GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <linux/of.h>
31 #include <net/rtnetlink.h>
32
33 #define MOD_DESC "CAN device driver interface"
34
35 MODULE_DESCRIPTION(MOD_DESC);
36 MODULE_LICENSE("GPL v2");
37 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
38
39 /* CAN DLC to real data length conversion helpers */
40
41 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
42                              8, 12, 16, 20, 24, 32, 48, 64};
43
44 /* get data length from can_dlc with sanitized can_dlc */
45 u8 can_dlc2len(u8 can_dlc)
46 {
47         return dlc2len[can_dlc & 0x0F];
48 }
49 EXPORT_SYMBOL_GPL(can_dlc2len);
50
51 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
52                              9, 9, 9, 9,                        /* 9 - 12 */
53                              10, 10, 10, 10,                    /* 13 - 16 */
54                              11, 11, 11, 11,                    /* 17 - 20 */
55                              12, 12, 12, 12,                    /* 21 - 24 */
56                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
57                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
58                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
59                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
60                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
61
62 /* map the sanitized data length to an appropriate data length code */
63 u8 can_len2dlc(u8 len)
64 {
65         if (unlikely(len > 64))
66                 return 0xF;
67
68         return len2dlc[len];
69 }
70 EXPORT_SYMBOL_GPL(can_len2dlc);
71
72 #ifdef CONFIG_CAN_CALC_BITTIMING
73 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 #define CAN_CALC_SYNC_SEG 1
75
76 /*
77  * Bit-timing calculation derived from:
78  *
79  * Code based on LinCAN sources and H8S2638 project
80  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
81  * Copyright 2005      Stanislav Marek
82  * email: pisa@cmp.felk.cvut.cz
83  *
84  * Calculates proper bit-timing parameters for a specified bit-rate
85  * and sample-point, which can then be used to set the bit-timing
86  * registers of the CAN controller. You can find more information
87  * in the header file linux/can/netlink.h.
88  */
89 static int can_update_sample_point(const struct can_bittiming_const *btc,
90                           unsigned int sample_point_nominal, unsigned int tseg,
91                           unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
92                           unsigned int *sample_point_error_ptr)
93 {
94         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
95         unsigned int sample_point, best_sample_point = 0;
96         unsigned int tseg1, tseg2;
97         int i;
98
99         for (i = 0; i <= 1; i++) {
100                 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
101                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
102                 tseg1 = tseg - tseg2;
103                 if (tseg1 > btc->tseg1_max) {
104                         tseg1 = btc->tseg1_max;
105                         tseg2 = tseg - tseg1;
106                 }
107
108                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
109                 sample_point_error = abs(sample_point_nominal - sample_point);
110
111                 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
112                         best_sample_point = sample_point;
113                         best_sample_point_error = sample_point_error;
114                         *tseg1_ptr = tseg1;
115                         *tseg2_ptr = tseg2;
116                 }
117         }
118
119         if (sample_point_error_ptr)
120                 *sample_point_error_ptr = best_sample_point_error;
121
122         return best_sample_point;
123 }
124
125 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
126                               const struct can_bittiming_const *btc)
127 {
128         struct can_priv *priv = netdev_priv(dev);
129         unsigned int bitrate;                   /* current bitrate */
130         unsigned int bitrate_error;             /* difference between current and nominal value */
131         unsigned int best_bitrate_error = UINT_MAX;
132         unsigned int sample_point_error;        /* difference between current and nominal value */
133         unsigned int best_sample_point_error = UINT_MAX;
134         unsigned int sample_point_nominal;      /* nominal sample point */
135         unsigned int best_tseg = 0;             /* current best value for tseg */
136         unsigned int best_brp = 0;              /* current best value for brp */
137         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
138         u64 v64;
139
140         /* Use CiA recommended sample points */
141         if (bt->sample_point) {
142                 sample_point_nominal = bt->sample_point;
143         } else {
144                 if (bt->bitrate > 800000)
145                         sample_point_nominal = 750;
146                 else if (bt->bitrate > 500000)
147                         sample_point_nominal = 800;
148                 else
149                         sample_point_nominal = 875;
150         }
151
152         /* tseg even = round down, odd = round up */
153         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
154              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
155                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
156
157                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
158                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
159
160                 /* choose brp step which is possible in system */
161                 brp = (brp / btc->brp_inc) * btc->brp_inc;
162                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
163                         continue;
164
