GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT                    BIT(0)
22 #define NEW_XMII                        BIT(1)
23 #define IS_9893                         BIT(2)
24
25 static const struct {
26         int index;
27         char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29         { 0x00, "rx_hi" },
30         { 0x01, "rx_undersize" },
31         { 0x02, "rx_fragments" },
32         { 0x03, "rx_oversize" },
33         { 0x04, "rx_jabbers" },
34         { 0x05, "rx_symbol_err" },
35         { 0x06, "rx_crc_err" },
36         { 0x07, "rx_align_err" },
37         { 0x08, "rx_mac_ctrl" },
38         { 0x09, "rx_pause" },
39         { 0x0A, "rx_bcast" },
40         { 0x0B, "rx_mcast" },
41         { 0x0C, "rx_ucast" },
42         { 0x0D, "rx_64_or_less" },
43         { 0x0E, "rx_65_127" },
44         { 0x0F, "rx_128_255" },
45         { 0x10, "rx_256_511" },
46         { 0x11, "rx_512_1023" },
47         { 0x12, "rx_1024_1522" },
48         { 0x13, "rx_1523_2000" },
49         { 0x14, "rx_2001" },
50         { 0x15, "tx_hi" },
51         { 0x16, "tx_late_col" },
52         { 0x17, "tx_pause" },
53         { 0x18, "tx_bcast" },
54         { 0x19, "tx_mcast" },
55         { 0x1A, "tx_ucast" },
56         { 0x1B, "tx_deferred" },
57         { 0x1C, "tx_total_col" },
58         { 0x1D, "tx_exc_col" },
59         { 0x1E, "tx_single_col" },
60         { 0x1F, "tx_mult_col" },
61         { 0x80, "rx_total" },
62         { 0x81, "tx_total" },
63         { 0x82, "rx_discards" },
64         { 0x83, "tx_discards" },
65 };
66
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69         regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73                          bool set)
74 {
75         regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76                            bits, set ? bits : 0);
77 }
78
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81         regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85                                u32 bits, bool set)
86 {
87         regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88                            bits, set ? bits : 0);
89 }
90
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93         unsigned int val;
94
95         return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96                                         val, !(val & VLAN_START), 10, 1000);
97 }
98
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100                                   u32 *vlan_table)
101 {
102         int ret;
103
104         mutex_lock(&dev->vlan_mutex);
105
106         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109         /* wait to be cleared */
110         ret = ksz9477_wait_vlan_ctrl_ready(dev);
111         if (ret) {
112                 dev_dbg(dev->dev, "Failed to read vlan table\n");
113                 goto exit;
114         }
115
116         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122 exit:
123         mutex_unlock(&dev->vlan_mutex);
124
125         return ret;
126 }
127
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129                                   u32 *vlan_table)
130 {
131         int ret;
132
133         mutex_lock(&dev->vlan_mutex);
134
135         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142         /* wait to be cleared */
143         ret = ksz9477_wait_vlan_ctrl_ready(dev);
144         if (ret) {
145                 dev_dbg(dev->dev, "Failed to write vlan table\n");
146                 goto exit;
147         }
148
149         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151         /* update vlan cache table */
152         dev->vlan_cache[vid].table[0] = vlan_table[0];
153         dev->vlan_cache[vid].table[1] = vlan_table[1];
154         dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156 exit:
157         mutex_unlock(&dev->vlan_mutex);
158
159         return ret;
160 }
161
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180         unsigned int val;
181
182         return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183                                         val, !(val & ALU_START), 10, 1000);
184 }
185
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188         unsigned int val;
189
190         return regmap_read_poll_timeout(dev->regmap[2],
191                                         REG_SW_ALU_STAT_CTRL__4,
192                                         val, !(val & ALU_STAT_START),
193                                         10, 1000);
194 }
195
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198         u8 data8;
199         u32 data32;
200
201         /* reset switch */
202         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204         /* turn off SPI DO Edge select */
205         regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206                            SPI_AUTO_EDGE_DETECTION, 0);
207
208         /* default configuration */
209         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214         /* disable interrupts */
215         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219         /* set broadcast storm protection 10% rate */
220         regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221                            BROADCAST_STORM_RATE,
222                            (BROADCAST_STORM_VALUE *
223                            BROADCAST_STORM_PROT_RATE) / 100);
224
225         if (dev->synclko_125)
226                 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227                            SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229         return 0;
230 }
231
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233                               u64 *cnt)
234 {
235         struct ksz_port *p = &dev->ports[port];
236         unsigned int val;
237         u32 data;
238         int ret;
239
240         /* retain the flush/freeze bit */
241         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242         data |= MIB_COUNTER_READ;
243         data |= (addr << MIB_COUNTER_INDEX_S);
244         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246         ret = regmap_read_poll_timeout(dev->regmap[2],
247                         PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248                         val, !(val & MIB_COUNTER_READ), 10, 1000);
249         /* failed to read MIB. get out of loop */
250         if (ret) {
251                 dev_dbg(dev->dev, "Failed to get MIB\n");
252                 return;
253         }
254
255         /* count resets upon read */
256         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257         *cnt += data;
258 }
259
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261                               u64 *dropped, u64 *cnt)
262 {
263         addr = ksz9477_mib_names[addr].index;
264         ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270         struct ksz_port *p = &dev->ports[port];
271
272         /* enable/disable the port for flush/freeze function */
273         mutex_lock(&p->mib.cnt_mutex);
274         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276         /* used by MIB counter reading code to know freeze is enabled */
277         p->freeze = freeze;
278         mutex_unlock(&p->mib.cnt_mutex);
279 }
280
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283         struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285         /* flush all enabled port MIB counters */
286         mutex_lock(&mib->cnt_mutex);
287         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288                      MIB_COUNTER_FLUSH_FREEZE);
289         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291         mutex_unlock(&mib->cnt_mutex);
292
293         mib->cnt_ptr = 0;
294         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298                                                       int port,
299                                                       enum dsa_tag_protocol mp)
300 {
301         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302         struct ksz_device *dev = ds->priv;
303
304         if (dev->features & IS_9893)
305                 proto = DSA_TAG_PROTO_KSZ9893;
306         return proto;
307 }
308
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311         struct ksz_device *dev = ds->priv;
312         u16 val = 0xffff;
313
314         /* No real PHY after this. Simulate the PHY.
