GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / mtd / nand / raw / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/rawnand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
31
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
34
35 #define DRIVER_NAME     "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS    5000
37
38 #define NAND_Ecc_P1e            (1 << 0)
39 #define NAND_Ecc_P2e            (1 << 1)
40 #define NAND_Ecc_P4e            (1 << 2)
41 #define NAND_Ecc_P8e            (1 << 3)
42 #define NAND_Ecc_P16e           (1 << 4)
43 #define NAND_Ecc_P32e           (1 << 5)
44 #define NAND_Ecc_P64e           (1 << 6)
45 #define NAND_Ecc_P128e          (1 << 7)
46 #define NAND_Ecc_P256e          (1 << 8)
47 #define NAND_Ecc_P512e          (1 << 9)
48 #define NAND_Ecc_P1024e         (1 << 10)
49 #define NAND_Ecc_P2048e         (1 << 11)
50
51 #define NAND_Ecc_P1o            (1 << 16)
52 #define NAND_Ecc_P2o            (1 << 17)
53 #define NAND_Ecc_P4o            (1 << 18)
54 #define NAND_Ecc_P8o            (1 << 19)
55 #define NAND_Ecc_P16o           (1 << 20)
56 #define NAND_Ecc_P32o           (1 << 21)
57 #define NAND_Ecc_P64o           (1 << 22)
58 #define NAND_Ecc_P128o          (1 << 23)
59 #define NAND_Ecc_P256o          (1 << 24)
60 #define NAND_Ecc_P512o          (1 << 25)
61 #define NAND_Ecc_P1024o         (1 << 26)
62 #define NAND_Ecc_P2048o         (1 << 27)
63
64 #define TF(value)       (value ? 1 : 0)
65
66 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
67 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
68 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
69 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
70 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
71 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
72 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
73 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
74
75 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
76 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
77 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
78 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
79 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
80 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
81 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
82 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
83
84 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
85 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
86 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
87 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
88 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
89 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
90 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
91 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
92
93 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
94 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
95 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
96 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
97 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
98 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
99 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
100 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
101
102 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
103 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
104
105 #define PREFETCH_CONFIG1_CS_SHIFT       24
106 #define ECC_CONFIG_CS_SHIFT             1
107 #define CS_MASK                         0x7
108 #define ENABLE_PREFETCH                 (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT              2
110 #define ECCSIZE0_SHIFT                  12
111 #define ECCSIZE1_SHIFT                  22
112 #define ECC1RESULTSIZE                  0x1
113 #define ECCCLEAR                        0x100
114 #define ECC1                            0x1
115 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
116 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY               0x00000001
120
121 #define SECTOR_BYTES            512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD            4
124
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
131
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
136
137 #define BADBLOCK_MARKER_LENGTH          2
138
139 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
140                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
141                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
142                                 0x07, 0x0e};
143 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
144         0xac, 0x6b, 0xff, 0x99, 0x7b};
145 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
146
147 struct omap_nand_info {
148         struct nand_chip                nand;
149         struct platform_device          *pdev;
150
151         int                             gpmc_cs;
152         bool                            dev_ready;
153         enum nand_io                    xfer_type;
154         int                             devsize;
155         enum omap_ecc                   ecc_opt;
156         struct device_node              *elm_of_node;
157
158         unsigned long                   phys_base;
159         struct completion               comp;
160         struct dma_chan                 *dma;
161         int                             gpmc_irq_fifo;
162         int                             gpmc_irq_count;
163         enum {
164                 OMAP_NAND_IO_READ = 0,  /* read */
165                 OMAP_NAND_IO_WRITE,     /* write */
166         } iomode;
167         u_char                          *buf;
168         int                                     buf_len;
169         /* Interface to GPMC */
170         struct gpmc_nand_regs           reg;
171         struct gpmc_nand_ops            *ops;
172         bool                            flash_bbt;
173         /* fields specific for BCHx_HW ECC scheme */
174         struct device                   *elm_dev;
175         /* NAND ready gpio */
176         struct gpio_desc                *ready_gpiod;
177 };
178
179 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
180 {
181         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
182 }
183
184 /**
185  * omap_prefetch_enable - configures and starts prefetch transfer
186  * @cs: cs (chip select) number
187  * @fifo_th: fifo threshold to be used for read/ write
188  * @dma_mode: dma mode enable (1) or disable (0)
189  * @u32_count: number of bytes to be transferred
190  * @is_write: prefetch read(0) or write post(1) mode
191  */
192 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
193         unsigned int u32_count, int is_write, struct omap_nand_info *info)
194 {
195         u32 val;
196
197         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
198                 return -1;
199
200         if (readl(info->reg.gpmc_prefetch_control))
201                 return -EBUSY;
202
203         /* Set the amount of bytes to be prefetched */
204         writel(u32_count, info->reg.gpmc_prefetch_config2);
205
206         /* Set dma/mpu mode, the prefetch read / post write and
207          * enable the engine. Set which cs is has requested for.
208          */
209         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
210                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
211                 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
212         writel(val, info->reg.gpmc_prefetch_config1);
213
214         /*  Start the prefetch engine */
215         writel(0x1, info->reg.gpmc_prefetch_control);
216
217         return 0;
218 }
219
220 /**
221  * omap_prefetch_reset - disables and stops the prefetch engine
222  */
223 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
224 {
225         u32 config1;
226
227         /* check if the same module/cs is trying to reset */
228         config1 = readl(info->reg.gpmc_prefetch_config1);
229         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
230                 return -EINVAL;
231
232         /* Stop the PFPW engine */
233         writel(0x0, info->reg.gpmc_prefetch_control);
234
235         /* Reset/disable the PFPW engine */
236         writel(0x0, info->reg.gpmc_prefetch_config1);
237
238         return 0;
239 }
240
241 /**
242  * omap_hwcontrol - hardware specific access to control-lines
243  * @mtd: MTD device structure
244  * @cmd: command to device
245  * @ctrl:
246  * NAND_NCE: bit 0 -> don't care
247  * NAND_CLE: bit 1 -> Command Latch
248  * NAND_ALE: bit 2 -> Address Latch
249  *
250  * NOTE: boards may use different bits for these!!
251  */
252 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
253 {
254         struct omap_nand_info *info = mtd_to_omap(mtd);
255
256         if (cmd != NAND_CMD_NONE) {
257                 if (ctrl & NAND_CLE)
258                         writeb(cmd, info->reg.gpmc_nand_command);
259
260                 else if (ctrl & NAND_ALE)
261                         writeb(cmd, info->reg.gpmc_nand_address);
262
263                 else /* NAND_NCE */
264                         writeb(cmd, info->reg.gpmc_nand_data);
265         }
266 }
267
268 /**
269  * omap_read_buf8 - read data from NAND controller into buffer
270  * @mtd: MTD device structure
271  * @buf: buffer to store date
272  * @len: number of bytes to read
273  */
274 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
275 {
276         struct nand_chip *nand = mtd_to_nand(mtd);
277
278         ioread8_rep(nand->IO_ADDR_R, buf, len);
279 }
280
281 /**
282  * omap_write_buf8 - write buffer to NAND controller
283  * @mtd: MTD device structure
284  * @buf: data buffer
285  * @len: number of bytes to write
286  */
287 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
288 {
289         struct omap_nand_info *info = mtd_to_omap(mtd);
290         u_char *p = (u_char *)buf;
291         bool status;
292
293         while (len--) {
294                 iowrite8(*p++, info->nand.IO_ADDR_W);
295                 /* wait until buffer is available for write */
296                 do {
297                         status = info->ops->nand_writebuffer_empty();
298                 } while (!status);
299         }
300 }
301
302 /**
303  * omap_read_buf16 - read data from NAND controller into buffer
304  * @mtd: MTD device structure
305  * @buf: buffer to store date
306  * @len: number of bytes to read
307  */
308 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
309 {
310         struct nand_chip *nand = mtd_to_nand(mtd);
311
312         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
313 }
314
315 /**
316  * omap_write_buf16 - write buffer to NAND controller
317  * @mtd: MTD device structure
318  * @buf: data buffer
319  * @len: number of bytes to write
320  */
321 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
322 {
323         struct omap_nand_info *info = mtd_to_omap(mtd);
324         u16 *p = (u16 *) buf;
325         bool status;
326         /* FIXME try bursts of writesw() or DMA ... */
327         len >>= 1;
328
329         while (len--) {
330                 iowrite16(*p++, info->nand.IO_ADDR_W);
331                 /* wait until buffer is available for write */
332                 do {
333                         status = info->ops->nand_writebuffer_empty();
334                 } while (!status);
335         }
336 }
337
338 /**
339  * omap_read_buf_pref - read data from NAND controller into buffer
340  * @mtd: MTD device structure
341  * @buf: buffer to store date
342  * @len: number of bytes to read
343  */
344 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
345 {
346         struct omap_nand_info *info = mtd_to_omap(mtd);
347         uint32_t r_count = 0;
348         int ret = 0;
349         u32 *p = (u32 *)buf;
350
351         /* take care of subpage reads */
352         if (len % 4) {
353                 if (info->nand.options & NAND_BUSWIDTH_16)
354                         omap_read_buf16(mtd, buf, len % 4);
355                 else
356                         omap_read_buf8(mtd, buf, len % 4);
357                 p = (u32 *) (buf + len % 4);
358                 len -= len % 4;
359         }
360
361         /* configure and start prefetch transfer */
362         ret = omap_prefetch_enable(info->gpmc_cs,
363                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
364         if (ret) {
365                 /* PFPW engine is busy, use cpu copy method */
366                 if (info->nand.options & NAND_BUSWIDTH_16)
367                         omap_read_buf16(mtd, (u_char *)p, len);
368                 else
369                         omap_read_buf8(mtd, (u_char *)p, len);
370         } else {
371                 do {
372                         r_count = readl(info->reg.gpmc_prefetch_status);
373                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
374                         r_count = r_count >> 2;
375                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
376                         p += r_count;
377                         len -= r_count << 2;
378                 } while (len);
