GNU Linux-libre 4.14.259-gnu1
[releases.git] / drivers / net / ethernet / apple / bmac.c
1 /*
2  * Network device driver for the BMAC ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1998 Randy Gobbel.
6  *
7  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8  * dynamic procfs inode.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/proc_fs.h>
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/crc32.h>
22 #include <linux/bitrev.h>
23 #include <linux/ethtool.h>
24 #include <linux/slab.h>
25 #include <asm/prom.h>
26 #include <asm/dbdma.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/machdep.h>
31 #include <asm/pmac_feature.h>
32 #include <asm/macio.h>
33 #include <asm/irq.h>
34
35 #include "bmac.h"
36
37 #define trunc_page(x)   ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38 #define round_page(x)   trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39
40 /*
41  * CRC polynomial - used in working out multicast filter bits.
42  */
43 #define ENET_CRCPOLY 0x04c11db7
44
45 /* switch to use multicast code lifted from sunhme driver */
46 #define SUNHME_MULTICAST
47
48 #define N_RX_RING       64
49 #define N_TX_RING       32
50 #define MAX_TX_ACTIVE   1
51 #define ETHERCRC        4
52 #define ETHERMINPACKET  64
53 #define ETHERMTU        1500
54 #define RX_BUFLEN       (ETHERMTU + 14 + ETHERCRC + 2)
55 #define TX_TIMEOUT      HZ      /* 1 second */
56
57 /* Bits in transmit DMA status */
58 #define TX_DMA_ERR      0x80
59
60 #define XXDEBUG(args)
61
62 struct bmac_data {
63         /* volatile struct bmac *bmac; */
64         struct sk_buff_head *queue;
65         volatile struct dbdma_regs __iomem *tx_dma;
66         int tx_dma_intr;
67         volatile struct dbdma_regs __iomem *rx_dma;
68         int rx_dma_intr;
69         volatile struct dbdma_cmd *tx_cmds;     /* xmit dma command list */
70         volatile struct dbdma_cmd *rx_cmds;     /* recv dma command list */
71         struct macio_dev *mdev;
72         int is_bmac_plus;
73         struct sk_buff *rx_bufs[N_RX_RING];
74         int rx_fill;
75         int rx_empty;
76         struct sk_buff *tx_bufs[N_TX_RING];
77         int tx_fill;
78         int tx_empty;
79         unsigned char tx_fullup;
80         struct timer_list tx_timeout;
81         int timeout_active;
82         int sleeping;
83         int opened;
84         unsigned short hash_use_count[64];
85         unsigned short hash_table_mask[4];
86         spinlock_t lock;
87 };
88
89 #if 0 /* Move that to ethtool */
90
91 typedef struct bmac_reg_entry {
92         char *name;
93         unsigned short reg_offset;
94 } bmac_reg_entry_t;
95
96 #define N_REG_ENTRIES 31
97
98 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99         {"MEMADD", MEMADD},
100         {"MEMDATAHI", MEMDATAHI},
101         {"MEMDATALO", MEMDATALO},
102         {"TXPNTR", TXPNTR},
103         {"RXPNTR", RXPNTR},
104         {"IPG1", IPG1},
105         {"IPG2", IPG2},
106         {"ALIMIT", ALIMIT},
107         {"SLOT", SLOT},
108         {"PALEN", PALEN},
109         {"PAPAT", PAPAT},
110         {"TXSFD", TXSFD},
111         {"JAM", JAM},
112         {"TXCFG", TXCFG},
113         {"TXMAX", TXMAX},
114         {"TXMIN", TXMIN},
115         {"PAREG", PAREG},
116         {"DCNT", DCNT},
117         {"NCCNT", NCCNT},
118         {"NTCNT", NTCNT},
119         {"EXCNT", EXCNT},
120         {"LTCNT", LTCNT},
121         {"TXSM", TXSM},
122         {"RXCFG", RXCFG},
123         {"RXMAX", RXMAX},
124         {"RXMIN", RXMIN},
125         {"FRCNT", FRCNT},
126         {"AECNT", AECNT},
127         {"FECNT", FECNT},
128         {"RXSM", RXSM},
129         {"RXCV", RXCV}
130 };
131
132 #endif
133
134 static unsigned char *bmac_emergency_rxbuf;
135
136 /*
137  * Number of bytes of private data per BMAC: allow enough for
138  * the rx and tx dma commands plus a branch dma command each,
139  * and another 16 bytes to allow us to align the dma command
140  * buffers on a 16 byte boundary.
141  */
142 #define PRIV_BYTES      (sizeof(struct bmac_data) \
143         + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144         + sizeof(struct sk_buff_head))
145
146 static int bmac_open(struct net_device *dev);
147 static int bmac_close(struct net_device *dev);
148 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149 static void bmac_set_multicast(struct net_device *dev);
150 static void bmac_reset_and_enable(struct net_device *dev);
151 static void bmac_start_chip(struct net_device *dev);
152 static void bmac_init_chip(struct net_device *dev);
153 static void bmac_init_registers(struct net_device *dev);
154 static void bmac_enable_and_reset_chip(struct net_device *dev);
155 static int bmac_set_address(struct net_device *dev, void *addr);
156 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159 static void bmac_set_timeout(struct net_device *dev);
160 static void bmac_tx_timeout(unsigned long data);
161 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162 static void bmac_start(struct net_device *dev);
163
164 #define DBDMA_SET(x)    ( ((x) | (x) << 16) )
165 #define DBDMA_CLEAR(x)  ( (x) << 16)
166
167 static inline void
168 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169 {
170         __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171 }
172
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
175 {
176         __u32 swap;
177         __asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
178         return swap;
179 }
180
181 static void
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183 {
184         dbdma_st32(&dmap->control,
185                    DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186         eieio();
187 }
188
189 static void
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191 {
192         dbdma_st32(&dmap->control,
193                    DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194         eieio();
195         while (dbdma_ld32(&dmap->status) & RUN)
196                 eieio();
197 }
198
199 static void
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201              unsigned short cmd, unsigned count, unsigned long addr,
202              unsigned long cmd_dep)
203 {
204         out_le16(&cp->command, cmd);
205         out_le16(&cp->req_count, count);
206         out_le32(&cp->phy_addr, addr);
207         out_le32(&cp->cmd_dep, cmd_dep);
208         out_le16(&cp->xfer_status, 0);
209         out_le16(&cp->res_count, 0);
210 }
211
212 static inline
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214 {
215         out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216 }
217
218
219 static inline
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221 {
222         return in_le16((void __iomem *)dev->base_addr + reg_offset);
223 }
224
225 static void
226 bmac_enable_and_reset_chip(struct net_device *dev)
227 {
228         struct bmac_data *bp = netdev_priv(dev);
229         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232         if (rd)
233                 dbdma_reset(rd);
234         if (td)
235                 dbdma_reset(td);
236
237         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238 }
239
240 #define MIFDELAY        udelay(10)
241
