GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / mtd / nand / raw / nand_micron.c
1 /*
2  * Copyright (C) 2017 Free Electrons
3  * Copyright (C) 2017 NextThing Co
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/mtd/rawnand.h>
19 #include <linux/slab.h>
20
21 /*
22  * Special Micron status bit 3 indicates that the block has been
23  * corrected by on-die ECC and should be rewritten.
24  */
25 #define NAND_ECC_STATUS_WRITE_RECOMMENDED       BIT(3)
26
27 /*
28  * On chips with 8-bit ECC and additional bit can be used to distinguish
29  * cases where a errors were corrected without needing a rewrite
30  *
31  * Bit 4 Bit 3 Bit 0 Description
32  * ----- ----- ----- -----------
33  * 0     0     0     No Errors
34  * 0     0     1     Multiple uncorrected errors
35  * 0     1     0     4 - 6 errors corrected, recommend rewrite
36  * 0     1     1     Reserved
37  * 1     0     0     1 - 3 errors corrected
38  * 1     0     1     Reserved
39  * 1     1     0     7 - 8 errors corrected, recommend rewrite
40  */
41 #define NAND_ECC_STATUS_MASK            (BIT(4) | BIT(3) | BIT(0))
42 #define NAND_ECC_STATUS_UNCORRECTABLE   BIT(0)
43 #define NAND_ECC_STATUS_4_6_CORRECTED   BIT(3)
44 #define NAND_ECC_STATUS_1_3_CORRECTED   BIT(4)
45 #define NAND_ECC_STATUS_7_8_CORRECTED   (BIT(4) | BIT(3))
46
47 struct nand_onfi_vendor_micron {
48         u8 two_plane_read;
49         u8 read_cache;
50         u8 read_unique_id;
51         u8 dq_imped;
52         u8 dq_imped_num_settings;
53         u8 dq_imped_feat_addr;
54         u8 rb_pulldown_strength;
55         u8 rb_pulldown_strength_feat_addr;
56         u8 rb_pulldown_strength_num_settings;
57         u8 otp_mode;
58         u8 otp_page_start;
59         u8 otp_data_prot_addr;
60         u8 otp_num_pages;
61         u8 otp_feat_addr;
62         u8 read_retry_options;
63         u8 reserved[72];
64         u8 param_revision;
65 } __packed;
66
67 struct micron_on_die_ecc {
68         bool forced;
69         bool enabled;
70         void *rawbuf;
71 };
72
73 struct micron_nand {
74         struct micron_on_die_ecc ecc;
75 };
76
77 static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
78 {
79         struct nand_chip *chip = mtd_to_nand(mtd);
80         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
81
82         return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
83 }
84
85 /*
86  * Configure chip properties from Micron vendor-specific ONFI table
87  */
88 static int micron_nand_onfi_init(struct nand_chip *chip)
89 {
90         struct nand_parameters *p = &chip->parameters;
91
92         if (p->onfi) {
93                 struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
94
95                 chip->read_retries = micron->read_retry_options;
96                 chip->setup_read_retry = micron_nand_setup_read_retry;
97         }
98
99         if (p->supports_set_get_features) {
100                 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
101                 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
102                 set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
103                 set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
104         }
105
106         return 0;
107 }
108
109 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
110                                               int section,
111                                               struct mtd_oob_region *oobregion)
112 {
113         if (section >= 4)
114                 return -ERANGE;
115
116         oobregion->offset = (section * 16) + 8;
117         oobregion->length = 8;
118
119         return 0;
120 }
121
122 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
123                                                int section,
124                                                struct mtd_oob_region *oobregion)
125 {
126         if (section >= 4)
127                 return -ERANGE;
128
129         oobregion->offset = (section * 16) + 2;
130         oobregion->length = 6;
131
132         return 0;
133 }
134
135 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
136         .ecc = micron_nand_on_die_4_ooblayout_ecc,
137         .free = micron_nand_on_die_4_ooblayout_free,
138 };
139
140 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
141                                               int section,
142                                               struct mtd_oob_region *oobregion)
143 {
144         struct nand_chip *chip = mtd_to_nand(mtd);
145
146         if (section)
