GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / mtd / nand / raw / tegra_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
4  * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
5  * Copyright (C) 2012 Avionic Design GmbH
6  */
7
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/mtd/partitions.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/reset.h>
22
23 #include <soc/tegra/common.h>
24
25 #define COMMAND                                 0x00
26 #define   COMMAND_GO                            BIT(31)
27 #define   COMMAND_CLE                           BIT(30)
28 #define   COMMAND_ALE                           BIT(29)
29 #define   COMMAND_PIO                           BIT(28)
30 #define   COMMAND_TX                            BIT(27)
31 #define   COMMAND_RX                            BIT(26)
32 #define   COMMAND_SEC_CMD                       BIT(25)
33 #define   COMMAND_AFT_DAT                       BIT(24)
34 #define   COMMAND_TRANS_SIZE(size)              ((((size) - 1) & 0xf) << 20)
35 #define   COMMAND_A_VALID                       BIT(19)
36 #define   COMMAND_B_VALID                       BIT(18)
37 #define   COMMAND_RD_STATUS_CHK                 BIT(17)
38 #define   COMMAND_RBSY_CHK                      BIT(16)
39 #define   COMMAND_CE(x)                         BIT(8 + ((x) & 0x7))
40 #define   COMMAND_CLE_SIZE(size)                ((((size) - 1) & 0x3) << 4)
41 #define   COMMAND_ALE_SIZE(size)                ((((size) - 1) & 0xf) << 0)
42
43 #define STATUS                                  0x04
44
45 #define ISR                                     0x08
46 #define   ISR_CORRFAIL_ERR                      BIT(24)
47 #define   ISR_UND                               BIT(7)
48 #define   ISR_OVR                               BIT(6)
49 #define   ISR_CMD_DONE                          BIT(5)
50 #define   ISR_ECC_ERR                           BIT(4)
51
52 #define IER                                     0x0c
53 #define   IER_ERR_TRIG_VAL(x)                   (((x) & 0xf) << 16)
54 #define   IER_UND                               BIT(7)
55 #define   IER_OVR                               BIT(6)
56 #define   IER_CMD_DONE                          BIT(5)
57 #define   IER_ECC_ERR                           BIT(4)
58 #define   IER_GIE                               BIT(0)
59
60 #define CONFIG                                  0x10
61 #define   CONFIG_HW_ECC                         BIT(31)
62 #define   CONFIG_ECC_SEL                        BIT(30)
63 #define   CONFIG_ERR_COR                        BIT(29)
64 #define   CONFIG_PIPE_EN                        BIT(28)
65 #define   CONFIG_TVAL_4                         (0 << 24)
66 #define   CONFIG_TVAL_6                         (1 << 24)
67 #define   CONFIG_TVAL_8                         (2 << 24)
68 #define   CONFIG_SKIP_SPARE                     BIT(23)
69 #define   CONFIG_BUS_WIDTH_16                   BIT(21)
70 #define   CONFIG_COM_BSY                        BIT(20)
71 #define   CONFIG_PS_256                         (0 << 16)
72 #define   CONFIG_PS_512                         (1 << 16)
73 #define   CONFIG_PS_1024                        (2 << 16)
74 #define   CONFIG_PS_2048                        (3 << 16)
75 #define   CONFIG_PS_4096                        (4 << 16)
76 #define   CONFIG_SKIP_SPARE_SIZE_4              (0 << 14)
77 #define   CONFIG_SKIP_SPARE_SIZE_8              (1 << 14)
78 #define   CONFIG_SKIP_SPARE_SIZE_12             (2 << 14)
79 #define   CONFIG_SKIP_SPARE_SIZE_16             (3 << 14)
80 #define   CONFIG_TAG_BYTE_SIZE(x)                       ((x) & 0xff)
81
82 #define TIMING_1                                0x14
83 #define   TIMING_TRP_RESP(x)                    (((x) & 0xf) << 28)
84 #define   TIMING_TWB(x)                         (((x) & 0xf) << 24)
85 #define   TIMING_TCR_TAR_TRR(x)                 (((x) & 0xf) << 20)
86 #define   TIMING_TWHR(x)                        (((x) & 0xf) << 16)
87 #define   TIMING_TCS(x)                         (((x) & 0x3) << 14)
88 #define   TIMING_TWH(x)                         (((x) & 0x3) << 12)
89 #define   TIMING_TWP(x)                         (((x) & 0xf) <<  8)
90 #define   TIMING_TRH(x)                         (((x) & 0x3) <<  4)
91 #define   TIMING_TRP(x)                         (((x) & 0xf) <<  0)
92
93 #define RESP                                    0x18
94
95 #define TIMING_2                                0x1c
96 #define   TIMING_TADL(x)                        ((x) & 0xf)
97
98 #define CMD_REG1                                0x20
99 #define CMD_REG2                                0x24
100 #define ADDR_REG1                               0x28
101 #define ADDR_REG2                               0x2c
102
103 #define DMA_MST_CTRL                            0x30
104 #define   DMA_MST_CTRL_GO                       BIT(31)
105 #define   DMA_MST_CTRL_IN                       (0 << 30)
106 #define   DMA_MST_CTRL_OUT                      BIT(30)
107 #define   DMA_MST_CTRL_PERF_EN                  BIT(29)
108 #define   DMA_MST_CTRL_IE_DONE                  BIT(28)
109 #define   DMA_MST_CTRL_REUSE                    BIT(27)
110 #define   DMA_MST_CTRL_BURST_1                  (2 << 24)
111 #define   DMA_MST_CTRL_BURST_4                  (3 << 24)
112 #define   DMA_MST_CTRL_BURST_8                  (4 << 24)
113 #define   DMA_MST_CTRL_BURST_16                 (5 << 24)
114 #define   DMA_MST_CTRL_IS_DONE                  BIT(20)
115 #define   DMA_MST_CTRL_EN_A                     BIT(2)
116 #define   DMA_MST_CTRL_EN_B                     BIT(1)
117
118 #define DMA_CFG_A                               0x34
119 #define DMA_CFG_B                               0x38
120
121 #define FIFO_CTRL                               0x3c
122 #define   FIFO_CTRL_CLR_ALL                     BIT(3)