165                 bitrate = priv->clock.freq / (brp * tsegall);
166                 bitrate_error = abs(bt->bitrate - bitrate);
167
168                 /* tseg brp biterror */
169                 if (bitrate_error > best_bitrate_error)
170                         continue;
171
172                 /* reset sample point error if we have a better bitrate */
173                 if (bitrate_error < best_bitrate_error)
174                         best_sample_point_error = UINT_MAX;
175
176                 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
177                 if (sample_point_error > best_sample_point_error)
178                         continue;
179
180                 best_sample_point_error = sample_point_error;
181                 best_bitrate_error = bitrate_error;
182                 best_tseg = tseg / 2;
183                 best_brp = brp;
184
185                 if (bitrate_error == 0 && sample_point_error == 0)
186                         break;
187         }
188
189         if (best_bitrate_error) {
190                 /* Error in one-tenth of a percent */
191                 v64 = (u64)best_bitrate_error * 1000;
192                 do_div(v64, bt->bitrate);
193                 bitrate_error = (u32)v64;
194                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
195                         netdev_err(dev,
196                                    "bitrate error %d.%d%% too high\n",
197                                    bitrate_error / 10, bitrate_error % 10);
198                         return -EDOM;
199                 }
200                 netdev_warn(dev, "bitrate error %d.%d%%\n",
201                             bitrate_error / 10, bitrate_error % 10);
202         }
203
204         /* real sample point */
205         bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
206                                           &tseg1, &tseg2, NULL);
207
208         v64 = (u64)best_brp * 1000 * 1000 * 1000;
209         do_div(v64, priv->clock.freq);
210         bt->tq = (u32)v64;
211         bt->prop_seg = tseg1 / 2;
212         bt->phase_seg1 = tseg1 - bt->prop_seg;
213         bt->phase_seg2 = tseg2;
214
215         /* check for sjw user settings */
216         if (!bt->sjw || !btc->sjw_max) {
217                 bt->sjw = 1;
218         } else {
219                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
220                 if (bt->sjw > btc->sjw_max)
221                         bt->sjw = btc->sjw_max;
222                 /* bt->sjw must not be higher than tseg2 */
223                 if (tseg2 < bt->sjw)
224                         bt->sjw = tseg2;
225         }
226
227         bt->brp = best_brp;
228
229         /* real bitrate */
230         bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
231
232         return 0;
233 }
234 #else /* !CONFIG_CAN_CALC_BITTIMING */
235 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
236                               const struct can_bittiming_const *btc)
237 {
238         netdev_err(dev, "bit-timing calculation not available\n");
239         return -EINVAL;
240 }
241 #endif /* CONFIG_CAN_CALC_BITTIMING */
242
243 /*
244  * Checks the validity of the specified bit-timing parameters prop_seg,
245  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
246  * prescaler value brp. You can find more information in the header
247  * file linux/can/netlink.h.
248  */
249 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
250                                const struct can_bittiming_const *btc)
251 {
252         struct can_priv *priv = netdev_priv(dev);
253         int tseg1, alltseg;
254         u64 brp64;
255
256         tseg1 = bt->prop_seg + bt->phase_seg1;
257         if (!bt->sjw)
258                 bt->sjw = 1;
259         if (bt->sjw > btc->sjw_max ||
260             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
261             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
262                 return -ERANGE;
263
264         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
265         if (btc->brp_inc > 1)
266                 do_div(brp64, btc->brp_inc);
267         brp64 += 500000000UL - 1;
268         do_div(brp64, 1000000000UL); /* the practicable BRP */
269         if (btc->brp_inc > 1)
270                 brp64 *= btc->brp_inc;
271         bt->brp = (u32)brp64;
272
273         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
274                 return -EINVAL;
275
276         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
277         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
278         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
279
280         return 0;
281 }
282
283 /* Checks the validity of predefined bitrate settings */
284 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
285                                 const u32 *bitrate_const,
286                                 const unsigned int bitrate_const_cnt)
287 {
288         struct can_priv *priv = netdev_priv(dev);
289         unsigned int i;
290
291         for (i = 0; i < bitrate_const_cnt; i++) {
292                 if (bt->bitrate == bitrate_const[i])
293                         break;
294         }
295
296         if (i >= priv->bitrate_const_cnt)
297                 return -EINVAL;
298
299         return 0;
300 }
301
302 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
303                              const struct can_bittiming_const *btc,
304                              const u32 *bitrate_const,
305                              const unsigned int bitrate_const_cnt)
306 {
307         int err;
308
309         /*
310          * Depending on the given can_bittiming parameter structure the CAN
311          * timing parameters are calculated based on the provided bitrate OR
312          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
313          * provided directly which are then checked and fixed up.
