GNU Linux-libre 5.10.217-gnu1
[releases.git] / drivers / net / can / dev / dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31                              8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from can_dlc with sanitized can_dlc */
34 u8 can_dlc2len(u8 can_dlc)
35 {
36         return dlc2len[can_dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
41                              9, 9, 9, 9,                        /* 9 - 12 */
42                              10, 10, 10, 10,                    /* 13 - 16 */
43                              11, 11, 11, 11,                    /* 17 - 20 */
44                              12, 12, 12, 12,                    /* 21 - 24 */
45                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
46                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
47                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
48                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
49                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
52 u8 can_len2dlc(u8 len)
53 {
54         if (unlikely(len > 64))
55                 return 0xF;
56
57         return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64 /* Bit-timing calculation derived from:
65  *
66  * Code based on LinCAN sources and H8S2638 project
67  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68  * Copyright 2005      Stanislav Marek
69  * email: pisa@cmp.felk.cvut.cz
70  *
71  * Calculates proper bit-timing parameters for a specified bit-rate
72  * and sample-point, which can then be used to set the bit-timing
73  * registers of the CAN controller. You can find more information
74  * in the header file linux/can/netlink.h.
75  */
76 static int
77 can_update_sample_point(const struct can_bittiming_const *btc,
78                         unsigned int sample_point_nominal, unsigned int tseg,
79                         unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80                         unsigned int *sample_point_error_ptr)
81 {
82         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83         unsigned int sample_point, best_sample_point = 0;
84         unsigned int tseg1, tseg2;
85         int i;
86
87         for (i = 0; i <= 1; i++) {
88                 tseg2 = tseg + CAN_SYNC_SEG -
89                         (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90                         1000 - i;
91                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92                 tseg1 = tseg - tseg2;
93                 if (tseg1 > btc->tseg1_max) {
94                         tseg1 = btc->tseg1_max;
95                         tseg2 = tseg - tseg1;
96                 }
97
98                 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99                         (tseg + CAN_SYNC_SEG);
100                 sample_point_error = abs(sample_point_nominal - sample_point);
101
102                 if (sample_point <= sample_point_nominal &&
103                     sample_point_error < best_sample_point_error) {
104                         best_sample_point = sample_point;
105                         best_sample_point_error = sample_point_error;
106                         *tseg1_ptr = tseg1;
107                         *tseg2_ptr = tseg2;
108                 }
109         }
110
111         if (sample_point_error_ptr)
112                 *sample_point_error_ptr = best_sample_point_error;
113
114         return best_sample_point;
115 }
116
117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118                               const struct can_bittiming_const *btc)
119 {
120         struct can_priv *priv = netdev_priv(dev);
121         unsigned int bitrate;                   /* current bitrate */
122         unsigned int bitrate_error;             /* difference between current and nominal value */
123         unsigned int best_bitrate_error = UINT_MAX;
124         unsigned int sample_point_error;        /* difference between current and nominal value */
125         unsigned int best_sample_point_error = UINT_MAX;
126         unsigned int sample_point_nominal;      /* nominal sample point */
127         unsigned int best_tseg = 0;             /* current best value for tseg */
128         unsigned int best_brp = 0;              /* current best value for brp */
129         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130         u64 v64;
131
132         /* Use CiA recommended sample points */
133         if (bt->sample_point) {
134                 sample_point_nominal = bt->sample_point;
135         } else {
136                 if (bt->bitrate > 800000)
137                         sample_point_nominal = 750;
138                 else if (bt->bitrate > 500000)
139                         sample_point_nominal = 800;
140                 else
141                         sample_point_nominal = 875;
142         }
143
144         /* tseg even = round down, odd = round up */
145         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147                 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152                 /* choose brp step which is possible in system */
153                 brp = (brp / btc->brp_inc) * btc->brp_inc;
154                 if (brp < btc->brp_min || brp > btc->brp_max)
155                         continue;
156
157                 bitrate = priv->clock.freq / (brp * tsegall);
158                 bitrate_error = abs(bt->bitrate - bitrate);
159
160                 /* tseg brp biterror */
161                 if (bitrate_error > best_bitrate_error)
162                         continue;
163
164                 /* reset sample point error if we have a better bitrate */
165                 if (bitrate_error < best_bitrate_error)
166                         best_sample_point_error = UINT_MAX;
167
168                 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169                                         &tseg1, &tseg2, &sample_point_error);
170                 if (sample_point_error > best_sample_point_error)
171                         continue;
