GNU Linux-libre 4.4.294-gnu1
[releases.git] / drivers / net / ethernet / adaptec / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3         Written 1998-2000 by Donald Becker.
4
5         Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6         send all bug reports to me, and not to Donald Becker, as this code
7         has been heavily modified from Donald's original version.
8
9         This software may be used and distributed according to the terms of
10         the GNU General Public License (GPL), incorporated herein by reference.
11         Drivers based on or derived from this code fall under the GPL and must
12         retain the authorship, copyright and license notice.  This file is not
13         a complete program and may only be used when the entire operating
14         system is licensed under the GPL.
15
16         The information below comes from Donald Becker's original driver:
17
18         The author may be reached as becker@scyld.com, or C/O
19         Scyld Computing Corporation
20         410 Severn Ave., Suite 210
21         Annapolis MD 21403
22
23         Support and updates available at
24         http://www.scyld.com/network/starfire.html
25         [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME        "starfire"
30 #define DRV_VERSION     "2.1"
31 #define DRV_RELDATE     "July  6, 2008"
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>              /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79
80 static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88
89 #define PKT_BUF_SZ      1536            /* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116
117 /* Operational parameters that are set at compile time. */
118
119 /* The "native" ring sizes are either 256 or 2048.
120    However in some modes a descriptor may be marked to wrap the ring earlier.
121 */
122 #define RX_RING_SIZE    256
123 #define TX_RING_SIZE    32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE     1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN     256
128
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT      (2 * HZ)
138
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS     /* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else  /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164 /* Firmware names */
165 #define FIRMWARE_RX     "/*(DEBLOBBED)*/"
166 #define FIRMWARE_TX     "/*(DEBLOBBED)*/"
167
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 /*(DEBLOBBED)*/
178
179 module_param(max_interrupt_work, int, 0);
180 module_param(mtu, int, 0);
181 module_param(debug, int, 0);
182 module_param(rx_copybreak, int, 0);
183 module_param(intr_latency, int, 0);
184 module_param(small_frames, int, 0);
185 module_param(enable_hw_cksum, int, 0);
186 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
187 MODULE_PARM_DESC(mtu, "MTU (all boards)");
188 MODULE_PARM_DESC(debug, "Debug level (0-6)");
189 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
190 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
191 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
192 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
193
194 /*
195                                 Theory of Operation
196
197 I. Board Compatibility
198
199 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
200
201 II. Board-specific settings
202
203 III. Driver operation
204
205 IIIa. Ring buffers
206
207 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
208 ring sizes are set fixed by the hardware, but may optionally be wrapped
209 earlier by the END bit in the descriptor.
210 This driver uses that hardware queue size for the Rx ring, where a large
211 number of entries has no ill effect beyond increases the potential backlog.
212 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
213 disables the queue layer priority ordering and we have no mechanism to
214 utilize the hardware two-level priority queue.  When modifying the
215 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
216 levels.
217
218 IIIb/c. Transmit/Receive Structure
219
220 See the Adaptec manual for the many possible structures, and options for
221 each structure.  There are far too many to document all of them here.
222
223 For transmit this driver uses type 0/1 transmit descriptors (depending
224 on the 32/64 bitness of the architecture), and relies on automatic
225 minimum-length padding.  It does not use the completion queue
226 consumer index, but instead checks for non-zero status entries.
227
228 For receive this driver uses type 2/3 receive descriptors.  The driver
229 allocates full frame size skbuffs for the Rx ring buffers, so all frames
230 should fit in a single descriptor.  The driver does not use the completion
231 queue consumer index, but instead checks for non-zero status entries.
232
233 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
234 is allocated and the frame is copied to the new skbuff.  When the incoming
235 frame is larger, the skbuff is passed directly up the protocol stack.
236 Buffers consumed this way are replaced by newly allocated skbuffs in a later
237 phase of receive.
238
239 A notable aspect of operation is that unaligned buffers are not permitted by
240 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
241 isn't longword aligned, which may cause problems on some machine
242 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
243 the frame into a new skbuff unconditionally. Copied frames are put into the
244 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
245
246 IIId. Synchronization
247
248 The driver runs as two independent, single-threaded flows of control.  One
249 is the send-packet routine, which enforces single-threaded use by the
250 dev->tbusy flag.  The other thread is the interrupt handler, which is single
251 threaded by the hardware and interrupt handling software.
252
253 The send packet thread has partial control over the Tx ring and the netif_queue
254 status. If the number of free Tx slots in the ring falls below a certain number
255 (currently hardcoded to 4), it signals the upper layer to stop the queue.
256
257 The interrupt handler has exclusive control over the Rx ring and records stats
258 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
259 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
260 number of free Tx slow is above the threshold, it signals the upper layer to
261 restart the queue.
262
263 IV. Notes
264
265 IVb. References
266
267 The Adaptec Starfire manuals, available only from Adaptec.
268 http://www.scyld.com/expert/100mbps.html
269 http://www.scyld.com/expert/NWay.html
270
271 IVc. Errata
272
273 - StopOnPerr is broken, don't enable
274 - Hardware ethernet padding exposes random data, perform software padding
275   instead (unverified -- works correctly for all the hardware I have)
276
277 */
278
279
280
281 enum chip_capability_flags {CanHaveMII=1, };
282
283 enum chipset {
284         CH_6915 = 0,
285 };
286
287 static const struct pci_device_id starfire_pci_tbl[] = {
288         { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
289         { 0, }
290 };
291 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
292
293 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
294 static const struct chip_info {
295         const char *name;
296         int drv_flags;
297 } netdrv_tbl[] = {
298         { "Adaptec Starfire 6915", CanHaveMII },
299 };
300
301
302 /* Offsets to the device registers.
303    Unlike software-only systems, device drivers interact with complex hardware.
304    It's not useful to define symbolic names for every register bit in the
305    device.  The name can only partially document the semantics and make
306    the driver longer and more difficult to read.
307    In general, only the important configuration values or bits changed
308    multiple times should be defined symbolically.
309 */
310 enum register_offsets {
311         PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
312         IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
313         MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
314         GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
315         TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
316         TxRingHiAddr=0x5009C,           /* 64 bit address extension. */
317         TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
318         TxThreshold=0x500B0,
319         CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
320         RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
321         CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
322         RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
323         RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
324         TxMode=0x55000, VlanType=0x55064,
325         PerfFilterTable=0x56000, HashTable=0x56100,
326         TxGfpMem=0x58000, RxGfpMem=0x5a000,
327 };
328
329 /*
330  * Bits in the interrupt status/mask registers.
331  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
332  * enables all the interrupt sources that are or'ed into those status bits.