123
124 #define DATA_PTR                                0x40
125 #define TAG_PTR                                 0x44
126 #define ECC_PTR                                 0x48
127
128 #define DEC_STATUS                              0x4c
129 #define   DEC_STATUS_A_ECC_FAIL                 BIT(1)
130 #define   DEC_STATUS_ERR_COUNT_MASK             0x00ff0000
131 #define   DEC_STATUS_ERR_COUNT_SHIFT            16
132
133 #define HWSTATUS_CMD                            0x50
134 #define HWSTATUS_MASK                           0x54
135 #define   HWSTATUS_RDSTATUS_MASK(x)             (((x) & 0xff) << 24)
136 #define   HWSTATUS_RDSTATUS_VALUE(x)            (((x) & 0xff) << 16)
137 #define   HWSTATUS_RBSY_MASK(x)                 (((x) & 0xff) << 8)
138 #define   HWSTATUS_RBSY_VALUE(x)                (((x) & 0xff) << 0)
139
140 #define BCH_CONFIG                              0xcc
141 #define   BCH_ENABLE                            BIT(0)
142 #define   BCH_TVAL_4                            (0 << 4)
143 #define   BCH_TVAL_8                            (1 << 4)
144 #define   BCH_TVAL_14                           (2 << 4)
145 #define   BCH_TVAL_16                           (3 << 4)
146
147 #define DEC_STAT_RESULT                         0xd0
148 #define DEC_STAT_BUF                            0xd4
149 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK       0xff000000
150 #define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT      24
151 #define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK       0x00ff0000
152 #define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT      16
153 #define   DEC_STAT_BUF_MAX_CORR_CNT_MASK        0x00001f00
154 #define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT       8
155
156 #define OFFSET(val, off)        ((val) < (off) ? 0 : (val) - (off))
157
158 #define SKIP_SPARE_BYTES        4
159 #define BITS_PER_STEP_RS        18
160 #define BITS_PER_STEP_BCH       13
161
162 #define INT_MASK                (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
163 #define HWSTATUS_CMD_DEFAULT    NAND_STATUS_READY
164 #define HWSTATUS_MASK_DEFAULT   (HWSTATUS_RDSTATUS_MASK(1) | \
165                                 HWSTATUS_RDSTATUS_VALUE(0) | \
166                                 HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
167                                 HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
168
169 struct tegra_nand_controller {
170         struct nand_controller controller;
171         struct device *dev;
172         void __iomem *regs;
173         int irq;
174         struct clk *clk;
175         struct completion command_complete;
176         struct completion dma_complete;
177         bool last_read_error;
178         int cur_cs;
179         struct nand_chip *chip;
180 };
181
182 struct tegra_nand_chip {
183         struct nand_chip chip;
184         struct gpio_desc *wp_gpio;
185         struct mtd_oob_region ecc;
186         u32 config;
187         u32 config_ecc;
188         u32 bch_config;
189         int cs[1];
190 };
191
192 static inline struct tegra_nand_controller *
193                         to_tegra_ctrl(struct nand_controller *hw_ctrl)
194 {
195         return container_of(hw_ctrl, struct tegra_nand_controller, controller);
196 }
197
198 static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
199 {
200         return container_of(chip, struct tegra_nand_chip, chip);
201 }
202
203 static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
204                                        struct mtd_oob_region *oobregion)
205 {
206         struct nand_chip *chip = mtd_to_nand(mtd);
207         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
208                                           BITS_PER_BYTE);
209
210         if (section > 0)
211                 return -ERANGE;
212
213         oobregion->offset = SKIP_SPARE_BYTES;
214         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
215
216         return 0;
217 }
218
219 static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
220                                         struct mtd_oob_region *oobregion)
221 {
222         return -ERANGE;
223 }
224
225 static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
226         .ecc = tegra_nand_ooblayout_rs_ecc,
227         .free = tegra_nand_ooblayout_no_free,
228 };
229
230 static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
231                                         struct mtd_oob_region *oobregion)
232 {
233         struct nand_chip *chip = mtd_to_nand(mtd);
234         int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
235                                           BITS_PER_BYTE);
236
237         if (section > 0)
238                 return -ERANGE;
239
240         oobregion->offset = SKIP_SPARE_BYTES;
241         oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
242
243         return 0;
244 }
245
246 static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
247         .ecc = tegra_nand_ooblayout_bch_ecc,
248         .free = tegra_nand_ooblayout_no_free,
249 };
250
251 static irqreturn_t tegra_nand_irq(int irq, void *data)
252 {
253         struct tegra_nand_controller *ctrl = data;
254         u32 isr, dma;
255
256         isr = readl_relaxed(ctrl->regs + ISR);
257         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
258         dev_dbg(ctrl->dev, "isr %08x\n", isr);
259
260         if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
261                 return IRQ_NONE;
262
263         /*
264          * The bit name is somewhat missleading: This is also set when
265          * HW ECC was successful. The data sheet states:
266          * Correctable OR Un-correctable errors occurred in the DMA transfer...
