GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / mtd / ubi / wl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127                                  struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129                             struct ubi_wl_entry *e);
130
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141         struct rb_node **p, *parent = NULL;
142
143         p = &root->rb_node;
144         while (*p) {
145                 struct ubi_wl_entry *e1;
146
147                 parent = *p;
148                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150                 if (e->ec < e1->ec)
151                         p = &(*p)->rb_left;
152                 else if (e->ec > e1->ec)
153                         p = &(*p)->rb_right;
154                 else {
155                         ubi_assert(e->pnum != e1->pnum);
156                         if (e->pnum < e1->pnum)
157                                 p = &(*p)->rb_left;
158                         else
159                                 p = &(*p)->rb_right;
160                 }
161         }
162
163         rb_link_node(&e->u.rb, parent, p);
164         rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168  * wl_entry_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177         ubi->lookuptbl[e->pnum] = NULL;
178         kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  * @executed: whether there is one work is executed
185  *
186  * This function returns zero in case of success and a negative error code in
187  * case of failure. If @executed is not NULL and there is one work executed,
188  * @executed is set as %1, otherwise @executed is set as %0.
189  */
190 static int do_work(struct ubi_device *ubi, int *executed)
191 {
192         int err;
193         struct ubi_work *wrk;
194
195         cond_resched();
196
197         /*
198          * @ubi->work_sem is used to synchronize with the workers. Workers take
199          * it in read mode, so many of them may be doing works at a time. But
200          * the queue flush code has to be sure the whole queue of works is
201          * done, and it takes the mutex in write mode.
202          */
203         down_read(&ubi->work_sem);
204         spin_lock(&ubi->wl_lock);
205         if (list_empty(&ubi->works)) {
206                 spin_unlock(&ubi->wl_lock);
207                 up_read(&ubi->work_sem);
208                 if (executed)
209                         *executed = 0;
210                 return 0;
211         }
212
213         if (executed)
214                 *executed = 1;
215         wrk = list_entry(ubi->works.next, struct ubi_work, list);
216         list_del(&wrk->list);
217         ubi->works_count -= 1;
218         ubi_assert(ubi->works_count >= 0);
219         spin_unlock(&ubi->wl_lock);
220
221         /*
222          * Call the worker function. Do not touch the work structure
223          * after this call as it will have been freed or reused by that
224          * time by the worker function.
225          */
226         err = wrk->func(ubi, wrk, 0);
227         if (err)
228                 ubi_err(ubi, "work failed with error code %d", err);
229         up_read(&ubi->work_sem);
230
231         return err;
232 }
233
234 /**
235  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
236  * @e: the wear-leveling entry to check
237  * @root: the root of the tree
238  *
239  * This function returns non-zero if @e is in the @root RB-tree and zero if it
240  * is not.
241  */
242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
243 {
244         struct rb_node *p;
245
246         p = root->rb_node;
247         while (p) {
248                 struct ubi_wl_entry *e1;
249
250                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
251
252                 if (e->pnum == e1->pnum) {
253                         ubi_assert(e == e1);
254                         return 1;
255                 }
256
257                 if (e->ec < e1->ec)
258                         p = p->rb_left;
259                 else if (e->ec > e1->ec)
260                         p = p->rb_right;
261                 else {
262                         ubi_assert(e->pnum != e1->pnum);
263                         if (e->pnum < e1->pnum)
264                                 p = p->rb_left;
265                         else
266                                 p = p->rb_right;
267                 }
268         }
269
270         return 0;
271 }
272
273 /**
274  * in_pq - check if a wear-leveling entry is present in the protection queue.
275  * @ubi: UBI device description object
276  * @e: the wear-leveling entry to check
277  *
278  * This function returns non-zero if @e is in the protection queue and zero
279  * if it is not.
280  */
281 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
282 {
283         struct ubi_wl_entry *p;
284         int i;
285
286         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
287                 list_for_each_entry(p, &ubi->pq[i], u.list)
288                         if (p == e)
289                                 return 1;
290
291         return 0;
292 }
293
294 /**
295  * prot_queue_add - add physical eraseblock to the protection queue.
296  * @ubi: UBI device description object
297  * @e: the physical eraseblock to add
298  *
299  * This function adds @e to the tail of the protection queue @ubi->pq, where
300  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
301  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
302  * be locked.
303  */
304 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
305 {
306         int pq_tail = ubi->pq_head - 1;
307
308         if (pq_tail < 0)
309                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
310         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
311         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
312         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
313 }
314
315 /**
316  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
317  * @ubi: UBI device description object
318  * @root: the RB-tree where to look for
319  * @diff: maximum possible difference from the smallest erase counter
320  * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
321  *
322  * This function looks for a wear leveling entry with erase counter closest to
323  * min + @diff, where min is the smallest erase counter.
324  */
325 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
326                                           struct rb_root *root, int diff,
327                                           int pick_max)
328 {
329         struct rb_node *p;
330         struct ubi_wl_entry *e;
331         int max;
332
333         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
334         max = e->ec + diff;
335
336         p = root->rb_node;
337         while (p) {
338                 struct ubi_wl_entry *e1;
339
340                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
341                 if (e1->ec >= max) {
342                         if (pick_max)
343                                 e = e1;
344                         p = p->rb_left;
345                 } else {
346                         p = p->rb_right;
347                         e = e1;
348                 }
349         }
350
351         return e;
352 }
353
354 /**
355  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
356  * @ubi: UBI device description object
357  * @root: the RB-tree where to look for
358  *
359  * This function looks for a wear leveling entry with medium erase counter,
360  * but not greater or equivalent than the lowest erase counter plus
361  * %WL_FREE_MAX_DIFF/2.
362  */
363 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
364                                                struct rb_root *root)
365 {
366         struct ubi_wl_entry *e, *first, *last;
367
368         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
370
371         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
372                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
373
374                 /*
375                  * If no fastmap has been written and fm_anchor is not
376                  * reserved and this WL entry can be used as anchor PEB
377                  * hold it back and return the second best WL entry such
378                  * that fastmap can use the anchor PEB later.
379                  */
380                 e = may_reserve_for_fm(ubi, e, root);
381         } else
382                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
383
384         return e;
385 }
386
387 /**
388  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
389  * refill_wl_user_pool().
390  * @ubi: UBI device description object
391  *
392  * This function returns a wear leveling entry in case of success and
393  * NULL in case of failure.
394  */
395 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
396 {
397         struct ubi_wl_entry *e;
398
399         e = find_mean_wl_entry(ubi, &ubi->free);
400         if (!e) {
401                 ubi_err(ubi, "no free eraseblocks");
402                 return NULL;
403         }
404
405         self_check_in_wl_tree(ubi, e, &ubi->free);
406
407         /*
408          * Move the physical eraseblock to the protection queue where it will
409          * be protected from being moved for some time.
410          */
411         rb_erase(&e->u.rb, &ubi->free);
412         ubi->free_count--;
413         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
414
415         return e;
416 }
417
418 /**
419  * prot_queue_del - remove a physical eraseblock from the protection queue.
420  * @ubi: UBI device description object
421  * @pnum: the physical eraseblock to remove
422  *
423  * This function deletes PEB @pnum from the protection queue and returns zero
424  * in case of success and %-ENODEV if the PEB was not found.
425  */
426 static int prot_queue_del(struct ubi_device *ubi, int pnum)
427 {
428         struct ubi_wl_entry *e;
429
430         e = ubi->lookuptbl[pnum];
431         if (!e)
432                 return -ENODEV;
433
434         if (self_check_in_pq(ubi, e))
435                 return -ENODEV;
436
437         list_del(&e->u.list);
438         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
439         return 0;
440 }
441
442 /**
443  * ubi_sync_erase - synchronously erase a physical eraseblock.