172
173                 best_sample_point_error = sample_point_error;
174                 best_bitrate_error = bitrate_error;
175                 best_tseg = tseg / 2;
176                 best_brp = brp;
177
178                 if (bitrate_error == 0 && sample_point_error == 0)
179                         break;
180         }
181
182         if (best_bitrate_error) {
183                 /* Error in one-tenth of a percent */
184                 v64 = (u64)best_bitrate_error * 1000;
185                 do_div(v64, bt->bitrate);
186                 bitrate_error = (u32)v64;
187                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188                         netdev_err(dev,
189                                    "bitrate error %d.%d%% too high\n",
190                                    bitrate_error / 10, bitrate_error % 10);
191                         return -EDOM;
192                 }
193                 netdev_warn(dev, "bitrate error %d.%d%%\n",
194                             bitrate_error / 10, bitrate_error % 10);
195         }
196
197         /* real sample point */
198         bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199                                                    best_tseg, &tseg1, &tseg2,
200                                                    NULL);
201
202         v64 = (u64)best_brp * 1000 * 1000 * 1000;
203         do_div(v64, priv->clock.freq);
204         bt->tq = (u32)v64;
205         bt->prop_seg = tseg1 / 2;
206         bt->phase_seg1 = tseg1 - bt->prop_seg;
207         bt->phase_seg2 = tseg2;
208
209         /* check for sjw user settings */
210         if (!bt->sjw || !btc->sjw_max) {
211                 bt->sjw = 1;
212         } else {
213                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214                 if (bt->sjw > btc->sjw_max)
215                         bt->sjw = btc->sjw_max;
216                 /* bt->sjw must not be higher than tseg2 */
217                 if (tseg2 < bt->sjw)
218                         bt->sjw = tseg2;
219         }
220
221         bt->brp = best_brp;
222
223         /* real bitrate */
224         bt->bitrate = priv->clock.freq /
225                 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227         return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231                               const struct can_bittiming_const *btc)
232 {
233         netdev_err(dev, "bit-timing calculation not available\n");
234         return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240  * prescaler value brp. You can find more information in the header
241  * file linux/can/netlink.h.
242  */
243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244                                const struct can_bittiming_const *btc)
245 {
246         struct can_priv *priv = netdev_priv(dev);
247         int tseg1, alltseg;
248         u64 brp64;
249
250         tseg1 = bt->prop_seg + bt->phase_seg1;
251         if (!bt->sjw)
252                 bt->sjw = 1;
253         if (bt->sjw > btc->sjw_max ||
254             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256                 return -ERANGE;
257
258         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259         if (btc->brp_inc > 1)
260                 do_div(brp64, btc->brp_inc);
261         brp64 += 500000000UL - 1;
262         do_div(brp64, 1000000000UL); /* the practicable BRP */
263         if (btc->brp_inc > 1)
264                 brp64 *= btc->brp_inc;
265         bt->brp = (u32)brp64;
266
267         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268                 return -EINVAL;
269
270         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274         return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280                      const u32 *bitrate_const,
281                      const unsigned int bitrate_const_cnt)
282 {
283         struct can_priv *priv = netdev_priv(dev);
284         unsigned int i;
285
286         for (i = 0; i < bitrate_const_cnt; i++) {
287                 if (bt->bitrate == bitrate_const[i])
288                         break;
289         }
290
291         if (i >= priv->bitrate_const_cnt)
292                 return -EINVAL;
293
294         return 0;
295 }
296
297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298                              const struct can_bittiming_const *btc,
299                              const u32 *bitrate_const,
300                              const unsigned int bitrate_const_cnt)
301 {
302         int err;
303
304         /* Depending on the given can_bittiming parameter structure the CAN
305          * timing parameters are calculated based on the provided bitrate OR
306          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307          * provided directly which are then checked and fixed up.
308          */
309         if (!bt->tq && bt->bitrate && btc)
310                 err = can_calc_bittiming(dev, bt, btc);
311         else if (bt->tq && !bt->bitrate && btc)
312                 err = can_fixup_bittiming(dev, bt, btc);
313         else if (!bt->tq && bt->bitrate && bitrate_const)
314                 err = can_validate_bitrate(dev, bt, bitrate_const,
315                                            bitrate_const_cnt);
316         else
317                 err = -EINVAL;
318
319         return err;
320 }
321
322 static void can_update_state_error_stats(struct net_device *dev,
323                                          enum can_state new_state)
324 {
325         struct can_priv *priv = netdev_priv(dev);
326
327         if (new_state <= priv->state)
328                 return;
329
330         switch (new_state) {
331         case CAN_STATE_ERROR_WARNING:
332                 priv->can_stats.error_warning++;
333                 break;
334         case CAN_STATE_ERROR_PASSIVE:
335                 priv->can_stats.error_passive++;
336                 break;
337         case CAN_STATE_BUS_OFF:
338                 priv->can_stats.bus_off++;
339                 break;
340         default:
341                 break;
342         }
343 }
344
345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347         switch (state) {
348         case CAN_STATE_ERROR_ACTIVE:
349                 return CAN_ERR_CRTL_ACTIVE;
350         case CAN_STATE_ERROR_WARNING:
351                 return CAN_ERR_CRTL_TX_WARNING;
352         case CAN_STATE_ERROR_PASSIVE:
353                 return CAN_ERR_CRTL_TX_PASSIVE;
354         default:
355                 return 0;
356         }
357 }
358
359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361         switch (state) {
362         case CAN_STATE_ERROR_ACTIVE:
363                 return CAN_ERR_CRTL_ACTIVE;
364         case CAN_STATE_ERROR_WARNING:
365                 return CAN_ERR_CRTL_RX_WARNING;
366         case CAN_STATE_ERROR_PASSIVE:
367                 return CAN_ERR_CRTL_RX_PASSIVE;
368         default:
369                 return 0;
370         }
371 }
372
373 static const char *can_get_state_str(const enum can_state state)
374 {
375         switch (state) {
376         case CAN_STATE_ERROR_ACTIVE:
377                 return "Error Active";
378         case CAN_STATE_ERROR_WARNING:
379                 return "Error Warning";
380         case CAN_STATE_ERROR_PASSIVE:
381                 return "Error Passive";
382         case CAN_STATE_BUS_OFF:
383                 return "Bus Off";
384         case CAN_STATE_STOPPED:
385                 return "Stopped";
386         case CAN_STATE_SLEEPING:
387                 return "Sleeping";
388         default:
389                 return "<unknown>";
390         }
391
392         return "<unknown>";
393 }
394
395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396                       enum can_state tx_state, enum can_state rx_state)
397 {
398         struct can_priv *priv = netdev_priv(dev);
399         enum can_state new_state = max(tx_state, rx_state);
400
401         if (unlikely(new_state == priv->state)) {
402                 netdev_warn(dev, "%s: oops, state did not change", __func__);
403                 return;
404         }
405
406         netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407                    can_get_state_str(priv->state), priv->state,
408                    can_get_state_str(new_state), new_state);
409
410         can_update_state_error_stats(dev, new_state);
411         priv->state = new_state;
412
413         if (!cf)
414                 return;
415
416         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417                 cf->can_id |= CAN_ERR_BUSOFF;
418                 return;
419         }
420
421         cf->can_id |= CAN_ERR_CRTL;
422         cf->data[1] |= tx_state >= rx_state ?
423                        can_tx_state_to_frame(dev, tx_state) : 0;
424         cf->data[1] |= tx_state <= rx_state ?
425                        can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428
429 /* Local echo of CAN messages
430  *
431  * CAN network devices *should* support a local echo functionality
432  * (see Documentation/networking/can.rst). To test the handling of CAN
433  * interfaces that do not support the local echo both driver types are
434  * implemented. In the case that the driver does not support the echo
435  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436  * to perform the echo as a fallback solution.
437  */
438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440         struct can_priv *priv = netdev_priv(dev);
441         struct net_device_stats *stats = &dev->stats;
442         int i;
443
444         for (i = 0; i < priv->echo_skb_max; i++) {
445                 if (priv->echo_skb[i]) {
446                         kfree_skb(priv->echo_skb[i]);
447                         priv->echo_skb[i] = NULL;
448                         stats->tx_dropped++;
449                         stats->tx_aborted_errors++;
450                 }
451         }
452 }
453
454 /* Put the skb on the stack to be looped backed locally lateron
455  *
456  * The function is typically called in the start_xmit function
457  * of the device driver. The driver must protect access to
458  * priv->echo_skb, if necessary.
459  */
460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461                      unsigned int idx)
462 {
463         struct can_priv *priv = netdev_priv(dev);
464
465         BUG_ON(idx >= priv->echo_skb_max);
466
467         /* check flag whether this packet has to be looped back */
468         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469             (skb->protocol != htons(ETH_P_CAN) &&
470              skb->protocol != htons(ETH_P_CANFD))) {
471                 kfree_skb(skb);
472                 return 0;
473         }
474
475         if (!priv->echo_skb[idx]) {
476                 skb = can_create_echo_skb(skb);
477                 if (!skb)
478                         return -ENOMEM;
479
480                 /* make settings for echo to reduce code in irq context */
481                 skb->pkt_type = PACKET_BROADCAST;
482                 skb->ip_summed = CHECKSUM_UNNECESSARY;
483                 skb->dev = dev;
484
485                 /* save this skb for tx interrupt echo handling */
486                 priv->echo_skb[idx] = skb;
487         } else {
488                 /* locking problem with netif_stop_queue() ?? */
489                 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490                 kfree_skb(skb);
491                 return -EBUSY;
492         }
493
494         return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498 struct sk_buff *
499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501         struct can_priv *priv = netdev_priv(dev);
502
503         if (idx >= priv->echo_skb_max) {
504                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505                            __func__, idx, priv->echo_skb_max);
506                 return NULL;
507         }
508
509         if (priv->echo_skb[idx]) {
510                 /* Using "struct canfd_frame::len" for the frame
511                  * length is supported on both CAN and CANFD frames.
