GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / sh_flctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH FLCTL nand controller
4  *
5  * Copyright (c) 2008 Renesas Solutions Corp.
6  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7  *
8  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9  */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
31
32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33                                         struct mtd_oob_region *oobregion)
34 {
35         struct nand_chip *chip = mtd_to_nand(mtd);
36
37         if (section)
38                 return -ERANGE;
39
40         oobregion->offset = 0;
41         oobregion->length = chip->ecc.bytes;
42
43         return 0;
44 }
45
46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47                                          struct mtd_oob_region *oobregion)
48 {
49         if (section)
50                 return -ERANGE;
51
52         oobregion->offset = 12;
53         oobregion->length = 4;
54
55         return 0;
56 }
57
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59         .ecc = flctl_4secc_ooblayout_sp_ecc,
60         .free = flctl_4secc_ooblayout_sp_free,
61 };
62
63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64                                         struct mtd_oob_region *oobregion)
65 {
66         struct nand_chip *chip = mtd_to_nand(mtd);
67
68         if (section >= chip->ecc.steps)
69                 return -ERANGE;
70
71         oobregion->offset = (section * 16) + 6;
72         oobregion->length = chip->ecc.bytes;
73
74         return 0;
75 }
76
77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78                                          struct mtd_oob_region *oobregion)
79 {
80         struct nand_chip *chip = mtd_to_nand(mtd);
81
82         if (section >= chip->ecc.steps)
83                 return -ERANGE;
84
85         oobregion->offset = section * 16;
86         oobregion->length = 6;
87
88         if (!section) {
89                 oobregion->offset += 2;
90                 oobregion->length -= 2;
91         }
92
93         return 0;
94 }
95
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97         .ecc = flctl_4secc_ooblayout_lp_ecc,
98         .free = flctl_4secc_ooblayout_lp_free,
99 };
100
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
102
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104         .offs = 11,
105         .len = 1,
106         .pattern = scan_ff_pattern,
107 };
108
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110         .offs = 0,
111         .len = 2,
112         .pattern = scan_ff_pattern,
113 };
114
115 static void empty_fifo(struct sh_flctl *flctl)
116 {
117         writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
119 }
120
121 static void start_translation(struct sh_flctl *flctl)
122 {
123         writeb(TRSTRT, FLTRCR(flctl));
124 }
125
126 static void timeout_error(struct sh_flctl *flctl, const char *str)
127 {
128         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
129 }
130
131 static void wait_completion(struct sh_flctl *flctl)
132 {
133         uint32_t timeout = LOOP_TIMEOUT_MAX;
134
135         while (timeout--) {
136                 if (readb(FLTRCR(flctl)) & TREND) {
137                         writeb(0x0, FLTRCR(flctl));
138                         return;
139                 }
140                 udelay(1);
141         }
142
143         timeout_error(flctl, __func__);
144         writeb(0x0, FLTRCR(flctl));
145 }
146
147 static void flctl_dma_complete(void *param)
148 {
149         struct sh_flctl *flctl = param;
150
151         complete(&flctl->dma_complete);
152 }
153
154 static void flctl_release_dma(struct sh_flctl *flctl)
155 {
156         if (flctl->chan_fifo0_rx) {
157                 dma_release_channel(flctl->chan_fifo0_rx);
158                 flctl->chan_fifo0_rx = NULL;
159         }
160         if (flctl->chan_fifo0_tx) {
161                 dma_release_channel(flctl->chan_fifo0_tx);
162                 flctl->chan_fifo0_tx = NULL;
163         }
164 }
165
166 static void flctl_setup_dma(struct sh_flctl *flctl)
167 {
168         dma_cap_mask_t mask;
169         struct dma_slave_config cfg;
170         struct platform_device *pdev = flctl->pdev;
171         struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172         int ret;
173
174         if (!pdata)
175                 return;
176
177         if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178                 return;
179
180         /* We can only either use DMA for both Tx and Rx or not use it at all */
181         dma_cap_zero(mask);
182         dma_cap_set(DMA_SLAVE, mask);
183
184         flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185                                 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186         dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187                 flctl->chan_fifo0_tx);
188
189         if (!flctl->chan_fifo0_tx)
190                 return;
191
192         memset(&cfg, 0, sizeof(cfg));
193         cfg.direction = DMA_MEM_TO_DEV;
194         cfg.dst_addr = flctl->fifo;
195         cfg.src_addr = 0;
196         ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197         if (ret < 0)
198                 goto err;
199
200         flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201                                 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202         dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203                 flctl->chan_fifo0_rx);
204
205         if (!flctl->chan_fifo0_rx)
206                 goto err;
207
208         cfg.direction = DMA_DEV_TO_MEM;
209         cfg.dst_addr = 0;
210         cfg.src_addr = flctl->fifo;
211         ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212         if (ret < 0)
213                 goto err;
214
