GNU Linux-libre 4.19.211-gnu1
[releases.git] / drivers / mtd / nand / raw / qcom_nandc.c
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26
27 /* NANDc reg offsets */
28 #define NAND_FLASH_CMD                  0x00
29 #define NAND_ADDR0                      0x04
30 #define NAND_ADDR1                      0x08
31 #define NAND_FLASH_CHIP_SELECT          0x0c
32 #define NAND_EXEC_CMD                   0x10
33 #define NAND_FLASH_STATUS               0x14
34 #define NAND_BUFFER_STATUS              0x18
35 #define NAND_DEV0_CFG0                  0x20
36 #define NAND_DEV0_CFG1                  0x24
37 #define NAND_DEV0_ECC_CFG               0x28
38 #define NAND_DEV1_ECC_CFG               0x2c
39 #define NAND_DEV1_CFG0                  0x30
40 #define NAND_DEV1_CFG1                  0x34
41 #define NAND_READ_ID                    0x40
42 #define NAND_READ_STATUS                0x44
43 #define NAND_DEV_CMD0                   0xa0
44 #define NAND_DEV_CMD1                   0xa4
45 #define NAND_DEV_CMD2                   0xa8
46 #define NAND_DEV_CMD_VLD                0xac
47 #define SFLASHC_BURST_CFG               0xe0
48 #define NAND_ERASED_CW_DETECT_CFG       0xe8
49 #define NAND_ERASED_CW_DETECT_STATUS    0xec
50 #define NAND_EBI2_ECC_BUF_CFG           0xf0
51 #define FLASH_BUF_ACC                   0x100
52
53 #define NAND_CTRL                       0xf00
54 #define NAND_VERSION                    0xf08
55 #define NAND_READ_LOCATION_0            0xf20
56 #define NAND_READ_LOCATION_1            0xf24
57 #define NAND_READ_LOCATION_2            0xf28
58 #define NAND_READ_LOCATION_3            0xf2c
59
60 /* dummy register offsets, used by write_reg_dma */
61 #define NAND_DEV_CMD1_RESTORE           0xdead
62 #define NAND_DEV_CMD_VLD_RESTORE        0xbeef
63
64 /* NAND_FLASH_CMD bits */
65 #define PAGE_ACC                        BIT(4)
66 #define LAST_PAGE                       BIT(5)
67
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define NAND_DEV_SEL                    0
70 #define DM_EN                           BIT(2)
71
72 /* NAND_FLASH_STATUS bits */
73 #define FS_OP_ERR                       BIT(4)
74 #define FS_READY_BSY_N                  BIT(5)
75 #define FS_MPU_ERR                      BIT(8)
76 #define FS_DEVICE_STS_ERR               BIT(16)
77 #define FS_DEVICE_WP                    BIT(23)
78
79 /* NAND_BUFFER_STATUS bits */
80 #define BS_UNCORRECTABLE_BIT            BIT(8)
81 #define BS_CORRECTABLE_ERR_MSK          0x1f
82
83 /* NAND_DEVn_CFG0 bits */
84 #define DISABLE_STATUS_AFTER_WRITE      4
85 #define CW_PER_PAGE                     6
86 #define UD_SIZE_BYTES                   9
87 #define ECC_PARITY_SIZE_BYTES_RS        19
88 #define SPARE_SIZE_BYTES                23
89 #define NUM_ADDR_CYCLES                 27
90 #define STATUS_BFR_READ                 30
91 #define SET_RD_MODE_AFTER_STATUS        31
92
93 /* NAND_DEVn_CFG0 bits */
94 #define DEV0_CFG1_ECC_DISABLE           0
95 #define WIDE_FLASH                      1
96 #define NAND_RECOVERY_CYCLES            2
97 #define CS_ACTIVE_BSY                   5
98 #define BAD_BLOCK_BYTE_NUM              6
99 #define BAD_BLOCK_IN_SPARE_AREA         16
100 #define WR_RD_BSY_GAP                   17
101 #define ENABLE_BCH_ECC                  27
102
103 /* NAND_DEV0_ECC_CFG bits */
104 #define ECC_CFG_ECC_DISABLE             0
105 #define ECC_SW_RESET                    1
106 #define ECC_MODE                        4
107 #define ECC_PARITY_SIZE_BYTES_BCH       8
108 #define ECC_NUM_DATA_BYTES              16
109 #define ECC_FORCE_CLK_OPEN              30
110
111 /* NAND_DEV_CMD1 bits */
112 #define READ_ADDR                       0
113
114 /* NAND_DEV_CMD_VLD bits */
115 #define READ_START_VLD                  BIT(0)
116 #define READ_STOP_VLD                   BIT(1)
117 #define WRITE_START_VLD                 BIT(2)
118 #define ERASE_START_VLD                 BIT(3)
119 #define SEQ_READ_START_VLD              BIT(4)
120
121 /* NAND_EBI2_ECC_BUF_CFG bits */
122 #define NUM_STEPS                       0
123
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define ERASED_CW_ECC_MASK              1
126 #define AUTO_DETECT_RES                 0
127 #define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
128 #define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
129 #define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
130 #define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
131 #define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
132
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define PAGE_ALL_ERASED                 BIT(7)
135 #define CODEWORD_ALL_ERASED             BIT(6)
136 #define PAGE_ERASED                     BIT(5)
137 #define CODEWORD_ERASED                 BIT(4)
138 #define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
139 #define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
140
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET            0
143 #define READ_LOCATION_SIZE              16
144 #define READ_LOCATION_LAST              31
145
146 /* Version Mask */
147 #define NAND_VERSION_MAJOR_MASK         0xf0000000
148 #define NAND_VERSION_MAJOR_SHIFT        28
149 #define NAND_VERSION_MINOR_MASK         0x0fff0000
150 #define NAND_VERSION_MINOR_SHIFT        16
151
152 /* NAND OP_CMDs */
153 #define OP_PAGE_READ                    0x2
154 #define OP_PAGE_READ_WITH_ECC           0x3
155 #define OP_PAGE_READ_WITH_ECC_SPARE     0x4
156 #define OP_PROGRAM_PAGE                 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC        0x7
158 #define OP_PROGRAM_PAGE_SPARE           0x9
159 #define OP_BLOCK_ERASE                  0xa
160 #define OP_FETCH_ID                     0xb
161 #define OP_RESET_DEVICE                 0xd
162
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL            (READ_START_VLD | WRITE_START_VLD | \
165                                          ERASE_START_VLD | SEQ_READ_START_VLD)
166
167 /* NAND_CTRL bits */
168 #define BAM_MODE_EN                     BIT(0)
169
170 /*
171  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172  * the driver calls the chunks 'step' or 'codeword' interchangeably
173  */
174 #define NANDC_STEP_SIZE                 512
175
176 /*
177  * the largest page size we support is 8K, this will have 16 steps/codewords
178  * of 512 bytes each
179  */
180 #define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
181
182 /* we read at most 3 registers per codeword scan */
183 #define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
184
185 /* ECC modes supported by the controller */
186 #define ECC_NONE        BIT(0)
187 #define ECC_RS_4BIT     BIT(1)
188 #define ECC_BCH_4BIT    BIT(2)
189 #define ECC_BCH_8BIT    BIT(3)
190
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)   \
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,                  \
193               ((offset) << READ_LOCATION_OFFSET) |              \
194               ((size) << READ_LOCATION_SIZE) |                  \
195               ((is_last) << READ_LOCATION_LAST))
196
197 /*
198  * Returns the actual register address for all NAND_DEV_ registers
199  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
200  */
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
202
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
205
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208         ((chip)->reg_read_dma + \
209         ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
210
211 #define QPIC_PER_CW_CMD_ELEMENTS        32
212 #define QPIC_PER_CW_CMD_SGL             32
213 #define QPIC_PER_CW_DATA_SGL            8
214
215 #define QPIC_NAND_COMPLETION_TIMEOUT    msecs_to_jiffies(2000)
216
217 /*
218  * Flags used in DMA descriptor preparation helper functions
219  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
220  */
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT                 BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD                    BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL               BIT(2)
227 /*
228  * Erased codeword status is being used two times in single transfer so this
229  * flag will determine the current value of erased codeword status register
230  */
231 #define NAND_ERASED_CW_SET              BIT(4)
232
233 /*
234  * This data type corresponds to the BAM transaction which will be used for all
235  * NAND transfers.
236  * @bam_ce - the array of BAM command elements
237  * @cmd_sgl - sgl for NAND BAM command pipe
238  * @data_sgl - sgl for NAND BAM consumer/producer pipe
239  * @bam_ce_pos - the index in bam_ce which is available for next sgl
240  * @bam_ce_start - the index in bam_ce which marks the start position ce
241  *                 for current sgl. It will be used for size calculation
242  *                 for current sgl
243  * @cmd_sgl_pos - current index in command sgl.
244  * @cmd_sgl_start - start index in command sgl.
245  * @tx_sgl_pos - current index in data sgl for tx.
246  * @tx_sgl_start - start index in data sgl for tx.
247  * @rx_sgl_pos - current index in data sgl for rx.
248  * @rx_sgl_start - start index in data sgl for rx.
249  * @wait_second_completion - wait for second DMA desc completion before making
250  *                           the NAND transfer completion.
251  * @txn_done - completion for NAND transfer.
252  * @last_data_desc - last DMA desc in data channel (tx/rx).
253  * @last_cmd_desc - last DMA desc in command channel.
254  */
255 struct bam_transaction {
256         struct bam_cmd_element *bam_ce;
257         struct scatterlist *cmd_sgl;
258         struct scatterlist *data_sgl;
259         u32 bam_ce_pos;
260         u32 bam_ce_start;
261         u32 cmd_sgl_pos;
262         u32 cmd_sgl_start;
263         u32 tx_sgl_pos;
264         u32 tx_sgl_start;
265         u32 rx_sgl_pos;
266         u32 rx_sgl_start;
267         bool wait_second_completion;
268         struct completion txn_done;
269         struct dma_async_tx_descriptor *last_data_desc;
270         struct dma_async_tx_descriptor *last_cmd_desc;
271 };
272
273 /*
274  * This data type corresponds to the nand dma descriptor
275  * @list - list for desc_info
276  * @dir - DMA transfer direction
277  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
278  *            ADM
279  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281  * @dma_desc - low level DMA engine descriptor
282  */
283 struct desc_info {
284         struct list_head node;
285
286         enum dma_data_direction dir;
287         union {
288                 struct scatterlist adm_sgl;
289                 struct {
290                         struct scatterlist *bam_sgl;
291                         int sgl_cnt;
292                 };
293         };
294         struct dma_async_tx_descriptor *dma_desc;
295 };
296
297 /*
298  * holds the current register values that we want to write. acts as a contiguous
299  * chunk of memory which we use to write the controller registers through DMA.
