GNU Linux-libre 6.1.24-gnu
[releases.git] / drivers / mtd / ubi / wl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127                                  struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129                             struct ubi_wl_entry *e);
130
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141         struct rb_node **p, *parent = NULL;
142
143         p = &root->rb_node;
144         while (*p) {
145                 struct ubi_wl_entry *e1;
146
147                 parent = *p;
148                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150                 if (e->ec < e1->ec)
151                         p = &(*p)->rb_left;
152                 else if (e->ec > e1->ec)
153                         p = &(*p)->rb_right;
154                 else {
155                         ubi_assert(e->pnum != e1->pnum);
156                         if (e->pnum < e1->pnum)
157                                 p = &(*p)->rb_left;
158                         else
159                                 p = &(*p)->rb_right;
160                 }
161         }
162
163         rb_link_node(&e->u.rb, parent, p);
164         rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177         ubi->lookuptbl[e->pnum] = NULL;
178         kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190         int err;
191         struct ubi_work *wrk;
192
193         cond_resched();
194
195         /*
196          * @ubi->work_sem is used to synchronize with the workers. Workers take
197          * it in read mode, so many of them may be doing works at a time. But
198          * the queue flush code has to be sure the whole queue of works is
199          * done, and it takes the mutex in write mode.
200          */
201         down_read(&ubi->work_sem);
202         spin_lock(&ubi->wl_lock);
203         if (list_empty(&ubi->works)) {
204                 spin_unlock(&ubi->wl_lock);
205                 up_read(&ubi->work_sem);
206                 return 0;
207         }
208
209         wrk = list_entry(ubi->works.next, struct ubi_work, list);
210         list_del(&wrk->list);
211         ubi->works_count -= 1;
212         ubi_assert(ubi->works_count >= 0);
213         spin_unlock(&ubi->wl_lock);
214
215         /*
216          * Call the worker function. Do not touch the work structure
217          * after this call as it will have been freed or reused by that
218          * time by the worker function.
219          */
220         err = wrk->func(ubi, wrk, 0);
221         if (err)
222                 ubi_err(ubi, "work failed with error code %d", err);
223         up_read(&ubi->work_sem);
224
225         return err;
226 }
227
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238         struct rb_node *p;
239
240         p = root->rb_node;
241         while (p) {
242                 struct ubi_wl_entry *e1;
243
244                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246                 if (e->pnum == e1->pnum) {
247                         ubi_assert(e == e1);
248                         return 1;
249                 }
250
251                 if (e->ec < e1->ec)
252                         p = p->rb_left;
253                 else if (e->ec > e1->ec)
254                         p = p->rb_right;
255                 else {
256                         ubi_assert(e->pnum != e1->pnum);
257                         if (e->pnum < e1->pnum)
258                                 p = p->rb_left;
259                         else
260                                 p = p->rb_right;
261                 }
262         }
263
264         return 0;
265 }
266
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277         struct ubi_wl_entry *p;
278         int i;
279
280         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281                 list_for_each_entry(p, &ubi->pq[i], u.list)
282                         if (p == e)
283                                 return 1;
284
285         return 0;
286 }
287
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300         int pq_tail = ubi->pq_head - 1;
301
302         if (pq_tail < 0)
303                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319                                           struct rb_root *root, int diff)
320 {
321         struct rb_node *p;
322         struct ubi_wl_entry *e;
323         int max;
324
325         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326         max = e->ec + diff;
327
328         p = root->rb_node;
329         while (p) {
330                 struct ubi_wl_entry *e1;
331
332                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333                 if (e1->ec >= max)
334                         p = p->rb_left;
335                 else {
336                         p = p->rb_right;
337                         e = e1;
338                 }
339         }
340
341         return e;
342 }
343
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354                                                struct rb_root *root)
355 {
356         struct ubi_wl_entry *e, *first, *last;
357
358         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364                 /* If no fastmap has been written and this WL entry can be used
365                  * as anchor PEB, hold it back and return the second best
366                  * WL entry such that fastmap can use the anchor PEB later. */
367                 e = may_reserve_for_fm(ubi, e, root);
368         } else
369                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371         return e;
372 }
373
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384         struct ubi_wl_entry *e;
385
386         e = find_mean_wl_entry(ubi, &ubi->free);
387         if (!e) {
388                 ubi_err(ubi, "no free eraseblocks");
389                 return NULL;
390         }
391
392         self_check_in_wl_tree(ubi, e, &ubi->free);
393
394         /*
395          * Move the physical eraseblock to the protection queue where it will
396          * be protected from being moved for some time.
397          */
398         rb_erase(&e->u.rb, &ubi->free);
399         ubi->free_count--;
400         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402         return e;
403 }
404
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415         struct ubi_wl_entry *e;
416
417         e = ubi->lookuptbl[pnum];
418         if (!e)
419                 return -ENODEV;
420
421         if (self_check_in_pq(ubi, e))
422                 return -ENODEV;
423
424         list_del(&e->u.list);
425         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426         return 0;
427 }
428
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439                       int torture)
440 {
441         int err;
442         struct ubi_ec_hdr *ec_hdr;
443         unsigned long long ec = e->ec;
444
445         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447         err = self_check_ec(ubi, e->pnum, e->ec);
448         if (err)
449                 return -EINVAL;
450
451         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452         if (!ec_hdr)
453                 return -ENOMEM;
454
455         err = ubi_io_sync_erase(ubi, e->pnum, torture);
456         if (err < 0)
457                 goto out_free;
458
459         ec += err;
460         if (ec > UBI_MAX_ERASECOUNTER) {
461                 /*
462                  * Erase counter overflow. Upgrade UBI and use 64-bit
463                  * erase counters internally.
464                  */
465                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466                         e->pnum, ec);
467                 err = -EINVAL;
468                 goto out_free;
469         }
470
471         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473         ec_hdr->ec = cpu_to_be64(ec);
474
475         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476         if (err)
477                 goto out_free;
478
479         e->ec = ec;
480         spin_lock(&ubi->wl_lock);
481         if (e->ec > ubi->max_ec)
482                 ubi->max_ec = e->ec;
483         spin_unlock(&ubi->wl_lock);
484
485 out_free:
486         kfree(ec_hdr);
487         return err;
488 }
489
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500         struct ubi_wl_entry *e, *tmp;
501         int count;
502
503         /*
504          * There may be several protected physical eraseblock to remove,
505          * process them all.
506          */
507 repeat:
508         count = 0;
509         spin_lock(&ubi->wl_lock);
510         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511                 dbg_wl("PEB %d EC %d protection over, move to used tree",
512                         e->pnum, e->ec);
513
514                 list_del(&e->u.list);
515                 wl_tree_add(e, &ubi->used);
516                 if (count++ > 32) {
517                         /*
518                          * Let's be nice and avoid holding the spinlock for
519                          * too long.
