GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / mtd / nand / raw / omap2.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
4  * Copyright © 2004 Micron Technology Inc.
5  * Copyright © 2004 David Brownell
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/omap-dma.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25
26 #include <linux/mtd/nand_bch.h>
27 #include <linux/platform_data/elm.h>
28
29 #include <linux/omap-gpmc.h>
30 #include <linux/platform_data/mtd-nand-omap2.h>
31
32 #define DRIVER_NAME     "omap2-nand"
33 #define OMAP_NAND_TIMEOUT_MS    5000
34
35 #define NAND_Ecc_P1e            (1 << 0)
36 #define NAND_Ecc_P2e            (1 << 1)
37 #define NAND_Ecc_P4e            (1 << 2)
38 #define NAND_Ecc_P8e            (1 << 3)
39 #define NAND_Ecc_P16e           (1 << 4)
40 #define NAND_Ecc_P32e           (1 << 5)
41 #define NAND_Ecc_P64e           (1 << 6)
42 #define NAND_Ecc_P128e          (1 << 7)
43 #define NAND_Ecc_P256e          (1 << 8)
44 #define NAND_Ecc_P512e          (1 << 9)
45 #define NAND_Ecc_P1024e         (1 << 10)
46 #define NAND_Ecc_P2048e         (1 << 11)
47
48 #define NAND_Ecc_P1o            (1 << 16)
49 #define NAND_Ecc_P2o            (1 << 17)
50 #define NAND_Ecc_P4o            (1 << 18)
51 #define NAND_Ecc_P8o            (1 << 19)
52 #define NAND_Ecc_P16o           (1 << 20)
53 #define NAND_Ecc_P32o           (1 << 21)
54 #define NAND_Ecc_P64o           (1 << 22)
55 #define NAND_Ecc_P128o          (1 << 23)
56 #define NAND_Ecc_P256o          (1 << 24)
57 #define NAND_Ecc_P512o          (1 << 25)
58 #define NAND_Ecc_P1024o         (1 << 26)
59 #define NAND_Ecc_P2048o         (1 << 27)
60
61 #define TF(value)       (value ? 1 : 0)
62
63 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
64 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
65 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
66 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
67 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
68 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
69 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
70 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
71
72 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
73 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
74 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
75 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
76 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
77 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
78 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
79 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
80
81 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
82 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
83 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
84 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
85 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
86 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
87 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
88 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
89
90 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
91 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
92 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
93 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
94 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
95 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
96 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
97 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
98
99 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
100 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
101
102 #define PREFETCH_CONFIG1_CS_SHIFT       24
103 #define ECC_CONFIG_CS_SHIFT             1
104 #define CS_MASK                         0x7
105 #define ENABLE_PREFETCH                 (0x1 << 7)
106 #define DMA_MPU_MODE_SHIFT              2
107 #define ECCSIZE0_SHIFT                  12
108 #define ECCSIZE1_SHIFT                  22
109 #define ECC1RESULTSIZE                  0x1
110 #define ECCCLEAR                        0x100
111 #define ECC1                            0x1
112 #define PREFETCH_FIFOTHRESHOLD_MAX      0x40
113 #define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
114 #define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
115 #define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
116 #define STATUS_BUFF_EMPTY               0x00000001
117
118 #define SECTOR_BYTES            512
119 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
120 #define BCH4_BIT_PAD            4
121
122 /* GPMC ecc engine settings for read */
123 #define BCH_WRAPMODE_1          1       /* BCH wrap mode 1 */
124 #define BCH8R_ECC_SIZE0         0x1a    /* ecc_size0 = 26 */
125 #define BCH8R_ECC_SIZE1         0x2     /* ecc_size1 = 2 */
126 #define BCH4R_ECC_SIZE0         0xd     /* ecc_size0 = 13 */
127 #define BCH4R_ECC_SIZE1         0x3     /* ecc_size1 = 3 */
128
129 /* GPMC ecc engine settings for write */
130 #define BCH_WRAPMODE_6          6       /* BCH wrap mode 6 */
131 #define BCH_ECC_SIZE0           0x0     /* ecc_size0 = 0, no oob protection */
132 #define BCH_ECC_SIZE1           0x20    /* ecc_size1 = 32 */
133
134 #define BADBLOCK_MARKER_LENGTH          2
135
136 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
137                                 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
138                                 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
139                                 0x07, 0x0e};
140 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
141         0xac, 0x6b, 0xff, 0x99, 0x7b};
142 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
143
144 struct omap_nand_info {
145         struct nand_chip                nand;
146         struct platform_device          *pdev;
147
148         int                             gpmc_cs;
149         bool                            dev_ready;
150         enum nand_io                    xfer_type;
151         int                             devsize;
152         enum omap_ecc                   ecc_opt;
153         struct device_node              *elm_of_node;
154
155         unsigned long                   phys_base;
156         struct completion               comp;
157         struct dma_chan                 *dma;
158         int                             gpmc_irq_fifo;
159         int                             gpmc_irq_count;
160         enum {
161                 OMAP_NAND_IO_READ = 0,  /* read */
162                 OMAP_NAND_IO_WRITE,     /* write */
163         } iomode;
164         u_char                          *buf;
165         int                                     buf_len;
166         /* Interface to GPMC */
167         struct gpmc_nand_regs           reg;
168         struct gpmc_nand_ops            *ops;
169         bool                            flash_bbt;
170         /* fields specific for BCHx_HW ECC scheme */
171         struct device                   *elm_dev;
172         /* NAND ready gpio */
173         struct gpio_desc                *ready_gpiod;
174 };
175
176 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
177 {
178         return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
179 }
180
181 /**
182  * omap_prefetch_enable - configures and starts prefetch transfer
183  * @cs: cs (chip select) number
184  * @fifo_th: fifo threshold to be used for read/ write
185  * @dma_mode: dma mode enable (1) or disable (0)
186  * @u32_count: number of bytes to be transferred
187  * @is_write: prefetch read(0) or write post(1) mode
188  */
189 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
190         unsigned int u32_count, int is_write, struct omap_nand_info *info)
191 {
192         u32 val;
193
194         if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
195                 return -1;
196
197         if (readl(info->reg.gpmc_prefetch_control))
198                 return -EBUSY;
199
200         /* Set the amount of bytes to be prefetched */
201         writel(u32_count, info->reg.gpmc_prefetch_config2);
202
203         /* Set dma/mpu mode, the prefetch read / post write and
204          * enable the engine. Set which cs is has requested for.
205          */
206         val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
207                 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
208                 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
209         writel(val, info->reg.gpmc_prefetch_config1);
210
211         /*  Start the prefetch engine */
212         writel(0x1, info->reg.gpmc_prefetch_control);
213
214         return 0;
215 }
216
217 /**
218  * omap_prefetch_reset - disables and stops the prefetch engine
219  */
220 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
221 {
222         u32 config1;
223
224         /* check if the same module/cs is trying to reset */
225         config1 = readl(info->reg.gpmc_prefetch_config1);
226         if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
227                 return -EINVAL;
228
229         /* Stop the PFPW engine */
230         writel(0x0, info->reg.gpmc_prefetch_control);
231
232         /* Reset/disable the PFPW engine */
233         writel(0x0, info->reg.gpmc_prefetch_config1);
234
235         return 0;
236 }
237
238 /**
239  * omap_hwcontrol - hardware specific access to control-lines
240  * @chip: NAND chip object
241  * @cmd: command to device
242  * @ctrl:
243  * NAND_NCE: bit 0 -> don't care
244  * NAND_CLE: bit 1 -> Command Latch
245  * NAND_ALE: bit 2 -> Address Latch
246  *
247  * NOTE: boards may use different bits for these!!