267          */
268         if (isr & ISR_CORRFAIL_ERR)
269                 ctrl->last_read_error = true;
270
271         if (isr & ISR_CMD_DONE)
272                 complete(&ctrl->command_complete);
273
274         if (isr & ISR_UND)
275                 dev_err(ctrl->dev, "FIFO underrun\n");
276
277         if (isr & ISR_OVR)
278                 dev_err(ctrl->dev, "FIFO overrun\n");
279
280         /* handle DMA interrupts */
281         if (dma & DMA_MST_CTRL_IS_DONE) {
282                 writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
283                 complete(&ctrl->dma_complete);
284         }
285
286         /* clear interrupts */
287         writel_relaxed(isr, ctrl->regs + ISR);
288
289         return IRQ_HANDLED;
290 }
291
292 static const char * const tegra_nand_reg_names[] = {
293         "COMMAND",
294         "STATUS",
295         "ISR",
296         "IER",
297         "CONFIG",
298         "TIMING",
299         NULL,
300         "TIMING2",
301         "CMD_REG1",
302         "CMD_REG2",
303         "ADDR_REG1",
304         "ADDR_REG2",
305         "DMA_MST_CTRL",
306         "DMA_CFG_A",
307         "DMA_CFG_B",
308         "FIFO_CTRL",
309 };
310
311 static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
312 {
313         u32 reg;
314         int i;
315
316         dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
317         for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
318                 const char *reg_name = tegra_nand_reg_names[i];
319
320                 if (!reg_name)
321                         continue;
322
323                 reg = readl_relaxed(ctrl->regs + (i * 4));
324                 dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
325         }
326 }
327
328 static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
329 {
330         u32 isr, dma;
331
332         disable_irq(ctrl->irq);
333
334         /* Abort current command/DMA operation */
335         writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
336         writel_relaxed(0, ctrl->regs + COMMAND);
337
338         /* clear interrupts */
339         isr = readl_relaxed(ctrl->regs + ISR);
340         writel_relaxed(isr, ctrl->regs + ISR);
341         dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
342         writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
343
344         reinit_completion(&ctrl->command_complete);
345         reinit_completion(&ctrl->dma_complete);
346
347         enable_irq(ctrl->irq);
348 }
349
350 static int tegra_nand_cmd(struct nand_chip *chip,
351                           const struct nand_subop *subop)
352 {
353         const struct nand_op_instr *instr;
354         const struct nand_op_instr *instr_data_in = NULL;
355         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
356         unsigned int op_id, size = 0, offset = 0;
357         bool first_cmd = true;
358         u32 reg, cmd = 0;
359         int ret;
360
361         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
362                 unsigned int naddrs, i;
363                 const u8 *addrs;
364                 u32 addr1 = 0, addr2 = 0;
365
366                 instr = &subop->instrs[op_id];
367
368                 switch (instr->type) {
369                 case NAND_OP_CMD_INSTR:
370                         if (first_cmd) {
371                                 cmd |= COMMAND_CLE;
372                                 writel_relaxed(instr->ctx.cmd.opcode,
373                                                ctrl->regs + CMD_REG1);
374                         } else {
375                                 cmd |= COMMAND_SEC_CMD;
376                                 writel_relaxed(instr->ctx.cmd.opcode,
377                                                ctrl->regs + CMD_REG2);
378                         }
379                         first_cmd = false;
380                         break;
381
382                 case NAND_OP_ADDR_INSTR:
383                         offset = nand_subop_get_addr_start_off(subop, op_id);
384                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
385                         addrs = &instr->ctx.addr.addrs[offset];
386
387                         cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
388                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
389                                 addr1 |= *addrs++ << (BITS_PER_BYTE * i);
390                         naddrs -= i;
391                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
392                                 addr2 |= *addrs++ << (BITS_PER_BYTE * i);
393
394                         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
395                         writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
396                         break;
397
398                 case NAND_OP_DATA_IN_INSTR:
399                         size = nand_subop_get_data_len(subop, op_id);
400                         offset = nand_subop_get_data_start_off(subop, op_id);
401
402                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
403                                 COMMAND_RX | COMMAND_A_VALID;
404
405                         instr_data_in = instr;
406                         break;
407
408                 case NAND_OP_DATA_OUT_INSTR:
409                         size = nand_subop_get_data_len(subop, op_id);
410                         offset = nand_subop_get_data_start_off(subop, op_id);
411
412                         cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
413                                 COMMAND_TX | COMMAND_A_VALID;
414                         memcpy(&reg, instr->ctx.data.buf.out + offset, size);
415
416                         writel_relaxed(reg, ctrl->regs + RESP);
417                         break;
418
419                 case NAND_OP_WAITRDY_INSTR:
420                         cmd |= COMMAND_RBSY_CHK;
421                         break;
422                 }
423         }
424
425         cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
426         writel_relaxed(cmd, ctrl->regs + COMMAND);
427         ret = wait_for_completion_timeout(&ctrl->command_complete,
428                                           msecs_to_jiffies(500));
429         if (!ret) {
430                 dev_err(ctrl->dev, "COMMAND timeout\n");
431                 tegra_nand_dump_reg(ctrl);
432                 tegra_nand_controller_abort(ctrl);
433                 return -ETIMEDOUT;
434         }
435
436         if (instr_data_in) {
437                 reg = readl_relaxed(ctrl->regs + RESP);
438                 memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
439         }
440
441         return 0;
442 }
443
444 static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
445         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
446                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
447                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
448                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
449                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
450         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