520                          */
521                         spin_unlock(&ubi->wl_lock);
522                         cond_resched();
523                         goto repeat;
524                 }
525         }
526
527         ubi->pq_head += 1;
528         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529                 ubi->pq_head = 0;
530         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531         spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544         spin_lock(&ubi->wl_lock);
545         list_add_tail(&wrk->list, &ubi->works);
546         ubi_assert(ubi->works_count >= 0);
547         ubi->works_count += 1;
548         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549                 wake_up_process(ubi->bgt_thread);
550         spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563         down_read(&ubi->work_sem);
564         __schedule_ubi_work(ubi, wrk);
565         up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569                         int shutdown);
570
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  * @nested: denotes whether the work_sem is already held in read mode
579  *
580  * This function returns zero in case of success and a %-ENOMEM in case of
581  * failure.
582  */
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584                           int vol_id, int lnum, int torture, bool nested)
585 {
586         struct ubi_work *wl_wrk;
587
588         ubi_assert(e);
589
590         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591                e->pnum, e->ec, torture);
592
593         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594         if (!wl_wrk)
595                 return -ENOMEM;
596
597         wl_wrk->func = &erase_worker;
598         wl_wrk->e = e;
599         wl_wrk->vol_id = vol_id;
600         wl_wrk->lnum = lnum;
601         wl_wrk->torture = torture;
602
603         if (nested)
604                 __schedule_ubi_work(ubi, wl_wrk);
605         else
606                 schedule_ubi_work(ubi, wl_wrk);
607         return 0;
608 }
609
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612  * do_sync_erase - run the erase worker synchronously.
613  * @ubi: UBI device description object
614  * @e: the WL entry of the physical eraseblock to erase
615  * @vol_id: the volume ID that last used this PEB
616  * @lnum: the last used logical eraseblock number for the PEB
617  * @torture: if the physical eraseblock has to be tortured
618  *
619  */
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621                          int vol_id, int lnum, int torture)
622 {
623         struct ubi_work wl_wrk;
624
625         dbg_wl("sync erase of PEB %i", e->pnum);
626
627         wl_wrk.e = e;
628         wl_wrk.vol_id = vol_id;
629         wl_wrk.lnum = lnum;
630         wl_wrk.torture = torture;
631
632         return __erase_worker(ubi, &wl_wrk);
633 }
634
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637  * wear_leveling_worker - wear-leveling worker function.
638  * @ubi: UBI device description object
639  * @wrk: the work object
640  * @shutdown: non-zero if the worker has to free memory and exit
641  * because the WL-subsystem is shutting down
642  *
643  * This function copies a more worn out physical eraseblock to a less worn out
644  * one. Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648                                 int shutdown)
649 {
650         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652         struct ubi_wl_entry *e1, *e2;
653         struct ubi_vid_io_buf *vidb;
654         struct ubi_vid_hdr *vid_hdr;
655         int dst_leb_clean = 0;
656
657         kfree(wrk);
658         if (shutdown)
659                 return 0;
660
661         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662         if (!vidb)
663                 return -ENOMEM;
664
665         vid_hdr = ubi_get_vid_hdr(vidb);
666
667         down_read(&ubi->fm_eba_sem);
668         mutex_lock(&ubi->move_mutex);
669         spin_lock(&ubi->wl_lock);
670         ubi_assert(!ubi->move_from && !ubi->move_to);
671         ubi_assert(!ubi->move_to_put);
672
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674         if (!next_peb_for_wl(ubi) ||
675 #else
676         if (!ubi->free.rb_node ||
677 #endif
678             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679                 /*
680                  * No free physical eraseblocks? Well, they must be waiting in
681                  * the queue to be erased. Cancel movement - it will be
682                  * triggered again when a free physical eraseblock appears.
683                  *
684                  * No used physical eraseblocks? They must be temporarily
685                  * protected from being moved. They will be moved to the
686                  * @ubi->used tree later and the wear-leveling will be
687                  * triggered again.
688                  */
689                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
690                        !ubi->free.rb_node, !ubi->used.rb_node);
691                 goto out_cancel;
692         }
693
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695         e1 = find_anchor_wl_entry(&ubi->used);
696         if (e1 && ubi->fm_anchor &&
697             (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698                 ubi->fm_do_produce_anchor = 1;
699                 /*
700                  * fm_anchor is no longer considered a good anchor.
701                  * NULL assignment also prevents multiple wear level checks
702                  * of this PEB.
703                  */
704                 wl_tree_add(ubi->fm_anchor, &ubi->free);
705                 ubi->fm_anchor = NULL;
706                 ubi->free_count++;
707         }
708
709         if (ubi->fm_do_produce_anchor) {
710                 if (!e1)
711                         goto out_cancel;
712                 e2 = get_peb_for_wl(ubi);
713                 if (!e2)
714                         goto out_cancel;
715
716                 self_check_in_wl_tree(ubi, e1, &ubi->used);
717                 rb_erase(&e1->u.rb, &ubi->used);
718                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719                 ubi->fm_do_produce_anchor = 0;
720         } else if (!ubi->scrub.rb_node) {
721 #else
722         if (!ubi->scrub.rb_node) {
723 #endif
724                 /*
725                  * Now pick the least worn-out used physical eraseblock and a
726                  * highly worn-out free physical eraseblock. If the erase
727                  * counters differ much enough, start wear-leveling.
728                  */
729                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730                 e2 = get_peb_for_wl(ubi);
731                 if (!e2)
732                         goto out_cancel;
733
734                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
736                                e1->ec, e2->ec);
737
738                         /* Give the unused PEB back */
739                         wl_tree_add(e2, &ubi->free);
740                         ubi->free_count++;
741                         goto out_cancel;
742                 }
743                 self_check_in_wl_tree(ubi, e1, &ubi->used);
744                 rb_erase(&e1->u.rb, &ubi->used);
745                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746                        e1->pnum, e1->ec, e2->pnum, e2->ec);
747         } else {
748                 /* Perform scrubbing */
749                 scrubbing = 1;
750                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751                 e2 = get_peb_for_wl(ubi);
752                 if (!e2)
753                         goto out_cancel;
754
755                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756                 rb_erase(&e1->u.rb, &ubi->scrub);
757                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758         }
759
760         ubi->move_from = e1;
761         ubi->move_to = e2;
762         spin_unlock(&ubi->wl_lock);
763
764         /*
765          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766          * We so far do not know which logical eraseblock our physical
767          * eraseblock (@e1) belongs to. We have to read the volume identifier
768          * header first.
769          *
770          * Note, we are protected from this PEB being unmapped and erased. The
771          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772          * which is being moved was unmapped.
773          */
774
775         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776         if (err && err != UBI_IO_BITFLIPS) {
777                 dst_leb_clean = 1;
778                 if (err == UBI_IO_FF) {
779                         /*
780                          * We are trying to move PEB without a VID header. UBI
781                          * always write VID headers shortly after the PEB was
782                          * given, so we have a situation when it has not yet
783                          * had a chance to write it, because it was preempted.
784                          * So add this PEB to the protection queue so far,
785                          * because presumably more data will be written there
786                          * (including the missing VID header), and then we'll
787                          * move it.
788                          */
789                         dbg_wl("PEB %d has no VID header", e1->pnum);
790                         protect = 1;
791                         goto out_not_moved;
792                 } else if (err == UBI_IO_FF_BITFLIPS) {
793                         /*
794                          * The same situation as %UBI_IO_FF, but bit-flips were
795                          * detected. It is better to schedule this PEB for
796                          * scrubbing.
