GNU Linux-libre 4.14.262-gnu1
[releases.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong.huang@atheros.com>
28  * Jie Yang <jie.yang@atheros.com>
29  * Chris Snook <csnook@redhat.com>
30  * Jay Cliburn <jcliburn@gmail.com>
31  *
32  * This version is adapted from the Attansic reference driver.
33  *
34  * TODO:
35  * Add more ethtool functions.
36  * Fix abstruse irq enable/disable condition described here:
37  *      http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38  *
39  * NEEDS TESTING:
40  * VLAN
41  * multicast
42  * promiscuous mode
43  * interrupt coalescing
44  * SMP torture testing
45  */
46
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87               "Chris Snook <csnook@redhat.com>, "
88               "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94
95 static const struct ethtool_ops atl1_ethtool_ops;
96
97 /*
98  * This is the only thing that needs to be changed to adjust the
99  * maximum number of ports that the driver can manage.
100  */
101 #define ATL1_MAX_NIC 4
102
103 #define OPTION_UNSET    -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED  1
106
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109 /*
110  * Interrupt Moderate Timer in units of 2 us
111  *
112  * Valid Range: 10-65535
113  *
114  * Default Value: 100 (200us)
115  */
116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119         &num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122 #define DEFAULT_INT_MOD_CNT     100     /* 200us */
123 #define MAX_INT_MOD_CNT         65000
124 #define MIN_INT_MOD_CNT         50
125
126 struct atl1_option {
127         enum { enable_option, range_option, list_option } type;
128         char *name;
129         char *err;
130         int def;
131         union {
132                 struct {        /* range_option info */
133                         int min;
134                         int max;
135                 } r;
136                 struct {        /* list_option info */
137                         int nr;
138                         struct atl1_opt_list {
139                                 int i;
140                                 char *str;
141                         } *p;
142                 } l;
143         } arg;
144 };
145
146 static int atl1_validate_option(int *value, struct atl1_option *opt,
147                                 struct pci_dev *pdev)
148 {
149         if (*value == OPTION_UNSET) {
150                 *value = opt->def;
151                 return 0;
152         }
153
154         switch (opt->type) {
155         case enable_option:
156                 switch (*value) {
157                 case OPTION_ENABLED:
158                         dev_info(&pdev->dev, "%s enabled\n", opt->name);
159                         return 0;
160                 case OPTION_DISABLED:
161                         dev_info(&pdev->dev, "%s disabled\n", opt->name);
162                         return 0;
163                 }
164                 break;
165         case range_option:
166                 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167                         dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168                                 *value);
169                         return 0;
170                 }
171                 break;
172         case list_option:{
173                         int i;
174                         struct atl1_opt_list *ent;
175
176                         for (i = 0; i < opt->arg.l.nr; i++) {
177                                 ent = &opt->arg.l.p[i];
178                                 if (*value == ent->i) {
179                                         if (ent->str[0] != '\0')
180                                                 dev_info(&pdev->dev, "%s\n",
181                                                         ent->str);
182                                         return 0;
183                                 }
184                         }
185                 }
186                 break;
187
188         default:
189                 break;
190         }
191
192         dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193                 opt->name, *value, opt->err);
194         *value = opt->def;
195         return -1;
196 }
197
198 /**
199  * atl1_check_options - Range Checking for Command Line Parameters
200  * @adapter: board private structure
201  *
202  * This routine checks all command line parameters for valid user
203  * input.  If an invalid value is given, or if no user specified
204  * value exists, a default value is used.  The final value is stored
205  * in a variable in the adapter structure.
206  */
207 static void atl1_check_options(struct atl1_adapter *adapter)
208 {
209         struct pci_dev *pdev = adapter->pdev;
210         int bd = adapter->bd_number;
211         if (bd >= ATL1_MAX_NIC) {
212                 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213                 dev_notice(&pdev->dev, "using defaults for all values\n");
214         }
215         {                       /* Interrupt Moderate Timer */
216                 struct atl1_option opt = {
217                         .type = range_option,
218                         .name = "Interrupt Moderator Timer",
219                         .err = "using default of "
220                                 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
221                         .def = DEFAULT_INT_MOD_CNT,
222                         .arg = {.r = {.min = MIN_INT_MOD_CNT,
223                                         .max = MAX_INT_MOD_CNT} }
224                 };
225                 int val;
226                 if (num_int_mod_timer > bd) {
227                         val = int_mod_timer[bd];
228                         atl1_validate_option(&val, &opt, pdev);
229                         adapter->imt = (u16) val;
230                 } else
231                         adapter->imt = (u16) (opt.def);
232         }
233 }
234
235 /*
236  * atl1_pci_tbl - PCI Device ID Table
237  */
238 static const struct pci_device_id atl1_pci_tbl[] = {
239         {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240         /* required last entry */
241         {0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246         NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252 /*
253  * Reset the transmit and receive units; mask and clear all interrupts.
254  * hw - Struct containing variables accessed by shared code
255  * return : 0  or  idle status (if error)
256  */
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259         struct pci_dev *pdev = hw->back->pdev;
260         struct atl1_adapter *adapter = hw->back;
261         u32 icr;
262         int i;
263
264         /*
265          * Clear Interrupt mask to stop board from generating
266          * interrupts & Clear any pending interrupt events
267          */
268         /*
269          * atlx_irq_disable(adapter);
270          * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271          */
272
273         /*
274          * Issue Soft Reset to the MAC.  This will reset the chip's
275          * transmit, receive, DMA.  It will not effect
276          * the current PCI configuration.  The global reset bit is self-
277          * clearing, and should clear within a microsecond.
278          */
279         iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280         ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282         iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283         ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285         /* delay about 1ms */
286         msleep(1);
287
288         /* Wait at least 10ms for All module to be Idle */
289         for (i = 0; i < 10; i++) {
290                 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291                 if (!icr)
292                         break;
293                 /* delay 1 ms */
294                 msleep(1);
295                 /* FIXME: still the right way to do this? */
296                 cpu_relax();
297         }
298
299         if (icr) {
300                 if (netif_msg_hw(adapter))
301                         dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302                 return icr;
303         }
304
305         return 0;
306 }
307
308 /* function about EEPROM
309  *
310  * check_eeprom_exist
311  * return 0 if eeprom exist
312  */
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315         u32 value;
316         value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317         if (value & SPI_FLASH_CTRL_EN_VPD) {
318                 value &= ~SPI_FLASH_CTRL_EN_VPD;
319                 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320         }
321
322         value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323         return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328         int i;
329         u32 control;
330
331         if (offset & 3)
332                 /* address do not align */
333                 return false;
334
335         iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336         control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337         iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338         ioread32(hw->hw_addr + REG_VPD_CAP);
339
340         for (i = 0; i < 10; i++) {
341                 msleep(2);
342                 control = ioread32(hw->hw_addr + REG_VPD_CAP);
343                 if (control & VPD_CAP_VPD_FLAG)
344                         break;
345         }
346         if (control & VPD_CAP_VPD_FLAG) {
347                 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348                 return true;
349         }
350         /* timeout */
351         return false;
352 }
353
354 /*
355  * Reads the value from a PHY register
356  * hw - Struct containing variables accessed by shared code
357  * reg_addr - address of the PHY register to read
358  */
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361         u32 val;
362         int i;
363
364         val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365                 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366                 MDIO_CLK_SEL_SHIFT;
367         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368         ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371                 udelay(2);
372                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373                 if (!(val & (MDIO_START | MDIO_BUSY)))
374                         break;
375         }
376         if (!(val & (MDIO_START | MDIO_BUSY))) {
377                 *phy_data = (u16) val;
378                 return 0;
379         }
380         return ATLX_ERR_PHY;
381 }
382
383 #define CUSTOM_SPI_CS_SETUP     2
384 #define CUSTOM_SPI_CLK_HI       2
385 #define CUSTOM_SPI_CLK_LO       2
386 #define CUSTOM_SPI_CS_HOLD      2
387 #define CUSTOM_SPI_CS_HI        3
388
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391         int i;
392         u32 value;
393
394         iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395         iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397         value = SPI_FLASH_CTRL_WAIT_READY |
398             (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399             SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400                                              SPI_FLASH_CTRL_CLK_HI_MASK) <<
401             SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402                                            SPI_FLASH_CTRL_CLK_LO_MASK) <<
403             SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404                                            SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405             SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406                                             SPI_FLASH_CTRL_CS_HI_MASK) <<
407             SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408             SPI_FLASH_CTRL_INS_SHIFT;
409
410         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412         value |= SPI_FLASH_CTRL_START;
413         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414         ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416         for (i = 0; i < 10; i++) {
417                 msleep(1);
418                 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419                 if (!(value & SPI_FLASH_CTRL_START))
420                         break;
421         }
422
423         if (value & SPI_FLASH_CTRL_START)
424                 return false;
425
426         *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428         return true;
429 }
430
431 /*
432  * get_permanent_address
433  * return 0 if get valid mac address,
434  */
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437         u32 addr[2];
438         u32 i, control;
439         u16 reg;
440         u8 eth_addr[ETH_ALEN];
441         bool key_valid;
442
443         if (is_valid_ether_addr(hw->perm_mac_addr))
444                 return 0;
445
446         /* init */
447         addr[0] = addr[1] = 0;
448
449         if (!atl1_check_eeprom_exist(hw)) {
450                 reg = 0;
451                 key_valid = false;
452                 /* Read out all EEPROM content */
453                 i = 0;
454                 while (1) {
455                         if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456                                 if (key_valid) {
457                                         if (reg == REG_MAC_STA_ADDR)
458                                                 addr[0] = control;
459                                         else if (reg == (REG_MAC_STA_ADDR + 4))
460                                                 addr[1] = control;
461                                         key_valid = false;
462                                 } else if ((control & 0xff) == 0x5A) {
463                                         key_valid = true;
464                                         reg = (u16) (control >> 16);
465                                 } else
466                                         break;
467                         } else
468                                 /* read error */
469                                 break;
470                         i += 4;
471                 }
472
473                 *(u32 *) &eth_addr[2] = swab32(addr[0]);
474                 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475                 if (is_valid_ether_addr(eth_addr)) {
476                         memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477                         return 0;
478                 }
479         }
480
481         /* see if SPI FLAGS exist ? */
482         addr[0] = addr[1] = 0;
483         reg = 0;
484         key_valid = false;
485         i = 0;
486         while (1) {
487                 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488                         if (key_valid) {
489                                 if (reg == REG_MAC_STA_ADDR)
490                                         addr[0] = control;
491                                 else if (reg == (REG_MAC_STA_ADDR + 4))
492                                         addr[1] = control;
493                                 key_valid = false;
494                         } else if ((control & 0xff) == 0x5A) {
495                                 key_valid = true;
496                                 reg = (u16) (control >> 16);
497                         } else
498                                 /* data end */
499                                 break;
500                 } else
501                         /* read error */
502                         break;
503                 i += 4;
504         }
505
506         *(u32 *) &eth_addr[2] = swab32(addr[0]);
507         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508         if (is_valid_ether_addr(eth_addr)) {
509                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510                 return 0;
511         }
512
513         /*
514          * On some motherboards, the MAC address is written by the
515          * BIOS directly to the MAC register during POST, and is
516          * not stored in eeprom.  If all else thus far has failed
517          * to fetch the permanent MAC address, try reading it directly.
518          */
519         addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520         addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521         *(u32 *) &eth_addr[2] = swab32(addr[0]);
522         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523         if (is_valid_ether_addr(eth_addr)) {
524                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525                 return 0;
526         }
527
528         return 1;
529 }
530
531 /*
532  * Reads the adapter's MAC address from the EEPROM
533  * hw - Struct containing variables accessed by shared code
534  */
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537         s32 ret = 0;
538         u16 i;
539
540         if (atl1_get_permanent_address(hw)) {
541                 eth_random_addr(hw->perm_mac_addr);
542                 ret = 1;
543         }
544
545         for (i = 0; i < ETH_ALEN; i++)
546                 hw->mac_addr[i] = hw->perm_mac_addr[i];
547         return ret;
548 }
549
550 /*
551  * Hashes an address to determine its location in the multicast table
552  * hw - Struct containing variables accessed by shared code
553  * mc_addr - the multicast address to hash
554  *
555  * atl1_hash_mc_addr
556  *  purpose
557  *      set hash value for a multicast address
558  *      hash calcu processing :
559  *          1. calcu 32bit CRC for multicast address
560  *          2. reverse crc with MSB to LSB
561  */
562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563 {
564         u32 crc32, value = 0;
565         int i;
566
567         crc32 = ether_crc_le(6, mc_addr);
568         for (i = 0; i < 32; i++)
569                 value |= (((crc32 >> i) & 1) << (31 - i));
570
571         return value;
572 }
573
574 /*
575  * Sets the bit in the multicast table corresponding to the hash value.
576  * hw - Struct containing variables accessed by shared code
577  * hash_value - Multicast address hash value
578  */
579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580 {
581         u32 hash_bit, hash_reg;
582         u32 mta;
583
584         /*
585          * The HASH Table  is a register array of 2 32-bit registers.
586          * It is treated like an array of 64 bits.  We want to set
587          * bit BitArray[hash_value]. So we figure out what register
588          * the bit is in, read it, OR in the new bit, then write
589          * back the new value.  The register is determined by the
590          * upper 7 bits of the hash value and the bit within that
591          * register are determined by the lower 5 bits of the value.
