GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / mtd / spi-nor / controllers / intel-spi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8
9 #include <linux/err.h>
10 #include <linux/io.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/sizes.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/platform_data/intel-spi.h>
19
20 #include "intel-spi.h"
21
22 /* Offsets are from @ispi->base */
23 #define BFPREG                          0x00
24
25 #define HSFSTS_CTL                      0x04
26 #define HSFSTS_CTL_FSMIE                BIT(31)
27 #define HSFSTS_CTL_FDBC_SHIFT           24
28 #define HSFSTS_CTL_FDBC_MASK            (0x3f << HSFSTS_CTL_FDBC_SHIFT)
29
30 #define HSFSTS_CTL_FCYCLE_SHIFT         17
31 #define HSFSTS_CTL_FCYCLE_MASK          (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
32 /* HW sequencer opcodes */
33 #define HSFSTS_CTL_FCYCLE_READ          (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_WRITE         (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE         (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_ERASE_64K     (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID          (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR          (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR          (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40
41 #define HSFSTS_CTL_FGO                  BIT(16)
42 #define HSFSTS_CTL_FLOCKDN              BIT(15)
43 #define HSFSTS_CTL_FDV                  BIT(14)
44 #define HSFSTS_CTL_SCIP                 BIT(5)
45 #define HSFSTS_CTL_AEL                  BIT(2)
46 #define HSFSTS_CTL_FCERR                BIT(1)
47 #define HSFSTS_CTL_FDONE                BIT(0)
48
49 #define FADDR                           0x08
50 #define DLOCK                           0x0c
51 #define FDATA(n)                        (0x10 + ((n) * 4))
52
53 #define FRACC                           0x50
54
55 #define FREG(n)                         (0x54 + ((n) * 4))
56 #define FREG_BASE_MASK                  0x3fff
57 #define FREG_LIMIT_SHIFT                16
58 #define FREG_LIMIT_MASK                 (0x03fff << FREG_LIMIT_SHIFT)
59
60 /* Offset is from @ispi->pregs */
61 #define PR(n)                           ((n) * 4)
62 #define PR_WPE                          BIT(31)
63 #define PR_LIMIT_SHIFT                  16
64 #define PR_LIMIT_MASK                   (0x3fff << PR_LIMIT_SHIFT)
65 #define PR_RPE                          BIT(15)
66 #define PR_BASE_MASK                    0x3fff
67
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL                      0x00
70 #define SSFSTS_CTL_FSMIE                BIT(23)
71 #define SSFSTS_CTL_DS                   BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT            16
73 #define SSFSTS_CTL_SPOP                 BIT(11)
74 #define SSFSTS_CTL_ACS                  BIT(10)
75 #define SSFSTS_CTL_SCGO                 BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT            12
77 #define SSFSTS_CTL_FRS                  BIT(7)
78 #define SSFSTS_CTL_DOFRS                BIT(6)
79 #define SSFSTS_CTL_AEL                  BIT(4)
80 #define SSFSTS_CTL_FCERR                BIT(3)
81 #define SSFSTS_CTL_FDONE                BIT(2)
82 #define SSFSTS_CTL_SCIP                 BIT(0)
83
84 #define PREOP_OPTYPE                    0x04
85 #define OPMENU0                         0x08
86 #define OPMENU1                         0x0c
87
88 #define OPTYPE_READ_NO_ADDR             0
89 #define OPTYPE_WRITE_NO_ADDR            1
90 #define OPTYPE_READ_WITH_ADDR           2
91 #define OPTYPE_WRITE_WITH_ADDR          3
92
93 /* CPU specifics */
94 #define BYT_PR                          0x74
95 #define BYT_SSFSTS_CTL                  0x90
96 #define BYT_BCR                         0xfc
97 #define BYT_BCR_WPD                     BIT(0)
98 #define BYT_FREG_NUM                    5
99 #define BYT_PR_NUM                      5
100
101 #define LPT_PR                          0x74
102 #define LPT_SSFSTS_CTL                  0x90
103 #define LPT_FREG_NUM                    5
104 #define LPT_PR_NUM                      5
105
106 #define BXT_PR                          0x84
107 #define BXT_SSFSTS_CTL                  0xa0
108 #define BXT_FREG_NUM                    12
109 #define BXT_PR_NUM                      6
110
111 #define CNL_PR                          0x84
112 #define CNL_FREG_NUM                    6
113 #define CNL_PR_NUM                      5
114
115 #define LVSCC                           0xc4
116 #define UVSCC                           0xc8
117 #define ERASE_OPCODE_SHIFT              8
118 #define ERASE_OPCODE_MASK               (0xff << ERASE_OPCODE_SHIFT)
119 #define ERASE_64K_OPCODE_SHIFT          16
120 #define ERASE_64K_OPCODE_MASK           (0xff << ERASE_OPCODE_SHIFT)
121
122 #define INTEL_SPI_TIMEOUT               5000 /* ms */
123 #define INTEL_SPI_FIFO_SZ               64
124
125 /**
126  * struct intel_spi - Driver private data
127  * @dev: Device pointer
128  * @info: Pointer to board specific info
129  * @nor: SPI NOR layer structure
130  * @base: Beginning of MMIO space
131  * @pregs: Start of protection registers
