GNU Linux-libre 4.19.304-gnu1
[releases.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140                                  struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142                             struct ubi_wl_entry *e);
143
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154         struct rb_node **p, *parent = NULL;
155
156         p = &root->rb_node;
157         while (*p) {
158                 struct ubi_wl_entry *e1;
159
160                 parent = *p;
161                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163                 if (e->ec < e1->ec)
164                         p = &(*p)->rb_left;
165                 else if (e->ec > e1->ec)
166                         p = &(*p)->rb_right;
167                 else {
168                         ubi_assert(e->pnum != e1->pnum);
169                         if (e->pnum < e1->pnum)
170                                 p = &(*p)->rb_left;
171                         else
172                                 p = &(*p)->rb_right;
173                 }
174         }
175
176         rb_link_node(&e->u.rb, parent, p);
177         rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190         ubi->lookuptbl[e->pnum] = NULL;
191         kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203         int err;
204         struct ubi_work *wrk;
205
206         cond_resched();
207
208         /*
209          * @ubi->work_sem is used to synchronize with the workers. Workers take
210          * it in read mode, so many of them may be doing works at a time. But
211          * the queue flush code has to be sure the whole queue of works is
212          * done, and it takes the mutex in write mode.
213          */
214         down_read(&ubi->work_sem);
215         spin_lock(&ubi->wl_lock);
216         if (list_empty(&ubi->works)) {
217                 spin_unlock(&ubi->wl_lock);
218                 up_read(&ubi->work_sem);
219                 return 0;
220         }
221
222         wrk = list_entry(ubi->works.next, struct ubi_work, list);
223         list_del(&wrk->list);
224         ubi->works_count -= 1;
225         ubi_assert(ubi->works_count >= 0);
226         spin_unlock(&ubi->wl_lock);
227
228         /*
229          * Call the worker function. Do not touch the work structure
230          * after this call as it will have been freed or reused by that
231          * time by the worker function.
232          */
233         err = wrk->func(ubi, wrk, 0);
234         if (err)
235                 ubi_err(ubi, "work failed with error code %d", err);
236         up_read(&ubi->work_sem);
237
238         return err;
239 }
240
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251         struct rb_node *p;
252
253         p = root->rb_node;
254         while (p) {
255                 struct ubi_wl_entry *e1;
256
257                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259                 if (e->pnum == e1->pnum) {
260                         ubi_assert(e == e1);
261                         return 1;
262                 }
263
264                 if (e->ec < e1->ec)
265                         p = p->rb_left;
266                 else if (e->ec > e1->ec)
267                         p = p->rb_right;
268                 else {
269                         ubi_assert(e->pnum != e1->pnum);
270                         if (e->pnum < e1->pnum)
271                                 p = p->rb_left;
272                         else
273                                 p = p->rb_right;
274                 }
275         }
276
277         return 0;
278 }
279
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292         int pq_tail = ubi->pq_head - 1;
293
294         if (pq_tail < 0)
295                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311                                           struct rb_root *root, int diff)
312 {
313         struct rb_node *p;
314         struct ubi_wl_entry *e, *prev_e = NULL;
315         int max;
316
317         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318         max = e->ec + diff;
319
320         p = root->rb_node;
321         while (p) {
322                 struct ubi_wl_entry *e1;
323
324                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325                 if (e1->ec >= max)
326                         p = p->rb_left;
327                 else {
328                         p = p->rb_right;
329                         prev_e = e;
330                         e = e1;
331                 }
332         }
333
334         return e;
335 }
336
337 /**
338  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
339  * @ubi: UBI device description object
340  * @root: the RB-tree where to look for
341  *
342  * This function looks for a wear leveling entry with medium erase counter,
343  * but not greater or equivalent than the lowest erase counter plus
344  * %WL_FREE_MAX_DIFF/2.
345  */
346 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
347                                                struct rb_root *root)
348 {
349         struct ubi_wl_entry *e, *first, *last;
350
351         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
352         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
353
354         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
355                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
356
357                 /* If no fastmap has been written and this WL entry can be used
358                  * as anchor PEB, hold it back and return the second best
359                  * WL entry such that fastmap can use the anchor PEB later. */
360                 e = may_reserve_for_fm(ubi, e, root);
361         } else
362                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
363
364         return e;
365 }
366
367 /**
368  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
369  * refill_wl_user_pool().
370  * @ubi: UBI device description object
371  *
372  * This function returns a a wear leveling entry in case of success and
373  * NULL in case of failure.
374  */
375 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
376 {
377         struct ubi_wl_entry *e;
378
379         e = find_mean_wl_entry(ubi, &ubi->free);
380         if (!e) {
381                 ubi_err(ubi, "no free eraseblocks");
382                 return NULL;
383         }
384
385         self_check_in_wl_tree(ubi, e, &ubi->free);
386
387         /*
388          * Move the physical eraseblock to the protection queue where it will
389          * be protected from being moved for some time.
390          */
391         rb_erase(&e->u.rb, &ubi->free);
392         ubi->free_count--;
393         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
394
395         return e;
396 }
397
398 /**
399  * prot_queue_del - remove a physical eraseblock from the protection queue.
400  * @ubi: UBI device description object
401  * @pnum: the physical eraseblock to remove
402  *
403  * This function deletes PEB @pnum from the protection queue and returns zero
404  * in case of success and %-ENODEV if the PEB was not found.
405  */
406 static int prot_queue_del(struct ubi_device *ubi, int pnum)
407 {
408         struct ubi_wl_entry *e;
409
410         e = ubi->lookuptbl[pnum];
411         if (!e)
412                 return -ENODEV;
413
414         if (self_check_in_pq(ubi, e))
415                 return -ENODEV;
416
417         list_del(&e->u.list);
418         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
419         return 0;
420 }
421
422 /**
423  * sync_erase - synchronously erase a physical eraseblock.
424  * @ubi: UBI device description object
425  * @e: the the physical eraseblock to erase
426  * @torture: if the physical eraseblock has to be tortured
427  *
428  * This function returns zero in case of success and a negative error code in
429  * case of failure.
430  */
431 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
432                       int torture)
433 {
434         int err;
435         struct ubi_ec_hdr *ec_hdr;
436         unsigned long long ec = e->ec;
437
438         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
439
440         err = self_check_ec(ubi, e->pnum, e->ec);
441         if (err)
442                 return -EINVAL;
443
444         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
445         if (!ec_hdr)
446                 return -ENOMEM;
447
448         err = ubi_io_sync_erase(ubi, e->pnum, torture);
449         if (err < 0)
450                 goto out_free;
451
452         ec += err;
453         if (ec > UBI_MAX_ERASECOUNTER) {
454                 /*
455                  * Erase counter overflow. Upgrade UBI and use 64-bit
456                  * erase counters internally.