333  */
334 enum intr_status_bits {
335         IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
336         IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
337         IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
338         IntrTxComplQLow=0x200000, IntrPCI=0x100000,
339         IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
340         IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
341         IntrNormalSummary=0x8000, IntrTxDone=0x4000,
342         IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
343         IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
344         IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
345         IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
346         IntrNoTxCsum=0x20, IntrTxBadID=0x10,
347         IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
348         IntrTxGfp=0x02, IntrPCIPad=0x01,
349         /* not quite bits */
350         IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
351         IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
352         IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
353 };
354
355 /* Bits in the RxFilterMode register. */
356 enum rx_mode_bits {
357         AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
358         AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
359         PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
360         WakeupOnGFP=0x0800,
361 };
362
363 /* Bits in the TxMode register */
364 enum tx_mode_bits {
365         MiiSoftReset=0x8000, MIILoopback=0x4000,
366         TxFlowEnable=0x0800, RxFlowEnable=0x0400,
367         PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
368 };
369
370 /* Bits in the TxDescCtrl register. */
371 enum tx_ctrl_bits {
372         TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
373         TxDescSpace128=0x30, TxDescSpace256=0x40,
374         TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
375         TxDescType3=0x03, TxDescType4=0x04,
376         TxNoDMACompletion=0x08,
377         TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
378         TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
379         TxDMABurstSizeShift=8,
380 };
381
382 /* Bits in the RxDescQCtrl register. */
383 enum rx_ctrl_bits {
384         RxBufferLenShift=16, RxMinDescrThreshShift=0,
385         RxPrefetchMode=0x8000, RxVariableQ=0x2000,
386         Rx2048QEntries=0x4000, Rx256QEntries=0,
387         RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
388         RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
389         RxDescSpace4=0x000, RxDescSpace8=0x100,
390         RxDescSpace16=0x200, RxDescSpace32=0x300,
391         RxDescSpace64=0x400, RxDescSpace128=0x500,
392         RxConsumerWrEn=0x80,
393 };
394
395 /* Bits in the RxDMACtrl register. */
396 enum rx_dmactrl_bits {
397         RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
398         RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
399         RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
400         RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
401         RxChecksumRejectTCPOnly=0x01000000,
402         RxCompletionQ2Enable=0x800000,
403         RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
404         RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
405         RxDMAQ2NonIP=0x400000,
406         RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
407         RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
408         RxBurstSizeShift=0,
409 };
410
411 /* Bits in the RxCompletionAddr register */
412 enum rx_compl_bits {
413         RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
414         RxComplProducerWrEn=0x40,
415         RxComplType0=0x00, RxComplType1=0x10,
416         RxComplType2=0x20, RxComplType3=0x30,
417         RxComplThreshShift=0,
418 };
419
420 /* Bits in the TxCompletionAddr register */
421 enum tx_compl_bits {
422         TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
423         TxComplProducerWrEn=0x40,
424         TxComplIntrStatus=0x20,
425         CommonQueueMode=0x10,
426         TxComplThreshShift=0,
427 };
428
429 /* Bits in the GenCtrl register */
430 enum gen_ctrl_bits {
431         RxEnable=0x05, TxEnable=0x0a,
432         RxGFPEnable=0x10, TxGFPEnable=0x20,
433 };
434
435 /* Bits in the IntrTimerCtrl register */
436 enum intr_ctrl_bits {
437         Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
438         SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
439         IntrLatencyMask=0x1f,
440 };
441
442 /* The Rx and Tx buffer descriptors. */
443 struct starfire_rx_desc {
444         netdrv_addr_t rxaddr;
445 };
446 enum rx_desc_bits {
447         RxDescValid=1, RxDescEndRing=2,
448 };
449
450 /* Completion queue entry. */
451 struct short_rx_done_desc {
452         __le32 status;                  /* Low 16 bits is length. */
453 };
454 struct basic_rx_done_desc {
455         __le32 status;                  /* Low 16 bits is length. */
456         __le16 vlanid;
457         __le16 status2;
458 };
459 struct csum_rx_done_desc {
460         __le32 status;                  /* Low 16 bits is length. */
461         __le16 csum;                    /* Partial checksum */
462         __le16 status2;
463 };
464 struct full_rx_done_desc {
465         __le32 status;                  /* Low 16 bits is length. */
466         __le16 status3;
467         __le16 status2;
468         __le16 vlanid;
469         __le16 csum;                    /* partial checksum */
470         __le32 timestamp;
471 };
472 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
473 #ifdef VLAN_SUPPORT
474 typedef struct full_rx_done_desc rx_done_desc;
475 #define RxComplType RxComplType3
476 #else  /* not VLAN_SUPPORT */
477 typedef struct csum_rx_done_desc rx_done_desc;
478 #define RxComplType RxComplType2
479 #endif /* not VLAN_SUPPORT */
480
481 enum rx_done_bits {
482         RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
483 };
484
485 /* Type 1 Tx descriptor. */
486 struct starfire_tx_desc_1 {
487         __le32 status;                  /* Upper bits are status, lower 16 length. */
488         __le32 addr;
489 };
490
491 /* Type 2 Tx descriptor. */
492 struct starfire_tx_desc_2 {
493         __le32 status;                  /* Upper bits are status, lower 16 length. */
494         __le32 reserved;
495         __le64 addr;
496 };
497
498 #ifdef ADDR_64BITS
499 typedef struct starfire_tx_desc_2 starfire_tx_desc;
500 #define TX_DESC_TYPE TxDescType2
501 #else  /* not ADDR_64BITS */
502 typedef struct starfire_tx_desc_1 starfire_tx_desc;
503 #define TX_DESC_TYPE TxDescType1
504 #endif /* not ADDR_64BITS */
505 #define TX_DESC_SPACING TxDescSpaceUnlim
506
507 enum tx_desc_bits {
508         TxDescID=0xB0000000,
509         TxCRCEn=0x01000000, TxDescIntr=0x08000000,
510         TxRingWrap=0x04000000, TxCalTCP=0x02000000,
511 };
512 struct tx_done_desc {
513         __le32 status;                  /* timestamp, index. */
514 #if 0
515         __le32 intrstatus;              /* interrupt status */
516 #endif
517 };
518
519 struct rx_ring_info {
520         struct sk_buff *skb;
521         dma_addr_t mapping;
522 };
523 struct tx_ring_info {
524         struct sk_buff *skb;
525         dma_addr_t mapping;
526         unsigned int used_slots;
527 };
528
529 #define PHY_CNT         2
530 struct netdev_private {
531         /* Descriptor rings first for alignment. */
532         struct starfire_rx_desc *rx_ring;
533         starfire_tx_desc *tx_ring;
534         dma_addr_t rx_ring_dma;
535         dma_addr_t tx_ring_dma;
536         /* The addresses of rx/tx-in-place skbuffs. */
537         struct rx_ring_info rx_info[RX_RING_SIZE];
538         struct tx_ring_info tx_info[TX_RING_SIZE];
539         /* Pointers to completion queues (full pages). */
540         rx_done_desc *rx_done_q;
541         dma_addr_t rx_done_q_dma;
542         unsigned int rx_done;
543         struct tx_done_desc *tx_done_q;
544         dma_addr_t tx_done_q_dma;
545         unsigned int tx_done;
546         struct napi_struct napi;
547         struct net_device *dev;
548         struct pci_dev *pci_dev;
549 #ifdef VLAN_SUPPORT
550         unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
551 #endif
552         void *queue_mem;
553         dma_addr_t queue_mem_dma;
554         size_t queue_mem_size;
555
556         /* Frequently used values: keep some adjacent for cache effect. */
557         spinlock_t lock;
558         unsigned int cur_rx, dirty_rx;  /* Producer/consumer ring indices */
559         unsigned int cur_tx, dirty_tx, reap_tx;
560         unsigned int rx_buf_sz;         /* Based on MTU+slack. */
561         /* These values keep track of the transceiver/media in use. */
562         int speed100;                   /* Set if speed == 100MBit. */
563         u32 tx_mode;
564         u32 intr_timer_ctrl;
565         u8 tx_threshold;
566         /* MII transceiver section. */
567         struct mii_if_info mii_if;              /* MII lib hooks/info */
568         int phy_cnt;                    /* MII device addresses. */
569         unsigned char phys[PHY_CNT];    /* MII device addresses. */
570         void __iomem *base;
571 };
572
573
574 static int      mdio_read(struct net_device *dev, int phy_id, int location);
575 static void     mdio_write(struct net_device *dev, int phy_id, int location, int value);
576 static int      netdev_open(struct net_device *dev);
577 static void     check_duplex(struct net_device *dev);
578 static void     tx_timeout(struct net_device *dev);
579 static void     init_ring(struct net_device *dev);
580 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
581 static irqreturn_t intr_handler(int irq, void *dev_instance);
582 static void     netdev_error(struct net_device *dev, int intr_status);
583 static int      __netdev_rx(struct net_device *dev, int *quota);
584 static int      netdev_poll(struct napi_struct *napi, int budget);
585 static void     refill_rx_ring(struct net_device *dev);
586 static void     netdev_error(struct net_device *dev, int intr_status);
587 static void     set_rx_mode(struct net_device *dev);
588 static struct net_device_stats *get_stats(struct net_device *dev);
589 static int      netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
590 static int      netdev_close(struct net_device *dev);
591 static void     netdev_media_change(struct net_device *dev);
592 static const struct ethtool_ops ethtool_ops;
593
594