215         init_completion(&flctl->dma_complete);
216
217         return;
218
219 err:
220         flctl_release_dma(flctl);
221 }
222
223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
224 {
225         struct sh_flctl *flctl = mtd_to_flctl(mtd);
226         uint32_t addr = 0;
227
228         if (column == -1) {
229                 addr = page_addr;       /* ERASE1 */
230         } else if (page_addr != -1) {
231                 /* SEQIN, READ0, etc.. */
232                 if (flctl->chip.options & NAND_BUSWIDTH_16)
233                         column >>= 1;
234                 if (flctl->page_size) {
235                         addr = column & 0x0FFF;
236                         addr |= (page_addr & 0xff) << 16;
237                         addr |= ((page_addr >> 8) & 0xff) << 24;
238                         /* big than 128MB */
239                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
240                                 uint32_t        addr2;
241                                 addr2 = (page_addr >> 16) & 0xff;
242                                 writel(addr2, FLADR2(flctl));
243                         }
244                 } else {
245                         addr = column;
246                         addr |= (page_addr & 0xff) << 8;
247                         addr |= ((page_addr >> 8) & 0xff) << 16;
248                         addr |= ((page_addr >> 16) & 0xff) << 24;
249                 }
250         }
251         writel(addr, FLADR(flctl));
252 }
253
254 static void wait_rfifo_ready(struct sh_flctl *flctl)
255 {
256         uint32_t timeout = LOOP_TIMEOUT_MAX;
257
258         while (timeout--) {
259                 uint32_t val;
260                 /* check FIFO */
261                 val = readl(FLDTCNTR(flctl)) >> 16;
262                 if (val & 0xFF)
263                         return;
264                 udelay(1);
265         }
266         timeout_error(flctl, __func__);
267 }
268
269 static void wait_wfifo_ready(struct sh_flctl *flctl)
270 {
271         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
272
273         while (timeout--) {
274                 /* check FIFO */
275                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276                 if (len >= 4)
277                         return;
278                 udelay(1);
279         }
280         timeout_error(flctl, __func__);
281 }
282
283 static enum flctl_ecc_res_t wait_recfifo_ready
284                 (struct sh_flctl *flctl, int sector_number)
285 {
286         uint32_t timeout = LOOP_TIMEOUT_MAX;
287         void __iomem *ecc_reg[4];
288         int i;
289         int state = FL_SUCCESS;
290         uint32_t data, size;
291
292         /*
293          * First this loops checks in FLDTCNTR if we are ready to read out the
294          * oob data. This is the case if either all went fine without errors or
295          * if the bottom part of the loop corrected the errors or marked them as
296          * uncorrectable and the controller is given time to push the data into
297          * the FIFO.
298          */
299         while (timeout--) {
300                 /* check if all is ok and we can read out the OOB */
301                 size = readl(FLDTCNTR(flctl)) >> 24;
302                 if ((size & 0xFF) == 4)
303                         return state;
304
305                 /* check if a correction code has been calculated */
306                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
307                         /*
308                          * either we wait for the fifo to be filled or a
309                          * correction pattern is being generated
310                          */
311                         udelay(1);
312                         continue;
313                 }
314
315                 /* check for an uncorrectable error */
316                 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317                         /* check if we face a non-empty page */
318                         for (i = 0; i < 512; i++) {
319                                 if (flctl->done_buff[i] != 0xff) {
320                                         state = FL_ERROR; /* can't correct */
321                                         break;
322                                 }
323                         }
324
325                         if (state == FL_SUCCESS)
326                                 dev_dbg(&flctl->pdev->dev,
327                                 "reading empty sector %d, ecc error ignored\n",
328                                 sector_number);
329
330                         writel(0, FL4ECCCR(flctl));
331                         continue;
332                 }
333
334                 /* start error correction */
335                 ecc_reg[0] = FL4ECCRESULT0(flctl);
336                 ecc_reg[1] = FL4ECCRESULT1(flctl);
337                 ecc_reg[2] = FL4ECCRESULT2(flctl);
338                 ecc_reg[3] = FL4ECCRESULT3(flctl);
339
340                 for (i = 0; i < 3; i++) {
341                         uint8_t org;
342                         unsigned int index;
343
344                         data = readl(ecc_reg[i]);
345
346                         if (flctl->page_size)
347                                 index = (512 * sector_number) +
348                                         (data >> 16);
349                         else
350                                 index = data >> 16;
351
352                         org = flctl->done_buff[index];
353                         flctl->done_buff[index] = org ^ (data & 0xFF);
354                 }
355                 state = FL_REPAIRABLE;
356                 writel(0, FL4ECCCR(flctl));
357         }
358
359         timeout_error(flctl, __func__);
360         return FL_TIMEOUT;      /* timeout */
361 }
362
363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
364 {
365         uint32_t timeout = LOOP_TIMEOUT_MAX;