314          */
315         if (!bt->tq && bt->bitrate && btc)
316                 err = can_calc_bittiming(dev, bt, btc);
317         else if (bt->tq && !bt->bitrate && btc)
318                 err = can_fixup_bittiming(dev, bt, btc);
319         else if (!bt->tq && bt->bitrate && bitrate_const)
320                 err = can_validate_bitrate(dev, bt, bitrate_const,
321                                            bitrate_const_cnt);
322         else
323                 err = -EINVAL;
324
325         return err;
326 }
327
328 static void can_update_state_error_stats(struct net_device *dev,
329                                          enum can_state new_state)
330 {
331         struct can_priv *priv = netdev_priv(dev);
332
333         if (new_state <= priv->state)
334                 return;
335
336         switch (new_state) {
337         case CAN_STATE_ERROR_WARNING:
338                 priv->can_stats.error_warning++;
339                 break;
340         case CAN_STATE_ERROR_PASSIVE:
341                 priv->can_stats.error_passive++;
342                 break;
343         case CAN_STATE_BUS_OFF:
344                 priv->can_stats.bus_off++;
345                 break;
346         default:
347                 break;
348         }
349 }
350
351 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
352 {
353         switch (state) {
354         case CAN_STATE_ERROR_ACTIVE:
355                 return CAN_ERR_CRTL_ACTIVE;
356         case CAN_STATE_ERROR_WARNING:
357                 return CAN_ERR_CRTL_TX_WARNING;
358         case CAN_STATE_ERROR_PASSIVE:
359                 return CAN_ERR_CRTL_TX_PASSIVE;
360         default:
361                 return 0;
362         }
363 }
364
365 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
366 {
367         switch (state) {
368         case CAN_STATE_ERROR_ACTIVE:
369                 return CAN_ERR_CRTL_ACTIVE;
370         case CAN_STATE_ERROR_WARNING:
371                 return CAN_ERR_CRTL_RX_WARNING;
372         case CAN_STATE_ERROR_PASSIVE:
373                 return CAN_ERR_CRTL_RX_PASSIVE;
374         default:
375                 return 0;
376         }
377 }
378
379 void can_change_state(struct net_device *dev, struct can_frame *cf,
380                       enum can_state tx_state, enum can_state rx_state)
381 {
382         struct can_priv *priv = netdev_priv(dev);
383         enum can_state new_state = max(tx_state, rx_state);
384
385         if (unlikely(new_state == priv->state)) {
386                 netdev_warn(dev, "%s: oops, state did not change", __func__);
387                 return;
388         }
389
390         netdev_dbg(dev, "New error state: %d\n", new_state);
391
392         can_update_state_error_stats(dev, new_state);
393         priv->state = new_state;
394
395         if (!cf)
396                 return;
397
398         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
399                 cf->can_id |= CAN_ERR_BUSOFF;
400                 return;
401         }
402
403         cf->can_id |= CAN_ERR_CRTL;
404         cf->data[1] |= tx_state >= rx_state ?
405                        can_tx_state_to_frame(dev, tx_state) : 0;
406         cf->data[1] |= tx_state <= rx_state ?
407                        can_rx_state_to_frame(dev, rx_state) : 0;
408 }
409 EXPORT_SYMBOL_GPL(can_change_state);
410
411 /*
412  * Local echo of CAN messages
413  *
414  * CAN network devices *should* support a local echo functionality
415  * (see Documentation/networking/can.rst). To test the handling of CAN
416  * interfaces that do not support the local echo both driver types are
417  * implemented. In the case that the driver does not support the echo
418  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
419  * to perform the echo as a fallback solution.
420  */
421 static void can_flush_echo_skb(struct net_device *dev)
422 {
423         struct can_priv *priv = netdev_priv(dev);
424         struct net_device_stats *stats = &dev->stats;
425         int i;
426
427         for (i = 0; i < priv->echo_skb_max; i++) {
428                 if (priv->echo_skb[i]) {
429                         kfree_skb(priv->echo_skb[i]);
430                         priv->echo_skb[i] = NULL;
431                         stats->tx_dropped++;
432                         stats->tx_aborted_errors++;
433                 }
434         }
435 }
436
437 /*
438  * Put the skb on the stack to be looped backed locally lateron
439  *
440  * The function is typically called in the start_xmit function
441  * of the device driver. The driver must protect access to
442  * priv->echo_skb, if necessary.
443  */
444 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
445                       unsigned int idx)
446 {
447         struct can_priv *priv = netdev_priv(dev);
448
449         BUG_ON(idx >= priv->echo_skb_max);
450
451         /* check flag whether this packet has to be looped back */
452         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
453             (skb->protocol != htons(ETH_P_CAN) &&
454              skb->protocol != htons(ETH_P_CANFD))) {
455                 kfree_skb(skb);
456                 return;
457         }
458
459         if (!priv->echo_skb[idx]) {
460
461                 skb = can_create_echo_skb(skb);
462                 if (!skb)
463                         return;
464
465                 /* make settings for echo to reduce code in irq context */
466                 skb->pkt_type = PACKET_BROADCAST;
467                 skb->ip_summed = CHECKSUM_UNNECESSARY;
468                 skb->dev = dev;
469
470                 /* save this skb for tx interrupt echo handling */
471                 priv->echo_skb[idx] = skb;
472         } else {
473                 /* locking problem with netif_stop_queue() ?? */
474                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
475                 kfree_skb(skb);
476         }
477 }
478 EXPORT_SYMBOL_GPL(can_put_echo_skb);
479
480 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
481 {
482         struct can_priv *priv = netdev_priv(dev);
483
484         if (idx >= priv->echo_skb_max) {
485                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
486                            __func__, idx, priv->echo_skb_max);
487                 return NULL;
488         }
489
490         if (priv->echo_skb[idx]) {
491                 /* Using "struct canfd_frame::len" for the frame
492                  * length is supported on both CAN and CANFD frames.