592          */
593         hash_reg = (hash_value >> 31) & 0x1;
594         hash_bit = (hash_value >> 26) & 0x1F;
595         mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596         mta |= (1 << hash_bit);
597         iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598 }
599
600 /*
601  * Writes a value to a PHY register
602  * hw - Struct containing variables accessed by shared code
603  * reg_addr - address of the PHY register to write
604  * data - data to write to the PHY
605  */
606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607 {
608         int i;
609         u32 val;
610
611         val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612             (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613             MDIO_SUP_PREAMBLE |
614             MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616         ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619                 udelay(2);
620                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621                 if (!(val & (MDIO_START | MDIO_BUSY)))
622                         break;
623         }
624
625         if (!(val & (MDIO_START | MDIO_BUSY)))
626                 return 0;
627
628         return ATLX_ERR_PHY;
629 }
630
631 /*
632  * Make L001's PHY out of Power Saving State (bug)
633  * hw - Struct containing variables accessed by shared code
634  * when power on, L001's PHY always on Power saving State
635  * (Gigabit Link forbidden)
636  */
637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638 {
639         s32 ret;
640         ret = atl1_write_phy_reg(hw, 29, 0x0029);
641         if (ret)
642                 return ret;
643         return atl1_write_phy_reg(hw, 30, 0);
644 }
645
646 /*
647  * Resets the PHY and make all config validate
648  * hw - Struct containing variables accessed by shared code
649  *
650  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651  */
652 static s32 atl1_phy_reset(struct atl1_hw *hw)
653 {
654         struct pci_dev *pdev = hw->back->pdev;
655         struct atl1_adapter *adapter = hw->back;
656         s32 ret_val;
657         u16 phy_data;
658
659         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660             hw->media_type == MEDIA_TYPE_1000M_FULL)
661                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662         else {
663                 switch (hw->media_type) {
664                 case MEDIA_TYPE_100M_FULL:
665                         phy_data =
666                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667                             MII_CR_RESET;
668                         break;
669                 case MEDIA_TYPE_100M_HALF:
670                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671                         break;
672                 case MEDIA_TYPE_10M_FULL:
673                         phy_data =
674                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675                         break;
676                 default:
677                         /* MEDIA_TYPE_10M_HALF: */
678                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679                         break;
680                 }
681         }
682
683         ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684         if (ret_val) {
685                 u32 val;
686                 int i;
687                 /* pcie serdes link may be down! */
688                 if (netif_msg_hw(adapter))
689                         dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691                 for (i = 0; i < 25; i++) {
692                         msleep(1);
693                         val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694                         if (!(val & (MDIO_START | MDIO_BUSY)))
695                                 break;
696                 }
697
698                 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699                         if (netif_msg_hw(adapter))
700                                 dev_warn(&pdev->dev,
701                                         "pcie link down at least 25ms\n");
702                         return ret_val;
703                 }
704         }
705         return 0;
706 }
707
708 /*
709  * Configures PHY autoneg and flow control advertisement settings
710  * hw - Struct containing variables accessed by shared code
711  */
712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713 {
714         s32 ret_val;
715         s16 mii_autoneg_adv_reg;
716         s16 mii_1000t_ctrl_reg;
717
718         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
719         mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721         /* Read the MII 1000Base-T Control Register (Address 9). */
722         mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724         /*
725          * First we clear all the 10/100 mb speed bits in the Auto-Neg
726          * Advertisement Register (Address 4) and the 1000 mb speed bits in
727          * the  1000Base-T Control Register (Address 9).
728          */
729         mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730         mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732         /*
733          * Need to parse media_type  and set up
734          * the appropriate PHY registers.
735          */
736         switch (hw->media_type) {
737         case MEDIA_TYPE_AUTO_SENSOR:
738                 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739                                         MII_AR_10T_FD_CAPS |
740                                         MII_AR_100TX_HD_CAPS |
741                                         MII_AR_100TX_FD_CAPS);
742                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743                 break;
744
745         case MEDIA_TYPE_1000M_FULL:
746                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747                 break;
748
749         case MEDIA_TYPE_100M_FULL:
750                 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751                 break;
752
753         case MEDIA_TYPE_100M_HALF:
754                 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755                 break;
756
757         case MEDIA_TYPE_10M_FULL:
758                 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759                 break;
760
761         default:
762                 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763                 break;
764         }
765
766         /* flow control fixed to enable all */
767         mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769         hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770         hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772         ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773         if (ret_val)
774                 return ret_val;
775
776         ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777         if (ret_val)
778                 return ret_val;
779
780         return 0;
781 }
782
783 /*
784  * Configures link settings.
785  * hw - Struct containing variables accessed by shared code
786  * Assumes the hardware has previously been reset and the
787  * transmitter and receiver are not enabled.
788  */
789 static s32 atl1_setup_link(struct atl1_hw *hw)
790 {
791         struct pci_dev *pdev = hw->back->pdev;
792         struct atl1_adapter *adapter = hw->back;
793         s32 ret_val;
794
795         /*
796          * Options:
797          *  PHY will advertise value(s) parsed from
798          *  autoneg_advertised and fc
799          *  no matter what autoneg is , We will not wait link result.
800          */
801         ret_val = atl1_phy_setup_autoneg_adv(hw);
802         if (ret_val) {
803                 if (netif_msg_link(adapter))
804                         dev_dbg(&pdev->dev,
805                                 "error setting up autonegotiation\n");
806                 return ret_val;
807         }
808         /* SW.Reset , En-Auto-Neg if needed */
809         ret_val = atl1_phy_reset(hw);
810         if (ret_val) {
811                 if (netif_msg_link(adapter))
812                         dev_dbg(&pdev->dev, "error resetting phy\n");
813                 return ret_val;
814         }
815         hw->phy_configured = true;
816         return ret_val;
817 }
818
819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
820 {
821         if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822                 /* Atmel */
823                 hw->flash_vendor = 0;
824
825         /* Init OP table */
826         iowrite8(flash_table[hw->flash_vendor].cmd_program,
827                 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828         iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829                 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830         iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831                 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832         iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833                 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834         iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835                 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836         iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837                 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838         iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839                 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840         iowrite8(flash_table[hw->flash_vendor].cmd_read,
841                 hw->hw_addr + REG_SPI_FLASH_OP_READ);
842 }
843
844 /*
845  * Performs basic configuration of the adapter.
846  * hw - Struct containing variables accessed by shared code
847  * Assumes that the controller has previously been reset and is in a
848  * post-reset uninitialized state. Initializes multicast table,
849  * and  Calls routines to setup link
850  * Leaves the transmit and receive units disabled and uninitialized.
851  */
852 static s32 atl1_init_hw(struct atl1_hw *hw)
853 {
854         u32 ret_val = 0;
855
856         /* Zero out the Multicast HASH table */
857         iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858         /* clear the old settings from the multicast hash table */
859         iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861         atl1_init_flash_opcode(hw);
862
863         if (!hw->phy_configured) {
864                 /* enable GPHY LinkChange Interrupt */
865                 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866                 if (ret_val)
867                         return ret_val;
868                 /* make PHY out of power-saving state */
869                 ret_val = atl1_phy_leave_power_saving(hw);
870                 if (ret_val)
871                         return ret_val;
872                 /* Call a subroutine to configure the link */
873                 ret_val = atl1_setup_link(hw);
874         }
875         return ret_val;
876 }
877
878 /*
879  * Detects the current speed and duplex settings of the hardware.
880  * hw - Struct containing variables accessed by shared code
881  * speed - Speed of the connection
882  * duplex - Duplex setting of the connection
883  */
884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885 {
886         struct pci_dev *pdev = hw->back->pdev;
887         struct atl1_adapter *adapter = hw->back;
888         s32 ret_val;
889         u16 phy_data;
890
891         /* ; --- Read   PHY Specific Status Register (17) */
892         ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893         if (ret_val)
894                 return ret_val;
895
896         if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897                 return ATLX_ERR_PHY_RES;
898
899         switch (phy_data & MII_ATLX_PSSR_SPEED) {
900         case MII_ATLX_PSSR_1000MBS:
901                 *speed = SPEED_1000;
902                 break;
903         case MII_ATLX_PSSR_100MBS:
904                 *speed = SPEED_100;
905                 break;
906         case MII_ATLX_PSSR_10MBS:
907                 *speed = SPEED_10;
908                 break;
909         default:
910                 if (netif_msg_hw(adapter))
911                         dev_dbg(&pdev->dev, "error getting speed\n");
912                 return ATLX_ERR_PHY_SPEED;
913         }
914         if (phy_data & MII_ATLX_PSSR_DPLX)
915                 *duplex = FULL_DUPLEX;
916         else
917                 *duplex = HALF_DUPLEX;
918
919         return 0;
920 }
921
922 static void atl1_set_mac_addr(struct atl1_hw *hw)
923 {
924         u32 value;
925         /*
926          * 00-0B-6A-F6-00-DC
927          * 0:  6AF600DC   1: 000B
928          * low dword
929          */
930         value = (((u32) hw->mac_addr[2]) << 24) |
931             (((u32) hw->mac_addr[3]) << 16) |
932             (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
933         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
934         /* high dword */
935         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
936         iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
937 }
938
939 /**
940  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
941  * @adapter: board private structure to initialize
942  *
943  * atl1_sw_init initializes the Adapter private data structure.
944  * Fields are initialized based on PCI device information and
945  * OS network device settings (MTU size).
946  */
947 static int atl1_sw_init(struct atl1_adapter *adapter)
948 {
949         struct atl1_hw *hw = &adapter->hw;
950         struct net_device *netdev = adapter->netdev;
951
952         hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
953         hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
954
955         adapter->wol = 0;
956         device_set_wakeup_enable(&adapter->pdev->dev, false);
957         adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
958         adapter->ict = 50000;           /* 100ms */
959         adapter->link_speed = SPEED_0;  /* hardware init */
960         adapter->link_duplex = FULL_DUPLEX;
961
962         hw->phy_configured = false;
963         hw->preamble_len = 7;
964         hw->ipgt = 0x60;
965         hw->min_ifg = 0x50;
966         hw->ipgr1 = 0x40;
967         hw->ipgr2 = 0x60;
968         hw->max_retry = 0xf;
969         hw->lcol = 0x37;
970         hw->jam_ipg = 7;
971         hw->rfd_burst = 8;
972         hw->rrd_burst = 8;
973         hw->rfd_fetch_gap = 1;
974         hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
975         hw->rx_jumbo_lkah = 1;
976         hw->rrd_ret_timer = 16;
977         hw->tpd_burst = 4;
978         hw->tpd_fetch_th = 16;
979         hw->txf_burst = 0x100;
980         hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
981         hw->tpd_fetch_gap = 1;
982         hw->rcb_value = atl1_rcb_64;
983         hw->dma_ord = atl1_dma_ord_enh;
984         hw->dmar_block = atl1_dma_req_256;
985         hw->dmaw_block = atl1_dma_req_256;
986         hw->cmb_rrd = 4;
987         hw->cmb_tpd = 4;
988         hw->cmb_rx_timer = 1;   /* about 2us */
989         hw->cmb_tx_timer = 1;   /* about 2us */
990         hw->smb_timer = 100000; /* about 200ms */
991
992         spin_lock_init(&adapter->lock);
993         spin_lock_init(&adapter->mb_lock);
994
995         return 0;
996 }
997
998 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
999 {
1000         struct atl1_adapter *adapter = netdev_priv(netdev);
1001         u16 result;
1002
1003         atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004
1005         return result;
1006 }
1007
1008 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009         int val)
1010 {
1011         struct atl1_adapter *adapter = netdev_priv(netdev);
1012
1013         atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014 }
1015
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018         struct atl1_adapter *adapter = netdev_priv(netdev);
1019         unsigned long flags;
1020         int retval;
1021
1022         if (!netif_running(netdev))
1023                 return -EINVAL;
1024
1025         spin_lock_irqsave(&adapter->lock, flags);
1026         retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027         spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029         return retval;
1030 }
1031
1032 /**
1033  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034  * @adapter: board private structure
1035  *
1036  * Return 0 on success, negative on failure
1037  */
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043         struct atl1_ring_header *ring_header = &adapter->ring_header;
1044         struct pci_dev *pdev = adapter->pdev;
1045         int size;
1046         u8 offset = 0;
1047
1048         size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049         tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050         if (unlikely(!tpd_ring->buffer_info)) {
1051                 if (netif_msg_drv(adapter))
1052                         dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053                                 size);
1054                 goto err_nomem;
1055         }
1056         rfd_ring->buffer_info =
1057                 (tpd_ring->buffer_info + tpd_ring->count);
1058
1059         /*
1060          * real ring DMA buffer
1061          * each ring/block may need up to 8 bytes for alignment, hence the
1062          * additional 40 bytes tacked onto the end.