512                  */
513                 struct sk_buff *skb = priv->echo_skb[idx];
514                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515
516                 /* get the real payload length for netdev statistics */
517                 if (cf->can_id & CAN_RTR_FLAG)
518                         *len_ptr = 0;
519                 else
520                         *len_ptr = cf->len;
521
522                 priv->echo_skb[idx] = NULL;
523
524                 return skb;
525         }
526
527         return NULL;
528 }
529
530 /* Get the skb from the stack and loop it back locally
531  *
532  * The function is typically called when the TX done interrupt
533  * is handled in the device driver. The driver must protect
534  * access to priv->echo_skb, if necessary.
535  */
536 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537 {
538         struct sk_buff *skb;
539         u8 len;
540
541         skb = __can_get_echo_skb(dev, idx, &len);
542         if (!skb)
543                 return 0;
544
545         skb_get(skb);
546         if (netif_rx(skb) == NET_RX_SUCCESS)
547                 dev_consume_skb_any(skb);
548         else
549                 dev_kfree_skb_any(skb);
550
551         return len;
552 }
553 EXPORT_SYMBOL_GPL(can_get_echo_skb);
554
555 /* Remove the skb from the stack and free it.
556  *
557  * The function is typically called when TX failed.
558  */
559 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560 {
561         struct can_priv *priv = netdev_priv(dev);
562
563         BUG_ON(idx >= priv->echo_skb_max);
564
565         if (priv->echo_skb[idx]) {
566                 dev_kfree_skb_any(priv->echo_skb[idx]);
567                 priv->echo_skb[idx] = NULL;
568         }
569 }
570 EXPORT_SYMBOL_GPL(can_free_echo_skb);
571
572 /* CAN device restart for bus-off recovery */
573 static void can_restart(struct net_device *dev)
574 {
575         struct can_priv *priv = netdev_priv(dev);
576         struct net_device_stats *stats = &dev->stats;
577         struct sk_buff *skb;
578         struct can_frame *cf;
579         int err;
580
581         if (netif_carrier_ok(dev))
582                 netdev_err(dev, "Attempt to restart for bus-off recovery, but carrier is OK?\n");
583
584         /* No synchronization needed because the device is bus-off and
585          * no messages can come in or go out.
586          */
587         can_flush_echo_skb(dev);
588
589         /* send restart message upstream */
590         skb = alloc_can_err_skb(dev, &cf);
591         if (!skb)
592                 goto restart;
593
594         cf->can_id |= CAN_ERR_RESTARTED;
595
596         stats->rx_packets++;
597         stats->rx_bytes += cf->can_dlc;
598
599         netif_rx_ni(skb);
600
601 restart:
602         netdev_dbg(dev, "restarted\n");
603         priv->can_stats.restarts++;
604
605         /* Now restart the device */
606         netif_carrier_on(dev);
607         err = priv->do_set_mode(dev, CAN_MODE_START);
608         if (err) {
609                 netdev_err(dev, "Error %d during restart", err);
610                 netif_carrier_off(dev);
611         }
612 }
613
614 static void can_restart_work(struct work_struct *work)
615 {
616         struct delayed_work *dwork = to_delayed_work(work);
617         struct can_priv *priv = container_of(dwork, struct can_priv,
618                                              restart_work);
619
620         can_restart(priv->dev);
621 }
622
623 int can_restart_now(struct net_device *dev)
624 {
625         struct can_priv *priv = netdev_priv(dev);
626
627         /* A manual restart is only permitted if automatic restart is
628          * disabled and the device is in the bus-off state
629          */
630         if (priv->restart_ms)
631                 return -EINVAL;
632         if (priv->state != CAN_STATE_BUS_OFF)
633                 return -EBUSY;
634
635         cancel_delayed_work_sync(&priv->restart_work);
636         can_restart(dev);
637
638         return 0;
639 }
640
641 /* CAN bus-off
642  *
643  * This functions should be called when the device goes bus-off to
644  * tell the netif layer that no more packets can be sent or received.
645  * If enabled, a timer is started to trigger bus-off recovery.