242 static unsigned int
243 bmac_mif_readbits(struct net_device *dev, int nb)
244 {
245         unsigned int val = 0;
246
247         while (--nb >= 0) {
248                 bmwrite(dev, MIFCSR, 0);
249                 MIFDELAY;
250                 if (bmread(dev, MIFCSR) & 8)
251                         val |= 1 << nb;
252                 bmwrite(dev, MIFCSR, 1);
253                 MIFDELAY;
254         }
255         bmwrite(dev, MIFCSR, 0);
256         MIFDELAY;
257         bmwrite(dev, MIFCSR, 1);
258         MIFDELAY;
259         return val;
260 }
261
262 static void
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264 {
265         int b;
266
267         while (--nb >= 0) {
268                 b = (val & (1 << nb))? 6: 4;
269                 bmwrite(dev, MIFCSR, b);
270                 MIFDELAY;
271                 bmwrite(dev, MIFCSR, b|1);
272                 MIFDELAY;
273         }
274 }
275
276 static unsigned int
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
278 {
279         unsigned int val;
280
281         bmwrite(dev, MIFCSR, 4);
282         MIFDELAY;
283         bmac_mif_writebits(dev, ~0U, 32);
284         bmac_mif_writebits(dev, 6, 4);
285         bmac_mif_writebits(dev, addr, 10);
286         bmwrite(dev, MIFCSR, 2);
287         MIFDELAY;
288         bmwrite(dev, MIFCSR, 1);
289         MIFDELAY;
290         val = bmac_mif_readbits(dev, 17);
291         bmwrite(dev, MIFCSR, 4);
292         MIFDELAY;
293         return val;
294 }
295
296 static void
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298 {
299         bmwrite(dev, MIFCSR, 4);
300         MIFDELAY;
301         bmac_mif_writebits(dev, ~0U, 32);
302         bmac_mif_writebits(dev, 5, 4);
303         bmac_mif_writebits(dev, addr, 10);
304         bmac_mif_writebits(dev, 2, 2);
305         bmac_mif_writebits(dev, val, 16);
306         bmac_mif_writebits(dev, 3, 2);
307 }
308
309 static void
310 bmac_init_registers(struct net_device *dev)
311 {
312         struct bmac_data *bp = netdev_priv(dev);
313         volatile unsigned short regValue;
314         unsigned short *pWord16;
315         int i;
316
317         /* XXDEBUG(("bmac: enter init_registers\n")); */
318
319         bmwrite(dev, RXRST, RxResetValue);
320         bmwrite(dev, TXRST, TxResetBit);
321
322         i = 100;
323         do {
324                 --i;
325                 udelay(10000);
326                 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327         } while ((regValue & TxResetBit) && i > 0);
328
329         if (!bp->is_bmac_plus) {
330                 regValue = bmread(dev, XCVRIF);
331                 regValue |= ClkBit | SerialMode | COLActiveLow;
332                 bmwrite(dev, XCVRIF, regValue);
333                 udelay(10000);
334         }
335
336         bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338         regValue = bmread(dev, XIFC);
339         regValue |= TxOutputEnable;
340         bmwrite(dev, XIFC, regValue);
341
342         bmread(dev, PAREG);
343
344         /* set collision counters to 0 */
345         bmwrite(dev, NCCNT, 0);
346         bmwrite(dev, NTCNT, 0);
347         bmwrite(dev, EXCNT, 0);
348         bmwrite(dev, LTCNT, 0);
349
350         /* set rx counters to 0 */
351         bmwrite(dev, FRCNT, 0);
352         bmwrite(dev, LECNT, 0);
353         bmwrite(dev, AECNT, 0);
354         bmwrite(dev, FECNT, 0);
355         bmwrite(dev, RXCV, 0);
356
357         /* set tx fifo information */
358         bmwrite(dev, TXTH, 4);  /* 4 octets before tx starts */
359
360         bmwrite(dev, TXFIFOCSR, 0);     /* first disable txFIFO */
361         bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363         /* set rx fifo information */
364         bmwrite(dev, RXFIFOCSR, 0);     /* first disable rxFIFO */
365         bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367         //bmwrite(dev, TXCFG, TxMACEnable);             /* TxNeverGiveUp maybe later */
368         bmread(dev, STATUS);            /* read it just to clear it */
369
370         /* zero out the chip Hash Filter registers */
371         for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372         bmwrite(dev, BHASH3, bp->hash_table_mask[0]);   /* bits 15 - 0 */
373         bmwrite(dev, BHASH2, bp->hash_table_mask[1]);   /* bits 31 - 16 */
374         bmwrite(dev, BHASH1, bp->hash_table_mask[2]);   /* bits 47 - 32 */
375         bmwrite(dev, BHASH0, bp->hash_table_mask[3]);   /* bits 63 - 48 */
376
377         pWord16 = (unsigned short *)dev->dev_addr;
378         bmwrite(dev, MADD0, *pWord16++);
379         bmwrite(dev, MADD1, *pWord16++);
380         bmwrite(dev, MADD2, *pWord16);
381
382         bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384         bmwrite(dev, INTDISABLE, EnableNormal);
385 }
386
387 #if 0
388 static void
389 bmac_disable_interrupts(struct net_device *dev)
390 {
391         bmwrite(dev, INTDISABLE, DisableAll);
392 }
393
394 static void
395 bmac_enable_interrupts(struct net_device *dev)
396 {
397         bmwrite(dev, INTDISABLE, EnableNormal);
398 }
399 #endif
400
401
402 static void
403 bmac_start_chip(struct net_device *dev)
404 {
405         struct bmac_data *bp = netdev_priv(dev);
406         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407         unsigned short  oldConfig;
408
409         /* enable rx dma channel */
410         dbdma_continue(rd);
411
412         oldConfig = bmread(dev, TXCFG);
413         bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414
415         /* turn on rx plus any other bits already on (promiscuous possibly) */
416         oldConfig = bmread(dev, RXCFG);
417         bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418         udelay(20000);
419 }
420
421 static void
422 bmac_init_phy(struct net_device *dev)
423 {
424         unsigned int addr;
425         struct bmac_data *bp = netdev_priv(dev);
426
427         printk(KERN_DEBUG "phy registers:");
428         for (addr = 0; addr < 32; ++addr) {
429                 if ((addr & 7) == 0)
430                         printk(KERN_DEBUG);
431                 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432         }
433         printk(KERN_CONT "\n");
434
435         if (bp->is_bmac_plus) {
436                 unsigned int capable, ctrl;
437
438                 ctrl = bmac_mif_read(dev, 0);
439                 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440                 if (bmac_mif_read(dev, 4) != capable ||
441                     (ctrl & 0x1000) == 0) {
442                         bmac_mif_write(dev, 4, capable);
443                         bmac_mif_write(dev, 0, 0x1200);
444                 } else
445                         bmac_mif_write(dev, 0, 0x1000);
446         }
447 }
448
449 static void bmac_init_chip(struct net_device *dev)
450 {
451         bmac_init_phy(dev);
452         bmac_init_registers(dev);
453 }
454
455 #ifdef CONFIG_PM
456 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457 {
458         struct net_device* dev = macio_get_drvdata(mdev);
459         struct bmac_data *bp = netdev_priv(dev);
460         unsigned long flags;
461         unsigned short config;
462         int i;
463
464         netif_device_detach(dev);