248  */
249 static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
250 {
251         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
252
253         if (cmd != NAND_CMD_NONE) {
254                 if (ctrl & NAND_CLE)
255                         writeb(cmd, info->reg.gpmc_nand_command);
256
257                 else if (ctrl & NAND_ALE)
258                         writeb(cmd, info->reg.gpmc_nand_address);
259
260                 else /* NAND_NCE */
261                         writeb(cmd, info->reg.gpmc_nand_data);
262         }
263 }
264
265 /**
266  * omap_read_buf8 - read data from NAND controller into buffer
267  * @mtd: MTD device structure
268  * @buf: buffer to store date
269  * @len: number of bytes to read
270  */
271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
272 {
273         struct nand_chip *nand = mtd_to_nand(mtd);
274
275         ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
276 }
277
278 /**
279  * omap_write_buf8 - write buffer to NAND controller
280  * @mtd: MTD device structure
281  * @buf: data buffer
282  * @len: number of bytes to write
283  */
284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
285 {
286         struct omap_nand_info *info = mtd_to_omap(mtd);
287         u_char *p = (u_char *)buf;
288         bool status;
289
290         while (len--) {
291                 iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
292                 /* wait until buffer is available for write */
293                 do {
294                         status = info->ops->nand_writebuffer_empty();
295                 } while (!status);
296         }
297 }
298
299 /**
300  * omap_read_buf16 - read data from NAND controller into buffer
301  * @mtd: MTD device structure
302  * @buf: buffer to store date
303  * @len: number of bytes to read
304  */
305 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
306 {
307         struct nand_chip *nand = mtd_to_nand(mtd);
308
309         ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
310 }
311
312 /**
313  * omap_write_buf16 - write buffer to NAND controller
314  * @mtd: MTD device structure
315  * @buf: data buffer
316  * @len: number of bytes to write
317  */
318 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
319 {
320         struct omap_nand_info *info = mtd_to_omap(mtd);
321         u16 *p = (u16 *) buf;
322         bool status;
323         /* FIXME try bursts of writesw() or DMA ... */
324         len >>= 1;
325
326         while (len--) {
327                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
328                 /* wait until buffer is available for write */
329                 do {
330                         status = info->ops->nand_writebuffer_empty();
331                 } while (!status);
332         }
333 }
334
335 /**
336  * omap_read_buf_pref - read data from NAND controller into buffer
337  * @chip: NAND chip object
338  * @buf: buffer to store date
339  * @len: number of bytes to read
340  */
341 static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
342 {
343         struct mtd_info *mtd = nand_to_mtd(chip);
344         struct omap_nand_info *info = mtd_to_omap(mtd);
345         uint32_t r_count = 0;
346         int ret = 0;
347         u32 *p = (u32 *)buf;
348
349         /* take care of subpage reads */
350         if (len % 4) {
351                 if (info->nand.options & NAND_BUSWIDTH_16)
352                         omap_read_buf16(mtd, buf, len % 4);
353                 else
354                         omap_read_buf8(mtd, buf, len % 4);
355                 p = (u32 *) (buf + len % 4);
356                 len -= len % 4;
357         }
358
359         /* configure and start prefetch transfer */
360         ret = omap_prefetch_enable(info->gpmc_cs,
361                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
362         if (ret) {
363                 /* PFPW engine is busy, use cpu copy method */
364                 if (info->nand.options & NAND_BUSWIDTH_16)
365                         omap_read_buf16(mtd, (u_char *)p, len);
366                 else
367                         omap_read_buf8(mtd, (u_char *)p, len);
368         } else {
369                 do {
370                         r_count = readl(info->reg.gpmc_prefetch_status);
371                         r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
372                         r_count = r_count >> 2;
373                         ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
374                         p += r_count;
375                         len -= r_count << 2;
376                 } while (len);
377                 /* disable and stop the PFPW engine */
378                 omap_prefetch_reset(info->gpmc_cs, info);
379         }
380 }
381
382 /**
383  * omap_write_buf_pref - write buffer to NAND controller
384  * @chip: NAND chip object
385  * @buf: data buffer
386  * @len: number of bytes to write
387  */
388 static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
389                                 int len)
390 {
391         struct mtd_info *mtd = nand_to_mtd(chip);
392         struct omap_nand_info *info = mtd_to_omap(mtd);
393         uint32_t w_count = 0;
394         int i = 0, ret = 0;
395         u16 *p = (u16 *)buf;
396         unsigned long tim, limit;
397         u32 val;
398
399         /* take care of subpage writes */
400         if (len % 2 != 0) {
401                 writeb(*buf, info->nand.legacy.IO_ADDR_W);
402                 p = (u16 *)(buf + 1);
403                 len--;
404         }
405
406         /*  configure and start prefetch transfer */
407         ret = omap_prefetch_enable(info->gpmc_cs,
408                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
409         if (ret) {
410                 /* PFPW engine is busy, use cpu copy method */
411                 if (info->nand.options & NAND_BUSWIDTH_16)
412                         omap_write_buf16(mtd, (u_char *)p, len);
413                 else
414                         omap_write_buf8(mtd, (u_char *)p, len);
415         } else {
416                 while (len) {
417                         w_count = readl(info->reg.gpmc_prefetch_status);
418                         w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
419                         w_count = w_count >> 1;
420                         for (i = 0; (i < w_count) && len; i++, len -= 2)
421                                 iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
422                 }
423                 /* wait for data to flushed-out before reset the prefetch */
424                 tim = 0;
425                 limit = (loops_per_jiffy *
426                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
427                 do {
428                         cpu_relax();
429                         val = readl(info->reg.gpmc_prefetch_status);
430                         val = PREFETCH_STATUS_COUNT(val);
431                 } while (val && (tim++ < limit));
432
433                 /* disable and stop the PFPW engine */
434                 omap_prefetch_reset(info->gpmc_cs, info);
435         }
436 }
437
438 /*
439  * omap_nand_dma_callback: callback on the completion of dma transfer
440  * @data: pointer to completion data structure
441  */
442 static void omap_nand_dma_callback(void *data)
443 {
444         complete((struct completion *) data);
445 }
446
447 /*
448  * omap_nand_dma_transfer: configure and start dma transfer
449  * @mtd: MTD device structure
450  * @addr: virtual address in RAM of source/destination
451  * @len: number of data bytes to be transferred
452  * @is_write: flag for read/write operation
453  */
454 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
455                                         unsigned int len, int is_write)
456 {
457         struct omap_nand_info *info = mtd_to_omap(mtd);
458         struct dma_async_tx_descriptor *tx;
459         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
460                                                         DMA_FROM_DEVICE;
461         struct scatterlist sg;
462         unsigned long tim, limit;
463         unsigned n;
464         int ret;
465         u32 val;
466
467         if (!virt_addr_valid(addr))
468                 goto out_copy;
469
470         sg_init_one(&sg, addr, len);
471         n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
472         if (n == 0) {
473                 dev_err(&info->pdev->dev,
474                         "Couldn't DMA map a %d byte buffer\n", len);
475                 goto out_copy;
476         }
477
478         tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
479                 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
480                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
481         if (!tx)
482                 goto out_copy_unmap;
483
484         tx->callback = omap_nand_dma_callback;
485         tx->callback_param = &info->comp;
486         dmaengine_submit(tx);
487
488         init_completion(&info->comp);
489
490         /* setup and start DMA using dma_addr */
491         dma_async_issue_pending(info->dma);
492
493         /*  configure and start prefetch transfer */
494         ret = omap_prefetch_enable(info->gpmc_cs,
495                 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
496         if (ret)
497                 /* PFPW engine is busy, use cpu copy method */
498                 goto out_copy_unmap;
499
500         wait_for_completion(&info->comp);
501         tim = 0;
502         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
503
504         do {
505                 cpu_relax();
506                 val = readl(info->reg.gpmc_prefetch_status);
507                 val = PREFETCH_STATUS_COUNT(val);
508         } while (val && (tim++ < limit));
509
510         /* disable and stop the PFPW engine */
511         omap_prefetch_reset(info->gpmc_cs, info);
512
513         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
514         return 0;
515
516 out_copy_unmap:
517         dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
518 out_copy:
519         if (info->nand.options & NAND_BUSWIDTH_16)
520                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
521                         : omap_write_buf16(mtd, (u_char *) addr, len);
522         else
523                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
524                         : omap_write_buf8(mtd, (u_char *) addr, len);
525         return 0;
526 }
527
528 /**
529  * omap_read_buf_dma_pref - read data from NAND controller into buffer
530  * @chip: NAND chip object
531  * @buf: buffer to store date
532  * @len: number of bytes to read
533  */
534 static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
535                                    int len)
536 {
537         struct mtd_info *mtd = nand_to_mtd(chip);
538
539         if (len <= mtd->oobsize)
540                 omap_read_buf_pref(chip, buf, len);
541         else
542                 /* start transfer in DMA mode */
543                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
544 }
545
546 /**
547  * omap_write_buf_dma_pref - write buffer to NAND controller
548  * @chip: NAND chip object
549  * @buf: data buffer
550  * @len: number of bytes to write
551  */
552 static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
553                                     int len)
554 {
555         struct mtd_info *mtd = nand_to_mtd(chip);
556
557         if (len <= mtd->oobsize)
558                 omap_write_buf_pref(chip, buf, len);
559         else
560                 /* start transfer in DMA mode */
561                 omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
562 }
563
564 /*
565  * omap_nand_irq - GPMC irq handler
566  * @this_irq: gpmc irq number
567  * @dev: omap_nand_info structure pointer is passed here
568  */
569 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
570 {
571         struct omap_nand_info *info = (struct omap_nand_info *) dev;
572         u32 bytes;
573
574         bytes = readl(info->reg.gpmc_prefetch_status);
575         bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
576         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
577         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
578                 if (this_irq == info->gpmc_irq_count)
579                         goto done;
580
581                 if (info->buf_len && (info->buf_len < bytes))
582                         bytes = info->buf_len;
583                 else if (!info->buf_len)
584                         bytes = 0;
585                 iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
586                               bytes >> 2);
587                 info->buf = info->buf + bytes;
588                 info->buf_len -= bytes;
589
590         } else {
591                 ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
592                              bytes >> 2);
593                 info->buf = info->buf + bytes;
594
595                 if (this_irq == info->gpmc_irq_count)
596                         goto done;
597         }
598
599         return IRQ_HANDLED;
600
601 done:
602         complete(&info->comp);
603
604         disable_irq_nosync(info->gpmc_irq_fifo);
605         disable_irq_nosync(info->gpmc_irq_count);
606
607         return IRQ_HANDLED;
608 }
609
610 /*
611  * omap_read_buf_irq_pref - read data from NAND controller into buffer
612  * @chip: NAND chip object
613  * @buf: buffer to store date
614  * @len: number of bytes to read
615  */
616 static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
617                                    int len)
618 {
619         struct mtd_info *mtd = nand_to_mtd(chip);
620         struct omap_nand_info *info = mtd_to_omap(mtd);