1063          */
1064         ring_header->size = size =
1065                 sizeof(struct tx_packet_desc) * tpd_ring->count
1066                 + sizeof(struct rx_free_desc) * rfd_ring->count
1067                 + sizeof(struct rx_return_desc) * rrd_ring->count
1068                 + sizeof(struct coals_msg_block)
1069                 + sizeof(struct stats_msg_block)
1070                 + 40;
1071
1072         ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073                 &ring_header->dma);
1074         if (unlikely(!ring_header->desc)) {
1075                 if (netif_msg_drv(adapter))
1076                         dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077                 goto err_nomem;
1078         }
1079
1080         memset(ring_header->desc, 0, ring_header->size);
1081
1082         /* init TPD ring */
1083         tpd_ring->dma = ring_header->dma;
1084         offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085         tpd_ring->dma += offset;
1086         tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087         tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089         /* init RFD ring */
1090         rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091         offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092         rfd_ring->dma += offset;
1093         rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094         rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097         /* init RRD ring */
1098         rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099         offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100         rrd_ring->dma += offset;
1101         rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102         rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105         /* init CMB */
1106         adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107         offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108         adapter->cmb.dma += offset;
1109         adapter->cmb.cmb = (struct coals_msg_block *)
1110                 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112         /* init SMB */
1113         adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114         offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115         adapter->smb.dma += offset;
1116         adapter->smb.smb = (struct stats_msg_block *)
1117                 ((u8 *) adapter->cmb.cmb +
1118                 (sizeof(struct coals_msg_block) + offset));
1119
1120         return 0;
1121
1122 err_nomem:
1123         kfree(tpd_ring->buffer_info);
1124         return -ENOMEM;
1125 }
1126
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133         atomic_set(&tpd_ring->next_to_use, 0);
1134         atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136         rfd_ring->next_to_clean = 0;
1137         atomic_set(&rfd_ring->next_to_use, 0);
1138
1139         rrd_ring->next_to_use = 0;
1140         atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142
1143 /**
1144  * atl1_clean_rx_ring - Free RFD Buffers
1145  * @adapter: board private structure
1146  */
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151         struct atl1_buffer *buffer_info;
1152         struct pci_dev *pdev = adapter->pdev;
1153         unsigned long size;
1154         unsigned int i;
1155
1156         /* Free all the Rx ring sk_buffs */
1157         for (i = 0; i < rfd_ring->count; i++) {
1158                 buffer_info = &rfd_ring->buffer_info[i];
1159                 if (buffer_info->dma) {
1160                         pci_unmap_page(pdev, buffer_info->dma,
1161                                 buffer_info->length, PCI_DMA_FROMDEVICE);
1162                         buffer_info->dma = 0;
1163                 }
1164                 if (buffer_info->skb) {
1165                         dev_kfree_skb(buffer_info->skb);
1166                         buffer_info->skb = NULL;
1167                 }
1168         }
1169
1170         size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171         memset(rfd_ring->buffer_info, 0, size);
1172
1173         /* Zero out the descriptor ring */
1174         memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176         rfd_ring->next_to_clean = 0;
1177         atomic_set(&rfd_ring->next_to_use, 0);
1178
1179         rrd_ring->next_to_use = 0;
1180         atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182
1183 /**
1184  * atl1_clean_tx_ring - Free Tx Buffers
1185  * @adapter: board private structure
1186  */
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190         struct atl1_buffer *buffer_info;
1191         struct pci_dev *pdev = adapter->pdev;
1192         unsigned long size;
1193         unsigned int i;
1194
1195         /* Free all the Tx ring sk_buffs */
1196         for (i = 0; i < tpd_ring->count; i++) {
1197                 buffer_info = &tpd_ring->buffer_info[i];
1198                 if (buffer_info->dma) {
1199                         pci_unmap_page(pdev, buffer_info->dma,
1200                                 buffer_info->length, PCI_DMA_TODEVICE);
1201                         buffer_info->dma = 0;
1202                 }
1203         }
1204
1205         for (i = 0; i < tpd_ring->count; i++) {
1206                 buffer_info = &tpd_ring->buffer_info[i];
1207                 if (buffer_info->skb) {
1208                         dev_kfree_skb_any(buffer_info->skb);
1209                         buffer_info->skb = NULL;
1210                 }
1211         }
1212
1213         size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214         memset(tpd_ring->buffer_info, 0, size);
1215
1216         /* Zero out the descriptor ring */
1217         memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219         atomic_set(&tpd_ring->next_to_use, 0);
1220         atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222
1223 /**
1224  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225  * @adapter: board private structure
1226  *
1227  * Free all transmit software resources
1228  */
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231         struct pci_dev *pdev = adapter->pdev;
1232         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235         struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237         atl1_clean_tx_ring(adapter);
1238         atl1_clean_rx_ring(adapter);
1239
1240         kfree(tpd_ring->buffer_info);
1241         pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242                 ring_header->dma);
1243
1244         tpd_ring->buffer_info = NULL;
1245         tpd_ring->desc = NULL;
1246         tpd_ring->dma = 0;
1247
1248         rfd_ring->buffer_info = NULL;
1249         rfd_ring->desc = NULL;
1250         rfd_ring->dma = 0;
1251
1252         rrd_ring->desc = NULL;
1253         rrd_ring->dma = 0;
1254
1255         adapter->cmb.dma = 0;
1256         adapter->cmb.cmb = NULL;
1257
1258         adapter->smb.dma = 0;
1259         adapter->smb.smb = NULL;
1260 }
1261
1262 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263 {
1264         u32 value;
1265         struct atl1_hw *hw = &adapter->hw;
1266         struct net_device *netdev = adapter->netdev;
1267         /* Config MAC CTRL Register */
1268         value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269         /* duplex */
1270         if (FULL_DUPLEX == adapter->link_duplex)
1271                 value |= MAC_CTRL_DUPLX;
1272         /* speed */
1273         value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274                          MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275                   MAC_CTRL_SPEED_SHIFT);
1276         /* flow control */
1277         value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278         /* PAD & CRC */
1279         value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280         /* preamble length */
1281         value |= (((u32) adapter->hw.preamble_len
1282                    & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283         /* vlan */
1284         __atlx_vlan_mode(netdev->features, &value);
1285         /* rx checksum
1286            if (adapter->rx_csum)
1287            value |= MAC_CTRL_RX_CHKSUM_EN;
1288          */
1289         /* filter mode */
1290         value |= MAC_CTRL_BC_EN;
1291         if (netdev->flags & IFF_PROMISC)
1292                 value |= MAC_CTRL_PROMIS_EN;
1293         else if (netdev->flags & IFF_ALLMULTI)
1294                 value |= MAC_CTRL_MC_ALL_EN;
1295         /* value |= MAC_CTRL_LOOPBACK; */
1296         iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297 }
1298
1299 static u32 atl1_check_link(struct atl1_adapter *adapter)
1300 {
1301         struct atl1_hw *hw = &adapter->hw;
1302         struct net_device *netdev = adapter->netdev;
1303         u32 ret_val;
1304         u16 speed, duplex, phy_data;
1305         int reconfig = 0;
1306
1307         /* MII_BMSR must read twice */
1308         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310         if (!(phy_data & BMSR_LSTATUS)) {
1311                 /* link down */
1312                 if (netif_carrier_ok(netdev)) {
1313                         /* old link state: Up */
1314                         if (netif_msg_link(adapter))
1315                                 dev_info(&adapter->pdev->dev, "link is down\n");
1316                         adapter->link_speed = SPEED_0;
1317                         netif_carrier_off(netdev);
1318                 }
1319                 return 0;
1320         }
1321
1322         /* Link Up */
1323         ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324         if (ret_val)
1325                 return ret_val;
1326
1327         switch (hw->media_type) {
1328         case MEDIA_TYPE_1000M_FULL:
1329                 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330                         reconfig = 1;
1331                 break;
1332         case MEDIA_TYPE_100M_FULL:
1333                 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334                         reconfig = 1;
1335                 break;
1336         case MEDIA_TYPE_100M_HALF:
1337                 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338                         reconfig = 1;
1339                 break;
1340         case MEDIA_TYPE_10M_FULL:
1341                 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342                         reconfig = 1;
1343                 break;
1344         case MEDIA_TYPE_10M_HALF:
1345                 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346                         reconfig = 1;
1347                 break;
1348         }
1349
1350         /* link result is our setting */
1351         if (!reconfig) {
1352                 if (adapter->link_speed != speed ||
1353                     adapter->link_duplex != duplex) {
1354                         adapter->link_speed = speed;
1355                         adapter->link_duplex = duplex;
1356                         atl1_setup_mac_ctrl(adapter);
1357                         if (netif_msg_link(adapter))
1358                                 dev_info(&adapter->pdev->dev,
1359                                         "%s link is up %d Mbps %s\n",
1360                                         netdev->name, adapter->link_speed,
1361                                         adapter->link_duplex == FULL_DUPLEX ?
1362                                         "full duplex" : "half duplex");
1363                 }
1364                 if (!netif_carrier_ok(netdev)) {
1365                         /* Link down -> Up */
1366                         netif_carrier_on(netdev);
1367                 }
1368                 return 0;
1369         }
1370
1371         /* change original link status */
1372         if (netif_carrier_ok(netdev)) {
1373                 adapter->link_speed = SPEED_0;
1374                 netif_carrier_off(netdev);
1375                 netif_stop_queue(netdev);
1376         }
1377
1378         if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379             hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380                 switch (hw->media_type) {
1381                 case MEDIA_TYPE_100M_FULL:
1382                         phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383                                    MII_CR_RESET;
1384                         break;
1385                 case MEDIA_TYPE_100M_HALF:
1386                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387                         break;
1388                 case MEDIA_TYPE_10M_FULL:
1389                         phy_data =
1390                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391                         break;
1392                 default:
1393                         /* MEDIA_TYPE_10M_HALF: */
1394                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395                         break;
1396                 }
1397                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398                 return 0;
1399         }
1400
1401         /* auto-neg, insert timer to re-config phy */
1402         if (!adapter->phy_timer_pending) {
1403                 adapter->phy_timer_pending = true;
1404                 mod_timer(&adapter->phy_config_timer,
1405                           round_jiffies(jiffies + 3 * HZ));
1406         }
1407
1408         return 0;
1409 }
1410
1411 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412 {
1413         u32 hi, lo, value;
1414
1415         /* RFD Flow Control */
1416         value = adapter->rfd_ring.count;
1417         hi = value / 16;
1418         if (hi < 2)
1419                 hi = 2;
1420         lo = value * 7 / 8;
1421
1422         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426         /* RRD Flow Control */
1427         value = adapter->rrd_ring.count;
1428         lo = value / 16;
1429         hi = value * 7 / 8;
1430         if (lo < 2)
1431                 lo = 2;
1432         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435 }
1436
1437 static void set_flow_ctrl_new(struct atl1_hw *hw)
1438 {
1439         u32 hi, lo, value;
1440
1441         /* RXF Flow Control */
1442         value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443         lo = value / 16;
1444         if (lo < 192)
1445                 lo = 192;
1446         hi = value * 7 / 8;
1447         if (hi < lo)
1448                 hi = lo + 16;
1449         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451         iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453         /* RRD Flow Control */
1454         value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455         lo = value / 8;
1456         hi = value * 7 / 8;
1457         if (lo < 2)
1458                 lo = 2;
1459         if (hi < lo)
1460                 hi = lo + 3;
1461         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463         iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464 }
1465
1466 /**
1467  * atl1_configure - Configure Transmit&Receive Unit after Reset
1468  * @adapter: board private structure
1469  *
1470  * Configure the Tx /Rx unit of the MAC after a reset.
1471  */
1472 static u32 atl1_configure(struct atl1_adapter *adapter)
1473 {
1474         struct atl1_hw *hw = &adapter->hw;
1475         u32 value;
1476
1477         /* clear interrupt status */
1478         iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480         /* set MAC Address */
1481         value = (((u32) hw->mac_addr[2]) << 24) |
1482                 (((u32) hw->mac_addr[3]) << 16) |
1483                 (((u32) hw->mac_addr[4]) << 8) |
1484                 (((u32) hw->mac_addr[5]));
1485         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487         iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489         /* tx / rx ring */
1490
1491         /* HI base address */
1492         iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493                 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494         /* LO base address */
1495         iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496                 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497         iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498                 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499         iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500                 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501         iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502                 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503         iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504                 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506         /* element count */
1507         value = adapter->rrd_ring.count;
1508         value <<= 16;
1509         value += adapter->rfd_ring.count;
1510         iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511         iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512                 REG_DESC_TPD_RING_SIZE);
1513
1514         /* Load Ptr */
1515         iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517         /* config Mailbox */
1518         value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519                   & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520                 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1521                 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522                 ((atomic_read(&adapter->rfd_ring.next_to_use)
1523                 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524         iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526         /* config IPG/IFG */
1527         value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528                  << MAC_IPG_IFG_IPGT_SHIFT) |
1529                 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530                 << MAC_IPG_IFG_MIFG_SHIFT) |
1531                 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532                 << MAC_IPG_IFG_IPGR1_SHIFT) |
1533                 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534                 << MAC_IPG_IFG_IPGR2_SHIFT);
1535         iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537         /* config  Half-Duplex Control */
1538         value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539                 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540                 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541                 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542                 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543                 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544                 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545         iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547         /* set Interrupt Moderator Timer */
1548         iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549         iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551         /* set Interrupt Clear Timer */
1552         iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554         /* set max frame size hw will accept */
1555         iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557         /* jumbo size & rrd retirement timer */
1558         value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559                  << RXQ_JMBOSZ_TH_SHIFT) |
1560                 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561                 << RXQ_JMBO_LKAH_SHIFT) |
1562                 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563                 << RXQ_RRD_TIMER_SHIFT);
1564         iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566         /* Flow Control */
1567         switch (hw->dev_rev) {
1568         case 0x8001:
1569         case 0x9001:
1570         case 0x9002:
1571         case 0x9003:
1572                 set_flow_ctrl_old(adapter);
1573                 break;
1574         default:
1575                 set_flow_ctrl_new(hw);
1576                 break;
1577         }
1578
1579         /* config TXQ */
1580         value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581                  << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582                 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583                 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584                 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585                 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586                 TXQ_CTRL_EN;
1587         iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589         /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590         value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591                 << TX_JUMBO_TASK_TH_SHIFT) |
1592                 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593                 << TX_TPD_MIN_IPG_SHIFT);
1594         iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596         /* config RXQ */
1597         value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598                 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599                 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600                 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601                 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602                 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603                 RXQ_CTRL_EN;
1604         iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606         /* config DMA Engine */
1607         value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608                 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609                 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610                 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611                 DMA_CTRL_DMAW_EN;
1612         value |= (u32) hw->dma_ord;
1613         if (atl1_rcb_128 == hw->rcb_value)
1614                 value |= DMA_CTRL_RCB_VALUE;
1615         iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617         /* config CMB / SMB */
1618         value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619                 hw->cmb_tpd : adapter->tpd_ring.count;
1620         value <<= 16;
1621         value |= hw->cmb_rrd;
1622         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623         value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625         iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627         /* --- enable CMB / SMB */
1628         value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629         iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631         value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632         if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633                 value = 1;      /* config failed */
1634         else
1635                 value = 0;
1636
1637         /* clear all interrupt status */
1638         iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639         iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640         return value;
1641 }
1642
1643 /*
1644  * atl1_pcie_patch - Patch for PCIE module
1645  */
1646 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647 {
1648         u32 value;
1649
1650         /* much vendor magic here */
1651         value = 0x6500;
1652         iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653         /* pcie flow control mode change */
1654         value = ioread32(adapter->hw.hw_addr + 0x1008);
1655         value |= 0x8000;
1656         iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657 }
1658
1659 /*
1660  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661  * on PCI Command register is disable.