465         /* prolly should wait for dma to finish & turn off the chip */
466         spin_lock_irqsave(&bp->lock, flags);
467         if (bp->timeout_active) {
468                 del_timer(&bp->tx_timeout);
469                 bp->timeout_active = 0;
470         }
471         disable_irq(dev->irq);
472         disable_irq(bp->tx_dma_intr);
473         disable_irq(bp->rx_dma_intr);
474         bp->sleeping = 1;
475         spin_unlock_irqrestore(&bp->lock, flags);
476         if (bp->opened) {
477                 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478                 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479
480                 config = bmread(dev, RXCFG);
481                 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482                 config = bmread(dev, TXCFG);
483                 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484                 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485                 /* disable rx and tx dma */
486                 rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));   /* clear run bit */
487                 td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));   /* clear run bit */
488                 /* free some skb's */
489                 for (i=0; i<N_RX_RING; i++) {
490                         if (bp->rx_bufs[i] != NULL) {
491                                 dev_kfree_skb(bp->rx_bufs[i]);
492                                 bp->rx_bufs[i] = NULL;
493                         }
494                 }
495                 for (i = 0; i<N_TX_RING; i++) {
496                         if (bp->tx_bufs[i] != NULL) {
497                                 dev_kfree_skb(bp->tx_bufs[i]);
498                                 bp->tx_bufs[i] = NULL;
499                         }
500                 }
501         }
502         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503         return 0;
504 }
505
506 static int bmac_resume(struct macio_dev *mdev)
507 {
508         struct net_device* dev = macio_get_drvdata(mdev);
509         struct bmac_data *bp = netdev_priv(dev);
510
511         /* see if this is enough */
512         if (bp->opened)
513                 bmac_reset_and_enable(dev);
514
515         enable_irq(dev->irq);
516         enable_irq(bp->tx_dma_intr);
517         enable_irq(bp->rx_dma_intr);
518         netif_device_attach(dev);
519
520         return 0;
521 }
522 #endif /* CONFIG_PM */
523
524 static int bmac_set_address(struct net_device *dev, void *addr)
525 {
526         struct bmac_data *bp = netdev_priv(dev);
527         unsigned char *p = addr;
528         unsigned short *pWord16;
529         unsigned long flags;
530         int i;
531
532         XXDEBUG(("bmac: enter set_address\n"));
533         spin_lock_irqsave(&bp->lock, flags);
534
535         for (i = 0; i < 6; ++i) {
536                 dev->dev_addr[i] = p[i];
537         }
538         /* load up the hardware address */
539         pWord16  = (unsigned short *)dev->dev_addr;
540         bmwrite(dev, MADD0, *pWord16++);
541         bmwrite(dev, MADD1, *pWord16++);
542         bmwrite(dev, MADD2, *pWord16);
543
544         spin_unlock_irqrestore(&bp->lock, flags);
545         XXDEBUG(("bmac: exit set_address\n"));
546         return 0;
547 }
548
549 static inline void bmac_set_timeout(struct net_device *dev)
550 {
551         struct bmac_data *bp = netdev_priv(dev);
552         unsigned long flags;
553
554         spin_lock_irqsave(&bp->lock, flags);
555         if (bp->timeout_active)
556                 del_timer(&bp->tx_timeout);
557         bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558         bp->tx_timeout.function = bmac_tx_timeout;
559         bp->tx_timeout.data = (unsigned long) dev;
560         add_timer(&bp->tx_timeout);
561         bp->timeout_active = 1;
562         spin_unlock_irqrestore(&bp->lock, flags);
563 }
564
565 static void
566 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567 {
568         void *vaddr;
569         unsigned long baddr;
570         unsigned long len;
571
572         len = skb->len;
573         vaddr = skb->data;
574         baddr = virt_to_bus(vaddr);
575
576         dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577 }
578
579 static void
580 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581 {
582         unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583
584         dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585                      virt_to_bus(addr), 0);
586 }
587
588 static void
589 bmac_init_tx_ring(struct bmac_data *bp)
590 {
591         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592
593         memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594
595         bp->tx_empty = 0;
596         bp->tx_fill = 0;
597         bp->tx_fullup = 0;
598
599         /* put a branch at the end of the tx command list */
600         dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601                      (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602
603         /* reset tx dma */
604         dbdma_reset(td);
605         out_le32(&td->wait_sel, 0x00200020);
606         out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607 }
608
609 static int
610 bmac_init_rx_ring(struct net_device *dev)
611 {
612         struct bmac_data *bp = netdev_priv(dev);
613         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614         int i;
615         struct sk_buff *skb;
616
617         /* initialize list of sk_buffs for receiving and set up recv dma */
618         memset((char *)bp->rx_cmds, 0,
619                (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620         for (i = 0; i < N_RX_RING; i++) {
621                 if ((skb = bp->rx_bufs[i]) == NULL) {
622                         bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
623                         if (skb != NULL)
624                                 skb_reserve(skb, 2);
625                 }
626                 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627         }
628
629         bp->rx_empty = 0;
630         bp->rx_fill = i;
631
632         /* Put a branch back to the beginning of the receive command list */
633         dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634                      (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636         /* start rx dma */
637         dbdma_reset(rd);
638         out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640         return 1;
641 }
642
643
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646         struct bmac_data *bp = netdev_priv(dev);
647         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648         int i;
649
650         /* see if there's a free slot in the tx ring */
651         /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652         /*           bp->tx_empty, bp->tx_fill)); */
653         i = bp->tx_fill + 1;
654         if (i >= N_TX_RING)
655                 i = 0;
656         if (i == bp->tx_empty) {
657                 netif_stop_queue(dev);
658                 bp->tx_fullup = 1;
659                 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660                 return -1;              /* can't take it at the moment */
