GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         return e;
335 }
336
337 /**
338  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
339  * @ubi: UBI device description object
340  * @root: the RB-tree where to look for
341  *
342  * This function looks for a wear leveling entry with medium erase counter,
343  * but not greater or equivalent than the lowest erase counter plus
344  * %WL_FREE_MAX_DIFF/2.
345  */
346 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
347                                                struct rb_root *root)
348 {
349         struct ubi_wl_entry *e, *first, *last;
350
351         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
352         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
353
354         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
355                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
356
357                 /* If no fastmap has been written and this WL entry can be used
358                  * as anchor PEB, hold it back and return the second best
359                  * WL entry such that fastmap can use the anchor PEB later. */
360                 e = may_reserve_for_fm(ubi, e, root);
361         } else
362                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
363
364         return e;
365 }
366
367 /**
368  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
369  * refill_wl_user_pool().
370  * @ubi: UBI device description object
371  *
372  * This function returns a a wear leveling entry in case of success and
373  * NULL in case of failure.
374  */
375 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
376 {
377         struct ubi_wl_entry *e;
378
379         e = find_mean_wl_entry(ubi, &ubi->free);
380         if (!e) {
381                 ubi_err(ubi, "no free eraseblocks");
382                 return NULL;
383         }
384
385         self_check_in_wl_tree(ubi, e, &ubi->free);
386
387         /*
388          * Move the physical eraseblock to the protection queue where it will
389          * be protected from being moved for some time.
390          */
391         rb_erase(&e->u.rb, &ubi->free);
392         ubi->free_count--;
393         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
394
395         return e;
396 }
397
398 /**
399  * prot_queue_del - remove a physical eraseblock from the protection queue.
400  * @ubi: UBI device description object
401  * @pnum: the physical eraseblock to remove
402  *
403  * This function deletes PEB @pnum from the protection queue and returns zero
404  * in case of success and %-ENODEV if the PEB was not found.
405  */
406 static int prot_queue_del(struct ubi_device *ubi, int pnum)
407 {
408         struct ubi_wl_entry *e;
409
410         e = ubi->lookuptbl[pnum];
411         if (!e)
412                 return -ENODEV;
413
414         if (self_check_in_pq(ubi, e))
415                 return -ENODEV;
416
417         list_del(&e->u.list);
418         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
419         return 0;
420 }
421
422 /**
423  * sync_erase - synchronously erase a physical eraseblock.
424  * @ubi: UBI device description object
425  * @e: the the physical eraseblock to erase
426  * @torture: if the physical eraseblock has to be tortured
427  *
428  * This function returns zero in case of success and a negative error code in
429  * case of failure.
430  */
431 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
432                       int torture)
433 {
434         int err;
435         struct ubi_ec_hdr *ec_hdr;
436         unsigned long long ec = e->ec;
437
438         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
439
440         err = self_check_ec(ubi, e->pnum, e->ec);
441         if (err)
442                 return -EINVAL;
443
444         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
445         if (!ec_hdr)
446                 return -ENOMEM;
447
448         err = ubi_io_sync_erase(ubi, e->pnum, torture);
449         if (err < 0)
450                 goto out_free;
451
452         ec += err;
453         if (ec > UBI_MAX_ERASECOUNTER) {
454                 /*
455                  * Erase counter overflow. Upgrade UBI and use 64-bit
456                  * erase counters internally.
457                  */
458                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
459                         e->pnum, ec);
460                 err = -EINVAL;
461                 goto out_free;
462         }
463
464         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
465
466         ec_hdr->ec = cpu_to_be64(ec);
467
468         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
469         if (err)
470                 goto out_free;
471
472         e->ec = ec;
473         spin_lock(&ubi->wl_lock);
474         if (e->ec > ubi->max_ec)
475                 ubi->max_ec = e->ec;
476         spin_unlock(&ubi->wl_lock);
477
478 out_free:
479         kfree(ec_hdr);
480         return err;
481 }
482
483 /**
484  * serve_prot_queue - check if it is time to stop protecting PEBs.
485  * @ubi: UBI device description object
486  *
487  * This function is called after each erase operation and removes PEBs from the
488  * tail of the protection queue. These PEBs have been protected for long enough
489  * and should be moved to the used tree.
490  */
491 static void serve_prot_queue(struct ubi_device *ubi)
492 {
493         struct ubi_wl_entry *e, *tmp;
494         int count;
495
496         /*
497          * There may be several protected physical eraseblock to remove,
498          * process them all.
499          */
500 repeat:
501         count = 0;
502         spin_lock(&ubi->wl_lock);
503         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
504                 dbg_wl("PEB %d EC %d protection over, move to used tree",
505                         e->pnum, e->ec);
506
507                 list_del(&e->u.list);
508                 wl_tree_add(e, &ubi->used);
509                 if (count++ > 32) {
510                         /*
511                          * Let's be nice and avoid holding the spinlock for
512                          * too long.
513                          */
514                         spin_unlock(&ubi->wl_lock);
515                         cond_resched();
516                         goto repeat;
517                 }
518         }
519
520         ubi->pq_head += 1;
521         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
522                 ubi->pq_head = 0;
523         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
524         spin_unlock(&ubi->wl_lock);
525 }
526
527 /**
528  * __schedule_ubi_work - schedule a work.
529  * @ubi: UBI device description object
530  * @wrk: the work to schedule
531  *
532  * This function adds a work defined by @wrk to the tail of the pending works
533  * list. Can only be used if ubi->work_sem is already held in read mode!
534  */
535 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
536 {
537         spin_lock(&ubi->wl_lock);
538         list_add_tail(&wrk->list, &ubi->works);
539         ubi_assert(ubi->works_count >= 0);
540         ubi->works_count += 1;
541         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
542                 wake_up_process(ubi->bgt_thread);
543         spin_unlock(&ubi->wl_lock);
544 }
545
546 /**
547  * schedule_ubi_work - schedule a work.
548  * @ubi: UBI device description object
549  * @wrk: the work to schedule
550  *
551  * This function adds a work defined by @wrk to the tail of the pending works
552  * list.
553  */
554 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
555 {
556         down_read(&ubi->work_sem);
557         __schedule_ubi_work(ubi, wrk);
558         up_read(&ubi->work_sem);
559 }
560
561 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
562                         int shutdown);
563
564 /**
565  * schedule_erase - schedule an erase work.
