GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB                 0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
53 #define GSWIP_MDIO_CTRL                 0x08
54 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
60 #define GSWIP_MDIO_READ                 0x09
61 #define GSWIP_MDIO_WRITE                0x0A
62 #define GSWIP_MDIO_MDC_CFG0             0x0B
63 #define GSWIP_MDIO_MDC_CFG1             0x0C
64 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
87 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
88                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
89                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
90                                          GSWIP_MDIO_PHY_LINK_MASK | \
91                                          GSWIP_MDIO_PHY_SPEED_MASK | \
92                                          GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)               (0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET            BIT(15)
97 #define  GSWIP_MII_CFG_EN               BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE          BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS        BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK         BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
107 #define  GSWIP_MII_CFG_MODE_GMII        0x9
108 #define  GSWIP_MII_CFG_MODE_MASK        0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
110 #define  GSWIP_MII_CFG_RATE_M25 0x10
111 #define  GSWIP_MII_CFG_RATE_M125        0x20
112 #define  GSWIP_MII_CFG_RATE_M50 0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
114 #define  GSWIP_MII_CFG_RATE_MASK        0x70
115 #define GSWIP_MII_PCDU0                 0x01
116 #define GSWIP_MII_PCDU1                 0x03
117 #define GSWIP_MII_PCDU5                 0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES                     0x000
123 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
125 #define GSWIP_VERSION                   0x013
126 #define  GSWIP_VERSION_REV_SHIFT        0
127 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT        8
129 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0             0x100
131 #define   GSWIP_VERSION_2_1             0x021
132 #define   GSWIP_VERSION_2_2             0x122
133 #define   GSWIP_VERSION_2_2_ETC         0x022
134
135 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR               0x044
137 #define GSWIP_BM_RAM_CTRL               0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL            0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK              0x448
155 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR              0x44E
157 #define GSWIP_PCE_TBL_CTRL              0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0               0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1               0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN                  0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)            (0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN         BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN        BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK     0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO     0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX       0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX       0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX     0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE     0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK     0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO     0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN       0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS      0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK     0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO     0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII      0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII    0x0002
215 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL          BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
218
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(3)  /* Pause Frame Forwarding */
235
236 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
237 #define GSWIP_TABLE_VLAN_MAPPING        0x02
238 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
240
241 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
242
243 /* Maximum packet size supported by the switch. In theory this should be 10240,
244  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247  * packet reception. This is probably caused by the PPA engine, which is on the
248  * RX part of the device. Packet transmission works properly up to 10240.
249  */
250 #define GSWIP_MAX_PACKET_LENGTH 2400
251
252 struct gswip_hw_info {
253         int max_ports;
254         int cpu_port;
255         const struct dsa_switch_ops *ops;
256 };
257
258 struct xway_gphy_match_data {
259         char *fe_firmware_name;
260         char *ge_firmware_name;
261 };
262
263 struct gswip_gphy_fw {
264         struct clk *clk_gate;
265         struct reset_control *reset;
266         u32 fw_addr_offset;
267         char *fw_name;
268 };
269
270 struct gswip_vlan {
271         struct net_device *bridge;
272         u16 vid;
273         u8 fid;
274 };
275
276 struct gswip_priv {
277         __iomem void *gswip;
278         __iomem void *mdio;
279         __iomem void *mii;
280         const struct gswip_hw_info *hw_info;
281         const struct xway_gphy_match_data *gphy_fw_name_cfg;
282         struct dsa_switch *ds;
283         struct device *dev;
284         struct regmap *rcu_regmap;
285         struct gswip_vlan vlans[64];
286         int num_gphy_fw;
287         struct gswip_gphy_fw *gphy_fw;
288         u32 port_vlan_filter;
289         struct mutex pce_table_lock;
290 };
291
292 struct gswip_pce_table_entry {
293         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
294         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
295         u16 key[8];
296         u16 val[5];
297         u16 mask;
298         u8 gmap;
299         bool type;
300         bool valid;
301         bool key_mode;
302 };
303
304 struct gswip_rmon_cnt_desc {
305         unsigned int size;
306         unsigned int offset;
307         const char *name;
308 };
309
310 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311
312 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313         /** Receive Packet Count (only packets that are accepted and not discarded). */
314         MIB_DESC(1, 0x1F, "RxGoodPkts"),
315         MIB_DESC(1, 0x23, "RxUnicastPkts"),
316         MIB_DESC(1, 0x22, "RxMulticastPkts"),
317         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324         MIB_DESC(1, 0x12, "Rx64BytePkts"),
325         MIB_DESC(1, 0x13, "Rx127BytePkts"),
326         MIB_DESC(1, 0x14, "Rx255BytePkts"),
327         MIB_DESC(1, 0x15, "Rx511BytePkts"),
328         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331         MIB_DESC(1, 0x18, "RxDroppedPkts"),
332         MIB_DESC(1, 0x19, "RxFilteredPkts"),
333         MIB_DESC(2, 0x24, "RxGoodBytes"),
334         MIB_DESC(2, 0x26, "RxBadBytes"),
335         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336         MIB_DESC(1, 0x0C, "TxGoodPkts"),
337         MIB_DESC(1, 0x06, "TxUnicastPkts"),
338         MIB_DESC(1, 0x07, "TxMulticastPkts"),
339         MIB_DESC(1, 0x00, "Tx64BytePkts"),
340         MIB_DESC(1, 0x01, "Tx127BytePkts"),
341         MIB_DESC(1, 0x02, "Tx255BytePkts"),
342         MIB_DESC(1, 0x03, "Tx511BytePkts"),
343         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346         MIB_DESC(1, 0x08, "TxSingleCollCount"),
347         MIB_DESC(1, 0x09, "TxMultCollCount"),
348         MIB_DESC(1, 0x0A, "TxLateCollCount"),
349         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350         MIB_DESC(1, 0x0D, "TxPauseCount"),
351         MIB_DESC(1, 0x10, "TxDroppedPkts"),
352         MIB_DESC(2, 0x0E, "TxGoodBytes"),
353 };
354
355 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356 {
357         return __raw_readl(priv->gswip + (offset * 4));
358 }
359
360 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361 {
362         __raw_writel(val, priv->gswip + (offset * 4));
363 }
364
365 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366                               u32 offset)
367 {
368         u32 val = gswip_switch_r(priv, offset);
369
370         val &= ~(clear);
371         val |= set;
372         gswip_switch_w(priv, val, offset);
373 }
374
375 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376                                   u32 cleared)
377 {
378         u32 val;
379
380         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381                                   (val & cleared) == 0, 20, 50000);
382 }
383
384 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385 {
386         return __raw_readl(priv->mdio + (offset * 4));
387 }
388
389 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390 {
391         __raw_writel(val, priv->mdio + (offset * 4));
392 }
393
394 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395                             u32 offset)
396 {
397         u32 val = gswip_mdio_r(priv, offset);
398
399         val &= ~(clear);
400         val |= set;
401         gswip_mdio_w(priv, val, offset);
402 }
403
404 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405 {
406         return __raw_readl(priv->mii + (offset * 4));
407 }
408
409 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410 {
411         __raw_writel(val, priv->mii + (offset * 4));
412 }
413
414 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415                            u32 offset)
416 {
417         u32 val = gswip_mii_r(priv, offset);
418
419         val &= ~(clear);
420         val |= set;
421         gswip_mii_w(priv, val, offset);
422 }
423
424 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425                                int port)
426 {
427         /* There's no MII_CFG register for the CPU port */
428         if (!dsa_is_cpu_port(priv->ds, port))
429                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430 }
431
432 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433                                 int port)
434 {
435         switch (port) {
436         case 0:
437                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438                 break;
439         case 1:
440                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441                 break;
442         case 5:
443                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444                 break;
445         }
446 }
447
448 static int gswip_mdio_poll(struct gswip_priv *priv)
449 {
450         int cnt = 100;
451
452         while (likely(cnt--)) {
453                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454
455                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456                         return 0;
457                 usleep_range(20, 40);
458         }
459
460         return -ETIMEDOUT;
461 }
462
463 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464 {
465         struct gswip_priv *priv = bus->priv;
466         int err;
467
468         err = gswip_mdio_poll(priv);
469         if (err) {
470                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471                 return err;
472         }
473
474         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478                 GSWIP_MDIO_CTRL);
479
480         return 0;
481 }
482
483 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484 {
485         struct gswip_priv *priv = bus->priv;
486         int err;
487
488         err = gswip_mdio_poll(priv);
489         if (err) {
490                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491                 return err;
492         }
493
494         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497                 GSWIP_MDIO_CTRL);
498
499         err = gswip_mdio_poll(priv);
500         if (err) {
501                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502                 return err;
503         }
504
505         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506 }
507
508 static int gswip_mdio(struct gswip_priv *priv)
509 {
510         struct device_node *mdio_np, *switch_np = priv->dev->of_node;
511         struct device *dev = priv->dev;
512         struct mii_bus *bus;
513         int err = 0;
514
515         mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
516         if (!of_device_is_available(mdio_np))
517                 goto out_put_node;
518
519         bus = devm_mdiobus_alloc(dev);
520         if (!bus) {
521                 err = -ENOMEM;
522                 goto out_put_node;
523         }
524
525         bus->priv = priv;
526         bus->read = gswip_mdio_rd;
527         bus->write = gswip_mdio_wr;
528         bus->name = "lantiq,xrx200-mdio";
529         snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
530         bus->parent = priv->dev;
531
532         err = devm_of_mdiobus_register(dev, bus, mdio_np);
533
534 out_put_node:
535         of_node_put(mdio_np);
536
537         return err;
538 }
539
540 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
541                                       struct gswip_pce_table_entry *tbl)
542 {
543         int i;
544         int err;
545         u16 crtl;
546         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
547                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
548
549         mutex_lock(&priv->pce_table_lock);
550
551         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
552                                      GSWIP_PCE_TBL_CTRL_BAS);
553         if (err) {
554                 mutex_unlock(&priv->pce_table_lock);
555                 return err;
556         }
557
558         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
559         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
560                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
561                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
562                           GSWIP_PCE_TBL_CTRL);
563
564         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
565                                      GSWIP_PCE_TBL_CTRL_BAS);
566         if (err) {
567                 mutex_unlock(&priv->pce_table_lock);
568                 return err;
569         }
570
571         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
572                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
573
574         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
575                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
576
577         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
578
579         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
580
581         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
582         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
583         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
584
585         mutex_unlock(&priv->pce_table_lock);
586
587         return 0;
588 }
589
590 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
591                                        struct gswip_pce_table_entry *tbl)
592 {
593         int i;
594         int err;
595         u16 crtl;
596         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
597                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
598
599         mutex_lock(&priv->pce_table_lock);
600
601         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
602                                      GSWIP_PCE_TBL_CTRL_BAS);
603         if (err) {
604                 mutex_unlock(&priv->pce_table_lock);
605                 return err;
606         }
607
608         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
609         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
610                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
611                           tbl->table | addr_mode,
612                           GSWIP_PCE_TBL_CTRL);
613
614         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
615                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
616
617         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
618                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
619
620         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
621                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
622                           tbl->table | addr_mode,
623                           GSWIP_PCE_TBL_CTRL);
624
625         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
626
627         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
628         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
629                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
630         if (tbl->type)
631                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
632         if (tbl->valid)
633                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
634         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
635         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
636         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
637
638         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
639                                      GSWIP_PCE_TBL_CTRL_BAS);
640
641         mutex_unlock(&priv->pce_table_lock);
642
643         return err;
644 }
645
646 /* Add the LAN port into a bridge with the CPU port by
647  * default. This prevents automatic forwarding of
648  * packages between the LAN ports when no explicit
649  * bridge is configured.
650  */
651 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
652 {
653         struct gswip_pce_table_entry vlan_active = {0,};
654         struct gswip_pce_table_entry vlan_mapping = {0,};
655         unsigned int cpu_port = priv->hw_info->cpu_port;
656         unsigned int max_ports = priv->hw_info->max_ports;
657         int err;
658
659         if (port >= max_ports) {
660                 dev_err(priv->dev, "single port for %i supported\n", port);
661                 return -EIO;
662         }
663
664         vlan_active.index = port + 1;
665         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
666         vlan_active.key[0] = 0; /* vid */
667         vlan_active.val[0] = port + 1 /* fid */;
668         vlan_active.valid = add;
669         err = gswip_pce_table_entry_write(priv, &vlan_active);
670         if (err) {
671                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
672                 return err;
673         }
674
675         if (!add)
676                 return 0;
677
678         vlan_mapping.index = port + 1;
679         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
680         vlan_mapping.val[0] = 0 /* vid */;
681         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
682         vlan_mapping.val[2] = 0;
683         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
684         if (err) {
685                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
686                 return err;
687         }
688
689         return 0;
690 }
691
692 static int gswip_port_enable(struct dsa_switch *ds, int port,
693                              struct phy_device *phydev)
694 {
695         struct gswip_priv *priv = ds->priv;
696         int err;
697
698         if (!dsa_is_user_port(ds, port))
699                 return 0;
700
701         if (!dsa_is_cpu_port(ds, port)) {
702                 err = gswip_add_single_port_br(priv, port, true);
703                 if (err)
704                         return err;
705         }
706
707         /* RMON Counter Enable for port */
708         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
709
710         /* enable port fetch/store dma & VLAN Modification */
711         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
712                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
713                          GSWIP_FDMA_PCTRLp(port));
714         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
715                           GSWIP_SDMA_PCTRLp(port));
716
717         if (!dsa_is_cpu_port(ds, port)) {
718                 u32 mdio_phy = 0;
719
720                 if (phydev)
721                         mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
722
723                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
724                                 GSWIP_MDIO_PHYp(port));
725         }
726
727         return 0;
728 }
729
730 static void gswip_port_disable(struct dsa_switch *ds, int port)
731 {
732         struct gswip_priv *priv = ds->priv;
733
734         if (!dsa_is_user_port(ds, port))
735                 return;
736
737         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
738                           GSWIP_FDMA_PCTRLp(port));