379                 /* disable and stop the PFPW engine */
380                 omap_prefetch_reset(info->gpmc_cs, info);
381         }
382 }
383
384 /**
385  * omap_write_buf_pref - write buffer to NAND controller
386  * @mtd: MTD device structure
387  * @buf: data buffer
388  * @len: number of bytes to write
389  */
390 static void omap_write_buf_pref(struct mtd_info *mtd,
391                                         const u_char *buf, int len)
392 {
393         struct omap_nand_info *info = mtd_to_omap(mtd);
394         uint32_t w_count = 0;
395         int i = 0, ret = 0;
396         u16 *p = (u16 *)buf;
397         unsigned long tim, limit;
398         u32 val;
399
400         /* take care of subpage writes */
401         if (len % 2 != 0) {
402                 writeb(*buf, info->nand.IO_ADDR_W);
403                 p = (u16 *)(buf + 1);
404                 len--;
405         }
406
407         /*  configure and start prefetch transfer */
408         ret = omap_prefetch_enable(info->gpmc_cs,
409                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
410         if (ret) {
411                 /* PFPW engine is busy, use cpu copy method */
412                 if (info->nand.options & NAND_BUSWIDTH_16)
413                         omap_write_buf16(mtd, (u_char *)p, len);
414                 else
415                         omap_write_buf8(mtd, (u_char *)p, len);
416         } else {
417                 while (len) {
418                         w_count = readl(info->reg.gpmc_prefetch_status);
419                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
420                         w_count = w_count >> 1;
421                         for (i = 0; (i < w_count) && len; i++, len -= 2)
422                                 iowrite16(*p++, info->nand.IO_ADDR_W);
423                 }
424                 /* wait for data to flushed-out before reset the prefetch */
425                 tim = 0;
426                 limit = (loops_per_jiffy *
427                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
428                 do {
429                         cpu_relax();
430                         val = readl(info->reg.gpmc_prefetch_status);
431                         val = PREFETCH_STATUS_COUNT(val);
432                 } while (val && (tim++ < limit));
433
434                 /* disable and stop the PFPW engine */
435                 omap_prefetch_reset(info->gpmc_cs, info);
436         }
437 }
438
439 /*
440  * omap_nand_dma_callback: callback on the completion of dma transfer
441  * @data: pointer to completion data structure
442  */
443 static void omap_nand_dma_callback(void *data)
444 {
445         complete((struct completion *) data);
446 }
447
448 /*
449  * omap_nand_dma_transfer: configure and start dma transfer
450  * @mtd: MTD device structure
451  * @addr: virtual address in RAM of source/destination
452  * @len: number of data bytes to be transferred
453  * @is_write: flag for read/write operation
454  */
455 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
456                                         unsigned int len, int is_write)
457 {
458         struct omap_nand_info *info = mtd_to_omap(mtd);
459         struct dma_async_tx_descriptor *tx;
460         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
461                                                         DMA_FROM_DEVICE;
462         struct scatterlist sg;
463         unsigned long tim, limit;
464         unsigned n;
465         int ret;
466         u32 val;
467
468         if (!virt_addr_valid(addr))
469                 goto out_copy;
470
471         sg_init_one(&sg, addr, len);
472         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
473         if (n == 0) {
474                 dev_err(&info->pdev->dev,
475                         "Couldn't DMA map a %d byte buffer\n", len);
476                 goto out_copy;
477         }
478
479         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
480                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
481                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
482         if (!tx)
483                 goto out_copy_unmap;
484
485         tx->callback = omap_nand_dma_callback;
486         tx->callback_param = &info->comp;
487         dmaengine_submit(tx);
488
489         init_completion(&info->comp);
490
491         /* setup and start DMA using dma_addr */
492         dma_async_issue_pending(info->dma);
493
494         /*  configure and start prefetch transfer */
495         ret = omap_prefetch_enable(info->gpmc_cs,
496                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
497         if (ret)
498                 /* PFPW engine is busy, use cpu copy method */
499                 goto out_copy_unmap;
500
501         wait_for_completion(&info->comp);
502         tim = 0;
503         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
504
505         do {
506                 cpu_relax();
507                 val = readl(info->reg.gpmc_prefetch_status);
508                 val = PREFETCH_STATUS_COUNT(val);
509         } while (val && (tim++ < limit));
510
511         /* disable and stop the PFPW engine */
512         omap_prefetch_reset(info->gpmc_cs, info);
513
514         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
515         return 0;
516
517 out_copy_unmap:
518         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
519 out_copy:
520         if (info->nand.options & NAND_BUSWIDTH_16)
521                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
522                         : omap_write_buf16(mtd, (u_char *) addr, len);
523         else
524                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
525                         : omap_write_buf8(mtd, (u_char *) addr, len);
526         return 0;
527 }
528
529 /**
530  * omap_read_buf_dma_pref - read data from NAND controller into buffer
531  * @mtd: MTD device structure
532  * @buf: buffer to store date
533  * @len: number of bytes to read
534  */
535 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
536 {
537         if (len <= mtd->oobsize)
538                 omap_read_buf_pref(mtd, buf, len);
539         else
540                 /* start transfer in DMA mode */
541                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
542 }
543
544 /**
545  * omap_write_buf_dma_pref - write buffer to NAND controller
546  * @mtd: MTD device structure
547  * @buf: data buffer
548  * @len: number of bytes to write
549  */
550 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
551                                         const u_char *buf, int len)
552 {
553         if (len <= mtd->oobsize)
554                 omap_write_buf_pref(mtd, buf, len);
555         else
556                 /* start transfer in DMA mode */
557                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
558 }
559
560 /*
561  * omap_nand_irq - GPMC irq handler
562  * @this_irq: gpmc irq number
563  * @dev: omap_nand_info structure pointer is passed here
564  */
565 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
566 {
567         struct omap_nand_info *info = (struct omap_nand_info *) dev;
568         u32 bytes;
569
570         bytes = readl(info->reg.gpmc_prefetch_status);
571         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
572         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
573         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
574                 if (this_irq == info->gpmc_irq_count)
575                         goto done;
576
577                 if (info->buf_len && (info->buf_len < bytes))
578                         bytes = info->buf_len;
579                 else if (!info->buf_len)
580                         bytes = 0;
581                 iowrite32_rep(info->nand.IO_ADDR_W,
582                                                 (u32 *)info->buf, bytes >> 2);
583                 info->buf = info->buf + bytes;
584                 info->buf_len -= bytes;
585
586         } else {
587                 ioread32_rep(info->nand.IO_ADDR_R,
588                                                 (u32 *)info->buf, bytes >> 2);
589                 info->buf = info->buf + bytes;
590
591                 if (this_irq == info->gpmc_irq_count)
592                         goto done;
593         }
594
595         return IRQ_HANDLED;
596
597 done:
598         complete(&info->comp);
599
600         disable_irq_nosync(info->gpmc_irq_fifo);
601         disable_irq_nosync(info->gpmc_irq_count);
602
603         return IRQ_HANDLED;
604 }
605
606 /*
607  * omap_read_buf_irq_pref - read data from NAND controller into buffer
608  * @mtd: MTD device structure
609  * @buf: buffer to store date
610  * @len: number of bytes to read
611  */
612 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
613 {
614         struct omap_nand_info *info = mtd_to_omap(mtd);
615         int ret = 0;
616
617         if (len <= mtd->oobsize) {
618                 omap_read_buf_pref(mtd, buf, len);
619                 return;
620         }
621
622         info->iomode = OMAP_NAND_IO_READ;
623         info->buf = buf;
624         init_completion(&info->comp);
625
626         /*  configure and start prefetch transfer */
627         ret = omap_prefetch_enable(info->gpmc_cs,
628                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
629         if (ret)
630                 /* PFPW engine is busy, use cpu copy method */
631                 goto out_copy;
632
633         info->buf_len = len;
634
635         enable_irq(info->gpmc_irq_count);
636         enable_irq(info->gpmc_irq_fifo);
637
638         /* waiting for read to complete */
639         wait_for_completion(&info->comp);
640
641         /* disable and stop the PFPW engine */
642         omap_prefetch_reset(info->gpmc_cs, info);
643         return;
644
645 out_copy:
646         if (info->nand.options & NAND_BUSWIDTH_16)
647                 omap_read_buf16(mtd, buf, len);
648         else
649                 omap_read_buf8(mtd, buf, len);
650 }
651
652 /*
653  * omap_write_buf_irq_pref - write buffer to NAND controller
654  * @mtd: MTD device structure
655  * @buf: data buffer
656  * @len: number of bytes to write
657  */
658 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
659                                         const u_char *buf, int len)
660 {
661         struct omap_nand_info *info = mtd_to_omap(mtd);
662         int ret = 0;
663         unsigned long tim, limit;
664         u32 val;
665
666         if (len <= mtd->oobsize) {
667                 omap_write_buf_pref(mtd, buf, len);
668                 return;
669         }
670
671         info->iomode = OMAP_NAND_IO_WRITE;
672         info->buf = (u_char *) buf;
673         init_completion(&info->comp);
674
675         /* configure and start prefetch transfer : size=24 */
676         ret = omap_prefetch_enable(info->gpmc_cs,
677                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
678         if (ret)
679                 /* PFPW engine is busy, use cpu copy method */
680                 goto out_copy;
681
682         info->buf_len = len;
683
684         enable_irq(info->gpmc_irq_count);
685         enable_irq(info->gpmc_irq_fifo);
686
687         /* waiting for write to complete */
688         wait_for_completion(&info->comp);
689
690         /* wait for data to flushed-out before reset the prefetch */
691         tim = 0;
692         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
693         do {
694                 val = readl(info->reg.gpmc_prefetch_status);
695                 val = PREFETCH_STATUS_COUNT(val);
696                 cpu_relax();
697         } while (val && (tim++ < limit));
698
699         /* disable and stop the PFPW engine */
700         omap_prefetch_reset(info->gpmc_cs, info);
701         return;
702
703 out_copy:
704         if (info->nand.options & NAND_BUSWIDTH_16)
705                 omap_write_buf16(mtd, buf, len);
706         else
707                 omap_write_buf8(mtd, buf, len);
708 }
709
710 /**
711  * gen_true_ecc - This function will generate true ECC value
712  * @ecc_buf: buffer to store ecc code
713  *
714  * This generated true ECC value can be used when correcting
715  * data read from NAND flash memory core
716  */
717 static void gen_true_ecc(u8 *ecc_buf)
718 {
719         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
720                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
721
722         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
723                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
724         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
725                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
726         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
727                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
728 }
729
730 /**
731  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
732  * @ecc_data1:  ecc code from nand spare area
733  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
734  * @page_data:  page data
735  *
736  * This function compares two ECC's and indicates if there is an error.