1662  * The function enable this bit.
1663  * Brackett, 2006/03/15
1664  */
1665 static void atl1_via_workaround(struct atl1_adapter *adapter)
1666 {
1667         unsigned long value;
1668
1669         value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670         if (value & PCI_COMMAND_INTX_DISABLE)
1671                 value &= ~PCI_COMMAND_INTX_DISABLE;
1672         iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673 }
1674
1675 static void atl1_inc_smb(struct atl1_adapter *adapter)
1676 {
1677         struct net_device *netdev = adapter->netdev;
1678         struct stats_msg_block *smb = adapter->smb.smb;
1679
1680         u64 new_rx_errors = smb->rx_frag +
1681                             smb->rx_fcs_err +
1682                             smb->rx_len_err +
1683                             smb->rx_sz_ov +
1684                             smb->rx_rxf_ov +
1685                             smb->rx_rrd_ov +
1686                             smb->rx_align_err;
1687         u64 new_tx_errors = smb->tx_late_col +
1688                             smb->tx_abort_col +
1689                             smb->tx_underrun +
1690                             smb->tx_trunc;
1691
1692         /* Fill out the OS statistics structure */
1693         adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694         adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695         adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696         adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697         adapter->soft_stats.multicast += smb->rx_mcast;
1698         adapter->soft_stats.collisions += smb->tx_1_col +
1699                                           smb->tx_2_col +
1700                                           smb->tx_late_col +
1701                                           smb->tx_abort_col;
1702
1703         /* Rx Errors */
1704         adapter->soft_stats.rx_errors += new_rx_errors;
1705         adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706         adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707         adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708         adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709
1710         adapter->soft_stats.rx_pause += smb->rx_pause;
1711         adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712         adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714         /* Tx Errors */
1715         adapter->soft_stats.tx_errors += new_tx_errors;
1716         adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717         adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718         adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719
1720         adapter->soft_stats.excecol += smb->tx_abort_col;
1721         adapter->soft_stats.deffer += smb->tx_defer;
1722         adapter->soft_stats.scc += smb->tx_1_col;
1723         adapter->soft_stats.mcc += smb->tx_2_col;
1724         adapter->soft_stats.latecol += smb->tx_late_col;
1725         adapter->soft_stats.tx_underun += smb->tx_underrun;
1726         adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727         adapter->soft_stats.tx_pause += smb->tx_pause;
1728
1729         netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730         netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731         netdev->stats.multicast = adapter->soft_stats.multicast;
1732         netdev->stats.collisions = adapter->soft_stats.collisions;
1733         netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734         netdev->stats.rx_length_errors =
1735                 adapter->soft_stats.rx_length_errors;
1736         netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737         netdev->stats.rx_frame_errors =
1738                 adapter->soft_stats.rx_frame_errors;
1739         netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740         netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741         netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742         netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743         netdev->stats.tx_aborted_errors =
1744                 adapter->soft_stats.tx_aborted_errors;
1745         netdev->stats.tx_window_errors =
1746                 adapter->soft_stats.tx_window_errors;
1747         netdev->stats.tx_carrier_errors =
1748                 adapter->soft_stats.tx_carrier_errors;
1749
1750         netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751         netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752 }
1753
1754 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755 {
1756         unsigned long flags;
1757         u32 tpd_next_to_use;
1758         u32 rfd_next_to_use;
1759         u32 rrd_next_to_clean;
1760         u32 value;
1761
1762         spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764         tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765         rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766         rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768         value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769                 MB_RFD_PROD_INDX_SHIFT) |
1770                 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771                 MB_RRD_CONS_INDX_SHIFT) |
1772                 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773                 MB_TPD_PROD_INDX_SHIFT);
1774         iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776         spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777 }
1778
1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780         struct rx_return_desc *rrd, u16 offset)
1781 {
1782         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784         while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785                 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786                 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787                         rfd_ring->next_to_clean = 0;
1788                 }
1789         }
1790 }
1791
1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793         struct rx_return_desc *rrd)
1794 {
1795         u16 num_buf;
1796
1797         num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798                 adapter->rx_buffer_len;
1799         if (rrd->num_buf == num_buf)
1800                 /* clean alloc flag for bad rrd */
1801                 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802 }
1803
1804 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805         struct rx_return_desc *rrd, struct sk_buff *skb)
1806 {
1807         struct pci_dev *pdev = adapter->pdev;
1808
1809         /*
1810          * The L1 hardware contains a bug that erroneously sets the
1811          * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812          * fragmented IP packet is received, even though the packet
1813          * is perfectly valid and its checksum is correct. There's
1814          * no way to distinguish between one of these good packets
1815          * and a packet that actually contains a TCP/UDP checksum
1816          * error, so all we can do is allow it to be handed up to
1817          * the higher layers and let it be sorted out there.
1818          */
1819
1820         skb_checksum_none_assert(skb);
1821
1822         if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823                 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824                                         ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825                         adapter->hw_csum_err++;
1826                         if (netif_msg_rx_err(adapter))
1827                                 dev_printk(KERN_DEBUG, &pdev->dev,
1828                                         "rx checksum error\n");
1829                         return;
1830                 }
1831         }
1832
1833         /* not IPv4 */
1834         if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835                 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836                 return;
1837
1838         /* IPv4 packet */
1839         if (likely(!(rrd->err_flg &
1840                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1842                 adapter->hw_csum_good++;
1843                 return;
1844         }
1845 }
1846
1847 /**
1848  * atl1_alloc_rx_buffers - Replace used receive buffers
1849  * @adapter: address of board private structure
1850  */
1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852 {
1853         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854         struct pci_dev *pdev = adapter->pdev;
1855         struct page *page;
1856         unsigned long offset;
1857         struct atl1_buffer *buffer_info, *next_info;
1858         struct sk_buff *skb;
1859         u16 num_alloc = 0;
1860         u16 rfd_next_to_use, next_next;
1861         struct rx_free_desc *rfd_desc;
1862
1863         next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864         if (++next_next == rfd_ring->count)
1865                 next_next = 0;
1866         buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867         next_info = &rfd_ring->buffer_info[next_next];
1868
1869         while (!buffer_info->alloced && !next_info->alloced) {
1870                 if (buffer_info->skb) {
1871                         buffer_info->alloced = 1;
1872                         goto next;
1873                 }
1874
1875                 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877                 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878                                                 adapter->rx_buffer_len);
1879                 if (unlikely(!skb)) {
1880                         /* Better luck next round */
1881                         adapter->soft_stats.rx_dropped++;
1882                         break;
1883                 }
1884
1885                 buffer_info->alloced = 1;
1886                 buffer_info->skb = skb;
1887                 buffer_info->length = (u16) adapter->rx_buffer_len;
1888                 page = virt_to_page(skb->data);
1889                 offset = offset_in_page(skb->data);
1890                 buffer_info->dma = pci_map_page(pdev, page, offset,
1891                                                 adapter->rx_buffer_len,
1892                                                 PCI_DMA_FROMDEVICE);
1893                 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894                 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895                 rfd_desc->coalese = 0;
1896
1897 next:
1898                 rfd_next_to_use = next_next;
1899                 if (unlikely(++next_next == rfd_ring->count))
1900                         next_next = 0;
1901
1902                 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903                 next_info = &rfd_ring->buffer_info[next_next];
1904                 num_alloc++;
1905         }
1906
1907         if (num_alloc) {
1908                 /*
1909                  * Force memory writes to complete before letting h/w
1910                  * know there are new descriptors to fetch.  (Only
1911                  * applicable for weak-ordered memory model archs,
1912                  * such as IA-64).
1913                  */
1914                 wmb();
1915                 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916         }
1917         return num_alloc;
1918 }
1919
1920 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921 {
1922         int i, count;
1923         u16 length;
1924         u16 rrd_next_to_clean;
1925         u32 value;
1926         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928         struct atl1_buffer *buffer_info;
1929         struct rx_return_desc *rrd;
1930         struct sk_buff *skb;
1931
1932         count = 0;
1933
1934         rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936         while (count < budget) {
1937                 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938                 i = 1;
1939                 if (likely(rrd->xsz.valid)) {   /* packet valid */
1940 chk_rrd:
1941                         /* check rrd status */
1942                         if (likely(rrd->num_buf == 1))
1943                                 goto rrd_ok;
1944                         else if (netif_msg_rx_err(adapter)) {
1945                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946                                         "unexpected RRD buffer count\n");
1947                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948                                         "rx_buf_len = %d\n",
1949                                         adapter->rx_buffer_len);
1950                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951                                         "RRD num_buf = %d\n",
1952                                         rrd->num_buf);
1953                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954                                         "RRD pkt_len = %d\n",
1955                                         rrd->xsz.xsum_sz.pkt_size);
1956                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957                                         "RRD pkt_flg = 0x%08X\n",
1958                                         rrd->pkt_flg);
1959                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960                                         "RRD err_flg = 0x%08X\n",
1961                                         rrd->err_flg);
1962                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963                                         "RRD vlan_tag = 0x%08X\n",
1964                                         rrd->vlan_tag);
1965                         }
1966
1967                         /* rrd seems to be bad */
1968                         if (unlikely(i-- > 0)) {
1969                                 /* rrd may not be DMAed completely */
1970                                 udelay(1);
1971                                 goto chk_rrd;
1972                         }
1973                         /* bad rrd */
1974                         if (netif_msg_rx_err(adapter))
1975                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976                                         "bad RRD\n");
1977                         /* see if update RFD index */
1978                         if (rrd->num_buf > 1)
1979                                 atl1_update_rfd_index(adapter, rrd);
1980
1981                         /* update rrd */
1982                         rrd->xsz.valid = 0;
1983                         if (++rrd_next_to_clean == rrd_ring->count)
1984                                 rrd_next_to_clean = 0;
1985                         count++;
1986                         continue;
1987                 } else {        /* current rrd still not be updated */
1988
1989                         break;
1990                 }
1991 rrd_ok:
1992                 /* clean alloc flag for bad rrd */
1993                 atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995                 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996                 if (++rfd_ring->next_to_clean == rfd_ring->count)
1997                         rfd_ring->next_to_clean = 0;
1998
1999                 /* update rrd next to clean */
2000                 if (++rrd_next_to_clean == rrd_ring->count)
2001                         rrd_next_to_clean = 0;
2002                 count++;
2003
2004                 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005                         if (!(rrd->err_flg &
2006                                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007                                 | ERR_FLAG_LEN))) {
2008                                 /* packet error, don't need upstream */
2009                                 buffer_info->alloced = 0;
2010                                 rrd->xsz.valid = 0;
2011                                 continue;
2012                         }
2013                 }
2014
2015                 /* Good Receive */
2016                 pci_unmap_page(adapter->pdev, buffer_info->dma,
2017                                buffer_info->length, PCI_DMA_FROMDEVICE);
2018                 buffer_info->dma = 0;
2019                 skb = buffer_info->skb;
2020                 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022                 skb_put(skb, length - ETH_FCS_LEN);
2023
2024                 /* Receive Checksum Offload */
2025                 atl1_rx_checksum(adapter, rrd, skb);
2026                 skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028                 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029                         u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030                                         ((rrd->vlan_tag & 7) << 13) |
2031                                         ((rrd->vlan_tag & 8) << 9);
2032
2033                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034                 }
2035                 netif_receive_skb(skb);
2036
2037                 /* let protocol layer free skb */
2038                 buffer_info->skb = NULL;
2039                 buffer_info->alloced = 0;
2040                 rrd->xsz.valid = 0;
2041         }
2042
2043         atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045         atl1_alloc_rx_buffers(adapter);
2046
2047         /* update mailbox ? */
2048         if (count) {
2049                 u32 tpd_next_to_use;
2050                 u32 rfd_next_to_use;
2051
2052                 spin_lock(&adapter->mb_lock);
2053
2054                 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055                 rfd_next_to_use =
2056                     atomic_read(&adapter->rfd_ring.next_to_use);
2057                 rrd_next_to_clean =
2058                     atomic_read(&adapter->rrd_ring.next_to_clean);
2059                 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060                         MB_RFD_PROD_INDX_SHIFT) |
2061                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062                         MB_RRD_CONS_INDX_SHIFT) |
2063                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064                         MB_TPD_PROD_INDX_SHIFT);
2065                 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066                 spin_unlock(&adapter->mb_lock);
2067         }
2068
2069         return count;
2070 }
2071
2072 static int atl1_intr_tx(struct atl1_adapter *adapter)
2073 {
2074         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075         struct atl1_buffer *buffer_info;
2076         u16 sw_tpd_next_to_clean;
2077         u16 cmb_tpd_next_to_clean;
2078         int count = 0;
2079
2080         sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081         cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082
2083         while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084                 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085                 if (buffer_info->dma) {
2086                         pci_unmap_page(adapter->pdev, buffer_info->dma,
2087                                        buffer_info->length, PCI_DMA_TODEVICE);
2088                         buffer_info->dma = 0;
2089                 }
2090
2091                 if (buffer_info->skb) {
2092                         dev_kfree_skb_irq(buffer_info->skb);
2093                         buffer_info->skb = NULL;
2094                 }
2095
2096                 if (++sw_tpd_next_to_clean == tpd_ring->count)
2097                         sw_tpd_next_to_clean = 0;
2098
2099                 count++;
2100         }
2101         atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102
2103         if (netif_queue_stopped(adapter->netdev) &&
2104             netif_carrier_ok(adapter->netdev))
2105                 netif_wake_queue(adapter->netdev);
2106
2107         return count;
2108 }
2109
2110 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111 {
2112         u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113         u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114         return (next_to_clean > next_to_use) ?