315          * A fixed PHY can be setup in the device tree, but this function is
316          * still called for that port during initialization.
317          * For RGMII PHY there is no way to access it so the fixed PHY should
318          * be used.  For SGMII PHY the supporting code will be added later.
319          */
320         if (addr >= dev->phy_port_cnt) {
321                 struct ksz_port *p = &dev->ports[addr];
322
323                 switch (reg) {
324                 case MII_BMCR:
325                         val = 0x1140;
326                         break;
327                 case MII_BMSR:
328                         val = 0x796d;
329                         break;
330                 case MII_PHYSID1:
331                         val = 0x0022;
332                         break;
333                 case MII_PHYSID2:
334                         val = 0x1631;
335                         break;
336                 case MII_ADVERTISE:
337                         val = 0x05e1;
338                         break;
339                 case MII_LPA:
340                         val = 0xc5e1;
341                         break;
342                 case MII_CTRL1000:
343                         val = 0x0700;
344                         break;
345                 case MII_STAT1000:
346                         if (p->phydev.speed == SPEED_1000)
347                                 val = 0x3800;
348                         else
349                                 val = 0;
350                         break;
351                 }
352         } else {
353                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354         }
355
356         return val;
357 }
358
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360                                u16 val)
361 {
362         struct ksz_device *dev = ds->priv;
363
364         /* No real PHY after this. */
365         if (addr >= dev->phy_port_cnt)
366                 return 0;
367
368         /* No gigabit support.  Do not write to this register. */
369         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370                 return 0;
371         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373         return 0;
374 }
375
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377                                 u32 stringset, uint8_t *buf)
378 {
379         int i;
380
381         if (stringset != ETH_SS_STATS)
382                 return;
383
384         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386                        ETH_GSTRING_LEN);
387         }
388 }
389
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391                                     u8 member)
392 {
393         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394         dev->ports[port].member = member;
395 }
396
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398                                        u8 state)
399 {
400         struct ksz_device *dev = ds->priv;
401         struct ksz_port *p = &dev->ports[port];
402         u8 data;
403         int member = -1;
404         int forward = dev->member;
405
406         ksz_pread8(dev, port, P_STP_CTRL, &data);
407         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409         switch (state) {
410         case BR_STATE_DISABLED:
411                 data |= PORT_LEARN_DISABLE;
412                 if (port != dev->cpu_port)
413                         member = 0;
414                 break;
415         case BR_STATE_LISTENING:
416                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417                 if (port != dev->cpu_port &&
418                     p->stp_state == BR_STATE_DISABLED)
419                         member = dev->host_mask | p->vid_member;
420                 break;
421         case BR_STATE_LEARNING:
422                 data |= PORT_RX_ENABLE;
423                 break;
424         case BR_STATE_FORWARDING:
425                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427                 /* This function is also used internally. */
428                 if (port == dev->cpu_port)
429                         break;
430
431                 member = dev->host_mask | p->vid_member;
432                 mutex_lock(&dev->dev_mutex);
433
434                 /* Port is a member of a bridge. */
435                 if (dev->br_member & (1 << port)) {
436                         dev->member |= (1 << port);
437                         member = dev->member;
438                 }
439                 mutex_unlock(&dev->dev_mutex);
440                 break;
441         case BR_STATE_BLOCKING:
442                 data |= PORT_LEARN_DISABLE;
443                 if (port != dev->cpu_port &&
444                     p->stp_state == BR_STATE_DISABLED)
445                         member = dev->host_mask | p->vid_member;
446                 break;
447         default:
448                 dev_err(ds->dev, "invalid STP state: %d\n", state);
449                 return;
450         }
451
452         ksz_pwrite8(dev, port, P_STP_CTRL, data);
453         p->stp_state = state;
454         mutex_lock(&dev->dev_mutex);
455         /* Port membership may share register with STP state. */
456         if (member >= 0 && member != p->member)
457                 ksz9477_cfg_port_member(dev, port, (u8)member);
458
459         /* Check if forwarding needs to be updated. */
460         if (state != BR_STATE_FORWARDING) {
461                 if (dev->br_member & (1 << port))
462                         dev->member &= ~(1 << port);
463         }
464
465         /* When topology has changed the function ksz_update_port_member
466          * should be called to modify port forwarding behavior.