595 #ifdef VLAN_SUPPORT
596 static int netdev_vlan_rx_add_vid(struct net_device *dev,
597                                   __be16 proto, u16 vid)
598 {
599         struct netdev_private *np = netdev_priv(dev);
600
601         spin_lock(&np->lock);
602         if (debug > 1)
603                 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
604         set_bit(vid, np->active_vlans);
605         set_rx_mode(dev);
606         spin_unlock(&np->lock);
607
608         return 0;
609 }
610
611 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
612                                    __be16 proto, u16 vid)
613 {
614         struct netdev_private *np = netdev_priv(dev);
615
616         spin_lock(&np->lock);
617         if (debug > 1)
618                 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
619         clear_bit(vid, np->active_vlans);
620         set_rx_mode(dev);
621         spin_unlock(&np->lock);
622
623         return 0;
624 }
625 #endif /* VLAN_SUPPORT */
626
627
628 static const struct net_device_ops netdev_ops = {
629         .ndo_open               = netdev_open,
630         .ndo_stop               = netdev_close,
631         .ndo_start_xmit         = start_tx,
632         .ndo_tx_timeout         = tx_timeout,
633         .ndo_get_stats          = get_stats,
634         .ndo_set_rx_mode        = set_rx_mode,
635         .ndo_do_ioctl           = netdev_ioctl,
636         .ndo_change_mtu         = eth_change_mtu,
637         .ndo_set_mac_address    = eth_mac_addr,
638         .ndo_validate_addr      = eth_validate_addr,
639 #ifdef VLAN_SUPPORT
640         .ndo_vlan_rx_add_vid    = netdev_vlan_rx_add_vid,
641         .ndo_vlan_rx_kill_vid   = netdev_vlan_rx_kill_vid,
642 #endif
643 };
644
645 static int starfire_init_one(struct pci_dev *pdev,
646                              const struct pci_device_id *ent)
647 {
648         struct device *d = &pdev->dev;
649         struct netdev_private *np;
650         int i, irq, chip_idx = ent->driver_data;
651         struct net_device *dev;
652         long ioaddr;
653         void __iomem *base;
654         int drv_flags, io_size;
655         int boguscnt;
656
657 /* when built into the kernel, we only print version if device is found */
658 #ifndef MODULE
659         static int printed_version;
660         if (!printed_version++)
661                 printk(version);
662 #endif
663
664         if (pci_enable_device (pdev))
665                 return -EIO;
666
667         ioaddr = pci_resource_start(pdev, 0);
668         io_size = pci_resource_len(pdev, 0);
669         if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
670                 dev_err(d, "no PCI MEM resources, aborting\n");
671                 return -ENODEV;
672         }
673
674         dev = alloc_etherdev(sizeof(*np));
675         if (!dev)
676                 return -ENOMEM;
677
678         SET_NETDEV_DEV(dev, &pdev->dev);
679
680         irq = pdev->irq;
681
682         if (pci_request_regions (pdev, DRV_NAME)) {
683                 dev_err(d, "cannot reserve PCI resources, aborting\n");
684                 goto err_out_free_netdev;
685         }
686
687         base = ioremap(ioaddr, io_size);
688         if (!base) {
689                 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
690                         io_size, ioaddr);
691                 goto err_out_free_res;
692         }
693
694         pci_set_master(pdev);
695
696         /* enable MWI -- it vastly improves Rx performance on sparc64 */
697         pci_try_set_mwi(pdev);
698
699 #ifdef ZEROCOPY
700         /* Starfire can do TCP/UDP checksumming */
701         if (enable_hw_cksum)
702                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
703 #endif /* ZEROCOPY */
704
705 #ifdef VLAN_SUPPORT
706         dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
707 #endif /* VLAN_RX_KILL_VID */
708 #ifdef ADDR_64BITS
709         dev->features |= NETIF_F_HIGHDMA;
710 #endif /* ADDR_64BITS */
711
712         /* Serial EEPROM reads are hidden by the hardware. */
713         for (i = 0; i < 6; i++)
714                 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
715
716 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
717         if (debug > 4)
718                 for (i = 0; i < 0x20; i++)
719                         printk("%2.2x%s",
720                                (unsigned int)readb(base + EEPROMCtrl + i),
721                                i % 16 != 15 ? " " : "\n");
722 #endif
723
724         /* Issue soft reset */
725         writel(MiiSoftReset, base + TxMode);
726         udelay(1000);
727         writel(0, base + TxMode);
728
729         /* Reset the chip to erase previous misconfiguration. */
730         writel(1, base + PCIDeviceConfig);
731         boguscnt = 1000;
732         while (--boguscnt > 0) {
733                 udelay(10);
734                 if ((readl(base + PCIDeviceConfig) & 1) == 0)
735                         break;
736         }
737         if (boguscnt == 0)
738                 printk("%s: chipset reset never completed!\n", dev->name);
739         /* wait a little longer */
740         udelay(1000);
741
742         np = netdev_priv(dev);
743         np->dev = dev;
744         np->base = base;
745         spin_lock_init(&np->lock);
746         pci_set_drvdata(pdev, dev);
747
748         np->pci_dev = pdev;
749
750         np->mii_if.dev = dev;
751         np->mii_if.mdio_read = mdio_read;
752         np->mii_if.mdio_write = mdio_write;
753         np->mii_if.phy_id_mask = 0x1f;
754         np->mii_if.reg_num_mask = 0x1f;
755
756         drv_flags = netdrv_tbl[chip_idx].drv_flags;
757
758         np->speed100 = 1;
759
760         /* timer resolution is 128 * 0.8us */
761         np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
762                 Timer10X | EnableIntrMasking;
763
764         if (small_frames > 0) {
765                 np->intr_timer_ctrl |= SmallFrameBypass;
766                 switch (small_frames) {
767                 case 1 ... 64:
768                         np->intr_timer_ctrl |= SmallFrame64;
769                         break;
770                 case 65 ... 128:
771                         np->intr_timer_ctrl |= SmallFrame128;
772                         break;
773                 case 129 ... 256:
774                         np->intr_timer_ctrl |= SmallFrame256;
775                         break;
776                 default:
777                         np->intr_timer_ctrl |= SmallFrame512;
778                         if (small_frames > 512)
779                                 printk("Adjusting small_frames down to 512\n");
780                         break;
781                 }
782         }
783
784         dev->netdev_ops = &netdev_ops;
785         dev->watchdog_timeo = TX_TIMEOUT;
786         dev->ethtool_ops = &ethtool_ops;
787
788         netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
789
790         if (mtu)
791                 dev->mtu = mtu;
792
793         if (register_netdev(dev))
794                 goto err_out_cleardev;
795
796         printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
797                dev->name, netdrv_tbl[chip_idx].name, base,
798                dev->dev_addr, irq);
799
800         if (drv_flags & CanHaveMII) {
801                 int phy, phy_idx = 0;
802                 int mii_status;
803                 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
804                         mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
805                         mdelay(100);
806                         boguscnt = 1000;
807                         while (--boguscnt > 0)
808                                 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
809                                         break;
810                         if (boguscnt == 0) {
811                                 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
812                                 continue;
813                         }
814                         mii_status = mdio_read(dev, phy, MII_BMSR);
815                         if (mii_status != 0) {
816                                 np->phys[phy_idx++] = phy;
817                                 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
818                                 printk(KERN_INFO "%s: MII PHY found at address %d, status "
819                                            "%#4.4x advertising %#4.4x.\n",
820                                            dev->name, phy, mii_status, np->mii_if.advertising);
821                                 /* there can be only one PHY on-board */
822                                 break;
823                         }
824                 }
825                 np->phy_cnt = phy_idx;
826                 if (np->phy_cnt > 0)
827                         np->mii_if.phy_id = np->phys[0];
828                 else
829                         memset(&np->mii_if, 0, sizeof(np->mii_if));
830         }
831
832         printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
833                dev->name, enable_hw_cksum ? "enabled" : "disabled");
834         return 0;
835
836 err_out_cleardev:
837         iounmap(base);
838 err_out_free_res:
839         pci_release_regions (pdev);
840 err_out_free_netdev:
841         free_netdev(dev);
842         return -ENODEV;
843 }
844
845
846 /* Read the MII Management Data I/O (MDIO) interfaces. */
847 static int mdio_read(struct net_device *dev, int phy_id, int location)
848 {
849         struct netdev_private *np = netdev_priv(dev);
850         void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851         int result, boguscnt=1000;
852         /* ??? Should we add a busy-wait here? */
853         do {
854                 result = readl(mdio_addr);
855         } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
856         if (boguscnt == 0)
857                 return 0;
858         if ((result & 0xffff) == 0xffff)
859                 return 0;
860         return result & 0xffff;
861 }
862
863
864 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865 {
866         struct netdev_private *np = netdev_priv(dev);
867         void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868         writel(value, mdio_addr);
869         /* The busy-wait will occur before a read. */
870 }
871
872
873 static int netdev_open(struct net_device *dev)
874 {
875         const struct firmware *fw_rx, *fw_tx;
876         const __be32 *fw_rx_data, *fw_tx_data;
877         struct netdev_private *np = netdev_priv(dev);