147                 return -ERANGE;
148
149         oobregion->offset = mtd->oobsize - chip->ecc.total;
150         oobregion->length = chip->ecc.total;
151
152         return 0;
153 }
154
155 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
156                                                int section,
157                                                struct mtd_oob_region *oobregion)
158 {
159         struct nand_chip *chip = mtd_to_nand(mtd);
160
161         if (section)
162                 return -ERANGE;
163
164         oobregion->offset = 2;
165         oobregion->length = mtd->oobsize - chip->ecc.total - 2;
166
167         return 0;
168 }
169
170 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
171         .ecc = micron_nand_on_die_8_ooblayout_ecc,
172         .free = micron_nand_on_die_8_ooblayout_free,
173 };
174
175 static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
176 {
177         struct micron_nand *micron = nand_get_manufacturer_data(chip);
178         u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
179         int ret;
180
181         if (micron->ecc.forced)
182                 return 0;
183
184         if (micron->ecc.enabled == enable)
185                 return 0;
186
187         if (enable)
188                 feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
189
190         ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
191         if (!ret)
192                 micron->ecc.enabled = enable;
193
194         return ret;
195 }
196
197 static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
198                                            void *buf, int page,
199                                            int oob_required)
200 {
201         struct micron_nand *micron = nand_get_manufacturer_data(chip);
202         struct mtd_info *mtd = nand_to_mtd(chip);
203         unsigned int step, max_bitflips = 0;
204         int ret;
205
206         if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
207                 if (status & NAND_STATUS_FAIL)
208                         mtd->ecc_stats.failed++;
209
210                 return 0;
211         }
212
213         /*
214          * The internal ECC doesn't tell us the number of bitflips that have
215          * been corrected, but tells us if it recommends to rewrite the block.
216          * If it's the case, we need to read the page in raw mode and compare
217          * its content to the corrected version to extract the actual number of
218          * bitflips.
219          * But before we do that, we must make sure we have all OOB bytes read
220          * in non-raw mode, even if the user did not request those bytes.
221          */
222         if (!oob_required) {
223                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
224                                         false);
225                 if (ret)
226                         return ret;
227         }
228
229         micron_nand_on_die_ecc_setup(chip, false);
230
231         ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
232                                 mtd->writesize + mtd->oobsize);
233         if (ret)
234                 return ret;
235
236         for (step = 0; step < chip->ecc.steps; step++) {
237                 unsigned int offs, i, nbitflips = 0;
238                 u8 *rawbuf, *corrbuf;
239
240                 offs = step * chip->ecc.size;
241                 rawbuf = micron->ecc.rawbuf + offs;
242                 corrbuf = buf + offs;
243
244                 for (i = 0; i < chip->ecc.size; i++)
245                         nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
246
247                 offs = (step * 16) + 4;
248                 rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
249                 corrbuf = chip->oob_poi + offs;
250
251                 for (i = 0; i < chip->ecc.bytes + 4; i++)
252                         nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
253
254                 if (WARN_ON(nbitflips > chip->ecc.strength))
255                         return -EINVAL;
256
257                 max_bitflips = max(nbitflips, max_bitflips);
258                 mtd->ecc_stats.corrected += nbitflips;
259         }
260
261         return max_bitflips;
262 }
263
264 static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
265 {
266         struct mtd_info *mtd = nand_to_mtd(chip);
267
268         /*
269          * With 8/512 we have more information but still don't know precisely
270          * how many bit-flips were seen.