132  * @sregs: Start of software sequencer registers
133  * @nregions: Maximum number of regions
134  * @pr_num: Maximum number of protected range registers
135  * @writeable: Is the chip writeable
136  * @locked: Is SPI setting locked
137  * @swseq_reg: Use SW sequencer in register reads/writes
138  * @swseq_erase: Use SW sequencer in erase operation
139  * @erase_64k: 64k erase supported
140  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
141  * @opcodes: Opcodes which are supported. This are programmed by BIOS
142  *           before it locks down the controller.
143  */
144 struct intel_spi {
145         struct device *dev;
146         const struct intel_spi_boardinfo *info;
147         struct spi_nor nor;
148         void __iomem *base;
149         void __iomem *pregs;
150         void __iomem *sregs;
151         size_t nregions;
152         size_t pr_num;
153         bool writeable;
154         bool locked;
155         bool swseq_reg;
156         bool swseq_erase;
157         bool erase_64k;
158         u8 atomic_preopcode;
159         u8 opcodes[8];
160 };
161
162 static bool writeable;
163 module_param(writeable, bool, 0);
164 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
165
166 static void intel_spi_dump_regs(struct intel_spi *ispi)
167 {
168         u32 value;
169         int i;
170
171         dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
172
173         value = readl(ispi->base + HSFSTS_CTL);
174         dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
175         if (value & HSFSTS_CTL_FLOCKDN)
176                 dev_dbg(ispi->dev, "-> Locked\n");
177
178         dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
179         dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
180
181         for (i = 0; i < 16; i++)
182                 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
183                         i, readl(ispi->base + FDATA(i)));
184
185         dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
186
187         for (i = 0; i < ispi->nregions; i++)
188                 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
189                         readl(ispi->base + FREG(i)));
190         for (i = 0; i < ispi->pr_num; i++)
191                 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
192                         readl(ispi->pregs + PR(i)));
193
194         if (ispi->sregs) {
195                 value = readl(ispi->sregs + SSFSTS_CTL);
196                 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
197                 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
198                         readl(ispi->sregs + PREOP_OPTYPE));
199                 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
200                         readl(ispi->sregs + OPMENU0));
201                 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
202                         readl(ispi->sregs + OPMENU1));
203         }
204
205         if (ispi->info->type == INTEL_SPI_BYT)
206                 dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
207
208         dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
209         dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
210
211         dev_dbg(ispi->dev, "Protected regions:\n");
212         for (i = 0; i < ispi->pr_num; i++) {
213                 u32 base, limit;
214
215                 value = readl(ispi->pregs + PR(i));
216                 if (!(value & (PR_WPE | PR_RPE)))
217                         continue;
218
219                 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
220                 base = value & PR_BASE_MASK;
221
222                 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
223                          i, base << 12, (limit << 12) | 0xfff,
224                          value & PR_WPE ? 'W' : '.',
225                          value & PR_RPE ? 'R' : '.');
226         }
227
228         dev_dbg(ispi->dev, "Flash regions:\n");
229         for (i = 0; i < ispi->nregions; i++) {
230                 u32 region, base, limit;
231
232                 region = readl(ispi->base + FREG(i));
233                 base = region & FREG_BASE_MASK;
234                 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
235
236                 if (base >= limit || (i > 0 && limit == 0))
237                         dev_dbg(ispi->dev, " %02d disabled\n", i);
238                 else
239                         dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
240                                  i, base << 12, (limit << 12) | 0xfff);
241         }
242
243         dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
244                 ispi->swseq_reg ? 'S' : 'H');
245         dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
246                 ispi->swseq_erase ? 'S' : 'H');
247 }
248
249 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
250 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
251 {
252         size_t bytes;
253         int i = 0;
254
255         if (size > INTEL_SPI_FIFO_SZ)
256                 return -EINVAL;
257
258         while (size > 0) {