878         void __iomem *ioaddr = np->base;
879         const int irq = np->pci_dev->irq;
880         int i, retval;
881         size_t tx_size, rx_size;
882         size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883
884         /* Do we ever need to reset the chip??? */
885
886         retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
887         if (retval)
888                 return retval;
889
890         /* Disable the Rx and Tx, and reset the chip. */
891         writel(0, ioaddr + GenCtrl);
892         writel(1, ioaddr + PCIDeviceConfig);
893         if (debug > 1)
894                 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
895                        dev->name, irq);
896
897         /* Allocate the various queues. */
898         if (!np->queue_mem) {
899                 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900                 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901                 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902                 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903                 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904                 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
905                 if (np->queue_mem == NULL) {
906                         free_irq(irq, dev);
907                         return -ENOMEM;
908                 }
909
910                 np->tx_done_q     = np->queue_mem;
911                 np->tx_done_q_dma = np->queue_mem_dma;
912                 np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
913                 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914                 np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
915                 np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
916                 np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
917                 np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
918         }
919
920         /* Start with no carrier, it gets adjusted later */
921         netif_carrier_off(dev);
922         init_ring(dev);
923         /* Set the size of the Rx buffers. */
924         writel((np->rx_buf_sz << RxBufferLenShift) |
925                (0 << RxMinDescrThreshShift) |
926                RxPrefetchMode | RxVariableQ |
927                RX_Q_ENTRIES |
928                RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929                RxDescSpace4,
930                ioaddr + RxDescQCtrl);
931
932         /* Set up the Rx DMA controller. */
933         writel(RxChecksumIgnore |
934                (0 << RxEarlyIntThreshShift) |
935                (6 << RxHighPrioThreshShift) |
936                ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937                ioaddr + RxDMACtrl);
938
939         /* Set Tx descriptor */
940         writel((2 << TxHiPriFIFOThreshShift) |
941                (0 << TxPadLenShift) |
942                ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943                TX_DESC_Q_ADDR_SIZE |
944                TX_DESC_SPACING | TX_DESC_TYPE,
945                ioaddr + TxDescCtrl);
946
947         writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948         writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949         writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950         writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951         writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952
953         writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954         writel(np->rx_done_q_dma |
955                RxComplType |
956                (0 << RxComplThreshShift),
957                ioaddr + RxCompletionAddr);
958
959         if (debug > 1)
960                 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961
962         /* Fill both the Tx SA register and the Rx perfect filter. */
963         for (i = 0; i < 6; i++)
964                 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965         /* The first entry is special because it bypasses the VLAN filter.
966            Don't use it. */
967         writew(0, ioaddr + PerfFilterTable);
968         writew(0, ioaddr + PerfFilterTable + 4);
969         writew(0, ioaddr + PerfFilterTable + 8);
970         for (i = 1; i < 16; i++) {
971                 __be16 *eaddrs = (__be16 *)dev->dev_addr;
972                 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
973                 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974                 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975                 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
976         }
977
978         /* Initialize other registers. */
979         /* Configure the PCI bus bursts and FIFO thresholds. */
980         np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;      /* modified when link is up. */
981         writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982         udelay(1000);
983         writel(np->tx_mode, ioaddr + TxMode);
984         np->tx_threshold = 4;
985         writel(np->tx_threshold, ioaddr + TxThreshold);
986
987         writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988
989         napi_enable(&np->napi);
990
991         netif_start_queue(dev);
992
993         if (debug > 1)
994                 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995         set_rx_mode(dev);
996
997         np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998         check_duplex(dev);
999
1000         /* Enable GPIO interrupts on link change */
1001         writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003         /* Set the interrupt mask */
1004         writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005                IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006                IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007                ioaddr + IntrEnable);
1008         /* Enable PCI interrupts. */
1009         writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010                ioaddr + PCIDeviceConfig);
1011
1012 #ifdef VLAN_SUPPORT
1013         /* Set VLAN type to 802.1q */
1014         writel(ETH_P_8021Q, ioaddr + VlanType);
1015 #endif /* VLAN_SUPPORT */
1016
1017         retval = reject_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018         if (retval) {
1019                 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020                        FIRMWARE_RX);
1021                 goto out_init;
1022         }
1023         if (fw_rx->size % 4) {
1024                 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025                        fw_rx->size, FIRMWARE_RX);
1026                 retval = -EINVAL;
1027                 goto out_rx;
1028         }
1029         retval = reject_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030         if (retval) {
1031                 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032                        FIRMWARE_TX);
1033                 goto out_rx;
1034         }
1035         if (fw_tx->size % 4) {
1036                 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037                        fw_tx->size, FIRMWARE_TX);
1038                 retval = -EINVAL;
1039                 goto out_tx;
1040         }
1041         fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042         fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043         rx_size = fw_rx->size / 4;
1044         tx_size = fw_tx->size / 4;
1045
1046         /* Load Rx/Tx firmware into the frame processors */
1047         for (i = 0; i < rx_size; i++)
1048                 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049         for (i = 0; i < tx_size; i++)
1050                 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051         if (enable_hw_cksum)
1052                 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053                 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054         else
1055                 /* Enable the Rx and Tx units only. */
1056                 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058         if (debug > 1)
1059                 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060                        dev->name);
1061
1062 out_tx:
1063         release_firmware(fw_tx);
1064 out_rx:
1065         release_firmware(fw_rx);
1066 out_init:
1067         if (retval)
1068                 netdev_close(dev);
1069         return retval;
1070 }
1071
1072
1073 static void check_duplex(struct net_device *dev)
1074 {
1075         struct netdev_private *np = netdev_priv(dev);
1076         u16 reg0;
1077         int silly_count = 1000;
1078
1079         mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080         mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081         udelay(500);
1082         while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083                 /* do nothing */;
1084         if (!silly_count) {
1085                 printk("%s: MII reset failed!\n", dev->name);
1086                 return;
1087         }
1088
1089         reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091         if (!np->mii_if.force_media) {
1092                 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093         } else {
1094                 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095                 if (np->speed100)
1096                         reg0 |= BMCR_SPEED100;
1097                 if (np->mii_if.full_duplex)
1098                         reg0 |= BMCR_FULLDPLX;
1099                 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100                        dev->name,
1101                        np->speed100 ? "100" : "10",
1102                        np->mii_if.full_duplex ? "full" : "half");
1103         }
1104         mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105 }
1106
1107
1108 static void tx_timeout(struct net_device *dev)
1109 {
1110         struct netdev_private *np = netdev_priv(dev);
1111         void __iomem *ioaddr = np->base;
1112         int old_debug;
1113
1114         printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115                "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117         /* Perhaps we should reinitialize the hardware here. */
1118
1119         /*
1120          * Stop and restart the interface.
1121          * Cheat and increase the debug level temporarily.