566  * @ubi: UBI device description object
567  * @e: the WL entry of the physical eraseblock to erase
568  * @vol_id: the volume ID that last used this PEB
569  * @lnum: the last used logical eraseblock number for the PEB
570  * @torture: if the physical eraseblock has to be tortured
571  *
572  * This function returns zero in case of success and a %-ENOMEM in case of
573  * failure.
574  */
575 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
576                           int vol_id, int lnum, int torture, bool nested)
577 {
578         struct ubi_work *wl_wrk;
579
580         ubi_assert(e);
581
582         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
583                e->pnum, e->ec, torture);
584
585         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
586         if (!wl_wrk)
587                 return -ENOMEM;
588
589         wl_wrk->func = &erase_worker;
590         wl_wrk->e = e;
591         wl_wrk->vol_id = vol_id;
592         wl_wrk->lnum = lnum;
593         wl_wrk->torture = torture;
594
595         if (nested)
596                 __schedule_ubi_work(ubi, wl_wrk);
597         else
598                 schedule_ubi_work(ubi, wl_wrk);
599         return 0;
600 }
601
602 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
603 /**
604  * do_sync_erase - run the erase worker synchronously.
605  * @ubi: UBI device description object
606  * @e: the WL entry of the physical eraseblock to erase
607  * @vol_id: the volume ID that last used this PEB
608  * @lnum: the last used logical eraseblock number for the PEB
609  * @torture: if the physical eraseblock has to be tortured
610  *
611  */
612 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
613                          int vol_id, int lnum, int torture)
614 {
615         struct ubi_work wl_wrk;
616
617         dbg_wl("sync erase of PEB %i", e->pnum);
618
619         wl_wrk.e = e;
620         wl_wrk.vol_id = vol_id;
621         wl_wrk.lnum = lnum;
622         wl_wrk.torture = torture;
623
624         return __erase_worker(ubi, &wl_wrk);
625 }
626
627 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
628 /**
629  * wear_leveling_worker - wear-leveling worker function.
630  * @ubi: UBI device description object
631  * @wrk: the work object
632  * @shutdown: non-zero if the worker has to free memory and exit
633  * because the WL-subsystem is shutting down
634  *
635  * This function copies a more worn out physical eraseblock to a less worn out
636  * one. Returns zero in case of success and a negative error code in case of
637  * failure.
638  */
639 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
640                                 int shutdown)
641 {
642         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
643         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
644         struct ubi_wl_entry *e1, *e2;
645         struct ubi_vid_io_buf *vidb;
646         struct ubi_vid_hdr *vid_hdr;
647         int dst_leb_clean = 0;
648
649         kfree(wrk);
650         if (shutdown)
651                 return 0;
652
653         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
654         if (!vidb)
655                 return -ENOMEM;
656
657         vid_hdr = ubi_get_vid_hdr(vidb);
658
659         down_read(&ubi->fm_eba_sem);
660         mutex_lock(&ubi->move_mutex);
661         spin_lock(&ubi->wl_lock);
662         ubi_assert(!ubi->move_from && !ubi->move_to);
663         ubi_assert(!ubi->move_to_put);
664
665         if (!ubi->free.rb_node ||
666             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
667                 /*
668                  * No free physical eraseblocks? Well, they must be waiting in
669                  * the queue to be erased. Cancel movement - it will be
670                  * triggered again when a free physical eraseblock appears.
671                  *
672                  * No used physical eraseblocks? They must be temporarily
673                  * protected from being moved. They will be moved to the
674                  * @ubi->used tree later and the wear-leveling will be
675                  * triggered again.
676                  */
677                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
678                        !ubi->free.rb_node, !ubi->used.rb_node);
679                 goto out_cancel;
680         }
681
682 #ifdef CONFIG_MTD_UBI_FASTMAP
683         if (ubi->fm_do_produce_anchor) {
684                 e1 = find_anchor_wl_entry(&ubi->used);
685                 if (!e1)
686                         goto out_cancel;
687                 e2 = get_peb_for_wl(ubi);
688                 if (!e2)
689                         goto out_cancel;
690
691                 self_check_in_wl_tree(ubi, e1, &ubi->used);
692                 rb_erase(&e1->u.rb, &ubi->used);
693                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
694                 ubi->fm_do_produce_anchor = 0;
695         } else if (!ubi->scrub.rb_node) {
696 #else
697         if (!ubi->scrub.rb_node) {
698 #endif
699                 /*
700                  * Now pick the least worn-out used physical eraseblock and a
701                  * highly worn-out free physical eraseblock. If the erase
702                  * counters differ much enough, start wear-leveling.
703                  */
704                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
705                 e2 = get_peb_for_wl(ubi);
706                 if (!e2)
707                         goto out_cancel;
708
709                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
710                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
711                                e1->ec, e2->ec);
712
713                         /* Give the unused PEB back */
714                         wl_tree_add(e2, &ubi->free);
715                         ubi->free_count++;
716                         goto out_cancel;
717                 }
718                 self_check_in_wl_tree(ubi, e1, &ubi->used);
719                 rb_erase(&e1->u.rb, &ubi->used);
720                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
721                        e1->pnum, e1->ec, e2->pnum, e2->ec);
722         } else {
723                 /* Perform scrubbing */
724                 scrubbing = 1;
725                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
726                 e2 = get_peb_for_wl(ubi);
727                 if (!e2)
728                         goto out_cancel;
729
730                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
731                 rb_erase(&e1->u.rb, &ubi->scrub);
732                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
733         }
734
735         ubi->move_from = e1;
736         ubi->move_to = e2;
737         spin_unlock(&ubi->wl_lock);
738
739         /*
740          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
741          * We so far do not know which logical eraseblock our physical
742          * eraseblock (@e1) belongs to. We have to read the volume identifier
743          * header first.
744          *
745          * Note, we are protected from this PEB being unmapped and erased. The
746          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
747          * which is being moved was unmapped.
748          */
749
750         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
751         if (err && err != UBI_IO_BITFLIPS) {
752                 dst_leb_clean = 1;
753                 if (err == UBI_IO_FF) {
754                         /*
755                          * We are trying to move PEB without a VID header. UBI
756                          * always write VID headers shortly after the PEB was
757                          * given, so we have a situation when it has not yet
758                          * had a chance to write it, because it was preempted.