797                          */
798                         dbg_wl("PEB %d has no VID header but has bit-flips",
799                                e1->pnum);
800                         scrubbing = 1;
801                         goto out_not_moved;
802                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803                         /*
804                          * While a full scan would detect interrupted erasures
805                          * at attach time we can face them here when attached from
806                          * Fastmap.
807                          */
808                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809                                e1->pnum);
810                         erase = 1;
811                         goto out_not_moved;
812                 }
813
814                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
815                         err, e1->pnum);
816                 goto out_error;
817         }
818
819         vol_id = be32_to_cpu(vid_hdr->vol_id);
820         lnum = be32_to_cpu(vid_hdr->lnum);
821
822         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823         if (err) {
824                 if (err == MOVE_CANCEL_RACE) {
825                         /*
826                          * The LEB has not been moved because the volume is
827                          * being deleted or the PEB has been put meanwhile. We
828                          * should prevent this PEB from being selected for
829                          * wear-leveling movement again, so put it to the
830                          * protection queue.
831                          */
832                         protect = 1;
833                         dst_leb_clean = 1;
834                         goto out_not_moved;
835                 }
836                 if (err == MOVE_RETRY) {
837                         scrubbing = 1;
838                         dst_leb_clean = 1;
839                         goto out_not_moved;
840                 }
841                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
842                     err == MOVE_TARGET_RD_ERR) {
843                         /*
844                          * Target PEB had bit-flips or write error - torture it.
845                          */
846                         torture = 1;
847                         keep = 1;
848                         goto out_not_moved;
849                 }
850
851                 if (err == MOVE_SOURCE_RD_ERR) {
852                         /*
853                          * An error happened while reading the source PEB. Do
854                          * not switch to R/O mode in this case, and give the
855                          * upper layers a possibility to recover from this,
856                          * e.g. by unmapping corresponding LEB. Instead, just
857                          * put this PEB to the @ubi->erroneous list to prevent
858                          * UBI from trying to move it over and over again.
859                          */
860                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
861                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
862                                         ubi->erroneous_peb_count);
863                                 goto out_error;
864                         }
865                         dst_leb_clean = 1;
866                         erroneous = 1;
867                         goto out_not_moved;
868                 }
869
870                 if (err < 0)
871                         goto out_error;
872
873                 ubi_assert(0);
874         }
875
876         /* The PEB has been successfully moved */
877         if (scrubbing)
878                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
879                         e1->pnum, vol_id, lnum, e2->pnum);
880         ubi_free_vid_buf(vidb);
881
882         spin_lock(&ubi->wl_lock);
883         if (!ubi->move_to_put) {
884                 wl_tree_add(e2, &ubi->used);
885                 e2 = NULL;
886         }
887         ubi->move_from = ubi->move_to = NULL;
888         ubi->move_to_put = ubi->wl_scheduled = 0;
889         spin_unlock(&ubi->wl_lock);
890
891         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
892         if (err) {
893                 if (e2) {
894                         spin_lock(&ubi->wl_lock);
895                         wl_entry_destroy(ubi, e2);
896                         spin_unlock(&ubi->wl_lock);
897                 }
898                 goto out_ro;
899         }
900
901         if (e2) {
902                 /*
903                  * Well, the target PEB was put meanwhile, schedule it for
904                  * erasure.
905                  */
906                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
907                        e2->pnum, vol_id, lnum);
908                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
909                 if (err)
910                         goto out_ro;
911         }
912
913         dbg_wl("done");
914         mutex_unlock(&ubi->move_mutex);
915         up_read(&ubi->fm_eba_sem);
916         return 0;
917
918         /*
919          * For some reasons the LEB was not moved, might be an error, might be
920          * something else. @e1 was not changed, so return it back. @e2 might
921          * have been changed, schedule it for erasure.
922          */
923 out_not_moved:
924         if (vol_id != -1)
925                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
926                        e1->pnum, vol_id, lnum, e2->pnum, err);
927         else
928                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
929                        e1->pnum, e2->pnum, err);
930         spin_lock(&ubi->wl_lock);
931         if (protect)
932                 prot_queue_add(ubi, e1);
933         else if (erroneous) {
934                 wl_tree_add(e1, &ubi->erroneous);
935                 ubi->erroneous_peb_count += 1;
936         } else if (scrubbing)
937                 wl_tree_add(e1, &ubi->scrub);
938         else if (keep)
939                 wl_tree_add(e1, &ubi->used);
940         if (dst_leb_clean) {
941                 wl_tree_add(e2, &ubi->free);
942                 ubi->free_count++;
943         }
944
945         ubi_assert(!ubi->move_to_put);
946         ubi->move_from = ubi->move_to = NULL;
947         ubi->wl_scheduled = 0;
948         spin_unlock(&ubi->wl_lock);
949
950         ubi_free_vid_buf(vidb);
951         if (dst_leb_clean) {
952                 ensure_wear_leveling(ubi, 1);
953         } else {
954                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
955                 if (err)
956                         goto out_ro;
957         }
958
959         if (erase) {
960                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
961                 if (err)
962                         goto out_ro;
963         }
964
965         mutex_unlock(&ubi->move_mutex);
966         up_read(&ubi->fm_eba_sem);
967         return 0;
968
969 out_error:
970         if (vol_id != -1)
971                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
972                         err, e1->pnum, e2->pnum);
973         else
974                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
975                         err, e1->pnum, vol_id, lnum, e2->pnum);
976         spin_lock(&ubi->wl_lock);
977         ubi->move_from = ubi->move_to = NULL;
978         ubi->move_to_put = ubi->wl_scheduled = 0;
979         wl_entry_destroy(ubi, e1);
980         wl_entry_destroy(ubi, e2);
981         spin_unlock(&ubi->wl_lock);
982
983         ubi_free_vid_buf(vidb);
984
985 out_ro:
986         ubi_ro_mode(ubi);
987         mutex_unlock(&ubi->move_mutex);
988         up_read(&ubi->fm_eba_sem);
989         ubi_assert(err != 0);
990         return err < 0 ? err : -EIO;
991
992 out_cancel:
993         ubi->wl_scheduled = 0;
994         spin_unlock(&ubi->wl_lock);
995         mutex_unlock(&ubi->move_mutex);
996         up_read(&ubi->fm_eba_sem);
997         ubi_free_vid_buf(vidb);
998         return 0;
999 }
1000
1001 /**
1002  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1003  * @ubi: UBI device description object
1004  * @nested: set to non-zero if this function is called from UBI worker
1005  *
1006  * This function checks if it is time to start wear-leveling and schedules it
1007  * if yes. This function returns zero in case of success and a negative error
1008  * code in case of failure.
1009  */
1010 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1011 {
1012         int err = 0;
1013         struct ubi_work *wrk;
1014
1015         spin_lock(&ubi->wl_lock);
1016         if (ubi->wl_scheduled)
1017                 /* Wear-leveling is already in the work queue */
1018                 goto out_unlock;
1019
1020         /*
1021          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1022          * WL worker has to be scheduled anyway.