621         int ret = 0;
622
623         if (len <= mtd->oobsize) {
624                 omap_read_buf_pref(chip, buf, len);
625                 return;
626         }
627
628         info->iomode = OMAP_NAND_IO_READ;
629         info->buf = buf;
630         init_completion(&info->comp);
631
632         /*  configure and start prefetch transfer */
633         ret = omap_prefetch_enable(info->gpmc_cs,
634                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
635         if (ret)
636                 /* PFPW engine is busy, use cpu copy method */
637                 goto out_copy;
638
639         info->buf_len = len;
640
641         enable_irq(info->gpmc_irq_count);
642         enable_irq(info->gpmc_irq_fifo);
643
644         /* waiting for read to complete */
645         wait_for_completion(&info->comp);
646
647         /* disable and stop the PFPW engine */
648         omap_prefetch_reset(info->gpmc_cs, info);
649         return;
650
651 out_copy:
652         if (info->nand.options & NAND_BUSWIDTH_16)
653                 omap_read_buf16(mtd, buf, len);
654         else
655                 omap_read_buf8(mtd, buf, len);
656 }
657
658 /*
659  * omap_write_buf_irq_pref - write buffer to NAND controller
660  * @chip: NAND chip object
661  * @buf: data buffer
662  * @len: number of bytes to write
663  */
664 static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
665                                     int len)
666 {
667         struct mtd_info *mtd = nand_to_mtd(chip);
668         struct omap_nand_info *info = mtd_to_omap(mtd);
669         int ret = 0;
670         unsigned long tim, limit;
671         u32 val;
672
673         if (len <= mtd->oobsize) {
674                 omap_write_buf_pref(chip, buf, len);
675                 return;
676         }
677
678         info->iomode = OMAP_NAND_IO_WRITE;
679         info->buf = (u_char *) buf;
680         init_completion(&info->comp);
681
682         /* configure and start prefetch transfer : size=24 */
683         ret = omap_prefetch_enable(info->gpmc_cs,
684                 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
685         if (ret)
686                 /* PFPW engine is busy, use cpu copy method */
687                 goto out_copy;
688
689         info->buf_len = len;
690
691         enable_irq(info->gpmc_irq_count);
692         enable_irq(info->gpmc_irq_fifo);
693
694         /* waiting for write to complete */
695         wait_for_completion(&info->comp);
696
697         /* wait for data to flushed-out before reset the prefetch */
698         tim = 0;
699         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
700         do {
701                 val = readl(info->reg.gpmc_prefetch_status);
702                 val = PREFETCH_STATUS_COUNT(val);
703                 cpu_relax();
704         } while (val && (tim++ < limit));
705
706         /* disable and stop the PFPW engine */
707         omap_prefetch_reset(info->gpmc_cs, info);
708         return;
709
710 out_copy:
711         if (info->nand.options & NAND_BUSWIDTH_16)
712                 omap_write_buf16(mtd, buf, len);
713         else
714                 omap_write_buf8(mtd, buf, len);
715 }
716
717 /**
718  * gen_true_ecc - This function will generate true ECC value
719  * @ecc_buf: buffer to store ecc code
720  *
721  * This generated true ECC value can be used when correcting
722  * data read from NAND flash memory core
723  */
724 static void gen_true_ecc(u8 *ecc_buf)
725 {
726         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
727                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
728
729         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
730                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
731         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
732                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
733         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
734                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
735 }
736
737 /**
738  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
739  * @ecc_data1:  ecc code from nand spare area
740  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
741  * @page_data:  page data
742  *
743  * This function compares two ECC's and indicates if there is an error.
744  * If the error can be corrected it will be corrected to the buffer.
745  * If there is no error, %0 is returned. If there is an error but it
746  * was corrected, %1 is returned. Otherwise, %-1 is returned.
747  */
748 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
749                             u8 *ecc_data2,      /* read from register */
750                             u8 *page_data)
751 {
752         uint    i;
753         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
754         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
755         u8      ecc_bit[24];
756         u8      ecc_sum = 0;
757         u8      find_bit = 0;
758         uint    find_byte = 0;
759         int     isEccFF;
760
761         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
762
763         gen_true_ecc(ecc_data1);
764         gen_true_ecc(ecc_data2);
765
766         for (i = 0; i <= 2; i++) {
767                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
768                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
769         }
770
771         for (i = 0; i < 8; i++) {
772                 tmp0_bit[i]     = *ecc_data1 % 2;
773                 *ecc_data1      = *ecc_data1 / 2;
774         }
775
776         for (i = 0; i < 8; i++) {
777                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
778                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
779         }
780
781         for (i = 0; i < 8; i++) {
782                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
783                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
784         }
785
786         for (i = 0; i < 8; i++) {
787                 comp0_bit[i]     = *ecc_data2 % 2;
788                 *ecc_data2       = *ecc_data2 / 2;
789         }
790
791         for (i = 0; i < 8; i++) {
792                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
793                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
794         }
795
796         for (i = 0; i < 8; i++) {
797                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
798                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
799         }
800
801         for (i = 0; i < 6; i++)
802                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
803
804         for (i = 0; i < 8; i++)
805                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
806
807         for (i = 0; i < 8; i++)
808                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
809
810         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
811         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
812
813         for (i = 0; i < 24; i++)
814                 ecc_sum += ecc_bit[i];
815
816         switch (ecc_sum) {
817         case 0:
818                 /* Not reached because this function is not called if
819                  *  ECC values are equal
820                  */
821                 return 0;
822
823         case 1:
824                 /* Uncorrectable error */
825                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
826                 return -EBADMSG;
827
828         case 11:
829                 /* UN-Correctable error */
830                 pr_debug("ECC UNCORRECTED_ERROR B\n");
831                 return -EBADMSG;
832
833         case 12:
834                 /* Correctable error */
835                 find_byte = (ecc_bit[23] << 8) +
836                             (ecc_bit[21] << 7) +
837                             (ecc_bit[19] << 6) +
838                             (ecc_bit[17] << 5) +
839                             (ecc_bit[15] << 4) +
840                             (ecc_bit[13] << 3) +
841                             (ecc_bit[11] << 2) +
842                             (ecc_bit[9]  << 1) +
843                             ecc_bit[7];
844
845                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
846
847                 pr_debug("Correcting single bit ECC error at offset: "
848                                 "%d, bit: %d\n", find_byte, find_bit);
849
850                 page_data[find_byte] ^= (1 << find_bit);
851
852                 return 1;
853         default:
854                 if (isEccFF) {
855                         if (ecc_data2[0] == 0 &&
856                             ecc_data2[1] == 0 &&
857                             ecc_data2[2] == 0)
858                                 return 0;
859                 }
860                 pr_debug("UNCORRECTED_ERROR default\n");
861                 return -EBADMSG;
862         }
863 }
864
865 /**
866  * omap_correct_data - Compares the ECC read with HW generated ECC
867  * @chip: NAND chip object
868  * @dat: page data
869  * @read_ecc: ecc read from nand flash
870  * @calc_ecc: ecc read from HW ECC registers
871  *
872  * Compares the ecc read from nand spare area with ECC registers values
873  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
874  * detection and correction. If there are no errors, %0 is returned. If
875  * there were errors and all of the errors were corrected, the number of
876  * corrected errors is returned. If uncorrectable errors exist, %-1 is
877  * returned.
878  */
879 static int omap_correct_data(struct nand_chip *chip, u_char *dat,
880                              u_char *read_ecc, u_char *calc_ecc)
881 {
882         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
883         int blockCnt = 0, i = 0, ret = 0;
884         int stat = 0;
885
886         /* Ex NAND_ECC_HW12_2048 */
887         if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
888             info->nand.ecc.size == 2048)
889                 blockCnt = 4;
890         else
891                 blockCnt = 1;
892
893         for (i = 0; i < blockCnt; i++) {
894                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
895                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
896                         if (ret < 0)
897                                 return ret;
898                         /* keep track of the number of corrected errors */
899                         stat += ret;
900                 }
901                 read_ecc += 3;
902                 calc_ecc += 3;
903                 dat      += 512;
904         }
905         return stat;
906 }
907
908 /**
909  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
910  * @chip: NAND chip object
911  * @dat: The pointer to data on which ecc is computed
912  * @ecc_code: The ecc_code buffer
913  *
914  * Using noninverted ECC can be considered ugly since writing a blank
915  * page ie. padding will clear the ECC bytes. This is no problem as long
916  * nobody is trying to write data on the seemingly unused page. Reading
917  * an erased page will produce an ECC mismatch between generated and read
918  * ECC bytes that has to be dealt with separately.
919  */
920 static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
921                               u_char *ecc_code)
922 {
923         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
924         u32 val;
925
926         val = readl(info->reg.gpmc_ecc_config);
927         if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
928                 return -EINVAL;
929
930         /* read ecc result */
931         val = readl(info->reg.gpmc_ecc1_result);
932         *ecc_code++ = val;          /* P128e, ..., P1e */
933         *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
934         /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
935         *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
936
937         return 0;
938 }
939
940 /**
941  * omap_enable_hwecc - This function enables the hardware ecc functionality
942  * @mtd: MTD device structure
943  * @mode: Read/Write mode
944  */
945 static void omap_enable_hwecc(struct nand_chip *chip, int mode)
946 {
947         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
948         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
949         u32 val;
950
951         /* clear ecc and enable bits */
952         val = ECCCLEAR | ECC1;
953         writel(val, info->reg.gpmc_ecc_control);
954
955         /* program ecc and result sizes */
956         val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
957                          ECC1RESULTSIZE);
958         writel(val, info->reg.gpmc_ecc_size_config);
959
960         switch (mode) {
961         case NAND_ECC_READ:
962         case NAND_ECC_WRITE:
963                 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
964                 break;
965         case NAND_ECC_READSYN:
966                 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
967                 break;
968         default:
969                 dev_info(&info->pdev->dev,
970                         "error: unrecognized Mode[%d]!\n", mode);
971                 break;
972         }
973
974         /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
975         val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
976         writel(val, info->reg.gpmc_ecc_config);
977 }
978
979 /**
980  * omap_wait - wait until the command is done
981  * @this: NAND Chip structure
982  *
983  * Wait function is called during Program and erase operations and
984  * the way it is called from MTD layer, we should wait till the NAND
985  * chip is ready after the programming/erase operation has completed.