759                          * So add this PEB to the protection queue so far,
760                          * because presumably more data will be written there
761                          * (including the missing VID header), and then we'll
762                          * move it.
763                          */
764                         dbg_wl("PEB %d has no VID header", e1->pnum);
765                         protect = 1;
766                         goto out_not_moved;
767                 } else if (err == UBI_IO_FF_BITFLIPS) {
768                         /*
769                          * The same situation as %UBI_IO_FF, but bit-flips were
770                          * detected. It is better to schedule this PEB for
771                          * scrubbing.
772                          */
773                         dbg_wl("PEB %d has no VID header but has bit-flips",
774                                e1->pnum);
775                         scrubbing = 1;
776                         goto out_not_moved;
777                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
778                         /*
779                          * While a full scan would detect interrupted erasures
780                          * at attach time we can face them here when attached from
781                          * Fastmap.
782                          */
783                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
784                                e1->pnum);
785                         erase = 1;
786                         goto out_not_moved;
787                 }
788
789                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
790                         err, e1->pnum);
791                 goto out_error;
792         }
793
794         vol_id = be32_to_cpu(vid_hdr->vol_id);
795         lnum = be32_to_cpu(vid_hdr->lnum);
796
797         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
798         if (err) {
799                 if (err == MOVE_CANCEL_RACE) {
800                         /*
801                          * The LEB has not been moved because the volume is
802                          * being deleted or the PEB has been put meanwhile. We
803                          * should prevent this PEB from being selected for
804                          * wear-leveling movement again, so put it to the
805                          * protection queue.
806                          */
807                         protect = 1;
808                         dst_leb_clean = 1;
809                         goto out_not_moved;
810                 }
811                 if (err == MOVE_RETRY) {
812                         scrubbing = 1;
813                         dst_leb_clean = 1;
814                         goto out_not_moved;
815                 }
816                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
817                     err == MOVE_TARGET_RD_ERR) {
818                         /*
819                          * Target PEB had bit-flips or write error - torture it.
820                          */
821                         torture = 1;
822                         keep = 1;
823                         goto out_not_moved;
824                 }
825
826                 if (err == MOVE_SOURCE_RD_ERR) {
827                         /*
828                          * An error happened while reading the source PEB. Do
829                          * not switch to R/O mode in this case, and give the
830                          * upper layers a possibility to recover from this,
831                          * e.g. by unmapping corresponding LEB. Instead, just
832                          * put this PEB to the @ubi->erroneous list to prevent
833                          * UBI from trying to move it over and over again.
834                          */
835                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
836                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
837                                         ubi->erroneous_peb_count);
838                                 goto out_error;
839                         }
840                         dst_leb_clean = 1;
841                         erroneous = 1;
842                         goto out_not_moved;
843                 }
844
845                 if (err < 0)
846                         goto out_error;
847
848                 ubi_assert(0);
849         }
850
851         /* The PEB has been successfully moved */
852         if (scrubbing)
853                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
854                         e1->pnum, vol_id, lnum, e2->pnum);
855         ubi_free_vid_buf(vidb);
856
857         spin_lock(&ubi->wl_lock);
858         if (!ubi->move_to_put) {
859                 wl_tree_add(e2, &ubi->used);
860                 e2 = NULL;
861         }
862         ubi->move_from = ubi->move_to = NULL;
863         ubi->move_to_put = ubi->wl_scheduled = 0;
864         spin_unlock(&ubi->wl_lock);
865
866         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
867         if (err) {
868                 if (e2)
869                         wl_entry_destroy(ubi, e2);
870                 goto out_ro;
871         }
872
873         if (e2) {
874                 /*
875                  * Well, the target PEB was put meanwhile, schedule it for
876                  * erasure.
877                  */
878                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
879                        e2->pnum, vol_id, lnum);
880                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
881                 if (err)
882                         goto out_ro;
883         }
884
885         dbg_wl("done");
886         mutex_unlock(&ubi->move_mutex);
887         up_read(&ubi->fm_eba_sem);
888         return 0;
889
890         /*
891          * For some reasons the LEB was not moved, might be an error, might be
892          * something else. @e1 was not changed, so return it back. @e2 might
893          * have been changed, schedule it for erasure.
894          */
895 out_not_moved:
896         if (vol_id != -1)
897                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
898                        e1->pnum, vol_id, lnum, e2->pnum, err);
899         else
900                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
901                        e1->pnum, e2->pnum, err);
902         spin_lock(&ubi->wl_lock);
903         if (protect)
904                 prot_queue_add(ubi, e1);
905         else if (erroneous) {
906                 wl_tree_add(e1, &ubi->erroneous);
907                 ubi->erroneous_peb_count += 1;
908         } else if (scrubbing)
909                 wl_tree_add(e1, &ubi->scrub);
910         else if (keep)
911                 wl_tree_add(e1, &ubi->used);
912         if (dst_leb_clean) {
913                 wl_tree_add(e2, &ubi->free);
914                 ubi->free_count++;
915         }
916
917         ubi_assert(!ubi->move_to_put);
918         ubi->move_from = ubi->move_to = NULL;
919         ubi->wl_scheduled = 0;
920         spin_unlock(&ubi->wl_lock);
921
922         ubi_free_vid_buf(vidb);
923         if (dst_leb_clean) {
924                 ensure_wear_leveling(ubi, 1);
925         } else {
926                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
927                 if (err)
928                         goto out_ro;
929         }
930
931         if (erase) {
932                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
933                 if (err)
934                         goto out_ro;
935         }
936
937         mutex_unlock(&ubi->move_mutex);
938         up_read(&ubi->fm_eba_sem);
939         return 0;
940
941 out_error:
942         if (vol_id != -1)
943                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
944                         err, e1->pnum, e2->pnum);
945         else
946                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
947                         err, e1->pnum, vol_id, lnum, e2->pnum);
948         spin_lock(&ubi->wl_lock);
949         ubi->move_from = ubi->move_to = NULL;
950         ubi->move_to_put = ubi->wl_scheduled = 0;
951         spin_unlock(&ubi->wl_lock);
952
953         ubi_free_vid_buf(vidb);
954         wl_entry_destroy(ubi, e1);
955         wl_entry_destroy(ubi, e2);
956
957 out_ro:
958         ubi_ro_mode(ubi);
959         mutex_unlock(&ubi->move_mutex);
960         up_read(&ubi->fm_eba_sem);
961         ubi_assert(err != 0);
962         return err < 0 ? err : -EIO;
963
964 out_cancel:
965         ubi->wl_scheduled = 0;
966         spin_unlock(&ubi->wl_lock);
967         mutex_unlock(&ubi->move_mutex);
968         up_read(&ubi->fm_eba_sem);
969         ubi_free_vid_buf(vidb);
970         return 0;
971 }
972
973 /**
974  * ensure_wear_leveling - schedule wear-leveling if it is needed.