451                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
452         NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
453                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
454                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
455                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
456                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
457                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
458         );
459
460 static void tegra_nand_select_target(struct nand_chip *chip,
461                                      unsigned int die_nr)
462 {
463         struct tegra_nand_chip *nand = to_tegra_chip(chip);
464         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
465
466         ctrl->cur_cs = nand->cs[die_nr];
467 }
468
469 static int tegra_nand_exec_op(struct nand_chip *chip,
470                               const struct nand_operation *op,
471                               bool check_only)
472 {
473         if (!check_only)
474                 tegra_nand_select_target(chip, op->cs);
475
476         return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
477                                       check_only);
478 }
479
480 static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
481                               struct nand_chip *chip, bool enable)
482 {
483         struct tegra_nand_chip *nand = to_tegra_chip(chip);
484
485         if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable)
486                 writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
487         else
488                 writel_relaxed(0, ctrl->regs + BCH_CONFIG);
489
490         if (enable)
491                 writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
492         else
493                 writel_relaxed(nand->config, ctrl->regs + CONFIG);
494 }
495
496 static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
497                                 void *buf, void *oob_buf, int oob_len, int page,
498                                 bool read)
499 {
500         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
501         enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
502         dma_addr_t dma_addr = 0, dma_addr_oob = 0;
503         u32 addr1, cmd, dma_ctrl;
504         int ret;
505
506         tegra_nand_select_target(chip, chip->cur_cs);
507
508         if (read) {
509                 writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
510                 writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
511         } else {
512                 writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
513                 writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
514         }
515         cmd = COMMAND_CLE | COMMAND_SEC_CMD;
516
517         /* Lower 16-bits are column, by default 0 */
518         addr1 = page << 16;
519
520         if (!buf)
521                 addr1 |= mtd->writesize;
522         writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
523
524         if (chip->options & NAND_ROW_ADDR_3) {
525                 writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
526                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
527         } else {
528                 cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
529         }
530
531         if (buf) {
532                 dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
533                 ret = dma_mapping_error(ctrl->dev, dma_addr);
534                 if (ret) {
535                         dev_err(ctrl->dev, "dma mapping error\n");
536                         return -EINVAL;
537                 }
538
539                 writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
540                 writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
541         }
542
543         if (oob_buf) {
544                 dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
545                                               dir);
546                 ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
547                 if (ret) {
548                         dev_err(ctrl->dev, "dma mapping error\n");
549                         ret = -EINVAL;
550                         goto err_unmap_dma_page;
551                 }
552
553                 writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
554                 writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
555         }
556
557         dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
558                    DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
559                    DMA_MST_CTRL_BURST_16;
560
561         if (buf)
562                 dma_ctrl |= DMA_MST_CTRL_EN_A;
563         if (oob_buf)
564                 dma_ctrl |= DMA_MST_CTRL_EN_B;
565
566         if (read)
567                 dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
568         else
569                 dma_ctrl |= DMA_MST_CTRL_OUT;
570
571         writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
572
573         cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
574                COMMAND_CE(ctrl->cur_cs);
575
576         if (buf)
577                 cmd |= COMMAND_A_VALID;
578         if (oob_buf)
579                 cmd |= COMMAND_B_VALID;
580
581         if (read)
582                 cmd |= COMMAND_RX;
583         else
584                 cmd |= COMMAND_TX | COMMAND_AFT_DAT;
585
586         writel_relaxed(cmd, ctrl->regs + COMMAND);
587
588         ret = wait_for_completion_timeout(&ctrl->command_complete,
589                                           msecs_to_jiffies(500));
590         if (!ret) {
591                 dev_err(ctrl->dev, "COMMAND timeout\n");
592                 tegra_nand_dump_reg(ctrl);
593                 tegra_nand_controller_abort(ctrl);
594                 ret = -ETIMEDOUT;
595                 goto err_unmap_dma;
596         }
597
598         ret = wait_for_completion_timeout(&ctrl->dma_complete,
599                                           msecs_to_jiffies(500));
600         if (!ret) {
601                 dev_err(ctrl->dev, "DMA timeout\n");
602                 tegra_nand_dump_reg(ctrl);
603                 tegra_nand_controller_abort(ctrl);
604                 ret = -ETIMEDOUT;
605                 goto err_unmap_dma;
606         }
607         ret = 0;
608
609 err_unmap_dma:
610         if (oob_buf)
611                 dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
612 err_unmap_dma_page:
613         if (buf)
614                 dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
615
616         return ret;
617 }
618
619 static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
620                                     int oob_required, int page)
621 {
622         struct mtd_info *mtd = nand_to_mtd(chip);
623         void *oob_buf = oob_required ? chip->oob_poi : NULL;
624
625         return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
626                                     mtd->oobsize, page, true);
627 }
628
629 static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