2115                 next_to_clean - next_to_use - 1 :
2116                 tpd_ring->count + next_to_clean - next_to_use - 1;
2117 }
2118
2119 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120                     struct tx_packet_desc *ptpd)
2121 {
2122         u8 hdr_len, ip_off;
2123         u32 real_len;
2124
2125         if (skb_shinfo(skb)->gso_size) {
2126                 int err;
2127
2128                 err = skb_cow_head(skb, 0);
2129                 if (err < 0)
2130                         return err;
2131
2132                 if (skb->protocol == htons(ETH_P_IP)) {
2133                         struct iphdr *iph = ip_hdr(skb);
2134
2135                         real_len = (((unsigned char *)iph - skb->data) +
2136                                 ntohs(iph->tot_len));
2137                         if (real_len < skb->len)
2138                                 pskb_trim(skb, real_len);
2139                         hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2140                         if (skb->len == hdr_len) {
2141                                 iph->check = 0;
2142                                 tcp_hdr(skb)->check =
2143                                         ~csum_tcpudp_magic(iph->saddr,
2144                                         iph->daddr, tcp_hdrlen(skb),
2145                                         IPPROTO_TCP, 0);
2146                                 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147                                         TPD_IPHL_SHIFT;
2148                                 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149                                         TPD_TCPHDRLEN_MASK) <<
2150                                         TPD_TCPHDRLEN_SHIFT;
2151                                 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152                                 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153                                 return 1;
2154                         }
2155
2156                         iph->check = 0;
2157                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158                                         iph->daddr, 0, IPPROTO_TCP, 0);
2159                         ip_off = (unsigned char *)iph -
2160                                 (unsigned char *) skb_network_header(skb);
2161                         if (ip_off == 8) /* 802.3-SNAP frame */
2162                                 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163                         else if (ip_off != 0)
2164                                 return -2;
2165
2166                         ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167                                 TPD_IPHL_SHIFT;
2168                         ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169                                 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170                         ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171                                 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172                         ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173                         return 3;
2174                 }
2175         }
2176         return 0;
2177 }
2178
2179 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180         struct tx_packet_desc *ptpd)
2181 {
2182         u8 css, cso;
2183
2184         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185                 css = skb_checksum_start_offset(skb);
2186                 cso = css + (u8) skb->csum_offset;
2187                 if (unlikely(css & 0x1)) {
2188                         /* L1 hardware requires an even number here */
2189                         if (netif_msg_tx_err(adapter))
2190                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191                                         "payload offset not an even number\n");
2192                         return -1;
2193                 }
2194                 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195                         TPD_PLOADOFFSET_SHIFT;
2196                 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197                         TPD_CCSUMOFFSET_SHIFT;
2198                 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199                 return true;
2200         }
2201         return 0;
2202 }
2203
2204 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205         struct tx_packet_desc *ptpd)
2206 {
2207         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208         struct atl1_buffer *buffer_info;
2209         u16 buf_len = skb->len;
2210         struct page *page;
2211         unsigned long offset;
2212         unsigned int nr_frags;
2213         unsigned int f;
2214         int retval;
2215         u16 next_to_use;
2216         u16 data_len;
2217         u8 hdr_len;
2218
2219         buf_len -= skb->data_len;
2220         nr_frags = skb_shinfo(skb)->nr_frags;
2221         next_to_use = atomic_read(&tpd_ring->next_to_use);
2222         buffer_info = &tpd_ring->buffer_info[next_to_use];
2223         BUG_ON(buffer_info->skb);
2224         /* put skb in last TPD */
2225         buffer_info->skb = NULL;
2226
2227         retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228         if (retval) {
2229                 /* TSO */
2230                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231                 buffer_info->length = hdr_len;
2232                 page = virt_to_page(skb->data);
2233                 offset = offset_in_page(skb->data);
2234                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2235                                                 offset, hdr_len,
2236                                                 PCI_DMA_TODEVICE);
2237
2238                 if (++next_to_use == tpd_ring->count)
2239                         next_to_use = 0;
2240
2241                 if (buf_len > hdr_len) {
2242                         int i, nseg;
2243
2244                         data_len = buf_len - hdr_len;
2245                         nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246                                 ATL1_MAX_TX_BUF_LEN;
2247                         for (i = 0; i < nseg; i++) {
2248                                 buffer_info =
2249                                     &tpd_ring->buffer_info[next_to_use];
2250                                 buffer_info->skb = NULL;
2251                                 buffer_info->length =
2252                                     (ATL1_MAX_TX_BUF_LEN >=
2253                                      data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254                                 data_len -= buffer_info->length;
2255                                 page = virt_to_page(skb->data +
2256                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257                                 offset = offset_in_page(skb->data +
2258                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2259                                 buffer_info->dma = pci_map_page(adapter->pdev,
2260                                         page, offset, buffer_info->length,
2261                                         PCI_DMA_TODEVICE);
2262                                 if (++next_to_use == tpd_ring->count)
2263                                         next_to_use = 0;
2264                         }
2265                 }
2266         } else {
2267                 /* not TSO */
2268                 buffer_info->length = buf_len;
2269                 page = virt_to_page(skb->data);
2270                 offset = offset_in_page(skb->data);
2271                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2272                         offset, buf_len, PCI_DMA_TODEVICE);
2273                 if (++next_to_use == tpd_ring->count)
2274                         next_to_use = 0;
2275         }
2276
2277         for (f = 0; f < nr_frags; f++) {
2278                 const struct skb_frag_struct *frag;
2279                 u16 i, nseg;
2280
2281                 frag = &skb_shinfo(skb)->frags[f];
2282                 buf_len = skb_frag_size(frag);
2283
2284                 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2285                         ATL1_MAX_TX_BUF_LEN;
2286                 for (i = 0; i < nseg; i++) {
2287                         buffer_info = &tpd_ring->buffer_info[next_to_use];
2288                         BUG_ON(buffer_info->skb);
2289
2290                         buffer_info->skb = NULL;
2291                         buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2292                                 ATL1_MAX_TX_BUF_LEN : buf_len;
2293                         buf_len -= buffer_info->length;
2294                         buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2295                                 frag, i * ATL1_MAX_TX_BUF_LEN,
2296                                 buffer_info->length, DMA_TO_DEVICE);
2297
2298                         if (++next_to_use == tpd_ring->count)
2299                                 next_to_use = 0;
2300                 }
2301         }
2302
2303         /* last tpd's buffer-info */
2304         buffer_info->skb = skb;
2305 }
2306
2307 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2308        struct tx_packet_desc *ptpd)
2309 {
2310         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2311         struct atl1_buffer *buffer_info;
2312         struct tx_packet_desc *tpd;
2313         u16 j;
2314         u32 val;
2315         u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2316
2317         for (j = 0; j < count; j++) {
2318                 buffer_info = &tpd_ring->buffer_info[next_to_use];
2319                 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2320                 if (tpd != ptpd)
2321                         memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2322                 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2323                 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2324                 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2325                         TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2326
2327                 /*
2328                  * if this is the first packet in a TSO chain, set
2329                  * TPD_HDRFLAG, otherwise, clear it.
2330                  */
2331                 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2332                         TPD_SEGMENT_EN_MASK;
2333                 if (val) {
2334                         if (!j)
2335                                 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2336                         else
2337                                 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2338                 }
2339
2340                 if (j == (count - 1))
2341                         tpd->word3 |= 1 << TPD_EOP_SHIFT;
2342
2343                 if (++next_to_use == tpd_ring->count)
2344                         next_to_use = 0;
2345         }
2346         /*
2347          * Force memory writes to complete before letting h/w
2348          * know there are new descriptors to fetch.  (Only
2349          * applicable for weak-ordered memory model archs,
2350          * such as IA-64).
2351          */
2352         wmb();
2353
2354         atomic_set(&tpd_ring->next_to_use, next_to_use);
2355 }
2356
2357 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2358                                          struct net_device *netdev)
2359 {
2360         struct atl1_adapter *adapter = netdev_priv(netdev);
2361         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2362         int len;
2363         int tso;
2364         int count = 1;
2365         int ret_val;
2366         struct tx_packet_desc *ptpd;
2367         u16 vlan_tag;
2368         unsigned int nr_frags = 0;
2369         unsigned int mss = 0;
2370         unsigned int f;
2371         unsigned int proto_hdr_len;
2372
2373         len = skb_headlen(skb);
2374
2375         if (unlikely(skb->len <= 0)) {
2376                 dev_kfree_skb_any(skb);
2377                 return NETDEV_TX_OK;
2378         }
2379
2380         nr_frags = skb_shinfo(skb)->nr_frags;
2381         for (f = 0; f < nr_frags; f++) {
2382                 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2383                 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2384                          ATL1_MAX_TX_BUF_LEN;
2385         }
2386
2387         mss = skb_shinfo(skb)->gso_size;
2388         if (mss) {
2389                 if (skb->protocol == htons(ETH_P_IP)) {
2390                         proto_hdr_len = (skb_transport_offset(skb) +
2391                                          tcp_hdrlen(skb));
2392                         if (unlikely(proto_hdr_len > len)) {
2393                                 dev_kfree_skb_any(skb);
2394                                 return NETDEV_TX_OK;
2395                         }
2396                         /* need additional TPD ? */
2397                         if (proto_hdr_len != len)
2398                                 count += (len - proto_hdr_len +
2399                                         ATL1_MAX_TX_BUF_LEN - 1) /
2400                                         ATL1_MAX_TX_BUF_LEN;
2401                 }
2402         }
2403
2404         if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2405                 /* not enough descriptors */
2406                 netif_stop_queue(netdev);
2407                 if (netif_msg_tx_queued(adapter))
2408                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2409                                 "tx busy\n");
2410                 return NETDEV_TX_BUSY;
2411         }
2412
2413         ptpd = ATL1_TPD_DESC(tpd_ring,
2414                 (u16) atomic_read(&tpd_ring->next_to_use));
2415         memset(ptpd, 0, sizeof(struct tx_packet_desc));
2416
2417         if (skb_vlan_tag_present(skb)) {
2418                 vlan_tag = skb_vlan_tag_get(skb);
2419                 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2420                         ((vlan_tag >> 9) & 0x8);
2421                 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2422                 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2423                         TPD_VLANTAG_SHIFT;
2424         }
2425
2426         tso = atl1_tso(adapter, skb, ptpd);
2427         if (tso < 0) {
2428                 dev_kfree_skb_any(skb);
2429                 return NETDEV_TX_OK;
2430         }
2431
2432         if (!tso) {
2433                 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2434                 if (ret_val < 0) {
2435                         dev_kfree_skb_any(skb);
2436                         return NETDEV_TX_OK;
2437                 }
2438         }
2439
2440         atl1_tx_map(adapter, skb, ptpd);
2441         atl1_tx_queue(adapter, count, ptpd);
2442         atl1_update_mailbox(adapter);
2443         mmiowb();
2444         return NETDEV_TX_OK;
2445 }
2446
2447 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2448 {
2449         struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2450         int work_done = atl1_intr_rx(adapter, budget);
2451
2452         if (atl1_intr_tx(adapter))
2453                 work_done = budget;
2454
2455         /* Let's come again to process some more packets */
2456         if (work_done >= budget)
2457                 return work_done;
2458
2459         napi_complete_done(napi, work_done);
2460         /* re-enable Interrupt */
2461         if (likely(adapter->int_enabled))
2462                 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2463         return work_done;
2464 }
2465
2466 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2467 {
2468         if (!napi_schedule_prep(&adapter->napi))
2469                 /* It is possible in case even the RX/TX ints are disabled via IMR
2470                  * register the ISR bits are set anyway (but do not produce IRQ).