986  *
987  * Erase can take up to 400ms and program up to 20ms according to
988  * general NAND and SmartMedia specs
989  */
990 static int omap_wait(struct nand_chip *this)
991 {
992         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
993         unsigned long timeo = jiffies;
994         int status;
995
996         timeo += msecs_to_jiffies(400);
997
998         writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
999         while (time_before(jiffies, timeo)) {
1000                 status = readb(info->reg.gpmc_nand_data);
1001                 if (status & NAND_STATUS_READY)
1002                         break;
1003                 cond_resched();
1004         }
1005
1006         status = readb(info->reg.gpmc_nand_data);
1007         return status;
1008 }
1009
1010 /**
1011  * omap_dev_ready - checks the NAND Ready GPIO line
1012  * @mtd: MTD device structure
1013  *
1014  * Returns true if ready and false if busy.
1015  */
1016 static int omap_dev_ready(struct nand_chip *chip)
1017 {
1018         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1019
1020         return gpiod_get_value(info->ready_gpiod);
1021 }
1022
1023 /**
1024  * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1025  * @mtd: MTD device structure
1026  * @mode: Read/Write mode
1027  *
1028  * When using BCH with SW correction (i.e. no ELM), sector size is set
1029  * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1030  * for both reading and writing with:
1031  * eccsize0 = 0  (no additional protected byte in spare area)
1032  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1033  */
1034 static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
1035                                                  int mode)
1036 {
1037         unsigned int bch_type;
1038         unsigned int dev_width, nsectors;
1039         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1040         enum omap_ecc ecc_opt = info->ecc_opt;
1041         u32 val, wr_mode;
1042         unsigned int ecc_size1, ecc_size0;
1043
1044         /* GPMC configurations for calculating ECC */
1045         switch (ecc_opt) {
1046         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1047                 bch_type = 0;
1048                 nsectors = 1;
1049                 wr_mode   = BCH_WRAPMODE_6;
1050                 ecc_size0 = BCH_ECC_SIZE0;
1051                 ecc_size1 = BCH_ECC_SIZE1;
1052                 break;
1053         case OMAP_ECC_BCH4_CODE_HW:
1054                 bch_type = 0;
1055                 nsectors = chip->ecc.steps;
1056                 if (mode == NAND_ECC_READ) {
1057                         wr_mode   = BCH_WRAPMODE_1;
1058                         ecc_size0 = BCH4R_ECC_SIZE0;
1059                         ecc_size1 = BCH4R_ECC_SIZE1;
1060                 } else {
1061                         wr_mode   = BCH_WRAPMODE_6;
1062                         ecc_size0 = BCH_ECC_SIZE0;
1063                         ecc_size1 = BCH_ECC_SIZE1;
1064                 }
1065                 break;
1066         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1067                 bch_type = 1;
1068                 nsectors = 1;
1069                 wr_mode   = BCH_WRAPMODE_6;
1070                 ecc_size0 = BCH_ECC_SIZE0;
1071                 ecc_size1 = BCH_ECC_SIZE1;
1072                 break;
1073         case OMAP_ECC_BCH8_CODE_HW:
1074                 bch_type = 1;
1075                 nsectors = chip->ecc.steps;
1076                 if (mode == NAND_ECC_READ) {
1077                         wr_mode   = BCH_WRAPMODE_1;
1078                         ecc_size0 = BCH8R_ECC_SIZE0;
1079                         ecc_size1 = BCH8R_ECC_SIZE1;
1080                 } else {
1081                         wr_mode   = BCH_WRAPMODE_6;
1082                         ecc_size0 = BCH_ECC_SIZE0;
1083                         ecc_size1 = BCH_ECC_SIZE1;
1084                 }
1085                 break;
1086         case OMAP_ECC_BCH16_CODE_HW:
1087                 bch_type = 0x2;
1088                 nsectors = chip->ecc.steps;
1089                 if (mode == NAND_ECC_READ) {
1090                         wr_mode   = 0x01;
1091                         ecc_size0 = 52; /* ECC bits in nibbles per sector */
1092                         ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
1093                 } else {
1094                         wr_mode   = 0x01;
1095                         ecc_size0 = 0;  /* extra bits in nibbles per sector */
1096                         ecc_size1 = 52; /* OOB bits in nibbles per sector */
1097                 }
1098                 break;
1099         default:
1100                 return;
1101         }
1102
1103         writel(ECC1, info->reg.gpmc_ecc_control);
1104
1105         /* Configure ecc size for BCH */
1106         val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1107         writel(val, info->reg.gpmc_ecc_size_config);
1108
1109         dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1110
1111         /* BCH configuration */
1112         val = ((1                        << 16) | /* enable BCH */
1113                (bch_type                 << 12) | /* BCH4/BCH8/BCH16 */
1114                (wr_mode                  <<  8) | /* wrap mode */
1115                (dev_width                <<  7) | /* bus width */
1116                (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
1117                (info->gpmc_cs            <<  1) | /* ECC CS */
1118                (0x1));                            /* enable ECC */
1119
1120         writel(val, info->reg.gpmc_ecc_config);
1121
1122         /* Clear ecc and enable bits */
1123         writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1124 }
1125
1126 static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1127 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1128                                 0x97, 0x79, 0xe5, 0x24, 0xb5};
1129
1130 /**
1131  * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1132  * @mtd:        MTD device structure
1133  * @dat:        The pointer to data on which ecc is computed
1134  * @ecc_code:   The ecc_code buffer
1135  * @i:          The sector number (for a multi sector page)
1136  *
1137  * Support calculating of BCH4/8/16 ECC vectors for one sector
1138  * within a page. Sector number is in @i.
1139  */
1140 static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1141                                    const u_char *dat, u_char *ecc_calc, int i)
1142 {
1143         struct omap_nand_info *info = mtd_to_omap(mtd);
1144         int eccbytes    = info->nand.ecc.bytes;
1145         struct gpmc_nand_regs   *gpmc_regs = &info->reg;
1146         u8 *ecc_code;
1147         unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1148         u32 val;
1149         int j;
1150
1151         ecc_code = ecc_calc;
1152         switch (info->ecc_opt) {
1153         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1154         case OMAP_ECC_BCH8_CODE_HW:
1155                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1156                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1157                 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1158                 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1159                 *ecc_code++ = (bch_val4 & 0xFF);
1160                 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1161                 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1162                 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1163                 *ecc_code++ = (bch_val3 & 0xFF);
1164                 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1165                 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1166                 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1167                 *ecc_code++ = (bch_val2 & 0xFF);
1168                 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1169                 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1170                 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1171                 *ecc_code++ = (bch_val1 & 0xFF);
1172                 break;
1173         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1174         case OMAP_ECC_BCH4_CODE_HW:
1175                 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1176                 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1177                 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1178                 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1179                 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1180                         ((bch_val1 >> 28) & 0xF);
1181                 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1182                 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1183                 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1184                 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1185                 break;
1186         case OMAP_ECC_BCH16_CODE_HW:
1187                 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1188                 ecc_code[0]  = ((val >>  8) & 0xFF);
1189                 ecc_code[1]  = ((val >>  0) & 0xFF);
1190                 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1191                 ecc_code[2]  = ((val >> 24) & 0xFF);
1192                 ecc_code[3]  = ((val >> 16) & 0xFF);
1193                 ecc_code[4]  = ((val >>  8) & 0xFF);
1194                 ecc_code[5]  = ((val >>  0) & 0xFF);
1195                 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1196                 ecc_code[6]  = ((val >> 24) & 0xFF);
1197                 ecc_code[7]  = ((val >> 16) & 0xFF);
1198                 ecc_code[8]  = ((val >>  8) & 0xFF);
1199                 ecc_code[9]  = ((val >>  0) & 0xFF);
1200                 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1201                 ecc_code[10] = ((val >> 24) & 0xFF);
1202                 ecc_code[11] = ((val >> 16) & 0xFF);
1203                 ecc_code[12] = ((val >>  8) & 0xFF);
1204                 ecc_code[13] = ((val >>  0) & 0xFF);
1205                 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1206                 ecc_code[14] = ((val >> 24) & 0xFF);
1207                 ecc_code[15] = ((val >> 16) & 0xFF);
1208                 ecc_code[16] = ((val >>  8) & 0xFF);
1209                 ecc_code[17] = ((val >>  0) & 0xFF);
1210                 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1211                 ecc_code[18] = ((val >> 24) & 0xFF);
1212                 ecc_code[19] = ((val >> 16) & 0xFF);
1213                 ecc_code[20] = ((val >>  8) & 0xFF);
1214                 ecc_code[21] = ((val >>  0) & 0xFF);
1215                 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1216                 ecc_code[22] = ((val >> 24) & 0xFF);
1217                 ecc_code[23] = ((val >> 16) & 0xFF);
1218                 ecc_code[24] = ((val >>  8) & 0xFF);
1219                 ecc_code[25] = ((val >>  0) & 0xFF);
1220                 break;
1221         default:
1222                 return -EINVAL;
1223         }
1224
1225         /* ECC scheme specific syndrome customizations */
1226         switch (info->ecc_opt) {
1227         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1228                 /* Add constant polynomial to remainder, so that
1229                  * ECC of blank pages results in 0x0 on reading back
1230                  */
1231                 for (j = 0; j < eccbytes; j++)
1232                         ecc_calc[j] ^= bch4_polynomial[j];
1233                 break;
1234         case OMAP_ECC_BCH4_CODE_HW:
1235                 /* Set  8th ECC byte as 0x0 for ROM compatibility */
1236                 ecc_calc[eccbytes - 1] = 0x0;
1237                 break;
1238         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1239                 /* Add constant polynomial to remainder, so that
1240                  * ECC of blank pages results in 0x0 on reading back
1241                  */
1242                 for (j = 0; j < eccbytes; j++)
1243                         ecc_calc[j] ^= bch8_polynomial[j];
1244                 break;
1245         case OMAP_ECC_BCH8_CODE_HW:
1246                 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1247                 ecc_calc[eccbytes - 1] = 0x0;
1248                 break;
1249         case OMAP_ECC_BCH16_CODE_HW:
1250                 break;
1251         default:
1252                 return -EINVAL;
1253         }
1254
1255         return 0;
1256 }
1257
1258 /**
1259  * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1260  * @chip:       NAND chip object
1261  * @dat:        The pointer to data on which ecc is computed
1262  * @ecc_code:   The ecc_code buffer
1263  *
1264  * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1265  * when SW based correction is required as ECC is required for one sector
1266  * at a time.