259                 bytes = min_t(size_t, size, 4);
260                 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
261                 size -= bytes;
262                 buf += bytes;
263                 i++;
264         }
265
266         return 0;
267 }
268
269 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
270 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
271                                  size_t size)
272 {
273         size_t bytes;
274         int i = 0;
275
276         if (size > INTEL_SPI_FIFO_SZ)
277                 return -EINVAL;
278
279         while (size > 0) {
280                 bytes = min_t(size_t, size, 4);
281                 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
282                 size -= bytes;
283                 buf += bytes;
284                 i++;
285         }
286
287         return 0;
288 }
289
290 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
291 {
292         u32 val;
293
294         return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
295                                   !(val & HSFSTS_CTL_SCIP), 0,
296                                   INTEL_SPI_TIMEOUT * 1000);
297 }
298
299 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
300 {
301         u32 val;
302
303         return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
304                                   !(val & SSFSTS_CTL_SCIP), 0,
305                                   INTEL_SPI_TIMEOUT * 1000);
306 }
307
308 static int intel_spi_init(struct intel_spi *ispi)
309 {
310         u32 opmenu0, opmenu1, lvscc, uvscc, val;
311         int i;
312
313         switch (ispi->info->type) {
314         case INTEL_SPI_BYT:
315                 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
316                 ispi->pregs = ispi->base + BYT_PR;
317                 ispi->nregions = BYT_FREG_NUM;
318                 ispi->pr_num = BYT_PR_NUM;
319                 ispi->swseq_reg = true;
320
321                 if (writeable) {
322                         /* Disable write protection */
323                         val = readl(ispi->base + BYT_BCR);
324                         if (!(val & BYT_BCR_WPD)) {
325                                 val |= BYT_BCR_WPD;
326                                 writel(val, ispi->base + BYT_BCR);
327                                 val = readl(ispi->base + BYT_BCR);
328                         }
329
330                         ispi->writeable = !!(val & BYT_BCR_WPD);
331                 }
332
333                 break;
334
335         case INTEL_SPI_LPT:
336                 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
337                 ispi->pregs = ispi->base + LPT_PR;
338                 ispi->nregions = LPT_FREG_NUM;
339                 ispi->pr_num = LPT_PR_NUM;
340                 ispi->swseq_reg = true;
341                 break;
342
343         case INTEL_SPI_BXT:
344                 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
345                 ispi->pregs = ispi->base + BXT_PR;
346                 ispi->nregions = BXT_FREG_NUM;
347                 ispi->pr_num = BXT_PR_NUM;
348                 ispi->erase_64k = true;
349                 break;
350
351         case INTEL_SPI_CNL:
352                 ispi->sregs = NULL;
353                 ispi->pregs = ispi->base + CNL_PR;
354                 ispi->nregions = CNL_FREG_NUM;
355                 ispi->pr_num = CNL_PR_NUM;
356                 break;
357
358         default:
359                 return -EINVAL;
360         }
361
362         /* Disable #SMI generation from HW sequencer */
363         val = readl(ispi->base + HSFSTS_CTL);
364         val &= ~HSFSTS_CTL_FSMIE;
365         writel(val, ispi->base + HSFSTS_CTL);
366
367         /*
368          * Determine whether erase operation should use HW or SW sequencer.
369          *
370          * The HW sequencer has a predefined list of opcodes, with only the
371          * erase opcode being programmable in LVSCC and UVSCC registers.
372          * If these registers don't contain a valid erase opcode, erase
373          * cannot be done using HW sequencer.
374          */
375         lvscc = readl(ispi->base + LVSCC);
376         uvscc = readl(ispi->base + UVSCC);
377         if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
378                 ispi->swseq_erase = true;
379         /* SPI controller on Intel BXT supports 64K erase opcode */
380         if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
381                 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
382                     !(uvscc & ERASE_64K_OPCODE_MASK))
383                         ispi->erase_64k = false;
384
385         if (ispi->sregs == NULL && (ispi->swseq_reg || ispi->swseq_erase)) {
386                 dev_err(ispi->dev, "software sequencer not supported, but required\n");
387                 return -EINVAL;
388         }
389
390         /*
391          * Some controllers can only do basic operations using hardware
392          * sequencer. All other operations are supposed to be carried out
393          * using software sequencer.