646  */
647 void can_bus_off(struct net_device *dev)
648 {
649         struct can_priv *priv = netdev_priv(dev);
650
651         if (priv->restart_ms)
652                 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
653                             priv->restart_ms);
654         else
655                 netdev_info(dev, "bus-off\n");
656
657         netif_carrier_off(dev);
658
659         if (priv->restart_ms)
660                 schedule_delayed_work(&priv->restart_work,
661                                       msecs_to_jiffies(priv->restart_ms));
662 }
663 EXPORT_SYMBOL_GPL(can_bus_off);
664
665 static void can_setup(struct net_device *dev)
666 {
667         dev->type = ARPHRD_CAN;
668         dev->mtu = CAN_MTU;
669         dev->hard_header_len = 0;
670         dev->addr_len = 0;
671         dev->tx_queue_len = 10;
672
673         /* New-style flags. */
674         dev->flags = IFF_NOARP;
675         dev->features = NETIF_F_HW_CSUM;
676 }
677
678 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
679 {
680         struct sk_buff *skb;
681
682         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
683                                sizeof(struct can_frame));
684         if (unlikely(!skb))
685                 return NULL;
686
687         skb->protocol = htons(ETH_P_CAN);
688         skb->pkt_type = PACKET_BROADCAST;
689         skb->ip_summed = CHECKSUM_UNNECESSARY;
690
691         skb_reset_mac_header(skb);
692         skb_reset_network_header(skb);
693         skb_reset_transport_header(skb);
694
695         can_skb_reserve(skb);
696         can_skb_prv(skb)->ifindex = dev->ifindex;
697         can_skb_prv(skb)->skbcnt = 0;
698
699         *cf = skb_put_zero(skb, sizeof(struct can_frame));
700
701         return skb;
702 }
703 EXPORT_SYMBOL_GPL(alloc_can_skb);
704
705 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
706                                 struct canfd_frame **cfd)
707 {
708         struct sk_buff *skb;
709
710         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
711                                sizeof(struct canfd_frame));
712         if (unlikely(!skb))
713                 return NULL;
714
715         skb->protocol = htons(ETH_P_CANFD);
716         skb->pkt_type = PACKET_BROADCAST;
717         skb->ip_summed = CHECKSUM_UNNECESSARY;
718
719         skb_reset_mac_header(skb);
720         skb_reset_network_header(skb);
721         skb_reset_transport_header(skb);
722
723         can_skb_reserve(skb);
724         can_skb_prv(skb)->ifindex = dev->ifindex;
725         can_skb_prv(skb)->skbcnt = 0;
726
727         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
728
729         return skb;
730 }
731 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
732
733 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
734 {
735         struct sk_buff *skb;
736
737         skb = alloc_can_skb(dev, cf);
738         if (unlikely(!skb))
739                 return NULL;
740
741         (*cf)->can_id = CAN_ERR_FLAG;
742         (*cf)->can_dlc = CAN_ERR_DLC;
743
744         return skb;
745 }
746 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
747
748 /* Allocate and setup space for the CAN network device */
749 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
750                                     unsigned int txqs, unsigned int rxqs)
751 {
752         struct can_ml_priv *can_ml;
753         struct net_device *dev;
754         struct can_priv *priv;
755         int size;
756
757         /* We put the driver's priv, the CAN mid layer priv and the
758          * echo skb into the netdevice's priv. The memory layout for
759          * the netdev_priv is like this:
760          *
761          * +-------------------------+
762          * | driver's priv           |
763          * +-------------------------+
764          * | struct can_ml_priv      |
765          * +-------------------------+
766          * | array of struct sk_buff |
767          * +-------------------------+
768          */
769
770         size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
771
772         if (echo_skb_max)
773                 size = ALIGN(size, sizeof(struct sk_buff *)) +
774                         echo_skb_max * sizeof(struct sk_buff *);
775
776         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
777                                txqs, rxqs);
778         if (!dev)
779                 return NULL;
780
781         priv = netdev_priv(dev);
782         priv->dev = dev;
783
784         can_ml = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
785         can_set_ml_priv(dev, can_ml);
786
787         if (echo_skb_max) {
788                 priv->echo_skb_max = echo_skb_max;
789                 priv->echo_skb = (void *)priv +
790                         (size - echo_skb_max * sizeof(struct sk_buff *));
791         }
792
793         priv->state = CAN_STATE_STOPPED;
794
795         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
796
797         return dev;
798 }
799 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
800
801 /* Free space of the CAN network device */
802 void free_candev(struct net_device *dev)
803 {
804         free_netdev(dev);
805 }
806 EXPORT_SYMBOL_GPL(free_candev);
807
808 /* changing MTU and control mode for CAN/CANFD devices */
809 int can_change_mtu(struct net_device *dev, int new_mtu)
810 {
811         struct can_priv *priv = netdev_priv(dev);
812
813         /* Do not allow changing the MTU while running */
814         if (dev->flags & IFF_UP)
815                 return -EBUSY;
816
817         /* allow change of MTU according to the CANFD ability of the device */
818         switch (new_mtu) {
819         case CAN_MTU:
820                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
821                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
822                         return -EINVAL;
823
824                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
825                 break;
826
827         case CANFD_MTU:
828                 /* check for potential CANFD ability */
829                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
830                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
831                         return -EINVAL;
832
833                 priv->ctrlmode |= CAN_CTRLMODE_FD;
834                 break;
835
836         default:
837                 return -EINVAL;
838         }
839
840         dev->mtu = new_mtu;
841         return 0;
842 }
843 EXPORT_SYMBOL_GPL(can_change_mtu);
844
845 /* Common open function when the device gets opened.
846  *
847  * This function should be called in the open function of the device
848  * driver.