467          */
468         if (forward != dev->member)
469                 ksz_update_port_member(dev, port);
470         mutex_unlock(&dev->dev_mutex);
471 }
472
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475         u8 data;
476
477         regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478                            SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479                            SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481         if (port < dev->mib_port_cnt) {
482                 /* flush individual port */
483                 ksz_pread8(dev, port, P_STP_CTRL, &data);
484                 if (!(data & PORT_LEARN_DISABLE))
485                         ksz_pwrite8(dev, port, P_STP_CTRL,
486                                     data | PORT_LEARN_DISABLE);
487                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
489         } else {
490                 /* flush all */
491                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492         }
493 }
494
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496                                        bool flag,
497                                        struct switchdev_trans *trans)
498 {
499         struct ksz_device *dev = ds->priv;
500
501         if (switchdev_trans_ph_prepare(trans))
502                 return 0;
503
504         if (flag) {
505                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
506                              PORT_VLAN_LOOKUP_VID_0, true);
507                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
508         } else {
509                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
510                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511                              PORT_VLAN_LOOKUP_VID_0, false);
512         }
513
514         return 0;
515 }
516
517 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
518                                   const struct switchdev_obj_port_vlan *vlan)
519 {
520         struct ksz_device *dev = ds->priv;
521         u32 vlan_table[3];
522         u16 vid;
523         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
524
525         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
526                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
527                         dev_dbg(dev->dev, "Failed to get vlan table\n");
528                         return;
529                 }
530
531                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
532                 if (untagged)
533                         vlan_table[1] |= BIT(port);
534                 else
535                         vlan_table[1] &= ~BIT(port);
536                 vlan_table[1] &= ~(BIT(dev->cpu_port));
537
538                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
539
540                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
541                         dev_dbg(dev->dev, "Failed to set vlan table\n");
542                         return;
543                 }
544
545                 /* change PVID */
546                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
547                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
548         }
549 }
550
551 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
552                                  const struct switchdev_obj_port_vlan *vlan)
553 {
554         struct ksz_device *dev = ds->priv;
555         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
556         u32 vlan_table[3];
557         u16 vid;
558         u16 pvid;
559
560         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
561         pvid = pvid & 0xFFF;
562
563         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
564                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
565                         dev_dbg(dev->dev, "Failed to get vlan table\n");
566                         return -ETIMEDOUT;
567                 }
568
569                 vlan_table[2] &= ~BIT(port);
570
571                 if (pvid == vid)
572                         pvid = 1;
573
574                 if (untagged)
575                         vlan_table[1] &= ~BIT(port);
576
577                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
578                         dev_dbg(dev->dev, "Failed to set vlan table\n");
579                         return -ETIMEDOUT;
580                 }
581         }
582
583         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
584
585         return 0;
586 }
587
588 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
589                                 const unsigned char *addr, u16 vid)
590 {
591         struct ksz_device *dev = ds->priv;
592         u32 alu_table[4];
593         u32 data;
594         int ret = 0;
595
596         mutex_lock(&dev->alu_mutex);
597
598         /* find any entry with mac & vid */
599         data = vid << ALU_FID_INDEX_S;
600         data |= ((addr[0] << 8) | addr[1]);
601         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
602
603         data = ((addr[2] << 24) | (addr[3] << 16));
604         data |= ((addr[4] << 8) | addr[5]);
605         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
606
607         /* start read operation */
608         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
609
610         /* wait to be finished */
611         ret = ksz9477_wait_alu_ready(dev);
612         if (ret) {
613                 dev_dbg(dev->dev, "Failed to read ALU\n");
614                 goto exit;
615         }
616
617         /* read ALU entry */
618         ksz9477_read_table(dev, alu_table);
619
620         /* update ALU entry */
621         alu_table[0] = ALU_V_STATIC_VALID;
622         alu_table[1] |= BIT(port);
623         if (vid)
624                 alu_table[1] |= ALU_V_USE_FID;
625         alu_table[2] = (vid << ALU_V_FID_S);
626         alu_table[2] |= ((addr[0] << 8) | addr[1]);
627         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
628         alu_table[3] |= ((addr[4] << 8) | addr[5]);
629
630         ksz9477_write_table(dev, alu_table);
631
632         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
633
634         /* wait to be finished */
635         ret = ksz9477_wait_alu_ready(dev);
636         if (ret)
637                 dev_dbg(dev->dev, "Failed to write ALU\n");
638
639 exit:
640         mutex_unlock(&dev->alu_mutex);
641
642         return ret;
643 }
644
645 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
646                                 const unsigned char *addr, u16 vid)
647 {
648         struct ksz_device *dev = ds->priv;
649         u32 alu_table[4];
650         u32 data;
651         int ret = 0;
652
653         mutex_lock(&dev->alu_mutex);
654
655         /* read any entry with mac & vid */
656         data = vid << ALU_FID_INDEX_S;
657         data |= ((addr[0] << 8) | addr[1]);
658         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
659
660         data = ((addr[2] << 24) | (addr[3] << 16));
661         data |= ((addr[4] << 8) | addr[5]);
662         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
663
664         /* start read operation */
665         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
666
667         /* wait to be finished */
668         ret = ksz9477_wait_alu_ready(dev);
669         if (ret) {
670                 dev_dbg(dev->dev, "Failed to read ALU\n");
671                 goto exit;
672         }
673
674         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
675         if (alu_table[0] & ALU_V_STATIC_VALID) {
676                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
677                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
678                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
679
680                 /* clear forwarding port */
681                 alu_table[2] &= ~BIT(port);
682
683                 /* if there is no port to forward, clear table */
684                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
685                         alu_table[0] = 0;
686                         alu_table[1] = 0;
687                         alu_table[2] = 0;
688                         alu_table[3] = 0;
689                 }
690         } else {
691                 alu_table[0] = 0;
692                 alu_table[1] = 0;
693                 alu_table[2] = 0;
694                 alu_table[3] = 0;
695         }
696