1023          */
1024         if (!ubi->scrub.rb_node) {
1025 #ifdef CONFIG_MTD_UBI_FASTMAP
1026                 if (!need_wear_leveling(ubi))
1027                         goto out_unlock;
1028 #else
1029                 struct ubi_wl_entry *e1;
1030                 struct ubi_wl_entry *e2;
1031
1032                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1033                         /* No physical eraseblocks - no deal */
1034                         goto out_unlock;
1035
1036                 /*
1037                  * We schedule wear-leveling only if the difference between the
1038                  * lowest erase counter of used physical eraseblocks and a high
1039                  * erase counter of free physical eraseblocks is greater than
1040                  * %UBI_WL_THRESHOLD.
1041                  */
1042                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1043                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1044
1045                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1046                         goto out_unlock;
1047 #endif
1048                 dbg_wl("schedule wear-leveling");
1049         } else
1050                 dbg_wl("schedule scrubbing");
1051
1052         ubi->wl_scheduled = 1;
1053         spin_unlock(&ubi->wl_lock);
1054
1055         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1056         if (!wrk) {
1057                 err = -ENOMEM;
1058                 goto out_cancel;
1059         }
1060
1061         wrk->func = &wear_leveling_worker;
1062         if (nested)
1063                 __schedule_ubi_work(ubi, wrk);
1064         else
1065                 schedule_ubi_work(ubi, wrk);
1066         return err;
1067
1068 out_cancel:
1069         spin_lock(&ubi->wl_lock);
1070         ubi->wl_scheduled = 0;
1071 out_unlock:
1072         spin_unlock(&ubi->wl_lock);
1073         return err;
1074 }
1075
1076 /**
1077  * __erase_worker - physical eraseblock erase worker function.
1078  * @ubi: UBI device description object
1079  * @wl_wrk: the work object
1080  *
1081  * This function erases a physical eraseblock and perform torture testing if
1082  * needed. It also takes care about marking the physical eraseblock bad if
1083  * needed. Returns zero in case of success and a negative error code in case of
1084  * failure.
1085  */
1086 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1087 {
1088         struct ubi_wl_entry *e = wl_wrk->e;
1089         int pnum = e->pnum;
1090         int vol_id = wl_wrk->vol_id;
1091         int lnum = wl_wrk->lnum;
1092         int err, available_consumed = 0;
1093
1094         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1095                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1096
1097         err = sync_erase(ubi, e, wl_wrk->torture);
1098         if (!err) {
1099                 spin_lock(&ubi->wl_lock);
1100
1101                 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1102                     e->pnum < UBI_FM_MAX_START) {
1103                         /*
1104                          * Abort anchor production, if needed it will be
1105                          * enabled again in the wear leveling started below.
1106                          */
1107                         ubi->fm_anchor = e;
1108                         ubi->fm_do_produce_anchor = 0;
1109                 } else {
1110                         wl_tree_add(e, &ubi->free);
1111                         ubi->free_count++;
1112                 }
1113
1114                 spin_unlock(&ubi->wl_lock);
1115
1116                 /*
1117                  * One more erase operation has happened, take care about
1118                  * protected physical eraseblocks.
1119                  */
1120                 serve_prot_queue(ubi);
1121
1122                 /* And take care about wear-leveling */
1123                 err = ensure_wear_leveling(ubi, 1);
1124                 return err;
1125         }
1126
1127         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1128
1129         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1130             err == -EBUSY) {
1131                 int err1;
1132
1133                 /* Re-schedule the LEB for erasure */
1134                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1135                 if (err1) {
1136                         spin_lock(&ubi->wl_lock);
1137                         wl_entry_destroy(ubi, e);
1138                         spin_unlock(&ubi->wl_lock);
1139                         err = err1;
1140                         goto out_ro;
1141                 }
1142                 return err;
1143         }
1144
1145         spin_lock(&ubi->wl_lock);
1146         wl_entry_destroy(ubi, e);
1147         spin_unlock(&ubi->wl_lock);
1148         if (err != -EIO)
1149                 /*
1150                  * If this is not %-EIO, we have no idea what to do. Scheduling
1151                  * this physical eraseblock for erasure again would cause
1152                  * errors again and again. Well, lets switch to R/O mode.
1153                  */
1154                 goto out_ro;
1155
1156         /* It is %-EIO, the PEB went bad */
1157
1158         if (!ubi->bad_allowed) {
1159                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1160                 goto out_ro;
1161         }
1162
1163         spin_lock(&ubi->volumes_lock);
1164         if (ubi->beb_rsvd_pebs == 0) {
1165                 if (ubi->avail_pebs == 0) {
1166                         spin_unlock(&ubi->volumes_lock);
1167                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1168                         goto out_ro;
1169                 }
1170                 ubi->avail_pebs -= 1;
1171                 available_consumed = 1;
1172         }
1173         spin_unlock(&ubi->volumes_lock);
1174
1175         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1176         err = ubi_io_mark_bad(ubi, pnum);
1177         if (err)
1178                 goto out_ro;
1179
1180         spin_lock(&ubi->volumes_lock);
1181         if (ubi->beb_rsvd_pebs > 0) {
1182                 if (available_consumed) {
1183                         /*
1184                          * The amount of reserved PEBs increased since we last
1185                          * checked.
1186                          */
1187                         ubi->avail_pebs += 1;
1188                         available_consumed = 0;
1189                 }
1190                 ubi->beb_rsvd_pebs -= 1;
1191         }
1192         ubi->bad_peb_count += 1;
1193         ubi->good_peb_count -= 1;
1194         ubi_calculate_reserved(ubi);
1195         if (available_consumed)
1196                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1197         else if (ubi->beb_rsvd_pebs)
1198                 ubi_msg(ubi, "%d PEBs left in the reserve",
1199                         ubi->beb_rsvd_pebs);
1200         else
1201                 ubi_warn(ubi, "last PEB from the reserve was used");
1202         spin_unlock(&ubi->volumes_lock);
1203
1204         return err;
1205
1206 out_ro:
1207         if (available_consumed) {
1208                 spin_lock(&ubi->volumes_lock);
1209                 ubi->avail_pebs += 1;
1210                 spin_unlock(&ubi->volumes_lock);
1211         }
1212         ubi_ro_mode(ubi);
1213         return err;
1214 }
1215
1216 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1217                           int shutdown)
1218 {
1219         int ret;
1220
1221         if (shutdown) {
1222                 struct ubi_wl_entry *e = wl_wrk->e;
1223
1224                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1225                 kfree(wl_wrk);
1226                 wl_entry_destroy(ubi, e);
1227                 return 0;
1228         }
1229
1230         ret = __erase_worker(ubi, wl_wrk);
1231         kfree(wl_wrk);
1232         return ret;
1233 }
1234
1235 /**
1236  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1237  * @ubi: UBI device description object
1238  * @vol_id: the volume ID that last used this PEB
1239  * @lnum: the last used logical eraseblock number for the PEB
1240  * @pnum: physical eraseblock to return
1241  * @torture: if this physical eraseblock has to be tortured
1242  *
1243  * This function is called to return physical eraseblock @pnum to the pool of
1244  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1245  * occurred to this @pnum and it has to be tested. This function returns zero
1246  * in case of success, and a negative error code in case of failure.