300  */
301 struct nandc_regs {
302         __le32 cmd;
303         __le32 addr0;
304         __le32 addr1;
305         __le32 chip_sel;
306         __le32 exec;
307
308         __le32 cfg0;
309         __le32 cfg1;
310         __le32 ecc_bch_cfg;
311
312         __le32 clrflashstatus;
313         __le32 clrreadstatus;
314
315         __le32 cmd1;
316         __le32 vld;
317
318         __le32 orig_cmd1;
319         __le32 orig_vld;
320
321         __le32 ecc_buf_cfg;
322         __le32 read_location0;
323         __le32 read_location1;
324         __le32 read_location2;
325         __le32 read_location3;
326
327         __le32 erased_cw_detect_cfg_clr;
328         __le32 erased_cw_detect_cfg_set;
329 };
330
331 /*
332  * NAND controller data struct
333  *
334  * @controller:                 base controller structure
335  * @host_list:                  list containing all the chips attached to the
336  *                              controller
337  * @dev:                        parent device
338  * @base:                       MMIO base
339  * @base_phys:                  physical base address of controller registers
340  * @base_dma:                   dma base address of controller registers
341  * @core_clk:                   controller clock
342  * @aon_clk:                    another controller clock
343  *
344  * @chan:                       dma channel
345  * @cmd_crci:                   ADM DMA CRCI for command flow control
346  * @data_crci:                  ADM DMA CRCI for data flow control
347  * @desc_list:                  DMA descriptor list (list of desc_infos)
348  *
349  * @data_buffer:                our local DMA buffer for page read/writes,
350  *                              used when we can't use the buffer provided
351  *                              by upper layers directly
352  * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
353  * @reg_read_buf:               local buffer for reading back registers via DMA
354  * @reg_read_dma:               contains dma address for register read buffer
355  * @reg_read_pos:               marker for data read in reg_read_buf
356  *
357  * @regs:                       a contiguous chunk of memory for DMA register
358  *                              writes. contains the register values to be
359  *                              written to controller
360  * @cmd1/vld:                   some fixed controller register values
361  * @props:                      properties of current NAND controller,
362  *                              initialized via DT match data
363  * @max_cwperpage:              maximum QPIC codewords required. calculated
364  *                              from all connected NAND devices pagesize
365  */
366 struct qcom_nand_controller {
367         struct nand_controller controller;
368         struct list_head host_list;
369
370         struct device *dev;
371
372         void __iomem *base;
373         phys_addr_t base_phys;
374         dma_addr_t base_dma;
375
376         struct clk *core_clk;
377         struct clk *aon_clk;
378
379         union {
380                 /* will be used only by QPIC for BAM DMA */
381                 struct {
382                         struct dma_chan *tx_chan;
383                         struct dma_chan *rx_chan;
384                         struct dma_chan *cmd_chan;
385                 };
386
387                 /* will be used only by EBI2 for ADM DMA */
388                 struct {
389                         struct dma_chan *chan;
390                         unsigned int cmd_crci;
391                         unsigned int data_crci;
392                 };
393         };
394
395         struct list_head desc_list;
396         struct bam_transaction *bam_txn;
397
398         u8              *data_buffer;
399         int             buf_size;
400         int             buf_count;
401         int             buf_start;
402         unsigned int    max_cwperpage;
403
404         __le32 *reg_read_buf;
405         dma_addr_t reg_read_dma;
406         int reg_read_pos;
407
408         struct nandc_regs *regs;
409
410         u32 cmd1, vld;
411         const struct qcom_nandc_props *props;
412 };
413
414 /*
415  * NAND chip structure
416  *
417  * @chip:                       base NAND chip structure
418  * @node:                       list node to add itself to host_list in
419  *                              qcom_nand_controller
420  *
421  * @cs:                         chip select value for this chip
422  * @cw_size:                    the number of bytes in a single step/codeword
423  *                              of a page, consisting of all data, ecc, spare
424  *                              and reserved bytes
425  * @cw_data:                    the number of bytes within a codeword protected
426  *                              by ECC
427  * @use_ecc:                    request the controller to use ECC for the
428  *                              upcoming read/write
429  * @bch_enabled:                flag to tell whether BCH ECC mode is used
430  * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
431  *                              chip
432  * @status:                     value to be returned if NAND_CMD_STATUS command
433  *                              is executed
434  * @last_command:               keeps track of last command on this chip. used
435  *                              for reading correct status
436  *
437  * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
438  *                              ecc/non-ecc mode for the current nand flash
439  *                              device
440  */
441 struct qcom_nand_host {
442         struct nand_chip chip;
443         struct list_head node;
444
445         int cs;
446         int cw_size;
447         int cw_data;
448         bool use_ecc;
449         bool bch_enabled;
450         int ecc_bytes_hw;
451         int spare_bytes;
452         int bbm_size;
453         u8 status;
454         int last_command;
455
456         u32 cfg0, cfg1;
457         u32 cfg0_raw, cfg1_raw;
458         u32 ecc_buf_cfg;
459         u32 ecc_bch_cfg;
460         u32 clrflashstatus;
461         u32 clrreadstatus;
462 };
463
464 /*
465  * This data type corresponds to the NAND controller properties which varies
466  * among different NAND controllers.
467  * @ecc_modes - ecc mode for NAND
468  * @is_bam - whether NAND controller is using BAM
469  * @is_qpic - whether NAND CTRL is part of qpic IP
470  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471  */
472 struct qcom_nandc_props {
473         u32 ecc_modes;
474         bool is_bam;
475         bool is_qpic;
476         u32 dev_cmd_reg_start;
477 };
478
479 /* Frees the BAM transaction memory */
480 static void free_bam_transaction(struct qcom_nand_controller *nandc)
481 {
482         struct bam_transaction *bam_txn = nandc->bam_txn;
483
484         devm_kfree(nandc->dev, bam_txn);
485 }
486
487 /* Allocates and Initializes the BAM transaction */
488 static struct bam_transaction *
489 alloc_bam_transaction(struct qcom_nand_controller *nandc)
490 {
491         struct bam_transaction *bam_txn;
492         size_t bam_txn_size;
493         unsigned int num_cw = nandc->max_cwperpage;
494         void *bam_txn_buf;
495
496         bam_txn_size =
497                 sizeof(*bam_txn) + num_cw *
498                 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
499                 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
500                 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
501
502         bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
503         if (!bam_txn_buf)
504                 return NULL;
505
506         bam_txn = bam_txn_buf;
507         bam_txn_buf += sizeof(*bam_txn);
508
509         bam_txn->bam_ce = bam_txn_buf;
510         bam_txn_buf +=
511                 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
512
513         bam_txn->cmd_sgl = bam_txn_buf;
514         bam_txn_buf +=
515                 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
516
517         bam_txn->data_sgl = bam_txn_buf;
518
519         init_completion(&bam_txn->txn_done);
520
521         return bam_txn;
522 }
523
524 /* Clears the BAM transaction indexes */
525 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
526 {
527         struct bam_transaction *bam_txn = nandc->bam_txn;
528
529         if (!nandc->props->is_bam)
530                 return;
531
532         bam_txn->bam_ce_pos = 0;
533         bam_txn->bam_ce_start = 0;
534         bam_txn->cmd_sgl_pos = 0;
535         bam_txn->cmd_sgl_start = 0;
536         bam_txn->tx_sgl_pos = 0;
537         bam_txn->tx_sgl_start = 0;
538         bam_txn->rx_sgl_pos = 0;
539         bam_txn->rx_sgl_start = 0;
540         bam_txn->last_data_desc = NULL;
541         bam_txn->wait_second_completion = false;
542
543         sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
544                       QPIC_PER_CW_CMD_SGL);
545         sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
546                       QPIC_PER_CW_DATA_SGL);
547
548         reinit_completion(&bam_txn->txn_done);
549 }
550
551 /* Callback for DMA descriptor completion */
552 static void qpic_bam_dma_done(void *data)
553 {
554         struct bam_transaction *bam_txn = data;
555
556         /*
557          * In case of data transfer with NAND, 2 callbacks will be generated.
558          * One for command channel and another one for data channel.
559          * If current transaction has data descriptors
560          * (i.e. wait_second_completion is true), then set this to false
561          * and wait for second DMA descriptor completion.
562          */
563         if (bam_txn->wait_second_completion)
564                 bam_txn->wait_second_completion = false;
565         else
566                 complete(&bam_txn->txn_done);
567 }
568
569 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
570 {
571         return container_of(chip, struct qcom_nand_host, chip);
572 }
573
574 static inline struct qcom_nand_controller *
575 get_qcom_nand_controller(struct nand_chip *chip)
576 {
577         return container_of(chip->controller, struct qcom_nand_controller,
578                             controller);
579 }
580
581 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
582 {
583         return ioread32(nandc->base + offset);
584 }
585
586 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
587                                u32 val)
588 {
589         iowrite32(val, nandc->base + offset);
590 }
591
592 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
593                                           bool is_cpu)
594 {
595         if (!nandc->props->is_bam)
596                 return;
597
598         if (is_cpu)
599                 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
600                                         MAX_REG_RD *
601                                         sizeof(*nandc->reg_read_buf),
602                                         DMA_FROM_DEVICE);
603         else
604                 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
605                                            MAX_REG_RD *
606                                            sizeof(*nandc->reg_read_buf),
607                                            DMA_FROM_DEVICE);
608 }
609
610 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
611 {
612         switch (offset) {
613         case NAND_FLASH_CMD:
614                 return &regs->cmd;
615         case NAND_ADDR0:
616                 return &regs->addr0;
617         case NAND_ADDR1:
618                 return &regs->addr1;
619         case NAND_FLASH_CHIP_SELECT:
620                 return &regs->chip_sel;
621         case NAND_EXEC_CMD:
622                 return &regs->exec;
623         case NAND_FLASH_STATUS:
624                 return &regs->clrflashstatus;
625         case NAND_DEV0_CFG0:
626                 return &regs->cfg0;
627         case NAND_DEV0_CFG1:
628                 return &regs->cfg1;
629         case NAND_DEV0_ECC_CFG:
630                 return &regs->ecc_bch_cfg;
631         case NAND_READ_STATUS:
632                 return &regs->clrreadstatus;
633         case NAND_DEV_CMD1:
634                 return &regs->cmd1;
635         case NAND_DEV_CMD1_RESTORE:
636                 return &regs->orig_cmd1;
637         case NAND_DEV_CMD_VLD:
638                 return &regs->vld;
639         case NAND_DEV_CMD_VLD_RESTORE:
640                 return &regs->orig_vld;
641         case NAND_EBI2_ECC_BUF_CFG:
642                 return &regs->ecc_buf_cfg;
643         case NAND_READ_LOCATION_0:
644                 return &regs->read_location0;
645         case NAND_READ_LOCATION_1:
646                 return &regs->read_location1;
647         case NAND_READ_LOCATION_2:
648                 return &regs->read_location2;
649         case NAND_READ_LOCATION_3:
650                 return &regs->read_location3;
651         default:
652                 return NULL;
653         }
654 }
655
656 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
657                           u32 val)
658 {
659         struct nandc_regs *regs = nandc->regs;
660         __le32 *reg;
661
662         reg = offset_to_nandc_reg(regs, offset);
663
664         if (reg)
665                 *reg = cpu_to_le32(val);
666 }
667
668 /* helper to configure address register values */
669 static void set_address(struct qcom_nand_host *host, u16 column, int page)
670 {
671         struct nand_chip *chip = &host->chip;
672         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
673
674         if (chip->options & NAND_BUSWIDTH_16)
675                 column >>= 1;
676
677         nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
678         nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
679 }
680
681 /*
682  * update_rw_regs:      set up read/write register values, these will be
683  *                      written to the NAND controller registers via DMA
684  *
685  * @num_cw:             number of steps for the read/write operation
686  * @read:               read or write operation
687  */
688 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
689 {
690         struct nand_chip *chip = &host->chip;
691         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
692         u32 cmd, cfg0, cfg1, ecc_bch_cfg;
693
694         if (read) {
695                 if (host->use_ecc)
696                         cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
697                 else
698                         cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
699         } else {
700                 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
701         }
702
703         if (host->use_ecc) {
704                 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
705                                 (num_cw - 1) << CW_PER_PAGE;
706
707                 cfg1 = host->cfg1;
708                 ecc_bch_cfg = host->ecc_bch_cfg;
709         } else {
710                 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
711                                 (num_cw - 1) << CW_PER_PAGE;
712
713                 cfg1 = host->cfg1_raw;
714                 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
715         }
716
717         nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
718         nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
719         nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
720         nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
721         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
722         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
723         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
724         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
725
726         if (read)
727                 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
728                                    host->cw_data : host->cw_size, 1);
729 }
730
731 /*
732  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
733  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
734  * which will be submitted to DMA engine.
