<= 32;
15167         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15168                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15169
15170         /* Reset timestamp register to allow new timestamp */
15171         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15172                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15173
15174         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15175
15176         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15177
15178         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15179            timestamp, ns);
15180 }
15181
15182 /* Read the PHC */
15183 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15184 {
15185         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15186         int port = BP_PORT(bp);
15187         u32 wb_data[2];
15188         u64 phc_cycles;
15189
15190         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15191                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15192         phc_cycles = wb_data[1];
15193         phc_cycles = (phc_cycles << 32) + wb_data[0];
15194
15195         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15196
15197         return phc_cycles;
15198 }
15199
15200 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15201 {
15202         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15203         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15204         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15205         bp->cyclecounter.shift = 0;
15206         bp->cyclecounter.mult = 1;
15207 }
15208
15209 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15210 {
15211         struct bnx2x_func_state_params func_params = {NULL};
15212         struct bnx2x_func_set_timesync_params *set_timesync_params =
15213                 &func_params.params.set_timesync;
15214
15215         /* Prepare parameters for function state transitions */
15216         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15217         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15218
15219         func_params.f_obj = &bp->func_obj;
15220         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15221
15222         /* Function parameters */
15223         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15224         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15225
15226         return bnx2x_func_state_change(bp, &func_params);
15227 }
15228
15229 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15230 {
15231         struct bnx2x_queue_state_params q_params;
15232         int rc, i;
15233
15234         /* send queue update ramrod to enable PTP packets */
15235         memset(&q_params, 0, sizeof(q_params));
15236         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15237         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15238         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15239                   &q_params.params.update.update_flags);
15240         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15241                   &q_params.params.update.update_flags);
15242
15243         /* send the ramrod on all the queues of the PF */
15244         for_each_eth_queue(bp, i) {
15245                 struct bnx2x_fastpath *fp = &bp->fp[i];
15246
15247                 /* Set the appropriate Queue object */
15248                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15249
15250                 /* Update the Queue state */
15251                 rc = bnx2x_queue_state_change(bp, &q_params);
15252                 if (rc) {
15253                         BNX2X_ERR("Failed to enable PTP packets\n");
15254                         return rc;
15255                 }
15256         }
15257
15258         return 0;
15259 }
15260
15261 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15262 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15263 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15264 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15265 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15266 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15267 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15268 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15269 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15270 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15271 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15272 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15273
15274 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15275 {
15276         int port = BP_PORT(bp);
15277         u32 param, rule;
15278         int rc;
15279
15280         if (!bp->hwtstamp_ioctl_called)
15281                 return 0;
15282
15283         param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15284                 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15285         rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15286                 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15287         switch (bp->tx_type) {
15288         case HWTSTAMP_TX_ON:
15289                 bp->flags |= TX_TIMESTAMPING_EN;
15290                 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15291                 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15292                 break;
15293         case HWTSTAMP_TX_ONESTEP_SYNC:
15294         case HWTSTAMP_TX_ONESTEP_P2P:
15295                 BNX2X_ERR("One-step timestamping is not supported\n");
15296                 return -ERANGE;
15297         }
15298
15299         param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15300                 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15301         rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15302                 NIG_REG_P0_LLH_PTP_RULE_MASK;
15303         switch (bp->rx_filter) {
15304         case HWTSTAMP_FILTER_NONE:
15305                 break;
15306         case HWTSTAMP_FILTER_ALL:
15307         case HWTSTAMP_FILTER_SOME:
15308         case HWTSTAMP_FILTER_NTP_ALL:
15309                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15310                 break;
15311         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15312         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15313         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15314                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15315                 /* Initialize PTP detection for UDP/IPv4 events */
15316                 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15317                 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15318                 break;
15319         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15320         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15321         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15322                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15323                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15324                 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15325                 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15326                 break;
15327         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15328         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15329         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15330                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15331                 /* Initialize PTP detection L2 events */
15332                 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15333                 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15334
15335                 break;
15336         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15337         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15338         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15339                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15340                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15341                 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15342                 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15343                 break;
15344         }
15345
15346         /* Indicate to FW that this PF expects recorded PTP packets */
15347         rc = bnx2x_enable_ptp_packets(bp);
15348         if (rc)
15349                 return rc;
15350
15351         /* Enable sending PTP packets to host */
15352         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15353                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15354
15355         return 0;
15356 }
15357
15358 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15359 {
15360         struct hwtstamp_config config;
15361         int rc;
15362
15363         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15364
15365         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15366                 return -EFAULT;
15367
15368         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15369            config.tx_type, config.rx_filter);
15370
15371         if (config.flags) {
15372                 BNX2X_ERR("config.flags is reserved for future use\n");
15373                 return -EINVAL;
15374         }
15375
15376         bp->hwtstamp_ioctl_called = true;
15377         bp->tx_type = config.tx_type;
15378         bp->rx_filter = config.rx_filter;
15379
15380         rc = bnx2x_configure_ptp_filters(bp);
15381         if (rc)
15382                 return rc;
15383
15384         config.rx_filter = bp->rx_filter;
15385
15386         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15387                 -EFAULT : 0;
15388 }
15389
15390 /* Configures HW for PTP */
15391 static int bnx2x_configure_ptp(struct bnx2x *bp)
15392 {
15393         int rc, port = BP_PORT(bp);
15394         u32 wb_data[2];
15395
15396         /* Reset PTP event detection rules - will be configured in the IOCTL */
15397         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15398                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15399         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15400                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15401         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15402                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15403         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15404                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15405
15406         /* Disable PTP packets to host - will be configured in the IOCTL*/
15407         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15408                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15409
15410         /* Enable the PTP feature */
15411         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15412                NIG_REG_P0_PTP_EN, 0x3F);
15413
15414         /* Enable the free-running counter */
15415         wb_data[0] = 0;
15416         wb_data[1] = 0;
15417         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15418
15419         /* Reset drift register (offset register is not reset) */
15420         rc = bnx2x_send_reset_timesync_ramrod(bp);
15421         if (rc) {
15422                 BNX2X_ERR("Failed to reset PHC drift register\n");
15423                 return -EFAULT;
15424         }
15425
15426         /* Reset possibly old timestamps */
15427         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15428                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15429         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15430                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15431
15432         return 0;
15433 }
15434
15435 /* Called during load, to initialize PTP-related stuff */
15436 void bnx2x_init_ptp(struct bnx2x *bp)
15437 {
15438         int rc;
15439
15440         /* Configure PTP in HW */
15441         rc = bnx2x_configure_ptp(bp);
15442         if (rc) {
15443                 BNX2X_ERR("Stopping PTP initialization\n");
15444                 return;
15445         }
15446
15447         /* Init work queue for Tx timestamping */
15448         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15449
15450         /* Init cyclecounter and timecounter. This is done only in the first
15451          * load. If done in every load, PTP application will fail when doing
15452          * unload / load (e.g. MTU change) while it is running.
15453          */
15454         if (!bp->timecounter_init_done) {
15455                 bnx2x_init_cyclecounter(bp);
15456                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15457                                  ktime_to_ns(ktime_get_real()));
15458                 bp->timecounter_init_done = true;
15459         }
15460
15461         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15462 }