444  * @ubi: UBI device description object
445  * @e: the physical eraseblock to erase
446  * @torture: if the physical eraseblock has to be tortured
447  *
448  * This function returns zero in case of success and a negative error code in
449  * case of failure.
450  */
451 int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
452 {
453         int err;
454         struct ubi_ec_hdr *ec_hdr;
455         unsigned long long ec = e->ec;
456
457         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
458
459         err = self_check_ec(ubi, e->pnum, e->ec);
460         if (err)
461                 return -EINVAL;
462
463         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
464         if (!ec_hdr)
465                 return -ENOMEM;
466
467         err = ubi_io_sync_erase(ubi, e->pnum, torture);
468         if (err < 0)
469                 goto out_free;
470
471         ec += err;
472         if (ec > UBI_MAX_ERASECOUNTER) {
473                 /*
474                  * Erase counter overflow. Upgrade UBI and use 64-bit
475                  * erase counters internally.
476                  */
477                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
478                         e->pnum, ec);
479                 err = -EINVAL;
480                 goto out_free;
481         }
482
483         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
484
485         ec_hdr->ec = cpu_to_be64(ec);
486
487         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
488         if (err)
489                 goto out_free;
490
491         e->ec = ec;
492         spin_lock(&ubi->wl_lock);
493         if (e->ec > ubi->max_ec)
494                 ubi->max_ec = e->ec;
495         spin_unlock(&ubi->wl_lock);
496
497 out_free:
498         kfree(ec_hdr);
499         return err;
500 }
501
502 /**
503  * serve_prot_queue - check if it is time to stop protecting PEBs.
504  * @ubi: UBI device description object
505  *
506  * This function is called after each erase operation and removes PEBs from the
507  * tail of the protection queue. These PEBs have been protected for long enough
508  * and should be moved to the used tree.
509  */
510 static void serve_prot_queue(struct ubi_device *ubi)
511 {
512         struct ubi_wl_entry *e, *tmp;
513         int count;
514
515         /*
516          * There may be several protected physical eraseblock to remove,
517          * process them all.
518          */
519 repeat:
520         count = 0;
521         spin_lock(&ubi->wl_lock);
522         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
523                 dbg_wl("PEB %d EC %d protection over, move to used tree",
524                         e->pnum, e->ec);
525
526                 list_del(&e->u.list);
527                 wl_tree_add(e, &ubi->used);
528                 if (count++ > 32) {
529                         /*
530                          * Let's be nice and avoid holding the spinlock for
531                          * too long.
532                          */
533                         spin_unlock(&ubi->wl_lock);
534                         cond_resched();
535                         goto repeat;
536                 }
537         }
538
539         ubi->pq_head += 1;
540         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
541                 ubi->pq_head = 0;
542         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
543         spin_unlock(&ubi->wl_lock);
544 }
545
546 /**
547  * __schedule_ubi_work - schedule a work.
548  * @ubi: UBI device description object
549  * @wrk: the work to schedule
550  *
551  * This function adds a work defined by @wrk to the tail of the pending works
552  * list. Can only be used if ubi->work_sem is already held in read mode!
553  */
554 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
555 {
556         spin_lock(&ubi->wl_lock);
557         list_add_tail(&wrk->list, &ubi->works);
558         ubi_assert(ubi->works_count >= 0);
559         ubi->works_count += 1;
560         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
561                 wake_up_process(ubi->bgt_thread);
562         spin_unlock(&ubi->wl_lock);
563 }
564
565 /**
566  * schedule_ubi_work - schedule a work.
567  * @ubi: UBI device description object
568  * @wrk: the work to schedule
569  *
570  * This function adds a work defined by @wrk to the tail of the pending works
571  * list.
572  */
573 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
574 {
575         down_read(&ubi->work_sem);
576         __schedule_ubi_work(ubi, wrk);
577         up_read(&ubi->work_sem);
578 }
579
580 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
581                         int shutdown);
582
583 /**
584  * schedule_erase - schedule an erase work.
585  * @ubi: UBI device description object
586  * @e: the WL entry of the physical eraseblock to erase
587  * @vol_id: the volume ID that last used this PEB
588  * @lnum: the last used logical eraseblock number for the PEB
589  * @torture: if the physical eraseblock has to be tortured
590  * @nested: denotes whether the work_sem is already held
591  *
592  * This function returns zero in case of success and a %-ENOMEM in case of
593  * failure.
594  */
595 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
596                           int vol_id, int lnum, int torture, bool nested)
597 {
598         struct ubi_work *wl_wrk;
599
600         ubi_assert(e);
601
602         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
603                e->pnum, e->ec, torture);
604
605         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
606         if (!wl_wrk)
607                 return -ENOMEM;
608
609         wl_wrk->func = &erase_worker;
610         wl_wrk->e = e;
611         wl_wrk->vol_id = vol_id;
612         wl_wrk->lnum = lnum;
613         wl_wrk->torture = torture;
614
615         if (nested)
616                 __schedule_ubi_work(ubi, wl_wrk);
617         else
618                 schedule_ubi_work(ubi, wl_wrk);
619         return 0;
620 }
621
622 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
623 /**
624  * do_sync_erase - run the erase worker synchronously.
625  * @ubi: UBI device description object
626  * @e: the WL entry of the physical eraseblock to erase
627  * @vol_id: the volume ID that last used this PEB
628  * @lnum: the last used logical eraseblock number for the PEB
629  * @torture: if the physical eraseblock has to be tortured
630  *
631  */
632 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
633                          int vol_id, int lnum, int torture)
634 {
635         struct ubi_work wl_wrk;
636
637         dbg_wl("sync erase of PEB %i", e->pnum);
638
639         wl_wrk.e = e;
640         wl_wrk.vol_id = vol_id;
641         wl_wrk.lnum = lnum;
642         wl_wrk.torture = torture;
643
644         return __erase_worker(ubi, &wl_wrk);
645 }
646
647 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
648 /**
649  * wear_leveling_worker - wear-leveling worker function.
650  * @ubi: UBI device description object
651  * @wrk: the work object
652  * @shutdown: non-zero if the worker has to free memory and exit
653  * because the WL-subsystem is shutting down
654  *
655  * This function copies a more worn out physical eraseblock to a less worn out
656  * one. Returns zero in case of success and a negative error code in case of
657  * failure.
658  */
659 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
660                                 int shutdown)
661 {
662         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
663         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
664         struct ubi_wl_entry *e1, *e2;
665         struct ubi_vid_io_buf *vidb;
666         struct ubi_vid_hdr *vid_hdr;
667         int dst_leb_clean = 0;
668
669         kfree(wrk);
670         if (shutdown)
671                 return 0;
672
673         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
674         if (!vidb)
675                 return -ENOMEM;
676
677         vid_hdr = ubi_get_vid_hdr(vidb);
678
679         down_read(&ubi->fm_eba_sem);
680         mutex_lock(&ubi->move_mutex);
681         spin_lock(&ubi->wl_lock);
682         ubi_assert(!ubi->move_from && !ubi->move_to);
683         ubi_assert(!ubi->move_to_put);
684
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686         if (!next_peb_for_wl(ubi) ||
687 #else
688         if (!ubi->free.rb_node ||
689 #endif
690             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
691                 /*
692                  * No free physical eraseblocks? Well, they must be waiting in
693                  * the queue to be erased. Cancel movement - it will be
694                  * triggered again when a free physical eraseblock appears.
695                  *
696                  * No used physical eraseblocks? They must be temporarily
697                  * protected from being moved. They will be moved to the
698                  * @ubi->used tree later and the wear-leveling will be
699                  * triggered again.