735  */
736 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
737                                   struct dma_chan *chan,
738                                   unsigned long flags)
739 {
740         struct desc_info *desc;
741         struct scatterlist *sgl;
742         unsigned int sgl_cnt;
743         int ret;
744         struct bam_transaction *bam_txn = nandc->bam_txn;
745         enum dma_transfer_direction dir_eng;
746         struct dma_async_tx_descriptor *dma_desc;
747
748         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
749         if (!desc)
750                 return -ENOMEM;
751
752         if (chan == nandc->cmd_chan) {
753                 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
754                 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
755                 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
756                 dir_eng = DMA_MEM_TO_DEV;
757                 desc->dir = DMA_TO_DEVICE;
758         } else if (chan == nandc->tx_chan) {
759                 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
760                 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
761                 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
762                 dir_eng = DMA_MEM_TO_DEV;
763                 desc->dir = DMA_TO_DEVICE;
764         } else {
765                 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
766                 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
767                 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
768                 dir_eng = DMA_DEV_TO_MEM;
769                 desc->dir = DMA_FROM_DEVICE;
770         }
771
772         sg_mark_end(sgl + sgl_cnt - 1);
773         ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
774         if (ret == 0) {
775                 dev_err(nandc->dev, "failure in mapping desc\n");
776                 kfree(desc);
777                 return -ENOMEM;
778         }
779
780         desc->sgl_cnt = sgl_cnt;
781         desc->bam_sgl = sgl;
782
783         dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
784                                            flags);
785
786         if (!dma_desc) {
787                 dev_err(nandc->dev, "failure in prep desc\n");
788                 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
789                 kfree(desc);
790                 return -EINVAL;
791         }
792
793         desc->dma_desc = dma_desc;
794
795         /* update last data/command descriptor */
796         if (chan == nandc->cmd_chan)
797                 bam_txn->last_cmd_desc = dma_desc;
798         else
799                 bam_txn->last_data_desc = dma_desc;
800
801         list_add_tail(&desc->node, &nandc->desc_list);
802
803         return 0;
804 }
805
806 /*
807  * Prepares the command descriptor for BAM DMA which will be used for NAND
808  * register reads and writes. The command descriptor requires the command
809  * to be formed in command element type so this function uses the command
810  * element from bam transaction ce array and fills the same with required
811  * data. A single SGL can contain multiple command elements so
812  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
813  * after the current command element.
814  */
815 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
816                                  int reg_off, const void *vaddr,
817                                  int size, unsigned int flags)
818 {
819         int bam_ce_size;
820         int i, ret;
821         struct bam_cmd_element *bam_ce_buffer;
822         struct bam_transaction *bam_txn = nandc->bam_txn;
823
824         bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
825
826         /* fill the command desc */
827         for (i = 0; i < size; i++) {
828                 if (read)
829                         bam_prep_ce(&bam_ce_buffer[i],
830                                     nandc_reg_phys(nandc, reg_off + 4 * i),
831                                     BAM_READ_COMMAND,
832                                     reg_buf_dma_addr(nandc,
833                                                      (__le32 *)vaddr + i));
834                 else
835                         bam_prep_ce_le32(&bam_ce_buffer[i],
836                                          nandc_reg_phys(nandc, reg_off + 4 * i),
837                                          BAM_WRITE_COMMAND,
838                                          *((__le32 *)vaddr + i));
839         }
840
841         bam_txn->bam_ce_pos += size;
842
843         /* use the separate sgl after this command */
844         if (flags & NAND_BAM_NEXT_SGL) {
845                 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
846                 bam_ce_size = (bam_txn->bam_ce_pos -
847                                 bam_txn->bam_ce_start) *
848                                 sizeof(struct bam_cmd_element);
849                 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
850                            bam_ce_buffer, bam_ce_size);
851                 bam_txn->cmd_sgl_pos++;
852                 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
853
854                 if (flags & NAND_BAM_NWD) {
855                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
856                                                      DMA_PREP_FENCE |
857                                                      DMA_PREP_CMD);
858                         if (ret)
859                                 return ret;
860                 }
861         }
862
863         return 0;
864 }
865
866 /*
867  * Prepares the data descriptor for BAM DMA which will be used for NAND
868  * data reads and writes.
869  */
870 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
871                                   const void *vaddr,
872                                   int size, unsigned int flags)
873 {
874         int ret;
875         struct bam_transaction *bam_txn = nandc->bam_txn;
876
877         if (read) {
878                 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
879                            vaddr, size);
880                 bam_txn->rx_sgl_pos++;
881         } else {
882                 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
883                            vaddr, size);
884                 bam_txn->tx_sgl_pos++;
885
886                 /*
887                  * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
888                  * is not set, form the DMA descriptor
889                  */
890                 if (!(flags & NAND_BAM_NO_EOT)) {
891                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
892                                                      DMA_PREP_INTERRUPT);
893                         if (ret)
894                                 return ret;
895                 }
896         }
897
898         return 0;
899 }
900
901 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
902                              int reg_off, const void *vaddr, int size,
903                              bool flow_control)
904 {
905         struct desc_info *desc;
906         struct dma_async_tx_descriptor *dma_desc;
907         struct scatterlist *sgl;
908         struct dma_slave_config slave_conf;
909         enum dma_transfer_direction dir_eng;
910         int ret;
911
912         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
913         if (!desc)
914                 return -ENOMEM;
915
916         sgl = &desc->adm_sgl;
917
918         sg_init_one(sgl, vaddr, size);
919
920         if (read) {
921                 dir_eng = DMA_DEV_TO_MEM;
922                 desc->dir = DMA_FROM_DEVICE;
923         } else {
924                 dir_eng = DMA_MEM_TO_DEV;
925                 desc->dir = DMA_TO_DEVICE;
926         }
927
928         ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
929         if (ret == 0) {
930                 ret = -ENOMEM;
931                 goto err;
932         }
933
934         memset(&slave_conf, 0x00, sizeof(slave_conf));
935
936         slave_conf.device_fc = flow_control;
937         if (read) {
938                 slave_conf.src_maxburst = 16;
939                 slave_conf.src_addr = nandc->base_dma + reg_off;
940                 slave_conf.slave_id = nandc->data_crci;
941         } else {
942                 slave_conf.dst_maxburst = 16;
943                 slave_conf.dst_addr = nandc->base_dma + reg_off;
944                 slave_conf.slave_id = nandc->cmd_crci;
945         }
946
947         ret = dmaengine_slave_config(nandc->chan, &slave_conf);
948         if (ret) {
949                 dev_err(nandc->dev, "failed to configure dma channel\n");
950                 goto err;
951         }
952
953         dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
954         if (!dma_desc) {
955                 dev_err(nandc->dev, "failed to prepare desc\n");
956                 ret = -EINVAL;
957                 goto err;
958         }
959
960         desc->dma_desc = dma_desc;
961
962         list_add_tail(&desc->node, &nandc->desc_list);
963
964         return 0;
965 err:
966         kfree(desc);
967
968         return ret;
969 }
970
971 /*
972  * read_reg_dma:        prepares a descriptor to read a given number of
973  *                      contiguous registers to the reg_read_buf pointer
974  *
975  * @first:              offset of the first register in the contiguous block
976  * @num_regs:           number of registers to read
977  * @flags:              flags to control DMA descriptor preparation
978  */
979 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
980                         int num_regs, unsigned int flags)
981 {
982         bool flow_control = false;
983         void *vaddr;
984
985         vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
986         nandc->reg_read_pos += num_regs;
987
988         if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
989                 first = dev_cmd_reg_addr(nandc, first);
990
991         if (nandc->props->is_bam)
992                 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
993                                              num_regs, flags);
994
995         if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
996                 flow_control = true;
997
998         return prep_adm_dma_desc(nandc, true, first, vaddr,
999                                  num_regs * sizeof(u32), flow_control);
1000 }
1001
1002 /*
1003  * write_reg_dma:       prepares a descriptor to write a given number of
1004  *                      contiguous registers
1005  *
1006  * @first:              offset of the first register in the contiguous block
1007  * @num_regs:           number of registers to write
1008  * @flags:              flags to control DMA descriptor preparation
1009  */
1010 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1011                          int num_regs, unsigned int flags)
1012 {
1013         bool flow_control = false;
1014         struct nandc_regs *regs = nandc->regs;
1015         void *vaddr;
1016
1017         vaddr = offset_to_nandc_reg(regs, first);
1018
1019         if (first == NAND_ERASED_CW_DETECT_CFG) {
1020                 if (flags & NAND_ERASED_CW_SET)
1021                         vaddr = &regs->erased_cw_detect_cfg_set;
1022                 else
1023                         vaddr = &regs->erased_cw_detect_cfg_clr;
1024         }
1025
1026         if (first == NAND_EXEC_CMD)
1027                 flags |= NAND_BAM_NWD;
1028
1029         if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1030                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1031
1032         if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1033                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1034
1035         if (nandc->props->is_bam)
1036                 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1037                                              num_regs, flags);
1038
1039         if (first == NAND_FLASH_CMD)
1040                 flow_control = true;
1041
1042         return prep_adm_dma_desc(nandc, false, first, vaddr,
1043                                  num_regs * sizeof(u32), flow_control);
1044 }
1045
1046 /*
1047  * read_data_dma:       prepares a DMA descriptor to transfer data from the
1048  *                      controller's internal buffer to the buffer 'vaddr'
1049  *
1050  * @reg_off:            offset within the controller's data buffer
1051  * @vaddr:              virtual address of the buffer we want to write to
1052  * @size:               DMA transaction size in bytes
1053  * @flags:              flags to control DMA descriptor preparation
1054  */
1055 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1056                          const u8 *vaddr, int size, unsigned int flags)
1057 {
1058         if (nandc->props->is_bam)
1059                 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1060
1061         return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1062 }
1063
1064 /*
1065  * write_data_dma:      prepares a DMA descriptor to transfer data from
1066  *                      'vaddr' to the controller's internal buffer
1067  *
1068  * @reg_off:            offset within the controller's data buffer
1069  * @vaddr:              virtual address of the buffer we want to read from
1070  * @size:               DMA transaction size in bytes
1071  * @flags:              flags to control DMA descriptor preparation
1072  */
1073 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1074                           const u8 *vaddr, int size, unsigned int flags)
1075 {
1076         if (nandc->props->is_bam)
1077                 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1078
1079         return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1080 }
1081
1082 /*
1083  * Helper to prepare DMA descriptors for configuring registers
1084  * before reading a NAND page.
1085  */
1086 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1087 {
1088         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1089         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1090         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1091         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1092         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1093                       NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1094 }
1095
1096 /*
1097  * Helper to prepare DMA descriptors for configuring registers
1098  * before reading each codeword in NAND page.
1099  */
1100 static void
1101 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1102 {
1103         if (nandc->props->is_bam)
1104                 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1105                               NAND_BAM_NEXT_SGL);
1106
1107         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1108         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1109
1110         if (use_ecc) {
1111                 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1112                 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1113                              NAND_BAM_NEXT_SGL);
1114         } else {
1115                 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1116         }
1117 }
1118
1119 /*
1120  * Helper to prepare dma descriptors to configure registers needed for reading a
1121  * single codeword in page
1122  */
1123 static void
1124 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1125                                 bool use_ecc)
1126 {
1127         config_nand_page_read(nandc);
1128         config_nand_cw_read(nandc, use_ecc);
1129 }
1130
1131 /*
1132  * Helper to prepare DMA descriptors used to configure registers needed for
1133  * before writing a NAND page.
1134  */
1135 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1136 {
1137         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1138         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1139         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1140                       NAND_BAM_NEXT_SGL);
1141 }
1142
1143 /*
1144  * Helper to prepare DMA descriptors for configuring registers
1145  * before writing each codeword in NAND page.