2471                  * To handle such situation the napi functions used to check is
2472                  * something scheduled or not.
2473                  */
2474                 return 0;
2475
2476         __napi_schedule(&adapter->napi);
2477
2478         /*
2479          * Disable RX/TX ints via IMR register if it is
2480          * allowed. NAPI handler must reenable them in same
2481          * way.
2482          */
2483         if (!adapter->int_enabled)
2484                 return 1;
2485
2486         atlx_imr_set(adapter, IMR_NORXTX_MASK);
2487         return 1;
2488 }
2489
2490 /**
2491  * atl1_intr - Interrupt Handler
2492  * @irq: interrupt number
2493  * @data: pointer to a network interface device structure
2494  */
2495 static irqreturn_t atl1_intr(int irq, void *data)
2496 {
2497         struct atl1_adapter *adapter = netdev_priv(data);
2498         u32 status;
2499
2500         status = adapter->cmb.cmb->int_stats;
2501         if (!status)
2502                 return IRQ_NONE;
2503
2504         /* clear CMB interrupt status at once,
2505          * but leave rx/tx interrupt status in case it should be dropped
2506          * only if rx/tx processing queued. In other case interrupt
2507          * can be lost.
2508          */
2509         adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2510
2511         if (status & ISR_GPHY)  /* clear phy status */
2512                 atlx_clear_phy_int(adapter);
2513
2514         /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2515         iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2516
2517         /* check if SMB intr */
2518         if (status & ISR_SMB)
2519                 atl1_inc_smb(adapter);
2520
2521         /* check if PCIE PHY Link down */
2522         if (status & ISR_PHY_LINKDOWN) {
2523                 if (netif_msg_intr(adapter))
2524                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2525                                 "pcie phy link down %x\n", status);
2526                 if (netif_running(adapter->netdev)) {   /* reset MAC */
2527                         atlx_irq_disable(adapter);
2528                         schedule_work(&adapter->reset_dev_task);
2529                         return IRQ_HANDLED;
2530                 }
2531         }
2532
2533         /* check if DMA read/write error ? */
2534         if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2535                 if (netif_msg_intr(adapter))
2536                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2537                                 "pcie DMA r/w error (status = 0x%x)\n",
2538                                 status);
2539                 atlx_irq_disable(adapter);
2540                 schedule_work(&adapter->reset_dev_task);
2541                 return IRQ_HANDLED;
2542         }
2543
2544         /* link event */
2545         if (status & ISR_GPHY) {
2546                 adapter->soft_stats.tx_carrier_errors++;
2547                 atl1_check_for_link(adapter);
2548         }
2549
2550         /* transmit or receive event */
2551         if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2552             atl1_sched_rings_clean(adapter))
2553                 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2554                                               ~(ISR_CMB_TX | ISR_CMB_RX);
2555
2556         /* rx exception */
2557         if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2558                 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2559                 ISR_HOST_RRD_OV))) {
2560                 if (netif_msg_intr(adapter))
2561                         dev_printk(KERN_DEBUG,
2562                                 &adapter->pdev->dev,
2563                                 "rx exception, ISR = 0x%x\n",
2564                                 status);
2565                 atl1_sched_rings_clean(adapter);
2566         }
2567
2568         /* re-enable Interrupt */
2569         iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2570         return IRQ_HANDLED;
2571 }
2572
2573
2574 /**
2575  * atl1_phy_config - Timer Call-back
2576  * @data: pointer to netdev cast into an unsigned long
2577  */
2578 static void atl1_phy_config(unsigned long data)
2579 {
2580         struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2581         struct atl1_hw *hw = &adapter->hw;
2582         unsigned long flags;
2583
2584         spin_lock_irqsave(&adapter->lock, flags);
2585         adapter->phy_timer_pending = false;
2586         atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2587         atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2588         atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2589         spin_unlock_irqrestore(&adapter->lock, flags);
2590 }
2591
2592 /*
2593  * Orphaned vendor comment left intact here:
2594  * <vendor comment>
2595  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2596  * will assert. We do soft reset <0x1400=1> according
2597  * with the SPEC. BUT, it seemes that PCIE or DMA
2598  * state-machine will not be reset. DMAR_TO_INT will
2599  * assert again and again.
2600  * </vendor comment>
2601  */
2602
2603 static int atl1_reset(struct atl1_adapter *adapter)
2604 {
2605         int ret;
2606         ret = atl1_reset_hw(&adapter->hw);
2607         if (ret)
2608                 return ret;
2609         return atl1_init_hw(&adapter->hw);
2610 }
2611
2612 static s32 atl1_up(struct atl1_adapter *adapter)
2613 {
2614         struct net_device *netdev = adapter->netdev;
2615         int err;
2616         int irq_flags = 0;
2617
2618         /* hardware has been reset, we need to reload some things */
2619         atlx_set_multi(netdev);
2620         atl1_init_ring_ptrs(adapter);
2621         atlx_restore_vlan(adapter);
2622         err = atl1_alloc_rx_buffers(adapter);
2623         if (unlikely(!err))
2624                 /* no RX BUFFER allocated */
2625                 return -ENOMEM;
2626
2627         if (unlikely(atl1_configure(adapter))) {
2628                 err = -EIO;
2629                 goto err_up;
2630         }
2631
2632         err = pci_enable_msi(adapter->pdev);
2633         if (err) {
2634                 if (netif_msg_ifup(adapter))
2635                         dev_info(&adapter->pdev->dev,
2636                                 "Unable to enable MSI: %d\n", err);
2637                 irq_flags |= IRQF_SHARED;
2638         }
2639
2640         err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2641                         netdev->name, netdev);
2642         if (unlikely(err))
2643                 goto err_up;
2644
2645         napi_enable(&adapter->napi);
2646         atlx_irq_enable(adapter);
2647         atl1_check_link(adapter);
2648         netif_start_queue(netdev);
2649         return 0;
2650
2651 err_up:
2652         pci_disable_msi(adapter->pdev);
2653         /* free rx_buffers */
2654         atl1_clean_rx_ring(adapter);
2655         return err;
2656 }
2657
2658 static void atl1_down(struct atl1_adapter *adapter)
2659 {
2660         struct net_device *netdev = adapter->netdev;
2661
2662         napi_disable(&adapter->napi);
2663         netif_stop_queue(netdev);
2664         del_timer_sync(&adapter->phy_config_timer);
2665         adapter->phy_timer_pending = false;
2666
2667         atlx_irq_disable(adapter);
2668         free_irq(adapter->pdev->irq, netdev);
2669         pci_disable_msi(adapter->pdev);
2670         atl1_reset_hw(&adapter->hw);
2671         adapter->cmb.cmb->int_stats = 0;
2672
2673         adapter->link_speed = SPEED_0;
2674         adapter->link_duplex = -1;
2675         netif_carrier_off(netdev);
2676
2677         atl1_clean_tx_ring(adapter);
2678         atl1_clean_rx_ring(adapter);
2679 }
2680
2681 static void atl1_reset_dev_task(struct work_struct *work)
2682 {
2683         struct atl1_adapter *adapter =
2684                 container_of(work, struct atl1_adapter, reset_dev_task);
2685         struct net_device *netdev = adapter->netdev;
2686
2687         netif_device_detach(netdev);
2688         atl1_down(adapter);
2689         atl1_up(adapter);
2690         netif_device_attach(netdev);
2691 }
2692
2693 /**
2694  * atl1_change_mtu - Change the Maximum Transfer Unit
2695  * @netdev: network interface device structure
2696  * @new_mtu: new value for maximum frame size
2697  *
2698  * Returns 0 on success, negative on failure
2699  */
2700 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2701 {
2702         struct atl1_adapter *adapter = netdev_priv(netdev);
2703         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2704
2705         adapter->hw.max_frame_size = max_frame;
2706         adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2707         adapter->rx_buffer_len = (max_frame + 7) & ~7;
2708         adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2709
2710         netdev->mtu = new_mtu;
2711         if (netif_running(netdev)) {
2712                 atl1_down(adapter);
2713                 atl1_up(adapter);
2714         }
2715
2716         return 0;
2717 }
2718
2719 /**
2720  * atl1_open - Called when a network interface is made active
2721  * @netdev: network interface device structure
2722  *
2723  * Returns 0 on success, negative value on failure
2724  *
2725  * The open entry point is called when a network interface is made
2726  * active by the system (IFF_UP).  At this point all resources needed
2727  * for transmit and receive operations are allocated, the interrupt
2728  * handler is registered with the OS, the watchdog timer is started,
2729  * and the stack is notified that the interface is ready.
2730  */
2731 static int atl1_open(struct net_device *netdev)
2732 {
2733         struct atl1_adapter *adapter = netdev_priv(netdev);
2734         int err;
2735
2736         netif_carrier_off(netdev);
2737
2738         /* allocate transmit descriptors */
2739         err = atl1_setup_ring_resources(adapter);
2740         if (err)
2741                 return err;
2742
2743         err = atl1_up(adapter);
2744         if (err)
2745                 goto err_up;
2746
2747         return 0;
2748
2749 err_up:
2750         atl1_reset(adapter);
2751         return err;
2752 }
2753
2754 /**
2755  * atl1_close - Disables a network interface
2756  * @netdev: network interface device structure
2757  *
2758  * Returns 0, this is not allowed to fail
2759  *
2760  * The close entry point is called when an interface is de-activated
2761  * by the OS.  The hardware is still under the drivers control, but
2762  * needs to be disabled.  A global MAC reset is issued to stop the
2763  * hardware, and all transmit and receive resources are freed.
2764  */
2765 static int atl1_close(struct net_device *netdev)
2766 {
2767         struct atl1_adapter *adapter = netdev_priv(netdev);
2768         atl1_down(adapter);
2769         atl1_free_ring_resources(adapter);
2770         return 0;
2771 }
2772
2773 #ifdef CONFIG_PM_SLEEP
2774 static int atl1_suspend(struct device *dev)
2775 {
2776         struct pci_dev *pdev = to_pci_dev(dev);
2777         struct net_device *netdev = pci_get_drvdata(pdev);
2778         struct atl1_adapter *adapter = netdev_priv(netdev);
2779         struct atl1_hw *hw = &adapter->hw;
2780         u32 ctrl = 0;
2781         u32 wufc = adapter->wol;
2782         u32 val;
2783         u16 speed;
2784         u16 duplex;
2785
2786         netif_device_detach(netdev);
2787         if (netif_running(netdev))
2788                 atl1_down(adapter);
2789
2790         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2791         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2792         val = ctrl & BMSR_LSTATUS;
2793         if (val)
2794                 wufc &= ~ATLX_WUFC_LNKC;
2795         if (!wufc)
2796                 goto disable_wol;
2797
2798         if (val) {
2799                 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2800                 if (val) {
2801                         if (netif_msg_ifdown(adapter))
2802                                 dev_printk(KERN_DEBUG, &pdev->dev,
2803                                         "error getting speed/duplex\n");
2804                         goto disable_wol;
2805                 }
2806
2807                 ctrl = 0;
2808
2809                 /* enable magic packet WOL */
2810                 if (wufc & ATLX_WUFC_MAG)
2811                         ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2812                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2813                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2814
2815                 /* configure the mac */
2816                 ctrl = MAC_CTRL_RX_EN;
2817                 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2818                         MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2819                 if (duplex == FULL_DUPLEX)
2820                         ctrl |= MAC_CTRL_DUPLX;
2821                 ctrl |= (((u32)adapter->hw.preamble_len &
2822                         MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2823                 __atlx_vlan_mode(netdev->features, &ctrl);
2824                 if (wufc & ATLX_WUFC_MAG)
2825                         ctrl |= MAC_CTRL_BC_EN;
2826                 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2827                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2828
2829                 /* poke the PHY */
2830                 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831                 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2832                 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2833                 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2834         } else {
2835                 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2836                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2837                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2838                 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2839                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2840                 hw->phy_configured = false;
2841         }
2842
2843         return 0;
2844
2845  disable_wol:
2846         iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2847         ioread32(hw->hw_addr + REG_WOL_CTRL);
2848         ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2849         ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2850         iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2851         ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2852         hw->phy_configured = false;
2853
2854         return 0;
2855 }
2856
2857 static int atl1_resume(struct device *dev)
2858 {
2859         struct pci_dev *pdev = to_pci_dev(dev);
2860         struct net_device *netdev = pci_get_drvdata(pdev);
2861         struct atl1_adapter *adapter = netdev_priv(netdev);
2862
2863         iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2864
2865         atl1_reset_hw(&adapter->hw);
2866
2867         if (netif_running(netdev)) {
2868                 adapter->cmb.cmb->int_stats = 0;
2869                 atl1_up(adapter);
2870         }
2871         netif_device_attach(netdev);
2872
2873         return 0;
2874 }
2875 #endif
2876
2877 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2878
2879 static void atl1_shutdown(struct pci_dev *pdev)
2880 {
2881         struct net_device *netdev = pci_get_drvdata(pdev);
2882         struct atl1_adapter *adapter = netdev_priv(netdev);
2883
2884 #ifdef CONFIG_PM_SLEEP
2885         atl1_suspend(&pdev->dev);
2886 #endif
2887         pci_wake_from_d3(pdev, adapter->wol);
2888         pci_set_power_state(pdev, PCI_D3hot);
2889 }
2890
2891 #ifdef CONFIG_NET_POLL_CONTROLLER
2892 static void atl1_poll_controller(struct net_device *netdev)
2893 {
2894         disable_irq(netdev->irq);
2895         atl1_intr(netdev->irq, netdev);
2896         enable_irq(netdev->irq);
2897 }
2898 #endif
2899
2900 static const struct net_device_ops atl1_netdev_ops = {
2901         .ndo_open               = atl1_open,
2902         .ndo_stop               = atl1_close,
2903         .ndo_start_xmit         = atl1_xmit_frame,
2904         .ndo_set_rx_mode        = atlx_set_multi,
2905         .ndo_validate_addr      = eth_validate_addr,
2906         .ndo_set_mac_address    = atl1_set_mac,
2907         .ndo_change_mtu         = atl1_change_mtu,
2908         .ndo_fix_features       = atlx_fix_features,
2909         .ndo_set_features       = atlx_set_features,
2910         .ndo_do_ioctl           = atlx_ioctl,
2911         .ndo_tx_timeout         = atlx_tx_timeout,
2912 #ifdef CONFIG_NET_POLL_CONTROLLER
2913         .ndo_poll_controller    = atl1_poll_controller,
2914 #endif
2915 };
2916
2917 /**
2918  * atl1_probe - Device Initialization Routine
2919  * @pdev: PCI device information struct
2920  * @ent: entry in atl1_pci_tbl
2921  *
2922  * Returns 0 on success, negative on failure
2923  *
2924  * atl1_probe initializes an adapter identified by a pci_dev structure.