975  * @ubi: UBI device description object
976  * @nested: set to non-zero if this function is called from UBI worker
977  *
978  * This function checks if it is time to start wear-leveling and schedules it
979  * if yes. This function returns zero in case of success and a negative error
980  * code in case of failure.
981  */
982 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
983 {
984         int err = 0;
985         struct ubi_wl_entry *e1;
986         struct ubi_wl_entry *e2;
987         struct ubi_work *wrk;
988
989         spin_lock(&ubi->wl_lock);
990         if (ubi->wl_scheduled)
991                 /* Wear-leveling is already in the work queue */
992                 goto out_unlock;
993
994         /*
995          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
996          * the WL worker has to be scheduled anyway.
997          */
998         if (!ubi->scrub.rb_node) {
999                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1000                         /* No physical eraseblocks - no deal */
1001                         goto out_unlock;
1002
1003                 /*
1004                  * We schedule wear-leveling only if the difference between the
1005                  * lowest erase counter of used physical eraseblocks and a high
1006                  * erase counter of free physical eraseblocks is greater than
1007                  * %UBI_WL_THRESHOLD.
1008                  */
1009                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1010                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1011
1012                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1013                         goto out_unlock;
1014                 dbg_wl("schedule wear-leveling");
1015         } else
1016                 dbg_wl("schedule scrubbing");
1017
1018         ubi->wl_scheduled = 1;
1019         spin_unlock(&ubi->wl_lock);
1020
1021         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1022         if (!wrk) {
1023                 err = -ENOMEM;
1024                 goto out_cancel;
1025         }
1026
1027         wrk->func = &wear_leveling_worker;
1028         if (nested)
1029                 __schedule_ubi_work(ubi, wrk);
1030         else
1031                 schedule_ubi_work(ubi, wrk);
1032         return err;
1033
1034 out_cancel:
1035         spin_lock(&ubi->wl_lock);
1036         ubi->wl_scheduled = 0;
1037 out_unlock:
1038         spin_unlock(&ubi->wl_lock);
1039         return err;
1040 }
1041
1042 /**
1043  * __erase_worker - physical eraseblock erase worker function.
1044  * @ubi: UBI device description object
1045  * @wl_wrk: the work object
1046  * @shutdown: non-zero if the worker has to free memory and exit
1047  * because the WL sub-system is shutting down
1048  *
1049  * This function erases a physical eraseblock and perform torture testing if
1050  * needed. It also takes care about marking the physical eraseblock bad if
1051  * needed. Returns zero in case of success and a negative error code in case of
1052  * failure.
1053  */
1054 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1055 {
1056         struct ubi_wl_entry *e = wl_wrk->e;
1057         int pnum = e->pnum;
1058         int vol_id = wl_wrk->vol_id;
1059         int lnum = wl_wrk->lnum;
1060         int err, available_consumed = 0;
1061
1062         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1063                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1064
1065         err = sync_erase(ubi, e, wl_wrk->torture);
1066         if (!err) {
1067                 spin_lock(&ubi->wl_lock);
1068
1069                 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1070                         ubi->fm_anchor = e;
1071                         ubi->fm_do_produce_anchor = 0;
1072                 } else {
1073                         wl_tree_add(e, &ubi->free);
1074                         ubi->free_count++;
1075                 }
1076
1077                 spin_unlock(&ubi->wl_lock);
1078
1079                 /*
1080                  * One more erase operation has happened, take care about
1081                  * protected physical eraseblocks.
1082                  */
1083                 serve_prot_queue(ubi);
1084
1085                 /* And take care about wear-leveling */
1086                 err = ensure_wear_leveling(ubi, 1);
1087                 return err;
1088         }
1089
1090         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1091
1092         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1093             err == -EBUSY) {
1094                 int err1;
1095
1096                 /* Re-schedule the LEB for erasure */
1097                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1098                 if (err1) {
1099                         wl_entry_destroy(ubi, e);
1100                         err = err1;
1101                         goto out_ro;
1102                 }
1103                 return err;
1104         }
1105
1106         wl_entry_destroy(ubi, e);
1107         if (err != -EIO)
1108                 /*
1109                  * If this is not %-EIO, we have no idea what to do. Scheduling
1110                  * this physical eraseblock for erasure again would cause
1111                  * errors again and again. Well, lets switch to R/O mode.
1112                  */
1113                 goto out_ro;
1114
1115         /* It is %-EIO, the PEB went bad */
1116
1117         if (!ubi->bad_allowed) {
1118                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1119                 goto out_ro;
1120         }
1121
1122         spin_lock(&ubi->volumes_lock);
1123         if (ubi->beb_rsvd_pebs == 0) {
1124                 if (ubi->avail_pebs == 0) {
1125                         spin_unlock(&ubi->volumes_lock);
1126                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1127                         goto out_ro;
1128                 }
1129                 ubi->avail_pebs -= 1;
1130                 available_consumed = 1;
1131         }
1132         spin_unlock(&ubi->volumes_lock);
1133
1134         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1135         err = ubi_io_mark_bad(ubi, pnum);
1136         if (err)
1137                 goto out_ro;
1138
1139         spin_lock(&ubi->volumes_lock);
1140         if (ubi->beb_rsvd_pebs > 0) {
1141                 if (available_consumed) {
1142                         /*
1143                          * The amount of reserved PEBs increased since we last
1144                          * checked.