1267  */
1268 static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1269                                      const u_char *dat, u_char *ecc_calc)
1270 {
1271         return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1272 }
1273
1274 /**
1275  * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1276  * @mtd:        MTD device structure
1277  * @dat:        The pointer to data on which ecc is computed
1278  * @ecc_code:   The ecc_code buffer
1279  *
1280  * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1281  */
1282 static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1283                                         const u_char *dat, u_char *ecc_calc)
1284 {
1285         struct omap_nand_info *info = mtd_to_omap(mtd);
1286         int eccbytes = info->nand.ecc.bytes;
1287         unsigned long nsectors;
1288         int i, ret;
1289
1290         nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1291         for (i = 0; i < nsectors; i++) {
1292                 ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1293                 if (ret)
1294                         return ret;
1295
1296                 ecc_calc += eccbytes;
1297         }
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * erased_sector_bitflips - count bit flips
1304  * @data:       data sector buffer
1305  * @oob:        oob buffer
1306  * @info:       omap_nand_info
1307  *
1308  * Check the bit flips in erased page falls below correctable level.
1309  * If falls below, report the page as erased with correctable bit
1310  * flip, else report as uncorrectable page.
1311  */
1312 static int erased_sector_bitflips(u_char *data, u_char *oob,
1313                 struct omap_nand_info *info)
1314 {
1315         int flip_bits = 0, i;
1316
1317         for (i = 0; i < info->nand.ecc.size; i++) {
1318                 flip_bits += hweight8(~data[i]);
1319                 if (flip_bits > info->nand.ecc.strength)
1320                         return 0;
1321         }
1322
1323         for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1324                 flip_bits += hweight8(~oob[i]);
1325                 if (flip_bits > info->nand.ecc.strength)
1326                         return 0;
1327         }
1328
1329         /*
1330          * Bit flips falls in correctable level.
1331          * Fill data area with 0xFF
1332          */
1333         if (flip_bits) {
1334                 memset(data, 0xFF, info->nand.ecc.size);
1335                 memset(oob, 0xFF, info->nand.ecc.bytes);
1336         }
1337
1338         return flip_bits;
1339 }
1340
1341 /**
1342  * omap_elm_correct_data - corrects page data area in case error reported
1343  * @chip:       NAND chip object
1344  * @data:       page data
1345  * @read_ecc:   ecc read from nand flash
1346  * @calc_ecc:   ecc read from HW ECC registers
1347  *
1348  * Calculated ecc vector reported as zero in case of non-error pages.
1349  * In case of non-zero ecc vector, first filter out erased-pages, and
1350  * then process data via ELM to detect bit-flips.
1351  */
1352 static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1353                                  u_char *read_ecc, u_char *calc_ecc)
1354 {
1355         struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1356         struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1357         int eccsteps = info->nand.ecc.steps;
1358         int i , j, stat = 0;
1359         int eccflag, actual_eccbytes;
1360         struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1361         u_char *ecc_vec = calc_ecc;
1362         u_char *spare_ecc = read_ecc;
1363         u_char *erased_ecc_vec;
1364         u_char *buf;
1365         int bitflip_count;
1366         bool is_error_reported = false;
1367         u32 bit_pos, byte_pos, error_max, pos;
1368         int err;
1369
1370         switch (info->ecc_opt) {
1371         case OMAP_ECC_BCH4_CODE_HW:
1372                 /* omit  7th ECC byte reserved for ROM code compatibility */
1373                 actual_eccbytes = ecc->bytes - 1;
1374                 erased_ecc_vec = bch4_vector;
1375                 break;
1376         case OMAP_ECC_BCH8_CODE_HW:
1377                 /* omit 14th ECC byte reserved for ROM code compatibility */
1378                 actual_eccbytes = ecc->bytes - 1;
1379                 erased_ecc_vec = bch8_vector;
1380                 break;
1381         case OMAP_ECC_BCH16_CODE_HW:
1382                 actual_eccbytes = ecc->bytes;
1383                 erased_ecc_vec = bch16_vector;
1384                 break;
1385         default:
1386                 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1387                 return -EINVAL;
1388         }
1389
1390         /* Initialize elm error vector to zero */
1391         memset(err_vec, 0, sizeof(err_vec));
1392
1393         for (i = 0; i < eccsteps ; i++) {
1394                 eccflag = 0;    /* initialize eccflag */
1395
1396                 /*
1397                  * Check any error reported,
1398                  * In case of error, non zero ecc reported.
1399                  */
1400                 for (j = 0; j < actual_eccbytes; j++) {
1401                         if (calc_ecc[j] != 0) {
1402                                 eccflag = 1; /* non zero ecc, error present */
1403                                 break;
1404                         }
1405                 }
1406
1407                 if (eccflag == 1) {
1408                         if (memcmp(calc_ecc, erased_ecc_vec,
1409                                                 actual_eccbytes) == 0) {
1410                                 /*
1411                                  * calc_ecc[] matches pattern for ECC(all 0xff)
1412                                  * so this is definitely an erased-page
1413                                  */
1414                         } else {
1415                                 buf = &data[info->nand.ecc.size * i];
1416                                 /*
1417                                  * count number of 0-bits in read_buf.