2925  * The OS initialization, configuring of the adapter private structure,
2926  * and a hardware reset occur.
2927  */
2928 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2929 {
2930         struct net_device *netdev;
2931         struct atl1_adapter *adapter;
2932         static int cards_found = 0;
2933         int err;
2934
2935         err = pci_enable_device(pdev);
2936         if (err)
2937                 return err;
2938
2939         /*
2940          * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2941          * shared register for the high 32 bits, so only a single, aligned,
2942          * 4 GB physical address range can be used at a time.
2943          *
2944          * Supporting 64-bit DMA on this hardware is more trouble than it's
2945          * worth.  It is far easier to limit to 32-bit DMA than update
2946          * various kernel subsystems to support the mechanics required by a
2947          * fixed-high-32-bit system.
2948          */
2949         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2950         if (err) {
2951                 dev_err(&pdev->dev, "no usable DMA configuration\n");
2952                 goto err_dma;
2953         }
2954         /*
2955          * Mark all PCI regions associated with PCI device
2956          * pdev as being reserved by owner atl1_driver_name
2957          */
2958         err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2959         if (err)
2960                 goto err_request_regions;
2961
2962         /*
2963          * Enables bus-mastering on the device and calls
2964          * pcibios_set_master to do the needed arch specific settings
2965          */
2966         pci_set_master(pdev);
2967
2968         netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2969         if (!netdev) {
2970                 err = -ENOMEM;
2971                 goto err_alloc_etherdev;
2972         }
2973         SET_NETDEV_DEV(netdev, &pdev->dev);
2974
2975         pci_set_drvdata(pdev, netdev);
2976         adapter = netdev_priv(netdev);
2977         adapter->netdev = netdev;
2978         adapter->pdev = pdev;
2979         adapter->hw.back = adapter;
2980         adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2981
2982         adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2983         if (!adapter->hw.hw_addr) {
2984                 err = -EIO;
2985                 goto err_pci_iomap;
2986         }
2987         /* get device revision number */
2988         adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2989                 (REG_MASTER_CTRL + 2));
2990         if (netif_msg_probe(adapter))
2991                 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2992
2993         /* set default ring resource counts */
2994         adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2995         adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2996
2997         adapter->mii.dev = netdev;
2998         adapter->mii.mdio_read = mdio_read;
2999         adapter->mii.mdio_write = mdio_write;
3000         adapter->mii.phy_id_mask = 0x1f;
3001         adapter->mii.reg_num_mask = 0x1f;
3002
3003         netdev->netdev_ops = &atl1_netdev_ops;
3004         netdev->watchdog_timeo = 5 * HZ;
3005         netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3006
3007         netdev->ethtool_ops = &atl1_ethtool_ops;
3008         adapter->bd_number = cards_found;
3009
3010         /* setup the private structure */
3011         err = atl1_sw_init(adapter);
3012         if (err)
3013                 goto err_common;
3014
3015         netdev->features = NETIF_F_HW_CSUM;
3016         netdev->features |= NETIF_F_SG;
3017         netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3018
3019         netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3020                               NETIF_F_HW_VLAN_CTAG_RX;
3021
3022         /* is this valid? see atl1_setup_mac_ctrl() */
3023         netdev->features |= NETIF_F_RXCSUM;
3024
3025         /* MTU range: 42 - 10218 */
3026         netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3027         netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3028                           (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3029
3030         /*
3031          * patch for some L1 of old version,
3032          * the final version of L1 may not need these
3033          * patches
3034          */
3035         /* atl1_pcie_patch(adapter); */
3036
3037         /* really reset GPHY core */
3038         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3039
3040         /*
3041          * reset the controller to
3042          * put the device in a known good starting state
3043          */
3044         if (atl1_reset_hw(&adapter->hw)) {
3045                 err = -EIO;
3046                 goto err_common;
3047         }
3048
3049         /* copy the MAC address out of the EEPROM */
3050         if (atl1_read_mac_addr(&adapter->hw)) {
3051                 /* mark random mac */
3052                 netdev->addr_assign_type = NET_ADDR_RANDOM;
3053         }
3054         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3055
3056         if (!is_valid_ether_addr(netdev->dev_addr)) {
3057                 err = -EIO;
3058                 goto err_common;
3059         }
3060
3061         atl1_check_options(adapter);
3062
3063         /* pre-init the MAC, and setup link */
3064         err = atl1_init_hw(&adapter->hw);
3065         if (err) {
3066                 err = -EIO;
3067                 goto err_common;
3068         }
3069
3070         atl1_pcie_patch(adapter);
3071         /* assume we have no link for now */
3072         netif_carrier_off(netdev);
3073
3074         setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3075                     (unsigned long)adapter);
3076         adapter->phy_timer_pending = false;
3077
3078         INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3079
3080         INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3081
3082         err = register_netdev(netdev);
3083         if (err)
3084                 goto err_common;
3085
3086         cards_found++;
3087         atl1_via_workaround(adapter);
3088         return 0;
3089
3090 err_common:
3091         pci_iounmap(pdev, adapter->hw.hw_addr);
3092 err_pci_iomap:
3093         free_netdev(netdev);
3094 err_alloc_etherdev:
3095         pci_release_regions(pdev);
3096 err_dma:
3097 err_request_regions:
3098         pci_disable_device(pdev);
3099         return err;
3100 }
3101
3102 /**
3103  * atl1_remove - Device Removal Routine
3104  * @pdev: PCI device information struct
3105  *
3106  * atl1_remove is called by the PCI subsystem to alert the driver
3107  * that it should release a PCI device.  The could be caused by a
3108  * Hot-Plug event, or because the driver is going to be removed from
3109  * memory.
3110  */
3111 static void atl1_remove(struct pci_dev *pdev)
3112 {
3113         struct net_device *netdev = pci_get_drvdata(pdev);
3114         struct atl1_adapter *adapter;
3115         /* Device not available. Return. */
3116         if (!netdev)
3117                 return;
3118
3119         adapter = netdev_priv(netdev);
3120
3121         /*
3122          * Some atl1 boards lack persistent storage for their MAC, and get it
3123          * from the BIOS during POST.  If we've been messing with the MAC
3124          * address, we need to save the permanent one.
3125          */
3126         if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3127                                         adapter->hw.perm_mac_addr)) {
3128                 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3129                         ETH_ALEN);
3130                 atl1_set_mac_addr(&adapter->hw);
3131         }
3132
3133         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3134         unregister_netdev(netdev);
3135         pci_iounmap(pdev, adapter->hw.hw_addr);
3136         pci_release_regions(pdev);
3137         free_netdev(netdev);
3138         pci_disable_device(pdev);
3139 }
3140
3141 static struct pci_driver atl1_driver = {
3142         .name = ATLX_DRIVER_NAME,
3143         .id_table = atl1_pci_tbl,
3144         .probe = atl1_probe,
3145         .remove = atl1_remove,
3146         .shutdown = atl1_shutdown,
3147         .driver.pm = &atl1_pm_ops,
3148 };
3149
3150 struct atl1_stats {
3151         char stat_string[ETH_GSTRING_LEN];
3152         int sizeof_stat;
3153         int stat_offset;
3154 };
3155
3156 #define ATL1_STAT(m) \
3157         sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3158
3159 static struct atl1_stats atl1_gstrings_stats[] = {
3160         {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3161         {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3162         {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3163         {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3164         {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3165         {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3166         {"multicast", ATL1_STAT(soft_stats.multicast)},
3167         {"collisions", ATL1_STAT(soft_stats.collisions)},
3168         {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3169         {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3170         {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3171         {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3172         {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3173         {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174         {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3175         {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3176         {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3177         {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3178         {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3179         {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3180         {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3181         {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3182         {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3183         {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3184         {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3185         {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3186         {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3187         {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3188         {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3189 };
3190
3191 static void atl1_get_ethtool_stats(struct net_device *netdev,
3192         struct ethtool_stats *stats, u64 *data)
3193 {
3194         struct atl1_adapter *adapter = netdev_priv(netdev);
3195         int i;
3196         char *p;
3197
3198         for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3199                 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3200                 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3201                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3202         }
3203
3204 }
3205
3206 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3207 {
3208         switch (sset) {
3209         case ETH_SS_STATS:
3210                 return ARRAY_SIZE(atl1_gstrings_stats);
3211         default:
3212                 return -EOPNOTSUPP;
3213         }
3214 }
3215
3216 static int atl1_get_link_ksettings(struct net_device *netdev,
3217                                    struct ethtool_link_ksettings *cmd)
3218 {
3219         struct atl1_adapter *adapter = netdev_priv(netdev);
3220         struct atl1_hw *hw = &adapter->hw;
3221         u32 supported, advertising;
3222
3223         supported = (SUPPORTED_10baseT_Half |
3224                            SUPPORTED_10baseT_Full |
3225                            SUPPORTED_100baseT_Half |
3226                            SUPPORTED_100baseT_Full |
3227                            SUPPORTED_1000baseT_Full |
3228                            SUPPORTED_Autoneg | SUPPORTED_TP);
3229         advertising = ADVERTISED_TP;
3230         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3231             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3232                 advertising |= ADVERTISED_Autoneg;
3233                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3234                         advertising |= ADVERTISED_Autoneg;
3235                         advertising |=
3236                             (ADVERTISED_10baseT_Half |
3237                              ADVERTISED_10baseT_Full |
3238                              ADVERTISED_100baseT_Half |
3239                              ADVERTISED_100baseT_Full |
3240                              ADVERTISED_1000baseT_Full);
3241                 } else
3242                         advertising |= (ADVERTISED_1000baseT_Full);
3243         }
3244         cmd->base.port = PORT_TP;
3245         cmd->base.phy_address = 0;
3246
3247         if (netif_carrier_ok(adapter->netdev)) {
3248                 u16 link_speed, link_duplex;
3249                 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3250                 cmd->base.speed = link_speed;
3251                 if (link_duplex == FULL_DUPLEX)
3252                         cmd->base.duplex = DUPLEX_FULL;
3253                 else
3254                         cmd->base.duplex = DUPLEX_HALF;
3255         } else {
3256                 cmd->base.speed = SPEED_UNKNOWN;
3257                 cmd->base.duplex = DUPLEX_UNKNOWN;
3258         }
3259         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3260             hw->media_type == MEDIA_TYPE_1000M_FULL)
3261                 cmd->base.autoneg = AUTONEG_ENABLE;
3262         else
3263                 cmd->base.autoneg = AUTONEG_DISABLE;
3264
3265         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3266                                                 supported);
3267         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3268                                                 advertising);
3269
3270         return 0;
3271 }
3272
3273 static int atl1_set_link_ksettings(struct net_device *netdev,
3274                                    const struct ethtool_link_ksettings *cmd)
3275 {
3276         struct atl1_adapter *adapter = netdev_priv(netdev);
3277         struct atl1_hw *hw = &adapter->hw;
3278         u16 phy_data;
3279         int ret_val = 0;
3280         u16 old_media_type = hw->media_type;
3281         u32 advertising;
3282
3283         if (netif_running(adapter->netdev)) {
3284                 if (netif_msg_link(adapter))
3285                         dev_dbg(&adapter->pdev->dev,
3286                                 "ethtool shutting down adapter\n");
3287                 atl1_down(adapter);
3288         }
3289
3290         if (cmd->base.autoneg == AUTONEG_ENABLE)
3291                 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3292         else {
3293                 u32 speed = cmd->base.speed;
3294                 if (speed == SPEED_1000) {
3295                         if (cmd->base.duplex != DUPLEX_FULL) {
3296                                 if (netif_msg_link(adapter))
3297                                         dev_warn(&adapter->pdev->dev,
3298                                                 "1000M half is invalid\n");
3299                                 ret_val = -EINVAL;
3300                                 goto exit_sset;
3301                         }
3302                         hw->media_type = MEDIA_TYPE_1000M_FULL;
3303                 } else if (speed == SPEED_100) {