366         uint32_t len;
367
368         while (timeout--) {
369                 /* check FLECFIFO */
370                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371                 if (len >= 4)
372                         return;
373                 udelay(1);
374         }
375         timeout_error(flctl, __func__);
376 }
377
378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379                                         int len, enum dma_data_direction dir)
380 {
381         struct dma_async_tx_descriptor *desc = NULL;
382         struct dma_chan *chan;
383         enum dma_transfer_direction tr_dir;
384         dma_addr_t dma_addr;
385         dma_cookie_t cookie;
386         uint32_t reg;
387         int ret = 0;
388         unsigned long time_left;
389
390         if (dir == DMA_FROM_DEVICE) {
391                 chan = flctl->chan_fifo0_rx;
392                 tr_dir = DMA_DEV_TO_MEM;
393         } else {
394                 chan = flctl->chan_fifo0_tx;
395                 tr_dir = DMA_MEM_TO_DEV;
396         }
397
398         dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
399
400         if (!dma_mapping_error(chan->device->dev, dma_addr))
401                 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
402                         tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
403
404         if (desc) {
405                 reg = readl(FLINTDMACR(flctl));
406                 reg |= DREQ0EN;
407                 writel(reg, FLINTDMACR(flctl));
408
409                 desc->callback = flctl_dma_complete;
410                 desc->callback_param = flctl;
411                 cookie = dmaengine_submit(desc);
412                 if (dma_submit_error(cookie)) {
413                         ret = dma_submit_error(cookie);
414                         dev_warn(&flctl->pdev->dev,
415                                  "DMA submit failed, falling back to PIO\n");
416                         goto out;
417                 }
418
419                 dma_async_issue_pending(chan);
420         } else {
421                 /* DMA failed, fall back to PIO */
422                 flctl_release_dma(flctl);
423                 dev_warn(&flctl->pdev->dev,
424                          "DMA failed, falling back to PIO\n");
425                 ret = -EIO;
426                 goto out;
427         }
428
429         time_left =
430         wait_for_completion_timeout(&flctl->dma_complete,
431                                 msecs_to_jiffies(3000));
432
433         if (time_left == 0) {
434                 dmaengine_terminate_all(chan);
435                 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
436                 ret = -ETIMEDOUT;
437         }
438
439 out:
440         reg = readl(FLINTDMACR(flctl));
441         reg &= ~DREQ0EN;
442         writel(reg, FLINTDMACR(flctl));
443
444         dma_unmap_single(chan->device->dev, dma_addr, len, dir);
445
446         /* ret == 0 is success */
447         return ret;
448 }
449
450 static void read_datareg(struct sh_flctl *flctl, int offset)
451 {
452         unsigned long data;
453         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
454
455         wait_completion(flctl);
456
457         data = readl(FLDATAR(flctl));
458         *buf = le32_to_cpu(data);
459 }
460
461 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
462 {
463         int i, len_4align;
464         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
465
466         len_4align = (rlen + 3) / 4;
467
468         /* initiate DMA transfer */
469         if (flctl->chan_fifo0_rx && rlen >= 32 &&
470                 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
471                         goto convert;   /* DMA success */
472
473         /* do polling transfer */
474         for (i = 0; i < len_4align; i++) {
475                 wait_rfifo_ready(flctl);
476                 buf[i] = readl(FLDTFIFO(flctl));
477         }
478
479 convert:
480         for (i = 0; i < len_4align; i++)
481                 buf[i] = be32_to_cpu(buf[i]);
482 }
483
484 static enum flctl_ecc_res_t read_ecfiforeg
485                 (struct sh_flctl *flctl, uint8_t *buff, int sector)
486 {
487         int i;
488         enum flctl_ecc_res_t res;
489         unsigned long *ecc_buf = (unsigned long *)buff;
490
491         res = wait_recfifo_ready(flctl , sector);
492
493         if (res != FL_ERROR) {
494                 for (i = 0; i < 4; i++) {
495                         ecc_buf[i] = readl(FLECFIFO(flctl));
496                         ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
497                 }
498         }
499
500         return res;
501 }
502
503 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
504                                                 unsigned int offset)
505 {
506         int i, len_4align;
507         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
508
509         len_4align = (rlen + 3) / 4;
510         for (i = 0; i < len_4align; i++) {
511                 wait_wfifo_ready(flctl);
512                 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
513         }
514 }
515
516 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
517                                                 unsigned int offset)
518 {
519         int i, len_4align;
520         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
521
522         len_4align = (rlen + 3) / 4;
523
524         for (i = 0; i < len_4align; i++)
525                 buf[i] = cpu_to_be32(buf[i]);
526
527         /* initiate DMA transfer */
528         if (flctl->chan_fifo0_tx && rlen >= 32 &&
529                 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
530                         return; /* DMA success */
531
532         /* do polling transfer */
533         for (i = 0; i < len_4align; i++) {
534                 wait_wecfifo_ready(flctl);