739         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
740                           GSWIP_SDMA_PCTRLp(port));
741 }
742
743 static int gswip_pce_load_microcode(struct gswip_priv *priv)
744 {
745         int i;
746         int err;
747
748         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
749                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
750                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
751         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
752
753         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
754                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
755                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
756                                GSWIP_PCE_TBL_VAL(0));
757                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
758                                GSWIP_PCE_TBL_VAL(1));
759                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
760                                GSWIP_PCE_TBL_VAL(2));
761                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
762                                GSWIP_PCE_TBL_VAL(3));
763
764                 /* start the table access: */
765                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
766                                   GSWIP_PCE_TBL_CTRL);
767                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
768                                              GSWIP_PCE_TBL_CTRL_BAS);
769                 if (err)
770                         return err;
771         }
772
773         /* tell the switch that the microcode is loaded */
774         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
775                           GSWIP_PCE_GCTRL_0);
776
777         return 0;
778 }
779
780 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
781                                      bool vlan_filtering,
782                                      struct netlink_ext_ack *extack)
783 {
784         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
785         struct gswip_priv *priv = ds->priv;
786
787         /* Do not allow changing the VLAN filtering options while in bridge */
788         if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
789                 NL_SET_ERR_MSG_MOD(extack,
790                                    "Dynamic toggling of vlan_filtering not supported");
791                 return -EIO;
792         }
793
794         if (vlan_filtering) {
795                 /* Use port based VLAN tag */
796                 gswip_switch_mask(priv,
797                                   GSWIP_PCE_VCTRL_VSR,
798                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
799                                   GSWIP_PCE_VCTRL_VEMR,
800                                   GSWIP_PCE_VCTRL(port));
801                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
802                                   GSWIP_PCE_PCTRL_0p(port));
803         } else {
804                 /* Use port based VLAN tag */
805                 gswip_switch_mask(priv,
806                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
807                                   GSWIP_PCE_VCTRL_VEMR,
808                                   GSWIP_PCE_VCTRL_VSR,
809                                   GSWIP_PCE_VCTRL(port));
810                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
811                                   GSWIP_PCE_PCTRL_0p(port));
812         }
813
814         return 0;
815 }
816
817 static int gswip_setup(struct dsa_switch *ds)
818 {
819         struct gswip_priv *priv = ds->priv;
820         unsigned int cpu_port = priv->hw_info->cpu_port;
821         int i;
822         int err;
823
824         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
825         usleep_range(5000, 10000);
826         gswip_switch_w(priv, 0, GSWIP_SWRES);
827
828         /* disable port fetch/store dma on all ports */
829         for (i = 0; i < priv->hw_info->max_ports; i++) {
830                 gswip_port_disable(ds, i);
831                 gswip_port_vlan_filtering(ds, i, false, NULL);
832         }
833
834         /* enable Switch */
835         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
836
837         err = gswip_pce_load_microcode(priv);
838         if (err) {
839                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
840                 return err;
841         }
842
843         /* Default unknown Broadcast/Multicast/Unicast port maps */
844         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
845         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
846         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
847
848         /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
849          * interoperability problem with this auto polling mechanism because
850          * their status registers think that the link is in a different state
851          * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
852          * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
853          * auto polling state machine consider the link being negotiated with
854          * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
855          * to the switch port being completely dead (RX and TX are both not
856          * working).
857          * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
858          * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
859          * it would work fine for a few minutes to hours and then stop, on
860          * other device it would no traffic could be sent or received at all.
861          * Testing shows that when PHY auto polling is disabled these problems
862          * go away.
863          */
864         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
865
866         /* Configure the MDIO Clock 2.5 MHz */
867         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
868
869         /* Disable the xMII interface and clear it's isolation bit */
870         for (i = 0; i < priv->hw_info->max_ports; i++)
871                 gswip_mii_mask_cfg(priv,
872                                    GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
873                                    0, i);
874
875         /* enable special tag insertion on cpu port */
876         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
877                           GSWIP_FDMA_PCTRLp(cpu_port));
878
879         /* accept special tag in ingress direction */
880         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
881                           GSWIP_PCE_PCTRL_0p(cpu_port));
882
883         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
884                           GSWIP_BM_QUEUE_GCTRL);
885
886         /* VLAN aware Switching */
887         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
888
889         /* Flush MAC Table */
890         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
891
892         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
893                                      GSWIP_PCE_GCTRL_0_MTFL);
894         if (err) {
895                 dev_err(priv->dev, "MAC flushing didn't finish\n");
896                 return err;
897         }
898
899         ds->mtu_enforcement_ingress = true;
900
901         gswip_port_enable(ds, cpu_port, NULL);
902
903         ds->configure_vlan_while_not_filtering = false;
904
905         return 0;
906 }
907
908 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
909                                                     int port,
910                                                     enum dsa_tag_protocol mp)
911 {
912         return DSA_TAG_PROTO_GSWIP;
913 }
914
915 static int gswip_vlan_active_create(struct gswip_priv *priv,
916                                     struct net_device *bridge,
917                                     int fid, u16 vid)
918 {
919         struct gswip_pce_table_entry vlan_active = {0,};
920         unsigned int max_ports = priv->hw_info->max_ports;
921         int idx = -1;
922         int err;
923         int i;
924
925         /* Look for a free slot */
926         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
927                 if (!priv->vlans[i].bridge) {
928                         idx = i;
929                         break;
930                 }
931         }
932
933         if (idx == -1)
934                 return -ENOSPC;
935
936         if (fid == -1)
937                 fid = idx;
938
939         vlan_active.index = idx;
940         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
941         vlan_active.key[0] = vid;
942         vlan_active.val[0] = fid;
943         vlan_active.valid = true;
944
945         err = gswip_pce_table_entry_write(priv, &vlan_active);
946         if (err) {
947                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
948                 return err;
949         }
950
951         priv->vlans[idx].bridge = bridge;
952         priv->vlans[idx].vid = vid;
953         priv->vlans[idx].fid = fid;
954
955         return idx;
956 }
957
958 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
959 {
960         struct gswip_pce_table_entry vlan_active = {0,};
961         int err;
962
963         vlan_active.index = idx;
964         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
965         vlan_active.valid = false;
966         err = gswip_pce_table_entry_write(priv, &vlan_active);
967         if (err)
968                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
969         priv->vlans[idx].bridge = NULL;
970
971         return err;
972 }
973
974 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
975                                   struct net_device *bridge, int port)
976 {
977         struct gswip_pce_table_entry vlan_mapping = {0,};
978         unsigned int max_ports = priv->hw_info->max_ports;
979         unsigned int cpu_port = priv->hw_info->cpu_port;
980         bool active_vlan_created = false;
981         int idx = -1;
982         int i;
983         int err;
984
985         /* Check if there is already a page for this bridge */
986         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
987                 if (priv->vlans[i].bridge == bridge) {
988                         idx = i;
989                         break;
990                 }
991         }
992
993         /* If this bridge is not programmed yet, add a Active VLAN table
994          * entry in a free slot and prepare the VLAN mapping table entry.