1145                          */
1146                         ubi->avail_pebs += 1;
1147                         available_consumed = 0;
1148                 }
1149                 ubi->beb_rsvd_pebs -= 1;
1150         }
1151         ubi->bad_peb_count += 1;
1152         ubi->good_peb_count -= 1;
1153         ubi_calculate_reserved(ubi);
1154         if (available_consumed)
1155                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1156         else if (ubi->beb_rsvd_pebs)
1157                 ubi_msg(ubi, "%d PEBs left in the reserve",
1158                         ubi->beb_rsvd_pebs);
1159         else
1160                 ubi_warn(ubi, "last PEB from the reserve was used");
1161         spin_unlock(&ubi->volumes_lock);
1162
1163         return err;
1164
1165 out_ro:
1166         if (available_consumed) {
1167                 spin_lock(&ubi->volumes_lock);
1168                 ubi->avail_pebs += 1;
1169                 spin_unlock(&ubi->volumes_lock);
1170         }
1171         ubi_ro_mode(ubi);
1172         return err;
1173 }
1174
1175 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1176                           int shutdown)
1177 {
1178         int ret;
1179
1180         if (shutdown) {
1181                 struct ubi_wl_entry *e = wl_wrk->e;
1182
1183                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1184                 kfree(wl_wrk);
1185                 wl_entry_destroy(ubi, e);
1186                 return 0;
1187         }
1188
1189         ret = __erase_worker(ubi, wl_wrk);
1190         kfree(wl_wrk);
1191         return ret;
1192 }
1193
1194 /**
1195  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1196  * @ubi: UBI device description object
1197  * @vol_id: the volume ID that last used this PEB
1198  * @lnum: the last used logical eraseblock number for the PEB
1199  * @pnum: physical eraseblock to return
1200  * @torture: if this physical eraseblock has to be tortured
1201  *
1202  * This function is called to return physical eraseblock @pnum to the pool of
1203  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1204  * occurred to this @pnum and it has to be tested. This function returns zero
1205  * in case of success, and a negative error code in case of failure.
1206  */
1207 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1208                    int pnum, int torture)
1209 {
1210         int err;
1211         struct ubi_wl_entry *e;
1212
1213         dbg_wl("PEB %d", pnum);
1214         ubi_assert(pnum >= 0);
1215         ubi_assert(pnum < ubi->peb_count);
1216
1217         down_read(&ubi->fm_protect);
1218
1219 retry:
1220         spin_lock(&ubi->wl_lock);
1221         e = ubi->lookuptbl[pnum];
1222         if (e == ubi->move_from) {
1223                 /*
1224                  * User is putting the physical eraseblock which was selected to
1225                  * be moved. It will be scheduled for erasure in the
1226                  * wear-leveling worker.
1227                  */
1228                 dbg_wl("PEB %d is being moved, wait", pnum);
1229                 spin_unlock(&ubi->wl_lock);
1230
1231                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1232                 mutex_lock(&ubi->move_mutex);
1233                 mutex_unlock(&ubi->move_mutex);
1234                 goto retry;
1235         } else if (e == ubi->move_to) {
1236                 /*
1237                  * User is putting the physical eraseblock which was selected
1238                  * as the target the data is moved to. It may happen if the EBA
1239                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1240                  * but the WL sub-system has not put the PEB to the "used" tree
1241                  * yet, but it is about to do this. So we just set a flag which
1242                  * will tell the WL worker that the PEB is not needed anymore
1243                  * and should be scheduled for erasure.
1244                  */
1245                 dbg_wl("PEB %d is the target of data moving", pnum);
1246                 ubi_assert(!ubi->move_to_put);
1247                 ubi->move_to_put = 1;
1248                 spin_unlock(&ubi->wl_lock);
1249                 up_read(&ubi->fm_protect);
1250                 return 0;
1251         } else {
1252                 if (in_wl_tree(e, &ubi->used)) {
1253                         self_check_in_wl_tree(ubi, e, &ubi->used);
1254                         rb_erase(&e->u.rb, &ubi->used);
1255                 } else if (in_wl_tree(e, &ubi->scrub)) {
1256                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1257                         rb_erase(&e->u.rb, &ubi->scrub);
1258                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1259                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1260                         rb_erase(&e->u.rb, &ubi->erroneous);
1261                         ubi->erroneous_peb_count -= 1;
1262                         ubi_assert(ubi->erroneous_peb_count >= 0);
1263                         /* Erroneous PEBs should be tortured */
1264                         torture = 1;
1265                 } else {
1266                         err = prot_queue_del(ubi, e->pnum);
1267                         if (err) {
1268                                 ubi_err(ubi, "PEB %d not found", pnum);
1269                                 ubi_ro_mode(ubi);
1270                                 spin_unlock(&ubi->wl_lock);
1271                                 up_read(&ubi->fm_protect);
1272                                 return err;
1273                         }
1274                 }
1275         }
1276         spin_unlock(&ubi->wl_lock);
1277
1278         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1279         if (err) {
1280                 spin_lock(&ubi->wl_lock);
1281                 wl_tree_add(e, &ubi->used);
1282                 spin_unlock(&ubi->wl_lock);
1283         }
1284
1285         up_read(&ubi->fm_protect);
1286         return err;
1287 }
1288
1289 /**
1290  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1291  * @ubi: UBI device description object
1292  * @pnum: the physical eraseblock to schedule
1293  *
1294  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1295  * needs scrubbing. This function schedules a physical eraseblock for
1296  * scrubbing which is done in background. This function returns zero in case of
1297  * success and a negative error code in case of failure.
1298  */
1299 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1300 {
1301         struct ubi_wl_entry *e;
1302
1303         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1304
1305 retry:
1306         spin_lock(&ubi->wl_lock);
1307         e = ubi->lookuptbl[pnum];
1308         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1309                                    in_wl_tree(e, &ubi->erroneous)) {
1310                 spin_unlock(&ubi->wl_lock);
1311                 return 0;
1312         }
1313
1314         if (e == ubi->move_to) {
1315                 /*
1316                  * This physical eraseblock was used to move data to. The data
1317                  * was moved but the PEB was not yet inserted to the proper
1318                  * tree. We should just wait a little and let the WL worker
1319                  * proceed.
1320                  */
1321                 spin_unlock(&ubi->wl_lock);
1322                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1323                 yield();
1324                 goto retry;
1325         }
1326
1327         if (in_wl_tree(e, &ubi->used)) {
1328                 self_check_in_wl_tree(ubi, e, &ubi->used);
1329                 rb_erase(&e->u.rb, &ubi->used);
1330         } else {
1331                 int err;
1332
1333                 err = prot_queue_del(ubi, e->pnum);
1334                 if (err) {
1335                         ubi_err(ubi, "PEB %d not found", pnum);
1336                         ubi_ro_mode(ubi);
1337                         spin_unlock(&ubi->wl_lock);
1338                         return err;
1339                 }
1340         }
1341
1342         wl_tree_add(e, &ubi->scrub);
1343         spin_unlock(&ubi->wl_lock);
1344
1345         /*
1346          * Technically scrubbing is the same as wear-leveling, so it is done
1347          * by the WL worker.