457                  */
458                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
459                         e->pnum, ec);
460                 err = -EINVAL;
461                 goto out_free;
462         }
463
464         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
465
466         ec_hdr->ec = cpu_to_be64(ec);
467
468         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
469         if (err)
470                 goto out_free;
471
472         e->ec = ec;
473         spin_lock(&ubi->wl_lock);
474         if (e->ec > ubi->max_ec)
475                 ubi->max_ec = e->ec;
476         spin_unlock(&ubi->wl_lock);
477
478 out_free:
479         kfree(ec_hdr);
480         return err;
481 }
482
483 /**
484  * serve_prot_queue - check if it is time to stop protecting PEBs.
485  * @ubi: UBI device description object
486  *
487  * This function is called after each erase operation and removes PEBs from the
488  * tail of the protection queue. These PEBs have been protected for long enough
489  * and should be moved to the used tree.
490  */
491 static void serve_prot_queue(struct ubi_device *ubi)
492 {
493         struct ubi_wl_entry *e, *tmp;
494         int count;
495
496         /*
497          * There may be several protected physical eraseblock to remove,
498          * process them all.
499          */
500 repeat:
501         count = 0;
502         spin_lock(&ubi->wl_lock);
503         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
504                 dbg_wl("PEB %d EC %d protection over, move to used tree",
505                         e->pnum, e->ec);
506
507                 list_del(&e->u.list);
508                 wl_tree_add(e, &ubi->used);
509                 if (count++ > 32) {
510                         /*
511                          * Let's be nice and avoid holding the spinlock for
512                          * too long.
513                          */
514                         spin_unlock(&ubi->wl_lock);
515                         cond_resched();
516                         goto repeat;
517                 }
518         }
519
520         ubi->pq_head += 1;
521         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
522                 ubi->pq_head = 0;
523         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
524         spin_unlock(&ubi->wl_lock);
525 }
526
527 /**
528  * __schedule_ubi_work - schedule a work.
529  * @ubi: UBI device description object
530  * @wrk: the work to schedule
531  *
532  * This function adds a work defined by @wrk to the tail of the pending works
533  * list. Can only be used if ubi->work_sem is already held in read mode!
534  */
535 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
536 {
537         spin_lock(&ubi->wl_lock);
538         list_add_tail(&wrk->list, &ubi->works);
539         ubi_assert(ubi->works_count >= 0);
540         ubi->works_count += 1;
541         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
542                 wake_up_process(ubi->bgt_thread);
543         spin_unlock(&ubi->wl_lock);
544 }
545
546 /**
547  * schedule_ubi_work - schedule a work.
548  * @ubi: UBI device description object
549  * @wrk: the work to schedule
550  *
551  * This function adds a work defined by @wrk to the tail of the pending works
552  * list.
553  */
554 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
555 {
556         down_read(&ubi->work_sem);
557         __schedule_ubi_work(ubi, wrk);
558         up_read(&ubi->work_sem);
559 }
560
561 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
562                         int shutdown);
563
564 /**
565  * schedule_erase - schedule an erase work.
566  * @ubi: UBI device description object
567  * @e: the WL entry of the physical eraseblock to erase
568  * @vol_id: the volume ID that last used this PEB
569  * @lnum: the last used logical eraseblock number for the PEB
570  * @torture: if the physical eraseblock has to be tortured
571  * @nested: denotes whether the work_sem is already held
572  *
573  * This function returns zero in case of success and a %-ENOMEM in case of
574  * failure.
575  */
576 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
577                           int vol_id, int lnum, int torture, bool nested)
578 {
579         struct ubi_work *wl_wrk;
580
581         ubi_assert(e);
582
583         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
584                e->pnum, e->ec, torture);
585
586         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
587         if (!wl_wrk)
588                 return -ENOMEM;
589
590         wl_wrk->func = &erase_worker;
591         wl_wrk->e = e;
592         wl_wrk->vol_id = vol_id;
593         wl_wrk->lnum = lnum;
594         wl_wrk->torture = torture;
595
596         if (nested)
597                 __schedule_ubi_work(ubi, wl_wrk);
598         else
599                 schedule_ubi_work(ubi, wl_wrk);
600         return 0;
601 }
602
603 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
604 /**
605  * do_sync_erase - run the erase worker synchronously.
606  * @ubi: UBI device description object
607  * @e: the WL entry of the physical eraseblock to erase
608  * @vol_id: the volume ID that last used this PEB
609  * @lnum: the last used logical eraseblock number for the PEB
610  * @torture: if the physical eraseblock has to be tortured
611  *
612  */
613 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
614                          int vol_id, int lnum, int torture)
615 {
616         struct ubi_work wl_wrk;
617
618         dbg_wl("sync erase of PEB %i", e->pnum);
619
620         wl_wrk.e = e;
621         wl_wrk.vol_id = vol_id;
622         wl_wrk.lnum = lnum;
623         wl_wrk.torture = torture;
624
625         return __erase_worker(ubi, &wl_wrk);
626 }
627
628 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
629 /**
630  * wear_leveling_worker - wear-leveling worker function.
631  * @ubi: UBI device description object
632  * @wrk: the work object
633  * @shutdown: non-zero if the worker has to free memory and exit
634  * because the WL-subsystem is shutting down
635  *
636  * This function copies a more worn out physical eraseblock to a less worn out
637  * one. Returns zero in case of success and a negative error code in case of
638  * failure.
639  */
640 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
641                                 int shutdown)
642 {
643         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
644         int erase = 0, keep = 0, vol_id = -1, lnum = -1;
645         struct ubi_wl_entry *e1, *e2;
646         struct ubi_vid_io_buf *vidb;
647         struct ubi_vid_hdr *vid_hdr;
648         int dst_leb_clean = 0;
649
650         kfree(wrk);
651         if (shutdown)
652                 return 0;
653
654         vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
655         if (!vidb)
656                 return -ENOMEM;
657
658         vid_hdr = ubi_get_vid_hdr(vidb);
659
660         down_read(&ubi->fm_eba_sem);
661         mutex_lock(&ubi->move_mutex);
662         spin_lock(&ubi->wl_lock);
663         ubi_assert(!ubi->move_from && !ubi->move_to);
664         ubi_assert(!ubi->move_to_put);
665
666         if (!ubi->free.rb_node ||
667             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
668                 /*
669                  * No free physical eraseblocks? Well, they must be waiting in
670                  * the queue to be erased. Cancel movement - it will be
671                  * triggered again when a free physical eraseblock appears.
672                  *
673                  * No used physical eraseblocks? They must be temporarily
674                  * protected from being moved. They will be moved to the
675                  * @ubi->used tree later and the wear-leveling will be
676                  * triggered again.