1418                                  * This check can be removed once a similar
1419                                  * check is introduced in generic NAND driver
1420                                  */
1421                                 bitflip_count = erased_sector_bitflips(
1422                                                 buf, read_ecc, info);
1423                                 if (bitflip_count) {
1424                                         /*
1425                                          * number of 0-bits within ECC limits
1426                                          * So this may be an erased-page
1427                                          */
1428                                         stat += bitflip_count;
1429                                 } else {
1430                                         /*
1431                                          * Too many 0-bits. It may be a
1432                                          * - programmed-page, OR
1433                                          * - erased-page with many bit-flips
1434                                          * So this page requires check by ELM
1435                                          */
1436                                         err_vec[i].error_reported = true;
1437                                         is_error_reported = true;
1438                                 }
1439                         }
1440                 }
1441
1442                 /* Update the ecc vector */
1443                 calc_ecc += ecc->bytes;
1444                 read_ecc += ecc->bytes;
1445         }
1446
1447         /* Check if any error reported */
1448         if (!is_error_reported)
1449                 return stat;
1450
1451         /* Decode BCH error using ELM module */
1452         elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1453
1454         err = 0;
1455         for (i = 0; i < eccsteps; i++) {
1456                 if (err_vec[i].error_uncorrectable) {
1457                         dev_err(&info->pdev->dev,
1458                                 "uncorrectable bit-flips found\n");
1459                         err = -EBADMSG;
1460                 } else if (err_vec[i].error_reported) {
1461                         for (j = 0; j < err_vec[i].error_count; j++) {
1462                                 switch (info->ecc_opt) {
1463                                 case OMAP_ECC_BCH4_CODE_HW:
1464                                         /* Add 4 bits to take care of padding */
1465                                         pos = err_vec[i].error_loc[j] +
1466                                                 BCH4_BIT_PAD;
1467                                         break;
1468                                 case OMAP_ECC_BCH8_CODE_HW:
1469                                 case OMAP_ECC_BCH16_CODE_HW:
1470                                         pos = err_vec[i].error_loc[j];
1471                                         break;
1472                                 default:
1473                                         return -EINVAL;
1474                                 }
1475                                 error_max = (ecc->size + actual_eccbytes) * 8;
1476                                 /* Calculate bit position of error */
1477                                 bit_pos = pos % 8;
1478
1479                                 /* Calculate byte position of error */
1480                                 byte_pos = (error_max - pos - 1) / 8;
1481
1482                                 if (pos < error_max) {
1483                                         if (byte_pos < 512) {
1484                                                 pr_debug("bitflip@dat[%d]=%x\n",
1485                                                      byte_pos, data[byte_pos]);
1486                                                 data[byte_pos] ^= 1 << bit_pos;
1487                                         } else {
1488                                                 pr_debug("bitflip@oob[%d]=%x\n",
1489                                                         (byte_pos - 512),
1490                                                      spare_ecc[byte_pos - 512]);
1491                                                 spare_ecc[byte_pos - 512] ^=
1492                                                         1 << bit_pos;
1493                                         }
1494                                 } else {
1495                                         dev_err(&info->pdev->dev,
1496                                                 "invalid bit-flip @ %d:%d\n",
1497                                                 byte_pos, bit_pos);
1498                                         err = -EBADMSG;
1499                                 }
1500                         }
1501                 }
1502
1503                 /* Update number of correctable errors */
1504                 stat = max_t(unsigned int, stat, err_vec[i].error_count);
1505
1506                 /* Update page data with sector size */
1507                 data += ecc->size;
1508                 spare_ecc += ecc->bytes;
1509         }
1510
1511         return (err) ? err : stat;
1512 }
1513
1514 /**
1515  * omap_write_page_bch - BCH ecc based write page function for entire page
1516  * @chip:               nand chip info structure
1517  * @buf:                data buffer
1518  * @oob_required:       must write chip->oob_poi to OOB
1519  * @page:               page
1520  *
1521  * Custom write page method evolved to support multi sector writing in one shot
1522  */
1523 static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1524                                int oob_required, int page)
1525 {
1526         struct mtd_info *mtd = nand_to_mtd(chip);
1527         int ret;
1528         uint8_t *ecc_calc = chip->ecc.calc_buf;
1529
1530         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1531
1532         /* Enable GPMC ecc engine */
1533         chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1534
1535         /* Write data */
1536         chip->legacy.write_buf(chip, buf, mtd->writesize);
1537
1538         /* Update ecc vector from GPMC result registers */
1539         omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
1540
1541         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1542                                          chip->ecc.total);
1543         if (ret)
1544                 return ret;
1545
1546         /* Write ecc vector to OOB area */
1547         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1548
1549         return nand_prog_page_end_op(chip);
1550 }
1551
1552 /**
1553  * omap_write_subpage_bch - BCH hardware ECC based subpage write
1554  * @chip:       nand chip info structure
1555  * @offset:     column address of subpage within the page
1556  * @data_len:   data length
1557  * @buf:        data buffer
1558  * @oob_required: must write chip->oob_poi to OOB
1559  * @page: page number to write
1560  *
1561  * OMAP optimized subpage write method.
1562  */
1563 static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1564                                   u32 data_len, const u8 *buf,
1565                                   int oob_required, int page)
1566 {
1567         struct mtd_info *mtd = nand_to_mtd(chip);
1568         u8 *ecc_calc = chip->ecc.calc_buf;
1569         int ecc_size      = chip->ecc.size;
1570         int ecc_bytes     = chip->ecc.bytes;
1571         int ecc_steps     = chip->ecc.steps;
1572         u32 start_step = offset / ecc_size;
1573         u32 end_step   = (offset + data_len - 1) / ecc_size;
1574         int step, ret = 0;
1575
1576         /*
1577          * Write entire page at one go as it would be optimal
1578          * as ECC is calculated by hardware.
1579          * ECC is calculated for all subpages but we choose
1580          * only what we want.
1581          */
1582         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1583
1584         /* Enable GPMC ECC engine */
1585         chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1586
1587         /* Write data */
1588         chip->legacy.write_buf(chip, buf, mtd->writesize);
1589
1590         for (step = 0; step < ecc_steps; step++) {
1591                 /* mask ECC of un-touched subpages by padding 0xFF */
1592                 if (step < start_step || step > end_step)
1593                         memset(ecc_calc, 0xff, ecc_bytes);
1594                 else
1595                         ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
1596
1597                 if (ret)
1598                         return ret;
1599
1600                 buf += ecc_size;
1601                 ecc_calc += ecc_bytes;
1602         }
1603
1604         /* copy calculated ECC for whole page to chip->buffer->oob */
1605         /* this include masked-value(0xFF) for unwritten subpages */
1606         ecc_calc = chip->ecc.calc_buf;
1607         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1608                                          chip->ecc.total);
1609         if (ret)
1610                 return ret;
1611
1612         /* write OOB buffer to NAND device */
1613         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
1614
1615         return nand_prog_page_end_op(chip);
1616 }
1617
1618 /**
1619  * omap_read_page_bch - BCH ecc based page read function for entire page
1620  * @chip:               nand chip info structure
1621  * @buf:                buffer to store read data
1622  * @oob_required:       caller requires OOB data read to chip->oob_poi
1623  * @page:               page number to read
1624  *
1625  * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1626  * used for error correction.
1627  * Custom method evolved to support ELM error correction & multi sector
1628  * reading. On reading page data area is read along with OOB data with
1629  * ecc engine enabled. ecc vector updated after read of OOB data.
1630  * For non error pages ecc vector reported as zero.
1631  */
1632 static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1633                               int oob_required, int page)
1634 {
1635         struct mtd_info *mtd = nand_to_mtd(chip);
1636         uint8_t *ecc_calc = chip->ecc.calc_buf;
1637         uint8_t *ecc_code = chip->ecc.code_buf;
1638         int stat, ret;
1639         unsigned int max_bitflips = 0;
1640
1641         nand_read_page_op(chip, page, 0, NULL, 0);
1642
1643         /* Enable GPMC ecc engine */
1644         chip->ecc.hwctl(chip, NAND_ECC_READ);
1645
1646         /* Read data */
1647         chip->legacy.read_buf(chip, buf, mtd->writesize);
1648
1649         /* Read oob bytes */
1650         nand_change_read_column_op(chip,
1651                                    mtd->writesize + BADBLOCK_MARKER_LENGTH,
1652                                    chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1653                                    chip->ecc.total, false);
1654
1655         /* Calculate ecc bytes */
1656         omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
1657
1658         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1659                                          chip->ecc.total);
1660         if (ret)
1661                 return ret;
1662
1663         stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1664
1665         if (stat < 0) {
1666                 mtd->ecc_stats.failed++;
1667         } else {
1668                 mtd->ecc_stats.corrected += stat;
1669                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1670         }
1671
1672         return max_bitflips;
1673 }
1674
1675 /**
1676  * is_elm_present - checks for presence of ELM module by scanning DT nodes
1677  * @omap_nand_info: NAND device structure containing platform data
1678  */
1679 static bool is_elm_present(struct omap_nand_info *info,
1680                            struct device_node *elm_node)
1681 {
1682         struct platform_device *pdev;
1683
1684         /* check whether elm-id is passed via DT */
1685         if (!elm_node) {
1686                 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1687                 return false;
1688         }
1689         pdev = of_find_device_by_node(elm_node);
1690         /* check whether ELM device is registered */
1691         if (!pdev) {
1692                 dev_err(&info->pdev->dev, "ELM device not found\n");
1693                 return false;
1694         }
1695         /* ELM module available, now configure it */
1696         info->elm_dev = &pdev->dev;
1697         return true;
1698 }
1699
1700 static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1701 {
1702         bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1703
1704         switch (info->ecc_opt) {
1705         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1706         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1707                 ecc_needs_omap_bch = false;
1708                 ecc_needs_bch = true;
1709                 ecc_needs_elm = false;
1710                 break;
1711         case OMAP_ECC_BCH4_CODE_HW:
1712         case OMAP_ECC_BCH8_CODE_HW:
1713         case OMAP_ECC_BCH16_CODE_HW:
1714                 ecc_needs_omap_bch = true;
1715                 ecc_needs_bch = false;
1716                 ecc_needs_elm = true;
1717                 break;
1718         default:
1719                 ecc_needs_omap_bch = false;
1720                 ecc_needs_bch = false;
1721                 ecc_needs_elm = false;
1722                 break;
1723         }
1724
1725         if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1726                 dev_err(&info->pdev->dev,
1727                         "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1728                 return false;
1729         }
1730         if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1731                 dev_err(&info->pdev->dev,
1732                         "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1733                 return false;
1734         }
1735         if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1736                 dev_err(&info->pdev->dev, "ELM not available\n");
1737                 return false;
1738         }
1739
1740         return true;
1741 }
1742
1743 static const char * const nand_xfer_types[] = {
1744         [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1745         [NAND_OMAP_POLLED] = "polled",
1746         [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1747         [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1748 };
1749
1750 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1751 {
1752         struct device_node *child = dev->of_node;
1753         int i;
1754         const char *s;
1755         u32 cs;
1756
1757         if (of_property_read_u32(child, "reg", &cs) < 0) {
1758                 dev_err(dev, "reg not found in DT\n");
1759                 return -EINVAL;
1760         }
1761
1762         info->gpmc_cs = cs;
1763
1764         /* detect availability of ELM module. Won't be present pre-OMAP4 */
1765         info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1766         if (!info->elm_of_node) {
1767                 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1768                 if (!info->elm_of_node)
1769                         dev_dbg(dev, "ti,elm-id not in DT\n");
1770         }
1771
1772         /* select ecc-scheme for NAND */
1773         if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1774                 dev_err(dev, "ti,nand-ecc-opt not found\n");
1775                 return -EINVAL;
1776         }
1777
1778         if (!strcmp(s, "sw")) {
1779                 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1780         } else if (!strcmp(s, "ham1") ||
1781                    !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1782                 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1783         } else if (!strcmp(s, "bch4")) {
1784                 if (info->elm_of_node)
1785                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1786                 else
1787                         info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1788         } else if (!strcmp(s, "bch8")) {
1789                 if (info->elm_of_node)
1790                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1791                 else
1792                         info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1793         } else if (!strcmp(s, "bch16")) {
1794                 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1795         } else {
1796                 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1797                 return -EINVAL;
1798         }
1799
1800         /* select data transfer mode */
1801         if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1802                 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1803                         if (!strcasecmp(s, nand_xfer_types[i])) {
1804                                 info->xfer_type = i;
1805                                 return 0;
1806                         }
1807                 }
1808
1809                 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1810                 return -EINVAL;
1811         }
1812
1813         return 0;
1814 }
1815
1816 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1817                               struct mtd_oob_region *oobregion)
1818 {
1819         struct omap_nand_info *info = mtd_to_omap(mtd);
1820         struct nand_chip *chip = &info->nand;
1821         int off = BADBLOCK_MARKER_LENGTH;
1822
1823         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1824             !(chip->options & NAND_BUSWIDTH_16))
1825                 off = 1;
1826
1827         if (section)
1828                 return -ERANGE;
1829
1830         oobregion->offset = off;
1831         oobregion->length = chip->ecc.total;
1832
1833         return 0;
1834 }
1835
1836 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1837                                struct mtd_oob_region *oobregion)
1838 {
1839         struct omap_nand_info *info = mtd_to_omap(mtd);
1840         struct nand_chip *chip = &info->nand;
1841         int off = BADBLOCK_MARKER_LENGTH;
1842
1843         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1844             !(chip->options & NAND_BUSWIDTH_16))
1845                 off = 1;
1846
1847         if (section)
1848                 return -ERANGE;
1849
1850         off += chip->ecc.total;
1851         if (off >= mtd->oobsize)
1852                 return -ERANGE;
1853
1854         oobregion->offset = off;
1855         oobregion->length = mtd->oobsize - off;
1856
1857         return 0;
1858 }
1859
1860 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1861         .ecc = omap_ooblayout_ecc,
1862         .free = omap_ooblayout_free,
1863 };
1864
1865 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1866                                  struct mtd_oob_region *oobregion)
1867 {
1868         struct nand_chip *chip = mtd_to_nand(mtd);
1869         int off = BADBLOCK_MARKER_LENGTH;
1870
1871         if (section >= chip->ecc.steps)
1872                 return -ERANGE;
1873
1874         /*
1875          * When SW correction is employed, one OMAP specific marker byte is
1876          * reserved after each ECC step.