849  */
850 int open_candev(struct net_device *dev)
851 {
852         struct can_priv *priv = netdev_priv(dev);
853
854         if (!priv->bittiming.bitrate) {
855                 netdev_err(dev, "bit-timing not yet defined\n");
856                 return -EINVAL;
857         }
858
859         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
860         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
861             (!priv->data_bittiming.bitrate ||
862              priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
863                 netdev_err(dev, "incorrect/missing data bit-timing\n");
864                 return -EINVAL;
865         }
866
867         /* Switch carrier on if device was stopped while in bus-off state */
868         if (!netif_carrier_ok(dev))
869                 netif_carrier_on(dev);
870
871         return 0;
872 }
873 EXPORT_SYMBOL_GPL(open_candev);
874
875 #ifdef CONFIG_OF
876 /* Common function that can be used to understand the limitation of
877  * a transceiver when it provides no means to determine these limitations
878  * at runtime.
879  */
880 void of_can_transceiver(struct net_device *dev)
881 {
882         struct device_node *dn;
883         struct can_priv *priv = netdev_priv(dev);
884         struct device_node *np = dev->dev.parent->of_node;
885         int ret;
886
887         dn = of_get_child_by_name(np, "can-transceiver");
888         if (!dn)
889                 return;
890
891         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
892         of_node_put(dn);
893         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
894                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
895 }
896 EXPORT_SYMBOL_GPL(of_can_transceiver);
897 #endif
898
899 /* Common close function for cleanup before the device gets closed.
900  *
901  * This function should be called in the close function of the device
902  * driver.
903  */
904 void close_candev(struct net_device *dev)
905 {
906         struct can_priv *priv = netdev_priv(dev);
907
908         cancel_delayed_work_sync(&priv->restart_work);
909         can_flush_echo_skb(dev);
910 }
911 EXPORT_SYMBOL_GPL(close_candev);
912
913 /* CAN netlink interface */
914 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
915         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
916         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
917         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
918         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
919         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
920         [IFLA_CAN_BITTIMING_CONST]
921                                 = { .len = sizeof(struct can_bittiming_const) },
922         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
923         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
924         [IFLA_CAN_DATA_BITTIMING]
925                                 = { .len = sizeof(struct can_bittiming) },
926         [IFLA_CAN_DATA_BITTIMING_CONST]
927                                 = { .len = sizeof(struct can_bittiming_const) },
928         [IFLA_CAN_TERMINATION]  = { .type = NLA_U16 },
929 };
930
931 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
932                         struct netlink_ext_ack *extack)
933 {
934         bool is_can_fd = false;
935
936         /* Make sure that valid CAN FD configurations always consist of
937          * - nominal/arbitration bittiming
938          * - data bittiming
939          * - control mode with CAN_CTRLMODE_FD set
940          */
941
942         if (!data)
943                 return 0;
944
945         if (data[IFLA_CAN_CTRLMODE]) {
946                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
947
948                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
949         }
950
951         if (is_can_fd) {
952                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
953                         return -EOPNOTSUPP;
954         }
955
956         if (data[IFLA_CAN_DATA_BITTIMING]) {
957                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
958                         return -EOPNOTSUPP;
959         }
960
961         return 0;
962 }
963
964 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
965                           struct nlattr *data[],
966                           struct netlink_ext_ack *extack)
967 {
968         struct can_priv *priv = netdev_priv(dev);
969         int err;
970
971         /* We need synchronization with dev->stop() */
972         ASSERT_RTNL();
973
974         if (data[IFLA_CAN_BITTIMING]) {
975                 struct can_bittiming bt;
976
977                 /* Do not allow changing bittiming while running */
978                 if (dev->flags & IFF_UP)
979                         return -EBUSY;
980
981                 /* Calculate bittiming parameters based on
982                  * bittiming_const if set, otherwise pass bitrate
983                  * directly via do_set_bitrate(). Bail out if neither
984                  * is given.