535                 writel(buf[i], FLECFIFO(flctl));
536         }
537 }
538
539 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
540 {
541         struct sh_flctl *flctl = mtd_to_flctl(mtd);
542         uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
543         uint32_t flcmdcr_val, addr_len_bytes = 0;
544
545         /* Set SNAND bit if page size is 2048byte */
546         if (flctl->page_size)
547                 flcmncr_val |= SNAND_E;
548         else
549                 flcmncr_val &= ~SNAND_E;
550
551         /* default FLCMDCR val */
552         flcmdcr_val = DOCMD1_E | DOADR_E;
553
554         /* Set for FLCMDCR */
555         switch (cmd) {
556         case NAND_CMD_ERASE1:
557                 addr_len_bytes = flctl->erase_ADRCNT;
558                 flcmdcr_val |= DOCMD2_E;
559                 break;
560         case NAND_CMD_READ0:
561         case NAND_CMD_READOOB:
562         case NAND_CMD_RNDOUT:
563                 addr_len_bytes = flctl->rw_ADRCNT;
564                 flcmdcr_val |= CDSRC_E;
565                 if (flctl->chip.options & NAND_BUSWIDTH_16)
566                         flcmncr_val |= SEL_16BIT;
567                 break;
568         case NAND_CMD_SEQIN:
569                 /* This case is that cmd is READ0 or READ1 or READ00 */
570                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
571                 break;
572         case NAND_CMD_PAGEPROG:
573                 addr_len_bytes = flctl->rw_ADRCNT;
574                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
575                 if (flctl->chip.options & NAND_BUSWIDTH_16)
576                         flcmncr_val |= SEL_16BIT;
577                 break;
578         case NAND_CMD_READID:
579                 flcmncr_val &= ~SNAND_E;
580                 flcmdcr_val |= CDSRC_E;
581                 addr_len_bytes = ADRCNT_1;
582                 break;
583         case NAND_CMD_STATUS:
584         case NAND_CMD_RESET:
585                 flcmncr_val &= ~SNAND_E;
586                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
587                 break;
588         default:
589                 break;
590         }
591
592         /* Set address bytes parameter */
593         flcmdcr_val |= addr_len_bytes;
594
595         /* Now actually write */
596         writel(flcmncr_val, FLCMNCR(flctl));
597         writel(flcmdcr_val, FLCMDCR(flctl));
598         writel(flcmcdr_val, FLCMCDR(flctl));
599 }
600
601 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
602                                  int oob_required, int page)
603 {
604         struct mtd_info *mtd = nand_to_mtd(chip);
605
606         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
607         if (oob_required)
608                 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
609         return 0;
610 }
611
612 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
613                                   int oob_required, int page)
614 {
615         struct mtd_info *mtd = nand_to_mtd(chip);
616
617         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
618         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
619         return nand_prog_page_end_op(chip);
620 }
621
622 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
623 {
624         struct sh_flctl *flctl = mtd_to_flctl(mtd);
625         int sector, page_sectors;
626         enum flctl_ecc_res_t ecc_result;
627
628         page_sectors = flctl->page_size ? 4 : 1;
629
630         set_cmd_regs(mtd, NAND_CMD_READ0,
631                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
632
633         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
634                  FLCMNCR(flctl));
635         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
636         writel(page_addr << 2, FLADR(flctl));
637
638         empty_fifo(flctl);
639         start_translation(flctl);
640
641         for (sector = 0; sector < page_sectors; sector++) {
642                 read_fiforeg(flctl, 512, 512 * sector);
643
644                 ecc_result = read_ecfiforeg(flctl,
645                         &flctl->done_buff[mtd->writesize + 16 * sector],
646                         sector);
647
648                 switch (ecc_result) {
649                 case FL_REPAIRABLE:
650                         dev_info(&flctl->pdev->dev,
651                                 "applied ecc on page 0x%x", page_addr);
652                         mtd->ecc_stats.corrected++;
653                         break;
654                 case FL_ERROR:
655                         dev_warn(&flctl->pdev->dev,
656                                 "page 0x%x contains corrupted data\n",
657                                 page_addr);
658                         mtd->ecc_stats.failed++;
659                         break;
660                 default:
661                         ;
662                 }
663         }
664
665         wait_completion(flctl);
666
667         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
668                         FLCMNCR(flctl));
669 }
670
671 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
672 {
673         struct sh_flctl *flctl = mtd_to_flctl(mtd);
674         int page_sectors = flctl->page_size ? 4 : 1;
675         int i;
676
677         set_cmd_regs(mtd, NAND_CMD_READ0,
678                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
679
680         empty_fifo(flctl);
681
682         for (i = 0; i < page_sectors; i++) {
683                 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
684                 writel(16, FLDTCNTR(flctl));
685
686                 start_translation(flctl);
687                 read_fiforeg(flctl, 16, 16 * i);
688                 wait_completion(flctl);
689         }
690 }
691
692 static void execmd_write_page_sector(struct mtd_info *mtd)
693 {
694         struct sh_flctl *flctl = mtd_to_flctl(mtd);