493                  */
494                 struct sk_buff *skb = priv->echo_skb[idx];
495                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
496
497                 /* get the real payload length for netdev statistics */
498                 if (cf->can_id & CAN_RTR_FLAG)
499                         *len_ptr = 0;
500                 else
501                         *len_ptr = cf->len;
502
503                 priv->echo_skb[idx] = NULL;
504
505                 return skb;
506         }
507
508         return NULL;
509 }
510
511 /*
512  * Get the skb from the stack and loop it back locally
513  *
514  * The function is typically called when the TX done interrupt
515  * is handled in the device driver. The driver must protect
516  * access to priv->echo_skb, if necessary.
517  */
518 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
519 {
520         struct sk_buff *skb;
521         u8 len;
522
523         skb = __can_get_echo_skb(dev, idx, &len);
524         if (!skb)
525                 return 0;
526
527         skb_get(skb);
528         if (netif_rx(skb) == NET_RX_SUCCESS)
529                 dev_consume_skb_any(skb);
530         else
531                 dev_kfree_skb_any(skb);
532
533         return len;
534 }
535 EXPORT_SYMBOL_GPL(can_get_echo_skb);
536
537 /*
538   * Remove the skb from the stack and free it.
539   *
540   * The function is typically called when TX failed.
541   */
542 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
543 {
544         struct can_priv *priv = netdev_priv(dev);
545
546         BUG_ON(idx >= priv->echo_skb_max);
547
548         if (priv->echo_skb[idx]) {
549                 dev_kfree_skb_any(priv->echo_skb[idx]);
550                 priv->echo_skb[idx] = NULL;
551         }
552 }
553 EXPORT_SYMBOL_GPL(can_free_echo_skb);
554
555 /*
556  * CAN device restart for bus-off recovery
557  */
558 static void can_restart(struct net_device *dev)
559 {
560         struct can_priv *priv = netdev_priv(dev);
561         struct net_device_stats *stats = &dev->stats;
562         struct sk_buff *skb;
563         struct can_frame *cf;
564         int err;
565
566         BUG_ON(netif_carrier_ok(dev));
567
568         /*
569          * No synchronization needed because the device is bus-off and
570          * no messages can come in or go out.
571          */
572         can_flush_echo_skb(dev);
573
574         /* send restart message upstream */
575         skb = alloc_can_err_skb(dev, &cf);
576         if (skb == NULL) {
577                 err = -ENOMEM;
578                 goto restart;
579         }
580         cf->can_id |= CAN_ERR_RESTARTED;
581
582         stats->rx_packets++;
583         stats->rx_bytes += cf->can_dlc;
584
585         netif_rx_ni(skb);
586
587 restart:
588         netdev_dbg(dev, "restarted\n");
589         priv->can_stats.restarts++;
590
591         /* Now restart the device */
592         err = priv->do_set_mode(dev, CAN_MODE_START);
593
594         netif_carrier_on(dev);
595         if (err)
596                 netdev_err(dev, "Error %d during restart", err);
597 }
598
599 static void can_restart_work(struct work_struct *work)
600 {
601         struct delayed_work *dwork = to_delayed_work(work);
602         struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
603
604         can_restart(priv->dev);
605 }
606
607 int can_restart_now(struct net_device *dev)
608 {
609         struct can_priv *priv = netdev_priv(dev);
610
611         /*
612          * A manual restart is only permitted if automatic restart is
613          * disabled and the device is in the bus-off state
614          */
615         if (priv->restart_ms)
616                 return -EINVAL;
617         if (priv->state != CAN_STATE_BUS_OFF)
618                 return -EBUSY;
619
620         cancel_delayed_work_sync(&priv->restart_work);
621         can_restart(dev);
622
623         return 0;
624 }
625
626 /*
627  * CAN bus-off
628  *
629  * This functions should be called when the device goes bus-off to
630  * tell the netif layer that no more packets can be sent or received.
631  * If enabled, a timer is started to trigger bus-off recovery.