700                  */
701                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
702                        !ubi->free.rb_node, !ubi->used.rb_node);
703                 goto out_cancel;
704         }
705
706 #ifdef CONFIG_MTD_UBI_FASTMAP
707         e1 = find_anchor_wl_entry(&ubi->used);
708         if (e1 && ubi->fm_anchor &&
709             (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
710                 ubi->fm_do_produce_anchor = 1;
711                 /*
712                  * fm_anchor is no longer considered a good anchor.
713                  * NULL assignment also prevents multiple wear level checks
714                  * of this PEB.
715                  */
716                 wl_tree_add(ubi->fm_anchor, &ubi->free);
717                 ubi->fm_anchor = NULL;
718                 ubi->free_count++;
719         }
720
721         if (ubi->fm_do_produce_anchor) {
722                 if (!e1)
723                         goto out_cancel;
724                 e2 = get_peb_for_wl(ubi);
725                 if (!e2)
726                         goto out_cancel;
727
728                 self_check_in_wl_tree(ubi, e1, &ubi->used);
729                 rb_erase(&e1->u.rb, &ubi->used);
730                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
731                 ubi->fm_do_produce_anchor = 0;
732         } else if (!ubi->scrub.rb_node) {
733 #else
734         if (!ubi->scrub.rb_node) {
735 #endif
736                 /*
737                  * Now pick the least worn-out used physical eraseblock and a
738                  * highly worn-out free physical eraseblock. If the erase
739                  * counters differ much enough, start wear-leveling.
740                  */
741                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
742                 e2 = get_peb_for_wl(ubi);
743                 if (!e2)
744                         goto out_cancel;
745
746                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
747                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
748                                e1->ec, e2->ec);
749
750                         /* Give the unused PEB back */
751                         wl_tree_add(e2, &ubi->free);
752                         ubi->free_count++;
753                         goto out_cancel;
754                 }
755                 self_check_in_wl_tree(ubi, e1, &ubi->used);
756                 rb_erase(&e1->u.rb, &ubi->used);
757                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
758                        e1->pnum, e1->ec, e2->pnum, e2->ec);
759         } else {
760                 /* Perform scrubbing */
761                 scrubbing = 1;
762                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
763                 e2 = get_peb_for_wl(ubi);
764                 if (!e2)
765                         goto out_cancel;
766
767                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
768                 rb_erase(&e1->u.rb, &ubi->scrub);
769                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
770         }
771
772         ubi->move_from = e1;
773         ubi->move_to = e2;
774         spin_unlock(&ubi->wl_lock);
775
776         /*
777          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
778          * We so far do not know which logical eraseblock our physical
779          * eraseblock (@e1) belongs to. We have to read the volume identifier
780          * header first.
781          *
782          * Note, we are protected from this PEB being unmapped and erased. The
783          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
784          * which is being moved was unmapped.
785          */
786
787         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
788         if (err && err != UBI_IO_BITFLIPS) {
789                 dst_leb_clean = 1;
790                 if (err == UBI_IO_FF) {
791                         /*
792                          * We are trying to move PEB without a VID header. UBI
793                          * always write VID headers shortly after the PEB was
794                          * given, so we have a situation when it has not yet
795                          * had a chance to write it, because it was preempted.
796                          * So add this PEB to the protection queue so far,
797                          * because presumably more data will be written there
798                          * (including the missing VID header), and then we'll
799                          * move it.
800                          */
801                         dbg_wl("PEB %d has no VID header", e1->pnum);
802                         protect = 1;
803                         goto out_not_moved;
804                 } else if (err == UBI_IO_FF_BITFLIPS) {
805                         /*
806                          * The same situation as %UBI_IO_FF, but bit-flips were
807                          * detected. It is better to schedule this PEB for
808                          * scrubbing.
809                          */
810                         dbg_wl("PEB %d has no VID header but has bit-flips",
811                                e1->pnum);
812                         scrubbing = 1;
813                         goto out_not_moved;
814                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
815                         /*
816                          * While a full scan would detect interrupted erasures
817                          * at attach time we can face them here when attached from
818                          * Fastmap.
819                          */
820                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
821                                e1->pnum);
822                         erase = 1;
823                         goto out_not_moved;
824                 }
825
826                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
827                         err, e1->pnum);
828                 goto out_error;
829         }
830
831         vol_id = be32_to_cpu(vid_hdr->vol_id);
832         lnum = be32_to_cpu(vid_hdr->lnum);
833
834         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
835         if (err) {
836                 if (err == MOVE_CANCEL_RACE) {
837                         /*
838                          * The LEB has not been moved because the volume is
839                          * being deleted or the PEB has been put meanwhile. We
840                          * should prevent this PEB from being selected for
841                          * wear-leveling movement again, so put it to the
842                          * protection queue.
843                          */
844                         protect = 1;
845                         dst_leb_clean = 1;
846                         goto out_not_moved;
847                 }
848                 if (err == MOVE_RETRY) {
849                         scrubbing = 1;
850                         dst_leb_clean = 1;
851                         goto out_not_moved;
852                 }
853                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
854                     err == MOVE_TARGET_RD_ERR) {
855                         /*
856                          * Target PEB had bit-flips or write error - torture it.
857                          */
858                         torture = 1;
859                         keep = 1;
860                         goto out_not_moved;
861                 }
862
863                 if (err == MOVE_SOURCE_RD_ERR) {
864                         /*
865                          * An error happened while reading the source PEB. Do
866                          * not switch to R/O mode in this case, and give the
867                          * upper layers a possibility to recover from this,
868                          * e.g. by unmapping corresponding LEB. Instead, just
869                          * put this PEB to the @ubi->erroneous list to prevent
870                          * UBI from trying to move it over and over again.
871                          */
872                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
873                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
874                                         ubi->erroneous_peb_count);
875                                 goto out_error;
876                         }
877                         dst_leb_clean = 1;
878                         erroneous = 1;
879                         goto out_not_moved;
880                 }
881
882                 if (err < 0)
883                         goto out_error;
884
885                 ubi_assert(0);
886         }
887
888         /* The PEB has been successfully moved */
889         if (scrubbing)
890                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
891                         e1->pnum, vol_id, lnum, e2->pnum);
892         ubi_free_vid_buf(vidb);
893
894         spin_lock(&ubi->wl_lock);
895         if (!ubi->move_to_put) {
896                 wl_tree_add(e2, &ubi->used);
897                 e2 = NULL;
898         }
899         ubi->move_from = ubi->move_to = NULL;
900         ubi->move_to_put = ubi->wl_scheduled = 0;
901         spin_unlock(&ubi->wl_lock);
902
903         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
904         if (err) {
905                 if (e2) {
906                         spin_lock(&ubi->wl_lock);
907                         wl_entry_destroy(ubi, e2);
908                         spin_unlock(&ubi->wl_lock);
909                 }
910                 goto out_ro;
911         }
912
913         if (e2) {
914                 /*
915                  * Well, the target PEB was put meanwhile, schedule it for
916                  * erasure.
917                  */
918                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
919                        e2->pnum, vol_id, lnum);
920                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
921                 if (err)
922                         goto out_ro;
923         }
924
925         dbg_wl("done");
926         mutex_unlock(&ubi->move_mutex);
927         up_read(&ubi->fm_eba_sem);
928         return 0;
929
930         /*
931          * For some reasons the LEB was not moved, might be an error, might be
932          * something else. @e1 was not changed, so return it back. @e2 might
933          * have been changed, schedule it for erasure.