695         int page_addr = flctl->seqin_page_addr;
696         int sector, page_sectors;
697
698         page_sectors = flctl->page_size ? 4 : 1;
699
700         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
701                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
702
703         empty_fifo(flctl);
704         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
705         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
706         writel(page_addr << 2, FLADR(flctl));
707         start_translation(flctl);
708
709         for (sector = 0; sector < page_sectors; sector++) {
710                 write_fiforeg(flctl, 512, 512 * sector);
711                 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
712         }
713
714         wait_completion(flctl);
715         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
716 }
717
718 static void execmd_write_oob(struct mtd_info *mtd)
719 {
720         struct sh_flctl *flctl = mtd_to_flctl(mtd);
721         int page_addr = flctl->seqin_page_addr;
722         int sector, page_sectors;
723
724         page_sectors = flctl->page_size ? 4 : 1;
725
726         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
727                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
728
729         for (sector = 0; sector < page_sectors; sector++) {
730                 empty_fifo(flctl);
731                 set_addr(mtd, sector * 528 + 512, page_addr);
732                 writel(16, FLDTCNTR(flctl));    /* set read size */
733
734                 start_translation(flctl);
735                 write_fiforeg(flctl, 16, 16 * sector);
736                 wait_completion(flctl);
737         }
738 }
739
740 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
741                         int column, int page_addr)
742 {
743         struct mtd_info *mtd = nand_to_mtd(chip);
744         struct sh_flctl *flctl = mtd_to_flctl(mtd);
745         uint32_t read_cmd = 0;
746
747         pm_runtime_get_sync(&flctl->pdev->dev);
748
749         flctl->read_bytes = 0;
750         if (command != NAND_CMD_PAGEPROG)
751                 flctl->index = 0;
752
753         switch (command) {
754         case NAND_CMD_READ1:
755         case NAND_CMD_READ0:
756                 if (flctl->hwecc) {
757                         /* read page with hwecc */
758                         execmd_read_page_sector(mtd, page_addr);
759                         break;
760                 }
761                 if (flctl->page_size)
762                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
763                                 | command);
764                 else
765                         set_cmd_regs(mtd, command, command);
766
767                 set_addr(mtd, 0, page_addr);
768
769                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
770                 if (flctl->chip.options & NAND_BUSWIDTH_16)
771                         column >>= 1;
772                 flctl->index += column;
773                 goto read_normal_exit;
774
775         case NAND_CMD_READOOB:
776                 if (flctl->hwecc) {
777                         /* read page with hwecc */
778                         execmd_read_oob(mtd, page_addr);
779                         break;
780                 }
781
782                 if (flctl->page_size) {
783                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
784                                 | NAND_CMD_READ0);
785                         set_addr(mtd, mtd->writesize, page_addr);
786                 } else {
787                         set_cmd_regs(mtd, command, command);
788                         set_addr(mtd, 0, page_addr);
789                 }
790                 flctl->read_bytes = mtd->oobsize;
791                 goto read_normal_exit;
792
793         case NAND_CMD_RNDOUT:
794                 if (flctl->hwecc)
795                         break;
796
797                 if (flctl->page_size)
798                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
799                                 | command);
800                 else
801                         set_cmd_regs(mtd, command, command);
802
803                 set_addr(mtd, column, 0);
804
805                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
806                 goto read_normal_exit;
807
808         case NAND_CMD_READID:
809                 set_cmd_regs(mtd, command, command);
810
811                 /* READID is always performed using an 8-bit bus */
812                 if (flctl->chip.options & NAND_BUSWIDTH_16)
813                         column <<= 1;
814                 set_addr(mtd, column, 0);
815
816                 flctl->read_bytes = 8;
817                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
818                 empty_fifo(flctl);
819                 start_translation(flctl);
820                 read_fiforeg(flctl, flctl->read_bytes, 0);
821                 wait_completion(flctl);
822                 break;
823
824         case NAND_CMD_ERASE1:
825                 flctl->erase1_page_addr = page_addr;
826                 break;
827
828         case NAND_CMD_ERASE2:
829                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
830                         (command << 8) | NAND_CMD_ERASE1);
831                 set_addr(mtd, -1, flctl->erase1_page_addr);
832                 start_translation(flctl);
833                 wait_completion(flctl);
834                 break;
835
836         case NAND_CMD_SEQIN:
837                 if (!flctl->page_size) {
838                         /* output read command */
839                         if (column >= mtd->writesize) {
840                                 column -= mtd->writesize;
841                                 read_cmd = NAND_CMD_READOOB;
842                         } else if (column < 256) {