661         }
662
663         dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665         bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667         bp->tx_bufs[bp->tx_fill] = skb;
668         bp->tx_fill = i;
669
670         dev->stats.tx_bytes += skb->len;
671
672         dbdma_continue(td);
673
674         return 0;
675 }
676
677 static int rxintcount;
678
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681         struct net_device *dev = (struct net_device *) dev_id;
682         struct bmac_data *bp = netdev_priv(dev);
683         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684         volatile struct dbdma_cmd *cp;
685         int i, nb, stat;
686         struct sk_buff *skb;
687         unsigned int residual;
688         int last;
689         unsigned long flags;
690
691         spin_lock_irqsave(&bp->lock, flags);
692
693         if (++rxintcount < 10) {
694                 XXDEBUG(("bmac_rxdma_intr\n"));
695         }
696
697         last = -1;
698         i = bp->rx_empty;
699
700         while (1) {
701                 cp = &bp->rx_cmds[i];
702                 stat = le16_to_cpu(cp->xfer_status);
703                 residual = le16_to_cpu(cp->res_count);
704                 if ((stat & ACTIVE) == 0)
705                         break;
706                 nb = RX_BUFLEN - residual - 2;
707                 if (nb < (ETHERMINPACKET - ETHERCRC)) {
708                         skb = NULL;
709                         dev->stats.rx_length_errors++;
710                         dev->stats.rx_errors++;
711                 } else {
712                         skb = bp->rx_bufs[i];
713                         bp->rx_bufs[i] = NULL;
714                 }
715                 if (skb != NULL) {
716                         nb -= ETHERCRC;
717                         skb_put(skb, nb);
718                         skb->protocol = eth_type_trans(skb, dev);
719                         netif_rx(skb);
720                         ++dev->stats.rx_packets;
721                         dev->stats.rx_bytes += nb;
722                 } else {
723                         ++dev->stats.rx_dropped;
724                 }
725                 if ((skb = bp->rx_bufs[i]) == NULL) {
726                         bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
727                         if (skb != NULL)
728                                 skb_reserve(bp->rx_bufs[i], 2);
729                 }
730                 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731                 cp->res_count = cpu_to_le16(0);
732                 cp->xfer_status = cpu_to_le16(0);
733                 last = i;
734                 if (++i >= N_RX_RING) i = 0;
735         }
736
737         if (last != -1) {
738                 bp->rx_fill = last;
739                 bp->rx_empty = i;
740         }
741
742         dbdma_continue(rd);
743         spin_unlock_irqrestore(&bp->lock, flags);
744
745         if (rxintcount < 10) {
746                 XXDEBUG(("bmac_rxdma_intr done\n"));
747         }
748         return IRQ_HANDLED;
749 }
750
751 static int txintcount;
752
753 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754 {
755         struct net_device *dev = (struct net_device *) dev_id;
756         struct bmac_data *bp = netdev_priv(dev);
757         volatile struct dbdma_cmd *cp;
758         int stat;
759         unsigned long flags;
760
761         spin_lock_irqsave(&bp->lock, flags);
762
763         if (txintcount++ < 10) {
764                 XXDEBUG(("bmac_txdma_intr\n"));
765         }
766
767         /*     del_timer(&bp->tx_timeout); */
768         /*     bp->timeout_active = 0; */
769
770         while (1) {
771                 cp = &bp->tx_cmds[bp->tx_empty];
772                 stat = le16_to_cpu(cp->xfer_status);
773                 if (txintcount < 10) {
774                         XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775                 }
776                 if (!(stat & ACTIVE)) {
777                         /*
778                          * status field might not have been filled by DBDMA
779                          */
780                         if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781                                 break;
782                 }
783
784                 if (bp->tx_bufs[bp->tx_empty]) {
785                         ++dev->stats.tx_packets;
786                         dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787                 }
788                 bp->tx_bufs[bp->tx_empty] = NULL;
789                 bp->tx_fullup = 0;
790                 netif_wake_queue(dev);
791                 if (++bp->tx_empty >= N_TX_RING)
792                         bp->tx_empty = 0;
793                 if (bp->tx_empty == bp->tx_fill)
794                         break;
795         }
796
797         spin_unlock_irqrestore(&bp->lock, flags);
798
799         if (txintcount < 10) {
800                 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801         }
802
803         bmac_start(dev);
804         return IRQ_HANDLED;
805 }
806
807 #ifndef SUNHME_MULTICAST
808 /* Real fast bit-reversal algorithm, 6-bit values */
809 static int reverse6[64] = {
810         0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811         0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812         0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813         0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814         0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815         0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816         0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817         0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818 };
819
820 static unsigned int
821 crc416(unsigned int curval, unsigned short nxtval)
822 {
823         register unsigned int counter, cur = curval, next = nxtval;
824         register int high_crc_set, low_data_set;
825
826         /* Swap bytes */
827         next = ((next & 0x00FF) << 8) | (next >> 8);
828
829         /* Compute bit-by-bit */
830         for (counter = 0; counter < 16; ++counter) {
831                 /* is high CRC bit set? */
832                 if ((cur & 0x80000000) == 0) high_crc_set = 0;
833                 else high_crc_set = 1;
834
835                 cur = cur << 1;
836
837                 if ((next & 0x0001) == 0) low_data_set = 0;
838                 else low_data_set = 1;
839
840                 next = next >> 1;
841
842                 /* do the XOR */
843                 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844         }
845         return cur;
846 }
847
848 static unsigned int
849 bmac_crc(unsigned short *address)
850 {
851         unsigned int newcrc;
852
853         XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854         newcrc = crc416(0xffffffff, *address);  /* address bits 47 - 32 */
855         newcrc = crc416(newcrc, address[1]);    /* address bits 31 - 16 */
856         newcrc = crc416(newcrc, address[2]);    /* address bits 15 - 0  */
857
858         return(newcrc);
859 }
860
861 /*
862  * Add requested mcast addr to BMac's hash table filter.