632  */
633 void can_bus_off(struct net_device *dev)
634 {
635         struct can_priv *priv = netdev_priv(dev);
636
637         netdev_info(dev, "bus-off\n");
638
639         netif_carrier_off(dev);
640
641         if (priv->restart_ms)
642                 schedule_delayed_work(&priv->restart_work,
643                                       msecs_to_jiffies(priv->restart_ms));
644 }
645 EXPORT_SYMBOL_GPL(can_bus_off);
646
647 static void can_setup(struct net_device *dev)
648 {
649         dev->type = ARPHRD_CAN;
650         dev->mtu = CAN_MTU;
651         dev->hard_header_len = 0;
652         dev->addr_len = 0;
653         dev->tx_queue_len = 10;
654
655         /* New-style flags. */
656         dev->flags = IFF_NOARP;
657         dev->features = NETIF_F_HW_CSUM;
658 }
659
660 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
661 {
662         struct sk_buff *skb;
663
664         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
665                                sizeof(struct can_frame));
666         if (unlikely(!skb))
667                 return NULL;
668
669         skb->protocol = htons(ETH_P_CAN);
670         skb->pkt_type = PACKET_BROADCAST;
671         skb->ip_summed = CHECKSUM_UNNECESSARY;
672
673         skb_reset_mac_header(skb);
674         skb_reset_network_header(skb);
675         skb_reset_transport_header(skb);
676
677         can_skb_reserve(skb);
678         can_skb_prv(skb)->ifindex = dev->ifindex;
679         can_skb_prv(skb)->skbcnt = 0;
680
681         *cf = skb_put_zero(skb, sizeof(struct can_frame));
682
683         return skb;
684 }
685 EXPORT_SYMBOL_GPL(alloc_can_skb);
686
687 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
688                                 struct canfd_frame **cfd)
689 {
690         struct sk_buff *skb;
691
692         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
693                                sizeof(struct canfd_frame));
694         if (unlikely(!skb))
695                 return NULL;
696
697         skb->protocol = htons(ETH_P_CANFD);
698         skb->pkt_type = PACKET_BROADCAST;
699         skb->ip_summed = CHECKSUM_UNNECESSARY;
700
701         skb_reset_mac_header(skb);
702         skb_reset_network_header(skb);
703         skb_reset_transport_header(skb);
704
705         can_skb_reserve(skb);
706         can_skb_prv(skb)->ifindex = dev->ifindex;
707         can_skb_prv(skb)->skbcnt = 0;
708
709         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
710
711         return skb;
712 }
713 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
714
715 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
716 {
717         struct sk_buff *skb;
718
719         skb = alloc_can_skb(dev, cf);
720         if (unlikely(!skb))
721                 return NULL;
722
723         (*cf)->can_id = CAN_ERR_FLAG;
724         (*cf)->can_dlc = CAN_ERR_DLC;
725
726         return skb;
727 }
728 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
729
730 /*
731  * Allocate and setup space for the CAN network device
732  */
733 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
734                                     unsigned int txqs, unsigned int rxqs)
735 {
736         struct net_device *dev;
737         struct can_priv *priv;
738         int size;
739
740         if (echo_skb_max)
741                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
742                         echo_skb_max * sizeof(struct sk_buff *);
743         else
744                 size = sizeof_priv;
745
746         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
747                                txqs, rxqs);
748         if (!dev)
749                 return NULL;
750
751         priv = netdev_priv(dev);
752         priv->dev = dev;
753
754         if (echo_skb_max) {
755                 priv->echo_skb_max = echo_skb_max;
756                 priv->echo_skb = (void *)priv +
757                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
758         }
759
760         priv->state = CAN_STATE_STOPPED;
761
762         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
763
764         return dev;
765 }
766 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
767
768 /*
769  * Free space of the CAN network device
770  */
771 void free_candev(struct net_device *dev)
772 {
773         free_netdev(dev);
774 }
775 EXPORT_SYMBOL_GPL(free_candev);
776
777 /*
778  * changing MTU and control mode for CAN/CANFD devices
779  */
780 int can_change_mtu(struct net_device *dev, int new_mtu)
781 {
782         struct can_priv *priv = netdev_priv(dev);
783
784         /* Do not allow changing the MTU while running */
785         if (dev->flags & IFF_UP)
786                 return -EBUSY;
787
788         /* allow change of MTU according to the CANFD ability of the device */
789         switch (new_mtu) {
790         case CAN_MTU:
791                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
792                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
793                         return -EINVAL;
794
795                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
796                 break;
797
798         case CANFD_MTU:
799                 /* check for potential CANFD ability */
800                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
801                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
802                         return -EINVAL;
803
804                 priv->ctrlmode |= CAN_CTRLMODE_FD;
805                 break;
806
807         default:
808                 return -EINVAL;
809         }
810
811         dev->mtu = new_mtu;
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(can_change_mtu);
815
816 /*
817  * Common open function when the device gets opened.
818  *
819  * This function should be called in the open function of the device
820  * driver.