934          */
935 out_not_moved:
936         if (vol_id != -1)
937                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
938                        e1->pnum, vol_id, lnum, e2->pnum, err);
939         else
940                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
941                        e1->pnum, e2->pnum, err);
942         spin_lock(&ubi->wl_lock);
943         if (protect)
944                 prot_queue_add(ubi, e1);
945         else if (erroneous) {
946                 wl_tree_add(e1, &ubi->erroneous);
947                 ubi->erroneous_peb_count += 1;
948         } else if (scrubbing)
949                 wl_tree_add(e1, &ubi->scrub);
950         else if (keep)
951                 wl_tree_add(e1, &ubi->used);
952         if (dst_leb_clean) {
953                 wl_tree_add(e2, &ubi->free);
954                 ubi->free_count++;
955         }
956
957         ubi_assert(!ubi->move_to_put);
958         ubi->move_from = ubi->move_to = NULL;
959         ubi->wl_scheduled = 0;
960         spin_unlock(&ubi->wl_lock);
961
962         ubi_free_vid_buf(vidb);
963         if (dst_leb_clean) {
964                 ensure_wear_leveling(ubi, 1);
965         } else {
966                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
967                 if (err)
968                         goto out_ro;
969         }
970
971         if (erase) {
972                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
973                 if (err)
974                         goto out_ro;
975         }
976
977         mutex_unlock(&ubi->move_mutex);
978         up_read(&ubi->fm_eba_sem);
979         return 0;
980
981 out_error:
982         if (vol_id != -1)
983                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
984                         err, e1->pnum, e2->pnum);
985         else
986                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
987                         err, e1->pnum, vol_id, lnum, e2->pnum);
988         spin_lock(&ubi->wl_lock);
989         ubi->move_from = ubi->move_to = NULL;
990         ubi->move_to_put = ubi->wl_scheduled = 0;
991         wl_entry_destroy(ubi, e1);
992         wl_entry_destroy(ubi, e2);
993         spin_unlock(&ubi->wl_lock);
994
995         ubi_free_vid_buf(vidb);
996
997 out_ro:
998         ubi_ro_mode(ubi);
999         mutex_unlock(&ubi->move_mutex);
1000         up_read(&ubi->fm_eba_sem);
1001         ubi_assert(err != 0);
1002         return err < 0 ? err : -EIO;
1003
1004 out_cancel:
1005         ubi->wl_scheduled = 0;
1006         spin_unlock(&ubi->wl_lock);
1007         mutex_unlock(&ubi->move_mutex);
1008         up_read(&ubi->fm_eba_sem);
1009         ubi_free_vid_buf(vidb);
1010         return 0;
1011 }
1012
1013 /**
1014  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1015  * @ubi: UBI device description object
1016  * @nested: set to non-zero if this function is called from UBI worker
1017  *
1018  * This function checks if it is time to start wear-leveling and schedules it
1019  * if yes. This function returns zero in case of success and a negative error
1020  * code in case of failure.
1021  */
1022 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1023 {
1024         int err = 0;
1025         struct ubi_work *wrk;
1026
1027         spin_lock(&ubi->wl_lock);
1028         if (ubi->wl_scheduled)
1029                 /* Wear-leveling is already in the work queue */
1030                 goto out_unlock;
1031
1032         /*
1033          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1034          * WL worker has to be scheduled anyway.
1035          */
1036         if (!ubi->scrub.rb_node) {
1037 #ifdef CONFIG_MTD_UBI_FASTMAP
1038                 if (!need_wear_leveling(ubi))
1039                         goto out_unlock;
1040 #else
1041                 struct ubi_wl_entry *e1;
1042                 struct ubi_wl_entry *e2;
1043
1044                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1045                         /* No physical eraseblocks - no deal */
1046                         goto out_unlock;
1047
1048                 /*
1049                  * We schedule wear-leveling only if the difference between the
1050                  * lowest erase counter of used physical eraseblocks and a high
1051                  * erase counter of free physical eraseblocks is greater than
1052                  * %UBI_WL_THRESHOLD.
1053                  */
1054                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1055                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1056
1057                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1058                         goto out_unlock;
1059 #endif
1060                 dbg_wl("schedule wear-leveling");
1061         } else
1062                 dbg_wl("schedule scrubbing");
1063
1064         ubi->wl_scheduled = 1;
1065         spin_unlock(&ubi->wl_lock);
1066
1067         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1068         if (!wrk) {
1069                 err = -ENOMEM;
1070                 goto out_cancel;
1071         }
1072
1073         wrk->func = &wear_leveling_worker;
1074         if (nested)
1075                 __schedule_ubi_work(ubi, wrk);
1076         else
1077                 schedule_ubi_work(ubi, wrk);
1078         return err;
1079
1080 out_cancel:
1081         spin_lock(&ubi->wl_lock);
1082         ubi->wl_scheduled = 0;
1083 out_unlock:
1084         spin_unlock(&ubi->wl_lock);
1085         return err;
1086 }
1087
1088 /**
1089  * __erase_worker - physical eraseblock erase worker function.
1090  * @ubi: UBI device description object
1091  * @wl_wrk: the work object
1092  *
1093  * This function erases a physical eraseblock and perform torture testing if
1094  * needed. It also takes care about marking the physical eraseblock bad if
1095  * needed. Returns zero in case of success and a negative error code in case of
1096  * failure.
1097  */
1098 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1099 {
1100         struct ubi_wl_entry *e = wl_wrk->e;
1101         int pnum = e->pnum;
1102         int vol_id = wl_wrk->vol_id;
1103         int lnum = wl_wrk->lnum;
1104         int err, available_consumed = 0;
1105
1106         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1107                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1108
1109         err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1110         if (!err) {
1111                 spin_lock(&ubi->wl_lock);
1112
1113                 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1114                     e->pnum < UBI_FM_MAX_START) {
1115                         /*
1116                          * Abort anchor production, if needed it will be
1117                          * enabled again in the wear leveling started below.
1118                          */
1119                         ubi->fm_anchor = e;
1120                         ubi->fm_do_produce_anchor = 0;
1121                 } else {
1122                         wl_tree_add(e, &ubi->free);
1123                         ubi->free_count++;
1124                 }
1125
1126                 spin_unlock(&ubi->wl_lock);
1127
1128                 /*
1129                  * One more erase operation has happened, take care about
1130                  * protected physical eraseblocks.
1131                  */
1132                 serve_prot_queue(ubi);
1133
1134                 /* And take care about wear-leveling */
1135                 err = ensure_wear_leveling(ubi, 1);
1136                 return err;
1137         }
1138
1139         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1140
1141         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1142             err == -EBUSY) {
1143                 int err1;
1144
1145                 /* Re-schedule the LEB for erasure */
1146                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1147                 if (err1) {
1148                         spin_lock(&ubi->wl_lock);
1149                         wl_entry_destroy(ubi, e);
1150                         spin_unlock(&ubi->wl_lock);
1151                         err = err1;
1152                         goto out_ro;
1153                 }
1154                 return err;
1155         }
1156
1157         spin_lock(&ubi->wl_lock);
1158         wl_entry_destroy(ubi, e);
1159         spin_unlock(&ubi->wl_lock);
1160         if (err != -EIO)
1161                 /*
1162                  * If this is not %-EIO, we have no idea what to do. Scheduling
1163                  * this physical eraseblock for erasure again would cause
1164                  * errors again and again. Well, lets switch to R/O mode.
1165                  */
1166                 goto out_ro;
1167
1168         /* It is %-EIO, the PEB went bad */
1169
1170         if (!ubi->bad_allowed) {
1171                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1172                 goto out_ro;
1173         }
1174
1175         spin_lock(&ubi->volumes_lock);
1176         if (ubi->beb_rsvd_pebs == 0) {
1177                 if (ubi->avail_pebs == 0) {
1178                         spin_unlock(&ubi->volumes_lock);
1179                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1180                         goto out_ro;
1181                 }
1182                 ubi->avail_pebs -= 1;
1183                 available_consumed = 1;
1184         }
1185         spin_unlock(&ubi->volumes_lock);
1186
1187         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1188         err = ubi_io_mark_bad(ubi, pnum);
1189         if (err)
1190                 goto out_ro;
1191
1192         spin_lock(&ubi->volumes_lock);
1193         if (ubi->beb_rsvd_pebs > 0) {
1194                 if (available_consumed) {
1195                         /*
1196                          * The amount of reserved PEBs increased since we last
1197                          * checked.