1122          */
1123         old_debug = debug;
1124         debug = 2;
1125         netdev_close(dev);
1126         netdev_open(dev);
1127         debug = old_debug;
1128
1129         /* Trigger an immediate transmit demand. */
1130
1131         dev->trans_start = jiffies; /* prevent tx timeout */
1132         dev->stats.tx_errors++;
1133         netif_wake_queue(dev);
1134 }
1135
1136
1137 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138 static void init_ring(struct net_device *dev)
1139 {
1140         struct netdev_private *np = netdev_priv(dev);
1141         int i;
1142
1143         np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144         np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146         np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148         /* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1149         for (i = 0; i < RX_RING_SIZE; i++) {
1150                 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151                 np->rx_info[i].skb = skb;
1152                 if (skb == NULL)
1153                         break;
1154                 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1155                 if (pci_dma_mapping_error(np->pci_dev,
1156                                           np->rx_info[i].mapping)) {
1157                         dev_kfree_skb(skb);
1158                         np->rx_info[i].skb = NULL;
1159                         break;
1160                 }
1161                 /* Grrr, we cannot offset to correctly align the IP header. */
1162                 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1163         }
1164         writew(i - 1, np->base + RxDescQIdx);
1165         np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1166
1167         /* Clear the remainder of the Rx buffer ring. */
1168         for (  ; i < RX_RING_SIZE; i++) {
1169                 np->rx_ring[i].rxaddr = 0;
1170                 np->rx_info[i].skb = NULL;
1171                 np->rx_info[i].mapping = 0;
1172         }
1173         /* Mark the last entry as wrapping the ring. */
1174         np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1175
1176         /* Clear the completion rings. */
1177         for (i = 0; i < DONE_Q_SIZE; i++) {
1178                 np->rx_done_q[i].status = 0;
1179                 np->tx_done_q[i].status = 0;
1180         }
1181
1182         for (i = 0; i < TX_RING_SIZE; i++)
1183                 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1184 }
1185
1186
1187 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1188 {
1189         struct netdev_private *np = netdev_priv(dev);
1190         unsigned int entry;
1191         unsigned int prev_tx;
1192         u32 status;
1193         int i, j;
1194
1195         /*
1196          * be cautious here, wrapping the queue has weird semantics
1197          * and we may not have enough slots even when it seems we do.
1198          */
1199         if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1200                 netif_stop_queue(dev);
1201                 return NETDEV_TX_BUSY;
1202         }
1203
1204 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1205         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1206                 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1207                         return NETDEV_TX_OK;
1208         }
1209 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1210
1211         prev_tx = np->cur_tx;
1212         entry = np->cur_tx % TX_RING_SIZE;
1213         for (i = 0; i < skb_num_frags(skb); i++) {
1214                 int wrap_ring = 0;
1215                 status = TxDescID;
1216
1217                 if (i == 0) {
1218                         np->tx_info[entry].skb = skb;
1219                         status |= TxCRCEn;
1220                         if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1221                                 status |= TxRingWrap;
1222                                 wrap_ring = 1;
1223                         }
1224                         if (np->reap_tx) {
1225                                 status |= TxDescIntr;
1226                                 np->reap_tx = 0;
1227                         }
1228                         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1229                                 status |= TxCalTCP;
1230                                 dev->stats.tx_compressed++;
1231                         }
1232                         status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1233
1234                         np->tx_info[entry].mapping =
1235                                 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1236                 } else {
1237                         const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1238                         status |= skb_frag_size(this_frag);
1239                         np->tx_info[entry].mapping =
1240                                 pci_map_single(np->pci_dev,
1241                                                skb_frag_address(this_frag),
1242                                                skb_frag_size(this_frag),
1243                                                PCI_DMA_TODEVICE);
1244                 }
1245                 if (pci_dma_mapping_error(np->pci_dev,
1246                                           np->tx_info[entry].mapping)) {
1247                         dev->stats.tx_dropped++;
1248                         goto err_out;
1249                 }
1250
1251                 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1252                 np->tx_ring[entry].status = cpu_to_le32(status);
1253                 if (debug > 3)
1254                         printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1255                                dev->name, np->cur_tx, np->dirty_tx,
1256                                entry, status);
1257                 if (wrap_ring) {
1258                         np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1259                         np->cur_tx += np->tx_info[entry].used_slots;
1260                         entry = 0;
1261                 } else {
1262                         np->tx_info[entry].used_slots = 1;
1263                         np->cur_tx += np->tx_info[entry].used_slots;
1264                         entry++;
1265                 }
1266                 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1267                 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1268                         np->reap_tx = 1;
1269         }
1270
1271         /* Non-x86: explicitly flush descriptor cache lines here. */
1272         /* Ensure all descriptors are written back before the transmit is
1273            initiated. - Jes */
1274         wmb();
1275
1276         /* Update the producer index. */
1277         writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1278
1279         /* 4 is arbitrary, but should be ok */
1280         if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1281                 netif_stop_queue(dev);
1282
1283         return NETDEV_TX_OK;
1284
1285 err_out:
1286         entry = prev_tx % TX_RING_SIZE;
1287         np->tx_info[entry].skb = NULL;
1288         if (i > 0) {
1289                 pci_unmap_single(np->pci_dev,
1290                                  np->tx_info[entry].mapping,
1291                                  skb_first_frag_len(skb),
1292                                  PCI_DMA_TODEVICE);
1293                 np->tx_info[entry].mapping = 0;
1294                 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1295                 for (j = 1; j < i; j++) {
1296                         pci_unmap_single(np->pci_dev,
1297                                          np->tx_info[entry].mapping,
1298                                          skb_frag_size(
1299                                                 &skb_shinfo(skb)->frags[j-1]),
1300                                          PCI_DMA_TODEVICE);
1301                         entry++;
1302                 }
1303         }
1304         dev_kfree_skb_any(skb);
1305         np->cur_tx = prev_tx;
1306         return NETDEV_TX_OK;
1307 }
1308
1309 /* The interrupt handler does all of the Rx thread work and cleans up
1310    after the Tx thread. */
1311 static irqreturn_t intr_handler(int irq, void *dev_instance)
1312 {
1313         struct net_device *dev = dev_instance;
1314         struct netdev_private *np = netdev_priv(dev);
1315         void __iomem *ioaddr = np->base;
1316         int boguscnt = max_interrupt_work;
1317         int consumer;
1318         int tx_status;
1319         int handled = 0;
1320
1321         do {
1322                 u32 intr_status = readl(ioaddr + IntrClear);
1323
1324                 if (debug > 4)
1325                         printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1326                                dev->name, intr_status);
1327
1328                 if (intr_status == 0 || intr_status == (u32) -1)
1329                         break;
1330
1331                 handled = 1;
1332
1333                 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1334                         u32 enable;
1335
1336                         if (likely(napi_schedule_prep(&np->napi))) {
1337                                 __napi_schedule(&np->napi);
1338                                 enable = readl(ioaddr + IntrEnable);
1339                                 enable &= ~(IntrRxDone | IntrRxEmpty);
1340                                 writel(enable, ioaddr + IntrEnable);
1341                                 /* flush PCI posting buffers */
1342                                 readl(ioaddr + IntrEnable);
1343                         } else {
1344                                 /* Paranoia check */
1345                                 enable = readl(ioaddr + IntrEnable);
1346                                 if (enable & (IntrRxDone | IntrRxEmpty)) {
1347                                         printk(KERN_INFO
1348                                                "%s: interrupt while in poll!\n",
1349                                                dev->name);
1350                                         enable &= ~(IntrRxDone | IntrRxEmpty);
1351                                         writel(enable, ioaddr + IntrEnable);
1352                                 }
1353                         }
1354                 }
1355
1356                 /* Scavenge the skbuff list based on the Tx-done queue.