1146  */
1147 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1148 {
1149         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1150         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1151
1152         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1153
1154         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1155         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1156 }
1157
1158 /*
1159  * the following functions are used within chip->cmdfunc() to perform different
1160  * NAND_CMD_* commands
1161  */
1162
1163 /* sets up descriptors for NAND_CMD_PARAM */
1164 static int nandc_param(struct qcom_nand_host *host)
1165 {
1166         struct nand_chip *chip = &host->chip;
1167         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1168
1169         /*
1170          * NAND_CMD_PARAM is called before we know much about the FLASH chip
1171          * in use. we configure the controller to perform a raw read of 512
1172          * bytes to read onfi params
1173          */
1174         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1175         nandc_set_reg(nandc, NAND_ADDR0, 0);
1176         nandc_set_reg(nandc, NAND_ADDR1, 0);
1177         nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1178                                         | 512 << UD_SIZE_BYTES
1179                                         | 5 << NUM_ADDR_CYCLES
1180                                         | 0 << SPARE_SIZE_BYTES);
1181         nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1182                                         | 0 << CS_ACTIVE_BSY
1183                                         | 17 << BAD_BLOCK_BYTE_NUM
1184                                         | 1 << BAD_BLOCK_IN_SPARE_AREA
1185                                         | 2 << WR_RD_BSY_GAP
1186                                         | 0 << WIDE_FLASH
1187                                         | 1 << DEV0_CFG1_ECC_DISABLE);
1188         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1189
1190         /* configure CMD1 and VLD for ONFI param probing */
1191         nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1192                       (nandc->vld & ~READ_START_VLD));
1193         nandc_set_reg(nandc, NAND_DEV_CMD1,
1194                       (nandc->cmd1 & ~(0xFF << READ_ADDR))
1195                       | NAND_CMD_PARAM << READ_ADDR);
1196
1197         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1198
1199         nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1200         nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1201         nandc_set_read_loc(nandc, 0, 0, 512, 1);
1202
1203         write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1204         write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1205
1206         nandc->buf_count = 512;
1207         memset(nandc->data_buffer, 0xff, nandc->buf_count);
1208
1209         config_nand_single_cw_page_read(nandc, false);
1210
1211         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1212                       nandc->buf_count, 0);
1213
1214         /* restore CMD1 and VLD regs */
1215         write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1216         write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1217
1218         return 0;
1219 }
1220
1221 /* sets up descriptors for NAND_CMD_ERASE1 */
1222 static int erase_block(struct qcom_nand_host *host, int page_addr)
1223 {
1224         struct nand_chip *chip = &host->chip;
1225         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1226
1227         nandc_set_reg(nandc, NAND_FLASH_CMD,
1228                       OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1229         nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1230         nandc_set_reg(nandc, NAND_ADDR1, 0);
1231         nandc_set_reg(nandc, NAND_DEV0_CFG0,
1232                       host->cfg0_raw & ~(7 << CW_PER_PAGE));
1233         nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1234         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1235         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1236         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1237
1238         write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1239         write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1240         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1241
1242         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1243
1244         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1245         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1246
1247         return 0;
1248 }
1249
1250 /* sets up descriptors for NAND_CMD_READID */
1251 static int read_id(struct qcom_nand_host *host, int column)
1252 {
1253         struct nand_chip *chip = &host->chip;
1254         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1255
1256         if (column == -1)
1257                 return 0;
1258
1259         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1260         nandc_set_reg(nandc, NAND_ADDR0, column);
1261         nandc_set_reg(nandc, NAND_ADDR1, 0);
1262         nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1263                       nandc->props->is_bam ? 0 : DM_EN);
1264         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1265
1266         write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1267         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1268
1269         read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1270
1271         return 0;
1272 }
1273
1274 /* sets up descriptors for NAND_CMD_RESET */
1275 static int reset(struct qcom_nand_host *host)
1276 {
1277         struct nand_chip *chip = &host->chip;
1278         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1279
1280         nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1281         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1282
1283         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1284         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1285
1286         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1287
1288         return 0;
1289 }
1290
1291 /* helpers to submit/free our list of dma descriptors */
1292 static int submit_descs(struct qcom_nand_controller *nandc)
1293 {
1294         struct desc_info *desc;
1295         dma_cookie_t cookie = 0;
1296         struct bam_transaction *bam_txn = nandc->bam_txn;
1297         int r;
1298
1299         if (nandc->props->is_bam) {
1300                 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1301                         r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1302                         if (r)
1303                                 return r;
1304                 }
1305
1306                 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1307                         r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1308                                                    DMA_PREP_INTERRUPT);
1309                         if (r)
1310                                 return r;
1311                 }
1312
1313                 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1314                         r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1315                                                    DMA_PREP_CMD);
1316                         if (r)
1317                                 return r;
1318                 }
1319         }
1320
1321         list_for_each_entry(desc, &nandc->desc_list, node)
1322                 cookie = dmaengine_submit(desc->dma_desc);
1323
1324         if (nandc->props->is_bam) {
1325                 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1326                 bam_txn->last_cmd_desc->callback_param = bam_txn;
1327                 if (bam_txn->last_data_desc) {
1328                         bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1329                         bam_txn->last_data_desc->callback_param = bam_txn;
1330                         bam_txn->wait_second_completion = true;
1331                 }
1332
1333                 dma_async_issue_pending(nandc->tx_chan);
1334                 dma_async_issue_pending(nandc->rx_chan);
1335                 dma_async_issue_pending(nandc->cmd_chan);
1336
1337                 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1338                                                  QPIC_NAND_COMPLETION_TIMEOUT))
1339                         return -ETIMEDOUT;
1340         } else {
1341                 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1342                         return -ETIMEDOUT;
1343         }
1344
1345         return 0;
1346 }
1347
1348 static void free_descs(struct qcom_nand_controller *nandc)
1349 {
1350         struct desc_info *desc, *n;
1351
1352         list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1353                 list_del(&desc->node);
1354
1355                 if (nandc->props->is_bam)
1356                         dma_unmap_sg(nandc->dev, desc->bam_sgl,
1357                                      desc->sgl_cnt, desc->dir);
1358                 else
1359                         dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1360                                      desc->dir);
1361
1362                 kfree(desc);
1363         }
1364 }
1365
1366 /* reset the register read buffer for next NAND operation */
1367 static void clear_read_regs(struct qcom_nand_controller *nandc)
1368 {
1369         nandc->reg_read_pos = 0;
1370         nandc_read_buffer_sync(nandc, false);
1371 }
1372
1373 static void pre_command(struct qcom_nand_host *host, int command)
1374 {
1375         struct nand_chip *chip = &host->chip;
1376         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1377
1378         nandc->buf_count = 0;
1379         nandc->buf_start = 0;
1380         host->use_ecc = false;
1381         host->last_command = command;
1382
1383         clear_read_regs(nandc);
1384
1385         if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1386             command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1387                 clear_bam_transaction(nandc);
1388 }
1389
1390 /*
1391  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1392  * privately maintained status byte, this status byte can be read after
1393  * NAND_CMD_STATUS is called
1394  */
1395 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1396 {
1397         struct nand_chip *chip = &host->chip;
1398         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1399         struct nand_ecc_ctrl *ecc = &chip->ecc;
1400         int num_cw;
1401         int i;
1402
1403         num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1404         nandc_read_buffer_sync(nandc, true);
1405
1406         for (i = 0; i < num_cw; i++) {
1407                 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1408
1409                 if (flash_status & FS_MPU_ERR)
1410                         host->status &= ~NAND_STATUS_WP;
1411
1412                 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1413                                                  (flash_status &
1414                                                   FS_DEVICE_STS_ERR)))
1415                         host->status |= NAND_STATUS_FAIL;
1416         }
1417 }
1418
1419 static void post_command(struct qcom_nand_host *host, int command)
1420 {
1421         struct nand_chip *chip = &host->chip;
1422         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1423
1424         switch (command) {
1425         case NAND_CMD_READID:
1426                 nandc_read_buffer_sync(nandc, true);
1427                 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1428                        nandc->buf_count);
1429                 break;
1430         case NAND_CMD_PAGEPROG:
1431         case NAND_CMD_ERASE1:
1432                 parse_erase_write_errors(host, command);
1433                 break;
1434         default:
1435                 break;
1436         }
1437 }
1438
1439 /*
1440  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1441  * The rest of the commands wouldn't be called by upper layers. For example,
1442  * NAND_CMD_READOOB would never be called because we have our own versions
1443  * of read_oob ops for nand_ecc_ctrl.
1444  */
1445 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1446                                int column, int page_addr)
1447 {
1448         struct nand_chip *chip = mtd_to_nand(mtd);
1449         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1450         struct nand_ecc_ctrl *ecc = &chip->ecc;
1451         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1452         bool wait = false;
1453         int ret = 0;
1454
1455         pre_command(host, command);
1456
1457         switch (command) {
1458         case NAND_CMD_RESET:
1459                 ret = reset(host);
1460                 wait = true;
1461                 break;
1462
1463         case NAND_CMD_READID:
1464                 nandc->buf_count = 4;
1465                 ret = read_id(host, column);
1466                 wait = true;
1467                 break;
1468
1469         case NAND_CMD_PARAM:
1470                 ret = nandc_param(host);
1471                 wait = true;
1472                 break;
1473
1474         case NAND_CMD_ERASE1:
1475                 ret = erase_block(host, page_addr);
1476                 wait = true;
1477                 break;
1478
1479         case NAND_CMD_READ0:
1480                 /* we read the entire page for now */
1481                 WARN_ON(column != 0);
1482
1483                 host->use_ecc = true;
1484                 set_address(host, 0, page_addr);
1485                 update_rw_regs(host, ecc->steps, true);
1486                 break;
1487
1488         case NAND_CMD_SEQIN:
1489                 WARN_ON(column != 0);
1490                 set_address(host, 0, page_addr);
1491                 break;
1492
1493         case NAND_CMD_PAGEPROG:
1494         case NAND_CMD_STATUS:
1495         case NAND_CMD_NONE:
1496         default:
1497                 break;
1498         }
1499
1500         if (ret) {
1501                 dev_err(nandc->dev, "failure executing command %d\n",
1502                         command);
1503                 free_descs(nandc);
1504                 return;
1505         }
1506
1507         if (wait) {
1508                 ret = submit_descs(nandc);
1509                 if (ret)
1510                         dev_err(nandc->dev,
1511                                 "failure submitting descs for command %d\n",
1512                                 command);
1513         }
1514
1515         free_descs(nandc);
1516
1517         post_command(host, command);
1518 }
1519
1520 /*
1521  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1522  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1523  *
1524  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1525  * but it notifies that it is an erased CW by placing special characters at
1526  * certain offsets in the buffer.
1527  *
1528  * verify if the page is erased or not, and fix up the page for RS ECC by
1529  * replacing the special characters with 0xff.