394          */
395         if (ispi->swseq_reg) {
396                 /* Disable #SMI generation from SW sequencer */
397                 val = readl(ispi->sregs + SSFSTS_CTL);
398                 val &= ~SSFSTS_CTL_FSMIE;
399                 writel(val, ispi->sregs + SSFSTS_CTL);
400         }
401
402         /* Check controller's lock status */
403         val = readl(ispi->base + HSFSTS_CTL);
404         ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
405
406         if (ispi->locked && ispi->sregs) {
407                 /*
408                  * BIOS programs allowed opcodes and then locks down the
409                  * register. So read back what opcodes it decided to support.
410                  * That's the set we are going to support as well.
411                  */
412                 opmenu0 = readl(ispi->sregs + OPMENU0);
413                 opmenu1 = readl(ispi->sregs + OPMENU1);
414
415                 if (opmenu0 && opmenu1) {
416                         for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
417                                 ispi->opcodes[i] = opmenu0 >> i * 8;
418                                 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
419                         }
420                 }
421         }
422
423         intel_spi_dump_regs(ispi);
424
425         return 0;
426 }
427
428 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
429 {
430         int i;
431         int preop;
432
433         if (ispi->locked) {
434                 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
435                         if (ispi->opcodes[i] == opcode)
436                                 return i;
437
438                 return -EINVAL;
439         }
440
441         /* The lock is off, so just use index 0 */
442         writel(opcode, ispi->sregs + OPMENU0);
443         preop = readw(ispi->sregs + PREOP_OPTYPE);
444         writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
445
446         return 0;
447 }
448
449 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
450 {
451         u32 val, status;
452         int ret;
453
454         val = readl(ispi->base + HSFSTS_CTL);
455         val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
456
457         switch (opcode) {
458         case SPINOR_OP_RDID:
459                 val |= HSFSTS_CTL_FCYCLE_RDID;
460                 break;
461         case SPINOR_OP_WRSR:
462                 val |= HSFSTS_CTL_FCYCLE_WRSR;
463                 break;
464         case SPINOR_OP_RDSR:
465                 val |= HSFSTS_CTL_FCYCLE_RDSR;
466                 break;
467         default:
468                 return -EINVAL;
469         }
470
471         if (len > INTEL_SPI_FIFO_SZ)
472                 return -EINVAL;
473
474         val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
475         val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
476         val |= HSFSTS_CTL_FGO;
477         writel(val, ispi->base + HSFSTS_CTL);
478
479         ret = intel_spi_wait_hw_busy(ispi);
480         if (ret)
481                 return ret;
482
483         status = readl(ispi->base + HSFSTS_CTL);
484         if (status & HSFSTS_CTL_FCERR)
485                 return -EIO;
486         else if (status & HSFSTS_CTL_AEL)
487                 return -EACCES;
488
489         return 0;
490 }
491
492 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
493                               int optype)
494 {
495         u32 val = 0, status;
496         u8 atomic_preopcode;
497         int ret;
498
499         ret = intel_spi_opcode_index(ispi, opcode, optype);
500         if (ret < 0)
501                 return ret;
502
503         if (len > INTEL_SPI_FIFO_SZ)
504                 return -EINVAL;
505
506         /*
507          * Always clear it after each SW sequencer operation regardless
508          * of whether it is successful or not.