697         ksz9477_write_table(dev, alu_table);
698
699         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
700
701         /* wait to be finished */
702         ret = ksz9477_wait_alu_ready(dev);
703         if (ret)
704                 dev_dbg(dev->dev, "Failed to write ALU\n");
705
706 exit:
707         mutex_unlock(&dev->alu_mutex);
708
709         return ret;
710 }
711
712 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
713 {
714         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
715         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
716         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
717         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
718                         ALU_V_PRIO_AGE_CNT_M;
719         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
720
721         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
722         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
723         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
724
725         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
726
727         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
728         alu->mac[1] = alu_table[2] & 0xFF;
729         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
730         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
731         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
732         alu->mac[5] = alu_table[3] & 0xFF;
733 }
734
735 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
736                                  dsa_fdb_dump_cb_t *cb, void *data)
737 {
738         struct ksz_device *dev = ds->priv;
739         int ret = 0;
740         u32 ksz_data;
741         u32 alu_table[4];
742         struct alu_struct alu;
743         int timeout;
744
745         mutex_lock(&dev->alu_mutex);
746
747         /* start ALU search */
748         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
749
750         do {
751                 timeout = 1000;
752                 do {
753                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
754                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
755                                 break;
756                         usleep_range(1, 10);
757                 } while (timeout-- > 0);
758
759                 if (!timeout) {
760                         dev_dbg(dev->dev, "Failed to search ALU\n");
761                         ret = -ETIMEDOUT;
762                         goto exit;
763                 }
764
765                 if (!(ksz_data & ALU_VALID))
766                         continue;
767
768                 /* read ALU table */
769                 ksz9477_read_table(dev, alu_table);
770
771                 ksz9477_convert_alu(&alu, alu_table);
772
773                 if (alu.port_forward & BIT(port)) {
774                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
775                         if (ret)
776                                 goto exit;
777                 }
778         } while (ksz_data & ALU_START);
779
780 exit:
781
782         /* stop ALU search */
783         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
784
785         mutex_unlock(&dev->alu_mutex);
786
787         return ret;
788 }
789
790 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
791                                  const struct switchdev_obj_port_mdb *mdb)
792 {
793         struct ksz_device *dev = ds->priv;
794         u32 static_table[4];
795         u32 data;
796         int index;
797         u32 mac_hi, mac_lo;
798
799         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
800         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
801         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
802
803         mutex_lock(&dev->alu_mutex);
804
805         for (index = 0; index < dev->num_statics; index++) {
806                 /* find empty slot first */
807                 data = (index << ALU_STAT_INDEX_S) |
808                         ALU_STAT_READ | ALU_STAT_START;
809                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
810
811                 /* wait to be finished */
812                 if (ksz9477_wait_alu_sta_ready(dev)) {
813                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
814                         goto exit;
815                 }
816
817                 /* read ALU static table */
818                 ksz9477_read_table(dev, static_table);
819
820                 if (static_table[0] & ALU_V_STATIC_VALID) {
821                         /* check this has same vid & mac address */
822                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
823                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
824                             static_table[3] == mac_lo) {
825                                 /* found matching one */
826                                 break;
827                         }
828                 } else {
829                         /* found empty one */
830                         break;
831                 }
832         }
833
834         /* no available entry */
835         if (index == dev->num_statics)
836                 goto exit;
837
838         /* add entry */
839         static_table[0] = ALU_V_STATIC_VALID;
840         static_table[1] |= BIT(port);
841         if (mdb->vid)
842                 static_table[1] |= ALU_V_USE_FID;
843         static_table[2] = (mdb->vid << ALU_V_FID_S);
844         static_table[2] |= mac_hi;
845         static_table[3] = mac_lo;
846
847         ksz9477_write_table(dev, static_table);
848
849         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
850         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
851
852         /* wait to be finished */
853         if (ksz9477_wait_alu_sta_ready(dev))
854                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
855
856 exit:
857         mutex_unlock(&dev->alu_mutex);
858 }
859
860 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
861                                 const struct switchdev_obj_port_mdb *mdb)
862 {
863         struct ksz_device *dev = ds->priv;
864         u32 static_table[4];
865         u32 data;
866         int index;
867         int ret = 0;
868         u32 mac_hi, mac_lo;
869
870         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
871         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
872         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
873
874         mutex_lock(&dev->alu_mutex);
875
876         for (index = 0; index < dev->num_statics; index++) {
877                 /* find empty slot first */
878                 data = (index << ALU_STAT_INDEX_S) |
879                         ALU_STAT_READ | ALU_STAT_START;
880                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
881
882                 /* wait to be finished */
883                 ret = ksz9477_wait_alu_sta_ready(dev);
884                 if (ret) {
885                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
886                         goto exit;
887                 }
888
889                 /* read ALU static table */
890                 ksz9477_read_table(dev, static_table);
891
892                 if (static_table[0] & ALU_V_STATIC_VALID) {
893                         /* check this has same vid & mac address */
894
895                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
896                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
897                             static_table[3] == mac_lo) {
898                                 /* found matching one */
899                                 break;
900                         }
901                 }
902         }
903
904         /* no available entry */
905         if (index == dev->num_statics)
906                 goto exit;
907
908         /* clear port */
909         static_table[1] &= ~BIT(port);
910
911         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
912                 /* delete entry */
913                 static_table[0] = 0;
914                 static_table[1] = 0;
915                 static_table[2] = 0;
916                 static_table[3] = 0;
917         }
918
919         ksz9477_write_table(dev, static_table);
920
921         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
922         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
923
924         /* wait to be finished */
925         ret = ksz9477_wait_alu_sta_ready(dev);