1530  */
1531 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1532 {
1533         u8 empty1, empty2;
1534
1535         /*
1536          * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1537          * is erased by looking for 0x54s at offsets 3 and 175 from the
1538          * beginning of each codeword
1539          */
1540
1541         empty1 = data_buf[3];
1542         empty2 = data_buf[175];
1543
1544         /*
1545          * if the erased codework markers, if they exist override them with
1546          * 0xffs
1547          */
1548         if ((empty1 == 0x54 && empty2 == 0xff) ||
1549             (empty1 == 0xff && empty2 == 0x54)) {
1550                 data_buf[3] = 0xff;
1551                 data_buf[175] = 0xff;
1552         }
1553
1554         /*
1555          * check if the entire chunk contains 0xffs or not. if it doesn't, then
1556          * restore the original values at the special offsets
1557          */
1558         if (memchr_inv(data_buf, 0xff, data_len)) {
1559                 data_buf[3] = empty1;
1560                 data_buf[175] = empty2;
1561
1562                 return false;
1563         }
1564
1565         return true;
1566 }
1567
1568 struct read_stats {
1569         __le32 flash;
1570         __le32 buffer;
1571         __le32 erased_cw;
1572 };
1573
1574 /* reads back FLASH_STATUS register set by the controller */
1575 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1576 {
1577         struct nand_chip *chip = &host->chip;
1578         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1579         int i;
1580
1581         nandc_read_buffer_sync(nandc, true);
1582
1583         for (i = 0; i < cw_cnt; i++) {
1584                 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1585
1586                 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1587                         return -EIO;
1588         }
1589
1590         return 0;
1591 }
1592
1593 /* performs raw read for one codeword */
1594 static int
1595 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1596                        u8 *data_buf, u8 *oob_buf, int page, int cw)
1597 {
1598         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1599         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1600         struct nand_ecc_ctrl *ecc = &chip->ecc;
1601         int data_size1, data_size2, oob_size1, oob_size2;
1602         int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1603
1604         nand_read_page_op(chip, page, 0, NULL, 0);
1605         host->use_ecc = false;
1606
1607         clear_bam_transaction(nandc);
1608         set_address(host, host->cw_size * cw, page);
1609         update_rw_regs(host, 1, true);
1610         config_nand_page_read(nandc);
1611
1612         data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1613         oob_size1 = host->bbm_size;
1614
1615         if (cw == (ecc->steps - 1)) {
1616                 data_size2 = ecc->size - data_size1 -
1617                              ((ecc->steps - 1) * 4);
1618                 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1619                             host->spare_bytes;
1620         } else {
1621                 data_size2 = host->cw_data - data_size1;
1622                 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1623         }
1624
1625         if (nandc->props->is_bam) {
1626                 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1627                 read_loc += data_size1;
1628
1629                 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1630                 read_loc += oob_size1;
1631
1632                 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1633                 read_loc += data_size2;
1634
1635                 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1636         }
1637
1638         config_nand_cw_read(nandc, false);
1639
1640         read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1641         reg_off += data_size1;
1642
1643         read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1644         reg_off += oob_size1;
1645
1646         read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1647         reg_off += data_size2;
1648
1649         read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1650
1651         ret = submit_descs(nandc);
1652         free_descs(nandc);
1653         if (ret) {
1654                 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1655                 return ret;
1656         }
1657
1658         return check_flash_errors(host, 1);
1659 }
1660
1661 /*
1662  * Bitflips can happen in erased codewords also so this function counts the
1663  * number of 0 in each CW for which ECC engine returns the uncorrectable
1664  * error. The page will be assumed as erased if this count is less than or
1665  * equal to the ecc->strength for each CW.
1666  *
1667  * 1. Both DATA and OOB need to be checked for number of 0. The
1668  *    top-level API can be called with only data buf or OOB buf so use
1669  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1670  *    is null for copying the raw bytes.
1671  * 2. Perform raw read for all the CW which has uncorrectable errors.
1672  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1673  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1674  *    the number of bitflips in this area.
1675  */
1676 static int
1677 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1678                       u8 *oob_buf, unsigned long uncorrectable_cws,
1679                       int page, unsigned int max_bitflips)
1680 {
1681         struct nand_chip *chip = &host->chip;
1682         struct mtd_info *mtd = nand_to_mtd(chip);
1683         struct nand_ecc_ctrl *ecc = &chip->ecc;
1684         u8 *cw_data_buf, *cw_oob_buf;
1685         int cw, data_size, oob_size, ret = 0;
1686
1687         if (!data_buf) {
1688                 data_buf = chip->data_buf;
1689                 chip->pagebuf = -1;
1690         }
1691
1692         if (!oob_buf) {
1693                 oob_buf = chip->oob_poi;
1694                 chip->pagebuf = -1;
1695         }
1696
1697         for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1698                 if (cw == (ecc->steps - 1)) {
1699                         data_size = ecc->size - ((ecc->steps - 1) * 4);
1700                         oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1701                 } else {
1702                         data_size = host->cw_data;
1703                         oob_size = host->ecc_bytes_hw;
1704                 }
1705
1706                 /* determine starting buffer address for current CW */
1707                 cw_data_buf = data_buf + (cw * host->cw_data);
1708                 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1709
1710                 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1711                                              cw_oob_buf, page, cw);
1712                 if (ret)
1713                         return ret;
1714
1715                 /*
1716                  * make sure it isn't an erased page reported
1717                  * as not-erased by HW because of a few bitflips
1718                  */
1719                 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1720                                                   cw_oob_buf + host->bbm_size,
1721                                                   oob_size, NULL,
1722                                                   0, ecc->strength);
1723                 if (ret < 0) {
1724                         mtd->ecc_stats.failed++;
1725                 } else {
1726                         mtd->ecc_stats.corrected += ret;
1727                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1728                 }
1729         }
1730
1731         return max_bitflips;
1732 }
1733
1734 /*
1735  * reads back status registers set by the controller to notify page read
1736  * errors. this is equivalent to what 'ecc->correct()' would do.
1737  */
1738 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1739                              u8 *oob_buf, int page)
1740 {
1741         struct nand_chip *chip = &host->chip;
1742         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1743         struct mtd_info *mtd = nand_to_mtd(chip);
1744         struct nand_ecc_ctrl *ecc = &chip->ecc;
1745         unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1746         struct read_stats *buf;
1747         bool flash_op_err = false, erased;
1748         int i;
1749         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1750
1751         buf = (struct read_stats *)nandc->reg_read_buf;
1752         nandc_read_buffer_sync(nandc, true);
1753
1754         for (i = 0; i < ecc->steps; i++, buf++) {
1755                 u32 flash, buffer, erased_cw;
1756                 int data_len, oob_len;
1757
1758                 if (i == (ecc->steps - 1)) {
1759                         data_len = ecc->size - ((ecc->steps - 1) << 2);
1760                         oob_len = ecc->steps << 2;
1761                 } else {
1762                         data_len = host->cw_data;
1763                         oob_len = 0;
1764                 }
1765
1766                 flash = le32_to_cpu(buf->flash);
1767                 buffer = le32_to_cpu(buf->buffer);
1768                 erased_cw = le32_to_cpu(buf->erased_cw);
1769
1770                 /*
1771                  * Check ECC failure for each codeword. ECC failure can
1772                  * happen in either of the following conditions
1773                  * 1. If number of bitflips are greater than ECC engine
1774                  *    capability.
1775                  * 2. If this codeword contains all 0xff for which erased
1776                  *    codeword detection check will be done.
1777                  */
1778                 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1779                         /*
1780                          * For BCH ECC, ignore erased codeword errors, if
1781                          * ERASED_CW bits are set.
1782                          */
1783                         if (host->bch_enabled) {
1784                                 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1785                                          true : false;
1786                         /*
1787                          * For RS ECC, HW reports the erased CW by placing
1788                          * special characters at certain offsets in the buffer.
1789                          * These special characters will be valid only if
1790                          * complete page is read i.e. data_buf is not NULL.
1791                          */
1792                         } else if (data_buf) {
1793                                 erased = erased_chunk_check_and_fixup(data_buf,
1794                                                                       data_len);
1795                         } else {
1796                                 erased = false;
1797                         }
1798
1799                         if (!erased)
1800                                 uncorrectable_cws |= BIT(i);
1801                 /*
1802                  * Check if MPU or any other operational error (timeout,
1803                  * device failure, etc.) happened for this codeword and
1804                  * make flash_op_err true. If flash_op_err is set, then
1805                  * EIO will be returned for page read.
1806                  */
1807                 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1808                         flash_op_err = true;
1809                 /*
1810                  * No ECC or operational errors happened. Check the number of
1811                  * bits corrected and update the ecc_stats.corrected.
1812                  */
1813                 } else {
1814                         unsigned int stat;
1815
1816                         stat = buffer & BS_CORRECTABLE_ERR_MSK;
1817                         mtd->ecc_stats.corrected += stat;
1818                         max_bitflips = max(max_bitflips, stat);
1819                 }
1820
1821                 if (data_buf)
1822                         data_buf += data_len;
1823                 if (oob_buf)
1824                         oob_buf += oob_len + ecc->bytes;
1825         }
1826
1827         if (flash_op_err)
1828                 return -EIO;
1829
1830         if (!uncorrectable_cws)
1831                 return max_bitflips;
1832
1833         return check_for_erased_page(host, data_buf_start, oob_buf_start,
1834                                      uncorrectable_cws, page,
1835                                      max_bitflips);
1836 }
1837
1838 /*
1839  * helper to perform the actual page read operation, used by ecc->read_page(),
1840  * ecc->read_oob()
1841  */
1842 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1843                          u8 *oob_buf, int page)
1844 {
1845         struct nand_chip *chip = &host->chip;
1846         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1847         struct nand_ecc_ctrl *ecc = &chip->ecc;
1848         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1849         int i, ret;
1850
1851         config_nand_page_read(nandc);
1852
1853         /* queue cmd descs for each codeword */
1854         for (i = 0; i < ecc->steps; i++) {
1855                 int data_size, oob_size;
1856
1857                 if (i == (ecc->steps - 1)) {
1858                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1859                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1860                                    host->spare_bytes;
1861                 } else {
1862                         data_size = host->cw_data;
1863                         oob_size = host->ecc_bytes_hw + host->spare_bytes;
1864                 }
1865
1866                 if (nandc->props->is_bam) {
1867                         if (data_buf && oob_buf) {
1868                                 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1869                                 nandc_set_read_loc(nandc, 1, data_size,
1870                                                    oob_size, 1);
1871                         } else if (data_buf) {
1872                                 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1873                         } else {
1874                                 nandc_set_read_loc(nandc, 0, data_size,
1875                                                    oob_size, 1);
1876                         }
1877                 }
1878
1879                 config_nand_cw_read(nandc, true);
1880
1881                 if (data_buf)
1882                         read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1883                                       data_size, 0);
1884
1885                 /*
1886                  * when ecc is enabled, the controller doesn't read the real
1887                  * or dummy bad block markers in each chunk. To maintain a
1888                  * consistent layout across RAW and ECC reads, we just
1889                  * leave the real/dummy BBM offsets empty (i.e, filled with
1890                  * 0xffs)
1891                  */
1892                 if (oob_buf) {
1893                         int j;
1894
1895                         for (j = 0; j < host->bbm_size; j++)
1896                                 *oob_buf++ = 0xff;
1897
1898                         read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1899                                       oob_buf, oob_size, 0);
1900                 }
1901
1902                 if (data_buf)
1903                         data_buf += data_size;
1904                 if (oob_buf)
1905                         oob_buf += oob_size;
1906         }
1907
1908         ret = submit_descs(nandc);
1909         free_descs(nandc);
1910
1911         if (ret) {
1912                 dev_err(nandc->dev, "failure to read page/oob\n");
1913                 return ret;
1914         }
1915
1916         return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1917 }
1918
1919 /*
1920  * a helper that copies the last step/codeword of a page (containing free oob)
1921  * into our local buffer
1922  */
1923 static int copy_last_cw(struct qcom_nand_host *host, int page)
1924 {
1925         struct nand_chip *chip = &host->chip;
1926         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1927         struct nand_ecc_ctrl *ecc = &chip->ecc;
1928         int size;
1929         int ret;
1930
1931         clear_read_regs(nandc);
1932
1933         size = host->use_ecc ? host->cw_data : host->cw_size;
1934
1935         /* prepare a clean read buffer */
1936         memset(nandc->data_buffer, 0xff, size);
1937
1938         set_address(host, host->cw_size * (ecc->steps - 1), page);
1939         update_rw_regs(host, 1, true);
1940
1941         config_nand_single_cw_page_read(nandc, host->use_ecc);
1942
1943         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1944
1945         ret = submit_descs(nandc);
1946         if (ret)
1947                 dev_err(nandc->dev, "failed to copy last codeword\n");
1948
1949         free_descs(nandc);
1950
1951         return ret;
1952 }
1953
1954 /* implements ecc->read_page() */
1955 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1956                                 uint8_t *buf, int oob_required, int page)
1957 {
1958         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1959         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1960         u8 *data_buf, *oob_buf = NULL;
1961
1962         nand_read_page_op(chip, page, 0, NULL, 0);
1963         data_buf = buf;
1964         oob_buf = oob_required ? chip->oob_poi : NULL;
1965
1966         clear_bam_transaction(nandc);
1967
1968         return read_page_ecc(host, data_buf, oob_buf, page);
1969 }
1970
1971 /* implements ecc->read_page_raw() */
1972 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1973                                     struct nand_chip *chip, uint8_t *buf,
1974                                     int oob_required, int page)
1975 {
1976         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1977         struct nand_ecc_ctrl *ecc = &chip->ecc;
1978         int cw, ret;
1979         u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1980
1981         for (cw = 0; cw < ecc->steps; cw++) {
1982                 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1983                                              page, cw);
1984                 if (ret)
1985                         return ret;
1986
1987                 data_buf += host->cw_data;
1988                 oob_buf += ecc->bytes;
1989         }
1990
1991         return 0;
1992 }
1993
1994 /* implements ecc->read_oob() */
1995 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1996                                int page)
1997 {
1998         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1999         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2000         struct nand_ecc_ctrl *ecc = &chip->ecc;
2001
2002         clear_read_regs(nandc);
2003         clear_bam_transaction(nandc);
2004
2005         host->use_ecc = true;
2006         set_address(host, 0, page);
2007         update_rw_regs(host, ecc->steps, true);
2008
2009         return read_page_ecc(host, NULL, chip->oob_poi, page);
2010 }
2011
2012 /* implements ecc->write_page() */
2013 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2014                                  const uint8_t *buf, int oob_required, int page)
2015 {
2016         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2017         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2018         struct nand_ecc_ctrl *ecc = &chip->ecc;
2019         u8 *data_buf, *oob_buf;
2020         int i, ret;
2021
2022         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2023
2024         clear_read_regs(nandc);
2025         clear_bam_transaction(nandc);
2026
2027         data_buf = (u8 *)buf;
2028         oob_buf = chip->oob_poi;
2029
2030         host->use_ecc = true;
2031         update_rw_regs(host, ecc->steps, false);
2032         config_nand_page_write(nandc);
2033
2034         for (i = 0; i < ecc->steps; i++) {
2035                 int data_size, oob_size;
2036
2037                 if (i == (ecc->steps - 1)) {
2038                         data_size = ecc->size - ((ecc->steps - 1) << 2);
2039                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2040                                    host->spare_bytes;
2041                 } else {
2042                         data_size = host->cw_data;
2043                         oob_size = ecc->bytes;
2044                 }
2045
2046
2047                 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2048                                i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2049
2050                 /*
2051                  * when ECC is enabled, we don't really need to write anything
2052                  * to oob for the first n - 1 codewords since these oob regions
2053                  * just contain ECC bytes that's written by the controller
2054                  * itself. For the last codeword, we skip the bbm positions and
2055                  * write to the free oob area.
