GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / mtd / spi-nor / spansion.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 #define SPINOR_OP_RD_ANY_REG                    0x65    /* Read any register */
12 #define SPINOR_OP_WR_ANY_REG                    0x71    /* Write any register */
13 #define SPINOR_REG_CYPRESS_CFR2V                0x00800003
14 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24   0xb
15 #define SPINOR_REG_CYPRESS_CFR3V                0x00800004
16 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ           BIT(4) /* Page size. */
17 #define SPINOR_REG_CYPRESS_CFR5V                0x00800006
18 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN     0x3
19 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS     0
20 #define SPINOR_OP_CYPRESS_RD_FAST               0xee
21
22 /**
23  * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
24  * @nor:                pointer to a 'struct spi_nor'
25  * @enable:              whether to enable or disable Octal DTR
26  *
27  * This also sets the memory access latency cycles to 24 to allow the flash to
28  * run at up to 200MHz.
29  *
30  * Return: 0 on success, -errno otherwise.
31  */
32 static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor, bool enable)
33 {
34         struct spi_mem_op op;
35         u8 *buf = nor->bouncebuf;
36         int ret;
37
38         if (enable) {
39                 /* Use 24 dummy cycles for memory array reads. */
40                 ret = spi_nor_write_enable(nor);
41                 if (ret)
42                         return ret;
43
44                 *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
45                 op = (struct spi_mem_op)
46                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
47                                    SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V,
48                                                    1),
49                                    SPI_MEM_OP_NO_DUMMY,
50                                    SPI_MEM_OP_DATA_OUT(1, buf, 1));
51
52                 ret = spi_mem_exec_op(nor->spimem, &op);
53                 if (ret)
54                         return ret;
55
56                 ret = spi_nor_wait_till_ready(nor);
57                 if (ret)
58                         return ret;
59
60                 nor->read_dummy = 24;
61         }
62
63         /* Set/unset the octal and DTR enable bits. */
64         ret = spi_nor_write_enable(nor);
65         if (ret)
66                 return ret;
67
68         if (enable)
69                 *buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
70         else
71                 *buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
72
73         op = (struct spi_mem_op)
74                 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
75                            SPI_MEM_OP_ADDR(enable ? 3 : 4,
76                                            SPINOR_REG_CYPRESS_CFR5V,
77                                            1),
78                            SPI_MEM_OP_NO_DUMMY,
79                            SPI_MEM_OP_DATA_OUT(1, buf, 1));
80
81         if (!enable)
82                 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
83
84         ret = spi_mem_exec_op(nor->spimem, &op);
85         if (ret)
86                 return ret;
87
88         /* Read flash ID to make sure the switch was successful. */
89         op = (struct spi_mem_op)
90                 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
91                            SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1),
92                            SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1),
93                            SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
94                                               buf, 1));
95
96         if (enable)
97                 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
98
99         ret = spi_mem_exec_op(nor->spimem, &op);
100         if (ret)
101                 return ret;
102
103         if (memcmp(buf, nor->info->id, nor->info->id_len))
104                 return -EINVAL;
105
106         return 0;
107 }
108
109 static void s28hs512t_default_init(struct spi_nor *nor)
110 {
111         nor->params->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
112         nor->params->writesize = 16;
113 }
114
115 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
116 {
117         /*
118          * On older versions of the flash the xSPI Profile 1.0 table has the
119          * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
120          */
121         if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
122                 nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
123                         SPINOR_OP_CYPRESS_RD_FAST;
124
125         /* This flash is also missing the 4-byte Page Program opcode bit. */
126         spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
127                                 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
128         /*
129          * Since xSPI Page Program opcode is backward compatible with
130          * Legacy SPI, use Legacy SPI opcode there as well.
131          */
132         spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
133                                 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
134
135         /*
136          * The xSPI Profile 1.0 table advertises the number of additional
137          * address bytes needed for Read Status Register command as 0 but the
138          * actual value for that is 4.
139          */
140         nor->params->rdsr_addr_nbytes = 4;
141 }
142
143 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
144                                      const struct sfdp_parameter_header *bfpt_header,
145                                      const struct sfdp_bfpt *bfpt)
146 {
147         /*
148          * The BFPT table advertises a 512B page size but the page size is
149          * actually configurable (with the default being 256B). Read from
150          * CFR3V[4] and set the correct size.