1348          */
1349         return ensure_wear_leveling(ubi, 0);
1350 }
1351
1352 /**
1353  * ubi_wl_flush - flush all pending works.
1354  * @ubi: UBI device description object
1355  * @vol_id: the volume id to flush for
1356  * @lnum: the logical eraseblock number to flush for
1357  *
1358  * This function executes all pending works for a particular volume id /
1359  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1360  * acts as a wildcard for all of the corresponding volume numbers or logical
1361  * eraseblock numbers. It returns zero in case of success and a negative error
1362  * code in case of failure.
1363  */
1364 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1365 {
1366         int err = 0;
1367         int found = 1;
1368
1369         /*
1370          * Erase while the pending works queue is not empty, but not more than
1371          * the number of currently pending works.
1372          */
1373         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1374                vol_id, lnum, ubi->works_count);
1375
1376         while (found) {
1377                 struct ubi_work *wrk, *tmp;
1378                 found = 0;
1379
1380                 down_read(&ubi->work_sem);
1381                 spin_lock(&ubi->wl_lock);
1382                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1383                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1384                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1385                                 list_del(&wrk->list);
1386                                 ubi->works_count -= 1;
1387                                 ubi_assert(ubi->works_count >= 0);
1388                                 spin_unlock(&ubi->wl_lock);
1389
1390                                 err = wrk->func(ubi, wrk, 0);
1391                                 if (err) {
1392                                         up_read(&ubi->work_sem);
1393                                         return err;
1394                                 }
1395
1396                                 spin_lock(&ubi->wl_lock);
1397                                 found = 1;
1398                                 break;
1399                         }
1400                 }
1401                 spin_unlock(&ubi->wl_lock);
1402                 up_read(&ubi->work_sem);
1403         }
1404
1405         /*
1406          * Make sure all the works which have been done in parallel are
1407          * finished.
1408          */
1409         down_write(&ubi->work_sem);
1410         up_write(&ubi->work_sem);
1411
1412         return err;
1413 }
1414
1415 /**
1416  * tree_destroy - destroy an RB-tree.
1417  * @ubi: UBI device description object
1418  * @root: the root of the tree to destroy
1419  */
1420 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1421 {
1422         struct rb_node *rb;
1423         struct ubi_wl_entry *e;
1424
1425         rb = root->rb_node;
1426         while (rb) {
1427                 if (rb->rb_left)
1428                         rb = rb->rb_left;
1429                 else if (rb->rb_right)
1430                         rb = rb->rb_right;
1431                 else {
1432                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1433
1434                         rb = rb_parent(rb);
1435                         if (rb) {
1436                                 if (rb->rb_left == &e->u.rb)
1437                                         rb->rb_left = NULL;
1438                                 else
1439                                         rb->rb_right = NULL;
1440                         }
1441
1442                         wl_entry_destroy(ubi, e);
1443                 }
1444         }
1445 }
1446
1447 /**
1448  * ubi_thread - UBI background thread.
1449  * @u: the UBI device description object pointer
1450  */
1451 int ubi_thread(void *u)
1452 {
1453         int failures = 0;
1454         struct ubi_device *ubi = u;
1455
1456         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1457                 ubi->bgt_name, task_pid_nr(current));
1458
1459         set_freezable();
1460         for (;;) {
1461                 int err;
1462
1463                 if (kthread_should_stop())
1464                         break;
1465
1466                 if (try_to_freeze())
1467                         continue;
1468
1469                 spin_lock(&ubi->wl_lock);
1470                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1471                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1472                         set_current_state(TASK_INTERRUPTIBLE);
1473                         spin_unlock(&ubi->wl_lock);
1474
1475                         /*
1476                          * Check kthread_should_stop() after we set the task
1477                          * state to guarantee that we either see the stop bit
1478                          * and exit or the task state is reset to runnable such
1479                          * that it's not scheduled out indefinitely and detects
1480                          * the stop bit at kthread_should_stop().
1481                          */
1482                         if (kthread_should_stop()) {
1483                                 set_current_state(TASK_RUNNING);
1484                                 break;
1485                         }
1486
1487                         schedule();
1488                         continue;
1489                 }
1490                 spin_unlock(&ubi->wl_lock);
1491
1492                 err = do_work(ubi);
1493                 if (err) {
1494                         ubi_err(ubi, "%s: work failed with error code %d",
1495                                 ubi->bgt_name, err);
1496                         if (failures++ > WL_MAX_FAILURES) {
1497                                 /*
1498                                  * Too many failures, disable the thread and
1499                                  * switch to read-only mode.
1500                                  */
1501                                 ubi_msg(ubi, "%s: %d consecutive failures",
1502                                         ubi->bgt_name, WL_MAX_FAILURES);
1503                                 ubi_ro_mode(ubi);
1504                                 ubi->thread_enabled = 0;
1505                                 continue;
1506                         }
1507                 } else
1508                         failures = 0;
1509
1510                 cond_resched();
1511         }
1512
1513         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1514         ubi->thread_enabled = 0;
1515         return 0;
1516 }
1517
1518 /**
1519  * shutdown_work - shutdown all pending works.
1520  * @ubi: UBI device description object
1521  */
1522 static void shutdown_work(struct ubi_device *ubi)
1523 {
1524         while (!list_empty(&ubi->works)) {
1525                 struct ubi_work *wrk;
1526
1527                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1528                 list_del(&wrk->list);
1529                 wrk->func(ubi, wrk, 1);
1530                 ubi->works_count -= 1;
1531                 ubi_assert(ubi->works_count >= 0);
1532         }
1533 }
1534
1535 /**
1536  * erase_aeb - erase a PEB given in UBI attach info PEB
1537  * @ubi: UBI device description object
1538  * @aeb: UBI attach info PEB
1539  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1540  */
1541 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1542 {
1543         struct ubi_wl_entry *e;
1544         int err;
1545
1546         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1547         if (!e)
1548                 return -ENOMEM;
1549
1550         e->pnum = aeb->pnum;
1551         e->ec = aeb->ec;
1552         ubi->lookuptbl[e->pnum] = e;
1553
1554         if (sync) {
1555                 err = sync_erase(ubi, e, false);
1556                 if (err)
1557                         goto out_free;
1558
1559                 wl_tree_add(e, &ubi->free);
1560                 ubi->free_count++;
1561         } else {
1562                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1563                 if (err)
1564                         goto out_free;
1565         }
1566
1567         return 0;
1568
1569 out_free:
1570         wl_entry_destroy(ubi, e);
1571
1572         return err;
1573 }
1574
1575 /**
1576  * ubi_wl_init - initialize the WL sub-system using attaching information.