737  * If the error can be corrected it will be corrected to the buffer.
738  * If there is no error, %0 is returned. If there is an error but it
739  * was corrected, %1 is returned. Otherwise, %-1 is returned.
740  */
741 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
742                             u8 *ecc_data2,      /* read from register */
743                             u8 *page_data)
744 {
745         uint    i;
746         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
747         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
748         u8      ecc_bit[24];
749         u8      ecc_sum = 0;
750         u8      find_bit = 0;
751         uint    find_byte = 0;
752         int     isEccFF;
753
754         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
755
756         gen_true_ecc(ecc_data1);
757         gen_true_ecc(ecc_data2);
758
759         for (i = 0; i <= 2; i++) {
760                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
761                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
762         }
763
764         for (i = 0; i < 8; i++) {
765                 tmp0_bit[i]     = *ecc_data1 % 2;
766                 *ecc_data1      = *ecc_data1 / 2;
767         }
768
769         for (i = 0; i < 8; i++) {
770                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
771                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
772         }
773
774         for (i = 0; i < 8; i++) {
775                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
776                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
777         }
778
779         for (i = 0; i < 8; i++) {
780                 comp0_bit[i]     = *ecc_data2 % 2;
781                 *ecc_data2       = *ecc_data2 / 2;
782         }
783
784         for (i = 0; i < 8; i++) {
785                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
786                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
787         }
788
789         for (i = 0; i < 8; i++) {
790                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
791                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
792         }
793
794         for (i = 0; i < 6; i++)
795                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
796
797         for (i = 0; i < 8; i++)
798                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
799
800         for (i = 0; i < 8; i++)
801                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
802
803         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
804         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
805
806         for (i = 0; i < 24; i++)
807                 ecc_sum += ecc_bit[i];
808
809         switch (ecc_sum) {
810         case 0:
811                 /* Not reached because this function is not called if
812                  *  ECC values are equal
813                  */
814                 return 0;
815
816         case 1:
817                 /* Uncorrectable error */
818                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
819                 return -EBADMSG;
820
821         case 11:
822                 /* UN-Correctable error */
823                 pr_debug("ECC UNCORRECTED_ERROR B\n");
824                 return -EBADMSG;
825
826         case 12:
827                 /* Correctable error */
828                 find_byte = (ecc_bit[23] << 8) +
829                             (ecc_bit[21] << 7) +
830                             (ecc_bit[19] << 6) +
831                             (ecc_bit[17] << 5) +
832                             (ecc_bit[15] << 4) +
833                             (ecc_bit[13] << 3) +
834                             (ecc_bit[11] << 2) +
835                             (ecc_bit[9]  << 1) +
836                             ecc_bit[7];
837
838                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
839
840                 pr_debug("Correcting single bit ECC error at offset: "
841                                 "%d, bit: %d\n", find_byte, find_bit);
842
843                 page_data[find_byte] ^= (1 << find_bit);
844
845                 return 1;
846         default:
847                 if (isEccFF) {
848                         if (ecc_data2[0] == 0 &&
849                             ecc_data2[1] == 0 &&
850                             ecc_data2[2] == 0)
851                                 return 0;
852                 }
853                 pr_debug("UNCORRECTED_ERROR default\n");
854                 return -EBADMSG;
855         }
856 }
857
858 /**
859  * omap_correct_data - Compares the ECC read with HW generated ECC
860  * @mtd: MTD device structure
861  * @dat: page data
862  * @read_ecc: ecc read from nand flash
863  * @calc_ecc: ecc read from HW ECC registers
864  *
865  * Compares the ecc read from nand spare area with ECC registers values
866  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
867  * detection and correction. If there are no errors, %0 is returned. If
868  * there were errors and all of the errors were corrected, the number of
869  * corrected errors is returned. If uncorrectable errors exist, %-1 is
870  * returned.
871  */
872 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
873                                 u_char *read_ecc, u_char *calc_ecc)
874 {
875         struct omap_nand_info *info = mtd_to_omap(mtd);
876         int blockCnt = 0, i = 0, ret = 0;
877         int stat = 0;
878
879         /* Ex NAND_ECC_HW12_2048 */
880         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
881                         (info->nand.ecc.size  == 2048))
882                 blockCnt = 4;
883         else
884                 blockCnt = 1;
885
886         for (i = 0; i < blockCnt; i++) {
887                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
888                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
889                         if (ret < 0)
890                                 return ret;
891                         /* keep track of the number of corrected errors */
892                         stat += ret;
893                 }
894                 read_ecc += 3;
895                 calc_ecc += 3;
896                 dat      += 512;
897         }
898         return stat;
899 }
900
901 /**
902  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
903  * @mtd: MTD device structure
904  * @dat: The pointer to data on which ecc is computed
905  * @ecc_code: The ecc_code buffer
906  *
907  * Using noninverted ECC can be considered ugly since writing a blank
908  * page ie. padding will clear the ECC bytes. This is no problem as long
909  * nobody is trying to write data on the seemingly unused page. Reading
910  * an erased page will produce an ECC mismatch between generated and read
911  * ECC bytes that has to be dealt with separately.
912  */
913 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
914                                 u_char *ecc_code)
915 {
916         struct omap_nand_info *info = mtd_to_omap(mtd);
917         u32 val;
918
919         val = readl(info->reg.gpmc_ecc_config);
920         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
921                 return -EINVAL;
922
923         /* read ecc result */
924         val = readl(info->reg.gpmc_ecc1_result);
925         *ecc_code++ = val;          /* P128e, ..., P1e */
926         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
927         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
928         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
929
930         return 0;
931 }
932
933 /**
934  * omap_enable_hwecc - This function enables the hardware ecc functionality
935  * @mtd: MTD device structure
936  * @mode: Read/Write mode
937  */
938 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
939 {
940         struct omap_nand_info *info = mtd_to_omap(mtd);
941         struct nand_chip *chip = mtd_to_nand(mtd);
942         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
943         u32 val;
944
945         /* clear ecc and enable bits */
946         val = ECCCLEAR | ECC1;
947         writel(val, info->reg.gpmc_ecc_control);
948
949         /* program ecc and result sizes */
950         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
951                          ECC1RESULTSIZE);
952         writel(val, info->reg.gpmc_ecc_size_config);
953
954         switch (mode) {
955         case NAND_ECC_READ:
956         case NAND_ECC_WRITE:
957                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
958                 break;
959         case NAND_ECC_READSYN:
960                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
961                 break;
962         default:
963                 dev_info(&info->pdev->dev,
964                         "error: unrecognized Mode[%d]!\n", mode);
965                 break;
966         }
967
968         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
969         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
970         writel(val, info->reg.gpmc_ecc_config);
971 }
972
973 /**
974  * omap_wait - wait until the command is done
975  * @mtd: MTD device structure
976  * @chip: NAND Chip structure
977  *
978  * Wait function is called during Program and erase operations and
979  * the way it is called from MTD layer, we should wait till the NAND
980  * chip is ready after the programming/erase operation has completed.