926         if (ret)
927                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
928
929 exit:
930         mutex_unlock(&dev->alu_mutex);
931
932         return ret;
933 }
934
935 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
936                                    struct dsa_mall_mirror_tc_entry *mirror,
937                                    bool ingress)
938 {
939         struct ksz_device *dev = ds->priv;
940
941         if (ingress)
942                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
943         else
944                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
945
946         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
947
948         /* configure mirror port */
949         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
950                      PORT_MIRROR_SNIFFER, true);
951
952         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
953
954         return 0;
955 }
956
957 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
958                                     struct dsa_mall_mirror_tc_entry *mirror)
959 {
960         struct ksz_device *dev = ds->priv;
961         u8 data;
962
963         if (mirror->ingress)
964                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
965         else
966                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
967
968         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
969
970         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
971                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
972                              PORT_MIRROR_SNIFFER, false);
973 }
974
975 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
976 {
977         bool gbit;
978
979         if (dev->features & NEW_XMII)
980                 gbit = !(data & PORT_MII_NOT_1GBIT);
981         else
982                 gbit = !!(data & PORT_MII_1000MBIT_S1);
983         return gbit;
984 }
985
986 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
987 {
988         if (dev->features & NEW_XMII) {
989                 if (gbit)
990                         *data &= ~PORT_MII_NOT_1GBIT;
991                 else
992                         *data |= PORT_MII_NOT_1GBIT;
993         } else {
994                 if (gbit)
995                         *data |= PORT_MII_1000MBIT_S1;
996                 else
997                         *data &= ~PORT_MII_1000MBIT_S1;
998         }
999 }
1000
1001 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1002 {
1003         int mode;
1004
1005         if (dev->features & NEW_XMII) {
1006                 switch (data & PORT_MII_SEL_M) {
1007                 case PORT_MII_SEL:
1008                         mode = 0;
1009                         break;
1010                 case PORT_RMII_SEL:
1011                         mode = 1;
1012                         break;
1013                 case PORT_GMII_SEL:
1014                         mode = 2;
1015                         break;
1016                 default:
1017                         mode = 3;
1018                 }
1019         } else {
1020                 switch (data & PORT_MII_SEL_M) {
1021                 case PORT_MII_SEL_S1:
1022                         mode = 0;
1023                         break;
1024                 case PORT_RMII_SEL_S1:
1025                         mode = 1;
1026                         break;
1027                 case PORT_GMII_SEL_S1:
1028                         mode = 2;
1029                         break;
1030                 default:
1031                         mode = 3;
1032                 }
1033         }
1034         return mode;
1035 }
1036
1037 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1038 {
1039         u8 xmii;
1040
1041         if (dev->features & NEW_XMII) {
1042                 switch (mode) {
1043                 case 0:
1044                         xmii = PORT_MII_SEL;
1045                         break;
1046                 case 1:
1047                         xmii = PORT_RMII_SEL;
1048                         break;
1049                 case 2:
1050                         xmii = PORT_GMII_SEL;
1051                         break;
1052                 default:
1053                         xmii = PORT_RGMII_SEL;
1054                         break;
1055                 }
1056         } else {
1057                 switch (mode) {
1058                 case 0:
1059                         xmii = PORT_MII_SEL_S1;
1060                         break;
1061                 case 1:
1062                         xmii = PORT_RMII_SEL_S1;
1063                         break;
1064                 case 2:
1065                         xmii = PORT_GMII_SEL_S1;
1066                         break;
1067                 default:
1068                         xmii = PORT_RGMII_SEL_S1;
1069                         break;
1070                 }
1071         }
1072         *data &= ~PORT_MII_SEL_M;
1073         *data |= xmii;
1074 }
1075
1076 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1077 {
1078         phy_interface_t interface;
1079         bool gbit;
1080         int mode;
1081         u8 data8;
1082
1083         if (port < dev->phy_port_cnt)
1084                 return PHY_INTERFACE_MODE_NA;
1085         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1086         gbit = ksz9477_get_gbit(dev, data8);
1087         mode = ksz9477_get_xmii(dev, data8);
1088         switch (mode) {
1089         case 2:
1090                 interface = PHY_INTERFACE_MODE_GMII;
1091                 if (gbit)
1092                         break;
1093                 fallthrough;
1094         case 0:
1095                 interface = PHY_INTERFACE_MODE_MII;
1096                 break;
1097         case 1:
1098                 interface = PHY_INTERFACE_MODE_RMII;
1099                 break;
1100         default:
1101                 interface = PHY_INTERFACE_MODE_RGMII;
1102                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1103                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1104                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1105                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1106                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1107                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1108                 }
1109                 break;
1110         }
1111         return interface;
1112 }
1113
1114 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1115                                    u8 dev_addr, u16 reg_addr, u16 val)
1116 {
1117         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1118                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1119         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1120         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1121                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1122         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1123 }
1124
1125 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1126 {
1127         /* Apply PHY settings to address errata listed in
1128          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1129          * Silicon Errata and Data Sheet Clarification documents:
1130          *
1131          * Register settings are needed to improve PHY receive performance
1132          */
1133         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1134         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1135         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1136         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1137         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1138         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1139         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1140
1141         /* Transmit waveform amplitude can be improved
1142          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1143          */
1144         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1145
1146         /* Energy Efficient Ethernet (EEE) feature select must
1147          * be manually disabled (except on KSZ8565 which is 100Mbit)
1148          */
1149         if (dev->features & GBIT_SUPPORT)
1150                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1151
1152         /* Register settings are required to meet data sheet
1153          * supply current specifications
1154          */