1877          */
1878         oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1879         oobregion->length = chip->ecc.bytes;
1880
1881         return 0;
1882 }
1883
1884 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1885                                   struct mtd_oob_region *oobregion)
1886 {
1887         struct nand_chip *chip = mtd_to_nand(mtd);
1888         int off = BADBLOCK_MARKER_LENGTH;
1889
1890         if (section)
1891                 return -ERANGE;
1892
1893         /*
1894          * When SW correction is employed, one OMAP specific marker byte is
1895          * reserved after each ECC step.
1896          */
1897         off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1898         if (off >= mtd->oobsize)
1899                 return -ERANGE;
1900
1901         oobregion->offset = off;
1902         oobregion->length = mtd->oobsize - off;
1903
1904         return 0;
1905 }
1906
1907 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1908         .ecc = omap_sw_ooblayout_ecc,
1909         .free = omap_sw_ooblayout_free,
1910 };
1911
1912 static int omap_nand_attach_chip(struct nand_chip *chip)
1913 {
1914         struct mtd_info *mtd = nand_to_mtd(chip);
1915         struct omap_nand_info *info = mtd_to_omap(mtd);
1916         struct device *dev = &info->pdev->dev;
1917         int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1918         int oobbytes_per_step;
1919         dma_cap_mask_t mask;
1920         int err;
1921
1922         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1923                 chip->bbt_options |= NAND_BBT_NO_OOB;
1924         else
1925                 chip->options |= NAND_SKIP_BBTSCAN;
1926
1927         /* Re-populate low-level callbacks based on xfer modes */
1928         switch (info->xfer_type) {
1929         case NAND_OMAP_PREFETCH_POLLED:
1930                 chip->legacy.read_buf = omap_read_buf_pref;
1931                 chip->legacy.write_buf = omap_write_buf_pref;
1932                 break;
1933
1934         case NAND_OMAP_POLLED:
1935                 /* Use nand_base defaults for {read,write}_buf */
1936                 break;
1937
1938         case NAND_OMAP_PREFETCH_DMA:
1939                 dma_cap_zero(mask);
1940                 dma_cap_set(DMA_SLAVE, mask);
1941                 info->dma = dma_request_chan(dev->parent, "rxtx");
1942
1943                 if (IS_ERR(info->dma)) {
1944                         dev_err(dev, "DMA engine request failed\n");
1945                         return PTR_ERR(info->dma);
1946                 } else {
1947                         struct dma_slave_config cfg;
1948
1949                         memset(&cfg, 0, sizeof(cfg));
1950                         cfg.src_addr = info->phys_base;
1951                         cfg.dst_addr = info->phys_base;
1952                         cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1953                         cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1954                         cfg.src_maxburst = 16;
1955                         cfg.dst_maxburst = 16;
1956                         err = dmaengine_slave_config(info->dma, &cfg);
1957                         if (err) {
1958                                 dev_err(dev,
1959                                         "DMA engine slave config failed: %d\n",
1960                                         err);
1961                                 return err;
1962                         }
1963                         chip->legacy.read_buf = omap_read_buf_dma_pref;
1964                         chip->legacy.write_buf = omap_write_buf_dma_pref;
1965                 }
1966                 break;
1967
1968         case NAND_OMAP_PREFETCH_IRQ:
1969                 info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1970                 if (info->gpmc_irq_fifo <= 0)
1971                         return -ENODEV;
1972                 err = devm_request_irq(dev, info->gpmc_irq_fifo,
1973                                        omap_nand_irq, IRQF_SHARED,
1974                                        "gpmc-nand-fifo", info);
1975                 if (err) {
1976                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1977                                 info->gpmc_irq_fifo, err);
1978                         info->gpmc_irq_fifo = 0;
1979                         return err;
1980                 }
1981
1982                 info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1983                 if (info->gpmc_irq_count <= 0)
1984                         return -ENODEV;
1985                 err = devm_request_irq(dev, info->gpmc_irq_count,
1986                                        omap_nand_irq, IRQF_SHARED,
1987                                        "gpmc-nand-count", info);
1988                 if (err) {
1989                         dev_err(dev, "Requesting IRQ %d, error %d\n",
1990                                 info->gpmc_irq_count, err);
1991                         info->gpmc_irq_count = 0;
1992                         return err;
1993                 }
1994
1995                 chip->legacy.read_buf = omap_read_buf_irq_pref;
1996                 chip->legacy.write_buf = omap_write_buf_irq_pref;
1997
1998                 break;
1999
2000         default:
2001                 dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
2002                 return -EINVAL;
2003         }
2004
2005         if (!omap2_nand_ecc_check(info))
2006                 return -EINVAL;
2007
2008         /*
2009          * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
2010          * ooblayout instead of using ours.