981  *
982  * Erase can take up to 400ms and program up to 20ms according to
983  * general NAND and SmartMedia specs
984  */
985 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
986 {
987         struct nand_chip *this = mtd_to_nand(mtd);
988         struct omap_nand_info *info = mtd_to_omap(mtd);
989         unsigned long timeo = jiffies;
990         int status, state = this->state;
991
992         if (state == FL_ERASING)
993                 timeo += msecs_to_jiffies(400);
994         else
995                 timeo += msecs_to_jiffies(20);
996
997         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
998         while (time_before(jiffies, timeo)) {
999                 status = readb(info->reg.gpmc_nand_data);
1000                 if (status & NAND_STATUS_READY)
1001                         break;
1002                 cond_resched();
1003         }
1004
1005         status = readb(info->reg.gpmc_nand_data);
1006         return status;
1007 }
1008
1009 /**
1010  * omap_dev_ready - checks the NAND Ready GPIO line
1011  * @mtd: MTD device structure
1012  *
1013  * Returns true if ready and false if busy.
1014  */
1015 static int omap_dev_ready(struct mtd_info *mtd)
1016 {
1017         struct omap_nand_info *info = mtd_to_omap(mtd);
1018
1019         return gpiod_get_value(info->ready_gpiod);
1020 }
1021
1022 /**
1023  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1024  * @mtd: MTD device structure
1025  * @mode: Read/Write mode
1026  *
1027  * When using BCH with SW correction (i.e. no ELM), sector size is set
1028  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1029  * for both reading and writing with:
1030  * eccsize0 = 0  (no additional protected byte in spare area)
1031  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1032  */
1033 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1034 {
1035         unsigned int bch_type;
1036         unsigned int dev_width, nsectors;
1037         struct omap_nand_info *info = mtd_to_omap(mtd);
1038         enum omap_ecc ecc_opt = info->ecc_opt;
1039         struct nand_chip *chip = mtd_to_nand(mtd);
1040         u32 val, wr_mode;
1041         unsigned int ecc_size1, ecc_size0;
1042
1043         /* GPMC configurations for calculating ECC */
1044         switch (ecc_opt) {
1045         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1046                 bch_type = 0;
1047                 nsectors = 1;
1048                 wr_mode   = BCH_WRAPMODE_6;
1049                 ecc_size0 = BCH_ECC_SIZE0;
1050                 ecc_size1 = BCH_ECC_SIZE1;
1051                 break;
1052         case OMAP_ECC_BCH4_CODE_HW:
1053                 bch_type = 0;
1054                 nsectors = chip->ecc.steps;
1055                 if (mode == NAND_ECC_READ) {
1056                         wr_mode   = BCH_WRAPMODE_1;
1057                         ecc_size0 = BCH4R_ECC_SIZE0;
1058                         ecc_size1 = BCH4R_ECC_SIZE1;
1059                 } else {
1060                         wr_mode   = BCH_WRAPMODE_6;
1061                         ecc_size0 = BCH_ECC_SIZE0;
1062                         ecc_size1 = BCH_ECC_SIZE1;
1063                 }
1064                 break;
1065         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1066                 bch_type = 1;
1067                 nsectors = 1;
1068                 wr_mode   = BCH_WRAPMODE_6;
1069                 ecc_size0 = BCH_ECC_SIZE0;
1070                 ecc_size1 = BCH_ECC_SIZE1;
1071                 break;
1072         case OMAP_ECC_BCH8_CODE_HW:
1073                 bch_type = 1;
1074                 nsectors = chip->ecc.steps;
1075                 if (mode == NAND_ECC_READ) {
1076                         wr_mode   = BCH_WRAPMODE_1;
1077                         ecc_size0 = BCH8R_ECC_SIZE0;
1078                         ecc_size1 = BCH8R_ECC_SIZE1;
1079                 } else {
1080                         wr_mode   = BCH_WRAPMODE_6;
1081                         ecc_size0 = BCH_ECC_SIZE0;
1082                         ecc_size1 = BCH_ECC_SIZE1;
1083                 }
1084                 break;
1085         case OMAP_ECC_BCH16_CODE_HW:
1086                 bch_type = 0x2;
1087                 nsectors = chip->ecc.steps;
1088                 if (mode == NAND_ECC_READ) {
1089                         wr_mode   = 0x01;
1090                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
1091                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1092                 } else {
1093                         wr_mode   = 0x01;
1094                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
1095                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
1096                 }
1097                 break;
1098         default:
1099                 return;
1100         }
1101
1102         writel(ECC1, info->reg.gpmc_ecc_control);
1103
1104         /* Configure ecc size for BCH */
1105         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1106         writel(val, info->reg.gpmc_ecc_size_config);
1107
1108         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1109
1110         /* BCH configuration */
1111         val = ((1                        << 16) | /* enable BCH */
1112                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1113                (wr_mode                  <<  8) | /* wrap mode */
1114                (dev_width                <<  7) | /* bus width */
1115                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1116                (info->gpmc_cs            <<  1) | /* ECC CS */
1117                (0x1));                            /* enable ECC */
1118
1119         writel(val, info->reg.gpmc_ecc_config);
1120
1121         /* Clear ecc and enable bits */
1122         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1123 }
1124
1125 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1126 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1127                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1128
1129 /**
1130  * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1131  * @mtd:        MTD device structure
1132  * @dat:        The pointer to data on which ecc is computed
1133  * @ecc_code:   The ecc_code buffer
1134  * @i:          The sector number (for a multi sector page)
1135  *
1136  * Support calculating of BCH4/8/16 ECC vectors for one sector
1137  * within a page. Sector number is in @i.
1138  */
1139 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1140                                    const u_char *dat, u_char *ecc_calc, int i)
1141 {
1142         struct omap_nand_info *info = mtd_to_omap(mtd);
1143         int eccbytes    = info->nand.ecc.bytes;
1144         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1145         u8 *ecc_code;
1146         unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1147         u32 val;
1148         int j;
1149
1150         ecc_code = ecc_calc;
1151         switch (info->ecc_opt) {
1152         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1153         case OMAP_ECC_BCH8_CODE_HW:
1154                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1155                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1156                 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1157                 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1158                 *ecc_code++ = (bch_val4 & 0xFF);
1159                 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1160                 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1161                 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1162                 *ecc_code++ = (bch_val3 & 0xFF);
1163                 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1164                 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1165                 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1166                 *ecc_code++ = (bch_val2 & 0xFF);
1167                 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1168                 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1169                 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1170                 *ecc_code++ = (bch_val1 & 0xFF);
1171                 break;
1172         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1173         case OMAP_ECC_BCH4_CODE_HW:
1174                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1175                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1176                 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1177                 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1178                 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1179                         ((bch_val1 >> 28) & 0xF);
1180                 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1181                 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1182                 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1183                 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1184                 break;
1185         case OMAP_ECC_BCH16_CODE_HW:
1186                 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1187                 ecc_code[0]  = ((val >>  8) & 0xFF);
1188                 ecc_code[1]  = ((val >>  0) & 0xFF);
1189                 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1190                 ecc_code[2]  = ((val >> 24) & 0xFF);
1191                 ecc_code[3]  = ((val >> 16) & 0xFF);
1192                 ecc_code[4]  = ((val >>  8) & 0xFF);
1193                 ecc_code[5]  = ((val >>  0) & 0xFF);
1194                 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1195                 ecc_code[6]  = ((val >> 24) & 0xFF);
1196                 ecc_code[7]  = ((val >> 16) & 0xFF);
1197                 ecc_code[8]  = ((val >>  8) & 0xFF);
1198                 ecc_code[9]  = ((val >>  0) & 0xFF);
1199                 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1200                 ecc_code[10] = ((val >> 24) & 0xFF);
1201                 ecc_code[11] = ((val >> 16) & 0xFF);
1202                 ecc_code[12] = ((val >>  8) & 0xFF);
1203                 ecc_code[13] = ((val >>  0) & 0xFF);
1204                 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1205                 ecc_code[14] = ((val >> 24) & 0xFF);
1206                 ecc_code[15] = ((val >> 16) & 0xFF);
1207                 ecc_code[16] = ((val >>  8) & 0xFF);
1208                 ecc_code[17] = ((val >>  0) & 0xFF);
1209                 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1210                 ecc_code[18] = ((val >> 24) & 0xFF);
1211                 ecc_code[19] = ((val >> 16) & 0xFF);
1212                 ecc_code[20] = ((val >>  8) & 0xFF);
1213                 ecc_code[21] = ((val >>  0) & 0xFF);
1214                 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1215                 ecc_code[22] = ((val >> 24) & 0xFF);
1216                 ecc_code[23] = ((val >> 16) & 0xFF);
1217                 ecc_code[24] = ((val >>  8) & 0xFF);
1218                 ecc_code[25] = ((val >>  0) & 0xFF);
1219                 break;
1220         default:
1221                 return -EINVAL;
1222         }
1223
1224         /* ECC scheme specific syndrome customizations */
1225         switch (info->ecc_opt) {
1226         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1227                 /* Add constant polynomial to remainder, so that
1228                  * ECC of blank pages results in 0x0 on reading back
1229                  */
1230                 for (j = 0; j < eccbytes; j++)
1231                         ecc_calc[j] ^= bch4_polynomial[j];
1232                 break;
1233         case OMAP_ECC_BCH4_CODE_HW:
1234                 /* Set  8th ECC byte as 0x0 for ROM compatibility */
1235                 ecc_calc[eccbytes - 1] = 0x0;
1236                 break;
1237         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1238                 /* Add constant polynomial to remainder, so that
1239                  * ECC of blank pages results in 0x0 on reading back
1240                  */
1241                 for (j = 0; j < eccbytes; j++)
1242                         ecc_calc[j] ^= bch8_polynomial[j];
1243                 break;
1244         case OMAP_ECC_BCH8_CODE_HW:
1245                 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1246                 ecc_calc[eccbytes - 1] = 0x0;
1247                 break;
1248         case OMAP_ECC_BCH16_CODE_HW:
1249                 break;
1250         default:
1251                 return -EINVAL;
1252         }
1253
1254         return 0;
1255 }
1256
1257 /**
1258  * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1259  * @mtd:        MTD device structure
1260  * @dat:        The pointer to data on which ecc is computed
1261  * @ecc_code:   The ecc_code buffer
1262  *
1263  * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1264  * when SW based correction is required as ECC is required for one sector
1265  * at a time.