1155         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1156         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1157         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1158         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1159         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1160         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1161         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1162         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1163         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1164         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1165         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1166         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1167         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1168 }
1169
1170 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1171 {
1172         u8 data8;
1173         u8 member;
1174         u16 data16;
1175         struct ksz_port *p = &dev->ports[port];
1176
1177         /* enable tag tail for host port */
1178         if (cpu_port)
1179                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1180                              true);
1181
1182         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1183
1184         /* set back pressure */
1185         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1186
1187         /* enable broadcast storm limit */
1188         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1189
1190         /* disable DiffServ priority */
1191         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1192
1193         /* replace priority */
1194         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1195                      false);
1196         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1197                            MTI_PVID_REPLACE, false);
1198
1199         /* enable 802.1p priority */
1200         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1201
1202         if (port < dev->phy_port_cnt) {
1203                 /* do not force flow control */
1204                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1205                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1206                              false);
1207
1208                 if (dev->phy_errata_9477)
1209                         ksz9477_phy_errata_setup(dev, port);
1210         } else {
1211                 /* force flow control */
1212                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1213                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1214                              true);
1215
1216                 /* configure MAC to 1G & RGMII mode */
1217                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1218                 switch (p->interface) {
1219                 case PHY_INTERFACE_MODE_MII:
1220                         ksz9477_set_xmii(dev, 0, &data8);
1221                         ksz9477_set_gbit(dev, false, &data8);
1222                         p->phydev.speed = SPEED_100;
1223                         break;
1224                 case PHY_INTERFACE_MODE_RMII:
1225                         ksz9477_set_xmii(dev, 1, &data8);
1226                         ksz9477_set_gbit(dev, false, &data8);
1227                         p->phydev.speed = SPEED_100;
1228                         break;
1229                 case PHY_INTERFACE_MODE_GMII:
1230                         ksz9477_set_xmii(dev, 2, &data8);
1231                         ksz9477_set_gbit(dev, true, &data8);
1232                         p->phydev.speed = SPEED_1000;
1233                         break;
1234                 default:
1235                         ksz9477_set_xmii(dev, 3, &data8);
1236                         ksz9477_set_gbit(dev, true, &data8);
1237                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1238                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1239                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1240                             p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1241                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1242                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1243                             p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1244                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1245                         /* On KSZ9893, disable RGMII in-band status support */
1246                         if (dev->features & IS_9893)
1247                                 data8 &= ~PORT_MII_MAC_MODE;
1248                         p->phydev.speed = SPEED_1000;
1249                         break;
1250                 }
1251                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1252                 p->phydev.duplex = 1;
1253         }
1254         mutex_lock(&dev->dev_mutex);
1255         if (cpu_port)
1256                 member = dev->port_mask;
1257         else
1258                 member = dev->host_mask | p->vid_member;
1259         mutex_unlock(&dev->dev_mutex);
1260         ksz9477_cfg_port_member(dev, port, member);
1261
1262         /* clear pending interrupts */
1263         if (port < dev->phy_port_cnt)
1264                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1265 }
1266
1267 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1268 {
1269         struct ksz_device *dev = ds->priv;
1270         struct ksz_port *p;
1271         int i;
1272
1273         ds->num_ports = dev->port_cnt;
1274
1275         for (i = 0; i < dev->port_cnt; i++) {
1276                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1277                         phy_interface_t interface;
1278                         const char *prev_msg;
1279                         const char *prev_mode;
1280
1281                         dev->cpu_port = i;
1282                         dev->host_mask = (1 << dev->cpu_port);
1283                         dev->port_mask |= dev->host_mask;
1284                         p = &dev->ports[i];
1285
1286                         /* Read from XMII register to determine host port
1287                          * interface.  If set specifically in device tree
1288                          * note the difference to help debugging.
1289                          */
1290                         interface = ksz9477_get_interface(dev, i);
1291                         if (!p->interface) {
1292                                 if (dev->compat_interface) {
1293                                         dev_warn(dev->dev,
1294                                                  "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1295                                                  "Please update your device tree.\n",
1296                                                  i);
1297                                         p->interface = dev->compat_interface;
1298                                 } else {
1299                                         p->interface = interface;
1300                                 }
1301                         }
1302                         if (interface && interface != p->interface) {
1303                                 prev_msg = " instead of ";
1304                                 prev_mode = phy_modes(interface);
1305                         } else {
1306                                 prev_msg = "";
1307                                 prev_mode = "";
1308                         }
1309                         dev_info(dev->dev,
1310                                  "Port%d: using phy mode %s%s%s\n",
1311                                  i,
1312                                  phy_modes(p->interface),
1313                                  prev_msg,
1314                                  prev_mode);
1315
1316                         /* enable cpu port */
1317                         ksz9477_port_setup(dev, i, true);
1318                         p->vid_member = dev->port_mask;
1319                         p->on = 1;
1320                 }
1321         }
1322
1323         dev->member = dev->host_mask;
1324
1325         for (i = 0; i < dev->mib_port_cnt; i++) {
1326                 if (i == dev->cpu_port)
1327                         continue;
1328                 p = &dev->ports[i];
1329
1330                 /* Initialize to non-zero so that ksz_cfg_port_member() will
1331                  * be called.
