1 /* bnx2x_init_ops.h: Qlogic Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2013 Broadcom Corporation
6 * Copyright (c) 2014 QLogic Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation.
13 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
14 * Written by: Vladislav Zolotarov
17 #ifndef BNX2X_INIT_OPS_H
18 #define BNX2X_INIT_OPS_H
22 #define BP_ILT(bp) NULL
33 #ifndef BNX2X_ILT_FREE
34 #define BNX2X_ILT_FREE(x, y, sz)
37 #ifndef BNX2X_ILT_ZALLOC
38 #define BNX2X_ILT_ZALLOC(x, y, sz)
45 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
46 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
47 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
48 dma_addr_t phys_addr, u32 addr,
51 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
52 const u32 *data, u32 len)
56 for (i = 0; i < len; i++)
57 REG_WR(bp, addr + i*4, data[i]);
60 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
61 const u32 *data, u32 len)
65 for (i = 0; i < len; i++)
66 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
69 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
73 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
75 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
76 else if (wb && CHIP_IS_E1(bp))
77 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
79 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
81 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
84 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
87 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
88 u32 buf_len32 = buf_len/4;
91 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
93 for (i = 0; i < len; i += buf_len32) {
94 u32 cur_len = min(buf_len32, len - i);
96 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
100 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
103 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
105 /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
106 else if (CHIP_IS_E1(bp))
107 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
109 /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
111 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
114 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
115 const u32 *data, u32 len64)
117 u32 buf_len32 = FW_BUF_SIZE/4;
122 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
123 data64 = HILO_U64((*(data + 1)), (*data));
125 len64 = min((u32)(FW_BUF_SIZE/8), len64);
126 for (i = 0; i < len64; i++) {
127 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
132 for (i = 0; i < len; i += buf_len32) {
133 u32 cur_len = min(buf_len32, len - i);
135 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
139 /*********************************************************
140 There are different blobs for each PRAM section.
141 In addition, each blob write operation is divided into a few operations
142 in order to decrease the amount of phys. contiguous buffer needed.
143 Thus, when we select a blob the address may be with some offset
144 from the beginning of PRAM section.
145 The same holds for the INT_TABLE sections.
146 **********************************************************/
147 #define IF_IS_INT_TABLE_ADDR(base, addr) \
148 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
150 #define IF_IS_PRAM_ADDR(base, addr) \
151 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
153 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
156 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
157 data = INIT_TSEM_INT_TABLE_DATA(bp);
159 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
160 data = INIT_CSEM_INT_TABLE_DATA(bp);
162 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
163 data = INIT_USEM_INT_TABLE_DATA(bp);
165 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
166 data = INIT_XSEM_INT_TABLE_DATA(bp);
168 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
169 data = INIT_TSEM_PRAM_DATA(bp);
171 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
172 data = INIT_CSEM_PRAM_DATA(bp);
174 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
175 data = INIT_USEM_PRAM_DATA(bp);
177 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
178 data = INIT_XSEM_PRAM_DATA(bp);
183 extern void bnx2x_init_wr_wb(struct bnx2x *, u32, const u32 *, u32);
186 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
191 wb_write[0] = val_lo;
192 wb_write[1] = val_hi;
193 REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
195 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
198 const u8 *data = NULL;
202 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
204 rc = bnx2x_gunzip(bp, data, len);
208 /* gunzip_outlen is in dwords */
209 len = GUNZIP_OUTLEN(bp);
210 for (i = 0; i < len; i++)
211 ((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
212 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
214 bnx2x_write_big_buf_wb(bp, addr, len);
220 /****************************************************************************
222 ****************************************************************************/
224 * This code configures the PCI read/write arbiter
225 * which implements a weighted round robin
226 * between the virtual queues in the chip.
228 * The values were derived for each PCI max payload and max request size.
229 * since max payload and max request size are only known at run time,
230 * this is done as a separate init stage.