1266  */
1267 static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
1268                                      const u_char *dat, u_char *ecc_calc)
1269 {
1270         return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
1271 }
1272
1273 /**
1274  * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1275  * @mtd:        MTD device structure
1276  * @dat:        The pointer to data on which ecc is computed
1277  * @ecc_code:   The ecc_code buffer
1278  *
1279  * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1280  */
1281 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1282                                         const u_char *dat, u_char *ecc_calc)
1283 {
1284         struct omap_nand_info *info = mtd_to_omap(mtd);
1285         int eccbytes = info->nand.ecc.bytes;
1286         unsigned long nsectors;
1287         int i, ret;
1288
1289         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1290         for (i = 0; i < nsectors; i++) {
1291                 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1292                 if (ret)
1293                         return ret;
1294
1295                 ecc_calc += eccbytes;
1296         }
1297
1298         return 0;
1299 }
1300
1301 /**
1302  * erased_sector_bitflips - count bit flips
1303  * @data:       data sector buffer
1304  * @oob:        oob buffer
1305  * @info:       omap_nand_info
1306  *
1307  * Check the bit flips in erased page falls below correctable level.
1308  * If falls below, report the page as erased with correctable bit
1309  * flip, else report as uncorrectable page.
1310  */
1311 static int erased_sector_bitflips(u_char *data, u_char *oob,
1312                 struct omap_nand_info *info)
1313 {
1314         int flip_bits = 0, i;
1315
1316         for (i = 0; i < info->nand.ecc.size; i++) {
1317                 flip_bits += hweight8(~data[i]);
1318                 if (flip_bits > info->nand.ecc.strength)
1319                         return 0;
1320         }
1321
1322         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1323                 flip_bits += hweight8(~oob[i]);
1324                 if (flip_bits > info->nand.ecc.strength)
1325                         return 0;
1326         }
1327
1328         /*
1329          * Bit flips falls in correctable level.
1330          * Fill data area with 0xFF
1331          */
1332         if (flip_bits) {
1333                 memset(data, 0xFF, info->nand.ecc.size);
1334                 memset(oob, 0xFF, info->nand.ecc.bytes);
1335         }
1336
1337         return flip_bits;
1338 }
1339
1340 /**
1341  * omap_elm_correct_data - corrects page data area in case error reported
1342  * @mtd:        MTD device structure
1343  * @data:       page data
1344  * @read_ecc:   ecc read from nand flash
1345  * @calc_ecc:   ecc read from HW ECC registers
1346  *
1347  * Calculated ecc vector reported as zero in case of non-error pages.
1348  * In case of non-zero ecc vector, first filter out erased-pages, and
1349  * then process data via ELM to detect bit-flips.
1350  */
1351 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1352                                 u_char *read_ecc, u_char *calc_ecc)
1353 {
1354         struct omap_nand_info *info = mtd_to_omap(mtd);
1355         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1356         int eccsteps = info->nand.ecc.steps;
1357         int i , j, stat = 0;
1358         int eccflag, actual_eccbytes;
1359         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1360         u_char *ecc_vec = calc_ecc;
1361         u_char *spare_ecc = read_ecc;
1362         u_char *erased_ecc_vec;
1363         u_char *buf;
1364         int bitflip_count;
1365         bool is_error_reported = false;
1366         u32 bit_pos, byte_pos, error_max, pos;
1367         int err;
1368
1369         switch (info->ecc_opt) {
1370         case OMAP_ECC_BCH4_CODE_HW:
1371                 /* omit  7th ECC byte reserved for ROM code compatibility */
1372                 actual_eccbytes = ecc->bytes - 1;
1373                 erased_ecc_vec = bch4_vector;
1374                 break;
1375         case OMAP_ECC_BCH8_CODE_HW:
1376                 /* omit 14th ECC byte reserved for ROM code compatibility */
1377                 actual_eccbytes = ecc->bytes - 1;
1378                 erased_ecc_vec = bch8_vector;
1379                 break;
1380         case OMAP_ECC_BCH16_CODE_HW:
1381                 actual_eccbytes = ecc->bytes;
1382                 erased_ecc_vec = bch16_vector;
1383                 break;
1384         default:
1385                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1386                 return -EINVAL;
1387         }
1388
1389         /* Initialize elm error vector to zero */
1390         memset(err_vec, 0, sizeof(err_vec));
1391
1392         for (i = 0; i < eccsteps ; i++) {
1393                 eccflag = 0;    /* initialize eccflag */
1394
1395                 /*
1396                  * Check any error reported,
1397                  * In case of error, non zero ecc reported.
1398                  */
1399                 for (j = 0; j < actual_eccbytes; j++) {
1400                         if (calc_ecc[j] != 0) {
1401                                 eccflag = 1; /* non zero ecc, error present */
1402                                 break;
1403                         }
1404                 }
1405
1406                 if (eccflag == 1) {
1407                         if (memcmp(calc_ecc, erased_ecc_vec,
1408                                                 actual_eccbytes) == 0) {
1409                                 /*
1410                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1411                                  * so this is definitely an erased-page
1412                                  */
1413                         } else {
1414                                 buf = &data[info->nand.ecc.size * i];
1415                                 /*
1416                                  * count number of 0-bits in read_buf.
1417                                  * This check can be removed once a similar
1418                                  * check is introduced in generic NAND driver
1419                                  */
1420                                 bitflip_count = erased_sector_bitflips(
1421                                                 buf, read_ecc, info);
1422                                 if (bitflip_count) {
1423                                         /*
1424                                          * number of 0-bits within ECC limits
1425                                          * So this may be an erased-page
1426                                          */
1427                                         stat += bitflip_count;
1428                                 } else {
1429                                         /*
1430                                          * Too many 0-bits. It may be a
1431                                          * - programmed-page, OR
1432                                          * - erased-page with many bit-flips
1433                                          * So this page requires check by ELM
1434                                          */
1435                                         err_vec[i].error_reported = true;
1436                                         is_error_reported = true;
1437                                 }
1438                         }
1439                 }
1440
1441                 /* Update the ecc vector */
1442                 calc_ecc += ecc->bytes;
1443                 read_ecc += ecc->bytes;
1444         }
1445
1446         /* Check if any error reported */
1447         if (!is_error_reported)
1448                 return stat;
1449
1450         /* Decode BCH error using ELM module */
1451         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1452
1453         err = 0;
1454         for (i = 0; i < eccsteps; i++) {
1455                 if (err_vec[i].error_uncorrectable) {
1456                         dev_err(&info->pdev->dev,
1457                                 "uncorrectable bit-flips found\n");
1458                         err = -EBADMSG;
1459                 } else if (err_vec[i].error_reported) {
1460                         for (j = 0; j < err_vec[i].error_count; j++) {
1461                                 switch (info->ecc_opt) {
1462                                 case OMAP_ECC_BCH4_CODE_HW:
1463                                         /* Add 4 bits to take care of padding */
1464                                         pos = err_vec[i].error_loc[j] +
1465                                                 BCH4_BIT_PAD;
1466                                         break;
1467                                 case OMAP_ECC_BCH8_CODE_HW:
1468                                 case OMAP_ECC_BCH16_CODE_HW:
1469                                         pos = err_vec[i].error_loc[j];
1470                                         break;
1471                                 default:
1472                                         return -EINVAL;
1473                                 }
1474                                 error_max = (ecc->size + actual_eccbytes) * 8;
1475                                 /* Calculate bit position of error */
1476                                 bit_pos = pos % 8;
1477
1478                                 /* Calculate byte position of error */
1479                                 byte_pos = (error_max - pos - 1) / 8;
1480
1481                                 if (pos < error_max) {
1482                                         if (byte_pos < 512) {
1483                                                 pr_debug("bitflip@dat[%d]=%x\n",
1484                                                      byte_pos, data[byte_pos]);
1485                                                 data[byte_pos] ^= 1 << bit_pos;
1486                                         } else {
1487                                                 pr_debug("bitflip@oob[%d]=%x\n",
1488                                                         (byte_pos - 512),
1489                                                      spare_ecc[byte_pos - 512]);
1490                                                 spare_ecc[byte_pos - 512] ^=
1491                                                         1 << bit_pos;
1492                                         }
1493                                 } else {
1494                                         dev_err(&info->pdev->dev,
1495                                                 "invalid bit-flip @ %d:%d\n",
1496                                                 byte_pos, bit_pos);
1497                                         err = -EBADMSG;
1498                                 }
1499                         }
1500                 }
1501
1502                 /* Update number of correctable errors */
1503                 stat += err_vec[i].error_count;
1504
1505                 /* Update page data with sector size */
1506                 data += ecc->size;
1507                 spare_ecc += ecc->bytes;
1508         }
1509
1510         return (err) ? err : stat;
1511 }
1512
1513 /**
1514  * omap_write_page_bch - BCH ecc based write page function for entire page
1515  * @mtd:                mtd info structure
1516  * @chip:               nand chip info structure
1517  * @buf:                data buffer
1518  * @oob_required:       must write chip->oob_poi to OOB
1519  * @page:               page
1520  *
1521  * Custom write page method evolved to support multi sector writing in one shot
1522  */
1523 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1524                                const uint8_t *buf, int oob_required, int page)
1525 {
1526         int ret;
1527         uint8_t *ecc_calc = chip->ecc.calc_buf;
1528
1529         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1530
1531         /* Enable GPMC ecc engine */
1532         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1533
1534         /* Write data */
1535         chip->write_buf(mtd, buf, mtd->writesize);
1536
1537         /* Update ecc vector from GPMC result registers */
1538         omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1539
1540         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1541                                          chip->ecc.total);
1542         if (ret)
1543                 return ret;
1544
1545         /* Write ecc vector to OOB area */
1546         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1547
1548         return nand_prog_page_end_op(chip);
1549 }
1550
1551 /**
1552  * omap_write_subpage_bch - BCH hardware ECC based subpage write
1553  * @mtd:        mtd info structure
1554  * @chip:       nand chip info structure
1555  * @offset:     column address of subpage within the page
1556  * @data_len:   data length
1557  * @buf:        data buffer
1558  * @oob_required: must write chip->oob_poi to OOB
1559  * @page: page number to write
1560  *
1561  * OMAP optimized subpage write method.