1332                  */
1333                 p->vid_member = (1 << i);
1334                 p->member = dev->port_mask;
1335                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1336                 p->on = 1;
1337                 if (i < dev->phy_port_cnt)
1338                         p->phy = 1;
1339                 if (dev->chip_id == 0x00947700 && i == 6) {
1340                         p->sgmii = 1;
1341
1342                         /* SGMII PHY detection code is not implemented yet. */
1343                         p->phy = 0;
1344                 }
1345         }
1346 }
1347
1348 static int ksz9477_setup(struct dsa_switch *ds)
1349 {
1350         struct ksz_device *dev = ds->priv;
1351         int ret = 0;
1352
1353         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1354                                        dev->num_vlans, GFP_KERNEL);
1355         if (!dev->vlan_cache)
1356                 return -ENOMEM;
1357
1358         ret = ksz9477_reset_switch(dev);
1359         if (ret) {
1360                 dev_err(ds->dev, "failed to reset switch\n");
1361                 return ret;
1362         }
1363
1364         /* Required for port partitioning. */
1365         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1366                       true);
1367
1368         /* Do not work correctly with tail tagging. */
1369         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1370
1371         /* accept packet up to 2000bytes */
1372         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1373
1374         ksz9477_config_cpu_port(ds);
1375
1376         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1377
1378         /* queue based egress rate limit */
1379         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1380
1381         /* enable global MIB counter freeze function */
1382         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1383
1384         /* start switch */
1385         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1386
1387         ksz_init_mib_timer(dev);
1388
1389         return 0;
1390 }
1391
1392 static const struct dsa_switch_ops ksz9477_switch_ops = {
1393         .get_tag_protocol       = ksz9477_get_tag_protocol,
1394         .setup                  = ksz9477_setup,
1395         .phy_read               = ksz9477_phy_read16,
1396         .phy_write              = ksz9477_phy_write16,
1397         .phylink_mac_link_down  = ksz_mac_link_down,
1398         .port_enable            = ksz_enable_port,
1399         .get_strings            = ksz9477_get_strings,
1400         .get_ethtool_stats      = ksz_get_ethtool_stats,
1401         .get_sset_count         = ksz_sset_count,
1402         .port_bridge_join       = ksz_port_bridge_join,
1403         .port_bridge_leave      = ksz_port_bridge_leave,
1404         .port_stp_state_set     = ksz9477_port_stp_state_set,
1405         .port_fast_age          = ksz_port_fast_age,
1406         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1407         .port_vlan_prepare      = ksz_port_vlan_prepare,
1408         .port_vlan_add          = ksz9477_port_vlan_add,
1409         .port_vlan_del          = ksz9477_port_vlan_del,
1410         .port_fdb_dump          = ksz9477_port_fdb_dump,
1411         .port_fdb_add           = ksz9477_port_fdb_add,
1412         .port_fdb_del           = ksz9477_port_fdb_del,
1413         .port_mdb_prepare       = ksz_port_mdb_prepare,
1414         .port_mdb_add           = ksz9477_port_mdb_add,
1415         .port_mdb_del           = ksz9477_port_mdb_del,
1416         .port_mirror_add        = ksz9477_port_mirror_add,
1417         .port_mirror_del        = ksz9477_port_mirror_del,
1418 };
1419
1420 static u32 ksz9477_get_port_addr(int port, int offset)
1421 {
1422         return PORT_CTRL_ADDR(port, offset);
1423 }
1424
1425 static int ksz9477_switch_detect(struct ksz_device *dev)
1426 {
1427         u8 data8;
1428         u8 id_hi;
1429         u8 id_lo;
1430         u32 id32;
1431         int ret;
1432
1433         /* turn off SPI DO Edge select */
1434         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1435         if (ret)
1436                 return ret;
1437
1438         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1439         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1440         if (ret)
1441                 return ret;
1442
1443         /* read chip id */
1444         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1445         if (ret)
1446                 return ret;
1447         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1448         if (ret)
1449                 return ret;
1450
1451         /* Number of ports can be reduced depending on chip. */
1452         dev->mib_port_cnt = TOTAL_PORT_NUM;
1453         dev->phy_port_cnt = 5;
1454
1455         /* Default capability is gigabit capable. */
1456         dev->features = GBIT_SUPPORT;
1457
1458         dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1459         id_hi = (u8)(id32 >> 16);
1460         id_lo = (u8)(id32 >> 8);
1461         if ((id_lo & 0xf) == 3) {
1462                 /* Chip is from KSZ9893 design. */
1463                 dev_info(dev->dev, "Found KSZ9893\n");
1464                 dev->features |= IS_9893;
1465
1466                 /* Chip does not support gigabit. */
1467                 if (data8 & SW_QW_ABLE)
1468                         dev->features &= ~GBIT_SUPPORT;
1469                 dev->mib_port_cnt = 3;
1470                 dev->phy_port_cnt = 2;
1471         } else {
1472                 dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1473                 /* Chip uses new XMII register definitions. */
1474                 dev->features |= NEW_XMII;
1475
1476                 /* Chip does not support gigabit. */
1477                 if (!(data8 & SW_GIGABIT_ABLE))
1478                         dev->features &= ~GBIT_SUPPORT;
1479         }
1480
1481         /* Change chip id to known ones so it can be matched against them. */
1482         id32 = (id_hi << 16) | (id_lo << 8);
1483
1484         dev->chip_id = id32;
1485
1486         return 0;