509          */
510         atomic_preopcode = ispi->atomic_preopcode;
511         ispi->atomic_preopcode = 0;
512
513         /* Only mark 'Data Cycle' bit when there is data to be transferred */
514         if (len > 0)
515                 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
516         val |= ret << SSFSTS_CTL_COP_SHIFT;
517         val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
518         val |= SSFSTS_CTL_SCGO;
519         if (atomic_preopcode) {
520                 u16 preop;
521
522                 switch (optype) {
523                 case OPTYPE_WRITE_NO_ADDR:
524                 case OPTYPE_WRITE_WITH_ADDR:
525                         /* Pick matching preopcode for the atomic sequence */
526                         preop = readw(ispi->sregs + PREOP_OPTYPE);
527                         if ((preop & 0xff) == atomic_preopcode)
528                                 ; /* Do nothing */
529                         else if ((preop >> 8) == atomic_preopcode)
530                                 val |= SSFSTS_CTL_SPOP;
531                         else
532                                 return -EINVAL;
533
534                         /* Enable atomic sequence */
535                         val |= SSFSTS_CTL_ACS;
536                         break;
537
538                 default:
539                         return -EINVAL;
540                 }
541
542         }
543         writel(val, ispi->sregs + SSFSTS_CTL);
544
545         ret = intel_spi_wait_sw_busy(ispi);
546         if (ret)
547                 return ret;
548
549         status = readl(ispi->sregs + SSFSTS_CTL);
550         if (status & SSFSTS_CTL_FCERR)
551                 return -EIO;
552         else if (status & SSFSTS_CTL_AEL)
553                 return -EACCES;
554
555         return 0;
556 }
557
558 static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
559                               size_t len)
560 {
561         struct intel_spi *ispi = nor->priv;
562         int ret;
563
564         /* Address of the first chip */
565         writel(0, ispi->base + FADDR);
566
567         if (ispi->swseq_reg)
568                 ret = intel_spi_sw_cycle(ispi, opcode, len,
569                                          OPTYPE_READ_NO_ADDR);
570         else
571                 ret = intel_spi_hw_cycle(ispi, opcode, len);
572
573         if (ret)
574                 return ret;
575
576         return intel_spi_read_block(ispi, buf, len);
577 }
578
579 static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
580                                size_t len)
581 {
582         struct intel_spi *ispi = nor->priv;
583         int ret;
584
585         /*
586          * This is handled with atomic operation and preop code in Intel
587          * controller so we only verify that it is available. If the
588          * controller is not locked, program the opcode to the PREOP
589          * register for later use.
590          *
591          * When hardware sequencer is used there is no need to program
592          * any opcodes (it handles them automatically as part of a command).
593          */
594         if (opcode == SPINOR_OP_WREN) {
595                 u16 preop;
596
597                 if (!ispi->swseq_reg)
598                         return 0;
599
600                 preop = readw(ispi->sregs + PREOP_OPTYPE);
601                 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
602                         if (ispi->locked)
603                                 return -EINVAL;
604                         writel(opcode, ispi->sregs + PREOP_OPTYPE);
605                 }
606
607                 /*
608                  * This enables atomic sequence on next SW sycle. Will
609                  * be cleared after next operation.
610                  */
611                 ispi->atomic_preopcode = opcode;
612                 return 0;
613         }
614
615         /*
616          * We hope that HW sequencer will do the right thing automatically and
617          * with the SW sequencer we cannot use preopcode anyway, so just ignore
618          * the Write Disable operation and pretend it was completed
619          * successfully.
620          */
621         if (opcode == SPINOR_OP_WRDI)
622                 return 0;
623
624         writel(0, ispi->base + FADDR);
625
626         /* Write the value beforehand */
627         ret = intel_spi_write_block(ispi, buf, len);
628         if (ret)
629                 return ret;
630
631         if (ispi->swseq_reg)
632                 return intel_spi_sw_cycle(ispi, opcode, len,
633                                           OPTYPE_WRITE_NO_ADDR);
634         return intel_spi_hw_cycle(ispi, opcode, len);
635 }
636
637 static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
638                               u_char *read_buf)
639 {
640         struct intel_spi *ispi = nor->priv;
641         size_t block_size, retlen = 0;
642         u32 val, status;
643         ssize_t ret;
644
645         /*
646          * Atomic sequence is not expected with HW sequencer reads. Make
647          * sure it is cleared regardless.