1577  * @ubi: UBI device description object
1578  * @ai: attaching information
1579  *
1580  * This function returns zero in case of success, and a negative error code in
1581  * case of failure.
1582  */
1583 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1584 {
1585         int err, i, reserved_pebs, found_pebs = 0;
1586         struct rb_node *rb1, *rb2;
1587         struct ubi_ainf_volume *av;
1588         struct ubi_ainf_peb *aeb, *tmp;
1589         struct ubi_wl_entry *e;
1590
1591         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1592         spin_lock_init(&ubi->wl_lock);
1593         mutex_init(&ubi->move_mutex);
1594         init_rwsem(&ubi->work_sem);
1595         ubi->max_ec = ai->max_ec;
1596         INIT_LIST_HEAD(&ubi->works);
1597
1598         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1599
1600         err = -ENOMEM;
1601         ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1602         if (!ubi->lookuptbl)
1603                 return err;
1604
1605         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1606                 INIT_LIST_HEAD(&ubi->pq[i]);
1607         ubi->pq_head = 0;
1608
1609         ubi->free_count = 0;
1610         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1611                 cond_resched();
1612
1613                 err = erase_aeb(ubi, aeb, false);
1614                 if (err)
1615                         goto out_free;
1616
1617                 found_pebs++;
1618         }
1619
1620         list_for_each_entry(aeb, &ai->free, u.list) {
1621                 cond_resched();
1622
1623                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1624                 if (!e) {
1625                         err = -ENOMEM;
1626                         goto out_free;
1627                 }
1628
1629                 e->pnum = aeb->pnum;
1630                 e->ec = aeb->ec;
1631                 ubi_assert(e->ec >= 0);
1632
1633                 wl_tree_add(e, &ubi->free);
1634                 ubi->free_count++;
1635
1636                 ubi->lookuptbl[e->pnum] = e;
1637
1638                 found_pebs++;
1639         }
1640
1641         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1642                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1643                         cond_resched();
1644
1645                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1646                         if (!e) {
1647                                 err = -ENOMEM;
1648                                 goto out_free;
1649                         }
1650
1651                         e->pnum = aeb->pnum;
1652                         e->ec = aeb->ec;
1653                         ubi->lookuptbl[e->pnum] = e;
1654
1655                         if (!aeb->scrub) {
1656                                 dbg_wl("add PEB %d EC %d to the used tree",
1657                                        e->pnum, e->ec);
1658                                 wl_tree_add(e, &ubi->used);
1659                         } else {
1660                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1661                                        e->pnum, e->ec);
1662                                 wl_tree_add(e, &ubi->scrub);
1663                         }
1664
1665                         found_pebs++;
1666                 }
1667         }
1668
1669         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1670                 cond_resched();
1671
1672                 e = ubi_find_fm_block(ubi, aeb->pnum);
1673
1674                 if (e) {
1675                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1676                         ubi->lookuptbl[e->pnum] = e;
1677                 } else {
1678                         bool sync = false;
1679
1680                         /*
1681                          * Usually old Fastmap PEBs are scheduled for erasure
1682                          * and we don't have to care about them but if we face
1683                          * an power cut before scheduling them we need to
1684                          * take care of them here.
1685                          */
1686                         if (ubi->lookuptbl[aeb->pnum])
1687                                 continue;
1688
1689                         /*
1690                          * The fastmap update code might not find a free PEB for
1691                          * writing the fastmap anchor to and then reuses the
1692                          * current fastmap anchor PEB. When this PEB gets erased
1693                          * and a power cut happens before it is written again we
1694                          * must make sure that the fastmap attach code doesn't
1695                          * find any outdated fastmap anchors, hence we erase the
1696                          * outdated fastmap anchor PEBs synchronously here.
1697                          */
1698                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1699                                 sync = true;
1700
1701                         err = erase_aeb(ubi, aeb, sync);
1702                         if (err)
1703                                 goto out_free;
1704                 }
1705
1706                 found_pebs++;
1707         }
1708
1709         dbg_wl("found %i PEBs", found_pebs);
1710
1711         ubi_assert(ubi->good_peb_count == found_pebs);
1712
1713         reserved_pebs = WL_RESERVED_PEBS;
1714         ubi_fastmap_init(ubi, &reserved_pebs);
1715
1716         if (ubi->avail_pebs < reserved_pebs) {
1717                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1718                         ubi->avail_pebs, reserved_pebs);
1719                 if (ubi->corr_peb_count)
1720                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1721                                 ubi->corr_peb_count);
1722                 err = -ENOSPC;
1723                 goto out_free;
1724         }
1725         ubi->avail_pebs -= reserved_pebs;
1726         ubi->rsvd_pebs += reserved_pebs;
1727
1728         /* Schedule wear-leveling if needed */
1729         err = ensure_wear_leveling(ubi, 0);
1730         if (err)
1731                 goto out_free;
1732
1733 #ifdef CONFIG_MTD_UBI_FASTMAP
1734         ubi_ensure_anchor_pebs(ubi);
1735 #endif
1736         return 0;
1737
1738 out_free:
1739         shutdown_work(ubi);
1740         tree_destroy(ubi, &ubi->used);
1741         tree_destroy(ubi, &ubi->free);
1742         tree_destroy(ubi, &ubi->scrub);
1743         kfree(ubi->lookuptbl);
1744         return err;
1745 }
1746
1747 /**
1748  * protection_queue_destroy - destroy the protection queue.
1749  * @ubi: UBI device description object
1750  */
1751 static void protection_queue_destroy(struct ubi_device *ubi)
1752 {
1753         int i;
1754         struct ubi_wl_entry *e, *tmp;
1755
1756         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1757                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1758                         list_del(&e->u.list);
1759                         wl_entry_destroy(ubi, e);
1760                 }
1761         }
1762 }
1763
1764 /**
1765  * ubi_wl_close - close the wear-leveling sub-system.