995          */
996         if (idx == -1) {
997                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
998                 if (idx < 0)
999                         return idx;
1000                 active_vlan_created = true;
1001
1002                 vlan_mapping.index = idx;
1003                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1004                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1005                 vlan_mapping.val[0] = 0;
1006         } else {
1007                 /* Read the existing VLAN mapping entry from the switch */
1008                 vlan_mapping.index = idx;
1009                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1010                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1011                 if (err) {
1012                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1013                                 err);
1014                         return err;
1015                 }
1016         }
1017
1018         /* Update the VLAN mapping entry and write it to the switch */
1019         vlan_mapping.val[1] |= BIT(cpu_port);
1020         vlan_mapping.val[1] |= BIT(port);
1021         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1022         if (err) {
1023                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1024                 /* In case an Active VLAN was creaetd delete it again */
1025                 if (active_vlan_created)
1026                         gswip_vlan_active_remove(priv, idx);
1027                 return err;
1028         }
1029
1030         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1031         return 0;
1032 }
1033
1034 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1035                                 struct net_device *bridge, int port,
1036                                 u16 vid, bool untagged,
1037                                 bool pvid)
1038 {
1039         struct gswip_pce_table_entry vlan_mapping = {0,};
1040         unsigned int max_ports = priv->hw_info->max_ports;
1041         unsigned int cpu_port = priv->hw_info->cpu_port;
1042         bool active_vlan_created = false;
1043         int idx = -1;
1044         int fid = -1;
1045         int i;
1046         int err;
1047
1048         /* Check if there is already a page for this bridge */
1049         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1050                 if (priv->vlans[i].bridge == bridge) {
1051                         if (fid != -1 && fid != priv->vlans[i].fid)
1052                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1053                         fid = priv->vlans[i].fid;
1054                         if (priv->vlans[i].vid == vid) {
1055                                 idx = i;
1056                                 break;
1057                         }
1058                 }
1059         }
1060
1061         /* If this bridge is not programmed yet, add a Active VLAN table
1062          * entry in a free slot and prepare the VLAN mapping table entry.
1063          */
1064         if (idx == -1) {
1065                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1066                 if (idx < 0)
1067                         return idx;
1068                 active_vlan_created = true;
1069
1070                 vlan_mapping.index = idx;
1071                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1073                 vlan_mapping.val[0] = vid;
1074         } else {
1075                 /* Read the existing VLAN mapping entry from the switch */
1076                 vlan_mapping.index = idx;
1077                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1078                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1079                 if (err) {
1080                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1081                                 err);
1082                         return err;
1083                 }
1084         }
1085
1086         vlan_mapping.val[0] = vid;
1087         /* Update the VLAN mapping entry and write it to the switch */
1088         vlan_mapping.val[1] |= BIT(cpu_port);
1089         vlan_mapping.val[2] |= BIT(cpu_port);
1090         vlan_mapping.val[1] |= BIT(port);
1091         if (untagged)
1092                 vlan_mapping.val[2] &= ~BIT(port);
1093         else
1094                 vlan_mapping.val[2] |= BIT(port);
1095         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1096         if (err) {
1097                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1098                 /* In case an Active VLAN was creaetd delete it again */
1099                 if (active_vlan_created)
1100                         gswip_vlan_active_remove(priv, idx);
1101                 return err;
1102         }
1103
1104         if (pvid)
1105                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1106
1107         return 0;
1108 }
1109
1110 static int gswip_vlan_remove(struct gswip_priv *priv,
1111                              struct net_device *bridge, int port,
1112                              u16 vid, bool pvid, bool vlan_aware)
1113 {
1114         struct gswip_pce_table_entry vlan_mapping = {0,};
1115         unsigned int max_ports = priv->hw_info->max_ports;
1116         unsigned int cpu_port = priv->hw_info->cpu_port;
1117         int idx = -1;
1118         int i;
1119         int err;
1120
1121         /* Check if there is already a page for this bridge */
1122         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1123                 if (priv->vlans[i].bridge == bridge &&
1124                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1125                         idx = i;
1126                         break;
1127                 }
1128         }
1129
1130         if (idx == -1) {
1131                 dev_err(priv->dev, "bridge to leave does not exists\n");
1132                 return -ENOENT;
1133         }
1134
1135         vlan_mapping.index = idx;
1136         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1137         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1138         if (err) {
1139                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1140                 return err;
1141         }
1142
1143         vlan_mapping.val[1] &= ~BIT(port);
1144         vlan_mapping.val[2] &= ~BIT(port);
1145         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1146         if (err) {
1147                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1148                 return err;
1149         }
1150
1151         /* In case all ports are removed from the bridge, remove the VLAN */
1152         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1153                 err = gswip_vlan_active_remove(priv, idx);
1154                 if (err) {
1155                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1156                                 err);
1157                         return err;
1158                 }
1159         }
1160
1161         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1162         if (pvid)
1163                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1164
1165         return 0;
1166 }
1167
1168 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1169                                   struct dsa_bridge bridge,
1170                                   bool *tx_fwd_offload,
1171                                   struct netlink_ext_ack *extack)
1172 {
1173         struct net_device *br = bridge.dev;
1174         struct gswip_priv *priv = ds->priv;
1175         int err;
1176
1177         /* When the bridge uses VLAN filtering we have to configure VLAN
1178          * specific bridges. No bridge is configured here.
1179          */
1180         if (!br_vlan_enabled(br)) {
1181                 err = gswip_vlan_add_unaware(priv, br, port);
1182                 if (err)
1183                         return err;
1184                 priv->port_vlan_filter &= ~BIT(port);
1185         } else {
1186                 priv->port_vlan_filter |= BIT(port);
1187         }
1188         return gswip_add_single_port_br(priv, port, false);
1189 }
1190
1191 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1192                                     struct dsa_bridge bridge)
1193 {
1194         struct net_device *br = bridge.dev;
1195         struct gswip_priv *priv = ds->priv;
1196
1197         gswip_add_single_port_br(priv, port, true);
1198
1199         /* When the bridge uses VLAN filtering we have to configure VLAN
1200          * specific bridges. No bridge is configured here.
1201          */
1202         if (!br_vlan_enabled(br))
1203                 gswip_vlan_remove(priv, br, port, 0, true, false);
1204 }
1205
1206 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1207                                    const struct switchdev_obj_port_vlan *vlan,
1208                                    struct netlink_ext_ack *extack)
1209 {
1210         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1211         struct gswip_priv *priv = ds->priv;
1212         unsigned int max_ports = priv->hw_info->max_ports;
1213         int pos = max_ports;
1214         int i, idx = -1;
1215
1216         /* We only support VLAN filtering on bridges */
1217         if (!dsa_is_cpu_port(ds, port) && !bridge)
1218                 return -EOPNOTSUPP;
1219
1220         /* Check if there is already a page for this VLAN */
1221         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1222                 if (priv->vlans[i].bridge == bridge &&
1223                     priv->vlans[i].vid == vlan->vid) {
1224                         idx = i;
1225                         break;
1226                 }
1227         }
1228
1229         /* If this VLAN is not programmed yet, we have to reserve
1230          * one entry in the VLAN table. Make sure we start at the
1231          * next position round.
1232          */
1233         if (idx == -1) {
1234                 /* Look for a free slot */
1235                 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1236                         if (!priv->vlans[pos].bridge) {
1237                                 idx = pos;
1238                                 pos++;
1239                                 break;
1240                         }
1241                 }
1242
1243                 if (idx == -1) {
1244                         NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1245                         return -ENOSPC;
1246                 }
1247         }
1248
1249         return 0;
1250 }
1251
1252 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1253                                const struct switchdev_obj_port_vlan *vlan,
1254                                struct netlink_ext_ack *extack)
1255 {
1256         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1257         struct gswip_priv *priv = ds->priv;
1258         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1259         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1260         int err;
1261
1262         err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1263         if (err)
1264                 return err;
1265
1266         /* We have to receive all packets on the CPU port and should not
1267          * do any VLAN filtering here. This is also called with bridge
1268          * NULL and then we do not know for which bridge to configure
1269          * this.