1247  */
1248 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1249                    int pnum, int torture)
1250 {
1251         int err;
1252         struct ubi_wl_entry *e;
1253
1254         dbg_wl("PEB %d", pnum);
1255         ubi_assert(pnum >= 0);
1256         ubi_assert(pnum < ubi->peb_count);
1257
1258         down_read(&ubi->fm_protect);
1259
1260 retry:
1261         spin_lock(&ubi->wl_lock);
1262         e = ubi->lookuptbl[pnum];
1263         if (!e) {
1264                 /*
1265                  * This wl entry has been removed for some errors by other
1266                  * process (eg. wear leveling worker), corresponding process
1267                  * (except __erase_worker, which cannot concurrent with
1268                  * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1269                  * just ignore this wl entry.
1270                  */
1271                 spin_unlock(&ubi->wl_lock);
1272                 up_read(&ubi->fm_protect);
1273                 return 0;
1274         }
1275         if (e == ubi->move_from) {
1276                 /*
1277                  * User is putting the physical eraseblock which was selected to
1278                  * be moved. It will be scheduled for erasure in the
1279                  * wear-leveling worker.
1280                  */
1281                 dbg_wl("PEB %d is being moved, wait", pnum);
1282                 spin_unlock(&ubi->wl_lock);
1283
1284                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1285                 mutex_lock(&ubi->move_mutex);
1286                 mutex_unlock(&ubi->move_mutex);
1287                 goto retry;
1288         } else if (e == ubi->move_to) {
1289                 /*
1290                  * User is putting the physical eraseblock which was selected
1291                  * as the target the data is moved to. It may happen if the EBA
1292                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1293                  * but the WL sub-system has not put the PEB to the "used" tree
1294                  * yet, but it is about to do this. So we just set a flag which
1295                  * will tell the WL worker that the PEB is not needed anymore
1296                  * and should be scheduled for erasure.
1297                  */
1298                 dbg_wl("PEB %d is the target of data moving", pnum);
1299                 ubi_assert(!ubi->move_to_put);
1300                 ubi->move_to_put = 1;
1301                 spin_unlock(&ubi->wl_lock);
1302                 up_read(&ubi->fm_protect);
1303                 return 0;
1304         } else {
1305                 if (in_wl_tree(e, &ubi->used)) {
1306                         self_check_in_wl_tree(ubi, e, &ubi->used);
1307                         rb_erase(&e->u.rb, &ubi->used);
1308                 } else if (in_wl_tree(e, &ubi->scrub)) {
1309                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1310                         rb_erase(&e->u.rb, &ubi->scrub);
1311                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1312                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1313                         rb_erase(&e->u.rb, &ubi->erroneous);
1314                         ubi->erroneous_peb_count -= 1;
1315                         ubi_assert(ubi->erroneous_peb_count >= 0);
1316                         /* Erroneous PEBs should be tortured */
1317                         torture = 1;
1318                 } else {
1319                         err = prot_queue_del(ubi, e->pnum);
1320                         if (err) {
1321                                 ubi_err(ubi, "PEB %d not found", pnum);
1322                                 ubi_ro_mode(ubi);
1323                                 spin_unlock(&ubi->wl_lock);
1324                                 up_read(&ubi->fm_protect);
1325                                 return err;
1326                         }
1327                 }
1328         }
1329         spin_unlock(&ubi->wl_lock);
1330
1331         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1332         if (err) {
1333                 spin_lock(&ubi->wl_lock);
1334                 wl_tree_add(e, &ubi->used);
1335                 spin_unlock(&ubi->wl_lock);
1336         }
1337
1338         up_read(&ubi->fm_protect);
1339         return err;
1340 }
1341
1342 /**
1343  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1344  * @ubi: UBI device description object
1345  * @pnum: the physical eraseblock to schedule
1346  *
1347  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1348  * needs scrubbing. This function schedules a physical eraseblock for
1349  * scrubbing which is done in background. This function returns zero in case of
1350  * success and a negative error code in case of failure.
1351  */
1352 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1353 {
1354         struct ubi_wl_entry *e;
1355
1356         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1357
1358 retry:
1359         spin_lock(&ubi->wl_lock);
1360         e = ubi->lookuptbl[pnum];
1361         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1362                                    in_wl_tree(e, &ubi->erroneous)) {
1363                 spin_unlock(&ubi->wl_lock);
1364                 return 0;
1365         }
1366
1367         if (e == ubi->move_to) {
1368                 /*
1369                  * This physical eraseblock was used to move data to. The data
1370                  * was moved but the PEB was not yet inserted to the proper
1371                  * tree. We should just wait a little and let the WL worker
1372                  * proceed.
1373                  */
1374                 spin_unlock(&ubi->wl_lock);
1375                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1376                 yield();
1377                 goto retry;
1378         }
1379
1380         if (in_wl_tree(e, &ubi->used)) {
1381                 self_check_in_wl_tree(ubi, e, &ubi->used);
1382                 rb_erase(&e->u.rb, &ubi->used);
1383         } else {
1384                 int err;
1385
1386                 err = prot_queue_del(ubi, e->pnum);
1387                 if (err) {
1388                         ubi_err(ubi, "PEB %d not found", pnum);
1389                         ubi_ro_mode(ubi);
1390                         spin_unlock(&ubi->wl_lock);
1391                         return err;
1392                 }
1393         }
1394
1395         wl_tree_add(e, &ubi->scrub);
1396         spin_unlock(&ubi->wl_lock);
1397
1398         /*
1399          * Technically scrubbing is the same as wear-leveling, so it is done
1400          * by the WL worker.
1401          */
1402         return ensure_wear_leveling(ubi, 0);
1403 }
1404
1405 /**
1406  * ubi_wl_flush - flush all pending works.
1407  * @ubi: UBI device description object
1408  * @vol_id: the volume id to flush for
1409  * @lnum: the logical eraseblock number to flush for
1410  *
1411  * This function executes all pending works for a particular volume id /
1412  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1413  * acts as a wildcard for all of the corresponding volume numbers or logical
1414  * eraseblock numbers. It returns zero in case of success and a negative error
1415  * code in case of failure.
1416  */
1417 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1418 {
1419         int err = 0;
1420         int found = 1;
1421
1422         /*
1423          * Erase while the pending works queue is not empty, but not more than
1424          * the number of currently pending works.
1425          */
1426         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1427                vol_id, lnum, ubi->works_count);
1428
1429         while (found) {
1430                 struct ubi_work *wrk, *tmp;
1431                 found = 0;
1432
1433                 down_read(&ubi->work_sem);
1434                 spin_lock(&ubi->wl_lock);
1435                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1436                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1437                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1438                                 list_del(&wrk->list);
1439                                 ubi->works_count -= 1;
1440                                 ubi_assert(ubi->works_count >= 0);
1441                                 spin_unlock(&ubi->wl_lock);
1442
1443                                 err = wrk->func(ubi, wrk, 0);
1444                                 if (err) {
1445                                         up_read(&ubi->work_sem);
1446                                         return err;
1447                                 }
1448
1449                                 spin_lock(&ubi->wl_lock);
1450                                 found = 1;
1451                                 break;
1452                         }
1453                 }
1454                 spin_unlock(&ubi->wl_lock);
1455                 up_read(&ubi->work_sem);
1456         }
1457
1458         /*
1459          * Make sure all the works which have been done in parallel are
1460          * finished.