1487 }
1488
1489 struct ksz_chip_data {
1490         u32 chip_id;
1491         const char *dev_name;
1492         int num_vlans;
1493         int num_alus;
1494         int num_statics;
1495         int cpu_ports;
1496         int port_cnt;
1497         bool phy_errata_9477;
1498 };
1499
1500 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1501         {
1502                 .chip_id = 0x00947700,
1503                 .dev_name = "KSZ9477",
1504                 .num_vlans = 4096,
1505                 .num_alus = 4096,
1506                 .num_statics = 16,
1507                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1508                 .port_cnt = 7,          /* total physical port count */
1509                 .phy_errata_9477 = true,
1510         },
1511         {
1512                 .chip_id = 0x00989700,
1513                 .dev_name = "KSZ9897",
1514                 .num_vlans = 4096,
1515                 .num_alus = 4096,
1516                 .num_statics = 16,
1517                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1518                 .port_cnt = 7,          /* total physical port count */
1519                 .phy_errata_9477 = true,
1520         },
1521         {
1522                 .chip_id = 0x00989300,
1523                 .dev_name = "KSZ9893",
1524                 .num_vlans = 4096,
1525                 .num_alus = 4096,
1526                 .num_statics = 16,
1527                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1528                 .port_cnt = 3,          /* total port count */
1529         },
1530         {
1531                 .chip_id = 0x00956700,
1532                 .dev_name = "KSZ9567",
1533                 .num_vlans = 4096,
1534                 .num_alus = 4096,
1535                 .num_statics = 16,
1536                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1537                 .port_cnt = 7,          /* total physical port count */
1538                 .phy_errata_9477 = true,
1539         },
1540 };
1541
1542 static int ksz9477_switch_init(struct ksz_device *dev)
1543 {
1544         int i;
1545
1546         dev->ds->ops = &ksz9477_switch_ops;
1547
1548         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1549                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1550
1551                 if (dev->chip_id == chip->chip_id) {
1552                         dev->name = chip->dev_name;
1553                         dev->num_vlans = chip->num_vlans;
1554                         dev->num_alus = chip->num_alus;
1555                         dev->num_statics = chip->num_statics;
1556                         dev->port_cnt = chip->port_cnt;
1557                         dev->cpu_ports = chip->cpu_ports;
1558                         dev->phy_errata_9477 = chip->phy_errata_9477;
1559
1560                         break;
1561                 }
1562         }
1563
1564         /* no switch found */
1565         if (!dev->port_cnt)
1566                 return -ENODEV;
1567
1568         dev->port_mask = (1 << dev->port_cnt) - 1;
1569
1570         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1571         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1572
1573         i = dev->mib_port_cnt;
1574         dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1575                                   GFP_KERNEL);
1576         if (!dev->ports)
1577                 return -ENOMEM;
1578         for (i = 0; i < dev->mib_port_cnt; i++) {
1579                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1580                 dev->ports[i].mib.counters =
1581                         devm_kzalloc(dev->dev,
1582                                      sizeof(u64) *
1583                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1584                                      GFP_KERNEL);
1585                 if (!dev->ports[i].mib.counters)
1586                         return -ENOMEM;
1587         }
1588
1589         /* set the real number of ports */
1590         dev->ds->num_ports = dev->port_cnt;
1591
1592         return 0;
1593 }
1594
1595 static void ksz9477_switch_exit(struct ksz_device *dev)
1596 {
1597         ksz9477_reset_switch(dev);
1598 }
1599
1600 static const struct ksz_dev_ops ksz9477_dev_ops = {
1601         .get_port_addr = ksz9477_get_port_addr,
1602         .cfg_port_member = ksz9477_cfg_port_member,
1603         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1604         .port_setup = ksz9477_port_setup,
1605         .r_mib_cnt = ksz9477_r_mib_cnt,
1606         .r_mib_pkt = ksz9477_r_mib_pkt,
1607         .freeze_mib = ksz9477_freeze_mib,
1608         .port_init_cnt = ksz9477_port_init_cnt,
1609         .shutdown = ksz9477_reset_switch,
1610         .detect = ksz9477_switch_detect,
1611         .init = ksz9477_switch_init,
1612         .exit = ksz9477_switch_exit,
1613 };
1614
1615 int ksz9477_switch_register(struct ksz_device *dev)
1616 {
1617         int ret, i;
1618         struct phy_device *phydev;
1619
1620         ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1621         if (ret)
1622                 return ret;
1623
1624         for (i = 0; i < dev->phy_port_cnt; ++i) {
1625                 if (!dsa_is_user_port(dev->ds, i))
1626                         continue;
1627
1628                 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1629
1630                 /* The MAC actually cannot run in 1000 half-duplex mode. */
1631                 phy_remove_link_mode(phydev,
1632                                      ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1633
1634                 /* PHY does not support gigabit. */
1635                 if (!(dev->features & GBIT_SUPPORT))
1636                         phy_remove_link_mode(phydev,
1637                                              ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1638         }
1639         return ret;
1640 }
1641 EXPORT_SYMBOL(ksz9477_switch_register);
1642
1643 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1644 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1645 MODULE_LICENSE("GPL");