863  *
864  */
865
866 static void
867 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868 {
869         unsigned int     crc;
870         unsigned short   mask;
871
872         if (!(*addr)) return;
873         crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874         crc = reverse6[crc];    /* Hyperfast bit-reversing algorithm */
875         if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876         mask = crc % 16;
877         mask = (unsigned char)1 << mask;
878         bp->hash_use_count[crc/16] |= mask;
879 }
880
881 static void
882 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883 {
884         unsigned int crc;
885         unsigned char mask;
886
887         /* Now, delete the address from the filter copy, as indicated */
888         crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889         crc = reverse6[crc];    /* Hyperfast bit-reversing algorithm */
890         if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891         if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892         mask = crc % 16;
893         mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894         bp->hash_table_mask[crc/16] &= mask;
895 }
896
897 /*
898  * Sync the adapter with the software copy of the multicast mask
899  *  (logical address filter).
900  */
901
902 static void
903 bmac_rx_off(struct net_device *dev)
904 {
905         unsigned short rx_cfg;
906
907         rx_cfg = bmread(dev, RXCFG);
908         rx_cfg &= ~RxMACEnable;
909         bmwrite(dev, RXCFG, rx_cfg);
910         do {
911                 rx_cfg = bmread(dev, RXCFG);
912         }  while (rx_cfg & RxMACEnable);
913 }
914
915 unsigned short
916 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917 {
918         unsigned short rx_cfg;
919
920         rx_cfg = bmread(dev, RXCFG);
921         rx_cfg |= RxMACEnable;
922         if (hash_enable) rx_cfg |= RxHashFilterEnable;
923         else rx_cfg &= ~RxHashFilterEnable;
924         if (promisc_enable) rx_cfg |= RxPromiscEnable;
925         else rx_cfg &= ~RxPromiscEnable;
926         bmwrite(dev, RXRST, RxResetValue);
927         bmwrite(dev, RXFIFOCSR, 0);     /* first disable rxFIFO */
928         bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929         bmwrite(dev, RXCFG, rx_cfg );
930         return rx_cfg;
931 }
932
933 static void
934 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935 {
936         bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937         bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938         bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939         bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940 }
941
942 #if 0
943 static void
944 bmac_add_multi(struct net_device *dev,
945                struct bmac_data *bp, unsigned char *addr)
946 {
947         /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948         bmac_addhash(bp, addr);
949         bmac_rx_off(dev);
950         bmac_update_hash_table_mask(dev, bp);
951         bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952         /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953 }
954
955 static void
956 bmac_remove_multi(struct net_device *dev,
957                   struct bmac_data *bp, unsigned char *addr)
958 {
959         bmac_removehash(bp, addr);
960         bmac_rx_off(dev);
961         bmac_update_hash_table_mask(dev, bp);
962         bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963 }
964 #endif
965
966 /* Set or clear the multicast filter for this adaptor.
967     num_addrs == -1     Promiscuous mode, receive all packets
968     num_addrs == 0      Normal mode, clear multicast list
969     num_addrs > 0       Multicast mode, receive normal and MC packets, and do
970                         best-effort filtering.
971  */
972 static void bmac_set_multicast(struct net_device *dev)
973 {
974         struct netdev_hw_addr *ha;
975         struct bmac_data *bp = netdev_priv(dev);
976         int num_addrs = netdev_mc_count(dev);
977         unsigned short rx_cfg;
978         int i;
979
980         if (bp->sleeping)
981                 return;
982
983         XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984
985         if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986                 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987                 bmac_update_hash_table_mask(dev, bp);
988                 rx_cfg = bmac_rx_on(dev, 1, 0);
989                 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990         } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991                 rx_cfg = bmread(dev, RXCFG);
992                 rx_cfg |= RxPromiscEnable;
993                 bmwrite(dev, RXCFG, rx_cfg);
994                 rx_cfg = bmac_rx_on(dev, 0, 1);
995                 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996         } else {
997                 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998                 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999                 if (num_addrs == 0) {
1000                         rx_cfg = bmac_rx_on(dev, 0, 0);
1001                         XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002                 } else {
1003                         netdev_for_each_mc_addr(ha, dev)
1004                                 bmac_addhash(bp, ha->addr);
1005                         bmac_update_hash_table_mask(dev, bp);
1006                         rx_cfg = bmac_rx_on(dev, 1, 0);
1007                         XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008                 }
1009         }
1010         /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011 }
1012 #else /* ifdef SUNHME_MULTICAST */
1013
1014 /* The version of set_multicast below was lifted from sunhme.c */
1015
1016 static void bmac_set_multicast(struct net_device *dev)
1017 {
1018         struct netdev_hw_addr *ha;
1019         unsigned short rx_cfg;
1020         u32 crc;
1021
1022         if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023                 bmwrite(dev, BHASH0, 0xffff);
1024                 bmwrite(dev, BHASH1, 0xffff);
1025                 bmwrite(dev, BHASH2, 0xffff);
1026                 bmwrite(dev, BHASH3, 0xffff);
1027         } else if(dev->flags & IFF_PROMISC) {
1028                 rx_cfg = bmread(dev, RXCFG);
1029                 rx_cfg |= RxPromiscEnable;
1030                 bmwrite(dev, RXCFG, rx_cfg);