1270          */
1271         if (dsa_is_cpu_port(ds, port))
1272                 return 0;
1273
1274         return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1275                                     untagged, pvid);
1276 }
1277
1278 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1279                                const struct switchdev_obj_port_vlan *vlan)
1280 {
1281         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1282         struct gswip_priv *priv = ds->priv;
1283         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1284
1285         /* We have to receive all packets on the CPU port and should not
1286          * do any VLAN filtering here. This is also called with bridge
1287          * NULL and then we do not know for which bridge to configure
1288          * this.
1289          */
1290         if (dsa_is_cpu_port(ds, port))
1291                 return 0;
1292
1293         return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1294 }
1295
1296 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1297 {
1298         struct gswip_priv *priv = ds->priv;
1299         struct gswip_pce_table_entry mac_bridge = {0,};
1300         int i;
1301         int err;
1302
1303         for (i = 0; i < 2048; i++) {
1304                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1305                 mac_bridge.index = i;
1306
1307                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1308                 if (err) {
1309                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1310                                 err);
1311                         return;
1312                 }
1313
1314                 if (!mac_bridge.valid)
1315                         continue;
1316
1317                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1318                         continue;
1319
1320                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1321                         continue;
1322
1323                 mac_bridge.valid = false;
1324                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1325                 if (err) {
1326                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1327                                 err);
1328                         return;
1329                 }
1330         }
1331 }
1332
1333 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1334 {
1335         struct gswip_priv *priv = ds->priv;
1336         u32 stp_state;
1337
1338         switch (state) {
1339         case BR_STATE_DISABLED:
1340                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1341                                   GSWIP_SDMA_PCTRLp(port));
1342                 return;
1343         case BR_STATE_BLOCKING:
1344         case BR_STATE_LISTENING:
1345                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1346                 break;
1347         case BR_STATE_LEARNING:
1348                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1349                 break;
1350         case BR_STATE_FORWARDING:
1351                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1352                 break;
1353         default:
1354                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1355                 return;
1356         }
1357
1358         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1359                           GSWIP_SDMA_PCTRLp(port));
1360         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1361                           GSWIP_PCE_PCTRL_0p(port));
1362 }
1363
1364 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1365                           const unsigned char *addr, u16 vid, bool add)
1366 {
1367         struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1368         struct gswip_priv *priv = ds->priv;
1369         struct gswip_pce_table_entry mac_bridge = {0,};
1370         unsigned int max_ports = priv->hw_info->max_ports;
1371         int fid = -1;
1372         int i;
1373         int err;
1374
1375         if (!bridge)
1376                 return -EINVAL;
1377
1378         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1379                 if (priv->vlans[i].bridge == bridge) {
1380                         fid = priv->vlans[i].fid;
1381                         break;
1382                 }
1383         }
1384
1385         if (fid == -1) {
1386                 dev_err(priv->dev, "Port not part of a bridge\n");
1387                 return -EINVAL;
1388         }
1389
1390         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1391         mac_bridge.key_mode = true;
1392         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1393         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1394         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1395         mac_bridge.key[3] = fid;
1396         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1397         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1398         mac_bridge.valid = add;
1399
1400         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1401         if (err)
1402                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1403
1404         return err;
1405 }
1406
1407 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1408                               const unsigned char *addr, u16 vid,
1409                               struct dsa_db db)
1410 {
1411         return gswip_port_fdb(ds, port, addr, vid, true);
1412 }
1413
1414 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1415                               const unsigned char *addr, u16 vid,
1416                               struct dsa_db db)
1417 {
1418         return gswip_port_fdb(ds, port, addr, vid, false);
1419 }
1420
1421 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1422                                dsa_fdb_dump_cb_t *cb, void *data)
1423 {
1424         struct gswip_priv *priv = ds->priv;
1425         struct gswip_pce_table_entry mac_bridge = {0,};
1426         unsigned char addr[6];
1427         int i;
1428         int err;
1429
1430         for (i = 0; i < 2048; i++) {
1431                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1432                 mac_bridge.index = i;
1433
1434                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1435                 if (err) {
1436                         dev_err(priv->dev,
1437                                 "failed to read mac bridge entry %d: %d\n",
1438                                 i, err);
1439                         return err;
1440                 }
1441
1442                 if (!mac_bridge.valid)
1443                         continue;
1444
1445                 addr[5] = mac_bridge.key[0] & 0xff;
1446                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1447                 addr[3] = mac_bridge.key[1] & 0xff;
1448                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1449                 addr[1] = mac_bridge.key[2] & 0xff;
1450                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1451                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1452                         if (mac_bridge.val[0] & BIT(port)) {
1453                                 err = cb(addr, 0, true, data);
1454                                 if (err)
1455                                         return err;
1456                         }
1457                 } else {
1458                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1459                                 err = cb(addr, 0, false, data);
1460                                 if (err)
1461                                         return err;
1462                         }
1463                 }
1464         }
1465         return 0;
1466 }
1467
1468 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1469 {
1470         /* Includes 8 bytes for special header. */
1471         return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1472 }
1473
1474 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1475 {
1476         struct gswip_priv *priv = ds->priv;
1477         int cpu_port = priv->hw_info->cpu_port;
1478
1479         /* CPU port always has maximum mtu of user ports, so use it to set
1480          * switch frame size, including 8 byte special header.
1481          */
1482         if (port == cpu_port) {
1483                 new_mtu += 8;
1484                 gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1485                                GSWIP_MAC_FLEN);
1486         }
1487
1488         /* Enable MLEN for ports with non-standard MTUs, including the special
1489          * header on the CPU port added above.