1461          */
1462         down_write(&ubi->work_sem);
1463         up_write(&ubi->work_sem);
1464
1465         return err;
1466 }
1467
1468 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1469 {
1470         if (in_wl_tree(e, &ubi->scrub))
1471                 return false;
1472         else if (in_wl_tree(e, &ubi->erroneous))
1473                 return false;
1474         else if (ubi->move_from == e)
1475                 return false;
1476         else if (ubi->move_to == e)
1477                 return false;
1478
1479         return true;
1480 }
1481
1482 /**
1483  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1484  * @ubi: UBI device description object
1485  * @pnum: the physical eraseblock to schedule
1486  * @force: don't read the block, assume bitflips happened and take action.
1487  *
1488  * This function reads the given eraseblock and checks if bitflips occured.
1489  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1490  * If scrubbing is forced with @force, the eraseblock is not read,
1491  * but scheduled for scrubbing right away.
1492  *
1493  * Returns:
1494  * %EINVAL, PEB is out of range
1495  * %ENOENT, PEB is no longer used by UBI
1496  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1497  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1498  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1499  * %0, no bit flips detected
1500  */
1501 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1502 {
1503         int err = 0;
1504         struct ubi_wl_entry *e;
1505
1506         if (pnum < 0 || pnum >= ubi->peb_count) {
1507                 err = -EINVAL;
1508                 goto out;
1509         }
1510
1511         /*
1512          * Pause all parallel work, otherwise it can happen that the
1513          * erase worker frees a wl entry under us.
1514          */
1515         down_write(&ubi->work_sem);
1516
1517         /*
1518          * Make sure that the wl entry does not change state while
1519          * inspecting it.
1520          */
1521         spin_lock(&ubi->wl_lock);
1522         e = ubi->lookuptbl[pnum];
1523         if (!e) {
1524                 spin_unlock(&ubi->wl_lock);
1525                 err = -ENOENT;
1526                 goto out_resume;
1527         }
1528
1529         /*
1530          * Does it make sense to check this PEB?
1531          */
1532         if (!scrub_possible(ubi, e)) {
1533                 spin_unlock(&ubi->wl_lock);
1534                 err = -EBUSY;
1535                 goto out_resume;
1536         }
1537         spin_unlock(&ubi->wl_lock);
1538
1539         if (!force) {
1540                 mutex_lock(&ubi->buf_mutex);
1541                 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1542                 mutex_unlock(&ubi->buf_mutex);
1543         }
1544
1545         if (force || err == UBI_IO_BITFLIPS) {
1546                 /*
1547                  * Okay, bit flip happened, let's figure out what we can do.
1548                  */
1549                 spin_lock(&ubi->wl_lock);
1550
1551                 /*
1552                  * Recheck. We released wl_lock, UBI might have killed the
1553                  * wl entry under us.
1554                  */
1555                 e = ubi->lookuptbl[pnum];
1556                 if (!e) {
1557                         spin_unlock(&ubi->wl_lock);
1558                         err = -ENOENT;
1559                         goto out_resume;
1560                 }
1561
1562                 /*
1563                  * Need to re-check state
1564                  */
1565                 if (!scrub_possible(ubi, e)) {
1566                         spin_unlock(&ubi->wl_lock);
1567                         err = -EBUSY;
1568                         goto out_resume;
1569                 }
1570
1571                 if (in_pq(ubi, e)) {
1572                         prot_queue_del(ubi, e->pnum);
1573                         wl_tree_add(e, &ubi->scrub);
1574                         spin_unlock(&ubi->wl_lock);
1575
1576                         err = ensure_wear_leveling(ubi, 1);
1577                 } else if (in_wl_tree(e, &ubi->used)) {
1578                         rb_erase(&e->u.rb, &ubi->used);
1579                         wl_tree_add(e, &ubi->scrub);
1580                         spin_unlock(&ubi->wl_lock);
1581
1582                         err = ensure_wear_leveling(ubi, 1);
1583                 } else if (in_wl_tree(e, &ubi->free)) {
1584                         rb_erase(&e->u.rb, &ubi->free);
1585                         ubi->free_count--;
1586                         spin_unlock(&ubi->wl_lock);
1587
1588                         /*
1589                          * This PEB is empty we can schedule it for
1590                          * erasure right away. No wear leveling needed.
1591                          */
1592                         err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1593                                              force ? 0 : 1, true);
1594                 } else {
1595                         spin_unlock(&ubi->wl_lock);
1596                         err = -EAGAIN;
1597                 }
1598
1599                 if (!err && !force)
1600                         err = -EUCLEAN;
1601         } else {
1602                 err = 0;
1603         }
1604
1605 out_resume:
1606         up_write(&ubi->work_sem);
1607 out:
1608
1609         return err;
1610 }
1611
1612 /**
1613  * tree_destroy - destroy an RB-tree.
1614  * @ubi: UBI device description object
1615  * @root: the root of the tree to destroy
1616  */
1617 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1618 {
1619         struct rb_node *rb;
1620         struct ubi_wl_entry *e;
1621
1622         rb = root->rb_node;
1623         while (rb) {
1624                 if (rb->rb_left)
1625                         rb = rb->rb_left;
1626                 else if (rb->rb_right)
1627                         rb = rb->rb_right;
1628                 else {
1629                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1630
1631                         rb = rb_parent(rb);
1632                         if (rb) {
1633                                 if (rb->rb_left == &e->u.rb)
1634                                         rb->rb_left = NULL;
1635                                 else
1636                                         rb->rb_right = NULL;
1637                         }
1638
1639                         wl_entry_destroy(ubi, e);
1640                 }
1641         }
1642 }
1643
1644 /**
1645  * ubi_thread - UBI background thread.
1646  * @u: the UBI device description object pointer
1647  */
1648 int ubi_thread(void *u)
1649 {
1650         int failures = 0;
1651         struct ubi_device *ubi = u;
1652
1653         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1654                 ubi->bgt_name, task_pid_nr(current));
1655
1656         set_freezable();
1657         for (;;) {
1658                 int err;
1659
1660                 if (kthread_should_stop())
1661                         break;
1662
1663                 if (try_to_freeze())
1664                         continue;
1665
1666                 spin_lock(&ubi->wl_lock);
1667                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1668                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1669                         set_current_state(TASK_INTERRUPTIBLE);
1670                         spin_unlock(&ubi->wl_lock);
1671
1672                         /*
1673                          * Check kthread_should_stop() after we set the task
1674                          * state to guarantee that we either see the stop bit
1675                          * and exit or the task state is reset to runnable such
1676                          * that it's not scheduled out indefinitely and detects
1677                          * the stop bit at kthread_should_stop().
1678                          */
1679                         if (kthread_should_stop()) {
1680                                 set_current_state(TASK_RUNNING);
1681                                 break;
1682                         }
1683
1684                         schedule();
1685                         continue;
1686                 }
1687                 spin_unlock(&ubi->wl_lock);
1688
1689                 err = do_work(ubi);
1690                 if (err) {
1691                         ubi_err(ubi, "%s: work failed with error code %d",
1692                                 ubi->bgt_name, err);
1693                         if (failures++ > WL_MAX_FAILURES) {
1694                                 /*
1695                                  * Too many failures, disable the thread and
1696                                  * switch to read-only mode.