151          */
152         struct spi_mem_op op =
153                 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
154                            SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1),
155                            SPI_MEM_OP_NO_DUMMY,
156                            SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
157         int ret;
158
159         ret = spi_mem_exec_op(nor->spimem, &op);
160         if (ret)
161                 return ret;
162
163         if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
164                 nor->params->page_size = 512;
165         else
166                 nor->params->page_size = 256;
167
168         return 0;
169 }
170
171 static struct spi_nor_fixups s28hs512t_fixups = {
172         .default_init = s28hs512t_default_init,
173         .post_sfdp = s28hs512t_post_sfdp_fixup,
174         .post_bfpt = s28hs512t_post_bfpt_fixup,
175 };
176
177 static int
178 s25fs_s_post_bfpt_fixups(struct spi_nor *nor,
179                          const struct sfdp_parameter_header *bfpt_header,
180                          const struct sfdp_bfpt *bfpt)
181 {
182         /*
183          * The S25FS-S chip family reports 512-byte pages in BFPT but
184          * in reality the write buffer still wraps at the safe default
185          * of 256 bytes.  Overwrite the page size advertised by BFPT
186          * to get the writes working.
187          */
188         nor->params->page_size = 256;
189
190         return 0;
191 }
192
193 static struct spi_nor_fixups s25fs_s_fixups = {
194         .post_bfpt = s25fs_s_post_bfpt_fixups,
195 };
196
197 static const struct flash_info spansion_parts[] = {
198         /* Spansion/Cypress -- single (large) sector size only, at least
199          * for the chips listed here (without boot sectors).
200          */
201         { "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64,
202                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
203         { "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128,
204                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
205         { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
206                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
207                               USE_CLSR) },
208         { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
209                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
210                               USE_CLSR) },
211         { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128,
212                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
213                               USE_CLSR) },
214         { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512,
215                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
216                               USE_CLSR) },
217         { "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
218                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
219                               SPI_NOR_HAS_LOCK | USE_CLSR) },
220         { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256,
221                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
222           .fixups = &s25fs_s_fixups, },
223         { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128,
224                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
225                               USE_CLSR) },
226         { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512,
227                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
228                               USE_CLSR) },
229         { "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256,
230                               SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR)
231           .fixups = &s25fs_s_fixups, },
232         { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
233         { "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
234         { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64,
235                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
236                              USE_CLSR) },
237         { "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256,
238                              SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
239                              USE_CLSR) },
240         { "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
241         { "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
242         { "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
243         { "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
244         { "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
245         { "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8,
246                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
247         { "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16,
248                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
249         { "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32,
250                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
251         { "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128,
252                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
253         { "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32,
254                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
255         { "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
256         { "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
257         { "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8,
258                              SECT_4K | SPI_NOR_DUAL_READ) },
259         { "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16,
260                              SECT_4K | SPI_NOR_DUAL_READ) },
261         { "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128,
262                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
263                              SPI_NOR_4B_OPCODES) },
264         { "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256,
265                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
266                              SPI_NOR_4B_OPCODES) },
267         { "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512,
268                              SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
269                              SPI_NOR_4B_OPCODES) },
270         { "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1,
271                               SPI_NOR_NO_ERASE) },
272         { "s28hs512t",   INFO(0x345b1a,      0, 256 * 1024, 256,
273                              SECT_4K | SPI_NOR_OCTAL_DTR_READ |
274                               SPI_NOR_OCTAL_DTR_PP)
275           .fixups = &s28hs512t_fixups,
276         },
277 };
278
279 static void spansion_post_sfdp_fixups(struct spi_nor *nor)
280 {
281         if (nor->params->size <= SZ_16M)
282                 return;
283
284         nor->flags |= SNOR_F_4B_OPCODES;
285         /* No small sector erase for 4-byte command set */
286         nor->erase_opcode = SPINOR_OP_SE;
287         nor->mtd.erasesize = nor->info->sector_size;
288 }
289
290 static const struct spi_nor_fixups spansion_fixups = {
291         .post_sfdp = spansion_post_sfdp_fixups,
292 };
293
294 const struct spi_nor_manufacturer spi_nor_spansion = {
295         .name = "spansion",
296         .parts = spansion_parts,
297         .nparts = ARRAY_SIZE(spansion_parts),
298         .fixups = &spansion_fixups,
299 };