1562  */
1563 static int omap_write_subpage_bch(struct mtd_info *mtd,
1564                                   struct nand_chip *chip, u32 offset,
1565                                   u32 data_len, const u8 *buf,
1566                                   int oob_required, int page)
1567 {
1568         u8 *ecc_calc = chip->ecc.calc_buf;
1569         int ecc_size      = chip->ecc.size;
1570         int ecc_bytes     = chip->ecc.bytes;
1571         int ecc_steps     = chip->ecc.steps;
1572         u32 start_step = offset / ecc_size;
1573         u32 end_step   = (offset + data_len - 1) / ecc_size;
1574         int step, ret = 0;
1575
1576         /*
1577          * Write entire page at one go as it would be optimal
1578          * as ECC is calculated by hardware.
1579          * ECC is calculated for all subpages but we choose
1580          * only what we want.
1581          */
1582         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1583
1584         /* Enable GPMC ECC engine */
1585         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1586
1587         /* Write data */
1588         chip->write_buf(mtd, buf, mtd->writesize);
1589
1590         for (step = 0; step < ecc_steps; step++) {
1591                 /* mask ECC of un-touched subpages by padding 0xFF */
1592                 if (step < start_step || step > end_step)
1593                         memset(ecc_calc, 0xff, ecc_bytes);
1594                 else
1595                         ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1596
1597                 if (ret)
1598                         return ret;
1599
1600                 buf += ecc_size;
1601                 ecc_calc += ecc_bytes;
1602         }
1603
1604         /* copy calculated ECC for whole page to chip->buffer->oob */
1605         /* this include masked-value(0xFF) for unwritten subpages */
1606         ecc_calc = chip->ecc.calc_buf;
1607         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1608                                          chip->ecc.total);
1609         if (ret)
1610                 return ret;
1611
1612         /* write OOB buffer to NAND device */
1613         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1614
1615         return nand_prog_page_end_op(chip);
1616 }
1617
1618 /**
1619  * omap_read_page_bch - BCH ecc based page read function for entire page
1620  * @mtd:                mtd info structure
1621  * @chip:               nand chip info structure
1622  * @buf:                buffer to store read data
1623  * @oob_required:       caller requires OOB data read to chip->oob_poi
1624  * @page:               page number to read
1625  *
1626  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1627  * used for error correction.
1628  * Custom method evolved to support ELM error correction & multi sector
1629  * reading. On reading page data area is read along with OOB data with
1630  * ecc engine enabled. ecc vector updated after read of OOB data.
1631  * For non error pages ecc vector reported as zero.
1632  */
1633 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1634                                 uint8_t *buf, int oob_required, int page)
1635 {
1636         uint8_t *ecc_calc = chip->ecc.calc_buf;
1637         uint8_t *ecc_code = chip->ecc.code_buf;
1638         int stat, ret;
1639         unsigned int max_bitflips = 0;
1640
1641         nand_read_page_op(chip, page, 0, NULL, 0);
1642
1643         /* Enable GPMC ecc engine */
1644         chip->ecc.hwctl(mtd, NAND_ECC_READ);
1645
1646         /* Read data */
1647         chip->read_buf(mtd, buf, mtd->writesize);
1648
1649         /* Read oob bytes */
1650         nand_change_read_column_op(chip,
1651                                    mtd->writesize + BADBLOCK_MARKER_LENGTH,
1652                                    chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1653                                    chip->ecc.total, false);
1654
1655         /* Calculate ecc bytes */
1656         omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1657
1658         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1659                                          chip->ecc.total);
1660         if (ret)
1661                 return ret;
1662
1663         stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1664
1665         if (stat < 0) {
1666                 mtd->ecc_stats.failed++;
1667         } else {
1668                 mtd->ecc_stats.corrected += stat;
1669                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1670         }
1671
1672         return max_bitflips;
1673 }
1674
1675 /**
1676  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677  * @omap_nand_info: NAND device structure containing platform data
1678  */
1679 static bool is_elm_present(struct omap_nand_info *info,
1680                            struct device_node *elm_node)
1681 {
1682         struct platform_device *pdev;
1683
1684         /* check whether elm-id is passed via DT */
1685         if (!elm_node) {
1686                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1687                 return false;
1688         }
1689         pdev = of_find_device_by_node(elm_node);
1690         /* check whether ELM device is registered */
1691         if (!pdev) {
1692                 dev_err(&info->pdev->dev, "ELM device not found\n");
1693                 return false;
1694         }
1695         /* ELM module available, now configure it */
1696         info->elm_dev = &pdev->dev;
1697         return true;
1698 }
1699
1700 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1701 {
1702         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1703
1704         switch (info->ecc_opt) {
1705         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1706         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1707                 ecc_needs_omap_bch = false;
1708                 ecc_needs_bch = true;
1709                 ecc_needs_elm = false;
1710                 break;
1711         case OMAP_ECC_BCH4_CODE_HW:
1712         case OMAP_ECC_BCH8_CODE_HW:
1713         case OMAP_ECC_BCH16_CODE_HW:
1714                 ecc_needs_omap_bch = true;
1715                 ecc_needs_bch = false;
1716                 ecc_needs_elm = true;
1717                 break;
1718         default:
1719                 ecc_needs_omap_bch = false;
1720                 ecc_needs_bch = false;
1721                 ecc_needs_elm = false;
1722                 break;
1723         }
1724
1725         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1726                 dev_err(&info->pdev->dev,
1727                         "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1728                 return false;
1729         }
1730         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1731                 dev_err(&info->pdev->dev,
1732                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1733                 return false;
1734         }
1735         if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1736                 dev_err(&info->pdev->dev, "ELM not available\n");
1737                 return false;
1738         }
1739
1740         return true;
1741 }
1742
1743 static const char * const nand_xfer_types[] = {
1744         [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1745         [NAND_OMAP_POLLED] = "polled",
1746         [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1747         [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1748 };
1749
1750 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1751 {
1752         struct device_node *child = dev->of_node;
1753         int i;
1754         const char *s;
1755         u32 cs;
1756
1757         if (of_property_read_u32(child, "reg", &cs) < 0) {
1758                 dev_err(dev, "reg not found in DT\n");
1759                 return -EINVAL;
1760         }
1761
1762         info->gpmc_cs = cs;
1763
1764         /* detect availability of ELM module. Won't be present pre-OMAP4 */
1765         info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1766         if (!info->elm_of_node) {
1767                 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1768                 if (!info->elm_of_node)
1769                         dev_dbg(dev, "ti,elm-id not in DT\n");
1770         }
1771
1772         /* select ecc-scheme for NAND */
1773         if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1774                 dev_err(dev, "ti,nand-ecc-opt not found\n");
1775                 return -EINVAL;
1776         }
1777
1778         if (!strcmp(s, "sw")) {
1779                 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1780         } else if (!strcmp(s, "ham1") ||
1781                    !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1782                 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1783         } else if (!strcmp(s, "bch4")) {
1784                 if (info->elm_of_node)
1785                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1786                 else
1787                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1788         } else if (!strcmp(s, "bch8")) {
1789                 if (info->elm_of_node)
1790                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1791                 else
1792                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1793         } else if (!strcmp(s, "bch16")) {
1794                 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1795         } else {
1796                 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1797                 return -EINVAL;
1798         }
1799
1800         /* select data transfer mode */
1801         if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1802                 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1803                         if (!strcasecmp(s, nand_xfer_types[i])) {
1804                                 info->xfer_type = i;
1805                                 return 0;
1806                         }
1807                 }
1808
1809                 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1810                 return -EINVAL;
1811         }
1812
1813         return 0;
1814 }
1815
1816 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1817                               struct mtd_oob_region *oobregion)
1818 {
1819         struct omap_nand_info *info = mtd_to_omap(mtd);
1820         struct nand_chip *chip = &info->nand;
1821         int off = BADBLOCK_MARKER_LENGTH;
1822
1823         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1824             !(chip->options & NAND_BUSWIDTH_16))
1825                 off = 1;
1826
1827         if (section)
1828                 return -ERANGE;
1829
1830         oobregion->offset = off;
1831         oobregion->length = chip->ecc.total;
1832
1833         return 0;
1834 }
1835
1836 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1837                                struct mtd_oob_region *oobregion)
1838 {
1839         struct omap_nand_info *info = mtd_to_omap(mtd);
1840         struct nand_chip *chip = &info->nand;
1841         int off = BADBLOCK_MARKER_LENGTH;
1842
1843         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1844             !(chip->options & NAND_BUSWIDTH_16))
1845                 off = 1;
1846
1847         if (section)
1848                 return -ERANGE;
1849
1850         off += chip->ecc.total;
1851         if (off >= mtd->oobsize)
1852                 return -ERANGE;
1853
1854         oobregion->offset = off;
1855         oobregion->length = mtd->oobsize - off;
1856
1857         return 0;
1858 }
1859
1860 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1861         .ecc = omap_ooblayout_ecc,
1862         .free = omap_ooblayout_free,
1863 };
1864
1865 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1866                                  struct mtd_oob_region *oobregion)
1867 {
1868         struct nand_chip *chip = mtd_to_nand(mtd);
1869         int off = BADBLOCK_MARKER_LENGTH;
1870
1871         if (section >= chip->ecc.steps)
1872                 return -ERANGE;
1873
1874         /*
1875          * When SW correction is employed, one OMAP specific marker byte is
1876          * reserved after each ECC step.