677                  */
678                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
679                        !ubi->free.rb_node, !ubi->used.rb_node);
680                 goto out_cancel;
681         }
682
683 #ifdef CONFIG_MTD_UBI_FASTMAP
684         if (ubi->fm_do_produce_anchor) {
685                 e1 = find_anchor_wl_entry(&ubi->used);
686                 if (!e1)
687                         goto out_cancel;
688                 e2 = get_peb_for_wl(ubi);
689                 if (!e2)
690                         goto out_cancel;
691
692                 self_check_in_wl_tree(ubi, e1, &ubi->used);
693                 rb_erase(&e1->u.rb, &ubi->used);
694                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
695                 ubi->fm_do_produce_anchor = 0;
696         } else if (!ubi->scrub.rb_node) {
697 #else
698         if (!ubi->scrub.rb_node) {
699 #endif
700                 /*
701                  * Now pick the least worn-out used physical eraseblock and a
702                  * highly worn-out free physical eraseblock. If the erase
703                  * counters differ much enough, start wear-leveling.
704                  */
705                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
706                 e2 = get_peb_for_wl(ubi);
707                 if (!e2)
708                         goto out_cancel;
709
710                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
711                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
712                                e1->ec, e2->ec);
713
714                         /* Give the unused PEB back */
715                         wl_tree_add(e2, &ubi->free);
716                         ubi->free_count++;
717                         goto out_cancel;
718                 }
719                 self_check_in_wl_tree(ubi, e1, &ubi->used);
720                 rb_erase(&e1->u.rb, &ubi->used);
721                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
722                        e1->pnum, e1->ec, e2->pnum, e2->ec);
723         } else {
724                 /* Perform scrubbing */
725                 scrubbing = 1;
726                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
727                 e2 = get_peb_for_wl(ubi);
728                 if (!e2)
729                         goto out_cancel;
730
731                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
732                 rb_erase(&e1->u.rb, &ubi->scrub);
733                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
734         }
735
736         ubi->move_from = e1;
737         ubi->move_to = e2;
738         spin_unlock(&ubi->wl_lock);
739
740         /*
741          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
742          * We so far do not know which logical eraseblock our physical
743          * eraseblock (@e1) belongs to. We have to read the volume identifier
744          * header first.
745          *
746          * Note, we are protected from this PEB being unmapped and erased. The
747          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
748          * which is being moved was unmapped.
749          */
750
751         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
752         if (err && err != UBI_IO_BITFLIPS) {
753                 dst_leb_clean = 1;
754                 if (err == UBI_IO_FF) {
755                         /*
756                          * We are trying to move PEB without a VID header. UBI
757                          * always write VID headers shortly after the PEB was
758                          * given, so we have a situation when it has not yet
759                          * had a chance to write it, because it was preempted.
760                          * So add this PEB to the protection queue so far,
761                          * because presumably more data will be written there
762                          * (including the missing VID header), and then we'll
763                          * move it.
764                          */
765                         dbg_wl("PEB %d has no VID header", e1->pnum);
766                         protect = 1;
767                         goto out_not_moved;
768                 } else if (err == UBI_IO_FF_BITFLIPS) {
769                         /*
770                          * The same situation as %UBI_IO_FF, but bit-flips were
771                          * detected. It is better to schedule this PEB for
772                          * scrubbing.
773                          */
774                         dbg_wl("PEB %d has no VID header but has bit-flips",
775                                e1->pnum);
776                         scrubbing = 1;
777                         goto out_not_moved;
778                 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
779                         /*
780                          * While a full scan would detect interrupted erasures
781                          * at attach time we can face them here when attached from
782                          * Fastmap.
783                          */
784                         dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
785                                e1->pnum);
786                         erase = 1;
787                         goto out_not_moved;
788                 }
789
790                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
791                         err, e1->pnum);
792                 goto out_error;
793         }
794
795         vol_id = be32_to_cpu(vid_hdr->vol_id);
796         lnum = be32_to_cpu(vid_hdr->lnum);
797
798         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
799         if (err) {
800                 if (err == MOVE_CANCEL_RACE) {
801                         /*
802                          * The LEB has not been moved because the volume is
803                          * being deleted or the PEB has been put meanwhile. We
804                          * should prevent this PEB from being selected for
805                          * wear-leveling movement again, so put it to the
806                          * protection queue.
807                          */
808                         protect = 1;
809                         dst_leb_clean = 1;
810                         goto out_not_moved;
811                 }
812                 if (err == MOVE_RETRY) {
813                         scrubbing = 1;
814                         dst_leb_clean = 1;
815                         goto out_not_moved;
816                 }
817                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
818                     err == MOVE_TARGET_RD_ERR) {
819                         /*
820                          * Target PEB had bit-flips or write error - torture it.
821                          */
822                         torture = 1;
823                         keep = 1;
824                         goto out_not_moved;
825                 }
826
827                 if (err == MOVE_SOURCE_RD_ERR) {
828                         /*
829                          * An error happened while reading the source PEB. Do
830                          * not switch to R/O mode in this case, and give the
831                          * upper layers a possibility to recover from this,
832                          * e.g. by unmapping corresponding LEB. Instead, just
833                          * put this PEB to the @ubi->erroneous list to prevent
834                          * UBI from trying to move it over and over again.
835                          */
836                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
837                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
838                                         ubi->erroneous_peb_count);
839                                 goto out_error;
840                         }
841                         dst_leb_clean = 1;
842                         erroneous = 1;
843                         goto out_not_moved;
844                 }
845
846                 if (err < 0)
847                         goto out_error;
848
849                 ubi_assert(0);
850         }
851
852         /* The PEB has been successfully moved */
853         if (scrubbing)
854                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
855                         e1->pnum, vol_id, lnum, e2->pnum);
856         ubi_free_vid_buf(vidb);
857
858         spin_lock(&ubi->wl_lock);
859         if (!ubi->move_to_put) {
860                 wl_tree_add(e2, &ubi->used);
861                 e2 = NULL;
862         }
863         ubi->move_from = ubi->move_to = NULL;
864         ubi->move_to_put = ubi->wl_scheduled = 0;
865         spin_unlock(&ubi->wl_lock);
866
867         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
868         if (err) {
869                 if (e2) {
870                         spin_lock(&ubi->wl_lock);
871                         wl_entry_destroy(ubi, e2);
872                         spin_unlock(&ubi->wl_lock);
873                 }
874                 goto out_ro;
875         }
876
877         if (e2) {
878                 /*
879                  * Well, the target PEB was put meanwhile, schedule it for
880                  * erasure.
881                  */
882                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
883                        e2->pnum, vol_id, lnum);
884                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
885                 if (err)
886                         goto out_ro;
887         }
888
889         dbg_wl("done");
890         mutex_unlock(&ubi->move_mutex);
891         up_read(&ubi->fm_eba_sem);
892         return 0;
893
894         /*
895          * For some reasons the LEB was not moved, might be an error, might be
896          * something else. @e1 was not changed, so return it back. @e2 might
897          * have been changed, schedule it for erasure.