821  */
822 int open_candev(struct net_device *dev)
823 {
824         struct can_priv *priv = netdev_priv(dev);
825
826         if (!priv->bittiming.bitrate) {
827                 netdev_err(dev, "bit-timing not yet defined\n");
828                 return -EINVAL;
829         }
830
831         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
832         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
833             (!priv->data_bittiming.bitrate ||
834              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
835                 netdev_err(dev, "incorrect/missing data bit-timing\n");
836                 return -EINVAL;
837         }
838
839         /* Switch carrier on if device was stopped while in bus-off state */
840         if (!netif_carrier_ok(dev))
841                 netif_carrier_on(dev);
842
843         return 0;
844 }
845 EXPORT_SYMBOL_GPL(open_candev);
846
847 #ifdef CONFIG_OF
848 /* Common function that can be used to understand the limitation of
849  * a transceiver when it provides no means to determine these limitations
850  * at runtime.
851  */
852 void of_can_transceiver(struct net_device *dev)
853 {
854         struct device_node *dn;
855         struct can_priv *priv = netdev_priv(dev);
856         struct device_node *np = dev->dev.parent->of_node;
857         int ret;
858
859         dn = of_get_child_by_name(np, "can-transceiver");
860         if (!dn)
861                 return;
862
863         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
864         of_node_put(dn);
865         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
866                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
867 }
868 EXPORT_SYMBOL_GPL(of_can_transceiver);
869 #endif
870
871 /*
872  * Common close function for cleanup before the device gets closed.
873  *
874  * This function should be called in the close function of the device
875  * driver.
876  */
877 void close_candev(struct net_device *dev)
878 {
879         struct can_priv *priv = netdev_priv(dev);
880
881         cancel_delayed_work_sync(&priv->restart_work);
882         can_flush_echo_skb(dev);
883 }
884 EXPORT_SYMBOL_GPL(close_candev);
885
886 /*
887  * CAN netlink interface
888  */
889 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
890         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
891         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
892         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
893         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
894         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
895         [IFLA_CAN_BITTIMING_CONST]
896                                 = { .len = sizeof(struct can_bittiming_const) },
897         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
898         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
899         [IFLA_CAN_DATA_BITTIMING]
900                                 = { .len = sizeof(struct can_bittiming) },
901         [IFLA_CAN_DATA_BITTIMING_CONST]
902                                 = { .len = sizeof(struct can_bittiming_const) },
903         [IFLA_CAN_TERMINATION]  = { .type = NLA_U16 },
904 };
905
906 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
907                         struct netlink_ext_ack *extack)
908 {
909         bool is_can_fd = false;
910
911         /* Make sure that valid CAN FD configurations always consist of
912          * - nominal/arbitration bittiming
913          * - data bittiming
914          * - control mode with CAN_CTRLMODE_FD set
915          */
916
917         if (!data)
918                 return 0;
919
920         if (data[IFLA_CAN_CTRLMODE]) {
921                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
922
923                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
924         }
925
926         if (is_can_fd) {
927                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
928                         return -EOPNOTSUPP;
929         }
930
931         if (data[IFLA_CAN_DATA_BITTIMING]) {
932                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
933                         return -EOPNOTSUPP;
934         }
935
936         return 0;
937 }
938
939 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
940                           struct nlattr *data[],
941                           struct netlink_ext_ack *extack)
942 {
943         struct can_priv *priv = netdev_priv(dev);
944         int err;
945
946         /* We need synchronization with dev->stop() */
947         ASSERT_RTNL();
948
949         if (data[IFLA_CAN_BITTIMING]) {
950                 struct can_bittiming bt;
951
952                 /* Do not allow changing bittiming while running */
953                 if (dev->flags & IFF_UP)
954                         return -EBUSY;
955
956                 /* Calculate bittiming parameters based on
957                  * bittiming_const if set, otherwise pass bitrate
958                  * directly via do_set_bitrate(). Bail out if neither
959                  * is given.