1877          */
1878         oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1879         oobregion->length = chip->ecc.bytes;
1880
1881         return 0;
1882 }
1883
1884 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1885                                   struct mtd_oob_region *oobregion)
1886 {
1887         struct nand_chip *chip = mtd_to_nand(mtd);
1888         int off = BADBLOCK_MARKER_LENGTH;
1889
1890         if (section)
1891                 return -ERANGE;
1892
1893         /*
1894          * When SW correction is employed, one OMAP specific marker byte is
1895          * reserved after each ECC step.
1896          */
1897         off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1898         if (off >= mtd->oobsize)
1899                 return -ERANGE;
1900
1901         oobregion->offset = off;
1902         oobregion->length = mtd->oobsize - off;
1903
1904         return 0;
1905 }
1906
1907 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1908         .ecc = omap_sw_ooblayout_ecc,
1909         .free = omap_sw_ooblayout_free,
1910 };
1911
1912 static int omap_nand_attach_chip(struct nand_chip *chip)
1913 {
1914         struct mtd_info *mtd = nand_to_mtd(chip);
1915         struct omap_nand_info *info = mtd_to_omap(mtd);
1916         struct device *dev = &info->pdev->dev;
1917         int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1918         int oobbytes_per_step;
1919         dma_cap_mask_t mask;
1920         int err;
1921
1922         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1923                 chip->bbt_options |= NAND_BBT_NO_OOB;
1924         else
1925                 chip->options |= NAND_SKIP_BBTSCAN;
1926
1927         /* Re-populate low-level callbacks based on xfer modes */
1928         switch (info->xfer_type) {
1929         case NAND_OMAP_PREFETCH_POLLED:
1930                 chip->read_buf = omap_read_buf_pref;
1931                 chip->write_buf = omap_write_buf_pref;
1932                 break;
1933
1934         case NAND_OMAP_POLLED:
1935                 /* Use nand_base defaults for {read,write}_buf */
1936                 break;
1937
1938         case NAND_OMAP_PREFETCH_DMA:
1939                 dma_cap_zero(mask);
1940                 dma_cap_set(DMA_SLAVE, mask);
1941                 info->dma = dma_request_chan(dev->parent, "rxtx");
1942
1943                 if (IS_ERR(info->dma)) {
1944                         dev_err(dev, "DMA engine request failed\n");
1945                         return PTR_ERR(info->dma);
1946                 } else {
1947                         struct dma_slave_config cfg;
1948
1949                         memset(&cfg, 0, sizeof(cfg));
1950                         cfg.src_addr = info->phys_base;
1951                         cfg.dst_addr = info->phys_base;
1952                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1953                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1954                         cfg.src_maxburst = 16;
1955                         cfg.dst_maxburst = 16;
1956                         err = dmaengine_slave_config(info->dma, &cfg);
1957                         if (err) {
1958                                 dev_err(dev,
1959                                         "DMA engine slave config failed: %d\n",
1960                                         err);
1961                                 return err;
1962                         }
1963                         chip->read_buf = omap_read_buf_dma_pref;
1964                         chip->write_buf = omap_write_buf_dma_pref;
1965                 }
1966                 break;
1967
1968         case NAND_OMAP_PREFETCH_IRQ:
1969                 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1970                 if (info->gpmc_irq_fifo <= 0) {
1971                         dev_err(dev, "Error getting fifo IRQ\n");
1972                         return -ENODEV;
1973                 }
1974                 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1975                                        omap_nand_irq, IRQF_SHARED,
1976                                        "gpmc-nand-fifo", info);
1977                 if (err) {
1978                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1979                                 info->gpmc_irq_fifo, err);
1980                         info->gpmc_irq_fifo = 0;
1981                         return err;
1982                 }
1983
1984                 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1985                 if (info->gpmc_irq_count <= 0) {
1986                         dev_err(dev, "Error getting IRQ count\n");
1987                         return -ENODEV;
1988                 }
1989                 err = devm_request_irq(dev, info->gpmc_irq_count,
1990                                        omap_nand_irq, IRQF_SHARED,
1991                                        "gpmc-nand-count", info);
1992                 if (err) {
1993                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1994                                 info->gpmc_irq_count, err);
1995                         info->gpmc_irq_count = 0;
1996                         return err;
1997                 }
1998
1999                 chip->read_buf = omap_read_buf_irq_pref;
2000                 chip->write_buf = omap_write_buf_irq_pref;
2001
2002                 break;
2003
2004         default:
2005                 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2006                 return -EINVAL;
2007         }
2008
2009         if (!omap2_nand_ecc_check(info))
2010                 return -EINVAL;
2011
2012         /*
2013          * Bail out earlier to let NAND_ECC_SOFT code create its own
2014          * ooblayout instead of using ours.