1357                    There are redundant checks here that may be cleaned up
1358                    after the driver has proven to be reliable. */
1359                 consumer = readl(ioaddr + TxConsumerIdx);
1360                 if (debug > 3)
1361                         printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1362                                dev->name, consumer);
1363
1364                 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1365                         if (debug > 3)
1366                                 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1367                                        dev->name, np->dirty_tx, np->tx_done, tx_status);
1368                         if ((tx_status & 0xe0000000) == 0xa0000000) {
1369                                 dev->stats.tx_packets++;
1370                         } else if ((tx_status & 0xe0000000) == 0x80000000) {
1371                                 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1372                                 struct sk_buff *skb = np->tx_info[entry].skb;
1373                                 np->tx_info[entry].skb = NULL;
1374                                 pci_unmap_single(np->pci_dev,
1375                                                  np->tx_info[entry].mapping,
1376                                                  skb_first_frag_len(skb),
1377                                                  PCI_DMA_TODEVICE);
1378                                 np->tx_info[entry].mapping = 0;
1379                                 np->dirty_tx += np->tx_info[entry].used_slots;
1380                                 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1381                                 {
1382                                         int i;
1383                                         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1384                                                 pci_unmap_single(np->pci_dev,
1385                                                                  np->tx_info[entry].mapping,
1386                                                                  skb_frag_size(&skb_shinfo(skb)->frags[i]),
1387                                                                  PCI_DMA_TODEVICE);
1388                                                 np->dirty_tx++;
1389                                                 entry++;
1390                                         }
1391                                 }
1392
1393                                 dev_kfree_skb_irq(skb);
1394                         }
1395                         np->tx_done_q[np->tx_done].status = 0;
1396                         np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1397                 }
1398                 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1399
1400                 if (netif_queue_stopped(dev) &&
1401                     (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1402                         /* The ring is no longer full, wake the queue. */
1403                         netif_wake_queue(dev);
1404                 }
1405
1406                 /* Stats overflow */
1407                 if (intr_status & IntrStatsMax)
1408                         get_stats(dev);
1409
1410                 /* Media change interrupt. */
1411                 if (intr_status & IntrLinkChange)
1412                         netdev_media_change(dev);
1413
1414                 /* Abnormal error summary/uncommon events handlers. */
1415                 if (intr_status & IntrAbnormalSummary)
1416                         netdev_error(dev, intr_status);
1417
1418                 if (--boguscnt < 0) {
1419                         if (debug > 1)
1420                                 printk(KERN_WARNING "%s: Too much work at interrupt, "
1421                                        "status=%#8.8x.\n",
1422                                        dev->name, intr_status);
1423                         break;
1424                 }
1425         } while (1);
1426
1427         if (debug > 4)
1428                 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1429                        dev->name, (int) readl(ioaddr + IntrStatus));
1430         return IRQ_RETVAL(handled);
1431 }
1432
1433
1434 /*
1435  * This routine is logically part of the interrupt/poll handler, but separated
1436  * for clarity and better register allocation.
1437  */
1438 static int __netdev_rx(struct net_device *dev, int *quota)
1439 {
1440         struct netdev_private *np = netdev_priv(dev);
1441         u32 desc_status;
1442         int retcode = 0;
1443
1444         /* If EOP is set on the next entry, it's a new packet. Send it up. */
1445         while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1446                 struct sk_buff *skb;
1447                 u16 pkt_len;
1448                 int entry;
1449                 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1450
1451                 if (debug > 4)
1452                         printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1453                 if (!(desc_status & RxOK)) {
1454                         /* There was an error. */
1455                         if (debug > 2)
1456                                 printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1457                         dev->stats.rx_errors++;
1458                         if (desc_status & RxFIFOErr)
1459                                 dev->stats.rx_fifo_errors++;
1460                         goto next_rx;
1461                 }
1462
1463                 if (*quota <= 0) {      /* out of rx quota */
1464                         retcode = 1;
1465                         goto out;
1466                 }
1467                 (*quota)--;
1468
1469                 pkt_len = desc_status;  /* Implicitly Truncate */
1470                 entry = (desc_status >> 16) & 0x7ff;
1471
1472                 if (debug > 4)
1473                         printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1474                 /* Check if the packet is long enough to accept without copying
1475                    to a minimally-sized skbuff. */
1476                 if (pkt_len < rx_copybreak &&
1477                     (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1478                         skb_reserve(skb, 2);    /* 16 byte align the IP header */
1479                         pci_dma_sync_single_for_cpu(np->pci_dev,
1480                                                     np->rx_info[entry].mapping,
1481                                                     pkt_len, PCI_DMA_FROMDEVICE);
1482                         skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1483                         pci_dma_sync_single_for_device(np->pci_dev,
1484                                                        np->rx_info[entry].mapping,
1485                                                        pkt_len, PCI_DMA_FROMDEVICE);
1486                         skb_put(skb, pkt_len);
1487                 } else {
1488                         pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1489                         skb = np->rx_info[entry].skb;
1490                         skb_put(skb, pkt_len);
1491                         np->rx_info[entry].skb = NULL;
1492                         np->rx_info[entry].mapping = 0;
1493                 }
1494 #ifndef final_version                   /* Remove after testing. */
1495                 /* You will want this info for the initial debug. */
1496                 if (debug > 5) {
1497                         printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1498                                skb->data, skb->data + 6,
1499                                skb->data[12], skb->data[13]);
1500                 }
1501 #endif
1502
1503                 skb->protocol = eth_type_trans(skb, dev);
1504 #ifdef VLAN_SUPPORT
1505                 if (debug > 4)
1506                         printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1507 #endif
1508                 if (le16_to_cpu(desc->status2) & 0x0100) {
1509                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1510                         dev->stats.rx_compressed++;
1511                 }
1512                 /*
1513                  * This feature doesn't seem to be working, at least
1514                  * with the two firmware versions I have. If the GFP sees
1515                  * an IP fragment, it either ignores it completely, or reports
1516                  * "bad checksum" on it.
1517                  *
1518                  * Maybe I missed something -- corrections are welcome.