238 /* configuration for one arbiter queue */
245 /* derived configuration for each read queue for each max request size */
246 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
247 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
248 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
249 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
250 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
251 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
252 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
253 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
254 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
255 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
256 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
257 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
258 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
259 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
260 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
261 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
262 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
263 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
264 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
265 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
266 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
267 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
268 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
269 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
270 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
271 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
272 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
273 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
274 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
275 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
278 /* derived configuration for each write queue for each max request size */
279 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
280 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
281 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
282 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
283 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
284 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
285 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
286 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
287 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
288 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
289 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
290 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
291 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
292 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
295 /* register addresses for read queues */
296 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
297 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
298 PXP2_REG_RQ_BW_RD_UBOUND0},
299 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
300 PXP2_REG_PSWRQ_BW_UB1},
301 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
302 PXP2_REG_PSWRQ_BW_UB2},
303 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
304 PXP2_REG_PSWRQ_BW_UB3},
305 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
306 PXP2_REG_RQ_BW_RD_UBOUND4},
307 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
308 PXP2_REG_RQ_BW_RD_UBOUND5},
309 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
310 PXP2_REG_PSWRQ_BW_UB6},
311 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
312 PXP2_REG_PSWRQ_BW_UB7},
313 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
314 PXP2_REG_PSWRQ_BW_UB8},
315 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
316 PXP2_REG_PSWRQ_BW_UB9},
317 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
318 PXP2_REG_PSWRQ_BW_UB10},
319 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
320 PXP2_REG_PSWRQ_BW_UB11},
321 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
322 PXP2_REG_RQ_BW_RD_UBOUND12},
323 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
324 PXP2_REG_RQ_BW_RD_UBOUND13},
325 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
326 PXP2_REG_RQ_BW_RD_UBOUND14},
327 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
328 PXP2_REG_RQ_BW_RD_UBOUND15},
329 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
330 PXP2_REG_RQ_BW_RD_UBOUND16},
331 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
332 PXP2_REG_RQ_BW_RD_UBOUND17},
333 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
334 PXP2_REG_RQ_BW_RD_UBOUND18},
335 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
336 PXP2_REG_RQ_BW_RD_UBOUND19},
337 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
338 PXP2_REG_RQ_BW_RD_UBOUND20},
339 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
340 PXP2_REG_RQ_BW_RD_UBOUND22},
341 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
342 PXP2_REG_RQ_BW_RD_UBOUND23},
343 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
344 PXP2_REG_RQ_BW_RD_UBOUND24},
345 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
346 PXP2_REG_RQ_BW_RD_UBOUND25},
347 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
348 PXP2_REG_RQ_BW_RD_UBOUND26},
349 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
350 PXP2_REG_RQ_BW_RD_UBOUND27},
351 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
352 PXP2_REG_PSWRQ_BW_UB28}
355 /* register addresses for write queues */
356 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
357 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
358 PXP2_REG_PSWRQ_BW_UB1},
359 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
360 PXP2_REG_PSWRQ_BW_UB2},
361 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
362 PXP2_REG_PSWRQ_BW_UB3},
363 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
364 PXP2_REG_PSWRQ_BW_UB6},
365 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
366 PXP2_REG_PSWRQ_BW_UB7},
367 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
368 PXP2_REG_PSWRQ_BW_UB8},
369 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
370 PXP2_REG_PSWRQ_BW_UB9},
371 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
372 PXP2_REG_PSWRQ_BW_UB10},