985                  */
986                 if (!priv->bittiming_const && !priv->do_set_bittiming)
987                         return -EOPNOTSUPP;
988
989                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
990                 err = can_get_bittiming(dev, &bt,
991                                         priv->bittiming_const,
992                                         priv->bitrate_const,
993                                         priv->bitrate_const_cnt);
994                 if (err)
995                         return err;
996
997                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
998                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
999                                    priv->bitrate_max);
1000                         return -EINVAL;
1001                 }
1002
1003                 memcpy(&priv->bittiming, &bt, sizeof(bt));
1004
1005                 if (priv->do_set_bittiming) {
1006                         /* Finally, set the bit-timing registers */
1007                         err = priv->do_set_bittiming(dev);
1008                         if (err)
1009                                 return err;
1010                 }
1011         }
1012
1013         if (data[IFLA_CAN_CTRLMODE]) {
1014                 struct can_ctrlmode *cm;
1015                 u32 ctrlstatic;
1016                 u32 maskedflags;
1017
1018                 /* Do not allow changing controller mode while running */
1019                 if (dev->flags & IFF_UP)
1020                         return -EBUSY;
1021                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1022                 ctrlstatic = priv->ctrlmode_static;
1023                 maskedflags = cm->flags & cm->mask;
1024
1025                 /* check whether provided bits are allowed to be passed */
1026                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1027                         return -EOPNOTSUPP;
1028
1029                 /* do not check for static fd-non-iso if 'fd' is disabled */
1030                 if (!(maskedflags & CAN_CTRLMODE_FD))
1031                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1032
1033                 /* make sure static options are provided by configuration */
1034                 if ((maskedflags & ctrlstatic) != ctrlstatic)
1035                         return -EOPNOTSUPP;
1036
1037                 /* clear bits to be modified and copy the flag values */
1038                 priv->ctrlmode &= ~cm->mask;
1039                 priv->ctrlmode |= maskedflags;
1040
1041                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1042                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1043                         dev->mtu = CANFD_MTU;
1044                 else
1045                         dev->mtu = CAN_MTU;
1046         }
1047
1048         if (data[IFLA_CAN_RESTART_MS]) {
1049                 /* Do not allow changing restart delay while running */
1050                 if (dev->flags & IFF_UP)
1051                         return -EBUSY;
1052                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1053         }
1054
1055         if (data[IFLA_CAN_RESTART]) {
1056                 /* Do not allow a restart while not running */
1057                 if (!(dev->flags & IFF_UP))
1058                         return -EINVAL;
1059                 err = can_restart_now(dev);
1060                 if (err)
1061                         return err;
1062         }
1063
1064         if (data[IFLA_CAN_DATA_BITTIMING]) {
1065                 struct can_bittiming dbt;
1066
1067                 /* Do not allow changing bittiming while running */
1068                 if (dev->flags & IFF_UP)
1069                         return -EBUSY;
1070
1071                 /* Calculate bittiming parameters based on
1072                  * data_bittiming_const if set, otherwise pass bitrate
1073                  * directly via do_set_bitrate(). Bail out if neither
1074                  * is given.
1075                  */
1076                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1077                         return -EOPNOTSUPP;
1078
1079                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1080                        sizeof(dbt));
1081                 err = can_get_bittiming(dev, &dbt,
1082                                         priv->data_bittiming_const,
1083                                         priv->data_bitrate_const,
1084                                         priv->data_bitrate_const_cnt);
1085                 if (err)
1086                         return err;
1087
1088                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1089                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1090                                    priv->bitrate_max);
1091                         return -EINVAL;
1092                 }
1093
1094                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1095
1096                 if (priv->do_set_data_bittiming) {
1097                         /* Finally, set the bit-timing registers */
1098                         err = priv->do_set_data_bittiming(dev);
1099                         if (err)
1100                                 return err;
1101                 }
1102         }
1103
1104         if (data[IFLA_CAN_TERMINATION]) {
1105                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1106                 const unsigned int num_term = priv->termination_const_cnt;
1107                 unsigned int i;
1108
1109                 if (!priv->do_set_termination)
1110                         return -EOPNOTSUPP;
1111
1112                 /* check whether given value is supported by the interface */
1113                 for (i = 0; i < num_term; i++) {
1114                         if (termval == priv->termination_const[i])
1115                                 break;
1116                 }
1117                 if (i >= num_term)
1118                         return -EINVAL;
1119
1120                 /* Finally, set the termination value */
1121                 err = priv->do_set_termination(dev, termval);
1122                 if (err)
1123                         return err;
1124
1125                 priv->termination = termval;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static size_t can_get_size(const struct net_device *dev)
1132 {
1133         struct can_priv *priv = netdev_priv(dev);
1134         size_t size = 0;
1135
1136         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1137                 size += nla_total_size(sizeof(struct can_bittiming));
1138         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1139                 size += nla_total_size(sizeof(struct can_bittiming_const));
1140         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1141         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1142         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1143         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1144         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1145                 size += nla_total_size(sizeof(struct can_berr_counter));
1146         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1147                 size += nla_total_size(sizeof(struct can_bittiming));