898          */
899 out_not_moved:
900         if (vol_id != -1)
901                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
902                        e1->pnum, vol_id, lnum, e2->pnum, err);
903         else
904                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
905                        e1->pnum, e2->pnum, err);
906         spin_lock(&ubi->wl_lock);
907         if (protect)
908                 prot_queue_add(ubi, e1);
909         else if (erroneous) {
910                 wl_tree_add(e1, &ubi->erroneous);
911                 ubi->erroneous_peb_count += 1;
912         } else if (scrubbing)
913                 wl_tree_add(e1, &ubi->scrub);
914         else if (keep)
915                 wl_tree_add(e1, &ubi->used);
916         if (dst_leb_clean) {
917                 wl_tree_add(e2, &ubi->free);
918                 ubi->free_count++;
919         }
920
921         ubi_assert(!ubi->move_to_put);
922         ubi->move_from = ubi->move_to = NULL;
923         ubi->wl_scheduled = 0;
924         spin_unlock(&ubi->wl_lock);
925
926         ubi_free_vid_buf(vidb);
927         if (dst_leb_clean) {
928                 ensure_wear_leveling(ubi, 1);
929         } else {
930                 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
931                 if (err)
932                         goto out_ro;
933         }
934
935         if (erase) {
936                 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
937                 if (err)
938                         goto out_ro;
939         }
940
941         mutex_unlock(&ubi->move_mutex);
942         up_read(&ubi->fm_eba_sem);
943         return 0;
944
945 out_error:
946         if (vol_id != -1)
947                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
948                         err, e1->pnum, e2->pnum);
949         else
950                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
951                         err, e1->pnum, vol_id, lnum, e2->pnum);
952         spin_lock(&ubi->wl_lock);
953         ubi->move_from = ubi->move_to = NULL;
954         ubi->move_to_put = ubi->wl_scheduled = 0;
955         wl_entry_destroy(ubi, e1);
956         wl_entry_destroy(ubi, e2);
957         spin_unlock(&ubi->wl_lock);
958
959         ubi_free_vid_buf(vidb);
960
961 out_ro:
962         ubi_ro_mode(ubi);
963         mutex_unlock(&ubi->move_mutex);
964         up_read(&ubi->fm_eba_sem);
965         ubi_assert(err != 0);
966         return err < 0 ? err : -EIO;
967
968 out_cancel:
969         ubi->wl_scheduled = 0;
970         spin_unlock(&ubi->wl_lock);
971         mutex_unlock(&ubi->move_mutex);
972         up_read(&ubi->fm_eba_sem);
973         ubi_free_vid_buf(vidb);
974         return 0;
975 }
976
977 /**
978  * ensure_wear_leveling - schedule wear-leveling if it is needed.
979  * @ubi: UBI device description object
980  * @nested: set to non-zero if this function is called from UBI worker
981  *
982  * This function checks if it is time to start wear-leveling and schedules it
983  * if yes. This function returns zero in case of success and a negative error
984  * code in case of failure.
985  */
986 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
987 {
988         int err = 0;
989         struct ubi_wl_entry *e1;
990         struct ubi_wl_entry *e2;
991         struct ubi_work *wrk;
992
993         spin_lock(&ubi->wl_lock);
994         if (ubi->wl_scheduled)
995                 /* Wear-leveling is already in the work queue */
996                 goto out_unlock;
997
998         /*
999          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1000          * the WL worker has to be scheduled anyway.
1001          */
1002         if (!ubi->scrub.rb_node) {
1003                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1004                         /* No physical eraseblocks - no deal */
1005                         goto out_unlock;
1006
1007                 /*
1008                  * We schedule wear-leveling only if the difference between the
1009                  * lowest erase counter of used physical eraseblocks and a high
1010                  * erase counter of free physical eraseblocks is greater than
1011                  * %UBI_WL_THRESHOLD.
1012                  */
1013                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1014                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1015
1016                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1017                         goto out_unlock;
1018                 dbg_wl("schedule wear-leveling");
1019         } else
1020                 dbg_wl("schedule scrubbing");
1021
1022         ubi->wl_scheduled = 1;
1023         spin_unlock(&ubi->wl_lock);
1024
1025         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1026         if (!wrk) {
1027                 err = -ENOMEM;
1028                 goto out_cancel;
1029         }
1030
1031         wrk->func = &wear_leveling_worker;
1032         if (nested)
1033                 __schedule_ubi_work(ubi, wrk);
1034         else
1035                 schedule_ubi_work(ubi, wrk);
1036         return err;
1037
1038 out_cancel:
1039         spin_lock(&ubi->wl_lock);
1040         ubi->wl_scheduled = 0;
1041 out_unlock:
1042         spin_unlock(&ubi->wl_lock);
1043         return err;
1044 }
1045
1046 /**
1047  * __erase_worker - physical eraseblock erase worker function.
1048  * @ubi: UBI device description object
1049  * @wl_wrk: the work object
1050  *
1051  * This function erases a physical eraseblock and perform torture testing if
1052  * needed. It also takes care about marking the physical eraseblock bad if
1053  * needed. Returns zero in case of success and a negative error code in case of
1054  * failure.
1055  */
1056 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1057 {
1058         struct ubi_wl_entry *e = wl_wrk->e;
1059         int pnum = e->pnum;
1060         int vol_id = wl_wrk->vol_id;
1061         int lnum = wl_wrk->lnum;
1062         int err, available_consumed = 0;
1063
1064         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1065                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1066
1067         err = sync_erase(ubi, e, wl_wrk->torture);
1068         if (!err) {
1069                 spin_lock(&ubi->wl_lock);
1070
1071                 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1072                         ubi->fm_anchor = e;
1073                         ubi->fm_do_produce_anchor = 0;
1074                 } else {
1075                         wl_tree_add(e, &ubi->free);
1076                         ubi->free_count++;
1077                 }
1078
1079                 spin_unlock(&ubi->wl_lock);
1080
1081                 /*
1082                  * One more erase operation has happened, take care about
1083                  * protected physical eraseblocks.
1084                  */
1085                 serve_prot_queue(ubi);
1086
1087                 /* And take care about wear-leveling */
1088                 err = ensure_wear_leveling(ubi, 1);
1089                 return err;
1090         }
1091
1092         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1093
1094         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1095             err == -EBUSY) {
1096                 int err1;
1097
1098                 /* Re-schedule the LEB for erasure */
1099                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1100                 if (err1) {
1101                         spin_lock(&ubi->wl_lock);
1102                         wl_entry_destroy(ubi, e);
1103                         spin_unlock(&ubi->wl_lock);
1104                         err = err1;
1105                         goto out_ro;
1106                 }
1107                 return err;
1108         }
1109
1110         spin_lock(&ubi->wl_lock);
1111         wl_entry_destroy(ubi, e);
1112         spin_unlock(&ubi->wl_lock);
1113         if (err != -EIO)
1114                 /*
1115                  * If this is not %-EIO, we have no idea what to do. Scheduling
1116                  * this physical eraseblock for erasure again would cause
1117                  * errors again and again. Well, lets switch to R/O mode.