1519                  * Until then, the printk stays. :-) -Ion
1520                  */
1521                 else if (le16_to_cpu(desc->status2) & 0x0040) {
1522                         skb->ip_summed = CHECKSUM_COMPLETE;
1523                         skb->csum = le16_to_cpu(desc->csum);
1524                         printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1525                 }
1526 #ifdef VLAN_SUPPORT
1527                 if (le16_to_cpu(desc->status2) & 0x0200) {
1528                         u16 vlid = le16_to_cpu(desc->vlanid);
1529
1530                         if (debug > 4) {
1531                                 printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1532                                        vlid);
1533                         }
1534                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1535                 }
1536 #endif /* VLAN_SUPPORT */
1537                 netif_receive_skb(skb);
1538                 dev->stats.rx_packets++;
1539
1540         next_rx:
1541                 np->cur_rx++;
1542                 desc->status = 0;
1543                 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1544         }
1545
1546         if (*quota == 0) {      /* out of rx quota */
1547                 retcode = 1;
1548                 goto out;
1549         }
1550         writew(np->rx_done, np->base + CompletionQConsumerIdx);
1551
1552  out:
1553         refill_rx_ring(dev);
1554         if (debug > 5)
1555                 printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1556                        retcode, np->rx_done, desc_status);
1557         return retcode;
1558 }
1559
1560 static int netdev_poll(struct napi_struct *napi, int budget)
1561 {
1562         struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1563         struct net_device *dev = np->dev;
1564         u32 intr_status;
1565         void __iomem *ioaddr = np->base;
1566         int quota = budget;
1567
1568         do {
1569                 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1570
1571                 if (__netdev_rx(dev, &quota))
1572                         goto out;
1573
1574                 intr_status = readl(ioaddr + IntrStatus);
1575         } while (intr_status & (IntrRxDone | IntrRxEmpty));
1576
1577         napi_complete(napi);
1578         intr_status = readl(ioaddr + IntrEnable);
1579         intr_status |= IntrRxDone | IntrRxEmpty;
1580         writel(intr_status, ioaddr + IntrEnable);
1581
1582  out:
1583         if (debug > 5)
1584                 printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1585                        budget - quota);
1586
1587         /* Restart Rx engine if stopped. */
1588         return budget - quota;
1589 }
1590
1591 static void refill_rx_ring(struct net_device *dev)
1592 {
1593         struct netdev_private *np = netdev_priv(dev);
1594         struct sk_buff *skb;
1595         int entry = -1;
1596
1597         /* Refill the Rx ring buffers. */
1598         for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1599                 entry = np->dirty_rx % RX_RING_SIZE;
1600                 if (np->rx_info[entry].skb == NULL) {
1601                         skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1602                         np->rx_info[entry].skb = skb;
1603                         if (skb == NULL)
1604                                 break;  /* Better luck next round. */
1605                         np->rx_info[entry].mapping =
1606                                 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1607                         if (pci_dma_mapping_error(np->pci_dev,
1608                                                 np->rx_info[entry].mapping)) {
1609                                 dev_kfree_skb(skb);
1610                                 np->rx_info[entry].skb = NULL;
1611                                 break;
1612                         }
1613                         np->rx_ring[entry].rxaddr =
1614                                 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1615                 }
1616                 if (entry == RX_RING_SIZE - 1)
1617                         np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1618         }
1619         if (entry >= 0)
1620                 writew(entry, np->base + RxDescQIdx);
1621 }
1622
1623
1624 static void netdev_media_change(struct net_device *dev)
1625 {
1626         struct netdev_private *np = netdev_priv(dev);
1627         void __iomem *ioaddr = np->base;
1628         u16 reg0, reg1, reg4, reg5;
1629         u32 new_tx_mode;
1630         u32 new_intr_timer_ctrl;
1631
1632         /* reset status first */
1633         mdio_read(dev, np->phys[0], MII_BMCR);
1634         mdio_read(dev, np->phys[0], MII_BMSR);
1635
1636         reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1637         reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1638
1639         if (reg1 & BMSR_LSTATUS) {
1640                 /* link is up */
1641                 if (reg0 & BMCR_ANENABLE) {
1642                         /* autonegotiation is enabled */
1643                         reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1644                         reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1645                         if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1646                                 np->speed100 = 1;
1647                                 np->mii_if.full_duplex = 1;
1648                         } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1649                                 np->speed100 = 1;
1650                                 np->mii_if.full_duplex = 0;
1651                         } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1652                                 np->speed100 = 0;
1653                                 np->mii_if.full_duplex = 1;
1654                         } else {
1655                                 np->speed100 = 0;
1656                                 np->mii_if.full_duplex = 0;
1657                         }
1658                 } else {
1659                         /* autonegotiation is disabled */
1660                         if (reg0 & BMCR_SPEED100)
1661                                 np->speed100 = 1;
1662                         else
1663                                 np->speed100 = 0;
1664                         if (reg0 & BMCR_FULLDPLX)
1665                                 np->mii_if.full_duplex = 1;
1666                         else
1667                                 np->mii_if.full_duplex = 0;
1668                 }
1669                 netif_carrier_on(dev);
1670                 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1671                        dev->name,
1672                        np->speed100 ? "100" : "10",
1673                        np->mii_if.full_duplex ? "full" : "half");
1674
1675                 new_tx_mode = np->tx_mode & ~FullDuplex;        /* duplex setting */
1676                 if (np->mii_if.full_duplex)
1677                         new_tx_mode |= FullDuplex;
1678                 if (np->tx_mode != new_tx_mode) {
1679                         np->tx_mode = new_tx_mode;
1680                         writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1681                         udelay(1000);
1682                         writel(np->tx_mode, ioaddr + TxMode);
1683                 }
1684
1685                 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1686                 if (np->speed100)
1687                         new_intr_timer_ctrl |= Timer10X;
1688                 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1689                         np->intr_timer_ctrl = new_intr_timer_ctrl;
1690                         writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1691                 }
1692         } else {
1693                 netif_carrier_off(dev);
1694                 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1695         }
1696 }
1697
1698
1699 static void netdev_error(struct net_device *dev, int intr_status)
1700 {
1701         struct netdev_private *np = netdev_priv(dev);
1702
1703         /* Came close to underrunning the Tx FIFO, increase threshold. */
1704         if (intr_status & IntrTxDataLow) {
1705                 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1706                         writel(++np->tx_threshold, np->base + TxThreshold);
1707                         printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1708                                dev->name, np->tx_threshold * 16);
1709                 } else
1710                         printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1711         }
1712         if (intr_status & IntrRxGFPDead) {
1713                 dev->stats.rx_fifo_errors++;
1714                 dev->stats.rx_errors++;
1715         }
1716         if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1717                 dev->stats.tx_fifo_errors++;
1718                 dev->stats.tx_errors++;
1719         }
1720         if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1721                 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1722                        dev->name, intr_status);
1723 }
1724
1725
1726 static struct net_device_stats *get_stats(struct net_device *dev)
1727 {
1728         struct netdev_private *np = netdev_priv(dev);
1729         void __iomem *ioaddr = np->base;
1730
1731         /* This adapter architecture needs no SMP locks. */
1732         dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1733         dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1734         dev->stats.tx_packets = readl(ioaddr + 0x57000);
1735         dev->stats.tx_aborted_errors =
1736                 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1737         dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1738         dev->stats.collisions =
1739                 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1740
1741         /* The chip only need report frame silently dropped. */
1742         dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1743         writew(0, ioaddr + RxDMAStatus);
1744         dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1745         dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1746         dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1747         dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1748
1749         return &dev->stats;
1750 }
1751
1752 #ifdef VLAN_SUPPORT
1753 static u32 set_vlan_mode(struct netdev_private *np)
1754 {
1755         u32 ret = VlanMode;
1756         u16 vid;
1757         void __iomem *filter_addr = np->base + HashTable + 8;
1758         int vlan_count = 0;
1759
1760         for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1761                 if (vlan_count == 32)
1762                         break;
1763                 writew(vid, filter_addr);
1764                 filter_addr += 16;
1765                 vlan_count++;
1766         }
1767         if (vlan_count == 32) {
1768                 ret |= PerfectFilterVlan;
1769                 while (vlan_count < 32) {
1770                         writew(0, filter_addr);
1771                         filter_addr += 16;
1772                         vlan_count++;
1773                 }
1774         }
1775         return ret;
1776 }
1777 #endif /* VLAN_SUPPORT */
1778
1779 static void set_rx_mode(struct net_device *dev)
1780 {
1781         struct netdev_private *np = netdev_priv(dev);
1782         void __iomem *ioaddr = np->base;
1783         u32 rx_mode = MinVLANPrio;
1784         struct netdev_hw_addr *ha;
1785         int i;
1786
1787 #ifdef VLAN_SUPPORT
1788         rx_mode |= set_vlan_mode(np);