3304                         if (cmd->base.duplex == DUPLEX_FULL)
3305                                 hw->media_type = MEDIA_TYPE_100M_FULL;
3306                         else
3307                                 hw->media_type = MEDIA_TYPE_100M_HALF;
3308                 } else {
3309                         if (cmd->base.duplex == DUPLEX_FULL)
3310                                 hw->media_type = MEDIA_TYPE_10M_FULL;
3311                         else
3312                                 hw->media_type = MEDIA_TYPE_10M_HALF;
3313                 }
3314         }
3315         switch (hw->media_type) {
3316         case MEDIA_TYPE_AUTO_SENSOR:
3317                 advertising =
3318                     ADVERTISED_10baseT_Half |
3319                     ADVERTISED_10baseT_Full |
3320                     ADVERTISED_100baseT_Half |
3321                     ADVERTISED_100baseT_Full |
3322                     ADVERTISED_1000baseT_Full |
3323                     ADVERTISED_Autoneg | ADVERTISED_TP;
3324                 break;
3325         case MEDIA_TYPE_1000M_FULL:
3326                 advertising =
3327                     ADVERTISED_1000baseT_Full |
3328                     ADVERTISED_Autoneg | ADVERTISED_TP;
3329                 break;
3330         default:
3331                 advertising = 0;
3332                 break;
3333         }
3334         if (atl1_phy_setup_autoneg_adv(hw)) {
3335                 ret_val = -EINVAL;
3336                 if (netif_msg_link(adapter))
3337                         dev_warn(&adapter->pdev->dev,
3338                                 "invalid ethtool speed/duplex setting\n");
3339                 goto exit_sset;
3340         }
3341         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3342             hw->media_type == MEDIA_TYPE_1000M_FULL)
3343                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3344         else {
3345                 switch (hw->media_type) {
3346                 case MEDIA_TYPE_100M_FULL:
3347                         phy_data =
3348                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3349                             MII_CR_RESET;
3350                         break;
3351                 case MEDIA_TYPE_100M_HALF:
3352                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3353                         break;
3354                 case MEDIA_TYPE_10M_FULL:
3355                         phy_data =
3356                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3357                         break;
3358                 default:
3359                         /* MEDIA_TYPE_10M_HALF: */
3360                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3361                         break;
3362                 }
3363         }
3364         atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3365 exit_sset:
3366         if (ret_val)
3367                 hw->media_type = old_media_type;
3368
3369         if (netif_running(adapter->netdev)) {
3370                 if (netif_msg_link(adapter))
3371                         dev_dbg(&adapter->pdev->dev,
3372                                 "ethtool starting adapter\n");
3373                 atl1_up(adapter);
3374         } else if (!ret_val) {
3375                 if (netif_msg_link(adapter))
3376                         dev_dbg(&adapter->pdev->dev,
3377                                 "ethtool resetting adapter\n");
3378                 atl1_reset(adapter);
3379         }
3380         return ret_val;
3381 }
3382
3383 static void atl1_get_drvinfo(struct net_device *netdev,
3384         struct ethtool_drvinfo *drvinfo)
3385 {
3386         struct atl1_adapter *adapter = netdev_priv(netdev);
3387
3388         strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3389         strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3390                 sizeof(drvinfo->version));
3391         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3392                 sizeof(drvinfo->bus_info));
3393 }
3394
3395 static void atl1_get_wol(struct net_device *netdev,
3396         struct ethtool_wolinfo *wol)
3397 {
3398         struct atl1_adapter *adapter = netdev_priv(netdev);
3399
3400         wol->supported = WAKE_MAGIC;
3401         wol->wolopts = 0;
3402         if (adapter->wol & ATLX_WUFC_MAG)
3403                 wol->wolopts |= WAKE_MAGIC;
3404 }
3405
3406 static int atl1_set_wol(struct net_device *netdev,
3407         struct ethtool_wolinfo *wol)
3408 {
3409         struct atl1_adapter *adapter = netdev_priv(netdev);
3410
3411         if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3412                 WAKE_ARP | WAKE_MAGICSECURE))
3413                 return -EOPNOTSUPP;
3414         adapter->wol = 0;
3415         if (wol->wolopts & WAKE_MAGIC)
3416                 adapter->wol |= ATLX_WUFC_MAG;
3417
3418         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3419
3420         return 0;
3421 }
3422
3423 static u32 atl1_get_msglevel(struct net_device *netdev)
3424 {
3425         struct atl1_adapter *adapter = netdev_priv(netdev);
3426         return adapter->msg_enable;
3427 }
3428
3429 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3430 {
3431         struct atl1_adapter *adapter = netdev_priv(netdev);
3432         adapter->msg_enable = value;
3433 }
3434
3435 static int atl1_get_regs_len(struct net_device *netdev)
3436 {
3437         return ATL1_REG_COUNT * sizeof(u32);
3438 }
3439
3440 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3441         void *p)
3442 {
3443         struct atl1_adapter *adapter = netdev_priv(netdev);
3444         struct atl1_hw *hw = &adapter->hw;
3445         unsigned int i;
3446         u32 *regbuf = p;
3447
3448         for (i = 0; i < ATL1_REG_COUNT; i++) {
3449                 /*
3450                  * This switch statement avoids reserved regions
3451                  * of register space.
3452                  */
3453                 switch (i) {
3454                 case 6 ... 9:
3455                 case 14:
3456                 case 29 ... 31:
3457                 case 34 ... 63:
3458                 case 75 ... 127:
3459                 case 136 ... 1023:
3460                 case 1027 ... 1087:
3461                 case 1091 ... 1151:
3462                 case 1194 ... 1195:
3463                 case 1200 ... 1201:
3464                 case 1206 ... 1213:
3465                 case 1216 ... 1279:
3466                 case 1290 ... 1311:
3467                 case 1323 ... 1343:
3468                 case 1358 ... 1359:
3469                 case 1368 ... 1375:
3470                 case 1378 ... 1383:
3471                 case 1388 ... 1391:
3472                 case 1393 ... 1395:
3473                 case 1402 ... 1403:
3474                 case 1410 ... 1471:
3475                 case 1522 ... 1535:
3476                         /* reserved region; don't read it */
3477                         regbuf[i] = 0;
3478                         break;
3479                 default:
3480                         /* unreserved region */
3481                         regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3482                 }
3483         }
3484 }
3485
3486 static void atl1_get_ringparam(struct net_device *netdev,
3487         struct ethtool_ringparam *ring)
3488 {
3489         struct atl1_adapter *adapter = netdev_priv(netdev);
3490         struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3491         struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3492
3493         ring->rx_max_pending = ATL1_MAX_RFD;
3494         ring->tx_max_pending = ATL1_MAX_TPD;
3495         ring->rx_pending = rxdr->count;
3496         ring->tx_pending = txdr->count;
3497 }
3498
3499 static int atl1_set_ringparam(struct net_device *netdev,
3500         struct ethtool_ringparam *ring)
3501 {
3502         struct atl1_adapter *adapter = netdev_priv(netdev);
3503         struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3504         struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3505         struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3506
3507         struct atl1_tpd_ring tpd_old, tpd_new;
3508         struct atl1_rfd_ring rfd_old, rfd_new;
3509         struct atl1_rrd_ring rrd_old, rrd_new;
3510         struct atl1_ring_header rhdr_old, rhdr_new;
3511         struct atl1_smb smb;
3512         struct atl1_cmb cmb;
3513         int err;
3514
3515         tpd_old = adapter->tpd_ring;
3516         rfd_old = adapter->rfd_ring;
3517         rrd_old = adapter->rrd_ring;
3518         rhdr_old = adapter->ring_header;
3519
3520         if (netif_running(adapter->netdev))
3521                 atl1_down(adapter);
3522
3523         rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3524         rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3525                         rfdr->count;
3526         rfdr->count = (rfdr->count + 3) & ~3;
3527         rrdr->count = rfdr->count;
3528
3529         tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3530         tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3531                         tpdr->count;
3532         tpdr->count = (tpdr->count + 3) & ~3;
3533
3534         if (netif_running(adapter->netdev)) {
3535                 /* try to get new resources before deleting old */
3536                 err = atl1_setup_ring_resources(adapter);
3537                 if (err)
3538                         goto err_setup_ring;
3539
3540                 /*
3541                  * save the new, restore the old in order to free it,
3542                  * then restore the new back again
3543                  */
3544
3545                 rfd_new = adapter->rfd_ring;
3546                 rrd_new = adapter->rrd_ring;
3547                 tpd_new = adapter->tpd_ring;
3548                 rhdr_new = adapter->ring_header;
3549                 adapter->rfd_ring = rfd_old;
3550                 adapter->rrd_ring = rrd_old;
3551                 adapter->tpd_ring = tpd_old;
3552                 adapter->ring_header = rhdr_old;
3553                 /*
3554                  * Save SMB and CMB, since atl1_free_ring_resources
3555                  * will clear them.
3556                  */
3557                 smb = adapter->smb;
3558                 cmb = adapter->cmb;
3559                 atl1_free_ring_resources(adapter);
3560                 adapter->rfd_ring = rfd_new;
3561                 adapter->rrd_ring = rrd_new;
3562                 adapter->tpd_ring = tpd_new;
3563                 adapter->ring_header = rhdr_new;
3564                 adapter->smb = smb;
3565                 adapter->cmb = cmb;
3566
3567                 err = atl1_up(adapter);
3568                 if (err)
3569                         return err;
3570         }
3571         return 0;
3572
3573 err_setup_ring:
3574         adapter->rfd_ring = rfd_old;
3575         adapter->rrd_ring = rrd_old;
3576         adapter->tpd_ring = tpd_old;
3577         adapter->ring_header = rhdr_old;
3578         atl1_up(adapter);
3579         return err;
3580 }
3581
3582 static void atl1_get_pauseparam(struct net_device *netdev,
3583         struct ethtool_pauseparam *epause)
3584 {
3585         struct atl1_adapter *adapter = netdev_priv(netdev);
3586         struct atl1_hw *hw = &adapter->hw;
3587
3588         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3589             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3590                 epause->autoneg = AUTONEG_ENABLE;
3591         } else {
3592                 epause->autoneg = AUTONEG_DISABLE;
3593         }
3594         epause->rx_pause = 1;
3595         epause->tx_pause = 1;
3596 }
3597
3598 static int atl1_set_pauseparam(struct net_device *netdev,
3599         struct ethtool_pauseparam *epause)
3600 {
3601         struct atl1_adapter *adapter = netdev_priv(netdev);
3602         struct atl1_hw *hw = &adapter->hw;
3603
3604         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3605             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3606                 epause->autoneg = AUTONEG_ENABLE;
3607         } else {
3608                 epause->autoneg = AUTONEG_DISABLE;
3609         }
3610
3611         epause->rx_pause = 1;
3612         epause->tx_pause = 1;
3613
3614         return 0;
3615 }
3616
3617 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3618         u8 *data)
3619 {
3620         u8 *p = data;
3621         int i;
3622
3623         switch (stringset) {
3624         case ETH_SS_STATS:
3625                 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3626                         memcpy(p, atl1_gstrings_stats[i].stat_string,
3627                                 ETH_GSTRING_LEN);
3628                         p += ETH_GSTRING_LEN;
3629                 }
3630                 break;
3631         }
3632 }
3633
3634 static int atl1_nway_reset(struct net_device *netdev)
3635 {
3636         struct atl1_adapter *adapter = netdev_priv(netdev);
3637         struct atl1_hw *hw = &adapter->hw;
3638
3639         if (netif_running(netdev)) {
3640                 u16 phy_data;
3641                 atl1_down(adapter);
3642
3643                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3644                         hw->media_type == MEDIA_TYPE_1000M_FULL) {
3645                         phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3646                 } else {
3647                         switch (hw->media_type) {
3648                         case MEDIA_TYPE_100M_FULL:
3649                                 phy_data = MII_CR_FULL_DUPLEX |
3650                                         MII_CR_SPEED_100 | MII_CR_RESET;
3651                                 break;
3652                         case MEDIA_TYPE_100M_HALF:
3653                                 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3654                                 break;
3655                         case MEDIA_TYPE_10M_FULL:
3656                                 phy_data = MII_CR_FULL_DUPLEX |
3657                                         MII_CR_SPEED_10 | MII_CR_RESET;
3658                                 break;
3659                         default:
3660                                 /* MEDIA_TYPE_10M_HALF */
3661                                 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3662                         }
3663                 }
3664                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3665                 atl1_up(adapter);
3666         }
3667         return 0;
3668 }
3669
3670 static const struct ethtool_ops atl1_ethtool_ops = {
3671         .get_drvinfo            = atl1_get_drvinfo,
3672         .get_wol                = atl1_get_wol,
3673         .set_wol                = atl1_set_wol,
3674         .get_msglevel           = atl1_get_msglevel,
3675         .set_msglevel           = atl1_set_msglevel,
3676         .get_regs_len           = atl1_get_regs_len,
3677         .get_regs               = atl1_get_regs,
3678         .get_ringparam          = atl1_get_ringparam,
3679         .set_ringparam          = atl1_set_ringparam,
3680         .get_pauseparam         = atl1_get_pauseparam,
3681         .set_pauseparam         = atl1_set_pauseparam,
3682         .get_link               = ethtool_op_get_link,
3683         .get_strings            = atl1_get_strings,
3684         .nway_reset             = atl1_nway_reset,
3685         .get_ethtool_stats      = atl1_get_ethtool_stats,
3686         .get_sset_count         = atl1_get_sset_count,
3687         .get_link_ksettings     = atl1_get_link_ksettings,
3688         .set_link_ksettings     = atl1_set_link_ksettings,
3689 };
3690
3691 module_pci_driver(atl1_driver);