1118                  */
1119                 goto out_ro;
1120
1121         /* It is %-EIO, the PEB went bad */
1122
1123         if (!ubi->bad_allowed) {
1124                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1125                 goto out_ro;
1126         }
1127
1128         spin_lock(&ubi->volumes_lock);
1129         if (ubi->beb_rsvd_pebs == 0) {
1130                 if (ubi->avail_pebs == 0) {
1131                         spin_unlock(&ubi->volumes_lock);
1132                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1133                         goto out_ro;
1134                 }
1135                 ubi->avail_pebs -= 1;
1136                 available_consumed = 1;
1137         }
1138         spin_unlock(&ubi->volumes_lock);
1139
1140         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1141         err = ubi_io_mark_bad(ubi, pnum);
1142         if (err)
1143                 goto out_ro;
1144
1145         spin_lock(&ubi->volumes_lock);
1146         if (ubi->beb_rsvd_pebs > 0) {
1147                 if (available_consumed) {
1148                         /*
1149                          * The amount of reserved PEBs increased since we last
1150                          * checked.
1151                          */
1152                         ubi->avail_pebs += 1;
1153                         available_consumed = 0;
1154                 }
1155                 ubi->beb_rsvd_pebs -= 1;
1156         }
1157         ubi->bad_peb_count += 1;
1158         ubi->good_peb_count -= 1;
1159         ubi_calculate_reserved(ubi);
1160         if (available_consumed)
1161                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1162         else if (ubi->beb_rsvd_pebs)
1163                 ubi_msg(ubi, "%d PEBs left in the reserve",
1164                         ubi->beb_rsvd_pebs);
1165         else
1166                 ubi_warn(ubi, "last PEB from the reserve was used");
1167         spin_unlock(&ubi->volumes_lock);
1168
1169         return err;
1170
1171 out_ro:
1172         if (available_consumed) {
1173                 spin_lock(&ubi->volumes_lock);
1174                 ubi->avail_pebs += 1;
1175                 spin_unlock(&ubi->volumes_lock);
1176         }
1177         ubi_ro_mode(ubi);
1178         return err;
1179 }
1180
1181 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1182                           int shutdown)
1183 {
1184         int ret;
1185
1186         if (shutdown) {
1187                 struct ubi_wl_entry *e = wl_wrk->e;
1188
1189                 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1190                 kfree(wl_wrk);
1191                 wl_entry_destroy(ubi, e);
1192                 return 0;
1193         }
1194
1195         ret = __erase_worker(ubi, wl_wrk);
1196         kfree(wl_wrk);
1197         return ret;
1198 }
1199
1200 /**
1201  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1202  * @ubi: UBI device description object
1203  * @vol_id: the volume ID that last used this PEB
1204  * @lnum: the last used logical eraseblock number for the PEB
1205  * @pnum: physical eraseblock to return
1206  * @torture: if this physical eraseblock has to be tortured
1207  *
1208  * This function is called to return physical eraseblock @pnum to the pool of
1209  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1210  * occurred to this @pnum and it has to be tested. This function returns zero
1211  * in case of success, and a negative error code in case of failure.
1212  */
1213 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1214                    int pnum, int torture)
1215 {
1216         int err;
1217         struct ubi_wl_entry *e;
1218
1219         dbg_wl("PEB %d", pnum);
1220         ubi_assert(pnum >= 0);
1221         ubi_assert(pnum < ubi->peb_count);
1222
1223         down_read(&ubi->fm_protect);
1224
1225 retry:
1226         spin_lock(&ubi->wl_lock);
1227         e = ubi->lookuptbl[pnum];
1228         if (!e) {
1229                 /*
1230                  * This wl entry has been removed for some errors by other
1231                  * process (eg. wear leveling worker), corresponding process
1232                  * (except __erase_worker, which cannot concurrent with
1233                  * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1234                  * just ignore this wl entry.
1235                  */
1236                 spin_unlock(&ubi->wl_lock);
1237                 up_read(&ubi->fm_protect);
1238                 return 0;
1239         }
1240         if (e == ubi->move_from) {
1241                 /*
1242                  * User is putting the physical eraseblock which was selected to
1243                  * be moved. It will be scheduled for erasure in the
1244                  * wear-leveling worker.
1245                  */
1246                 dbg_wl("PEB %d is being moved, wait", pnum);
1247                 spin_unlock(&ubi->wl_lock);
1248
1249                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1250                 mutex_lock(&ubi->move_mutex);
1251                 mutex_unlock(&ubi->move_mutex);
1252                 goto retry;
1253         } else if (e == ubi->move_to) {
1254                 /*
1255                  * User is putting the physical eraseblock which was selected
1256                  * as the target the data is moved to. It may happen if the EBA
1257                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1258                  * but the WL sub-system has not put the PEB to the "used" tree
1259                  * yet, but it is about to do this. So we just set a flag which
1260                  * will tell the WL worker that the PEB is not needed anymore
1261                  * and should be scheduled for erasure.
1262                  */
1263                 dbg_wl("PEB %d is the target of data moving", pnum);
1264                 ubi_assert(!ubi->move_to_put);
1265                 ubi->move_to_put = 1;
1266                 spin_unlock(&ubi->wl_lock);
1267                 up_read(&ubi->fm_protect);
1268                 return 0;
1269         } else {
1270                 if (in_wl_tree(e, &ubi->used)) {
1271                         self_check_in_wl_tree(ubi, e, &ubi->used);
1272                         rb_erase(&e->u.rb, &ubi->used);
1273                 } else if (in_wl_tree(e, &ubi->scrub)) {
1274                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1275                         rb_erase(&e->u.rb, &ubi->scrub);
1276                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1277                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1278                         rb_erase(&e->u.rb, &ubi->erroneous);
1279                         ubi->erroneous_peb_count -= 1;
1280                         ubi_assert(ubi->erroneous_peb_count >= 0);
1281                         /* Erroneous PEBs should be tortured */
1282                         torture = 1;
1283                 } else {
1284                         err = prot_queue_del(ubi, e->pnum);
1285                         if (err) {
1286                                 ubi_err(ubi, "PEB %d not found", pnum);
1287                                 ubi_ro_mode(ubi);
1288                                 spin_unlock(&ubi->wl_lock);
1289                                 up_read(&ubi->fm_protect);
1290                                 return err;
1291                         }
1292                 }
1293         }
1294         spin_unlock(&ubi->wl_lock);
1295
1296         err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1297         if (err) {
1298                 spin_lock(&ubi->wl_lock);
1299                 wl_tree_add(e, &ubi->used);
1300                 spin_unlock(&ubi->wl_lock);
1301         }
1302
1303         up_read(&ubi->fm_protect);
1304         return err;
1305 }
1306
1307 /**
1308  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1309  * @ubi: UBI device description object
1310  * @pnum: the physical eraseblock to schedule
1311  *
1312  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1313  * needs scrubbing. This function schedules a physical eraseblock for
1314  * scrubbing which is done in background. This function returns zero in case of
1315  * success and a negative error code in case of failure.