630                                      int oob_required, int page)
631 {
632         struct mtd_info *mtd = nand_to_mtd(chip);
633         void *oob_buf = oob_required ? chip->oob_poi : NULL;
634
635         return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
636                                      mtd->oobsize, page, false);
637 }
638
639 static int tegra_nand_read_oob(struct nand_chip *chip, int page)
640 {
641         struct mtd_info *mtd = nand_to_mtd(chip);
642
643         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
644                                     mtd->oobsize, page, true);
645 }
646
647 static int tegra_nand_write_oob(struct nand_chip *chip, int page)
648 {
649         struct mtd_info *mtd = nand_to_mtd(chip);
650
651         return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
652                                     mtd->oobsize, page, false);
653 }
654
655 static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
656                                       int oob_required, int page)
657 {
658         struct mtd_info *mtd = nand_to_mtd(chip);
659         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
660         struct tegra_nand_chip *nand = to_tegra_chip(chip);
661         void *oob_buf = oob_required ? chip->oob_poi : NULL;
662         u32 dec_stat, max_corr_cnt;
663         unsigned long fail_sec_flag;
664         int ret;
665
666         tegra_nand_hw_ecc(ctrl, chip, true);
667         ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
668         tegra_nand_hw_ecc(ctrl, chip, false);
669         if (ret)
670                 return ret;
671
672         /* No correctable or un-correctable errors, page must have 0 bitflips */
673         if (!ctrl->last_read_error)
674                 return 0;
675
676         /*
677          * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
678          * which contains information for all ECC selections.
679          *
680          * Note that since we do not use Command Queues DEC_RESULT does not
681          * state the number of pages we can read from the DEC_STAT_BUF. But
682          * since CORRFAIL_ERR did occur during page read we do have a valid
683          * result in DEC_STAT_BUF.
684          */
685         ctrl->last_read_error = false;
686         dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
687
688         fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
689                         DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
690
691         max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
692                        DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
693
694         if (fail_sec_flag) {
695                 int bit, max_bitflips = 0;
696
697                 /*
698                  * Since we do not support subpage writes, a complete page
699                  * is either written or not. We can take a shortcut here by
700                  * checking wheather any of the sector has been successful
701                  * read. If at least one sectors has been read successfully,
702                  * the page must have been a written previously. It cannot
703                  * be an erased page.
704                  *
705                  * E.g. controller might return fail_sec_flag with 0x4, which
706                  * would mean only the third sector failed to correct. The
707                  * page must have been written and the third sector is really
708                  * not correctable anymore.
709                  */
710                 if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
711                         mtd->ecc_stats.failed += hweight8(fail_sec_flag);
712                         return max_corr_cnt;
713                 }
714
715                 /*
716                  * All sectors failed to correct, but the ECC isn't smart
717                  * enough to figure out if a page is really just erased.
718                  * Read OOB data and check whether data/OOB is completely
719                  * erased or if error correction just failed for all sub-
720                  * pages.
721                  */
722                 ret = tegra_nand_read_oob(chip, page);
723                 if (ret < 0)
724                         return ret;
725
726                 for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
727                         u8 *data = buf + (chip->ecc.size * bit);
728                         u8 *oob = chip->oob_poi + nand->ecc.offset +
729                                   (chip->ecc.bytes * bit);
730
731                         ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
732                                                           oob, chip->ecc.bytes,
733                                                           NULL, 0,
734                                                           chip->ecc.strength);
735                         if (ret < 0) {
736                                 mtd->ecc_stats.failed++;
737                         } else {
738                                 mtd->ecc_stats.corrected += ret;
739                                 max_bitflips = max(ret, max_bitflips);
740                         }
741                 }
742
743                 return max_t(unsigned int, max_corr_cnt, max_bitflips);
744         } else {
745                 int corr_sec_flag;
746
747                 corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
748                                 DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
749
750                 /*
751                  * The value returned in the register is the maximum of
752                  * bitflips encountered in any of the ECC regions. As there is
753                  * no way to get the number of bitflips in a specific regions
754                  * we are not able to deliver correct stats but instead
755                  * overestimate the number of corrected bitflips by assuming
756                  * that all regions where errors have been corrected
757                  * encountered the maximum number of bitflips.
758                  */
759                 mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
760
761                 return max_corr_cnt;
762         }
763 }
764
765 static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
766                                        int oob_required, int page)
767 {
768         struct mtd_info *mtd = nand_to_mtd(chip);
769         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
770         void *oob_buf = oob_required ? chip->oob_poi : NULL;
771         int ret;
772
773         tegra_nand_hw_ecc(ctrl, chip, true);
774         ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
775                                    0, page, false);
776         tegra_nand_hw_ecc(ctrl, chip, false);
777
778         return ret;
779 }
780
781 static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
782                                     const struct nand_sdr_timings *timings)
783 {
784         /*
785          * The period (and all other timings in this function) is in ps,
786          * so need to take care here to avoid integer overflows.