2056                  */
2057                 if (i == (ecc->steps - 1)) {
2058                         oob_buf += host->bbm_size;
2059
2060                         write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2061                                        oob_buf, oob_size, 0);
2062                 }
2063
2064                 config_nand_cw_write(nandc);
2065
2066                 data_buf += data_size;
2067                 oob_buf += oob_size;
2068         }
2069
2070         ret = submit_descs(nandc);
2071         if (ret)
2072                 dev_err(nandc->dev, "failure to write page\n");
2073
2074         free_descs(nandc);
2075
2076         if (!ret)
2077                 ret = nand_prog_page_end_op(chip);
2078
2079         return ret;
2080 }
2081
2082 /* implements ecc->write_page_raw() */
2083 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
2084                                      struct nand_chip *chip, const uint8_t *buf,
2085                                      int oob_required, int page)
2086 {
2087         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2088         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2089         struct nand_ecc_ctrl *ecc = &chip->ecc;
2090         u8 *data_buf, *oob_buf;
2091         int i, ret;
2092
2093         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2094         clear_read_regs(nandc);
2095         clear_bam_transaction(nandc);
2096
2097         data_buf = (u8 *)buf;
2098         oob_buf = chip->oob_poi;
2099
2100         host->use_ecc = false;
2101         update_rw_regs(host, ecc->steps, false);
2102         config_nand_page_write(nandc);
2103
2104         for (i = 0; i < ecc->steps; i++) {
2105                 int data_size1, data_size2, oob_size1, oob_size2;
2106                 int reg_off = FLASH_BUF_ACC;
2107
2108                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2109                 oob_size1 = host->bbm_size;
2110
2111                 if (i == (ecc->steps - 1)) {
2112                         data_size2 = ecc->size - data_size1 -
2113                                      ((ecc->steps - 1) << 2);
2114                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2115                                     host->spare_bytes;
2116                 } else {
2117                         data_size2 = host->cw_data - data_size1;
2118                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2119                 }
2120
2121                 write_data_dma(nandc, reg_off, data_buf, data_size1,
2122                                NAND_BAM_NO_EOT);
2123                 reg_off += data_size1;
2124                 data_buf += data_size1;
2125
2126                 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2127                                NAND_BAM_NO_EOT);
2128                 reg_off += oob_size1;
2129                 oob_buf += oob_size1;
2130
2131                 write_data_dma(nandc, reg_off, data_buf, data_size2,
2132                                NAND_BAM_NO_EOT);
2133                 reg_off += data_size2;
2134                 data_buf += data_size2;
2135
2136                 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2137                 oob_buf += oob_size2;
2138
2139                 config_nand_cw_write(nandc);
2140         }
2141
2142         ret = submit_descs(nandc);
2143         if (ret)
2144                 dev_err(nandc->dev, "failure to write raw page\n");
2145
2146         free_descs(nandc);
2147
2148         if (!ret)
2149                 ret = nand_prog_page_end_op(chip);
2150
2151         return ret;
2152 }
2153
2154 /*
2155  * implements ecc->write_oob()
2156  *
2157  * the NAND controller cannot write only data or only OOB within a codeword
2158  * since ECC is calculated for the combined codeword. So update the OOB from
2159  * chip->oob_poi, and pad the data area with OxFF before writing.
2160  */
2161 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2162                                 int page)
2163 {
2164         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2165         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2166         struct nand_ecc_ctrl *ecc = &chip->ecc;
2167         u8 *oob = chip->oob_poi;
2168         int data_size, oob_size;
2169         int ret;
2170
2171         host->use_ecc = true;
2172         clear_bam_transaction(nandc);
2173
2174         /* calculate the data and oob size for the last codeword/step */
2175         data_size = ecc->size - ((ecc->steps - 1) << 2);
2176         oob_size = mtd->oobavail;
2177
2178         memset(nandc->data_buffer, 0xff, host->cw_data);
2179         /* override new oob content to last codeword */
2180         mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2181                                     0, mtd->oobavail);
2182
2183         set_address(host, host->cw_size * (ecc->steps - 1), page);
2184         update_rw_regs(host, 1, false);
2185
2186         config_nand_page_write(nandc);
2187         write_data_dma(nandc, FLASH_BUF_ACC,
2188                        nandc->data_buffer, data_size + oob_size, 0);
2189         config_nand_cw_write(nandc);
2190
2191         ret = submit_descs(nandc);
2192
2193         free_descs(nandc);
2194
2195         if (ret) {
2196                 dev_err(nandc->dev, "failure to write oob\n");
2197                 return -EIO;
2198         }
2199
2200         return nand_prog_page_end_op(chip);
2201 }
2202
2203 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2204 {
2205         struct nand_chip *chip = mtd_to_nand(mtd);
2206         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2207         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2208         struct nand_ecc_ctrl *ecc = &chip->ecc;
2209         int page, ret, bbpos, bad = 0;
2210
2211         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2212
2213         /*
2214          * configure registers for a raw sub page read, the address is set to
2215          * the beginning of the last codeword, we don't care about reading ecc
2216          * portion of oob. we just want the first few bytes from this codeword
2217          * that contains the BBM
2218          */
2219         host->use_ecc = false;
2220
2221         clear_bam_transaction(nandc);
2222         ret = copy_last_cw(host, page);
2223         if (ret)
2224                 goto err;
2225
2226         if (check_flash_errors(host, 1)) {
2227                 dev_warn(nandc->dev, "error when trying to read BBM\n");
2228                 goto err;
2229         }
2230
2231         bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2232
2233         bad = nandc->data_buffer[bbpos] != 0xff;
2234
2235         if (chip->options & NAND_BUSWIDTH_16)
2236                 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2237 err:
2238         return bad;
2239 }
2240
2241 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2242 {
2243         struct nand_chip *chip = mtd_to_nand(mtd);
2244         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2245         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2246         struct nand_ecc_ctrl *ecc = &chip->ecc;
2247         int page, ret;
2248
2249         clear_read_regs(nandc);
2250         clear_bam_transaction(nandc);
2251
2252         /*
2253          * to mark the BBM as bad, we flash the entire last codeword with 0s.
2254          * we don't care about the rest of the content in the codeword since
2255          * we aren't going to use this block again
2256          */
2257         memset(nandc->data_buffer, 0x00, host->cw_size);
2258
2259         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2260
2261         /* prepare write */
2262         host->use_ecc = false;
2263         set_address(host, host->cw_size * (ecc->steps - 1), page);
2264         update_rw_regs(host, 1, false);
2265
2266         config_nand_page_write(nandc);
2267         write_data_dma(nandc, FLASH_BUF_ACC,
2268                        nandc->data_buffer, host->cw_size, 0);
2269         config_nand_cw_write(nandc);
2270
2271         ret = submit_descs(nandc);
2272
2273         free_descs(nandc);
2274
2275         if (ret) {
2276                 dev_err(nandc->dev, "failure to update BBM\n");
2277                 return -EIO;
2278         }
2279
2280         return nand_prog_page_end_op(chip);
2281 }
2282
2283 /*
2284  * the three functions below implement chip->read_byte(), chip->read_buf()
2285  * and chip->write_buf() respectively. these aren't used for
2286  * reading/writing page data, they are used for smaller data like reading
2287  * id, status etc
2288  */
2289 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2290 {
2291         struct nand_chip *chip = mtd_to_nand(mtd);
2292         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2293         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2294         u8 *buf = nandc->data_buffer;
2295         u8 ret = 0x0;
2296
2297         if (host->last_command == NAND_CMD_STATUS) {
2298                 ret = host->status;
2299
2300                 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2301
2302                 return ret;
2303         }
2304
2305         if (nandc->buf_start < nandc->buf_count)
2306                 ret = buf[nandc->buf_start++];
2307
2308         return ret;
2309 }
2310
2311 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2312 {
2313         struct nand_chip *chip = mtd_to_nand(mtd);
2314         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2315         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2316
2317         memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2318         nandc->buf_start += real_len;
2319 }
2320
2321 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2322                                  int len)
2323 {
2324         struct nand_chip *chip = mtd_to_nand(mtd);
2325         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2326         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2327
2328         memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2329
2330         nandc->buf_start += real_len;
2331 }
2332
2333 /* we support only one external chip for now */
2334 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2335 {
2336         struct nand_chip *chip = mtd_to_nand(mtd);
2337         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2338
2339         if (chipnr <= 0)
2340                 return;
2341
2342         dev_warn(nandc->dev, "invalid chip select\n");
2343 }
2344
2345 /*
2346  * NAND controller page layout info
2347  *
2348  * Layout with ECC enabled:
2349  *
2350  * |----------------------|  |---------------------------------|
2351  * |           xx.......yy|  |             *********xx.......yy|
2352  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2353  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2354  * |           xx.......yy|  |             *********xx.......yy|
2355  * |----------------------|  |---------------------------------|
2356  *     codeword 1,2..n-1                  codeword n
2357  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2358  *
2359  * n = Number of codewords in the page
2360  * . = ECC bytes
2361  * * = Spare/free bytes
2362  * x = Unused byte(s)
2363  * y = Reserved byte(s)
2364  *
2365  * 2K page: n = 4, spare = 16 bytes
2366  * 4K page: n = 8, spare = 32 bytes
2367  * 8K page: n = 16, spare = 64 bytes
2368  *
2369  * the qcom nand controller operates at a sub page/codeword level. each
2370  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2371  * the number of ECC bytes vary based on the ECC strength and the bus width.