1316  */
1317 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1318 {
1319         struct ubi_wl_entry *e;
1320
1321         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1322
1323 retry:
1324         spin_lock(&ubi->wl_lock);
1325         e = ubi->lookuptbl[pnum];
1326         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1327                                    in_wl_tree(e, &ubi->erroneous)) {
1328                 spin_unlock(&ubi->wl_lock);
1329                 return 0;
1330         }
1331
1332         if (e == ubi->move_to) {
1333                 /*
1334                  * This physical eraseblock was used to move data to. The data
1335                  * was moved but the PEB was not yet inserted to the proper
1336                  * tree. We should just wait a little and let the WL worker
1337                  * proceed.
1338                  */
1339                 spin_unlock(&ubi->wl_lock);
1340                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1341                 yield();
1342                 goto retry;
1343         }
1344
1345         if (in_wl_tree(e, &ubi->used)) {
1346                 self_check_in_wl_tree(ubi, e, &ubi->used);
1347                 rb_erase(&e->u.rb, &ubi->used);
1348         } else {
1349                 int err;
1350
1351                 err = prot_queue_del(ubi, e->pnum);
1352                 if (err) {
1353                         ubi_err(ubi, "PEB %d not found", pnum);
1354                         ubi_ro_mode(ubi);
1355                         spin_unlock(&ubi->wl_lock);
1356                         return err;
1357                 }
1358         }
1359
1360         wl_tree_add(e, &ubi->scrub);
1361         spin_unlock(&ubi->wl_lock);
1362
1363         /*
1364          * Technically scrubbing is the same as wear-leveling, so it is done
1365          * by the WL worker.
1366          */
1367         return ensure_wear_leveling(ubi, 0);
1368 }
1369
1370 /**
1371  * ubi_wl_flush - flush all pending works.
1372  * @ubi: UBI device description object
1373  * @vol_id: the volume id to flush for
1374  * @lnum: the logical eraseblock number to flush for
1375  *
1376  * This function executes all pending works for a particular volume id /
1377  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1378  * acts as a wildcard for all of the corresponding volume numbers or logical
1379  * eraseblock numbers. It returns zero in case of success and a negative error
1380  * code in case of failure.
1381  */
1382 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1383 {
1384         int err = 0;
1385         int found = 1;
1386
1387         /*
1388          * Erase while the pending works queue is not empty, but not more than
1389          * the number of currently pending works.
1390          */
1391         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1392                vol_id, lnum, ubi->works_count);
1393
1394         while (found) {
1395                 struct ubi_work *wrk, *tmp;
1396                 found = 0;
1397
1398                 down_read(&ubi->work_sem);
1399                 spin_lock(&ubi->wl_lock);
1400                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1401                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1402                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1403                                 list_del(&wrk->list);
1404                                 ubi->works_count -= 1;
1405                                 ubi_assert(ubi->works_count >= 0);
1406                                 spin_unlock(&ubi->wl_lock);
1407
1408                                 err = wrk->func(ubi, wrk, 0);
1409                                 if (err) {
1410                                         up_read(&ubi->work_sem);
1411                                         return err;
1412                                 }
1413
1414                                 spin_lock(&ubi->wl_lock);
1415                                 found = 1;
1416                                 break;
1417                         }
1418                 }
1419                 spin_unlock(&ubi->wl_lock);
1420                 up_read(&ubi->work_sem);
1421         }
1422
1423         /*
1424          * Make sure all the works which have been done in parallel are
1425          * finished.
1426          */
1427         down_write(&ubi->work_sem);
1428         up_write(&ubi->work_sem);
1429
1430         return err;
1431 }
1432
1433 /**
1434  * tree_destroy - destroy an RB-tree.
1435  * @ubi: UBI device description object
1436  * @root: the root of the tree to destroy
1437  */
1438 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1439 {
1440         struct rb_node *rb;
1441         struct ubi_wl_entry *e;
1442
1443         rb = root->rb_node;
1444         while (rb) {
1445                 if (rb->rb_left)
1446                         rb = rb->rb_left;
1447                 else if (rb->rb_right)
1448                         rb = rb->rb_right;
1449                 else {
1450                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1451
1452                         rb = rb_parent(rb);
1453                         if (rb) {
1454                                 if (rb->rb_left == &e->u.rb)
1455                                         rb->rb_left = NULL;
1456                                 else
1457                                         rb->rb_right = NULL;
1458                         }
1459
1460                         wl_entry_destroy(ubi, e);
1461                 }
1462         }
1463 }
1464
1465 /**
1466  * ubi_thread - UBI background thread.
1467  * @u: the UBI device description object pointer
1468  */
1469 int ubi_thread(void *u)
1470 {
1471         int failures = 0;
1472         struct ubi_device *ubi = u;
1473
1474         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1475                 ubi->bgt_name, task_pid_nr(current));
1476
1477         set_freezable();
1478         for (;;) {
1479                 int err;
1480
1481                 if (kthread_should_stop())
1482                         break;
1483
1484                 if (try_to_freeze())
1485                         continue;
1486
1487                 spin_lock(&ubi->wl_lock);
1488                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1489                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1490                         set_current_state(TASK_INTERRUPTIBLE);
1491                         spin_unlock(&ubi->wl_lock);
1492
1493                         /*
1494                          * Check kthread_should_stop() after we set the task
1495                          * state to guarantee that we either see the stop bit
1496                          * and exit or the task state is reset to runnable such
1497                          * that it's not scheduled out indefinitely and detects
1498                          * the stop bit at kthread_should_stop().
1499                          */
1500                         if (kthread_should_stop()) {
1501                                 set_current_state(TASK_RUNNING);
1502                                 break;
1503                         }
1504
1505                         schedule();
1506                         continue;
1507                 }
1508                 spin_unlock(&ubi->wl_lock);
1509
1510                 err = do_work(ubi);
1511                 if (err) {
1512                         ubi_err(ubi, "%s: work failed with error code %d",
1513                                 ubi->bgt_name, err);
1514                         if (failures++ > WL_MAX_FAILURES) {
1515                                 /*
1516                                  * Too many failures, disable the thread and
1517                                  * switch to read-only mode.
1518                                  */
1519                                 ubi_msg(ubi, "%s: %d consecutive failures",
1520                                         ubi->bgt_name, WL_MAX_FAILURES);
1521                                 ubi_ro_mode(ubi);
1522                                 ubi->thread_enabled = 0;
1523                                 continue;
1524                         }
1525                 } else
1526                         failures = 0;
1527
1528                 cond_resched();
1529         }
1530
1531         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1532         ubi->thread_enabled = 0;
1533         return 0;
1534 }
1535
1536 /**
1537  * shutdown_work - shutdown all pending works.