787          */
788         unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
789         unsigned int period = DIV_ROUND_UP(1000000, rate);
790         u32 val, reg = 0;
791
792         val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
793                                 timings->tRC_min), period);
794         reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
795
796         val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
797                                max(timings->tALS_min, timings->tALH_min)),
798                            period);
799         reg |= TIMING_TCS(OFFSET(val, 2));
800
801         val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
802                            period);
803         reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
804
805         reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
806         reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
807         reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
808         reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
809         reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
810
811         writel_relaxed(reg, ctrl->regs + TIMING_1);
812
813         val = DIV_ROUND_UP(timings->tADL_min, period);
814         reg = TIMING_TADL(OFFSET(val, 3));
815
816         writel_relaxed(reg, ctrl->regs + TIMING_2);
817 }
818
819 static int tegra_nand_setup_interface(struct nand_chip *chip, int csline,
820                                       const struct nand_interface_config *conf)
821 {
822         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
823         const struct nand_sdr_timings *timings;
824
825         timings = nand_get_sdr_timings(conf);
826         if (IS_ERR(timings))
827                 return PTR_ERR(timings);
828
829         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
830                 return 0;
831
832         tegra_nand_setup_timing(ctrl, timings);
833
834         return 0;
835 }
836
837 static const int rs_strength_bootable[] = { 4 };
838 static const int rs_strength[] = { 4, 6, 8 };
839 static const int bch_strength_bootable[] = { 8, 16 };
840 static const int bch_strength[] = { 4, 8, 14, 16 };
841
842 static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
843                                    int strength_len, int bits_per_step,
844                                    int oobsize)
845 {
846         struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip));
847         const struct nand_ecc_props *requirements =
848                 nanddev_get_ecc_requirements(base);
849         bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH;
850         int i;
851
852         /*
853          * Loop through available strengths. Backwards in case we try to
854          * maximize the BCH strength.
855          */
856         for (i = 0; i < strength_len; i++) {
857                 int strength_sel, bytes_per_step, bytes_per_page;
858
859                 if (maximize) {
860                         strength_sel = strength[strength_len - i - 1];
861                 } else {
862                         strength_sel = strength[i];
863
864                         if (strength_sel < requirements->strength)
865                                 continue;
866                 }
867
868                 bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
869                                               BITS_PER_BYTE);
870                 bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
871
872                 /* Check whether strength fits OOB */
873                 if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
874                         return strength_sel;
875         }
876
877         return -EINVAL;
878 }
879
880 static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
881 {
882         const int *strength;
883         int strength_len, bits_per_step;
884
885         switch (chip->ecc.algo) {
886         case NAND_ECC_ALGO_RS:
887                 bits_per_step = BITS_PER_STEP_RS;
888                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
889                         strength = rs_strength_bootable;
890                         strength_len = ARRAY_SIZE(rs_strength_bootable);
891                 } else {
892                         strength = rs_strength;
893                         strength_len = ARRAY_SIZE(rs_strength);
894                 }
895                 break;
896         case NAND_ECC_ALGO_BCH:
897                 bits_per_step = BITS_PER_STEP_BCH;
898                 if (chip->options & NAND_IS_BOOT_MEDIUM) {
899                         strength = bch_strength_bootable;
900                         strength_len = ARRAY_SIZE(bch_strength_bootable);
901                 } else {
902                         strength = bch_strength;
903                         strength_len = ARRAY_SIZE(bch_strength);
904                 }
905                 break;
906         default:
907                 return -EINVAL;
908         }
909
910         return tegra_nand_get_strength(chip, strength, strength_len,
911                                        bits_per_step, oobsize);
912 }
913
914 static int tegra_nand_attach_chip(struct nand_chip *chip)
915 {
916         struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
917         const struct nand_ecc_props *requirements =
918                 nanddev_get_ecc_requirements(&chip->base);
919         struct tegra_nand_chip *nand = to_tegra_chip(chip);
920         struct mtd_info *mtd = nand_to_mtd(chip);
921         int bits_per_step;
922         int ret;
923
924         if (chip->bbt_options & NAND_BBT_USE_FLASH)
925                 chip->bbt_options |= NAND_BBT_NO_OOB;
926
927         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
928         chip->ecc.size = 512;
929         chip->ecc.steps = mtd->writesize / chip->ecc.size;
930         if (requirements->step_size != 512) {
931                 dev_err(ctrl->dev, "Unsupported step size %d\n",
932                         requirements->step_size);
933                 return -EINVAL;
934         }
935
936         chip->ecc.read_page = tegra_nand_read_page_hwecc;
937         chip->ecc.write_page = tegra_nand_write_page_hwecc;
938         chip->ecc.read_page_raw = tegra_nand_read_page_raw;