373 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
374 PXP2_REG_PSWRQ_BW_UB11},
375 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
376 PXP2_REG_PSWRQ_BW_UB28},
377 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
378 PXP2_REG_RQ_BW_WR_UBOUND29},
379 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
380 PXP2_REG_RQ_BW_WR_UBOUND30}
383 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
388 if (r_order > MAX_RD_ORD) {
389 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
390 r_order, MAX_RD_ORD);
391 r_order = MAX_RD_ORD;
393 if (w_order > MAX_WR_ORD) {
394 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
395 w_order, MAX_WR_ORD);
396 w_order = MAX_WR_ORD;
398 if (CHIP_REV_IS_FPGA(bp)) {
399 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
402 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
404 for (i = 0; i < NUM_RD_Q-1; i++) {
405 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
406 REG_WR(bp, read_arb_addr[i].add,
407 read_arb_data[i][r_order].add);
408 REG_WR(bp, read_arb_addr[i].ubound,
409 read_arb_data[i][r_order].ubound);
412 for (i = 0; i < NUM_WR_Q-1; i++) {
413 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
414 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
416 REG_WR(bp, write_arb_addr[i].l,
417 write_arb_data[i][w_order].l);
419 REG_WR(bp, write_arb_addr[i].add,
420 write_arb_data[i][w_order].add);
422 REG_WR(bp, write_arb_addr[i].ubound,
423 write_arb_data[i][w_order].ubound);
426 val = REG_RD(bp, write_arb_addr[i].l);
427 REG_WR(bp, write_arb_addr[i].l,
428 val | (write_arb_data[i][w_order].l << 10));
430 val = REG_RD(bp, write_arb_addr[i].add);
431 REG_WR(bp, write_arb_addr[i].add,
432 val | (write_arb_data[i][w_order].add << 10));
434 val = REG_RD(bp, write_arb_addr[i].ubound);
435 REG_WR(bp, write_arb_addr[i].ubound,
436 val | (write_arb_data[i][w_order].ubound << 7));
440 val = write_arb_data[NUM_WR_Q-1][w_order].add;
441 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
442 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
443 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
445 val = read_arb_data[NUM_RD_Q-1][r_order].add;
446 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
447 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
448 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
450 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
451 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
452 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
453 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
455 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
456 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
459 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
460 else if (CHIP_IS_E2(bp))
461 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
463 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
465 if (!CHIP_IS_E1(bp)) {
466 /* MPS w_order optimal TH presently TH
471 /* DMAE is special */
472 if (!CHIP_IS_E1H(bp)) {
473 /* E2 can use optimal TH */
475 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
477 val = ((w_order == 0) ? 2 : 3);
478 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
481 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
482 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
483 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
484 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
485 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
486 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
487 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
488 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
489 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
490 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
493 /* Validate number of tags suppoted by device */
494 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
495 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
498 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
501 /****************************************************************************
503 ****************************************************************************/
505 * This codes hides the low level HW interaction for ILT management and
506 * configuration. The API consists of a shadow ILT table which is set by the
507 * driver and a set of routines to use it to configure the HW.
511 /* ILT HW init operations */
513 /* ILT memory management operations */
514 #define ILT_MEMOP_ALLOC 0
515 #define ILT_MEMOP_FREE 1
517 /* the phys address is shifted right 12 bits and has an added
518 * 1=valid bit added to the 53rd bit
519 * then since this is a wide register(TM)
520 * we split it into two 32 bit writes
522 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
523 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
524 #define ILT_RANGE(f, l) (((l) << 10) | f)
526 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
527 struct ilt_line *line, u32 size, u8 memop)
529 if (memop == ILT_MEMOP_FREE) {
530 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
533 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
541 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
545 struct bnx2x_ilt *ilt = BP_ILT(bp);
546 struct ilt_client_info *ilt_cli;
548 if (!ilt || !ilt->lines)
551 ilt_cli = &ilt->clients[cli_num];
553 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
556 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
557 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
558 ilt_cli->page_size, memop);
563 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
567 if (CONFIGURE_NIC_MODE(bp))
568 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
570 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
575 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
577 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
579 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
580 if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
581 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
586 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
587 dma_addr_t page_mapping)
592 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