1538  * @ubi: UBI device description object
1539  */
1540 static void shutdown_work(struct ubi_device *ubi)
1541 {
1542         while (!list_empty(&ubi->works)) {
1543                 struct ubi_work *wrk;
1544
1545                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1546                 list_del(&wrk->list);
1547                 wrk->func(ubi, wrk, 1);
1548                 ubi->works_count -= 1;
1549                 ubi_assert(ubi->works_count >= 0);
1550         }
1551 }
1552
1553 /**
1554  * erase_aeb - erase a PEB given in UBI attach info PEB
1555  * @ubi: UBI device description object
1556  * @aeb: UBI attach info PEB
1557  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1558  */
1559 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1560 {
1561         struct ubi_wl_entry *e;
1562         int err;
1563
1564         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1565         if (!e)
1566                 return -ENOMEM;
1567
1568         e->pnum = aeb->pnum;
1569         e->ec = aeb->ec;
1570         ubi->lookuptbl[e->pnum] = e;
1571
1572         if (sync) {
1573                 err = sync_erase(ubi, e, false);
1574                 if (err)
1575                         goto out_free;
1576
1577                 wl_tree_add(e, &ubi->free);
1578                 ubi->free_count++;
1579         } else {
1580                 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1581                 if (err)
1582                         goto out_free;
1583         }
1584
1585         return 0;
1586
1587 out_free:
1588         wl_entry_destroy(ubi, e);
1589
1590         return err;
1591 }
1592
1593 /**
1594  * ubi_wl_init - initialize the WL sub-system using attaching information.
1595  * @ubi: UBI device description object
1596  * @ai: attaching information
1597  *
1598  * This function returns zero in case of success, and a negative error code in
1599  * case of failure.
1600  */
1601 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1602 {
1603         int err, i, reserved_pebs, found_pebs = 0;
1604         struct rb_node *rb1, *rb2;
1605         struct ubi_ainf_volume *av;
1606         struct ubi_ainf_peb *aeb, *tmp;
1607         struct ubi_wl_entry *e;
1608
1609         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1610         spin_lock_init(&ubi->wl_lock);
1611         mutex_init(&ubi->move_mutex);
1612         init_rwsem(&ubi->work_sem);
1613         ubi->max_ec = ai->max_ec;
1614         INIT_LIST_HEAD(&ubi->works);
1615
1616         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1617
1618         err = -ENOMEM;
1619         ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1620         if (!ubi->lookuptbl)
1621                 return err;
1622
1623         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1624                 INIT_LIST_HEAD(&ubi->pq[i]);
1625         ubi->pq_head = 0;
1626
1627         ubi->free_count = 0;
1628         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1629                 cond_resched();
1630
1631                 err = erase_aeb(ubi, aeb, false);
1632                 if (err)
1633                         goto out_free;
1634
1635                 found_pebs++;
1636         }
1637
1638         list_for_each_entry(aeb, &ai->free, u.list) {
1639                 cond_resched();
1640
1641                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1642                 if (!e) {
1643                         err = -ENOMEM;
1644                         goto out_free;
1645                 }
1646
1647                 e->pnum = aeb->pnum;
1648                 e->ec = aeb->ec;
1649                 ubi_assert(e->ec >= 0);
1650
1651                 wl_tree_add(e, &ubi->free);
1652                 ubi->free_count++;
1653
1654                 ubi->lookuptbl[e->pnum] = e;
1655
1656                 found_pebs++;
1657         }
1658
1659         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1660                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1661                         cond_resched();
1662
1663                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1664                         if (!e) {
1665                                 err = -ENOMEM;
1666                                 goto out_free;
1667                         }
1668
1669                         e->pnum = aeb->pnum;
1670                         e->ec = aeb->ec;
1671                         ubi->lookuptbl[e->pnum] = e;
1672
1673                         if (!aeb->scrub) {
1674                                 dbg_wl("add PEB %d EC %d to the used tree",
1675                                        e->pnum, e->ec);
1676                                 wl_tree_add(e, &ubi->used);
1677                         } else {
1678                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1679                                        e->pnum, e->ec);
1680                                 wl_tree_add(e, &ubi->scrub);
1681                         }
1682
1683                         found_pebs++;
1684                 }
1685         }
1686
1687         list_for_each_entry(aeb, &ai->fastmap, u.list) {
1688                 cond_resched();
1689
1690                 e = ubi_find_fm_block(ubi, aeb->pnum);
1691
1692                 if (e) {
1693                         ubi_assert(!ubi->lookuptbl[e->pnum]);
1694                         ubi->lookuptbl[e->pnum] = e;
1695                 } else {
1696                         bool sync = false;
1697
1698                         /*
1699                          * Usually old Fastmap PEBs are scheduled for erasure
1700                          * and we don't have to care about them but if we face
1701                          * an power cut before scheduling them we need to
1702                          * take care of them here.
1703                          */
1704                         if (ubi->lookuptbl[aeb->pnum])
1705                                 continue;
1706
1707                         /*
1708                          * The fastmap update code might not find a free PEB for
1709                          * writing the fastmap anchor to and then reuses the
1710                          * current fastmap anchor PEB. When this PEB gets erased
1711                          * and a power cut happens before it is written again we
1712                          * must make sure that the fastmap attach code doesn't
1713                          * find any outdated fastmap anchors, hence we erase the
1714                          * outdated fastmap anchor PEBs synchronously here.
1715                          */
1716                         if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1717                                 sync = true;
1718
1719                         err = erase_aeb(ubi, aeb, sync);
1720                         if (err)
1721                                 goto out_free;
1722                 }
1723
1724                 found_pebs++;
1725         }
1726
1727         dbg_wl("found %i PEBs", found_pebs);
1728
1729         ubi_assert(ubi->good_peb_count == found_pebs);
1730
1731         reserved_pebs = WL_RESERVED_PEBS;
1732         ubi_fastmap_init(ubi, &reserved_pebs);
1733
1734         if (ubi->avail_pebs < reserved_pebs) {
1735                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1736                         ubi->avail_pebs, reserved_pebs);
1737                 if (ubi->corr_peb_count)
1738                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1739                                 ubi->corr_peb_count);
1740                 err = -ENOSPC;
1741                 goto out_free;
1742         }
1743         ubi->avail_pebs -= reserved_pebs;
1744         ubi->rsvd_pebs += reserved_pebs;
1745
1746         /* Schedule wear-leveling if needed */
1747         err = ensure_wear_leveling(ubi, 0);
1748         if (err)
1749                 goto out_free;
1750
1751 #ifdef CONFIG_MTD_UBI_FASTMAP
1752         ubi_ensure_anchor_pebs(ubi);
1753 #endif
1754         return 0;
1755
1756 out_free:
1757         shutdown_work(ubi);
1758         tree_destroy(ubi, &ubi->used);
1759         tree_destroy(ubi, &ubi->free);
1760         tree_destroy(ubi, &ubi->scrub);
1761         kfree(ubi->lookuptbl);
1762         return err;
1763 }
1764
1765 /**
1766  * protection_queue_destroy - destroy the protection queue.