1697                                  */
1698                                 ubi_msg(ubi, "%s: %d consecutive failures",
1699                                         ubi->bgt_name, WL_MAX_FAILURES);
1700                                 ubi_ro_mode(ubi);
1701                                 ubi->thread_enabled = 0;
1702                                 continue;
1703                         }
1704                 } else
1705                         failures = 0;
1706
1707                 cond_resched();
1708         }
1709
1710         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1711         ubi->thread_enabled = 0;
1712         return 0;
1713 }
1714
1715 /**
1716  * shutdown_work - shutdown all pending works.
1717  * @ubi: UBI device description object
1718  */
1719 static void shutdown_work(struct ubi_device *ubi)
1720 {
1721         while (!list_empty(&ubi->works)) {
1722                 struct ubi_work *wrk;
1723
1724                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1725                 list_del(&wrk->list);
1726                 wrk->func(ubi, wrk, 1);
1727                 ubi->works_count -= 1;
1728                 ubi_assert(ubi->works_count >= 0);
1729         }
1730 }
1731
1732 /**
1733  * erase_aeb - erase a PEB given in UBI attach info PEB
1734  * @ubi: UBI device description object
1735  * @aeb: UBI attach info PEB
1736  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1737  */
1738 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1739 {
1740         struct ubi_wl_entry *e;
1741         int err;
1742
1743         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1744         if (!e)
1745                 return -ENOMEM;
1746
1747         e->pnum = aeb->pnum;
1748         e->ec = aeb->ec;
1749         ubi->lookuptbl[e->pnum] = e;
1750
1751         if (sync) {
1752                 err = sync_erase(ubi, e, false);
1753                 if (err)
1754                         goto out_free;
1755
1756                 wl_tree_add(e, &ubi->free);
1757                 ubi->free_count++;
1758         } else {
1759                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1760                 if (err)
1761                         goto out_free;
1762         }
1763
1764         return 0;
1765
1766 out_free:
1767         wl_entry_destroy(ubi, e);
1768
1769         return err;
1770 }
1771
1772 /**
1773  * ubi_wl_init - initialize the WL sub-system using attaching information.
1774  * @ubi: UBI device description object
1775  * @ai: attaching information
1776  *
1777  * This function returns zero in case of success, and a negative error code in
1778  * case of failure.
1779  */
1780 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1781 {
1782         int err, i, reserved_pebs, found_pebs = 0;
1783         struct rb_node *rb1, *rb2;
1784         struct ubi_ainf_volume *av;
1785         struct ubi_ainf_peb *aeb, *tmp;
1786         struct ubi_wl_entry *e;
1787
1788         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1789         spin_lock_init(&ubi->wl_lock);
1790         mutex_init(&ubi->move_mutex);
1791         init_rwsem(&ubi->work_sem);
1792         ubi->max_ec = ai->max_ec;
1793         INIT_LIST_HEAD(&ubi->works);
1794
1795         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1796
1797         err = -ENOMEM;
1798         ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1799         if (!ubi->lookuptbl)
1800                 return err;
1801
1802         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1803                 INIT_LIST_HEAD(&ubi->pq[i]);
1804         ubi->pq_head = 0;
1805
1806         ubi->free_count = 0;
1807         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1808                 cond_resched();
1809
1810                 err = erase_aeb(ubi, aeb, false);
1811                 if (err)
1812                         goto out_free;
1813
1814                 found_pebs++;
1815         }
1816
1817         list_for_each_entry(aeb, &ai->free, u.list) {
1818                 cond_resched();
1819
1820                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1821                 if (!e) {
1822                         err = -ENOMEM;
1823                         goto out_free;
1824                 }
1825
1826                 e->pnum = aeb->pnum;
1827                 e->ec = aeb->ec;
1828                 ubi_assert(e->ec >= 0);
1829
1830                 wl_tree_add(e, &ubi->free);
1831                 ubi->free_count++;
1832
1833                 ubi->lookuptbl[e->pnum] = e;
1834
1835                 found_pebs++;
1836         }
1837
1838         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1839                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1840                         cond_resched();
1841
1842                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1843                         if (!e) {
1844                                 err = -ENOMEM;
1845                                 goto out_free;
1846                         }
1847
1848                         e->pnum = aeb->pnum;
1849                         e->ec = aeb->ec;
1850                         ubi->lookuptbl[e->pnum] = e;
1851
1852                         if (!aeb->scrub) {
1853                                 dbg_wl("add PEB %d EC %d to the used tree",
1854                                        e->pnum, e->ec);
1855                                 wl_tree_add(e, &ubi->used);
1856                         } else {
1857                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1858                                        e->pnum, e->ec);
1859                                 wl_tree_add(e, &ubi->scrub);
1860                         }
1861
1862                         found_pebs++;
1863                 }
1864         }
1865
1866         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1867                 cond_resched();
1868
1869                 e = ubi_find_fm_block(ubi, aeb->pnum);
1870
1871                 if (e) {
1872                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1873                         ubi->lookuptbl[e->pnum] = e;
1874                 } else {
1875                         bool sync = false;
1876
1877                         /*
1878                          * Usually old Fastmap PEBs are scheduled for erasure
1879                          * and we don't have to care about them but if we face
1880                          * an power cut before scheduling them we need to
1881                          * take care of them here.
1882                          */
1883                         if (ubi->lookuptbl[aeb->pnum])
1884                                 continue;
1885
1886                         /*
1887                          * The fastmap update code might not find a free PEB for
1888                          * writing the fastmap anchor to and then reuses the
1889                          * current fastmap anchor PEB. When this PEB gets erased
1890                          * and a power cut happens before it is written again we
1891                          * must make sure that the fastmap attach code doesn't
1892                          * find any outdated fastmap anchors, hence we erase the
1893                          * outdated fastmap anchor PEBs synchronously here.
1894                          */
1895                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1896                                 sync = true;
1897
1898                         err = erase_aeb(ubi, aeb, sync);
1899                         if (err)
1900                                 goto out_free;
1901                 }
1902
1903                 found_pebs++;
1904         }
1905
1906         dbg_wl("found %i PEBs", found_pebs);
1907
1908         ubi_assert(ubi->good_peb_count == found_pebs);
1909
1910         reserved_pebs = WL_RESERVED_PEBS;
1911         ubi_fastmap_init(ubi, &reserved_pebs);
1912
1913         if (ubi->avail_pebs < reserved_pebs) {
1914                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1915                         ubi->avail_pebs, reserved_pebs);
1916                 if (ubi->corr_peb_count)
1917                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1918                                 ubi->corr_peb_count);
1919                 err = -ENOSPC;
1920                 goto out_free;
1921         }
1922         ubi->avail_pebs -= reserved_pebs;
1923         ubi->rsvd_pebs += reserved_pebs;
1924
1925         /* Schedule wear-leveling if needed */
1926         err = ensure_wear_leveling(ubi, 0);
1927         if (err)
1928                 goto out_free;
1929
1930 #ifdef CONFIG_MTD_UBI_FASTMAP
1931         if (!ubi->ro_mode && !ubi->fm_disabled)
1932                 ubi_ensure_anchor_pebs(ubi);
1933 #endif
1934         return 0;
1935
1936 out_free:
1937         shutdown_work(ubi);
1938         tree_destroy(ubi, &ubi->used);
1939         tree_destroy(ubi, &ubi->free);
1940         tree_destroy(ubi, &ubi->scrub);
1941         kfree(ubi->lookuptbl);
1942         return err;
1943 }
1944
1945 /**
1946  * protection_queue_destroy - destroy the protection queue.