960                  */
961                 if (!priv->bittiming_const && !priv->do_set_bittiming)
962                         return -EOPNOTSUPP;
963
964                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
965                 err = can_get_bittiming(dev, &bt,
966                                         priv->bittiming_const,
967                                         priv->bitrate_const,
968                                         priv->bitrate_const_cnt);
969                 if (err)
970                         return err;
971
972                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
973                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
974                                    priv->bitrate_max);
975                         return -EINVAL;
976                 }
977
978                 memcpy(&priv->bittiming, &bt, sizeof(bt));
979
980                 if (priv->do_set_bittiming) {
981                         /* Finally, set the bit-timing registers */
982                         err = priv->do_set_bittiming(dev);
983                         if (err)
984                                 return err;
985                 }
986         }
987
988         if (data[IFLA_CAN_CTRLMODE]) {
989                 struct can_ctrlmode *cm;
990                 u32 ctrlstatic;
991                 u32 maskedflags;
992
993                 /* Do not allow changing controller mode while running */
994                 if (dev->flags & IFF_UP)
995                         return -EBUSY;
996                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
997                 ctrlstatic = priv->ctrlmode_static;
998                 maskedflags = cm->flags & cm->mask;
999
1000                 /* check whether provided bits are allowed to be passed */
1001                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1002                         return -EOPNOTSUPP;
1003
1004                 /* do not check for static fd-non-iso if 'fd' is disabled */
1005                 if (!(maskedflags & CAN_CTRLMODE_FD))
1006                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1007
1008                 /* make sure static options are provided by configuration */
1009                 if ((maskedflags & ctrlstatic) != ctrlstatic)
1010                         return -EOPNOTSUPP;
1011
1012                 /* clear bits to be modified and copy the flag values */
1013                 priv->ctrlmode &= ~cm->mask;
1014                 priv->ctrlmode |= maskedflags;
1015
1016                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1017                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1018                         dev->mtu = CANFD_MTU;
1019                 else
1020                         dev->mtu = CAN_MTU;
1021         }
1022
1023         if (data[IFLA_CAN_RESTART_MS]) {
1024                 /* Do not allow changing restart delay while running */
1025                 if (dev->flags & IFF_UP)
1026                         return -EBUSY;
1027                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1028         }
1029
1030         if (data[IFLA_CAN_RESTART]) {
1031                 /* Do not allow a restart while not running */
1032                 if (!(dev->flags & IFF_UP))
1033                         return -EINVAL;
1034                 err = can_restart_now(dev);
1035                 if (err)
1036                         return err;
1037         }
1038
1039         if (data[IFLA_CAN_DATA_BITTIMING]) {
1040                 struct can_bittiming dbt;
1041
1042                 /* Do not allow changing bittiming while running */
1043                 if (dev->flags & IFF_UP)
1044                         return -EBUSY;
1045
1046                 /* Calculate bittiming parameters based on
1047                  * data_bittiming_const if set, otherwise pass bitrate
1048                  * directly via do_set_bitrate(). Bail out if neither
1049                  * is given.
1050                  */
1051                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1052                         return -EOPNOTSUPP;
1053
1054                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1055                        sizeof(dbt));
1056                 err = can_get_bittiming(dev, &dbt,
1057                                         priv->data_bittiming_const,
1058                                         priv->data_bitrate_const,
1059                                         priv->data_bitrate_const_cnt);
1060                 if (err)
1061                         return err;
1062
1063                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1064                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1065                                    priv->bitrate_max);
1066                         return -EINVAL;
1067                 }
1068
1069                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1070
1071                 if (priv->do_set_data_bittiming) {
1072                         /* Finally, set the bit-timing registers */
1073                         err = priv->do_set_data_bittiming(dev);
1074                         if (err)
1075                                 return err;
1076                 }
1077         }
1078
1079         if (data[IFLA_CAN_TERMINATION]) {
1080                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1081                 const unsigned int num_term = priv->termination_const_cnt;
1082                 unsigned int i;
1083
1084                 if (!priv->do_set_termination)
1085                         return -EOPNOTSUPP;
1086
1087                 /* check whether given value is supported by the interface */
1088                 for (i = 0; i < num_term; i++) {
1089                         if (termval == priv->termination_const[i])
1090                                 break;
1091                 }
1092                 if (i >= num_term)
1093                         return -EINVAL;
1094
1095                 /* Finally, set the termination value */
1096                 err = priv->do_set_termination(dev, termval);
1097                 if (err)
1098                         return err;
1099
1100                 priv->termination = termval;
1101         }
1102
1103         return 0;
1104 }
1105
1106 static size_t can_get_size(const struct net_device *dev)
1107 {
1108         struct can_priv *priv = netdev_priv(dev);
1109         size_t size = 0;
1110
1111         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1112                 size += nla_total_size(sizeof(struct can_bittiming));
1113         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1114                 size += nla_total_size(sizeof(struct can_bittiming_const));
1115         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1116         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1117         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1118         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1119         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1120                 size += nla_total_size(sizeof(struct can_berr_counter));
1121         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1122                 size += nla_total_size(sizeof(struct can_bittiming));