2015          */
2016         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2017                 chip->ecc.mode = NAND_ECC_SOFT;
2018                 chip->ecc.algo = NAND_ECC_HAMMING;
2019                 return 0;
2020         }
2021
2022         /* Populate MTD interface based on ECC scheme */
2023         switch (info->ecc_opt) {
2024         case OMAP_ECC_HAM1_CODE_HW:
2025                 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2026                 chip->ecc.mode          = NAND_ECC_HW;
2027                 chip->ecc.bytes         = 3;
2028                 chip->ecc.size          = 512;
2029                 chip->ecc.strength      = 1;
2030                 chip->ecc.calculate     = omap_calculate_ecc;
2031                 chip->ecc.hwctl         = omap_enable_hwecc;
2032                 chip->ecc.correct       = omap_correct_data;
2033                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2034                 oobbytes_per_step       = chip->ecc.bytes;
2035
2036                 if (!(chip->options & NAND_BUSWIDTH_16))
2037                         min_oobbytes    = 1;
2038
2039                 break;
2040
2041         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2042                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2043                 chip->ecc.mode          = NAND_ECC_HW;
2044                 chip->ecc.size          = 512;
2045                 chip->ecc.bytes         = 7;
2046                 chip->ecc.strength      = 4;
2047                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2048                 chip->ecc.correct       = nand_bch_correct_data;
2049                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2050                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2051                 /* Reserve one byte for the OMAP marker */
2052                 oobbytes_per_step       = chip->ecc.bytes + 1;
2053                 /* Software BCH library is used for locating errors */
2054                 chip->ecc.priv          = nand_bch_init(mtd);
2055                 if (!chip->ecc.priv) {
2056                         dev_err(dev, "Unable to use BCH library\n");
2057                         return -EINVAL;
2058                 }
2059                 break;
2060
2061         case OMAP_ECC_BCH4_CODE_HW:
2062                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2063                 chip->ecc.mode          = NAND_ECC_HW;
2064                 chip->ecc.size          = 512;
2065                 /* 14th bit is kept reserved for ROM-code compatibility */
2066                 chip->ecc.bytes         = 7 + 1;
2067                 chip->ecc.strength      = 4;
2068                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2069                 chip->ecc.correct       = omap_elm_correct_data;
2070                 chip->ecc.read_page     = omap_read_page_bch;
2071                 chip->ecc.write_page    = omap_write_page_bch;
2072                 chip->ecc.write_subpage = omap_write_subpage_bch;
2073                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2074                 oobbytes_per_step       = chip->ecc.bytes;
2075
2076                 err = elm_config(info->elm_dev, BCH4_ECC,
2077                                  mtd->writesize / chip->ecc.size,
2078                                  chip->ecc.size, chip->ecc.bytes);
2079                 if (err < 0)
2080                         return err;
2081                 break;
2082
2083         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2084                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2085                 chip->ecc.mode          = NAND_ECC_HW;
2086                 chip->ecc.size          = 512;
2087                 chip->ecc.bytes         = 13;
2088                 chip->ecc.strength      = 8;
2089                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2090                 chip->ecc.correct       = nand_bch_correct_data;
2091                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2092                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2093                 /* Reserve one byte for the OMAP marker */
2094                 oobbytes_per_step       = chip->ecc.bytes + 1;
2095                 /* Software BCH library is used for locating errors */
2096                 chip->ecc.priv          = nand_bch_init(mtd);
2097                 if (!chip->ecc.priv) {
2098                         dev_err(dev, "unable to use BCH library\n");
2099                         return -EINVAL;
2100                 }
2101                 break;
2102
2103         case OMAP_ECC_BCH8_CODE_HW:
2104                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2105                 chip->ecc.mode          = NAND_ECC_HW;
2106                 chip->ecc.size          = 512;
2107                 /* 14th bit is kept reserved for ROM-code compatibility */
2108                 chip->ecc.bytes         = 13 + 1;
2109                 chip->ecc.strength      = 8;
2110                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2111                 chip->ecc.correct       = omap_elm_correct_data;
2112                 chip->ecc.read_page     = omap_read_page_bch;
2113                 chip->ecc.write_page    = omap_write_page_bch;
2114                 chip->ecc.write_subpage = omap_write_subpage_bch;
2115                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2116                 oobbytes_per_step       = chip->ecc.bytes;
2117
2118                 err = elm_config(info->elm_dev, BCH8_ECC,
2119                                  mtd->writesize / chip->ecc.size,
2120                                  chip->ecc.size, chip->ecc.bytes);
2121                 if (err < 0)
2122                         return err;
2123
2124                 break;
2125
2126         case OMAP_ECC_BCH16_CODE_HW:
2127                 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2128                 chip->ecc.mode          = NAND_ECC_HW;
2129                 chip->ecc.size          = 512;
2130                 chip->ecc.bytes         = 26;
2131                 chip->ecc.strength      = 16;
2132                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2133                 chip->ecc.correct       = omap_elm_correct_data;
2134                 chip->ecc.read_page     = omap_read_page_bch;
2135                 chip->ecc.write_page    = omap_write_page_bch;
2136                 chip->ecc.write_subpage = omap_write_subpage_bch;
2137                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2138                 oobbytes_per_step       = chip->ecc.bytes;
2139
2140                 err = elm_config(info->elm_dev, BCH16_ECC,
2141                                  mtd->writesize / chip->ecc.size,
2142                                  chip->ecc.size, chip->ecc.bytes);
2143                 if (err < 0)
2144                         return err;
2145
2146                 break;
2147         default:
2148                 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2149                 return -EINVAL;
2150         }
2151
2152         /* Check if NAND device's OOB is enough to store ECC signatures */
2153         min_oobbytes += (oobbytes_per_step *
2154                          (mtd->writesize / chip->ecc.size));
2155         if (mtd->oobsize < min_oobbytes) {
2156                 dev_err(dev,
2157                         "Not enough OOB bytes: required = %d, available=%d\n",
2158                         min_oobbytes, mtd->oobsize);
2159                 return -EINVAL;
2160         }
2161
2162         return 0;
2163 }
2164
2165 static const struct nand_controller_ops omap_nand_controller_ops = {
2166         .attach_chip = omap_nand_attach_chip,
2167 };
2168
2169 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2170 static struct nand_controller omap_gpmc_controller = {
2171         .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
2172         .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
2173         .ops = &omap_nand_controller_ops,
2174 };
2175
2176 static int omap_nand_probe(struct platform_device *pdev)
2177 {
2178         struct omap_nand_info           *info;
2179         struct mtd_info                 *mtd;
2180         struct nand_chip                *nand_chip;
2181         int                             err;
2182         struct resource                 *res;
2183         struct device                   *dev = &pdev->dev;
2184
2185         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2186                                 GFP_KERNEL);
2187         if (!info)
2188                 return -ENOMEM;
2189
2190         info->pdev = pdev;
2191
2192         err = omap_get_dt_info(dev, info);
2193         if (err)
2194                 return err;
2195
2196         info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2197         if (!info->ops) {
2198                 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2199                 return -ENODEV;
2200         }
2201
2202         nand_chip               = &info->nand;
2203         mtd                     = nand_to_mtd(nand_chip);
2204         mtd->dev.parent         = &pdev->dev;
2205         nand_chip->ecc.priv     = NULL;
2206         nand_set_flash_node(nand_chip, dev->of_node);
2207
2208         if (!mtd->name) {
2209                 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2210                                            "omap2-nand.%d", info->gpmc_cs);
2211                 if (!mtd->name) {
2212                         dev_err(&pdev->dev, "Failed to set MTD name\n");
2213                         return -ENOMEM;
2214                 }
2215         }
2216
2217         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2218         nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2219         if (IS_ERR(nand_chip->IO_ADDR_R))
2220                 return PTR_ERR(nand_chip->IO_ADDR_R);
2221
2222         info->phys_base = res->start;
2223
2224         nand_chip->controller = &omap_gpmc_controller;
2225
2226         nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
2227         nand_chip->cmd_ctrl  = omap_hwcontrol;
2228
2229         info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2230                                                     GPIOD_IN);
2231         if (IS_ERR(info->ready_gpiod)) {
2232                 dev_err(dev, "failed to get ready gpio\n");
2233                 return PTR_ERR(info->ready_gpiod);
2234         }
2235
2236         /*
2237          * If RDY/BSY line is connected to OMAP then use the omap ready
2238          * function and the generic nand_wait function which reads the status
2239          * register after monitoring the RDY/BSY line. Otherwise use a standard
2240          * chip delay which is slightly more than tR (AC Timing) of the NAND
2241          * device and read status register until you get a failure or success
2242          */
2243         if (info->ready_gpiod) {
2244                 nand_chip->dev_ready = omap_dev_ready;
2245                 nand_chip->chip_delay = 0;
2246         } else {
2247                 nand_chip->waitfunc = omap_wait;
2248                 nand_chip->chip_delay = 50;
2249         }
2250
2251         if (info->flash_bbt)
2252                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2253
2254         /* scan NAND device connected to chip controller */
2255         nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2256
2257         err = nand_scan(nand_chip, 1);
2258         if (err)
2259                 goto return_error;
2260
2261         err = mtd_device_register(mtd, NULL, 0);
2262         if (err)
2263                 goto cleanup_nand;
2264
2265         platform_set_drvdata(pdev, mtd);
2266
2267         return 0;
2268
2269 cleanup_nand:
2270         nand_cleanup(nand_chip);
2271
2272 return_error:
2273         if (!IS_ERR_OR_NULL(info->dma))
2274                 dma_release_channel(info->dma);
2275         if (nand_chip->ecc.priv) {
2276                 nand_bch_free(nand_chip->ecc.priv);
2277                 nand_chip->ecc.priv = NULL;
2278         }
2279         return err;
2280 }
2281
2282 static int omap_nand_remove(struct platform_device *pdev)
2283 {
2284         struct mtd_info *mtd = platform_get_drvdata(pdev);
2285         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2286         struct omap_nand_info *info = mtd_to_omap(mtd);
2287         if (nand_chip->ecc.priv) {
2288                 nand_bch_free(nand_chip->ecc.priv);
2289                 nand_chip->ecc.priv = NULL;
2290         }
2291         if (info->dma)
2292                 dma_release_channel(info->dma);
2293         nand_release(nand_chip);
2294         return 0;
2295 }
2296
2297 static const struct of_device_id omap_nand_ids[] = {
2298         { .compatible = "ti,omap2-nand", },
2299         {},
2300 };
2301 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2302
2303 static struct platform_driver omap_nand_driver = {
2304         .probe          = omap_nand_probe,
2305         .remove         = omap_nand_remove,
2306         .driver         = {
2307                 .name   = DRIVER_NAME,
2308                 .of_match_table = of_match_ptr(omap_nand_ids),
2309         },
2310 };
2311
2312 module_platform_driver(omap_nand_driver);
2313
2314 MODULE_ALIAS("platform:" DRIVER_NAME);
2315 MODULE_LICENSE("GPL");
2316 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");