648          */
649         if (WARN_ON_ONCE(ispi->atomic_preopcode))
650                 ispi->atomic_preopcode = 0;
651
652         switch (nor->read_opcode) {
653         case SPINOR_OP_READ:
654         case SPINOR_OP_READ_FAST:
655         case SPINOR_OP_READ_4B:
656         case SPINOR_OP_READ_FAST_4B:
657                 break;
658         default:
659                 return -EINVAL;
660         }
661
662         while (len > 0) {
663                 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
664
665                 /* Read cannot cross 4K boundary */
666                 block_size = min_t(loff_t, from + block_size,
667                                    round_up(from + 1, SZ_4K)) - from;
668
669                 writel(from, ispi->base + FADDR);
670
671                 val = readl(ispi->base + HSFSTS_CTL);
672                 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
673                 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
674                 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
675                 val |= HSFSTS_CTL_FCYCLE_READ;
676                 val |= HSFSTS_CTL_FGO;
677                 writel(val, ispi->base + HSFSTS_CTL);
678
679                 ret = intel_spi_wait_hw_busy(ispi);
680                 if (ret)
681                         return ret;
682
683                 status = readl(ispi->base + HSFSTS_CTL);
684                 if (status & HSFSTS_CTL_FCERR)
685                         ret = -EIO;
686                 else if (status & HSFSTS_CTL_AEL)
687                         ret = -EACCES;
688
689                 if (ret < 0) {
690                         dev_err(ispi->dev, "read error: %llx: %#x\n", from,
691                                 status);
692                         return ret;
693                 }
694
695                 ret = intel_spi_read_block(ispi, read_buf, block_size);
696                 if (ret)
697                         return ret;
698
699                 len -= block_size;
700                 from += block_size;
701                 retlen += block_size;
702                 read_buf += block_size;
703         }
704
705         return retlen;
706 }
707
708 static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
709                                const u_char *write_buf)
710 {
711         struct intel_spi *ispi = nor->priv;
712         size_t block_size, retlen = 0;
713         u32 val, status;
714         ssize_t ret;
715
716         /* Not needed with HW sequencer write, make sure it is cleared */
717         ispi->atomic_preopcode = 0;
718
719         while (len > 0) {
720                 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
721
722                 /* Write cannot cross 4K boundary */
723                 block_size = min_t(loff_t, to + block_size,
724                                    round_up(to + 1, SZ_4K)) - to;
725
726                 writel(to, ispi->base + FADDR);
727
728                 val = readl(ispi->base + HSFSTS_CTL);
729                 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
730                 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
731                 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
732                 val |= HSFSTS_CTL_FCYCLE_WRITE;
733
734                 ret = intel_spi_write_block(ispi, write_buf, block_size);
735                 if (ret) {
736                         dev_err(ispi->dev, "failed to write block\n");
737                         return ret;
738                 }
739
740                 /* Start the write now */
741                 val |= HSFSTS_CTL_FGO;
742                 writel(val, ispi->base + HSFSTS_CTL);
743
744                 ret = intel_spi_wait_hw_busy(ispi);
745                 if (ret) {
746                         dev_err(ispi->dev, "timeout\n");
747                         return ret;
748                 }
749
750                 status = readl(ispi->base + HSFSTS_CTL);
751                 if (status & HSFSTS_CTL_FCERR)
752                         ret = -EIO;
753                 else if (status & HSFSTS_CTL_AEL)
754                         ret = -EACCES;
755
756                 if (ret < 0) {
757                         dev_err(ispi->dev, "write error: %llx: %#x\n", to,
758                                 status);
759                         return ret;
760                 }
761
762                 len -= block_size;
763                 to += block_size;
764                 retlen += block_size;
765                 write_buf += block_size;
766         }
767
768         return retlen;
769 }
770
771 static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
772 {
773         size_t erase_size, len = nor->mtd.erasesize;
774         struct intel_spi *ispi = nor->priv;
775         u32 val, status, cmd;
776         int ret;
777
778         /* If the hardware can do 64k erase use that when possible */
779         if (len >= SZ_64K && ispi->erase_64k) {
780                 cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
781                 erase_size = SZ_64K;
782         } else {
783                 cmd = HSFSTS_CTL_FCYCLE_ERASE;
784                 erase_size = SZ_4K;
785         }
786
787         if (ispi->swseq_erase) {
788                 while (len > 0) {
789                         writel(offs, ispi->base + FADDR);
790
791                         ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
792                                                  0, OPTYPE_WRITE_WITH_ADDR);
793                         if (ret)
794                                 return ret;
795
796                         offs += erase_size;
797                         len -= erase_size;
798                 }
799
800                 return 0;
801         }
802
803         /* Not needed with HW sequencer erase, make sure it is cleared */
804         ispi->atomic_preopcode = 0;
805
806         while (len > 0) {
807                 writel(offs, ispi->base + FADDR);
808
809                 val = readl(ispi->base + HSFSTS_CTL);
810                 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
811                 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
812                 val |= cmd;
813                 val |= HSFSTS_CTL_FGO;
814                 writel(val, ispi->base + HSFSTS_CTL);
815
816                 ret = intel_spi_wait_hw_busy(ispi);
817                 if (ret)
818                         return ret;
819
820                 status = readl(ispi->base + HSFSTS_CTL);
821                 if (status & HSFSTS_CTL_FCERR)
822                         return -EIO;
823                 else if (status & HSFSTS_CTL_AEL)
824                         return -EACCES;
825
826                 offs += erase_size;
827                 len -= erase_size;
828         }
829
830         return 0;
831 }
832
833 static bool intel_spi_is_protected(const struct intel_spi *ispi,
834                                    unsigned int base, unsigned int limit)
835 {
836         int i;
837
838         for (i = 0; i < ispi->pr_num; i++) {
839                 u32 pr_base, pr_limit, pr_value;
840
841                 pr_value = readl(ispi->pregs + PR(i));
842                 if (!(pr_value & (PR_WPE | PR_RPE)))
843                         continue;
844
845                 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
846                 pr_base = pr_value & PR_BASE_MASK;
847
848                 if (pr_base >= base && pr_limit <= limit)
849                         return true;
850         }
851
852         return false;
853 }
854
855 /*
856  * There will be a single partition holding all enabled flash regions. We
857  * call this "BIOS".