1789 #endif /* VLAN_SUPPORT */
1790
1791         if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1792                 rx_mode |= AcceptAll;
1793         } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1794                    (dev->flags & IFF_ALLMULTI)) {
1795                 /* Too many to match, or accept all multicasts. */
1796                 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1797         } else if (netdev_mc_count(dev) <= 14) {
1798                 /* Use the 16 element perfect filter, skip first two entries. */
1799                 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1800                 __be16 *eaddrs;
1801                 netdev_for_each_mc_addr(ha, dev) {
1802                         eaddrs = (__be16 *) ha->addr;
1803                         writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1804                         writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805                         writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1806                 }
1807                 eaddrs = (__be16 *)dev->dev_addr;
1808                 i = netdev_mc_count(dev) + 2;
1809                 while (i++ < 16) {
1810                         writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1811                         writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1812                         writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1813                 }
1814                 rx_mode |= AcceptBroadcast|PerfectFilter;
1815         } else {
1816                 /* Must use a multicast hash table. */
1817                 void __iomem *filter_addr;
1818                 __be16 *eaddrs;
1819                 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));   /* Multicast hash filter */
1820
1821                 memset(mc_filter, 0, sizeof(mc_filter));
1822                 netdev_for_each_mc_addr(ha, dev) {
1823                         /* The chip uses the upper 9 CRC bits
1824                            as index into the hash table */
1825                         int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1826                         __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1827
1828                         *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1829                 }
1830                 /* Clear the perfect filter list, skip first two entries. */
1831                 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1832                 eaddrs = (__be16 *)dev->dev_addr;
1833                 for (i = 2; i < 16; i++) {
1834                         writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1835                         writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1836                         writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1837                 }
1838                 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1839                         writew(mc_filter[i], filter_addr);
1840                 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1841         }
1842         writel(rx_mode, ioaddr + RxFilterMode);
1843 }
1844
1845 static int check_if_running(struct net_device *dev)
1846 {
1847         if (!netif_running(dev))
1848                 return -EINVAL;
1849         return 0;
1850 }
1851
1852 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1853 {
1854         struct netdev_private *np = netdev_priv(dev);
1855         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1856         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1857         strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1858 }
1859
1860 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1861 {
1862         struct netdev_private *np = netdev_priv(dev);
1863         spin_lock_irq(&np->lock);
1864         mii_ethtool_gset(&np->mii_if, ecmd);
1865         spin_unlock_irq(&np->lock);
1866         return 0;
1867 }
1868
1869 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1870 {
1871         struct netdev_private *np = netdev_priv(dev);
1872         int res;
1873         spin_lock_irq(&np->lock);
1874         res = mii_ethtool_sset(&np->mii_if, ecmd);
1875         spin_unlock_irq(&np->lock);
1876         check_duplex(dev);
1877         return res;
1878 }
1879
1880 static int nway_reset(struct net_device *dev)
1881 {
1882         struct netdev_private *np = netdev_priv(dev);
1883         return mii_nway_restart(&np->mii_if);
1884 }
1885
1886 static u32 get_link(struct net_device *dev)
1887 {
1888         struct netdev_private *np = netdev_priv(dev);
1889         return mii_link_ok(&np->mii_if);
1890 }
1891
1892 static u32 get_msglevel(struct net_device *dev)
1893 {
1894         return debug;
1895 }
1896
1897 static void set_msglevel(struct net_device *dev, u32 val)
1898 {
1899         debug = val;
1900 }
1901
1902 static const struct ethtool_ops ethtool_ops = {
1903         .begin = check_if_running,
1904         .get_drvinfo = get_drvinfo,
1905         .get_settings = get_settings,
1906         .set_settings = set_settings,
1907         .nway_reset = nway_reset,
1908         .get_link = get_link,
1909         .get_msglevel = get_msglevel,
1910         .set_msglevel = set_msglevel,
1911 };
1912
1913 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1914 {
1915         struct netdev_private *np = netdev_priv(dev);
1916         struct mii_ioctl_data *data = if_mii(rq);
1917         int rc;
1918
1919         if (!netif_running(dev))
1920                 return -EINVAL;
1921
1922         spin_lock_irq(&np->lock);
1923         rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1924         spin_unlock_irq(&np->lock);
1925
1926         if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1927                 check_duplex(dev);
1928
1929         return rc;
1930 }
1931
1932 static int netdev_close(struct net_device *dev)
1933 {
1934         struct netdev_private *np = netdev_priv(dev);
1935         void __iomem *ioaddr = np->base;
1936         int i;
1937
1938         netif_stop_queue(dev);
1939
1940         napi_disable(&np->napi);
1941
1942         if (debug > 1) {
1943                 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1944                            dev->name, (int) readl(ioaddr + IntrStatus));
1945                 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1946                        dev->name, np->cur_tx, np->dirty_tx,
1947                        np->cur_rx, np->dirty_rx);
1948         }
1949
1950         /* Disable interrupts by clearing the interrupt mask. */
1951         writel(0, ioaddr + IntrEnable);
1952
1953         /* Stop the chip's Tx and Rx processes. */
1954         writel(0, ioaddr + GenCtrl);
1955         readl(ioaddr + GenCtrl);
1956
1957         if (debug > 5) {
1958                 printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1959                        (long long) np->tx_ring_dma);
1960                 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1961                         printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1962                                i, le32_to_cpu(np->tx_ring[i].status),
1963                                (long long) dma_to_cpu(np->tx_ring[i].addr),
1964                                le32_to_cpu(np->tx_done_q[i].status));
1965                 printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1966                        (long long) np->rx_ring_dma, np->rx_done_q);
1967                 if (np->rx_done_q)
1968                         for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1969                                 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1970                                        i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1971                 }
1972         }
1973
1974         free_irq(np->pci_dev->irq, dev);
1975
1976         /* Free all the skbuffs in the Rx queue. */
1977         for (i = 0; i < RX_RING_SIZE; i++) {
1978                 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1979                 if (np->rx_info[i].skb != NULL) {
1980                         pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1981                         dev_kfree_skb(np->rx_info[i].skb);
1982                 }
1983                 np->rx_info[i].skb = NULL;
1984                 np->rx_info[i].mapping = 0;
1985         }
1986         for (i = 0; i < TX_RING_SIZE; i++) {
1987                 struct sk_buff *skb = np->tx_info[i].skb;
1988                 if (skb == NULL)
1989                         continue;
1990                 pci_unmap_single(np->pci_dev,
1991                                  np->tx_info[i].mapping,
1992                                  skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1993                 np->tx_info[i].mapping = 0;
1994                 dev_kfree_skb(skb);
1995                 np->tx_info[i].skb = NULL;
1996         }
1997
1998         return 0;
1999 }
2000
2001 #ifdef CONFIG_PM
2002 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2003 {
2004         struct net_device *dev = pci_get_drvdata(pdev);
2005
2006         if (netif_running(dev)) {
2007                 netif_device_detach(dev);
2008                 netdev_close(dev);
2009         }
2010
2011         pci_save_state(pdev);
2012         pci_set_power_state(pdev, pci_choose_state(pdev,state));
2013
2014         return 0;
2015 }
2016
2017 static int starfire_resume(struct pci_dev *pdev)
2018 {
2019         struct net_device *dev = pci_get_drvdata(pdev);
2020
2021         pci_set_power_state(pdev, PCI_D0);
2022         pci_restore_state(pdev);
2023
2024         if (netif_running(dev)) {
2025                 netdev_open(dev);
2026                 netif_device_attach(dev);
2027         }
2028
2029         return 0;
2030 }
2031 #endif /* CONFIG_PM */
2032
2033
2034 static void starfire_remove_one(struct pci_dev *pdev)
2035 {
2036         struct net_device *dev = pci_get_drvdata(pdev);
2037         struct netdev_private *np = netdev_priv(dev);
2038
2039         BUG_ON(!dev);
2040
2041         unregister_netdev(dev);
2042
2043         if (np->queue_mem)
2044                 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2045
2046
2047         /* XXX: add wakeup code -- requires firmware for MagicPacket */
2048         pci_set_power_state(pdev, PCI_D3hot);   /* go to sleep in D3 mode */
2049         pci_disable_device(pdev);
2050
2051         iounmap(np->base);
2052         pci_release_regions(pdev);
2053
2054         free_netdev(dev);                       /* Will also free np!! */
2055 }
2056
2057
2058 static struct pci_driver starfire_driver = {
2059         .name           = DRV_NAME,
2060         .probe          = starfire_init_one,
2061         .remove         = starfire_remove_one,
2062 #ifdef CONFIG_PM
2063         .suspend        = starfire_suspend,
2064         .resume         = starfire_resume,
2065 #endif /* CONFIG_PM */
2066         .id_table       = starfire_pci_tbl,
2067 };
2068
2069
2070 static int __init starfire_init (void)
2071 {
2072 /* when a module, this is printed whether or not devices are found in probe */
2073 #ifdef MODULE
2074         printk(version);
2075
2076         printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2077 #endif
2078
2079         BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2080
2081         return pci_register_driver(&starfire_driver);
2082 }
2083
2084
2085 static void __exit starfire_cleanup (void)
2086 {
2087         pci_unregister_driver (&starfire_driver);
2088 }
2089
2090
2091 module_init(starfire_init);
2092 module_exit(starfire_cleanup);
2093
2094
2095 /*
2096  * Local variables:
2097  *  c-basic-offset: 8
2098  *  tab-width: 8
2099  * End:
2100  */