1198                          */
1199                         ubi->avail_pebs += 1;
1200                         available_consumed = 0;
1201                 }
1202                 ubi->beb_rsvd_pebs -= 1;
1203         }
1204         ubi->bad_peb_count += 1;
1205         ubi->good_peb_count -= 1;
1206         ubi_calculate_reserved(ubi);
1207         if (available_consumed)
1208                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1209         else if (ubi->beb_rsvd_pebs)
1210                 ubi_msg(ubi, "%d PEBs left in the reserve",
1211                         ubi->beb_rsvd_pebs);
1212         else
1213                 ubi_warn(ubi, "last PEB from the reserve was used");
1214         spin_unlock(&ubi->volumes_lock);
1215
1216         return err;
1217
1218 out_ro:
1219         if (available_consumed) {
1220                 spin_lock(&ubi->volumes_lock);
1221                 ubi->avail_pebs += 1;
1222                 spin_unlock(&ubi->volumes_lock);
1223         }
1224         ubi_ro_mode(ubi);
1225         return err;
1226 }
1227
1228 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1229                           int shutdown)
1230 {
1231         int ret;
1232
1233         if (shutdown) {
1234                 struct ubi_wl_entry *e = wl_wrk->e;
1235
1236                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1237                 kfree(wl_wrk);
1238                 wl_entry_destroy(ubi, e);
1239                 return 0;
1240         }
1241
1242         ret = __erase_worker(ubi, wl_wrk);
1243         kfree(wl_wrk);
1244         return ret;
1245 }
1246
1247 /**
1248  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1249  * @ubi: UBI device description object
1250  * @vol_id: the volume ID that last used this PEB
1251  * @lnum: the last used logical eraseblock number for the PEB
1252  * @pnum: physical eraseblock to return
1253  * @torture: if this physical eraseblock has to be tortured
1254  *
1255  * This function is called to return physical eraseblock @pnum to the pool of
1256  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1257  * occurred to this @pnum and it has to be tested. This function returns zero
1258  * in case of success, and a negative error code in case of failure.
1259  */
1260 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1261                    int pnum, int torture)
1262 {
1263         int err;
1264         struct ubi_wl_entry *e;
1265
1266         dbg_wl("PEB %d", pnum);
1267         ubi_assert(pnum >= 0);
1268         ubi_assert(pnum < ubi->peb_count);
1269
1270         down_read(&ubi->fm_protect);
1271
1272 retry:
1273         spin_lock(&ubi->wl_lock);
1274         e = ubi->lookuptbl[pnum];
1275         if (!e) {
1276                 /*
1277                  * This wl entry has been removed for some errors by other
1278                  * process (eg. wear leveling worker), corresponding process
1279                  * (except __erase_worker, which cannot concurrent with
1280                  * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1281                  * just ignore this wl entry.
1282                  */
1283                 spin_unlock(&ubi->wl_lock);
1284                 up_read(&ubi->fm_protect);
1285                 return 0;
1286         }
1287         if (e == ubi->move_from) {
1288                 /*
1289                  * User is putting the physical eraseblock which was selected to
1290                  * be moved. It will be scheduled for erasure in the
1291                  * wear-leveling worker.
1292                  */
1293                 dbg_wl("PEB %d is being moved, wait", pnum);
1294                 spin_unlock(&ubi->wl_lock);
1295
1296                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1297                 mutex_lock(&ubi->move_mutex);
1298                 mutex_unlock(&ubi->move_mutex);
1299                 goto retry;
1300         } else if (e == ubi->move_to) {
1301                 /*
1302                  * User is putting the physical eraseblock which was selected
1303                  * as the target the data is moved to. It may happen if the EBA
1304                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1305                  * but the WL sub-system has not put the PEB to the "used" tree
1306                  * yet, but it is about to do this. So we just set a flag which
1307                  * will tell the WL worker that the PEB is not needed anymore
1308                  * and should be scheduled for erasure.
1309                  */
1310                 dbg_wl("PEB %d is the target of data moving", pnum);
1311                 ubi_assert(!ubi->move_to_put);
1312                 ubi->move_to_put = 1;
1313                 spin_unlock(&ubi->wl_lock);
1314                 up_read(&ubi->fm_protect);
1315                 return 0;
1316         } else {
1317                 if (in_wl_tree(e, &ubi->used)) {
1318                         self_check_in_wl_tree(ubi, e, &ubi->used);
1319                         rb_erase(&e->u.rb, &ubi->used);
1320                 } else if (in_wl_tree(e, &ubi->scrub)) {
1321                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1322                         rb_erase(&e->u.rb, &ubi->scrub);
1323                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1324                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1325                         rb_erase(&e->u.rb, &ubi->erroneous);
1326                         ubi->erroneous_peb_count -= 1;
1327                         ubi_assert(ubi->erroneous_peb_count >= 0);
1328                         /* Erroneous PEBs should be tortured */
1329                         torture = 1;
1330                 } else {
1331                         err = prot_queue_del(ubi, e->pnum);
1332                         if (err) {
1333                                 ubi_err(ubi, "PEB %d not found", pnum);
1334                                 ubi_ro_mode(ubi);
1335                                 spin_unlock(&ubi->wl_lock);
1336                                 up_read(&ubi->fm_protect);
1337                                 return err;
1338                         }
1339                 }
1340         }
1341         spin_unlock(&ubi->wl_lock);
1342
1343         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1344         if (err) {
1345                 spin_lock(&ubi->wl_lock);
1346                 wl_tree_add(e, &ubi->used);
1347                 spin_unlock(&ubi->wl_lock);
1348         }
1349
1350         up_read(&ubi->fm_protect);
1351         return err;
1352 }
1353
1354 /**
1355  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1356  * @ubi: UBI device description object
1357  * @pnum: the physical eraseblock to schedule
1358  *
1359  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1360  * needs scrubbing. This function schedules a physical eraseblock for
1361  * scrubbing which is done in background. This function returns zero in case of
1362  * success and a negative error code in case of failure.
1363  */
1364 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1365 {
1366         struct ubi_wl_entry *e;
1367
1368         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1369
1370 retry:
1371         spin_lock(&ubi->wl_lock);
1372         e = ubi->lookuptbl[pnum];
1373         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1374                                    in_wl_tree(e, &ubi->erroneous)) {
1375                 spin_unlock(&ubi->wl_lock);
1376                 return 0;
1377         }
1378
1379         if (e == ubi->move_to) {
1380                 /*
1381                  * This physical eraseblock was used to move data to. The data
1382                  * was moved but the PEB was not yet inserted to the proper
1383                  * tree. We should just wait a little and let the WL worker
1384                  * proceed.
1385                  */
1386                 spin_unlock(&ubi->wl_lock);
1387                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1388                 yield();
1389                 goto retry;
1390         }
1391
1392         if (in_wl_tree(e, &ubi->used)) {
1393                 self_check_in_wl_tree(ubi, e, &ubi->used);
1394                 rb_erase(&e->u.rb, &ubi->used);
1395         } else {
1396                 int err;
1397
1398                 err = prot_queue_del(ubi, e->pnum);
1399                 if (err) {
1400                         ubi_err(ubi, "PEB %d not found", pnum);
1401                         ubi_ro_mode(ubi);
1402                         spin_unlock(&ubi->wl_lock);
1403                         return err;
1404                 }
1405         }
1406
1407         wl_tree_add(e, &ubi->scrub);
1408         spin_unlock(&ubi->wl_lock);
1409
1410         /*
1411          * Technically scrubbing is the same as wear-leveling, so it is done
1412          * by the WL worker.