1490          */
1491         if (new_mtu != ETH_DATA_LEN)
1492                 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1493                                   GSWIP_MAC_CTRL_2p(port));
1494         else
1495                 gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1496                                   GSWIP_MAC_CTRL_2p(port));
1497
1498         return 0;
1499 }
1500
1501 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1502                                           struct phylink_config *config)
1503 {
1504         switch (port) {
1505         case 0:
1506         case 1:
1507                 phy_interface_set_rgmii(config->supported_interfaces);
1508                 __set_bit(PHY_INTERFACE_MODE_MII,
1509                           config->supported_interfaces);
1510                 __set_bit(PHY_INTERFACE_MODE_REVMII,
1511                           config->supported_interfaces);
1512                 __set_bit(PHY_INTERFACE_MODE_RMII,
1513                           config->supported_interfaces);
1514                 break;
1515
1516         case 2:
1517         case 3:
1518         case 4:
1519                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1520                           config->supported_interfaces);
1521                 break;
1522
1523         case 5:
1524                 phy_interface_set_rgmii(config->supported_interfaces);
1525                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1526                           config->supported_interfaces);
1527                 break;
1528         }
1529
1530         config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1531                 MAC_10 | MAC_100 | MAC_1000;
1532 }
1533
1534 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1535                                           struct phylink_config *config)
1536 {
1537         switch (port) {
1538         case 0:
1539                 phy_interface_set_rgmii(config->supported_interfaces);
1540                 __set_bit(PHY_INTERFACE_MODE_GMII,
1541                           config->supported_interfaces);
1542                 __set_bit(PHY_INTERFACE_MODE_RMII,
1543                           config->supported_interfaces);
1544                 break;
1545
1546         case 1:
1547         case 2:
1548         case 3:
1549         case 4:
1550                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1551                           config->supported_interfaces);
1552                 break;
1553
1554         case 5:
1555                 phy_interface_set_rgmii(config->supported_interfaces);
1556                 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
1557                           config->supported_interfaces);
1558                 __set_bit(PHY_INTERFACE_MODE_RMII,
1559                           config->supported_interfaces);
1560                 break;
1561         }
1562
1563         config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1564                 MAC_10 | MAC_100 | MAC_1000;
1565 }
1566
1567 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1568 {
1569         u32 mdio_phy;
1570
1571         if (link)
1572                 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1573         else
1574                 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1575
1576         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1577                         GSWIP_MDIO_PHYp(port));
1578 }
1579
1580 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1581                                  phy_interface_t interface)
1582 {
1583         u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1584
1585         switch (speed) {
1586         case SPEED_10:
1587                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1588
1589                 if (interface == PHY_INTERFACE_MODE_RMII)
1590                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1591                 else
1592                         mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1593
1594                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1595                 break;
1596
1597         case SPEED_100:
1598                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1599
1600                 if (interface == PHY_INTERFACE_MODE_RMII)
1601                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1602                 else
1603                         mii_cfg = GSWIP_MII_CFG_RATE_M25;
1604
1605                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1606                 break;
1607
1608         case SPEED_1000:
1609                 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1610
1611                 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1612
1613                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1614                 break;
1615         }
1616
1617         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1618                         GSWIP_MDIO_PHYp(port));
1619         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1620         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1621                           GSWIP_MAC_CTRL_0p(port));
1622 }
1623
1624 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1625 {
1626         u32 mac_ctrl_0, mdio_phy;
1627
1628         if (duplex == DUPLEX_FULL) {
1629                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1630                 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1631         } else {
1632                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1633                 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1634         }
1635
1636         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1637                           GSWIP_MAC_CTRL_0p(port));
1638         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1639                         GSWIP_MDIO_PHYp(port));
1640 }
1641
1642 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1643                                  bool tx_pause, bool rx_pause)
1644 {
1645         u32 mac_ctrl_0, mdio_phy;
1646
1647         if (tx_pause && rx_pause) {
1648                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1649                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1650                            GSWIP_MDIO_PHY_FCONRX_EN;
1651         } else if (tx_pause) {
1652                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1653                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1654                            GSWIP_MDIO_PHY_FCONRX_DIS;
1655         } else if (rx_pause) {
1656                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1657                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1658                            GSWIP_MDIO_PHY_FCONRX_EN;
1659         } else {
1660                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1661                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1662                            GSWIP_MDIO_PHY_FCONRX_DIS;
1663         }
1664
1665         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1666                           mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1667         gswip_mdio_mask(priv,
1668                         GSWIP_MDIO_PHY_FCONTX_MASK |
1669                         GSWIP_MDIO_PHY_FCONRX_MASK,
1670                         mdio_phy, GSWIP_MDIO_PHYp(port));
1671 }
1672
1673 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1674                                      unsigned int mode,
1675                                      const struct phylink_link_state *state)
1676 {
1677         struct gswip_priv *priv = ds->priv;
1678         u32 miicfg = 0;
1679
1680         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1681
1682         switch (state->interface) {
1683         case PHY_INTERFACE_MODE_MII:
1684         case PHY_INTERFACE_MODE_INTERNAL:
1685                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1686                 break;
1687         case PHY_INTERFACE_MODE_REVMII:
1688                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1689                 break;
1690         case PHY_INTERFACE_MODE_RMII:
1691                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1692                 break;
1693         case PHY_INTERFACE_MODE_RGMII:
1694         case PHY_INTERFACE_MODE_RGMII_ID:
1695         case PHY_INTERFACE_MODE_RGMII_RXID:
1696         case PHY_INTERFACE_MODE_RGMII_TXID:
1697                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1698                 break;
1699         case PHY_INTERFACE_MODE_GMII:
1700                 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1701                 break;
1702         default:
1703                 dev_err(ds->dev,
1704                         "Unsupported interface: %d\n", state->interface);
1705                 return;
1706         }
1707
1708         gswip_mii_mask_cfg(priv,
1709                            GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1710                            GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1711                            miicfg, port);
1712
1713         switch (state->interface) {
1714         case PHY_INTERFACE_MODE_RGMII_ID:
1715                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1716                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1717                 break;
1718         case PHY_INTERFACE_MODE_RGMII_RXID:
1719                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1720                 break;
1721         case PHY_INTERFACE_MODE_RGMII_TXID:
1722                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1723                 break;
1724         default:
1725                 break;
1726         }
1727 }
1728
1729 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1730                                         unsigned int mode,
1731                                         phy_interface_t interface)
1732 {
1733         struct gswip_priv *priv = ds->priv;
1734
1735         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1736
1737         if (!dsa_is_cpu_port(ds, port))
1738                 gswip_port_set_link(priv, port, false);
1739 }
1740
1741 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1742                                       unsigned int mode,
1743                                       phy_interface_t interface,
1744                                       struct phy_device *phydev,
1745                                       int speed, int duplex,
1746                                       bool tx_pause, bool rx_pause)
1747 {
1748         struct gswip_priv *priv = ds->priv;
1749
1750         if (!dsa_is_cpu_port(ds, port)) {
1751                 gswip_port_set_link(priv, port, true);
1752                 gswip_port_set_speed(priv, port, speed, interface);
1753                 gswip_port_set_duplex(priv, port, duplex);
1754                 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1755         }
1756
1757         gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1758 }