2011          */
2012         if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2013                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2014                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2015                 return 0;
2016         }
2017
2018         /* Populate MTD interface based on ECC scheme */
2019         switch (info->ecc_opt) {
2020         case OMAP_ECC_HAM1_CODE_HW:
2021                 dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
2022                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2023                 chip->ecc.bytes         = 3;
2024                 chip->ecc.size          = 512;
2025                 chip->ecc.strength      = 1;
2026                 chip->ecc.calculate     = omap_calculate_ecc;
2027                 chip->ecc.hwctl         = omap_enable_hwecc;
2028                 chip->ecc.correct       = omap_correct_data;
2029                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2030                 oobbytes_per_step       = chip->ecc.bytes;
2031
2032                 if (!(chip->options & NAND_BUSWIDTH_16))
2033                         min_oobbytes    = 1;
2034
2035                 break;
2036
2037         case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2038                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2039                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2040                 chip->ecc.size          = 512;
2041                 chip->ecc.bytes         = 7;
2042                 chip->ecc.strength      = 4;
2043                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2044                 chip->ecc.correct       = nand_bch_correct_data;
2045                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2046                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2047                 /* Reserve one byte for the OMAP marker */
2048                 oobbytes_per_step       = chip->ecc.bytes + 1;
2049                 /* Software BCH library is used for locating errors */
2050                 chip->ecc.priv          = nand_bch_init(mtd);
2051                 if (!chip->ecc.priv) {
2052                         dev_err(dev, "Unable to use BCH library\n");
2053                         return -EINVAL;
2054                 }
2055                 break;
2056
2057         case OMAP_ECC_BCH4_CODE_HW:
2058                 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2059                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2060                 chip->ecc.size          = 512;
2061                 /* 14th bit is kept reserved for ROM-code compatibility */
2062                 chip->ecc.bytes         = 7 + 1;
2063                 chip->ecc.strength      = 4;
2064                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2065                 chip->ecc.correct       = omap_elm_correct_data;
2066                 chip->ecc.read_page     = omap_read_page_bch;
2067                 chip->ecc.write_page    = omap_write_page_bch;
2068                 chip->ecc.write_subpage = omap_write_subpage_bch;
2069                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2070                 oobbytes_per_step       = chip->ecc.bytes;
2071
2072                 err = elm_config(info->elm_dev, BCH4_ECC,
2073                                  mtd->writesize / chip->ecc.size,
2074                                  chip->ecc.size, chip->ecc.bytes);
2075                 if (err < 0)
2076                         return err;
2077                 break;
2078
2079         case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2080                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2081                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2082                 chip->ecc.size          = 512;
2083                 chip->ecc.bytes         = 13;
2084                 chip->ecc.strength      = 8;
2085                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2086                 chip->ecc.correct       = nand_bch_correct_data;
2087                 chip->ecc.calculate     = omap_calculate_ecc_bch_sw;
2088                 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2089                 /* Reserve one byte for the OMAP marker */
2090                 oobbytes_per_step       = chip->ecc.bytes + 1;
2091                 /* Software BCH library is used for locating errors */
2092                 chip->ecc.priv          = nand_bch_init(mtd);
2093                 if (!chip->ecc.priv) {
2094                         dev_err(dev, "unable to use BCH library\n");
2095                         return -EINVAL;
2096                 }
2097                 break;
2098
2099         case OMAP_ECC_BCH8_CODE_HW:
2100                 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2101                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2102                 chip->ecc.size          = 512;
2103                 /* 14th bit is kept reserved for ROM-code compatibility */
2104                 chip->ecc.bytes         = 13 + 1;
2105                 chip->ecc.strength      = 8;
2106                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2107                 chip->ecc.correct       = omap_elm_correct_data;
2108                 chip->ecc.read_page     = omap_read_page_bch;
2109                 chip->ecc.write_page    = omap_write_page_bch;
2110                 chip->ecc.write_subpage = omap_write_subpage_bch;
2111                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2112                 oobbytes_per_step       = chip->ecc.bytes;
2113
2114                 err = elm_config(info->elm_dev, BCH8_ECC,
2115                                  mtd->writesize / chip->ecc.size,
2116                                  chip->ecc.size, chip->ecc.bytes);
2117                 if (err < 0)
2118                         return err;
2119
2120                 break;
2121
2122         case OMAP_ECC_BCH16_CODE_HW:
2123                 pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2124                 chip->ecc.engine_type   = NAND_ECC_ENGINE_TYPE_ON_HOST;
2125                 chip->ecc.size          = 512;
2126                 chip->ecc.bytes         = 26;
2127                 chip->ecc.strength      = 16;
2128                 chip->ecc.hwctl         = omap_enable_hwecc_bch;
2129                 chip->ecc.correct       = omap_elm_correct_data;
2130                 chip->ecc.read_page     = omap_read_page_bch;
2131                 chip->ecc.write_page    = omap_write_page_bch;
2132                 chip->ecc.write_subpage = omap_write_subpage_bch;
2133                 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2134                 oobbytes_per_step       = chip->ecc.bytes;
2135
2136                 err = elm_config(info->elm_dev, BCH16_ECC,
2137                                  mtd->writesize / chip->ecc.size,
2138                                  chip->ecc.size, chip->ecc.bytes);
2139                 if (err < 0)
2140                         return err;
2141
2142                 break;
2143         default:
2144                 dev_err(dev, "Invalid or unsupported ECC scheme\n");
2145                 return -EINVAL;
2146         }
2147
2148         /* Check if NAND device's OOB is enough to store ECC signatures */
2149         min_oobbytes += (oobbytes_per_step *
2150                          (mtd->writesize / chip->ecc.size));
2151         if (mtd->oobsize < min_oobbytes) {
2152                 dev_err(dev,
2153                         "Not enough OOB bytes: required = %d, available=%d\n",
2154                         min_oobbytes, mtd->oobsize);
2155                 return -EINVAL;
2156         }
2157
2158         return 0;
2159 }
2160
2161 static const struct nand_controller_ops omap_nand_controller_ops = {
2162         .attach_chip = omap_nand_attach_chip,
2163 };
2164
2165 /* Shared among all NAND instances to synchronize access to the ECC Engine */
2166 static struct nand_controller omap_gpmc_controller;
2167 static bool omap_gpmc_controller_initialized;
2168
2169 static int omap_nand_probe(struct platform_device *pdev)
2170 {
2171         struct omap_nand_info           *info;
2172         struct mtd_info                 *mtd;
2173         struct nand_chip                *nand_chip;
2174         int                             err;
2175         struct resource                 *res;
2176         struct device                   *dev = &pdev->dev;
2177
2178         info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2179                                 GFP_KERNEL);
2180         if (!info)
2181                 return -ENOMEM;
2182
2183         info->pdev = pdev;
2184
2185         err = omap_get_dt_info(dev, info);
2186         if (err)
2187                 return err;
2188
2189         info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2190         if (!info->ops) {
2191                 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2192                 return -ENODEV;
2193         }
2194
2195         nand_chip               = &info->nand;
2196         mtd                     = nand_to_mtd(nand_chip);
2197         mtd->dev.parent         = &pdev->dev;
2198         nand_chip->ecc.priv     = NULL;
2199         nand_set_flash_node(nand_chip, dev->of_node);
2200
2201         if (!mtd->name) {
2202                 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2203                                            "omap2-nand.%d", info->gpmc_cs);
2204                 if (!mtd->name) {
2205                         dev_err(&pdev->dev, "Failed to set MTD name\n");
2206                         return -ENOMEM;
2207                 }
2208         }
2209
2210         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2211         nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
2212         if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
2213                 return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
2214
2215         info->phys_base = res->start;
2216
2217         if (!omap_gpmc_controller_initialized) {
2218                 omap_gpmc_controller.ops = &omap_nand_controller_ops;
2219                 nand_controller_init(&omap_gpmc_controller);
2220                 omap_gpmc_controller_initialized = true;
2221         }
2222
2223         nand_chip->controller = &omap_gpmc_controller;
2224
2225         nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
2226         nand_chip->legacy.cmd_ctrl  = omap_hwcontrol;
2227
2228         info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2229                                                     GPIOD_IN);
2230         if (IS_ERR(info->ready_gpiod)) {
2231                 dev_err(dev, "failed to get ready gpio\n");
2232                 return PTR_ERR(info->ready_gpiod);
2233         }
2234
2235         /*
2236          * If RDY/BSY line is connected to OMAP then use the omap ready
2237          * function and the generic nand_wait function which reads the status
2238          * register after monitoring the RDY/BSY line. Otherwise use a standard
2239          * chip delay which is slightly more than tR (AC Timing) of the NAND
2240          * device and read status register until you get a failure or success
2241          */
2242         if (info->ready_gpiod) {
2243                 nand_chip->legacy.dev_ready = omap_dev_ready;
2244                 nand_chip->legacy.chip_delay = 0;
2245         } else {
2246                 nand_chip->legacy.waitfunc = omap_wait;
2247                 nand_chip->legacy.chip_delay = 50;
2248         }
2249
2250         if (info->flash_bbt)
2251                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2252
2253         /* scan NAND device connected to chip controller */
2254         nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
2255
2256         err = nand_scan(nand_chip, 1);
2257         if (err)
2258                 goto return_error;
2259
2260         err = mtd_device_register(mtd, NULL, 0);
2261         if (err)
2262                 goto cleanup_nand;
2263
2264         platform_set_drvdata(pdev, mtd);
2265
2266         return 0;
2267
2268 cleanup_nand:
2269         nand_cleanup(nand_chip);
2270
2271 return_error:
2272         if (!IS_ERR_OR_NULL(info->dma))
2273                 dma_release_channel(info->dma);
2274         if (nand_chip->ecc.priv) {
2275                 nand_bch_free(nand_chip->ecc.priv);
2276                 nand_chip->ecc.priv = NULL;
2277         }
2278         return err;
2279 }
2280
2281 static int omap_nand_remove(struct platform_device *pdev)
2282 {
2283         struct mtd_info *mtd = platform_get_drvdata(pdev);
2284         struct nand_chip *nand_chip = mtd_to_nand(mtd);
2285         struct omap_nand_info *info = mtd_to_omap(mtd);
2286         int ret;
2287
2288         if (nand_chip->ecc.priv) {
2289                 nand_bch_free(nand_chip->ecc.priv);
2290                 nand_chip->ecc.priv = NULL;
2291         }
2292         if (info->dma)
2293                 dma_release_channel(info->dma);
2294         ret = mtd_device_unregister(mtd);
2295         WARN_ON(ret);
2296         nand_cleanup(nand_chip);
2297         return ret;
2298 }
2299
2300 static const struct of_device_id omap_nand_ids[] = {
2301         { .compatible = "ti,omap2-nand", },
2302         {},
2303 };
2304 MODULE_DEVICE_TABLE(of, omap_nand_ids);
2305
2306 static struct platform_driver omap_nand_driver = {
2307         .probe          = omap_nand_probe,
2308         .remove         = omap_nand_remove,
2309         .driver         = {
2310                 .name   = DRIVER_NAME,
2311                 .of_match_table = of_match_ptr(omap_nand_ids),
2312         },
2313 };
2314
2315 module_platform_driver(omap_nand_driver);
2316
2317 MODULE_ALIAS("platform:" DRIVER_NAME);
2318 MODULE_LICENSE("GPL");
2319 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");