939         chip->ecc.write_page_raw = tegra_nand_write_page_raw;
940         chip->ecc.read_oob = tegra_nand_read_oob;
941         chip->ecc.write_oob = tegra_nand_write_oob;
942
943         if (chip->options & NAND_BUSWIDTH_16)
944                 nand->config |= CONFIG_BUS_WIDTH_16;
945
946         if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
947                 if (mtd->writesize < 2048)
948                         chip->ecc.algo = NAND_ECC_ALGO_RS;
949                 else
950                         chip->ecc.algo = NAND_ECC_ALGO_BCH;
951         }
952
953         if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) {
954                 dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
955                 return -EINVAL;
956         }
957
958         if (!chip->ecc.strength) {
959                 ret = tegra_nand_select_strength(chip, mtd->oobsize);
960                 if (ret < 0) {
961                         dev_err(ctrl->dev,
962                                 "No valid strength found, minimum %d\n",
963                                 requirements->strength);
964                         return ret;
965                 }
966
967                 chip->ecc.strength = ret;
968         }
969
970         nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
971                            CONFIG_SKIP_SPARE_SIZE_4;
972
973         switch (chip->ecc.algo) {
974         case NAND_ECC_ALGO_RS:
975                 bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
976                 mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
977                 nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
978                                     CONFIG_ERR_COR;
979                 switch (chip->ecc.strength) {
980                 case 4:
981                         nand->config_ecc |= CONFIG_TVAL_4;
982                         break;
983                 case 6:
984                         nand->config_ecc |= CONFIG_TVAL_6;
985                         break;
986                 case 8:
987                         nand->config_ecc |= CONFIG_TVAL_8;
988                         break;
989                 default:
990                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
991                                 chip->ecc.strength);
992                         return -EINVAL;
993                 }
994                 break;
995         case NAND_ECC_ALGO_BCH:
996                 bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
997                 mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
998                 nand->bch_config = BCH_ENABLE;
999                 switch (chip->ecc.strength) {
1000                 case 4:
1001                         nand->bch_config |= BCH_TVAL_4;
1002                         break;
1003                 case 8:
1004                         nand->bch_config |= BCH_TVAL_8;
1005                         break;
1006                 case 14:
1007                         nand->bch_config |= BCH_TVAL_14;
1008                         break;
1009                 case 16:
1010                         nand->bch_config |= BCH_TVAL_16;
1011                         break;
1012                 default:
1013                         dev_err(ctrl->dev, "ECC strength %d not supported\n",
1014                                 chip->ecc.strength);
1015                         return -EINVAL;
1016                 }
1017                 break;
1018         default:
1019                 dev_err(ctrl->dev, "ECC algorithm not supported\n");
1020                 return -EINVAL;
1021         }
1022
1023         dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
1024                  chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS",
1025                  chip->ecc.strength);
1026
1027         chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
1028
1029         switch (mtd->writesize) {
1030         case 256:
1031                 nand->config |= CONFIG_PS_256;
1032                 break;
1033         case 512:
1034                 nand->config |= CONFIG_PS_512;
1035                 break;
1036         case 1024:
1037                 nand->config |= CONFIG_PS_1024;
1038                 break;
1039         case 2048:
1040                 nand->config |= CONFIG_PS_2048;
1041                 break;
1042         case 4096:
1043                 nand->config |= CONFIG_PS_4096;
1044                 break;
1045         default:
1046                 dev_err(ctrl->dev, "Unsupported writesize %d\n",
1047                         mtd->writesize);
1048                 return -ENODEV;
1049         }
1050
1051         /* Store complete configuration for HW ECC in config_ecc */
1052         nand->config_ecc |= nand->config;
1053
1054         /* Non-HW ECC read/writes complete OOB */
1055         nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
1056         writel_relaxed(nand->config, ctrl->regs + CONFIG);
1057
1058         return 0;
1059 }
1060
1061 static const struct nand_controller_ops tegra_nand_controller_ops = {
1062         .attach_chip = &tegra_nand_attach_chip,
1063         .exec_op = tegra_nand_exec_op,
1064         .setup_interface = tegra_nand_setup_interface,
1065 };
1066
1067 static int tegra_nand_chips_init(struct device *dev,
1068                                  struct tegra_nand_controller *ctrl)
1069 {
1070         struct device_node *np = dev->of_node;
1071         struct device_node *np_nand;
1072         int nsels, nchips = of_get_child_count(np);
1073         struct tegra_nand_chip *nand;
1074         struct mtd_info *mtd;
1075         struct nand_chip *chip;
1076         int ret;
1077         u32 cs;
1078
1079         if (nchips != 1) {
1080                 dev_err(dev, "Currently only one NAND chip supported\n");
1081                 return -EINVAL;
1082         }
1083
1084         np_nand = of_get_next_child(np, NULL);
1085
1086         nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
1087         if (nsels != 1) {
1088                 dev_err(dev, "Missing/invalid reg property\n");
1089                 return -EINVAL;
1090         }
1091
1092         /* Retrieve CS id, currently only single die NAND supported */
1093         ret = of_property_read_u32(np_nand, "reg", &cs);
1094         if (ret) {
1095                 dev_err(dev, "could not retrieve reg property: %d\n", ret);