1031         } else {
1032                 u16 hash_table[4] = { 0 };
1033
1034                 rx_cfg = bmread(dev, RXCFG);
1035                 rx_cfg &= ~RxPromiscEnable;
1036                 bmwrite(dev, RXCFG, rx_cfg);
1037
1038                 netdev_for_each_mc_addr(ha, dev) {
1039                         crc = ether_crc_le(6, ha->addr);
1040                         crc >>= 26;
1041                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1042                 }
1043                 bmwrite(dev, BHASH0, hash_table[0]);
1044                 bmwrite(dev, BHASH1, hash_table[1]);
1045                 bmwrite(dev, BHASH2, hash_table[2]);
1046                 bmwrite(dev, BHASH3, hash_table[3]);
1047         }
1048 }
1049 #endif /* SUNHME_MULTICAST */
1050
1051 static int miscintcount;
1052
1053 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1054 {
1055         struct net_device *dev = (struct net_device *) dev_id;
1056         unsigned int status = bmread(dev, STATUS);
1057         if (miscintcount++ < 10) {
1058                 XXDEBUG(("bmac_misc_intr\n"));
1059         }
1060         /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1061         /*     bmac_txdma_intr_inner(irq, dev_id); */
1062         /*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1063         if (status & RxErrorMask) dev->stats.rx_errors++;
1064         if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1065         if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1066         if (status & RxOverFlow) dev->stats.rx_over_errors++;
1067         if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1068
1069         /*   if (status & FrameSent) dev->stats.tx_dropped++; */
1070         if (status & TxErrorMask) dev->stats.tx_errors++;
1071         if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1072         if (status & TxNormalCollExp) dev->stats.collisions++;
1073         return IRQ_HANDLED;
1074 }
1075
1076 /*
1077  * Procedure for reading EEPROM
1078  */
1079 #define SROMAddressLength       5
1080 #define DataInOn                0x0008
1081 #define DataInOff               0x0000
1082 #define Clk                     0x0002
1083 #define ChipSelect              0x0001
1084 #define SDIShiftCount           3
1085 #define SD0ShiftCount           2
1086 #define DelayValue              1000    /* number of microseconds */
1087 #define SROMStartOffset         10      /* this is in words */
1088 #define SROMReadCount           3       /* number of words to read from SROM */
1089 #define SROMAddressBits         6
1090 #define EnetAddressOffset       20
1091
1092 static unsigned char
1093 bmac_clock_out_bit(struct net_device *dev)
1094 {
1095         unsigned short         data;
1096         unsigned short         val;
1097
1098         bmwrite(dev, SROMCSR, ChipSelect | Clk);
1099         udelay(DelayValue);
1100
1101         data = bmread(dev, SROMCSR);
1102         udelay(DelayValue);
1103         val = (data >> SD0ShiftCount) & 1;
1104
1105         bmwrite(dev, SROMCSR, ChipSelect);
1106         udelay(DelayValue);
1107
1108         return val;
1109 }
1110
1111 static void
1112 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1113 {
1114         unsigned short data;
1115
1116         if (val != 0 && val != 1) return;
1117
1118         data = (val << SDIShiftCount);
1119         bmwrite(dev, SROMCSR, data | ChipSelect  );
1120         udelay(DelayValue);
1121
1122         bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1123         udelay(DelayValue);
1124
1125         bmwrite(dev, SROMCSR, data | ChipSelect);
1126         udelay(DelayValue);
1127 }
1128
1129 static void
1130 reset_and_select_srom(struct net_device *dev)
1131 {
1132         /* first reset */
1133         bmwrite(dev, SROMCSR, 0);
1134         udelay(DelayValue);
1135
1136         /* send it the read command (110) */
1137         bmac_clock_in_bit(dev, 1);
1138         bmac_clock_in_bit(dev, 1);
1139         bmac_clock_in_bit(dev, 0);
1140 }
1141
1142 static unsigned short
1143 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1144 {
1145         unsigned short data, val;
1146         int i;
1147
1148         /* send out the address we want to read from */
1149         for (i = 0; i < addr_len; i++)  {
1150                 val = addr >> (addr_len-i-1);
1151                 bmac_clock_in_bit(dev, val & 1);
1152         }
1153
1154         /* Now read in the 16-bit data */
1155         data = 0;
1156         for (i = 0; i < 16; i++)        {
1157                 val = bmac_clock_out_bit(dev);
1158                 data <<= 1;
1159                 data |= val;
1160         }
1161         bmwrite(dev, SROMCSR, 0);
1162
1163         return data;
1164 }
1165
1166 /*
1167  * It looks like Cogent and SMC use different methods for calculating
1168  * checksums. What a pain..
1169  */
1170
1171 static int
1172 bmac_verify_checksum(struct net_device *dev)
1173 {
1174         unsigned short data, storedCS;
1175
1176         reset_and_select_srom(dev);
1177         data = read_srom(dev, 3, SROMAddressBits);
1178         storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1179
1180         return 0;
1181 }
1182
1183
1184 static void
1185 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1186 {
1187         int i;
1188         unsigned short data;
1189
1190         for (i = 0; i < 3; i++)
1191                 {
1192                         reset_and_select_srom(dev);
1193                         data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1194                         ea[2*i]   = bitrev8(data & 0x0ff);
1195                         ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1196                 }
1197 }
1198
1199 static void bmac_reset_and_enable(struct net_device *dev)
1200 {
1201         struct bmac_data *bp = netdev_priv(dev);
1202         unsigned long flags;
1203         struct sk_buff *skb;
1204         unsigned char *data;
1205
1206         spin_lock_irqsave(&bp->lock, flags);
1207         bmac_enable_and_reset_chip(dev);
1208         bmac_init_tx_ring(bp);
1209         bmac_init_rx_ring(dev);
1210         bmac_init_chip(dev);
1211         bmac_start_chip(dev);
1212         bmwrite(dev, INTDISABLE, EnableNormal);
1213         bp->sleeping = 0;
1214
1215         /*
1216          * It seems that the bmac can't receive until it's transmitted
1217          * a packet.  So we give it a dummy packet to transmit.