271          */
272         switch (status & NAND_ECC_STATUS_MASK) {
273         case NAND_ECC_STATUS_UNCORRECTABLE:
274                 mtd->ecc_stats.failed++;
275                 return 0;
276         case NAND_ECC_STATUS_1_3_CORRECTED:
277                 mtd->ecc_stats.corrected += 3;
278                 return 3;
279         case NAND_ECC_STATUS_4_6_CORRECTED:
280                 mtd->ecc_stats.corrected += 6;
281                 /* rewrite recommended */
282                 return 6;
283         case NAND_ECC_STATUS_7_8_CORRECTED:
284                 mtd->ecc_stats.corrected += 8;
285                 /* rewrite recommended */
286                 return 8;
287         default:
288                 return 0;
289         }
290 }
291
292 static int
293 micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
294                                  uint8_t *buf, int oob_required,
295                                  int page)
296 {
297         u8 status;
298         int ret, max_bitflips = 0;
299
300         ret = micron_nand_on_die_ecc_setup(chip, true);
301         if (ret)
302                 return ret;
303
304         ret = nand_read_page_op(chip, page, 0, NULL, 0);
305         if (ret)
306                 goto out;
307
308         ret = nand_status_op(chip, &status);
309         if (ret)
310                 goto out;
311
312         ret = nand_exit_status_op(chip);
313         if (ret)
314                 goto out;
315
316         ret = nand_read_data_op(chip, buf, mtd->writesize, false);
317         if (!ret && oob_required)
318                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
319                                         false);
320
321         if (chip->ecc.strength == 4)
322                 max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
323                                                                buf, page,
324                                                                oob_required);
325         else
326                 max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
327
328 out:
329         micron_nand_on_die_ecc_setup(chip, false);
330
331         return ret ? ret : max_bitflips;
332 }
333
334 static int
335 micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
336                                   const uint8_t *buf, int oob_required,
337                                   int page)
338 {
339         int ret;
340
341         ret = micron_nand_on_die_ecc_setup(chip, true);
342         if (ret)
343                 return ret;
344
345         ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
346         micron_nand_on_die_ecc_setup(chip, false);
347
348         return ret;
349 }
350
351 enum {
352         /* The NAND flash doesn't support on-die ECC */
353         MICRON_ON_DIE_UNSUPPORTED,
354
355         /*
356          * The NAND flash supports on-die ECC and it can be
357          * enabled/disabled by a set features command.
358          */
359         MICRON_ON_DIE_SUPPORTED,
360
361         /*
362          * The NAND flash supports on-die ECC, and it cannot be
363          * disabled.
364          */
365         MICRON_ON_DIE_MANDATORY,
366 };
367
368 #define MICRON_ID_INTERNAL_ECC_MASK     GENMASK(1, 0)
369 #define MICRON_ID_ECC_ENABLED           BIT(7)
370
371 /*
372  * Try to detect if the NAND support on-die ECC. To do this, we enable
373  * the feature, and read back if it has been enabled as expected. We
374  * also check if it can be disabled, because some Micron NANDs do not
375  * allow disabling the on-die ECC and we don't support such NANDs for
376  * now.
377  *
378  * This function also has the side effect of disabling on-die ECC if
379  * it had been left enabled by the firmware/bootloader.
380  */
381 static int micron_supports_on_die_ecc(struct nand_chip *chip)
382 {
383         u8 id[5];
384         int ret;
385
386         if (!chip->parameters.onfi)
387                 return MICRON_ON_DIE_UNSUPPORTED;
388
389         if (chip->bits_per_cell != 1)
390                 return MICRON_ON_DIE_UNSUPPORTED;
391
392         /*
393          * We only support on-die ECC of 4/512 or 8/512
394          */
395         if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
396                 return MICRON_ON_DIE_UNSUPPORTED;
397
398         /* 0x2 means on-die ECC is available. */
399         if (chip->id.len != 5 ||
400             (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
401                 return MICRON_ON_DIE_UNSUPPORTED;
402
403         /*
404          * It seems that there are devices which do not support ECC officially.
405          * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
406          * enabling the ECC feature but don't reflect that to the READ_ID table.
407          * So we have to guarantee that we disable the ECC feature directly
408          * after we did the READ_ID table command. Later we can evaluate the
409          * ECC_ENABLE support.