1413          */
1414         return ensure_wear_leveling(ubi, 0);
1415 }
1416
1417 /**
1418  * ubi_wl_flush - flush all pending works.
1419  * @ubi: UBI device description object
1420  * @vol_id: the volume id to flush for
1421  * @lnum: the logical eraseblock number to flush for
1422  *
1423  * This function executes all pending works for a particular volume id /
1424  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1425  * acts as a wildcard for all of the corresponding volume numbers or logical
1426  * eraseblock numbers. It returns zero in case of success and a negative error
1427  * code in case of failure.
1428  */
1429 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1430 {
1431         int err = 0;
1432         int found = 1;
1433
1434         /*
1435          * Erase while the pending works queue is not empty, but not more than
1436          * the number of currently pending works.
1437          */
1438         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1439                vol_id, lnum, ubi->works_count);
1440
1441         while (found) {
1442                 struct ubi_work *wrk, *tmp;
1443                 found = 0;
1444
1445                 down_read(&ubi->work_sem);
1446                 spin_lock(&ubi->wl_lock);
1447                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1448                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1449                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1450                                 list_del(&wrk->list);
1451                                 ubi->works_count -= 1;
1452                                 ubi_assert(ubi->works_count >= 0);
1453                                 spin_unlock(&ubi->wl_lock);
1454
1455                                 err = wrk->func(ubi, wrk, 0);
1456                                 if (err) {
1457                                         up_read(&ubi->work_sem);
1458                                         return err;
1459                                 }
1460
1461                                 spin_lock(&ubi->wl_lock);
1462                                 found = 1;
1463                                 break;
1464                         }
1465                 }
1466                 spin_unlock(&ubi->wl_lock);
1467                 up_read(&ubi->work_sem);
1468         }
1469
1470         /*
1471          * Make sure all the works which have been done in parallel are
1472          * finished.
1473          */
1474         down_write(&ubi->work_sem);
1475         up_write(&ubi->work_sem);
1476
1477         return err;
1478 }
1479
1480 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1481 {
1482         if (in_wl_tree(e, &ubi->scrub))
1483                 return false;
1484         else if (in_wl_tree(e, &ubi->erroneous))
1485                 return false;
1486         else if (ubi->move_from == e)
1487                 return false;
1488         else if (ubi->move_to == e)
1489                 return false;
1490
1491         return true;
1492 }
1493
1494 /**
1495  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1496  * @ubi: UBI device description object
1497  * @pnum: the physical eraseblock to schedule
1498  * @force: don't read the block, assume bitflips happened and take action.
1499  *
1500  * This function reads the given eraseblock and checks if bitflips occured.
1501  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1502  * If scrubbing is forced with @force, the eraseblock is not read,
1503  * but scheduled for scrubbing right away.
1504  *
1505  * Returns:
1506  * %EINVAL, PEB is out of range
1507  * %ENOENT, PEB is no longer used by UBI
1508  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1509  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1510  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1511  * %0, no bit flips detected
1512  */
1513 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1514 {
1515         int err = 0;
1516         struct ubi_wl_entry *e;
1517
1518         if (pnum < 0 || pnum >= ubi->peb_count) {
1519                 err = -EINVAL;
1520                 goto out;
1521         }
1522
1523         /*
1524          * Pause all parallel work, otherwise it can happen that the
1525          * erase worker frees a wl entry under us.
1526          */
1527         down_write(&ubi->work_sem);
1528
1529         /*
1530          * Make sure that the wl entry does not change state while
1531          * inspecting it.
1532          */
1533         spin_lock(&ubi->wl_lock);
1534         e = ubi->lookuptbl[pnum];
1535         if (!e) {
1536                 spin_unlock(&ubi->wl_lock);
1537                 err = -ENOENT;
1538                 goto out_resume;
1539         }
1540
1541         /*
1542          * Does it make sense to check this PEB?
1543          */
1544         if (!scrub_possible(ubi, e)) {
1545                 spin_unlock(&ubi->wl_lock);
1546                 err = -EBUSY;
1547                 goto out_resume;
1548         }
1549         spin_unlock(&ubi->wl_lock);
1550
1551         if (!force) {
1552                 mutex_lock(&ubi->buf_mutex);
1553                 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1554                 mutex_unlock(&ubi->buf_mutex);
1555         }
1556
1557         if (force || err == UBI_IO_BITFLIPS) {
1558                 /*
1559                  * Okay, bit flip happened, let's figure out what we can do.
1560                  */
1561                 spin_lock(&ubi->wl_lock);
1562
1563                 /*
1564                  * Recheck. We released wl_lock, UBI might have killed the
1565                  * wl entry under us.
1566                  */
1567                 e = ubi->lookuptbl[pnum];
1568                 if (!e) {
1569                         spin_unlock(&ubi->wl_lock);
1570                         err = -ENOENT;
1571                         goto out_resume;
1572                 }
1573
1574                 /*
1575                  * Need to re-check state
1576                  */
1577                 if (!scrub_possible(ubi, e)) {
1578                         spin_unlock(&ubi->wl_lock);
1579                         err = -EBUSY;
1580                         goto out_resume;
1581                 }
1582
1583                 if (in_pq(ubi, e)) {
1584                         prot_queue_del(ubi, e->pnum);
1585                         wl_tree_add(e, &ubi->scrub);
1586                         spin_unlock(&ubi->wl_lock);
1587
1588                         err = ensure_wear_leveling(ubi, 1);
1589                 } else if (in_wl_tree(e, &ubi->used)) {
1590                         rb_erase(&e->u.rb, &ubi->used);
1591                         wl_tree_add(e, &ubi->scrub);
1592                         spin_unlock(&ubi->wl_lock);
1593
1594                         err = ensure_wear_leveling(ubi, 1);
1595                 } else if (in_wl_tree(e, &ubi->free)) {
1596                         rb_erase(&e->u.rb, &ubi->free);
1597                         ubi->free_count--;
1598                         spin_unlock(&ubi->wl_lock);
1599
1600                         /*
1601                          * This PEB is empty we can schedule it for
1602                          * erasure right away. No wear leveling needed.
1603                          */
1604                         err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1605                                              force ? 0 : 1, true);
1606                 } else {
1607                         spin_unlock(&ubi->wl_lock);
1608                         err = -EAGAIN;
1609                 }
1610
1611                 if (!err && !force)
1612                         err = -EUCLEAN;
1613         } else {
1614                 err = 0;
1615         }
1616
1617 out_resume:
1618         up_write(&ubi->work_sem);
1619 out:
1620
1621         return err;
1622 }
1623
1624 /**
1625  * tree_destroy - destroy an RB-tree.
1626  * @ubi: UBI device description object
1627  * @root: the root of the tree to destroy
1628  */
1629 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1630 {
1631         struct rb_node *rb;
1632         struct ubi_wl_entry *e;
1633
1634         rb = root->rb_node;
1635         while (rb) {
1636                 if (rb->rb_left)
1637                         rb = rb->rb_left;
1638                 else if (rb->rb_right)
1639                         rb = rb->rb_right;
1640                 else {
1641                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1642
1643                         rb = rb_parent(rb);
1644                         if (rb) {
1645                                 if (rb->rb_left == &e->u.rb)
1646                                         rb->rb_left = NULL;
1647                                 else
1648                                         rb->rb_right = NULL;
1649                         }
1650
1651                         wl_entry_destroy(ubi, e);
1652                 }
1653         }
1654 }
1655
1656 /**
1657  * ubi_thread - UBI background thread.