1767  * @ubi: UBI device description object
1768  */
1769 static void protection_queue_destroy(struct ubi_device *ubi)
1770 {
1771         int i;
1772         struct ubi_wl_entry *e, *tmp;
1773
1774         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1775                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1776                         list_del(&e->u.list);
1777                         wl_entry_destroy(ubi, e);
1778                 }
1779         }
1780 }
1781
1782 /**
1783  * ubi_wl_close - close the wear-leveling sub-system.
1784  * @ubi: UBI device description object
1785  */
1786 void ubi_wl_close(struct ubi_device *ubi)
1787 {
1788         dbg_wl("close the WL sub-system");
1789         ubi_fastmap_close(ubi);
1790         shutdown_work(ubi);
1791         protection_queue_destroy(ubi);
1792         tree_destroy(ubi, &ubi->used);
1793         tree_destroy(ubi, &ubi->erroneous);
1794         tree_destroy(ubi, &ubi->free);
1795         tree_destroy(ubi, &ubi->scrub);
1796         kfree(ubi->lookuptbl);
1797 }
1798
1799 /**
1800  * self_check_ec - make sure that the erase counter of a PEB is correct.
1801  * @ubi: UBI device description object
1802  * @pnum: the physical eraseblock number to check
1803  * @ec: the erase counter to check
1804  *
1805  * This function returns zero if the erase counter of physical eraseblock @pnum
1806  * is equivalent to @ec, and a negative error code if not or if an error
1807  * occurred.
1808  */
1809 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1810 {
1811         int err;
1812         long long read_ec;
1813         struct ubi_ec_hdr *ec_hdr;
1814
1815         if (!ubi_dbg_chk_gen(ubi))
1816                 return 0;
1817
1818         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1819         if (!ec_hdr)
1820                 return -ENOMEM;
1821
1822         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1823         if (err && err != UBI_IO_BITFLIPS) {
1824                 /* The header does not have to exist */
1825                 err = 0;
1826                 goto out_free;
1827         }
1828
1829         read_ec = be64_to_cpu(ec_hdr->ec);
1830         if (ec != read_ec && read_ec - ec > 1) {
1831                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1832                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1833                 dump_stack();
1834                 err = 1;
1835         } else
1836                 err = 0;
1837
1838 out_free:
1839         kfree(ec_hdr);
1840         return err;
1841 }
1842
1843 /**
1844  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1845  * @ubi: UBI device description object
1846  * @e: the wear-leveling entry to check
1847  * @root: the root of the tree
1848  *
1849  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1850  * is not.
1851  */
1852 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1853                                  struct ubi_wl_entry *e, struct rb_root *root)
1854 {
1855         if (!ubi_dbg_chk_gen(ubi))
1856                 return 0;
1857
1858         if (in_wl_tree(e, root))
1859                 return 0;
1860
1861         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1862                 e->pnum, e->ec, root);
1863         dump_stack();
1864         return -EINVAL;
1865 }
1866
1867 /**
1868  * self_check_in_pq - check if wear-leveling entry is in the protection
1869  *                        queue.
1870  * @ubi: UBI device description object
1871  * @e: the wear-leveling entry to check
1872  *
1873  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1874  */
1875 static int self_check_in_pq(const struct ubi_device *ubi,
1876                             struct ubi_wl_entry *e)
1877 {
1878         struct ubi_wl_entry *p;
1879         int i;
1880
1881         if (!ubi_dbg_chk_gen(ubi))
1882                 return 0;
1883
1884         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1885                 list_for_each_entry(p, &ubi->pq[i], u.list)
1886                         if (p == e)
1887                                 return 0;
1888
1889         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1890                 e->pnum, e->ec);
1891         dump_stack();
1892         return -EINVAL;
1893 }
1894 #ifndef CONFIG_MTD_UBI_FASTMAP
1895 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1896 {
1897         struct ubi_wl_entry *e;
1898
1899         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1900         self_check_in_wl_tree(ubi, e, &ubi->free);
1901         ubi->free_count--;
1902         ubi_assert(ubi->free_count >= 0);
1903         rb_erase(&e->u.rb, &ubi->free);
1904
1905         return e;
1906 }
1907
1908 /**
1909  * produce_free_peb - produce a free physical eraseblock.
1910  * @ubi: UBI device description object
1911  *
1912  * This function tries to make a free PEB by means of synchronous execution of
1913  * pending works. This may be needed if, for example the background thread is
1914  * disabled. Returns zero in case of success and a negative error code in case
1915  * of failure.
1916  */
1917 static int produce_free_peb(struct ubi_device *ubi)
1918 {
1919         int err;
1920
1921         while (!ubi->free.rb_node && ubi->works_count) {
1922                 spin_unlock(&ubi->wl_lock);
1923
1924                 dbg_wl("do one work synchronously");
1925                 err = do_work(ubi);
1926
1927                 spin_lock(&ubi->wl_lock);
1928                 if (err)
1929                         return err;
1930         }
1931
1932         return 0;
1933 }
1934
1935 /**
1936  * ubi_wl_get_peb - get a physical eraseblock.
1937  * @ubi: UBI device description object
1938  *
1939  * This function returns a physical eraseblock in case of success and a
1940  * negative error code in case of failure.
1941  * Returns with ubi->fm_eba_sem held in read mode!
1942  */
1943 int ubi_wl_get_peb(struct ubi_device *ubi)
1944 {
1945         int err;
1946         struct ubi_wl_entry *e;
1947
1948 retry:
1949         down_read(&ubi->fm_eba_sem);
1950         spin_lock(&ubi->wl_lock);
1951         if (!ubi->free.rb_node) {
1952                 if (ubi->works_count == 0) {
1953                         ubi_err(ubi, "no free eraseblocks");
1954                         ubi_assert(list_empty(&ubi->works));
1955                         spin_unlock(&ubi->wl_lock);
1956                         return -ENOSPC;
1957                 }
1958
1959                 err = produce_free_peb(ubi);
1960                 if (err < 0) {
1961                         spin_unlock(&ubi->wl_lock);
1962                         return err;
1963                 }
1964                 spin_unlock(&ubi->wl_lock);
1965                 up_read(&ubi->fm_eba_sem);
1966                 goto retry;
1967
1968         }
1969         e = wl_get_wle(ubi);
1970         prot_queue_add(ubi, e);
1971         spin_unlock(&ubi->wl_lock);
1972
1973         err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1974                                     ubi->peb_size - ubi->vid_hdr_aloffset);
1975         if (err) {
1976                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1977                 return err;
1978         }
1979
1980         return e->pnum;
1981 }
1982 #else
1983 #include "fastmap-wl.c"
1984 #endif