410          */
411         ret = micron_nand_on_die_ecc_setup(chip, true);
412         if (ret)
413                 return MICRON_ON_DIE_UNSUPPORTED;
414
415         ret = nand_readid_op(chip, 0, id, sizeof(id));
416         if (ret)
417                 return MICRON_ON_DIE_UNSUPPORTED;
418
419         ret = micron_nand_on_die_ecc_setup(chip, false);
420         if (ret)
421                 return MICRON_ON_DIE_UNSUPPORTED;
422
423         if (!(id[4] & MICRON_ID_ECC_ENABLED))
424                 return MICRON_ON_DIE_UNSUPPORTED;
425
426         ret = nand_readid_op(chip, 0, id, sizeof(id));
427         if (ret)
428                 return MICRON_ON_DIE_UNSUPPORTED;
429
430         if (id[4] & MICRON_ID_ECC_ENABLED)
431                 return MICRON_ON_DIE_MANDATORY;
432
433         /*
434          * We only support on-die ECC of 4/512 or 8/512
435          */
436         if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
437                 return MICRON_ON_DIE_UNSUPPORTED;
438
439         return MICRON_ON_DIE_SUPPORTED;
440 }
441
442 static int micron_nand_init(struct nand_chip *chip)
443 {
444         struct mtd_info *mtd = nand_to_mtd(chip);
445         struct micron_nand *micron;
446         int ondie;
447         int ret;
448
449         micron = kzalloc(sizeof(*micron), GFP_KERNEL);
450         if (!micron)
451                 return -ENOMEM;
452
453         nand_set_manufacturer_data(chip, micron);
454
455         ret = micron_nand_onfi_init(chip);
456         if (ret)
457                 goto err_free_manuf_data;
458
459         if (mtd->writesize == 2048)
460                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
461
462         ondie = micron_supports_on_die_ecc(chip);
463
464         if (ondie == MICRON_ON_DIE_MANDATORY &&
465             chip->ecc.mode != NAND_ECC_ON_DIE) {
466                 pr_err("On-die ECC forcefully enabled, not supported\n");
467                 ret = -EINVAL;
468                 goto err_free_manuf_data;
469         }
470
471         if (chip->ecc.mode == NAND_ECC_ON_DIE) {
472                 if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
473                         pr_err("On-die ECC selected but not supported\n");
474                         ret = -EINVAL;
475                         goto err_free_manuf_data;
476                 }
477
478                 if (ondie == MICRON_ON_DIE_MANDATORY) {
479                         micron->ecc.forced = true;
480                         micron->ecc.enabled = true;
481                 }
482
483                 /*
484                  * In case of 4bit on-die ECC, we need a buffer to store a
485                  * page dumped in raw mode so that we can compare its content
486                  * to the same page after ECC correction happened and extract
487                  * the real number of bitflips from this comparison.
488                  * That's not needed for 8-bit ECC, because the status expose
489                  * a better approximation of the number of bitflips in a page.
490                  */
491                 if (chip->ecc_strength_ds == 4) {
492                         micron->ecc.rawbuf = kmalloc(mtd->writesize +
493                                                      mtd->oobsize,
494                                                      GFP_KERNEL);
495                         if (!micron->ecc.rawbuf) {
496                                 ret = -ENOMEM;
497                                 goto err_free_manuf_data;
498                         }
499                 }
500
501                 if (chip->ecc_strength_ds == 4)
502                         mtd_set_ooblayout(mtd,
503                                           &micron_nand_on_die_4_ooblayout_ops);
504                 else
505                         mtd_set_ooblayout(mtd,
506                                           &micron_nand_on_die_8_ooblayout_ops);
507
508                 chip->ecc.bytes = chip->ecc_strength_ds * 2;
509                 chip->ecc.size = 512;
510                 chip->ecc.strength = chip->ecc_strength_ds;
511                 chip->ecc.algo = NAND_ECC_BCH;
512                 chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
513                 chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
514
515                 if (ondie == MICRON_ON_DIE_MANDATORY) {
516                         chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
517                         chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
518                 } else {
519                         chip->ecc.read_page_raw = nand_read_page_raw;
520                         chip->ecc.write_page_raw = nand_write_page_raw;
521                 }
522         }
523
524         return 0;
525
526 err_free_manuf_data:
527         kfree(micron->ecc.rawbuf);
528         kfree(micron);
529
530         return ret;
531 }
532
533 static void micron_nand_cleanup(struct nand_chip *chip)
534 {
535         struct micron_nand *micron = nand_get_manufacturer_data(chip);
536
537         kfree(micron->ecc.rawbuf);
538         kfree(micron);
539 }
540
541 static void micron_fixup_onfi_param_page(struct nand_chip *chip,
542                                          struct nand_onfi_params *p)
543 {
544         /*
545          * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
546          * revision number field of the ONFI parameter page. Assume ONFI
547          * version 1.0 if the revision number is 00 00.
548          */
549         if (le16_to_cpu(p->revision) == 0)
550                 p->revision = cpu_to_le16(ONFI_VERSION_1_0);
551 }
552
553 const struct nand_manufacturer_ops micron_nand_manuf_ops = {
554         .init = micron_nand_init,
555         .cleanup = micron_nand_cleanup,
556         .fixup_onfi_param_page = micron_fixup_onfi_param_page,
557 };