1658  * @u: the UBI device description object pointer
1659  */
1660 int ubi_thread(void *u)
1661 {
1662         int failures = 0;
1663         struct ubi_device *ubi = u;
1664
1665         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1666                 ubi->bgt_name, task_pid_nr(current));
1667
1668         set_freezable();
1669         for (;;) {
1670                 int err;
1671
1672                 if (kthread_should_stop())
1673                         break;
1674
1675                 if (try_to_freeze())
1676                         continue;
1677
1678                 spin_lock(&ubi->wl_lock);
1679                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1680                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1681                         set_current_state(TASK_INTERRUPTIBLE);
1682                         spin_unlock(&ubi->wl_lock);
1683
1684                         /*
1685                          * Check kthread_should_stop() after we set the task
1686                          * state to guarantee that we either see the stop bit
1687                          * and exit or the task state is reset to runnable such
1688                          * that it's not scheduled out indefinitely and detects
1689                          * the stop bit at kthread_should_stop().
1690                          */
1691                         if (kthread_should_stop()) {
1692                                 set_current_state(TASK_RUNNING);
1693                                 break;
1694                         }
1695
1696                         schedule();
1697                         continue;
1698                 }
1699                 spin_unlock(&ubi->wl_lock);
1700
1701                 err = do_work(ubi, NULL);
1702                 if (err) {
1703                         ubi_err(ubi, "%s: work failed with error code %d",
1704                                 ubi->bgt_name, err);
1705                         if (failures++ > WL_MAX_FAILURES) {
1706                                 /*
1707                                  * Too many failures, disable the thread and
1708                                  * switch to read-only mode.
1709                                  */
1710                                 ubi_msg(ubi, "%s: %d consecutive failures",
1711                                         ubi->bgt_name, WL_MAX_FAILURES);
1712                                 ubi_ro_mode(ubi);
1713                                 ubi->thread_enabled = 0;
1714                                 continue;
1715                         }
1716                 } else
1717                         failures = 0;
1718
1719                 cond_resched();
1720         }
1721
1722         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1723         ubi->thread_enabled = 0;
1724         return 0;
1725 }
1726
1727 /**
1728  * shutdown_work - shutdown all pending works.
1729  * @ubi: UBI device description object
1730  */
1731 static void shutdown_work(struct ubi_device *ubi)
1732 {
1733         while (!list_empty(&ubi->works)) {
1734                 struct ubi_work *wrk;
1735
1736                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1737                 list_del(&wrk->list);
1738                 wrk->func(ubi, wrk, 1);
1739                 ubi->works_count -= 1;
1740                 ubi_assert(ubi->works_count >= 0);
1741         }
1742 }
1743
1744 /**
1745  * erase_aeb - erase a PEB given in UBI attach info PEB
1746  * @ubi: UBI device description object
1747  * @aeb: UBI attach info PEB
1748  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1749  */
1750 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1751 {
1752         struct ubi_wl_entry *e;
1753         int err;
1754
1755         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1756         if (!e)
1757                 return -ENOMEM;
1758
1759         e->pnum = aeb->pnum;
1760         e->ec = aeb->ec;
1761         ubi->lookuptbl[e->pnum] = e;
1762
1763         if (sync) {
1764                 err = ubi_sync_erase(ubi, e, false);
1765                 if (err)
1766                         goto out_free;
1767
1768                 wl_tree_add(e, &ubi->free);
1769                 ubi->free_count++;
1770         } else {
1771                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1772                 if (err)
1773                         goto out_free;
1774         }
1775
1776         return 0;
1777
1778 out_free:
1779         wl_entry_destroy(ubi, e);
1780
1781         return err;
1782 }
1783
1784 /**
1785  * ubi_wl_init - initialize the WL sub-system using attaching information.
1786  * @ubi: UBI device description object
1787  * @ai: attaching information
1788  *
1789  * This function returns zero in case of success, and a negative error code in
1790  * case of failure.
1791  */
1792 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1793 {
1794         int err, i, reserved_pebs, found_pebs = 0;
1795         struct rb_node *rb1, *rb2;
1796         struct ubi_ainf_volume *av;
1797         struct ubi_ainf_peb *aeb, *tmp;
1798         struct ubi_wl_entry *e;
1799
1800         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1801         spin_lock_init(&ubi->wl_lock);
1802         mutex_init(&ubi->move_mutex);
1803         init_rwsem(&ubi->work_sem);
1804         ubi->max_ec = ai->max_ec;
1805         INIT_LIST_HEAD(&ubi->works);
1806
1807         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1808
1809         err = -ENOMEM;
1810         ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1811         if (!ubi->lookuptbl)
1812                 return err;
1813
1814         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1815                 INIT_LIST_HEAD(&ubi->pq[i]);
1816         ubi->pq_head = 0;
1817
1818         ubi->free_count = 0;
1819         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1820                 cond_resched();
1821
1822                 err = erase_aeb(ubi, aeb, false);
1823                 if (err)
1824                         goto out_free;
1825
1826                 found_pebs++;
1827         }
1828
1829         list_for_each_entry(aeb, &ai->free, u.list) {
1830                 cond_resched();
1831
1832                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1833                 if (!e) {
1834                         err = -ENOMEM;
1835                         goto out_free;
1836                 }
1837
1838                 e->pnum = aeb->pnum;
1839                 e->ec = aeb->ec;
1840                 ubi_assert(e->ec >= 0);
1841
1842                 wl_tree_add(e, &ubi->free);
1843                 ubi->free_count++;
1844
1845                 ubi->lookuptbl[e->pnum] = e;
1846
1847                 found_pebs++;
1848         }
1849
1850         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1851                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1852                         cond_resched();
1853
1854                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1855                         if (!e) {
1856                                 err = -ENOMEM;
1857                                 goto out_free;
1858                         }
1859
1860                         e->pnum = aeb->pnum;
1861                         e->ec = aeb->ec;
1862                         ubi->lookuptbl[e->pnum] = e;
1863
1864                         if (!aeb->scrub) {
1865                                 dbg_wl("add PEB %d EC %d to the used tree",
1866                                        e->pnum, e->ec);
1867                                 wl_tree_add(e, &ubi->used);
1868                         } else {
1869                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1870                                        e->pnum, e->ec);
1871                                 wl_tree_add(e, &ubi->scrub);
1872                         }
1873
1874                         found_pebs++;
1875                 }
1876         }
1877
1878         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1879                 cond_resched();
1880
1881                 e = ubi_find_fm_block(ubi, aeb->pnum);
1882
1883                 if (e) {
1884                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1885                         ubi->lookuptbl[e->pnum] = e;
1886                 } else {
1887                         bool sync = false;
1888
1889                         /*
1890                          * Usually old Fastmap PEBs are scheduled for erasure
1891                          * and we don't have to care about them but if we face
1892                          * an power cut before scheduling them we need to
1893                          * take care of them here.
1894                          */
1895                         if (ubi->lookuptbl[aeb->pnum])
1896                                 continue;
1897
1898                         /*
1899                          * The fastmap update code might not find a free PEB for
1900                          * writing the fastmap anchor to and then reuses the
1901                          * current fastmap anchor PEB. When this PEB gets erased
1902                          * and a power cut happens before it is written again we
1903                          * must make sure that the fastmap attach code doesn't
1904                          * find any outdated fastmap anchors, hence we erase the
1905                          * outdated fastmap anchor PEBs synchronously here.