1096                 return ret;
1097         }
1098
1099         nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
1100         if (!nand)
1101                 return -ENOMEM;
1102
1103         nand->cs[0] = cs;
1104
1105         nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
1106
1107         if (IS_ERR(nand->wp_gpio)) {
1108                 ret = PTR_ERR(nand->wp_gpio);
1109                 dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
1110                 return ret;
1111         }
1112
1113         chip = &nand->chip;
1114         chip->controller = &ctrl->controller;
1115
1116         mtd = nand_to_mtd(chip);
1117
1118         mtd->dev.parent = dev;
1119         mtd->owner = THIS_MODULE;
1120
1121         nand_set_flash_node(chip, np_nand);
1122
1123         if (!mtd->name)
1124                 mtd->name = "tegra_nand";
1125
1126         chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA;
1127
1128         ret = nand_scan(chip, 1);
1129         if (ret)
1130                 return ret;
1131
1132         mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
1133
1134         ret = mtd_device_register(mtd, NULL, 0);
1135         if (ret) {
1136                 dev_err(dev, "Failed to register mtd device: %d\n", ret);
1137                 nand_cleanup(chip);
1138                 return ret;
1139         }
1140
1141         ctrl->chip = chip;
1142
1143         return 0;
1144 }
1145
1146 static int tegra_nand_probe(struct platform_device *pdev)
1147 {
1148         struct reset_control *rst;
1149         struct tegra_nand_controller *ctrl;
1150         int err = 0;
1151
1152         ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
1153         if (!ctrl)
1154                 return -ENOMEM;
1155
1156         ctrl->dev = &pdev->dev;
1157         platform_set_drvdata(pdev, ctrl);
1158         nand_controller_init(&ctrl->controller);
1159         ctrl->controller.ops = &tegra_nand_controller_ops;
1160
1161         ctrl->regs = devm_platform_ioremap_resource(pdev, 0);
1162         if (IS_ERR(ctrl->regs))
1163                 return PTR_ERR(ctrl->regs);
1164
1165         rst = devm_reset_control_get(&pdev->dev, "nand");
1166         if (IS_ERR(rst))
1167                 return PTR_ERR(rst);
1168
1169         ctrl->clk = devm_clk_get(&pdev->dev, "nand");
1170         if (IS_ERR(ctrl->clk))
1171                 return PTR_ERR(ctrl->clk);
1172
1173         err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
1174         if (err)
1175                 return err;
1176
1177         /*
1178          * This driver doesn't support active power management yet,
1179          * so we will simply keep device resumed.
1180          */
1181         pm_runtime_enable(&pdev->dev);
1182         err = pm_runtime_resume_and_get(&pdev->dev);
1183         if (err)
1184                 return err;
1185
1186         err = reset_control_reset(rst);
1187         if (err) {
1188                 dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
1189                 goto err_put_pm;
1190         }
1191
1192         writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
1193         writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
1194         writel_relaxed(INT_MASK, ctrl->regs + IER);
1195
1196         init_completion(&ctrl->command_complete);
1197         init_completion(&ctrl->dma_complete);
1198
1199         ctrl->irq = platform_get_irq(pdev, 0);
1200         err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
1201                                dev_name(&pdev->dev), ctrl);
1202         if (err) {
1203                 dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
1204                 goto err_put_pm;
1205         }
1206
1207         writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
1208
1209         err = tegra_nand_chips_init(ctrl->dev, ctrl);
1210         if (err)
1211                 goto err_put_pm;
1212
1213         return 0;
1214
1215 err_put_pm:
1216         pm_runtime_put_sync_suspend(ctrl->dev);
1217         pm_runtime_force_suspend(ctrl->dev);
1218         return err;
1219 }
1220
1221 static int tegra_nand_remove(struct platform_device *pdev)
1222 {
1223         struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
1224         struct nand_chip *chip = ctrl->chip;
1225         struct mtd_info *mtd = nand_to_mtd(chip);
1226         int ret;
1227
1228         ret = mtd_device_unregister(mtd);
1229         if (ret)
1230                 return ret;
1231
1232         nand_cleanup(chip);
1233
1234         pm_runtime_put_sync_suspend(ctrl->dev);
1235         pm_runtime_force_suspend(ctrl->dev);
1236
1237         return 0;
1238 }
1239
1240 static int __maybe_unused tegra_nand_runtime_resume(struct device *dev)
1241 {
1242         struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1243         int err;
1244
1245         err = clk_prepare_enable(ctrl->clk);
1246         if (err) {
1247                 dev_err(dev, "Failed to enable clock: %d\n", err);
1248                 return err;
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev)
1255 {
1256         struct tegra_nand_controller *ctrl = dev_get_drvdata(dev);
1257
1258         clk_disable_unprepare(ctrl->clk);
1259
1260         return 0;
1261 }
1262
1263 static const struct dev_pm_ops tegra_nand_pm = {
1264         SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume,
1265                            NULL)
1266 };
1267
1268 static const struct of_device_id tegra_nand_of_match[] = {
1269         { .compatible = "nvidia,tegra20-nand" },
1270         { /* sentinel */ }
1271 };
1272 MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
1273
1274 static struct platform_driver tegra_nand_driver = {
1275         .driver = {
1276                 .name = "tegra-nand",
1277                 .of_match_table = tegra_nand_of_match,
1278                 .pm = &tegra_nand_pm,
1279         },
1280         .probe = tegra_nand_probe,
1281         .remove = tegra_nand_remove,
1282 };
1283 module_platform_driver(tegra_nand_driver);
1284
1285 MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
1286 MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
1287 MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
1288 MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
1289 MODULE_LICENSE("GPL v2");