2372  *
2373  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2374  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2375  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2376  *
2377  * When we access a page with ECC enabled, the reserved bytes(s) are not
2378  * accessible at all. When reading, we fill up these unreadable positions
2379  * with 0xffs. When writing, the controller skips writing the inaccessible
2380  * bytes.
2381  *
2382  * Layout with ECC disabled:
2383  *
2384  * |------------------------------|  |---------------------------------------|
2385  * |         yy          xx.......|  |         bb          *********xx.......|
2386  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2387  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2388  * |         yy          xx.......|  |         bb          *********xx.......|
2389  * |------------------------------|  |---------------------------------------|
2390  *         codeword 1,2..n-1                        codeword n
2391  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2392  *
2393  * n = Number of codewords in the page
2394  * . = ECC bytes
2395  * * = Spare/free bytes
2396  * x = Unused byte(s)
2397  * y = Dummy Bad Bock byte(s)
2398  * b = Real Bad Block byte(s)
2399  * size1/size2 = function of codeword size and 'n'
2400  *
2401  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2402  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2403  * Block Markers. In the last codeword, this position contains the real BBM
2404  *
2405  * In order to have a consistent layout between RAW and ECC modes, we assume
2406  * the following OOB layout arrangement:
2407  *
2408  * |-----------|  |--------------------|
2409  * |yyxx.......|  |bb*********xx.......|
2410  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2411  * |yyxx.......|  |bb*********xx.......|
2412  * |yyxx.......|  |bb*********xx.......|
2413  * |-----------|  |--------------------|
2414  *  first n - 1       nth OOB region
2415  *  OOB regions
2416  *
2417  * n = Number of codewords in the page
2418  * . = ECC bytes
2419  * * = FREE OOB bytes
2420  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2421  * x = Unused byte(s)
2422  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2423  *
2424  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2425  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2426  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2427  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2428  * the sum of the three).
2429  */
2430 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2431                                    struct mtd_oob_region *oobregion)
2432 {
2433         struct nand_chip *chip = mtd_to_nand(mtd);
2434         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2435         struct nand_ecc_ctrl *ecc = &chip->ecc;
2436
2437         if (section > 1)
2438                 return -ERANGE;
2439
2440         if (!section) {
2441                 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2442                                     host->bbm_size;
2443                 oobregion->offset = 0;
2444         } else {
2445                 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2446                 oobregion->offset = mtd->oobsize - oobregion->length;
2447         }
2448
2449         return 0;
2450 }
2451
2452 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2453                                      struct mtd_oob_region *oobregion)
2454 {
2455         struct nand_chip *chip = mtd_to_nand(mtd);
2456         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2457         struct nand_ecc_ctrl *ecc = &chip->ecc;
2458
2459         if (section)
2460                 return -ERANGE;
2461
2462         oobregion->length = ecc->steps * 4;
2463         oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2464
2465         return 0;
2466 }
2467
2468 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2469         .ecc = qcom_nand_ooblayout_ecc,
2470         .free = qcom_nand_ooblayout_free,
2471 };
2472
2473 static int
2474 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2475 {
2476         return strength == 4 ? 12 : 16;
2477 }
2478 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2479                      NANDC_STEP_SIZE, 4, 8);
2480
2481 static int qcom_nand_attach_chip(struct nand_chip *chip)
2482 {
2483         struct mtd_info *mtd = nand_to_mtd(chip);
2484         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2485         struct nand_ecc_ctrl *ecc = &chip->ecc;
2486         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2487         int cwperpage, bad_block_byte, ret;
2488         bool wide_bus;
2489         int ecc_mode = 1;
2490
2491         /* controller only supports 512 bytes data steps */
2492         ecc->size = NANDC_STEP_SIZE;
2493         wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2494         cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2495
2496         /*
2497          * Each CW has 4 available OOB bytes which will be protected with ECC
2498          * so remaining bytes can be used for ECC.
2499          */
2500         ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2501                                    mtd->oobsize - (cwperpage * 4));
2502         if (ret) {
2503                 dev_err(nandc->dev, "No valid ECC settings possible\n");
2504                 return ret;
2505         }
2506
2507         if (ecc->strength >= 8) {
2508                 /* 8 bit ECC defaults to BCH ECC on all platforms */
2509                 host->bch_enabled = true;
2510                 ecc_mode = 1;
2511
2512                 if (wide_bus) {
2513                         host->ecc_bytes_hw = 14;
2514                         host->spare_bytes = 0;
2515                         host->bbm_size = 2;
2516                 } else {
2517                         host->ecc_bytes_hw = 13;
2518                         host->spare_bytes = 2;
2519                         host->bbm_size = 1;
2520                 }
2521         } else {
2522                 /*
2523                  * if the controller supports BCH for 4 bit ECC, the controller
2524                  * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2525                  * always 10 bytes
2526                  */
2527                 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2528                         /* BCH */
2529                         host->bch_enabled = true;
2530                         ecc_mode = 0;
2531
2532                         if (wide_bus) {
2533                                 host->ecc_bytes_hw = 8;
2534                                 host->spare_bytes = 2;
2535                                 host->bbm_size = 2;
2536                         } else {
2537                                 host->ecc_bytes_hw = 7;
2538                                 host->spare_bytes = 4;
2539                                 host->bbm_size = 1;
2540                         }
2541                 } else {
2542                         /* RS */
2543                         host->ecc_bytes_hw = 10;
2544
2545                         if (wide_bus) {
2546                                 host->spare_bytes = 0;
2547                                 host->bbm_size = 2;
2548                         } else {
2549                                 host->spare_bytes = 1;
2550                                 host->bbm_size = 1;
2551                         }
2552                 }
2553         }
2554
2555         /*
2556          * we consider ecc->bytes as the sum of all the non-data content in a
2557          * step. It gives us a clean representation of the oob area (even if
2558          * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2559          * ECC and 12 bytes for 4 bit ECC
2560          */
2561         ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2562
2563         ecc->read_page          = qcom_nandc_read_page;
2564         ecc->read_page_raw      = qcom_nandc_read_page_raw;
2565         ecc->read_oob           = qcom_nandc_read_oob;
2566         ecc->write_page         = qcom_nandc_write_page;
2567         ecc->write_page_raw     = qcom_nandc_write_page_raw;
2568         ecc->write_oob          = qcom_nandc_write_oob;
2569
2570         ecc->mode = NAND_ECC_HW;
2571
2572         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2573
2574         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2575                                      cwperpage);
2576
2577         /*
2578          * DATA_UD_BYTES varies based on whether the read/write command protects
2579          * spare data with ECC too. We protect spare data by default, so we set
2580          * it to main + spare data, which are 512 and 4 bytes respectively.
2581          */
2582         host->cw_data = 516;
2583
2584         /*
2585          * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2586          * for 8 bit ECC
2587          */
2588         host->cw_size = host->cw_data + ecc->bytes;
2589         bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2590
2591         host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2592                                 | host->cw_data << UD_SIZE_BYTES
2593                                 | 0 << DISABLE_STATUS_AFTER_WRITE
2594                                 | 5 << NUM_ADDR_CYCLES
2595                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2596                                 | 0 << STATUS_BFR_READ
2597                                 | 1 << SET_RD_MODE_AFTER_STATUS
2598                                 | host->spare_bytes << SPARE_SIZE_BYTES;
2599
2600         host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2601                                 | 0 <<  CS_ACTIVE_BSY
2602                                 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2603                                 | 0 << BAD_BLOCK_IN_SPARE_AREA
2604                                 | 2 << WR_RD_BSY_GAP
2605                                 | wide_bus << WIDE_FLASH
2606                                 | host->bch_enabled << ENABLE_BCH_ECC;
2607
2608         host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2609                                 | host->cw_size << UD_SIZE_BYTES
2610                                 | 5 << NUM_ADDR_CYCLES
2611                                 | 0 << SPARE_SIZE_BYTES;
2612
2613         host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2614                                 | 0 << CS_ACTIVE_BSY
2615                                 | 17 << BAD_BLOCK_BYTE_NUM
2616                                 | 1 << BAD_BLOCK_IN_SPARE_AREA
2617                                 | 2 << WR_RD_BSY_GAP
2618                                 | wide_bus << WIDE_FLASH
2619                                 | 1 << DEV0_CFG1_ECC_DISABLE;
2620
2621         host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2622                                 | 0 << ECC_SW_RESET
2623                                 | host->cw_data << ECC_NUM_DATA_BYTES
2624                                 | 1 << ECC_FORCE_CLK_OPEN
2625                                 | ecc_mode << ECC_MODE
2626                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2627
2628         host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2629
2630         host->clrflashstatus = FS_READY_BSY_N;
2631         host->clrreadstatus = 0xc0;
2632         nandc->regs->erased_cw_detect_cfg_clr =
2633                 cpu_to_le32(CLR_ERASED_PAGE_DET);
2634         nandc->regs->erased_cw_detect_cfg_set =
2635                 cpu_to_le32(SET_ERASED_PAGE_DET);
2636
2637         dev_dbg(nandc->dev,
2638                 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2639                 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2640                 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2641                 cwperpage);
2642
2643         return 0;
2644 }
2645
2646 static const struct nand_controller_ops qcom_nandc_ops = {
2647         .attach_chip = qcom_nand_attach_chip,
2648 };
2649
2650 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2651 {
2652         int ret;
2653
2654         ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2655         if (ret) {
2656                 dev_err(nandc->dev, "failed to set DMA mask\n");
2657                 return ret;
2658         }
2659
2660         /*
2661          * we use the internal buffer for reading ONFI params, reading small
2662          * data like ID and status, and preforming read-copy-write operations
2663          * when writing to a codeword partially. 532 is the maximum possible
2664          * size of a codeword for our nand controller
2665          */
2666         nandc->buf_size = 532;
2667
2668         nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2669                                         GFP_KERNEL);
2670         if (!nandc->data_buffer)
2671                 return -ENOMEM;
2672
2673         nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2674                                         GFP_KERNEL);
2675         if (!nandc->regs)
2676                 return -ENOMEM;
2677
2678         nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2679                                 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2680                                 GFP_KERNEL);
2681         if (!nandc->reg_read_buf)
2682                 return -ENOMEM;
2683
2684         if (nandc->props->is_bam) {
2685                 nandc->reg_read_dma =
2686                         dma_map_single(nandc->dev, nandc->reg_read_buf,
2687                                        MAX_REG_RD *
2688                                        sizeof(*nandc->reg_read_buf),
2689                                        DMA_FROM_DEVICE);
2690                 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2691                         dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2692                         return -EIO;
2693                 }
2694
2695                 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2696                 if (!nandc->tx_chan) {
2697                         dev_err(nandc->dev, "failed to request tx channel\n");
2698                         return -ENODEV;
2699                 }
2700
2701                 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2702                 if (!nandc->rx_chan) {
2703                         dev_err(nandc->dev, "failed to request rx channel\n");
2704                         return -ENODEV;
2705                 }
2706
2707                 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2708                 if (!nandc->cmd_chan) {
2709                         dev_err(nandc->dev, "failed to request cmd channel\n");
2710                         return -ENODEV;
2711                 }
2712
2713                 /*
2714                  * Initially allocate BAM transaction to read ONFI param page.