843                                 read_cmd = NAND_CMD_READ0;
844                         } else {
845                                 column -= 256;
846                                 read_cmd = NAND_CMD_READ1;
847                         }
848                 }
849                 flctl->seqin_column = column;
850                 flctl->seqin_page_addr = page_addr;
851                 flctl->seqin_read_cmd = read_cmd;
852                 break;
853
854         case NAND_CMD_PAGEPROG:
855                 empty_fifo(flctl);
856                 if (!flctl->page_size) {
857                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
858                                         flctl->seqin_read_cmd);
859                         set_addr(mtd, -1, -1);
860                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
861                         start_translation(flctl);
862                         wait_completion(flctl);
863                 }
864                 if (flctl->hwecc) {
865                         /* write page with hwecc */
866                         if (flctl->seqin_column == mtd->writesize)
867                                 execmd_write_oob(mtd);
868                         else if (!flctl->seqin_column)
869                                 execmd_write_page_sector(mtd);
870                         else
871                                 pr_err("Invalid address !?\n");
872                         break;
873                 }
874                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
875                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
876                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
877                 start_translation(flctl);
878                 write_fiforeg(flctl, flctl->index, 0);
879                 wait_completion(flctl);
880                 break;
881
882         case NAND_CMD_STATUS:
883                 set_cmd_regs(mtd, command, command);
884                 set_addr(mtd, -1, -1);
885
886                 flctl->read_bytes = 1;
887                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
888                 start_translation(flctl);
889                 read_datareg(flctl, 0); /* read and end */
890                 break;
891
892         case NAND_CMD_RESET:
893                 set_cmd_regs(mtd, command, command);
894                 set_addr(mtd, -1, -1);
895
896                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
897                 start_translation(flctl);
898                 wait_completion(flctl);
899                 break;
900
901         default:
902                 break;
903         }
904         goto runtime_exit;
905
906 read_normal_exit:
907         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
908         empty_fifo(flctl);
909         start_translation(flctl);
910         read_fiforeg(flctl, flctl->read_bytes, 0);
911         wait_completion(flctl);
912 runtime_exit:
913         pm_runtime_put_sync(&flctl->pdev->dev);
914         return;
915 }
916
917 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
918 {
919         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
920         int ret;
921
922         switch (chipnr) {
923         case -1:
924                 flctl->flcmncr_base &= ~CE0_ENABLE;
925
926                 pm_runtime_get_sync(&flctl->pdev->dev);
927                 writel(flctl->flcmncr_base, FLCMNCR(flctl));
928
929                 if (flctl->qos_request) {
930                         dev_pm_qos_remove_request(&flctl->pm_qos);
931                         flctl->qos_request = 0;
932                 }
933
934                 pm_runtime_put_sync(&flctl->pdev->dev);
935                 break;
936         case 0:
937                 flctl->flcmncr_base |= CE0_ENABLE;
938
939                 if (!flctl->qos_request) {
940                         ret = dev_pm_qos_add_request(&flctl->pdev->dev,
941                                                         &flctl->pm_qos,
942                                                         DEV_PM_QOS_RESUME_LATENCY,
943                                                         100);
944                         if (ret < 0)
945                                 dev_err(&flctl->pdev->dev,
946                                         "PM QoS request failed: %d\n", ret);
947                         flctl->qos_request = 1;
948                 }
949
950                 if (flctl->holden) {
951                         pm_runtime_get_sync(&flctl->pdev->dev);
952                         writel(HOLDEN, FLHOLDCR(flctl));
953                         pm_runtime_put_sync(&flctl->pdev->dev);
954                 }
955                 break;
956         default:
957                 BUG();
958         }
959 }
960
961 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
962 {
963         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
964
965         memcpy(&flctl->done_buff[flctl->index], buf, len);
966         flctl->index += len;
967 }
968
969 static uint8_t flctl_read_byte(struct nand_chip *chip)
970 {
971         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
972         uint8_t data;
973
974         data = flctl->done_buff[flctl->index];
975         flctl->index++;
976         return data;
977 }
978
979 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
980 {
981         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
982
983         memcpy(buf, &flctl->done_buff[flctl->index], len);
984         flctl->index += len;
985 }
986
987 static int flctl_chip_attach_chip(struct nand_chip *chip)
988 {
989         u64 targetsize = nanddev_target_size(&chip->base);
990         struct mtd_info *mtd = nand_to_mtd(chip);
991         struct sh_flctl *flctl = mtd_to_flctl(mtd);
992
993         /*
994          * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
995          * Add the SEL_16BIT flag in flctl->flcmncr_base.