1123         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1124                 size += nla_total_size(sizeof(struct can_bittiming_const));
1125         if (priv->termination_const) {
1126                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1127                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1128                                        priv->termination_const_cnt);
1129         }
1130         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1131                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1132                                        priv->bitrate_const_cnt);
1133         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1134                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1135                                        priv->data_bitrate_const_cnt);
1136         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1137
1138         return size;
1139 }
1140
1141 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1142 {
1143         struct can_priv *priv = netdev_priv(dev);
1144         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1145         struct can_berr_counter bec = { };
1146         enum can_state state = priv->state;
1147
1148         if (priv->do_get_state)
1149                 priv->do_get_state(dev, &state);
1150
1151         if ((priv->bittiming.bitrate &&
1152              nla_put(skb, IFLA_CAN_BITTIMING,
1153                      sizeof(priv->bittiming), &priv->bittiming)) ||
1154
1155             (priv->bittiming_const &&
1156              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1157                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1158
1159             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1160             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1161             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1162             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1163
1164             (priv->do_get_berr_counter &&
1165              !priv->do_get_berr_counter(dev, &bec) &&
1166              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1167
1168             (priv->data_bittiming.bitrate &&
1169              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1170                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1171
1172             (priv->data_bittiming_const &&
1173              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1174                      sizeof(*priv->data_bittiming_const),
1175                      priv->data_bittiming_const)) ||
1176
1177             (priv->termination_const &&
1178              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1179               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1180                       sizeof(*priv->termination_const) *
1181                       priv->termination_const_cnt,
1182                       priv->termination_const))) ||
1183
1184             (priv->bitrate_const &&
1185              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1186                      sizeof(*priv->bitrate_const) *
1187                      priv->bitrate_const_cnt,
1188                      priv->bitrate_const)) ||
1189
1190             (priv->data_bitrate_const &&
1191              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1192                      sizeof(*priv->data_bitrate_const) *
1193                      priv->data_bitrate_const_cnt,
1194                      priv->data_bitrate_const)) ||
1195
1196             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1197                      sizeof(priv->bitrate_max),
1198                      &priv->bitrate_max))
1199             )
1200
1201                 return -EMSGSIZE;
1202
1203         return 0;
1204 }
1205
1206 static size_t can_get_xstats_size(const struct net_device *dev)
1207 {
1208         return sizeof(struct can_device_stats);
1209 }
1210
1211 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1212 {
1213         struct can_priv *priv = netdev_priv(dev);
1214
1215         if (nla_put(skb, IFLA_INFO_XSTATS,
1216                     sizeof(priv->can_stats), &priv->can_stats))
1217                 goto nla_put_failure;
1218         return 0;
1219
1220 nla_put_failure:
1221         return -EMSGSIZE;
1222 }
1223
1224 static int can_newlink(struct net *src_net, struct net_device *dev,
1225                        struct nlattr *tb[], struct nlattr *data[],
1226                        struct netlink_ext_ack *extack)
1227 {
1228         return -EOPNOTSUPP;
1229 }
1230
1231 static void can_dellink(struct net_device *dev, struct list_head *head)
1232 {
1233         return;
1234 }
1235
1236 static struct rtnl_link_ops can_link_ops __read_mostly = {
1237         .kind           = "can",
1238         .netns_refund   = true,
1239         .maxtype        = IFLA_CAN_MAX,
1240         .policy         = can_policy,
1241         .setup          = can_setup,
1242         .validate       = can_validate,
1243         .newlink        = can_newlink,
1244         .changelink     = can_changelink,
1245         .dellink        = can_dellink,
1246         .get_size       = can_get_size,
1247         .fill_info      = can_fill_info,
1248         .get_xstats_size = can_get_xstats_size,
1249         .fill_xstats    = can_fill_xstats,
1250 };
1251
1252 /*
1253  * Register the CAN network device
1254  */
1255 int register_candev(struct net_device *dev)
1256 {
1257         struct can_priv *priv = netdev_priv(dev);
1258
1259         /* Ensure termination_const, termination_const_cnt and
1260          * do_set_termination consistency. All must be either set or
1261          * unset.
1262          */
1263         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1264             (!priv->termination_const != !priv->do_set_termination))
1265                 return -EINVAL;
1266
1267         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1268                 return -EINVAL;
1269
1270         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1271                 return -EINVAL;
1272
1273         dev->rtnl_link_ops = &can_link_ops;
1274         netif_carrier_off(dev);
1275
1276         return register_netdev(dev);
1277 }
1278 EXPORT_SYMBOL_GPL(register_candev);
1279
1280 /*
1281  * Unregister the CAN network device
1282  */
1283 void unregister_candev(struct net_device *dev)
1284 {
1285         unregister_netdev(dev);
1286 }
1287 EXPORT_SYMBOL_GPL(unregister_candev);
1288
1289 /*
1290  * Test if a network device is a candev based device
1291  * and return the can_priv* if so.
1292  */
1293 struct can_priv *safe_candev_priv(struct net_device *dev)
1294 {
1295         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1296                 return NULL;
1297
1298         return netdev_priv(dev);
1299 }
1300 EXPORT_SYMBOL_GPL(safe_candev_priv);
1301
1302 static __init int can_dev_init(void)
1303 {
1304         int err;
1305
1306         can_led_notifier_init();
1307
1308         err = rtnl_link_register(&can_link_ops);
1309         if (!err)
1310                 printk(KERN_INFO MOD_DESC "\n");
1311
1312         return err;
1313 }
1314 module_init(can_dev_init);
1315
1316 static __exit void can_dev_exit(void)
1317 {
1318         rtnl_link_unregister(&can_link_ops);
1319
1320         can_led_notifier_exit();
1321 }
1322 module_exit(can_dev_exit);
1323
1324 MODULE_ALIAS_RTNL_LINK("can");