2715                  * After detecting all the devices, this BAM transaction will
2716                  * be freed and the next BAM tranasction will be allocated with
2717                  * maximum codeword size
2718                  */
2719                 nandc->max_cwperpage = 1;
2720                 nandc->bam_txn = alloc_bam_transaction(nandc);
2721                 if (!nandc->bam_txn) {
2722                         dev_err(nandc->dev,
2723                                 "failed to allocate bam transaction\n");
2724                         return -ENOMEM;
2725                 }
2726         } else {
2727                 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2728                 if (!nandc->chan) {
2729                         dev_err(nandc->dev,
2730                                 "failed to request slave channel\n");
2731                         return -ENODEV;
2732                 }
2733         }
2734
2735         INIT_LIST_HEAD(&nandc->desc_list);
2736         INIT_LIST_HEAD(&nandc->host_list);
2737
2738         nand_controller_init(&nandc->controller);
2739         nandc->controller.ops = &qcom_nandc_ops;
2740
2741         return 0;
2742 }
2743
2744 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2745 {
2746         if (nandc->props->is_bam) {
2747                 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2748                         dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2749                                          MAX_REG_RD *
2750                                          sizeof(*nandc->reg_read_buf),
2751                                          DMA_FROM_DEVICE);
2752
2753                 if (nandc->tx_chan)
2754                         dma_release_channel(nandc->tx_chan);
2755
2756                 if (nandc->rx_chan)
2757                         dma_release_channel(nandc->rx_chan);
2758
2759                 if (nandc->cmd_chan)
2760                         dma_release_channel(nandc->cmd_chan);
2761         } else {
2762                 if (nandc->chan)
2763                         dma_release_channel(nandc->chan);
2764         }
2765 }
2766
2767 /* one time setup of a few nand controller registers */
2768 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2769 {
2770         u32 nand_ctrl;
2771
2772         /* kill onenand */
2773         if (!nandc->props->is_qpic)
2774                 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2775         nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2776                     NAND_DEV_CMD_VLD_VAL);
2777
2778         /* enable ADM or BAM DMA */
2779         if (nandc->props->is_bam) {
2780                 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2781                 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2782         } else {
2783                 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2784         }
2785
2786         /* save the original values of these registers */
2787         nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2788         nandc->vld = NAND_DEV_CMD_VLD_VAL;
2789
2790         return 0;
2791 }
2792
2793 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2794                                             struct qcom_nand_host *host,
2795                                             struct device_node *dn)
2796 {
2797         struct nand_chip *chip = &host->chip;
2798         struct mtd_info *mtd = nand_to_mtd(chip);
2799         struct device *dev = nandc->dev;
2800         int ret;
2801
2802         ret = of_property_read_u32(dn, "reg", &host->cs);
2803         if (ret) {
2804                 dev_err(dev, "can't get chip-select\n");
2805                 return -ENXIO;
2806         }
2807
2808         nand_set_flash_node(chip, dn);
2809         mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2810         if (!mtd->name)
2811                 return -ENOMEM;
2812
2813         mtd->owner = THIS_MODULE;
2814         mtd->dev.parent = dev;
2815
2816         chip->cmdfunc           = qcom_nandc_command;
2817         chip->select_chip       = qcom_nandc_select_chip;
2818         chip->read_byte         = qcom_nandc_read_byte;
2819         chip->read_buf          = qcom_nandc_read_buf;
2820         chip->write_buf         = qcom_nandc_write_buf;
2821         chip->set_features      = nand_get_set_features_notsupp;
2822         chip->get_features      = nand_get_set_features_notsupp;
2823
2824         /*
2825          * the bad block marker is readable only when we read the last codeword
2826          * of a page with ECC disabled. currently, the nand_base and nand_bbt
2827          * helpers don't allow us to read BB from a nand chip with ECC
2828          * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2829          * and block_markbad helpers until we permanently switch to using
2830          * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2831          */
2832         chip->block_bad         = qcom_nandc_block_bad;
2833         chip->block_markbad     = qcom_nandc_block_markbad;
2834
2835         chip->controller = &nandc->controller;
2836         chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2837                          NAND_SKIP_BBTSCAN;
2838
2839         /* set up initial status value */
2840         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2841
2842         ret = nand_scan(chip, 1);
2843         if (ret)
2844                 return ret;
2845
2846         if (nandc->props->is_bam) {
2847                 free_bam_transaction(nandc);
2848                 nandc->bam_txn = alloc_bam_transaction(nandc);
2849                 if (!nandc->bam_txn) {
2850                         dev_err(nandc->dev,
2851                                 "failed to allocate bam transaction\n");
2852                         return -ENOMEM;
2853                 }
2854         }
2855
2856         ret = mtd_device_register(mtd, NULL, 0);
2857         if (ret)
2858                 nand_cleanup(chip);
2859
2860         return ret;
2861 }
2862
2863 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2864 {
2865         struct device *dev = nandc->dev;
2866         struct device_node *dn = dev->of_node, *child;
2867         struct qcom_nand_host *host;
2868         int ret = -ENODEV;
2869
2870         for_each_available_child_of_node(dn, child) {
2871                 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2872                 if (!host) {
2873                         of_node_put(child);
2874                         return -ENOMEM;
2875                 }
2876
2877                 ret = qcom_nand_host_init_and_register(nandc, host, child);
2878                 if (ret) {
2879                         devm_kfree(dev, host);
2880                         continue;
2881                 }
2882
2883                 list_add_tail(&host->node, &nandc->host_list);
2884         }
2885
2886         return ret;
2887 }
2888
2889 /* parse custom DT properties here */
2890 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2891 {
2892         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2893         struct device_node *np = nandc->dev->of_node;
2894         int ret;
2895
2896         if (!nandc->props->is_bam) {
2897                 ret = of_property_read_u32(np, "qcom,cmd-crci",
2898                                            &nandc->cmd_crci);
2899                 if (ret) {
2900                         dev_err(nandc->dev, "command CRCI unspecified\n");
2901                         return ret;
2902                 }
2903
2904                 ret = of_property_read_u32(np, "qcom,data-crci",
2905                                            &nandc->data_crci);
2906                 if (ret) {
2907                         dev_err(nandc->dev, "data CRCI unspecified\n");
2908                         return ret;
2909                 }
2910         }
2911
2912         return 0;
2913 }
2914
2915 static int qcom_nandc_probe(struct platform_device *pdev)
2916 {
2917         struct qcom_nand_controller *nandc;
2918         const void *dev_data;
2919         struct device *dev = &pdev->dev;
2920         struct resource *res;
2921         int ret;
2922
2923         nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2924         if (!nandc)
2925                 return -ENOMEM;
2926
2927         platform_set_drvdata(pdev, nandc);
2928         nandc->dev = dev;
2929
2930         dev_data = of_device_get_match_data(dev);
2931         if (!dev_data) {
2932                 dev_err(&pdev->dev, "failed to get device data\n");
2933                 return -ENODEV;
2934         }
2935
2936         nandc->props = dev_data;
2937
2938         nandc->core_clk = devm_clk_get(dev, "core");
2939         if (IS_ERR(nandc->core_clk))
2940                 return PTR_ERR(nandc->core_clk);
2941
2942         nandc->aon_clk = devm_clk_get(dev, "aon");
2943         if (IS_ERR(nandc->aon_clk))
2944                 return PTR_ERR(nandc->aon_clk);
2945
2946         ret = qcom_nandc_parse_dt(pdev);
2947         if (ret)
2948                 return ret;
2949
2950         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2951         nandc->base = devm_ioremap_resource(dev, res);
2952         if (IS_ERR(nandc->base))
2953                 return PTR_ERR(nandc->base);
2954
2955         nandc->base_phys = res->start;
2956         nandc->base_dma = dma_map_resource(dev, res->start,
2957                                            resource_size(res),
2958                                            DMA_BIDIRECTIONAL, 0);
2959         if (!nandc->base_dma)
2960                 return -ENXIO;
2961
2962         ret = qcom_nandc_alloc(nandc);
2963         if (ret)
2964                 goto err_nandc_alloc;
2965
2966         ret = clk_prepare_enable(nandc->core_clk);
2967         if (ret)
2968                 goto err_core_clk;
2969
2970         ret = clk_prepare_enable(nandc->aon_clk);
2971         if (ret)
2972                 goto err_aon_clk;
2973
2974         ret = qcom_nandc_setup(nandc);
2975         if (ret)
2976                 goto err_setup;
2977
2978         ret = qcom_probe_nand_devices(nandc);
2979         if (ret)
2980                 goto err_setup;
2981
2982         return 0;
2983
2984 err_setup:
2985         clk_disable_unprepare(nandc->aon_clk);
2986 err_aon_clk:
2987         clk_disable_unprepare(nandc->core_clk);
2988 err_core_clk:
2989         qcom_nandc_unalloc(nandc);
2990 err_nandc_alloc:
2991         dma_unmap_resource(dev, res->start, resource_size(res),
2992                            DMA_BIDIRECTIONAL, 0);
2993
2994         return ret;
2995 }
2996
2997 static int qcom_nandc_remove(struct platform_device *pdev)
2998 {
2999         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3000         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3001         struct qcom_nand_host *host;
3002
3003         list_for_each_entry(host, &nandc->host_list, node)
3004                 nand_release(&host->chip);
3005
3006
3007         qcom_nandc_unalloc(nandc);
3008
3009         clk_disable_unprepare(nandc->aon_clk);
3010         clk_disable_unprepare(nandc->core_clk);
3011
3012         dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3013                            DMA_BIDIRECTIONAL, 0);
3014
3015         return 0;
3016 }
3017
3018 static const struct qcom_nandc_props ipq806x_nandc_props = {
3019         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3020         .is_bam = false,
3021         .dev_cmd_reg_start = 0x0,
3022 };
3023
3024 static const struct qcom_nandc_props ipq4019_nandc_props = {
3025         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3026         .is_bam = true,
3027         .is_qpic = true,
3028         .dev_cmd_reg_start = 0x0,
3029 };
3030
3031 static const struct qcom_nandc_props ipq8074_nandc_props = {
3032         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3033         .is_bam = true,
3034         .is_qpic = true,
3035         .dev_cmd_reg_start = 0x7000,
3036 };
3037
3038 /*
3039  * data will hold a struct pointer containing more differences once we support
3040  * more controller variants
3041  */
3042 static const struct of_device_id qcom_nandc_of_match[] = {
3043         {
3044                 .compatible = "qcom,ipq806x-nand",
3045                 .data = &ipq806x_nandc_props,
3046         },
3047         {
3048                 .compatible = "qcom,ipq4019-nand",
3049                 .data = &ipq4019_nandc_props,
3050         },
3051         {
3052                 .compatible = "qcom,ipq8074-nand",
3053                 .data = &ipq8074_nandc_props,
3054         },
3055         {}
3056 };
3057 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3058
3059 static struct platform_driver qcom_nandc_driver = {
3060         .driver = {
3061                 .name = "qcom-nandc",
3062                 .of_match_table = qcom_nandc_of_match,
3063         },
3064         .probe   = qcom_nandc_probe,
3065         .remove  = qcom_nandc_remove,
3066 };
3067 module_platform_driver(qcom_nandc_driver);
3068
3069 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3070 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3071 MODULE_LICENSE("GPL v2");