1947  * @ubi: UBI device description object
1948  */
1949 static void protection_queue_destroy(struct ubi_device *ubi)
1950 {
1951         int i;
1952         struct ubi_wl_entry *e, *tmp;
1953
1954         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1955                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1956                         list_del(&e->u.list);
1957                         wl_entry_destroy(ubi, e);
1958                 }
1959         }
1960 }
1961
1962 /**
1963  * ubi_wl_close - close the wear-leveling sub-system.
1964  * @ubi: UBI device description object
1965  */
1966 void ubi_wl_close(struct ubi_device *ubi)
1967 {
1968         dbg_wl("close the WL sub-system");
1969         ubi_fastmap_close(ubi);
1970         shutdown_work(ubi);
1971         protection_queue_destroy(ubi);
1972         tree_destroy(ubi, &ubi->used);
1973         tree_destroy(ubi, &ubi->erroneous);
1974         tree_destroy(ubi, &ubi->free);
1975         tree_destroy(ubi, &ubi->scrub);
1976         kfree(ubi->lookuptbl);
1977 }
1978
1979 /**
1980  * self_check_ec - make sure that the erase counter of a PEB is correct.
1981  * @ubi: UBI device description object
1982  * @pnum: the physical eraseblock number to check
1983  * @ec: the erase counter to check
1984  *
1985  * This function returns zero if the erase counter of physical eraseblock @pnum
1986  * is equivalent to @ec, and a negative error code if not or if an error
1987  * occurred.
1988  */
1989 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1990 {
1991         int err;
1992         long long read_ec;
1993         struct ubi_ec_hdr *ec_hdr;
1994
1995         if (!ubi_dbg_chk_gen(ubi))
1996                 return 0;
1997
1998         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1999         if (!ec_hdr)
2000                 return -ENOMEM;
2001
2002         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2003         if (err && err != UBI_IO_BITFLIPS) {
2004                 /* The header does not have to exist */
2005                 err = 0;
2006                 goto out_free;
2007         }
2008
2009         read_ec = be64_to_cpu(ec_hdr->ec);
2010         if (ec != read_ec && read_ec - ec > 1) {
2011                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2012                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2013                 dump_stack();
2014                 err = 1;
2015         } else
2016                 err = 0;
2017
2018 out_free:
2019         kfree(ec_hdr);
2020         return err;
2021 }
2022
2023 /**
2024  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2025  * @ubi: UBI device description object
2026  * @e: the wear-leveling entry to check
2027  * @root: the root of the tree
2028  *
2029  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2030  * is not.
2031  */
2032 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2033                                  struct ubi_wl_entry *e, struct rb_root *root)
2034 {
2035         if (!ubi_dbg_chk_gen(ubi))
2036                 return 0;
2037
2038         if (in_wl_tree(e, root))
2039                 return 0;
2040
2041         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2042                 e->pnum, e->ec, root);
2043         dump_stack();
2044         return -EINVAL;
2045 }
2046
2047 /**
2048  * self_check_in_pq - check if wear-leveling entry is in the protection
2049  *                        queue.
2050  * @ubi: UBI device description object
2051  * @e: the wear-leveling entry to check
2052  *
2053  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2054  */
2055 static int self_check_in_pq(const struct ubi_device *ubi,
2056                             struct ubi_wl_entry *e)
2057 {
2058         if (!ubi_dbg_chk_gen(ubi))
2059                 return 0;
2060
2061         if (in_pq(ubi, e))
2062                 return 0;
2063
2064         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2065                 e->pnum, e->ec);
2066         dump_stack();
2067         return -EINVAL;
2068 }
2069 #ifndef CONFIG_MTD_UBI_FASTMAP
2070 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2071 {
2072         struct ubi_wl_entry *e;
2073
2074         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2075         self_check_in_wl_tree(ubi, e, &ubi->free);
2076         ubi->free_count--;
2077         ubi_assert(ubi->free_count >= 0);
2078         rb_erase(&e->u.rb, &ubi->free);
2079
2080         return e;
2081 }
2082
2083 /**
2084  * produce_free_peb - produce a free physical eraseblock.
2085  * @ubi: UBI device description object
2086  *
2087  * This function tries to make a free PEB by means of synchronous execution of
2088  * pending works. This may be needed if, for example the background thread is
2089  * disabled. Returns zero in case of success and a negative error code in case
2090  * of failure.
2091  */
2092 static int produce_free_peb(struct ubi_device *ubi)
2093 {
2094         int err;
2095
2096         while (!ubi->free.rb_node && ubi->works_count) {
2097                 spin_unlock(&ubi->wl_lock);
2098
2099                 dbg_wl("do one work synchronously");
2100                 err = do_work(ubi);
2101
2102                 spin_lock(&ubi->wl_lock);
2103                 if (err)
2104                         return err;
2105         }
2106
2107         return 0;
2108 }
2109
2110 /**
2111  * ubi_wl_get_peb - get a physical eraseblock.
2112  * @ubi: UBI device description object
2113  *
2114  * This function returns a physical eraseblock in case of success and a
2115  * negative error code in case of failure.
2116  * Returns with ubi->fm_eba_sem held in read mode!
2117  */
2118 int ubi_wl_get_peb(struct ubi_device *ubi)
2119 {
2120         int err;
2121         struct ubi_wl_entry *e;
2122
2123 retry:
2124         down_read(&ubi->fm_eba_sem);
2125         spin_lock(&ubi->wl_lock);
2126         if (!ubi->free.rb_node) {
2127                 if (ubi->works_count == 0) {
2128                         ubi_err(ubi, "no free eraseblocks");
2129                         ubi_assert(list_empty(&ubi->works));
2130                         spin_unlock(&ubi->wl_lock);
2131                         return -ENOSPC;
2132                 }
2133
2134                 err = produce_free_peb(ubi);
2135                 if (err < 0) {
2136                         spin_unlock(&ubi->wl_lock);
2137                         return err;
2138                 }
2139                 spin_unlock(&ubi->wl_lock);
2140                 up_read(&ubi->fm_eba_sem);
2141                 goto retry;
2142
2143         }
2144         e = wl_get_wle(ubi);
2145         prot_queue_add(ubi, e);
2146         spin_unlock(&ubi->wl_lock);
2147
2148         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2149                                     ubi->peb_size - ubi->vid_hdr_aloffset);
2150         if (err) {
2151                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2152                 return err;
2153         }
2154
2155         return e->pnum;
2156 }
2157 #else
2158 #include "fastmap-wl.c"
2159 #endif