1218          */
1219         skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1220         if (skb != NULL) {
1221                 data = skb_put_zero(skb, ETHERMINPACKET);
1222                 memcpy(data, dev->dev_addr, ETH_ALEN);
1223                 memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1224                 bmac_transmit_packet(skb, dev);
1225         }
1226         spin_unlock_irqrestore(&bp->lock, flags);
1227 }
1228
1229 static const struct ethtool_ops bmac_ethtool_ops = {
1230         .get_link               = ethtool_op_get_link,
1231 };
1232
1233 static const struct net_device_ops bmac_netdev_ops = {
1234         .ndo_open               = bmac_open,
1235         .ndo_stop               = bmac_close,
1236         .ndo_start_xmit         = bmac_output,
1237         .ndo_set_rx_mode        = bmac_set_multicast,
1238         .ndo_set_mac_address    = bmac_set_address,
1239         .ndo_validate_addr      = eth_validate_addr,
1240 };
1241
1242 static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1243 {
1244         int j, rev, ret;
1245         struct bmac_data *bp;
1246         const unsigned char *prop_addr;
1247         unsigned char addr[6];
1248         struct net_device *dev;
1249         int is_bmac_plus = ((int)match->data) != 0;
1250
1251         if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1252                 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1253                 return -ENODEV;
1254         }
1255         prop_addr = of_get_property(macio_get_of_node(mdev),
1256                         "mac-address", NULL);
1257         if (prop_addr == NULL) {
1258                 prop_addr = of_get_property(macio_get_of_node(mdev),
1259                                 "local-mac-address", NULL);
1260                 if (prop_addr == NULL) {
1261                         printk(KERN_ERR "BMAC: Can't get mac-address\n");
1262                         return -ENODEV;
1263                 }
1264         }
1265         memcpy(addr, prop_addr, sizeof(addr));
1266
1267         dev = alloc_etherdev(PRIV_BYTES);
1268         if (!dev)
1269                 return -ENOMEM;
1270
1271         bp = netdev_priv(dev);
1272         SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1273         macio_set_drvdata(mdev, dev);
1274
1275         bp->mdev = mdev;
1276         spin_lock_init(&bp->lock);
1277
1278         if (macio_request_resources(mdev, "bmac")) {
1279                 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1280                 goto out_free;
1281         }
1282
1283         dev->base_addr = (unsigned long)
1284                 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1285         if (dev->base_addr == 0)
1286                 goto out_release;
1287
1288         dev->irq = macio_irq(mdev, 0);
1289
1290         bmac_enable_and_reset_chip(dev);
1291         bmwrite(dev, INTDISABLE, DisableAll);
1292
1293         rev = addr[0] == 0 && addr[1] == 0xA0;
1294         for (j = 0; j < 6; ++j)
1295                 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1296
1297         /* Enable chip without interrupts for now */
1298         bmac_enable_and_reset_chip(dev);
1299         bmwrite(dev, INTDISABLE, DisableAll);
1300
1301         dev->netdev_ops = &bmac_netdev_ops;
1302         dev->ethtool_ops = &bmac_ethtool_ops;
1303
1304         bmac_get_station_address(dev, addr);
1305         if (bmac_verify_checksum(dev) != 0)
1306                 goto err_out_iounmap;
1307
1308         bp->is_bmac_plus = is_bmac_plus;
1309         bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1310         if (!bp->tx_dma)
1311                 goto err_out_iounmap;
1312         bp->tx_dma_intr = macio_irq(mdev, 1);
1313         bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1314         if (!bp->rx_dma)
1315                 goto err_out_iounmap_tx;
1316         bp->rx_dma_intr = macio_irq(mdev, 2);
1317
1318         bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1319         bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1320
1321         bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1322         skb_queue_head_init(bp->queue);
1323
1324         init_timer(&bp->tx_timeout);
1325
1326         ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1327         if (ret) {
1328                 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1329                 goto err_out_iounmap_rx;
1330         }
1331         ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1332         if (ret) {
1333                 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1334                 goto err_out_irq0;
1335         }
1336         ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1337         if (ret) {
1338                 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1339                 goto err_out_irq1;
1340         }
1341
1342         /* Mask chip interrupts and disable chip, will be
1343          * re-enabled on open()
1344          */
1345         disable_irq(dev->irq);
1346         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1347
1348         if (register_netdev(dev) != 0) {
1349                 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1350                 goto err_out_irq2;
1351         }
1352
1353         printk(KERN_INFO "%s: BMAC%s at %pM",
1354                dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1355         XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1356         printk("\n");
1357
1358         return 0;
1359
1360 err_out_irq2:
1361         free_irq(bp->rx_dma_intr, dev);
1362 err_out_irq1:
1363         free_irq(bp->tx_dma_intr, dev);
1364 err_out_irq0:
1365         free_irq(dev->irq, dev);
1366 err_out_iounmap_rx:
1367         iounmap(bp->rx_dma);
1368 err_out_iounmap_tx:
1369         iounmap(bp->tx_dma);
1370 err_out_iounmap:
1371         iounmap((void __iomem *)dev->base_addr);
1372 out_release:
1373         macio_release_resources(mdev);
1374 out_free:
1375         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1376         free_netdev(dev);
1377
1378         return -ENODEV;
1379 }
1380
1381 static int bmac_open(struct net_device *dev)
1382 {
1383         struct bmac_data *bp = netdev_priv(dev);
1384         /* XXDEBUG(("bmac: enter open\n")); */
1385         /* reset the chip */
1386         bp->opened = 1;
1387         bmac_reset_and_enable(dev);
1388         enable_irq(dev->irq);
1389         return 0;
1390 }
1391
1392 static int bmac_close(struct net_device *dev)
1393 {
1394         struct bmac_data *bp = netdev_priv(dev);
1395         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1396         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1397         unsigned short config;
1398         int i;
1399
1400         bp->sleeping = 1;
1401
1402         /* disable rx and tx */
1403         config = bmread(dev, RXCFG);
1404         bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1405
1406         config = bmread(dev, TXCFG);
1407         bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1408
1409         bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1410
1411         /* disable rx and tx dma */
1412         rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));   /* clear run bit */
1413         td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));   /* clear run bit */
1414
1415         /* free some skb's */
1416         XXDEBUG(("bmac: free rx bufs\n"));
1417         for (i=0; i<N_RX_RING; i++) {
1418                 if (bp->rx_bufs[i] != NULL) {
1419                         dev_kfree_skb(bp->rx_bufs[i]);
1420                         bp->rx_bufs[i] = NULL;
1421                 }
1422         }
1423         XXDEBUG(("bmac: free tx bufs\n"));
1424         for (i = 0; i<N_TX_RING; i++) {
1425                 if (bp->tx_bufs[i] != NULL) {
1426                         dev_kfree_skb(bp->tx_bufs[i]);
1427                         bp->tx_bufs[i] = NULL;
1428                 }
1429         }
1430         XXDEBUG(("bmac: all bufs freed\n"));
1431
1432         bp->opened = 0;