1759
1760 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1761                               uint8_t *data)
1762 {
1763         int i;
1764
1765         if (stringset != ETH_SS_STATS)
1766                 return;
1767
1768         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1769                 ethtool_puts(&data, gswip_rmon_cnt[i].name);
1770 }
1771
1772 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1773                                     u32 index)
1774 {
1775         u32 result;
1776         int err;
1777
1778         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1779         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1780                                 GSWIP_BM_RAM_CTRL_OPMOD,
1781                               table | GSWIP_BM_RAM_CTRL_BAS,
1782                               GSWIP_BM_RAM_CTRL);
1783
1784         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1785                                      GSWIP_BM_RAM_CTRL_BAS);
1786         if (err) {
1787                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1788                         table, index);
1789                 return 0;
1790         }
1791
1792         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1793         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1794
1795         return result;
1796 }
1797
1798 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1799                                     uint64_t *data)
1800 {
1801         struct gswip_priv *priv = ds->priv;
1802         const struct gswip_rmon_cnt_desc *rmon_cnt;
1803         int i;
1804         u64 high;
1805
1806         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1807                 rmon_cnt = &gswip_rmon_cnt[i];
1808
1809                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1810                                                    rmon_cnt->offset);
1811                 if (rmon_cnt->size == 2) {
1812                         high = gswip_bcm_ram_entry_read(priv, port,
1813                                                         rmon_cnt->offset + 1);
1814                         data[i] |= high << 32;
1815                 }
1816         }
1817 }
1818
1819 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1820 {
1821         if (sset != ETH_SS_STATS)
1822                 return 0;
1823
1824         return ARRAY_SIZE(gswip_rmon_cnt);
1825 }
1826
1827 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1828         .get_tag_protocol       = gswip_get_tag_protocol,
1829         .setup                  = gswip_setup,
1830         .port_enable            = gswip_port_enable,
1831         .port_disable           = gswip_port_disable,
1832         .port_bridge_join       = gswip_port_bridge_join,
1833         .port_bridge_leave      = gswip_port_bridge_leave,
1834         .port_fast_age          = gswip_port_fast_age,
1835         .port_vlan_filtering    = gswip_port_vlan_filtering,
1836         .port_vlan_add          = gswip_port_vlan_add,
1837         .port_vlan_del          = gswip_port_vlan_del,
1838         .port_stp_state_set     = gswip_port_stp_state_set,
1839         .port_fdb_add           = gswip_port_fdb_add,
1840         .port_fdb_del           = gswip_port_fdb_del,
1841         .port_fdb_dump          = gswip_port_fdb_dump,
1842         .port_change_mtu        = gswip_port_change_mtu,
1843         .port_max_mtu           = gswip_port_max_mtu,
1844         .phylink_get_caps       = gswip_xrx200_phylink_get_caps,
1845         .phylink_mac_config     = gswip_phylink_mac_config,
1846         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1847         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1848         .get_strings            = gswip_get_strings,
1849         .get_ethtool_stats      = gswip_get_ethtool_stats,
1850         .get_sset_count         = gswip_get_sset_count,
1851 };
1852
1853 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1854         .get_tag_protocol       = gswip_get_tag_protocol,
1855         .setup                  = gswip_setup,
1856         .port_enable            = gswip_port_enable,
1857         .port_disable           = gswip_port_disable,
1858         .port_bridge_join       = gswip_port_bridge_join,
1859         .port_bridge_leave      = gswip_port_bridge_leave,
1860         .port_fast_age          = gswip_port_fast_age,
1861         .port_vlan_filtering    = gswip_port_vlan_filtering,
1862         .port_vlan_add          = gswip_port_vlan_add,
1863         .port_vlan_del          = gswip_port_vlan_del,
1864         .port_stp_state_set     = gswip_port_stp_state_set,
1865         .port_fdb_add           = gswip_port_fdb_add,
1866         .port_fdb_del           = gswip_port_fdb_del,
1867         .port_fdb_dump          = gswip_port_fdb_dump,
1868         .port_change_mtu        = gswip_port_change_mtu,
1869         .port_max_mtu           = gswip_port_max_mtu,
1870         .phylink_get_caps       = gswip_xrx300_phylink_get_caps,
1871         .phylink_mac_config     = gswip_phylink_mac_config,
1872         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1873         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1874         .get_strings            = gswip_get_strings,
1875         .get_ethtool_stats      = gswip_get_ethtool_stats,
1876         .get_sset_count         = gswip_get_sset_count,
1877 };
1878
1879 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1880         .fe_firmware_name = "/*(DEBLOBBED)*/",
1881         .ge_firmware_name = "/*(DEBLOBBED)*/",
1882 };
1883
1884 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1885         .fe_firmware_name = "/*(DEBLOBBED)*/",
1886         .ge_firmware_name = "/*(DEBLOBBED)*/",
1887 };
1888
1889 static const struct xway_gphy_match_data xrx300_gphy_data = {
1890         .fe_firmware_name = "/*(DEBLOBBED)*/",
1891         .ge_firmware_name = "/*(DEBLOBBED)*/",
1892 };
1893
1894 static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1895         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1896         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1897         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1898         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1899         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1900         {},
1901 };
1902
1903 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1904 {
1905         struct device *dev = priv->dev;
1906         const struct firmware *fw;
1907         void *fw_addr;
1908         dma_addr_t dma_addr;
1909         dma_addr_t dev_addr;
1910         size_t size;
1911         int ret;
1912
1913         ret = clk_prepare_enable(gphy_fw->clk_gate);
1914         if (ret)
1915                 return ret;
1916
1917         reset_control_assert(gphy_fw->reset);
1918
1919         /* The vendor BSP uses a 200ms delay after asserting the reset line.
1920          * Without this some users are observing that the PHY is not coming up
1921          * on the MDIO bus.
1922          */
1923         msleep(200);
1924
1925         ret = reject_firmware(&fw, gphy_fw->fw_name, dev);
1926         if (ret) {
1927                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1928                         gphy_fw->fw_name, ret);
1929                 return ret;
1930         }
1931
1932         /* GPHY cores need the firmware code in a persistent and contiguous
1933          * memory area with a 16 kB boundary aligned start address.
1934          */
1935         size = fw->size + XRX200_GPHY_FW_ALIGN;
1936
1937         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1938         if (fw_addr) {
1939                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1940                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1941                 memcpy(fw_addr, fw->data, fw->size);
1942         } else {
1943                 dev_err(dev, "failed to alloc firmware memory\n");
1944                 release_firmware(fw);
1945                 return -ENOMEM;
1946         }
1947
1948         release_firmware(fw);
1949
1950         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1951         if (ret)
1952                 return ret;
1953
1954         reset_control_deassert(gphy_fw->reset);
1955
1956         return ret;
1957 }
1958
1959 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1960                                struct gswip_gphy_fw *gphy_fw,
1961                                struct device_node *gphy_fw_np, int i)
1962 {
1963         struct device *dev = priv->dev;
1964         u32 gphy_mode;
1965         int ret;
1966         char gphyname[10];
1967
1968         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1969
1970         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1971         if (IS_ERR(gphy_fw->clk_gate)) {
1972                 dev_err(dev, "Failed to lookup gate clock\n");
1973                 return PTR_ERR(gphy_fw->clk_gate);
1974         }
1975
1976         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1977         if (ret)
1978                 return ret;
1979
1980         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1981         /* Default to GE mode */
1982         if (ret)
1983                 gphy_mode = GPHY_MODE_GE;
1984
1985         switch (gphy_mode) {
1986         case GPHY_MODE_FE:
1987                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1988                 break;
1989         case GPHY_MODE_GE:
1990                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1991                 break;
1992         default:
1993                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1994                 return -EINVAL;
1995         }
1996
1997         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1998         if (IS_ERR(gphy_fw->reset))
1999                 return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
2000                                      "Failed to lookup gphy reset\n");
2001
2002         return gswip_gphy_fw_load(priv, gphy_fw);
2003 }
2004
2005 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2006                                  struct gswip_gphy_fw *gphy_fw)
2007 {
2008         int ret;
2009
2010         /* check if the device was fully probed */
2011         if (!gphy_fw->fw_name)
2012                 return;
2013
2014         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2015         if (ret)
2016                 dev_err(priv->dev, "can not reset GPHY FW pointer");
2017
2018         clk_disable_unprepare(gphy_fw->clk_gate);
2019
2020         reset_control_put(gphy_fw->reset);
2021 }
2022
2023 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2024                               struct device_node *gphy_fw_list_np, u32 version)
2025 {
2026         struct device *dev = priv->dev;
2027         struct device_node *gphy_fw_np;
2028         const struct of_device_id *match;
2029         int err;
2030         int i = 0;
2031
2032         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2033          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2034          * needs a different GPHY firmware.