1148         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1149                 size += nla_total_size(sizeof(struct can_bittiming_const));
1150         if (priv->termination_const) {
1151                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1152                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1153                                        priv->termination_const_cnt);
1154         }
1155         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1156                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1157                                        priv->bitrate_const_cnt);
1158         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1159                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1160                                        priv->data_bitrate_const_cnt);
1161         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1162
1163         return size;
1164 }
1165
1166 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1167 {
1168         struct can_priv *priv = netdev_priv(dev);
1169         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1170         struct can_berr_counter bec = { };
1171         enum can_state state = priv->state;
1172
1173         if (priv->do_get_state)
1174                 priv->do_get_state(dev, &state);
1175
1176         if ((priv->bittiming.bitrate &&
1177              nla_put(skb, IFLA_CAN_BITTIMING,
1178                      sizeof(priv->bittiming), &priv->bittiming)) ||
1179
1180             (priv->bittiming_const &&
1181              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1182                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1183
1184             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1185             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1186             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1187             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1188
1189             (priv->do_get_berr_counter &&
1190              !priv->do_get_berr_counter(dev, &bec) &&
1191              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1192
1193             (priv->data_bittiming.bitrate &&
1194              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1195                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1196
1197             (priv->data_bittiming_const &&
1198              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1199                      sizeof(*priv->data_bittiming_const),
1200                      priv->data_bittiming_const)) ||
1201
1202             (priv->termination_const &&
1203              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1204               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1205                       sizeof(*priv->termination_const) *
1206                       priv->termination_const_cnt,
1207                       priv->termination_const))) ||
1208
1209             (priv->bitrate_const &&
1210              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1211                      sizeof(*priv->bitrate_const) *
1212                      priv->bitrate_const_cnt,
1213                      priv->bitrate_const)) ||
1214
1215             (priv->data_bitrate_const &&
1216              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1217                      sizeof(*priv->data_bitrate_const) *
1218                      priv->data_bitrate_const_cnt,
1219                      priv->data_bitrate_const)) ||
1220
1221             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1222                      sizeof(priv->bitrate_max),
1223                      &priv->bitrate_max))
1224             )
1225
1226                 return -EMSGSIZE;
1227
1228         return 0;
1229 }
1230
1231 static size_t can_get_xstats_size(const struct net_device *dev)
1232 {
1233         return sizeof(struct can_device_stats);
1234 }
1235
1236 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1237 {
1238         struct can_priv *priv = netdev_priv(dev);
1239
1240         if (nla_put(skb, IFLA_INFO_XSTATS,
1241                     sizeof(priv->can_stats), &priv->can_stats))
1242                 goto nla_put_failure;
1243         return 0;
1244
1245 nla_put_failure:
1246         return -EMSGSIZE;
1247 }
1248
1249 static int can_newlink(struct net *src_net, struct net_device *dev,
1250                        struct nlattr *tb[], struct nlattr *data[],
1251                        struct netlink_ext_ack *extack)
1252 {
1253         return -EOPNOTSUPP;
1254 }
1255
1256 static void can_dellink(struct net_device *dev, struct list_head *head)
1257 {
1258 }
1259
1260 static struct rtnl_link_ops can_link_ops __read_mostly = {
1261         .kind           = "can",
1262         .netns_refund   = true,
1263         .maxtype        = IFLA_CAN_MAX,
1264         .policy         = can_policy,
1265         .setup          = can_setup,
1266         .validate       = can_validate,
1267         .newlink        = can_newlink,
1268         .changelink     = can_changelink,
1269         .dellink        = can_dellink,
1270         .get_size       = can_get_size,
1271         .fill_info      = can_fill_info,
1272         .get_xstats_size = can_get_xstats_size,
1273         .fill_xstats    = can_fill_xstats,
1274 };
1275
1276 /* Register the CAN network device */
1277 int register_candev(struct net_device *dev)
1278 {
1279         struct can_priv *priv = netdev_priv(dev);
1280
1281         /* Ensure termination_const, termination_const_cnt and
1282          * do_set_termination consistency. All must be either set or
1283          * unset.
1284          */
1285         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1286             (!priv->termination_const != !priv->do_set_termination))
1287                 return -EINVAL;
1288
1289         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1290                 return -EINVAL;
1291
1292         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1293                 return -EINVAL;
1294
1295         dev->rtnl_link_ops = &can_link_ops;
1296         netif_carrier_off(dev);
1297
1298         return register_netdev(dev);
1299 }
1300 EXPORT_SYMBOL_GPL(register_candev);
1301
1302 /* Unregister the CAN network device */
1303 void unregister_candev(struct net_device *dev)
1304 {
1305         unregister_netdev(dev);
1306 }
1307 EXPORT_SYMBOL_GPL(unregister_candev);
1308
1309 /* Test if a network device is a candev based device
1310  * and return the can_priv* if so.
1311  */
1312 struct can_priv *safe_candev_priv(struct net_device *dev)
1313 {
1314         if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1315                 return NULL;
1316
1317         return netdev_priv(dev);
1318 }
1319 EXPORT_SYMBOL_GPL(safe_candev_priv);
1320
1321 static __init int can_dev_init(void)
1322 {
1323         int err;
1324
1325         can_led_notifier_init();
1326
1327         err = rtnl_link_register(&can_link_ops);
1328         if (!err)
1329                 pr_info(MOD_DESC "\n");
1330
1331         return err;
1332 }
1333 module_init(can_dev_init);
1334
1335 static __exit void can_dev_exit(void)
1336 {
1337         rtnl_link_unregister(&can_link_ops);
1338
1339         can_led_notifier_exit();
1340 }
1341 module_exit(can_dev_exit);
1342
1343 MODULE_ALIAS_RTNL_LINK("can");