1906                          */
1907                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1908                                 sync = true;
1909
1910                         err = erase_aeb(ubi, aeb, sync);
1911                         if (err)
1912                                 goto out_free;
1913                 }
1914
1915                 found_pebs++;
1916         }
1917
1918         dbg_wl("found %i PEBs", found_pebs);
1919
1920         ubi_assert(ubi->good_peb_count == found_pebs);
1921
1922         reserved_pebs = WL_RESERVED_PEBS;
1923         ubi_fastmap_init(ubi, &reserved_pebs);
1924
1925         if (ubi->avail_pebs < reserved_pebs) {
1926                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1927                         ubi->avail_pebs, reserved_pebs);
1928                 if (ubi->corr_peb_count)
1929                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1930                                 ubi->corr_peb_count);
1931                 err = -ENOSPC;
1932                 goto out_free;
1933         }
1934         ubi->avail_pebs -= reserved_pebs;
1935         ubi->rsvd_pebs += reserved_pebs;
1936
1937         /* Schedule wear-leveling if needed */
1938         err = ensure_wear_leveling(ubi, 0);
1939         if (err)
1940                 goto out_free;
1941
1942 #ifdef CONFIG_MTD_UBI_FASTMAP
1943         if (!ubi->ro_mode && !ubi->fm_disabled)
1944                 ubi_ensure_anchor_pebs(ubi);
1945 #endif
1946         return 0;
1947
1948 out_free:
1949         shutdown_work(ubi);
1950         tree_destroy(ubi, &ubi->used);
1951         tree_destroy(ubi, &ubi->free);
1952         tree_destroy(ubi, &ubi->scrub);
1953         kfree(ubi->lookuptbl);
1954         return err;
1955 }
1956
1957 /**
1958  * protection_queue_destroy - destroy the protection queue.
1959  * @ubi: UBI device description object
1960  */
1961 static void protection_queue_destroy(struct ubi_device *ubi)
1962 {
1963         int i;
1964         struct ubi_wl_entry *e, *tmp;
1965
1966         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1967                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1968                         list_del(&e->u.list);
1969                         wl_entry_destroy(ubi, e);
1970                 }
1971         }
1972 }
1973
1974 /**
1975  * ubi_wl_close - close the wear-leveling sub-system.
1976  * @ubi: UBI device description object
1977  */
1978 void ubi_wl_close(struct ubi_device *ubi)
1979 {
1980         dbg_wl("close the WL sub-system");
1981         ubi_fastmap_close(ubi);
1982         shutdown_work(ubi);
1983         protection_queue_destroy(ubi);
1984         tree_destroy(ubi, &ubi->used);
1985         tree_destroy(ubi, &ubi->erroneous);
1986         tree_destroy(ubi, &ubi->free);
1987         tree_destroy(ubi, &ubi->scrub);
1988         kfree(ubi->lookuptbl);
1989 }
1990
1991 /**
1992  * self_check_ec - make sure that the erase counter of a PEB is correct.
1993  * @ubi: UBI device description object
1994  * @pnum: the physical eraseblock number to check
1995  * @ec: the erase counter to check
1996  *
1997  * This function returns zero if the erase counter of physical eraseblock @pnum
1998  * is equivalent to @ec, and a negative error code if not or if an error
1999  * occurred.
2000  */
2001 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2002 {
2003         int err;
2004         long long read_ec;
2005         struct ubi_ec_hdr *ec_hdr;
2006
2007         if (!ubi_dbg_chk_gen(ubi))
2008                 return 0;
2009
2010         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2011         if (!ec_hdr)
2012                 return -ENOMEM;
2013
2014         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2015         if (err && err != UBI_IO_BITFLIPS) {
2016                 /* The header does not have to exist */
2017                 err = 0;
2018                 goto out_free;
2019         }
2020
2021         read_ec = be64_to_cpu(ec_hdr->ec);
2022         if (ec != read_ec && read_ec - ec > 1) {
2023                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2024                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2025                 dump_stack();
2026                 err = 1;
2027         } else
2028                 err = 0;
2029
2030 out_free:
2031         kfree(ec_hdr);
2032         return err;
2033 }
2034
2035 /**
2036  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2037  * @ubi: UBI device description object
2038  * @e: the wear-leveling entry to check
2039  * @root: the root of the tree
2040  *
2041  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2042  * is not.
2043  */
2044 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2045                                  struct ubi_wl_entry *e, struct rb_root *root)
2046 {
2047         if (!ubi_dbg_chk_gen(ubi))
2048                 return 0;
2049
2050         if (in_wl_tree(e, root))
2051                 return 0;
2052
2053         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2054                 e->pnum, e->ec, root);
2055         dump_stack();
2056         return -EINVAL;
2057 }
2058
2059 /**
2060  * self_check_in_pq - check if wear-leveling entry is in the protection
2061  *                        queue.
2062  * @ubi: UBI device description object
2063  * @e: the wear-leveling entry to check
2064  *
2065  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2066  */
2067 static int self_check_in_pq(const struct ubi_device *ubi,
2068                             struct ubi_wl_entry *e)
2069 {
2070         if (!ubi_dbg_chk_gen(ubi))
2071                 return 0;
2072
2073         if (in_pq(ubi, e))
2074                 return 0;
2075
2076         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2077                 e->pnum, e->ec);
2078         dump_stack();
2079         return -EINVAL;
2080 }
2081 #ifndef CONFIG_MTD_UBI_FASTMAP
2082 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2083 {
2084         struct ubi_wl_entry *e;
2085
2086         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2087         self_check_in_wl_tree(ubi, e, &ubi->free);
2088         ubi->free_count--;
2089         ubi_assert(ubi->free_count >= 0);
2090         rb_erase(&e->u.rb, &ubi->free);
2091
2092         return e;
2093 }
2094
2095 /**
2096  * produce_free_peb - produce a free physical eraseblock.
2097  * @ubi: UBI device description object
2098  *
2099  * This function tries to make a free PEB by means of synchronous execution of
2100  * pending works. This may be needed if, for example the background thread is
2101  * disabled. Returns zero in case of success and a negative error code in case
2102  * of failure.
2103  */
2104 static int produce_free_peb(struct ubi_device *ubi)
2105 {
2106         int err;
2107
2108         while (!ubi->free.rb_node && ubi->works_count) {
2109                 spin_unlock(&ubi->wl_lock);
2110
2111                 dbg_wl("do one work synchronously");
2112                 err = do_work(ubi, NULL);
2113
2114                 spin_lock(&ubi->wl_lock);
2115                 if (err)
2116                         return err;
2117         }
2118
2119         return 0;
2120 }
2121
2122 /**
2123  * ubi_wl_get_peb - get a physical eraseblock.
2124  * @ubi: UBI device description object
2125  *
2126  * This function returns a physical eraseblock in case of success and a
2127  * negative error code in case of failure.
2128  * Returns with ubi->fm_eba_sem held in read mode!
2129  */
2130 int ubi_wl_get_peb(struct ubi_device *ubi)
2131 {
2132         int err;
2133         struct ubi_wl_entry *e;
2134
2135 retry:
2136         down_read(&ubi->fm_eba_sem);
2137         spin_lock(&ubi->wl_lock);
2138         if (!ubi->free.rb_node) {
2139                 if (ubi->works_count == 0) {
2140                         ubi_err(ubi, "no free eraseblocks");
2141                         ubi_assert(list_empty(&ubi->works));
2142                         spin_unlock(&ubi->wl_lock);
2143                         return -ENOSPC;
2144                 }
2145
2146                 err = produce_free_peb(ubi);
2147                 if (err < 0) {
2148                         spin_unlock(&ubi->wl_lock);
2149                         return err;
2150                 }
2151                 spin_unlock(&ubi->wl_lock);
2152                 up_read(&ubi->fm_eba_sem);
2153                 goto retry;
2154
2155         }
2156         e = wl_get_wle(ubi);
2157         prot_queue_add(ubi, e);
2158         spin_unlock(&ubi->wl_lock);
2159
2160         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2161                                     ubi->peb_size - ubi->vid_hdr_aloffset);
2162         if (err) {
2163                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2164                 return err;
2165         }
2166
2167         return e->pnum;
2168 }
2169 #else
2170 #include "fastmap-wl.c"
2171 #endif