2035          */
2036         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2037                 switch (version) {
2038                 case GSWIP_VERSION_2_0:
2039                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2040                         break;
2041                 case GSWIP_VERSION_2_1:
2042                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2043                         break;
2044                 default:
2045                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
2046                         return -ENOENT;
2047                 }
2048         }
2049
2050         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2051         if (match && match->data)
2052                 priv->gphy_fw_name_cfg = match->data;
2053
2054         if (!priv->gphy_fw_name_cfg) {
2055                 dev_err(dev, "GPHY compatible type not supported");
2056                 return -ENOENT;
2057         }
2058
2059         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2060         if (!priv->num_gphy_fw)
2061                 return -ENOENT;
2062
2063         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2064                                                            "lantiq,rcu");
2065         if (IS_ERR(priv->rcu_regmap))
2066                 return PTR_ERR(priv->rcu_regmap);
2067
2068         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2069                                            sizeof(*priv->gphy_fw),
2070                                            GFP_KERNEL | __GFP_ZERO);
2071         if (!priv->gphy_fw)
2072                 return -ENOMEM;
2073
2074         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2075                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2076                                           gphy_fw_np, i);
2077                 if (err) {
2078                         of_node_put(gphy_fw_np);
2079                         goto remove_gphy;
2080                 }
2081                 i++;
2082         }
2083
2084         /* The standalone PHY11G requires 300ms to be fully
2085          * initialized and ready for any MDIO communication after being
2086          * taken out of reset. For the SoC-internal GPHY variant there
2087          * is no (known) documentation for the minimum time after a
2088          * reset. Use the same value as for the standalone variant as
2089          * some users have reported internal PHYs not being detected
2090          * without any delay.
2091          */
2092         msleep(300);
2093
2094         return 0;
2095
2096 remove_gphy:
2097         for (i = 0; i < priv->num_gphy_fw; i++)
2098                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2099         return err;
2100 }
2101
2102 static int gswip_probe(struct platform_device *pdev)
2103 {
2104         struct device_node *np, *gphy_fw_np;
2105         struct device *dev = &pdev->dev;
2106         struct gswip_priv *priv;
2107         int err;
2108         int i;
2109         u32 version;
2110
2111         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2112         if (!priv)
2113                 return -ENOMEM;
2114
2115         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2116         if (IS_ERR(priv->gswip))
2117                 return PTR_ERR(priv->gswip);
2118
2119         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2120         if (IS_ERR(priv->mdio))
2121                 return PTR_ERR(priv->mdio);
2122
2123         priv->mii = devm_platform_ioremap_resource(pdev, 2);
2124         if (IS_ERR(priv->mii))
2125                 return PTR_ERR(priv->mii);
2126
2127         priv->hw_info = of_device_get_match_data(dev);
2128         if (!priv->hw_info)
2129                 return -EINVAL;
2130
2131         priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2132         if (!priv->ds)
2133                 return -ENOMEM;
2134
2135         priv->ds->dev = dev;
2136         priv->ds->num_ports = priv->hw_info->max_ports;
2137         priv->ds->priv = priv;
2138         priv->ds->ops = priv->hw_info->ops;
2139         priv->dev = dev;
2140         mutex_init(&priv->pce_table_lock);
2141         version = gswip_switch_r(priv, GSWIP_VERSION);
2142
2143         np = dev->of_node;
2144         switch (version) {
2145         case GSWIP_VERSION_2_0:
2146         case GSWIP_VERSION_2_1:
2147                 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2148                         return -EINVAL;
2149                 break;
2150         case GSWIP_VERSION_2_2:
2151         case GSWIP_VERSION_2_2_ETC:
2152                 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2153                     !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2154                         return -EINVAL;
2155                 break;
2156         default:
2157                 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2158                 return -ENOENT;
2159         }
2160
2161         /* bring up the mdio bus */
2162         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2163         if (gphy_fw_np) {
2164                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2165                 of_node_put(gphy_fw_np);
2166                 if (err) {
2167                         dev_err(dev, "gphy fw probe failed\n");
2168                         return err;
2169                 }
2170         }
2171
2172         /* bring up the mdio bus */
2173         err = gswip_mdio(priv);
2174         if (err) {
2175                 dev_err(dev, "mdio probe failed\n");
2176                 goto gphy_fw_remove;
2177         }
2178
2179         err = dsa_register_switch(priv->ds);
2180         if (err) {
2181                 dev_err(dev, "dsa switch register failed: %i\n", err);
2182                 goto gphy_fw_remove;
2183         }
2184         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2185                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2186                         priv->hw_info->cpu_port);
2187                 err = -EINVAL;
2188                 goto disable_switch;
2189         }
2190
2191         platform_set_drvdata(pdev, priv);
2192
2193         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2194                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2195                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2196         return 0;
2197
2198 disable_switch:
2199         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2200         dsa_unregister_switch(priv->ds);
2201 gphy_fw_remove:
2202         for (i = 0; i < priv->num_gphy_fw; i++)
2203                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2204         return err;
2205 }
2206
2207 static void gswip_remove(struct platform_device *pdev)
2208 {
2209         struct gswip_priv *priv = platform_get_drvdata(pdev);
2210         int i;
2211
2212         if (!priv)
2213                 return;
2214
2215         /* disable the switch */
2216         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2217
2218         dsa_unregister_switch(priv->ds);
2219
2220         for (i = 0; i < priv->num_gphy_fw; i++)
2221                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2222 }
2223
2224 static void gswip_shutdown(struct platform_device *pdev)
2225 {
2226         struct gswip_priv *priv = platform_get_drvdata(pdev);
2227
2228         if (!priv)
2229                 return;
2230
2231         dsa_switch_shutdown(priv->ds);
2232
2233         platform_set_drvdata(pdev, NULL);
2234 }
2235
2236 static const struct gswip_hw_info gswip_xrx200 = {
2237         .max_ports = 7,
2238         .cpu_port = 6,
2239         .ops = &gswip_xrx200_switch_ops,
2240 };
2241
2242 static const struct gswip_hw_info gswip_xrx300 = {
2243         .max_ports = 7,
2244         .cpu_port = 6,
2245         .ops = &gswip_xrx300_switch_ops,
2246 };
2247
2248 static const struct of_device_id gswip_of_match[] = {
2249         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2250         { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2251         { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2252         {},
2253 };
2254 MODULE_DEVICE_TABLE(of, gswip_of_match);
2255
2256 static struct platform_driver gswip_driver = {
2257         .probe = gswip_probe,
2258         .remove_new = gswip_remove,
2259         .shutdown = gswip_shutdown,
2260         .driver = {
2261                 .name = "gswip",
2262                 .of_match_table = gswip_of_match,
2263         },
2264 };
2265
2266 module_platform_driver(gswip_driver);
2267
2268 /*(DEBLOBBED)*/
2269 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2270 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2271 MODULE_LICENSE("GPL v2");