594 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
596 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
599 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
600 struct bnx2x_ilt *ilt, int idx, u8 initop)
602 dma_addr_t null_mapping;
603 int abs_idx = ilt->start_line + idx;
608 /* set in the init-value array */
610 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
614 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
619 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
620 struct ilt_client_info *ilt_cli,
621 u32 ilt_start, u8 initop)
626 /* The boundary is either SET or INIT,
627 CLEAR => SET and for now SET ~~ INIT */
629 /* find the appropriate regs */
630 if (CHIP_IS_E1(bp)) {
631 switch (ilt_cli->client_num) {
633 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
636 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
639 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
642 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
645 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
646 ILT_RANGE((ilt_start + ilt_cli->start),
647 (ilt_start + ilt_cli->end)));
649 switch (ilt_cli->client_num) {
651 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
652 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
655 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
656 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
659 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
660 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
663 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
664 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
667 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
668 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
672 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
673 struct bnx2x_ilt *ilt,
674 struct ilt_client_info *ilt_cli,
679 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
682 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
683 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
685 /* init/clear the ILT boundries */
686 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
689 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
690 struct ilt_client_info *ilt_cli, u8 initop)
692 struct bnx2x_ilt *ilt = BP_ILT(bp);
694 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
697 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
698 int cli_num, u8 initop)
700 struct bnx2x_ilt *ilt = BP_ILT(bp);
701 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
703 bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
706 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
708 if (CONFIGURE_NIC_MODE(bp))
709 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
710 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
713 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
715 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
716 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
717 if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
718 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
721 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
722 u32 psz_reg, u8 initop)
724 struct bnx2x_ilt *ilt = BP_ILT(bp);
725 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
727 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
732 /* set in the init-value array */
734 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
742 * called during init common stage, ilt clients should be initialized
743 * prioir to calling this function
745 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
747 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
748 PXP2_REG_RQ_CDU_P_SIZE, initop);
749 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
750 PXP2_REG_RQ_QM_P_SIZE, initop);
751 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
752 PXP2_REG_RQ_SRC_P_SIZE, initop);
753 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
754 PXP2_REG_RQ_TM_P_SIZE, initop);
757 /****************************************************************************
759 ****************************************************************************/
760 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
761 #define QM_INIT_MIN_CID_COUNT 31
762 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
764 /* called during init port stage */
765 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
768 int port = BP_PORT(bp);
770 if (QM_INIT(qm_cid_count)) {
773 /* set in the init-value array */
775 REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
776 qm_cid_count/16 - 1);
784 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
785 u32 base_reg, u32 reg)
788 u32 wb_data[2] = {0, 0};
789 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
790 REG_WR(bp, base_reg + i*4,
791 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
792 bnx2x_init_wr_wb(bp, reg + i*8, wb_data, 2);
796 /* called during init common stage */
797 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
800 if (!QM_INIT(qm_cid_count))
805 /* set in the init-value array */
807 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
808 QM_REG_BASEADDR, QM_REG_PTRTBL);
810 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
811 QM_REG_BASEADDR_EXT_A,
812 QM_REG_PTRTBL_EXT_A);
819 /****************************************************************************
820 * SRC initializations
821 ****************************************************************************/
822 /* called during init func stage */
823 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
824 dma_addr_t t2_mapping, int src_cid_count)
827 int port = BP_PORT(bp);
830 for (i = 0; i < src_cid_count-1; i++)
831 t2[i].next = (u64)(t2_mapping +
832 (i+1)*sizeof(struct src_ent));
834 /* tell the searcher where the T2 table is */
835 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
837 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
838 U64_LO(t2_mapping), U64_HI(t2_mapping));
840 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
841 U64_LO((u64)t2_mapping +
842 (src_cid_count-1) * sizeof(struct src_ent)),
843 U64_HI((u64)t2_mapping +
844 (src_cid_count-1) * sizeof(struct src_ent)));
846 #endif /* BNX2X_INIT_OPS_H */