1433         disable_irq(dev->irq);
1434         pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1435
1436         return 0;
1437 }
1438
1439 static void
1440 bmac_start(struct net_device *dev)
1441 {
1442         struct bmac_data *bp = netdev_priv(dev);
1443         int i;
1444         struct sk_buff *skb;
1445         unsigned long flags;
1446
1447         if (bp->sleeping)
1448                 return;
1449
1450         spin_lock_irqsave(&bp->lock, flags);
1451         while (1) {
1452                 i = bp->tx_fill + 1;
1453                 if (i >= N_TX_RING)
1454                         i = 0;
1455                 if (i == bp->tx_empty)
1456                         break;
1457                 skb = skb_dequeue(bp->queue);
1458                 if (skb == NULL)
1459                         break;
1460                 bmac_transmit_packet(skb, dev);
1461         }
1462         spin_unlock_irqrestore(&bp->lock, flags);
1463 }
1464
1465 static int
1466 bmac_output(struct sk_buff *skb, struct net_device *dev)
1467 {
1468         struct bmac_data *bp = netdev_priv(dev);
1469         skb_queue_tail(bp->queue, skb);
1470         bmac_start(dev);
1471         return NETDEV_TX_OK;
1472 }
1473
1474 static void bmac_tx_timeout(unsigned long data)
1475 {
1476         struct net_device *dev = (struct net_device *) data;
1477         struct bmac_data *bp = netdev_priv(dev);
1478         volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1479         volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1480         volatile struct dbdma_cmd *cp;
1481         unsigned long flags;
1482         unsigned short config, oldConfig;
1483         int i;
1484
1485         XXDEBUG(("bmac: tx_timeout called\n"));
1486         spin_lock_irqsave(&bp->lock, flags);
1487         bp->timeout_active = 0;
1488
1489         /* update various counters */
1490 /*      bmac_handle_misc_intrs(bp, 0); */
1491
1492         cp = &bp->tx_cmds[bp->tx_empty];
1493 /*      XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1494 /*         le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1495 /*         mb->pr, mb->xmtfs, mb->fifofc)); */
1496
1497         /* turn off both tx and rx and reset the chip */
1498         config = bmread(dev, RXCFG);
1499         bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1500         config = bmread(dev, TXCFG);
1501         bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1502         out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1503         printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1504         bmac_enable_and_reset_chip(dev);
1505
1506         /* restart rx dma */
1507         cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1508         out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1509         out_le16(&cp->xfer_status, 0);
1510         out_le32(&rd->cmdptr, virt_to_bus(cp));
1511         out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1512
1513         /* fix up the transmit side */
1514         XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1515                  bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1516         i = bp->tx_empty;
1517         ++dev->stats.tx_errors;
1518         if (i != bp->tx_fill) {
1519                 dev_kfree_skb(bp->tx_bufs[i]);
1520                 bp->tx_bufs[i] = NULL;
1521                 if (++i >= N_TX_RING) i = 0;
1522                 bp->tx_empty = i;
1523         }
1524         bp->tx_fullup = 0;
1525         netif_wake_queue(dev);
1526         if (i != bp->tx_fill) {
1527                 cp = &bp->tx_cmds[i];
1528                 out_le16(&cp->xfer_status, 0);
1529                 out_le16(&cp->command, OUTPUT_LAST);
1530                 out_le32(&td->cmdptr, virt_to_bus(cp));
1531                 out_le32(&td->control, DBDMA_SET(RUN));
1532                 /*      bmac_set_timeout(dev); */
1533                 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1534         }
1535
1536         /* turn it back on */
1537         oldConfig = bmread(dev, RXCFG);
1538         bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1539         oldConfig = bmread(dev, TXCFG);
1540         bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1541
1542         spin_unlock_irqrestore(&bp->lock, flags);
1543 }
1544
1545 #if 0
1546 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1547 {
1548         int i,*ip;
1549
1550         for (i=0;i< count;i++) {
1551                 ip = (int*)(cp+i);
1552
1553                 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1554                        le32_to_cpup(ip+0),
1555                        le32_to_cpup(ip+1),
1556                        le32_to_cpup(ip+2),
1557                        le32_to_cpup(ip+3));
1558         }
1559
1560 }
1561 #endif
1562
1563 #if 0
1564 static int
1565 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1566 {
1567         int len = 0;
1568         off_t pos   = 0;
1569         off_t begin = 0;
1570         int i;
1571
1572         if (bmac_devs == NULL)
1573                 return -ENOSYS;
1574
1575         len += sprintf(buffer, "BMAC counters & registers\n");
1576
1577         for (i = 0; i<N_REG_ENTRIES; i++) {
1578                 len += sprintf(buffer + len, "%s: %#08x\n",
1579                                reg_entries[i].name,
1580                                bmread(bmac_devs, reg_entries[i].reg_offset));
1581                 pos = begin + len;
1582
1583                 if (pos < offset) {
1584                         len = 0;
1585                         begin = pos;
1586                 }
1587
1588                 if (pos > offset+length) break;
1589         }
1590
1591         *start = buffer + (offset - begin);
1592         len -= (offset - begin);
1593
1594         if (len > length) len = length;
1595
1596         return len;
1597 }
1598 #endif
1599
1600 static int bmac_remove(struct macio_dev *mdev)
1601 {
1602         struct net_device *dev = macio_get_drvdata(mdev);
1603         struct bmac_data *bp = netdev_priv(dev);
1604
1605         unregister_netdev(dev);
1606
1607         free_irq(dev->irq, dev);
1608         free_irq(bp->tx_dma_intr, dev);
1609         free_irq(bp->rx_dma_intr, dev);
1610
1611         iounmap((void __iomem *)dev->base_addr);
1612         iounmap(bp->tx_dma);
1613         iounmap(bp->rx_dma);
1614
1615         macio_release_resources(mdev);
1616
1617         free_netdev(dev);
1618
1619         return 0;
1620 }
1621
1622 static const struct of_device_id bmac_match[] =
1623 {
1624         {
1625         .name           = "bmac",
1626         .data           = (void *)0,
1627         },
1628         {
1629         .type           = "network",
1630         .compatible     = "bmac+",
1631         .data           = (void *)1,
1632         },
1633         {},
1634 };
1635 MODULE_DEVICE_TABLE (of, bmac_match);
1636
1637 static struct macio_driver bmac_driver =
1638 {
1639         .driver = {
1640                 .name           = "bmac",
1641                 .owner          = THIS_MODULE,
1642                 .of_match_table = bmac_match,
1643         },
1644         .probe          = bmac_probe,
1645         .remove         = bmac_remove,
1646 #ifdef CONFIG_PM
1647         .suspend        = bmac_suspend,
1648         .resume         = bmac_resume,
1649 #endif
1650 };
1651
1652
1653 static int __init bmac_init(void)
1654 {
1655         if (bmac_emergency_rxbuf == NULL) {
1656                 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1657                 if (bmac_emergency_rxbuf == NULL)
1658                         return -ENOMEM;
1659         }
1660
1661         return macio_register_driver(&bmac_driver);
1662 }
1663
1664 static void __exit bmac_exit(void)
1665 {
1666         macio_unregister_driver(&bmac_driver);
1667
1668         kfree(bmac_emergency_rxbuf);
1669         bmac_emergency_rxbuf = NULL;
1670 }
1671
1672 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1673 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1674 MODULE_LICENSE("GPL");
1675
1676 module_init(bmac_init);
1677 module_exit(bmac_exit);