996          */
997         if (chip->options & NAND_BUSWIDTH_16)
998                 flctl->flcmncr_base |= SEL_16BIT;
999
1000         if (mtd->writesize == 512) {
1001                 flctl->page_size = 0;
1002                 if (targetsize > (32 << 20)) {
1003                         /* big than 32MB */
1004                         flctl->rw_ADRCNT = ADRCNT_4;
1005                         flctl->erase_ADRCNT = ADRCNT_3;
1006                 } else if (targetsize > (2 << 16)) {
1007                         /* big than 128KB */
1008                         flctl->rw_ADRCNT = ADRCNT_3;
1009                         flctl->erase_ADRCNT = ADRCNT_2;
1010                 } else {
1011                         flctl->rw_ADRCNT = ADRCNT_2;
1012                         flctl->erase_ADRCNT = ADRCNT_1;
1013                 }
1014         } else {
1015                 flctl->page_size = 1;
1016                 if (targetsize > (128 << 20)) {
1017                         /* big than 128MB */
1018                         flctl->rw_ADRCNT = ADRCNT2_E;
1019                         flctl->erase_ADRCNT = ADRCNT_3;
1020                 } else if (targetsize > (8 << 16)) {
1021                         /* big than 512KB */
1022                         flctl->rw_ADRCNT = ADRCNT_4;
1023                         flctl->erase_ADRCNT = ADRCNT_2;
1024                 } else {
1025                         flctl->rw_ADRCNT = ADRCNT_3;
1026                         flctl->erase_ADRCNT = ADRCNT_1;
1027                 }
1028         }
1029
1030         if (flctl->hwecc) {
1031                 if (mtd->writesize == 512) {
1032                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1033                         chip->badblock_pattern = &flctl_4secc_smallpage;
1034                 } else {
1035                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1036                         chip->badblock_pattern = &flctl_4secc_largepage;
1037                 }
1038
1039                 chip->ecc.size = 512;
1040                 chip->ecc.bytes = 10;
1041                 chip->ecc.strength = 4;
1042                 chip->ecc.read_page = flctl_read_page_hwecc;
1043                 chip->ecc.write_page = flctl_write_page_hwecc;
1044                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1045
1046                 /* 4 symbols ECC enabled */
1047                 flctl->flcmncr_base |= _4ECCEN;
1048         } else {
1049                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1050                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1051         }
1052
1053         return 0;
1054 }
1055
1056 static const struct nand_controller_ops flctl_nand_controller_ops = {
1057         .attach_chip = flctl_chip_attach_chip,
1058 };
1059
1060 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1061 {
1062         struct sh_flctl *flctl = dev_id;
1063
1064         dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1065         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1066
1067         return IRQ_HANDLED;
1068 }
1069
1070 struct flctl_soc_config {
1071         unsigned long flcmncr_val;
1072         unsigned has_hwecc:1;
1073         unsigned use_holden:1;
1074 };
1075
1076 static struct flctl_soc_config flctl_sh7372_config = {
1077         .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1078         .has_hwecc = 1,
1079         .use_holden = 1,
1080 };
1081
1082 static const struct of_device_id of_flctl_match[] = {
1083         { .compatible = "renesas,shmobile-flctl-sh7372",
1084                                 .data = &flctl_sh7372_config },
1085         {},
1086 };
1087 MODULE_DEVICE_TABLE(of, of_flctl_match);
1088
1089 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1090 {
1091         const struct flctl_soc_config *config;
1092         struct sh_flctl_platform_data *pdata;
1093
1094         config = of_device_get_match_data(dev);
1095         if (!config) {
1096                 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1097                 return NULL;
1098         }
1099
1100         pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1101                                                                 GFP_KERNEL);
1102         if (!pdata)
1103                 return NULL;
1104
1105         /* set SoC specific options */
1106         pdata->flcmncr_val = config->flcmncr_val;