858  */
859 static void intel_spi_fill_partition(struct intel_spi *ispi,
860                                      struct mtd_partition *part)
861 {
862         u64 end;
863         int i;
864
865         memset(part, 0, sizeof(*part));
866
867         /* Start from the mandatory descriptor region */
868         part->size = 4096;
869         part->name = "BIOS";
870
871         /*
872          * Now try to find where this partition ends based on the flash
873          * region registers.
874          */
875         for (i = 1; i < ispi->nregions; i++) {
876                 u32 region, base, limit;
877
878                 region = readl(ispi->base + FREG(i));
879                 base = region & FREG_BASE_MASK;
880                 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
881
882                 if (base >= limit || limit == 0)
883                         continue;
884
885                 /*
886                  * If any of the regions have protection bits set, make the
887                  * whole partition read-only to be on the safe side.
888                  */
889                 if (intel_spi_is_protected(ispi, base, limit))
890                         ispi->writeable = false;
891
892                 end = (limit << 12) + 4096;
893                 if (end > part->size)
894                         part->size = end;
895         }
896 }
897
898 static const struct spi_nor_controller_ops intel_spi_controller_ops = {
899         .read_reg = intel_spi_read_reg,
900         .write_reg = intel_spi_write_reg,
901         .read = intel_spi_read,
902         .write = intel_spi_write,
903         .erase = intel_spi_erase,
904 };
905
906 struct intel_spi *intel_spi_probe(struct device *dev,
907         struct resource *mem, const struct intel_spi_boardinfo *info)
908 {
909         const struct spi_nor_hwcaps hwcaps = {
910                 .mask = SNOR_HWCAPS_READ |
911                         SNOR_HWCAPS_READ_FAST |
912                         SNOR_HWCAPS_PP,
913         };
914         struct mtd_partition part;
915         struct intel_spi *ispi;
916         int ret;
917
918         if (!info || !mem)
919                 return ERR_PTR(-EINVAL);
920
921         ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
922         if (!ispi)
923                 return ERR_PTR(-ENOMEM);
924
925         ispi->base = devm_ioremap_resource(dev, mem);
926         if (IS_ERR(ispi->base))
927                 return ERR_CAST(ispi->base);
928
929         ispi->dev = dev;
930         ispi->info = info;
931         ispi->writeable = info->writeable;
932
933         ret = intel_spi_init(ispi);
934         if (ret)
935                 return ERR_PTR(ret);
936
937         ispi->nor.dev = ispi->dev;
938         ispi->nor.priv = ispi;
939         ispi->nor.controller_ops = &intel_spi_controller_ops;
940
941         ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
942         if (ret) {
943                 dev_info(dev, "failed to locate the chip\n");
944                 return ERR_PTR(ret);
945         }
946
947         intel_spi_fill_partition(ispi, &part);
948
949         /* Prevent writes if not explicitly enabled */
950         if (!ispi->writeable || !writeable)
951                 ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
952
953         ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
954         if (ret)
955                 return ERR_PTR(ret);
956
957         return ispi;
958 }
959 EXPORT_SYMBOL_GPL(intel_spi_probe);
960
961 int intel_spi_remove(struct intel_spi *ispi)
962 {
963         return mtd_device_unregister(&ispi->nor.mtd);
964 }
965 EXPORT_SYMBOL_GPL(intel_spi_remove);
966
967 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
968 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
969 MODULE_LICENSE("GPL v2");