1766  * @ubi: UBI device description object
1767  */
1768 void ubi_wl_close(struct ubi_device *ubi)
1769 {
1770         dbg_wl("close the WL sub-system");
1771         ubi_fastmap_close(ubi);
1772         shutdown_work(ubi);
1773         protection_queue_destroy(ubi);
1774         tree_destroy(ubi, &ubi->used);
1775         tree_destroy(ubi, &ubi->erroneous);
1776         tree_destroy(ubi, &ubi->free);
1777         tree_destroy(ubi, &ubi->scrub);
1778         kfree(ubi->lookuptbl);
1779 }
1780
1781 /**
1782  * self_check_ec - make sure that the erase counter of a PEB is correct.
1783  * @ubi: UBI device description object
1784  * @pnum: the physical eraseblock number to check
1785  * @ec: the erase counter to check
1786  *
1787  * This function returns zero if the erase counter of physical eraseblock @pnum
1788  * is equivalent to @ec, and a negative error code if not or if an error
1789  * occurred.
1790  */
1791 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1792 {
1793         int err;
1794         long long read_ec;
1795         struct ubi_ec_hdr *ec_hdr;
1796
1797         if (!ubi_dbg_chk_gen(ubi))
1798                 return 0;
1799
1800         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1801         if (!ec_hdr)
1802                 return -ENOMEM;
1803
1804         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1805         if (err && err != UBI_IO_BITFLIPS) {
1806                 /* The header does not have to exist */
1807                 err = 0;
1808                 goto out_free;
1809         }
1810
1811         read_ec = be64_to_cpu(ec_hdr->ec);
1812         if (ec != read_ec && read_ec - ec > 1) {
1813                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1814                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1815                 dump_stack();
1816                 err = 1;
1817         } else
1818                 err = 0;
1819
1820 out_free:
1821         kfree(ec_hdr);
1822         return err;
1823 }
1824
1825 /**
1826  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1827  * @ubi: UBI device description object
1828  * @e: the wear-leveling entry to check
1829  * @root: the root of the tree
1830  *
1831  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1832  * is not.
1833  */
1834 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1835                                  struct ubi_wl_entry *e, struct rb_root *root)
1836 {
1837         if (!ubi_dbg_chk_gen(ubi))
1838                 return 0;
1839
1840         if (in_wl_tree(e, root))
1841                 return 0;
1842
1843         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1844                 e->pnum, e->ec, root);
1845         dump_stack();
1846         return -EINVAL;
1847 }
1848
1849 /**
1850  * self_check_in_pq - check if wear-leveling entry is in the protection
1851  *                        queue.
1852  * @ubi: UBI device description object
1853  * @e: the wear-leveling entry to check
1854  *
1855  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1856  */
1857 static int self_check_in_pq(const struct ubi_device *ubi,
1858                             struct ubi_wl_entry *e)
1859 {
1860         struct ubi_wl_entry *p;
1861         int i;
1862
1863         if (!ubi_dbg_chk_gen(ubi))
1864                 return 0;
1865
1866         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1867                 list_for_each_entry(p, &ubi->pq[i], u.list)
1868                         if (p == e)
1869                                 return 0;
1870
1871         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1872                 e->pnum, e->ec);
1873         dump_stack();
1874         return -EINVAL;
1875 }
1876 #ifndef CONFIG_MTD_UBI_FASTMAP
1877 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1878 {
1879         struct ubi_wl_entry *e;
1880
1881         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1882         self_check_in_wl_tree(ubi, e, &ubi->free);
1883         ubi->free_count--;
1884         ubi_assert(ubi->free_count >= 0);
1885         rb_erase(&e->u.rb, &ubi->free);
1886
1887         return e;
1888 }
1889
1890 /**
1891  * produce_free_peb - produce a free physical eraseblock.
1892  * @ubi: UBI device description object
1893  *
1894  * This function tries to make a free PEB by means of synchronous execution of
1895  * pending works. This may be needed if, for example the background thread is
1896  * disabled. Returns zero in case of success and a negative error code in case
1897  * of failure.
1898  */
1899 static int produce_free_peb(struct ubi_device *ubi)
1900 {
1901         int err;
1902
1903         while (!ubi->free.rb_node && ubi->works_count) {
1904                 spin_unlock(&ubi->wl_lock);
1905
1906                 dbg_wl("do one work synchronously");
1907                 err = do_work(ubi);
1908
1909                 spin_lock(&ubi->wl_lock);
1910                 if (err)
1911                         return err;
1912         }
1913
1914         return 0;
1915 }
1916
1917 /**
1918  * ubi_wl_get_peb - get a physical eraseblock.
1919  * @ubi: UBI device description object
1920  *
1921  * This function returns a physical eraseblock in case of success and a
1922  * negative error code in case of failure.
1923  * Returns with ubi->fm_eba_sem held in read mode!
1924  */
1925 int ubi_wl_get_peb(struct ubi_device *ubi)
1926 {
1927         int err;
1928         struct ubi_wl_entry *e;
1929
1930 retry:
1931         down_read(&ubi->fm_eba_sem);
1932         spin_lock(&ubi->wl_lock);
1933         if (!ubi->free.rb_node) {
1934                 if (ubi->works_count == 0) {
1935                         ubi_err(ubi, "no free eraseblocks");
1936                         ubi_assert(list_empty(&ubi->works));
1937                         spin_unlock(&ubi->wl_lock);
1938                         return -ENOSPC;
1939                 }
1940
1941                 err = produce_free_peb(ubi);
1942                 if (err < 0) {
1943                         spin_unlock(&ubi->wl_lock);
1944                         return err;
1945                 }
1946                 spin_unlock(&ubi->wl_lock);
1947                 up_read(&ubi->fm_eba_sem);
1948                 goto retry;
1949
1950         }
1951         e = wl_get_wle(ubi);
1952         prot_queue_add(ubi, e);
1953         spin_unlock(&ubi->wl_lock);
1954
1955         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1956                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1957         if (err) {
1958                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1959                 return err;
1960         }
1961
1962         return e->pnum;
1963 }
1964 #else
1965 #include "fastmap-wl.c"
1966 #endif