1107         pdata->has_hwecc = config->has_hwecc;
1108         pdata->use_holden = config->use_holden;
1109
1110         return pdata;
1111 }
1112
1113 static int flctl_probe(struct platform_device *pdev)
1114 {
1115         struct resource *res;
1116         struct sh_flctl *flctl;
1117         struct mtd_info *flctl_mtd;
1118         struct nand_chip *nand;
1119         struct sh_flctl_platform_data *pdata;
1120         int ret;
1121         int irq;
1122
1123         flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1124         if (!flctl)
1125                 return -ENOMEM;
1126
1127         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1128         flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1129         if (IS_ERR(flctl->reg))
1130                 return PTR_ERR(flctl->reg);
1131         flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1132
1133         irq = platform_get_irq(pdev, 0);
1134         if (irq < 0)
1135                 return irq;
1136
1137         ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1138                                "flste", flctl);
1139         if (ret) {
1140                 dev_err(&pdev->dev, "request interrupt failed.\n");
1141                 return ret;
1142         }
1143
1144         if (pdev->dev.of_node)
1145                 pdata = flctl_parse_dt(&pdev->dev);
1146         else
1147                 pdata = dev_get_platdata(&pdev->dev);
1148
1149         if (!pdata) {
1150                 dev_err(&pdev->dev, "no setup data defined\n");
1151                 return -EINVAL;
1152         }
1153
1154         platform_set_drvdata(pdev, flctl);
1155         nand = &flctl->chip;
1156         flctl_mtd = nand_to_mtd(nand);
1157         nand_set_flash_node(nand, pdev->dev.of_node);
1158         flctl_mtd->dev.parent = &pdev->dev;
1159         flctl->pdev = pdev;
1160         flctl->hwecc = pdata->has_hwecc;
1161         flctl->holden = pdata->use_holden;
1162         flctl->flcmncr_base = pdata->flcmncr_val;
1163         flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1164
1165         /* Set address of hardware control function */
1166         /* 20 us command delay time */
1167         nand->legacy.chip_delay = 20;
1168
1169         nand->legacy.read_byte = flctl_read_byte;
1170         nand->legacy.write_buf = flctl_write_buf;
1171         nand->legacy.read_buf = flctl_read_buf;
1172         nand->legacy.select_chip = flctl_select_chip;
1173         nand->legacy.cmdfunc = flctl_cmdfunc;
1174         nand->legacy.set_features = nand_get_set_features_notsupp;
1175         nand->legacy.get_features = nand_get_set_features_notsupp;
1176
1177         if (pdata->flcmncr_val & SEL_16BIT)
1178                 nand->options |= NAND_BUSWIDTH_16;
1179
1180         nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1181
1182         pm_runtime_enable(&pdev->dev);
1183         pm_runtime_resume(&pdev->dev);
1184
1185         flctl_setup_dma(flctl);
1186
1187         nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1188         ret = nand_scan(nand, 1);
1189         if (ret)
1190                 goto err_chip;
1191
1192         ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1193         if (ret)
1194                 goto cleanup_nand;
1195
1196         return 0;
1197
1198 cleanup_nand:
1199         nand_cleanup(nand);
1200 err_chip:
1201         flctl_release_dma(flctl);
1202         pm_runtime_disable(&pdev->dev);
1203         return ret;
1204 }
1205
1206 static int flctl_remove(struct platform_device *pdev)
1207 {
1208         struct sh_flctl *flctl = platform_get_drvdata(pdev);
1209         struct nand_chip *chip = &flctl->chip;
1210         int ret;
1211
1212         flctl_release_dma(flctl);
1213         ret = mtd_device_unregister(nand_to_mtd(chip));
1214         WARN_ON(ret);
1215         nand_cleanup(chip);
1216         pm_runtime_disable(&pdev->dev);
1217
1218         return 0;
1219 }
1220
1221 static struct platform_driver flctl_driver = {
1222         .remove         = flctl_remove,
1223         .driver = {
1224                 .name   = "sh_flctl",
1225                 .of_match_table = of_match_ptr(of_flctl_match),
1226         },
1227 };
1228
1229 module_platform_driver_probe(flctl_driver, flctl_probe);
1230
1231 MODULE_LICENSE("GPL v2");
1232 MODULE_AUTHOR("Yoshihiro Shimoda");
1233 MODULE_DESCRIPTION("SuperH FLCTL driver");
1234 MODULE_ALIAS("platform:sh_flctl");